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ABSTRACT

A standing wave ultrasonic motor (SWUM) is presented in this thesis. The

actuator is piezoelectrically powered and operates in the first and second bending

modes to move forwards and backwards, respectively. The kinematic stability of

the crawler, backed by experimental results is shown in the first paper presented in

this thesis. This study demonstrates that in the absence of a preload or kinematic

constraints, the crawler shows vertical stability. A full transient analysis using the

finite element method is performed characterizing the speed and contact variables is

conducted in the second paper. The results show that given enough time the crawler

is inherently stable and will reach a steady state velocity.
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1. INTRODUCTION

With the progress of technology comes the development of actuators of every

size, shape and application. Motors almost imperceptible to the human eye are

in daily use in nano-electronics. It is in these micro-scale devices that simplistic,

lightweight, and high resolution actuation are needed. Unlike larger actuators, micro-

motors are simpler in design and often require the use of unique materials capable

of actuation at micro-scale. The implementation of piezoelectric materials to fulfill

this necessity has led to the development of the contemporary linear piezoelectric

ultrasonic motor.

A piezoelectric material is one that takes advantage of the converse piezo-

electric effect. Simply put, when a constant electrical field is applied to a piezoelec-

tric material, strain is formed in the material; when alternating current is applied

it deforms with a proportional frequency, allowing the vibrational properties to be

harnessed. Sashida developed one of the earlier standing wave ultrasonic motors in

1982 that operated at 27.8 kHz and had a 60% efficiency [18]. Following Sashida,

Kawamura progressed ultrasonic actuator research in the development of his linear

ultrasonic motor [11]. Over the next 20 years standing and traveling wave ultra-

sonic motors would be developed to provide novel solutions to real world problems

[20][13][24][15].

This paper describes a self-driving, linear, standing wave ultrasonic actuator

(SWUM). This crawler is the simplest of its kind; consisting of only a beam and a

single piezoelectric patch to drive it, similar to what is used in patent 4,612,472 [10].

Shown in Figure 2, the stator consists of a steel beam with strategically placed feet

and a piezoelectric patch placed topside. As shown by Zhao in 2011 [22], this single

piezoelectric patch when electrically excited will maintain a standing wave within
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the stator. More specifically, this sinusoidal forcing causes the piezoelectric ceramic

to expand and contract longitudinally. This causes strain on the top surface of the

stator and the resulting coupled moment causes the stator to vibrate at the excitation

frequency.

The vibrating stator does not produce any useful longitudinal movements

without the use of strategically placed feet. He et al demonstrates how the placement

of feet along key points on a mode shape can result in bulk movement of a stator

[9]. The crawler feet are placed so that the X and Y movements are opposite of each

other. This causes the cadence of foot contact to be alternating, allowing movement

in the direction of the foot in contact and minimizing interference of the opposite

foot.

Many SWUMs require the use of multiple modes working in tandem to achieve

a desired movement. In 2001 Kim uses the first longitudinal and fourth bending

mode in his stator using four stacked piezoelectric actuators [12]. These actuators

that require multiple piezoelectric actuators often require multi-phase excitation to

maintain the desired mode shape. However, in 2003 Friend developed a single-phase,

single piezoelectric stack actuator capable of bidirectional movement [7]. His tuning

fork actuator combines bending and shearing modes that follow a quasi-elliptical

path at the contact interface. Driving his actuator in the second tuning fork mode

reversed the shearing direction of the forks, allowing the actuator to reverse. The

crawler described herein is also a single phase bidirectional actuator, operating with

a single piezoelectric element.

Though the crawler is simple in build and function, the mechanisms behind

it’s movement are unexpectedly complicated. Current papers written on the contact

mechanics of vibrating actuators fall into two categories. The first being quasi-static

analyses in very discrete time frames as exemplified by Hagedorn and Wallaschek [8].

By removing the temporal component of the problem, the steady-state parameters
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are more easily determined. The second category of analysis comes when transient

behavior becomes a necessity. In full transient analyses, problems become exponen-

tially harder with the degrees of freedom included. Most papers such as those written

by Zhao [23] account for a single degree of freedom or at most two as shown by Liu et

al [14] in the analysis of pizza tossing. A primary concern in a full transient analysis

is avoiding the stochastic regions in the bifurcation plots of an actuator’s kinematic

behavior [5]. Variables like foot placement, amplitude of forcing, and contact surface

can quickly turn periodic behaviors into fully chaotic scenarios.

Lastly, adding to the kinematic difficulties are the additional complexities

that come with contact mechanics: deformation of contacting surfaces causes higher

contact time (altering foot phase), increased damping, losses, and micromechanical

behaviors that may need to be accounted for.

Due to the complexity of the kinematics and dynamics of such vibratory sys-

tems, FEA is typically used as Fernandez demonstrates [6]. Moal [17] and Maeno

[16] demonstrate further cases of FEM use to predict the speed and torque values

of ultrasonic motors. The free-vibration behavior will first be proven, followed by

the full transient problem. Comparisons with experimental results are shown in the

second half of the Finite Element Analysis paper.
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PAPER

I. KINEMATIC STUDY OF A NOVEL SINGLE-PHASE
PIEZOELECTRIC ACTUATOR

Dwight S. Maness, Daniel S. Stutts

MAE Department, Missouri University of Science & Technology,

Rolla, MO 65409

ABSTRACT

An analytical model of a single-phase, ultrasonic, piezoelectric crawler in-

corporating the kinematics of contact between the crawler feet and the supporting

substrate was developed. The model, based upon simple Euler-Bernoulli beam the-

ory and linear piezoelectric behavior, allows the determination of the dynamic normal

and tangential reaction forces at the front and rear feet. The normal reaction forces

predict a “galloping” motion, and the tangential reactions, based upon simplified

contact theory, allow the prediction of the crawler’s linear speed. Laser Doppler Vi-

brometer measurements allowed the determination of an appropriate loss parameter,

thereby setting the amplitude of vibration, and an experimental apparatus, developed

to measure the front and rear contact duration and phase, confirmed the galloping

motion predicted by the model, and measured linear crawler speed also agreed well

with model predictions.
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1. NOMENCLATURE

U(x) spatial component of displacement solution u3(x, t)

η(x) modal participation factor in the solution u3(x, t)

βn eigenvalue of the nth mode

L length of beam

ρ density beam material

γ system mechanical damping coefficient

M(x, t) resultant electro-mechanical moment

b width of beam substrate

y distance from neutral axis

n mode number

σk1 stress in the x-direction in the kth layer

Y k
1 Young’s Modulus of each layer

ek31 piezoelectric stress coefficient

Ek
3 transverse electric field

εk1 normal strain in the x-direction in the kth layer

hb height of the stator

hPZT height of PZT layer

φ(x, t) spatially distributed applied voltage

H(x) Heaviside step in x

ωn natural frequency of nth mode

ζn dimensionless modal damping coefficient

rn frequency ratio ω
ωn

ri vector relative to the center of mass

Ri global coordinate vector
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2. INTRODUCTION

The piezoelectric actuator, described here as a “crawler,” may be classified as

a linear standing wave ultrasonic motor or SWUM. Although the crawler described

here, similar to the one described in patent 4,612,472 [10], is certainly one of the

simplest in its class, it is capable of exhibiting a very rich set of kinematic behaviors.

Shown in Figure 1, the stator consists of a steel beam with strategically placed feet

and a piezoelectric element placed topside. As shown by Zhao in 2011 [22], this single

piezoelectric element when electrically excited will maintain a standing wave within

the stator at a frequency equal to that of the excitation frequency.

forward

PZT element

feet

electrode

steel beam

b

h
rn fn

Figure 1. Crawler schematic.

The vibrating stator does not produce any useful longitudinal velocities with-

out the use strategically placed feet. He et al demonstrates how the placement of feet

along key points on a vibrating body can result in bulk movement of a stator [9]. The

crawler feet are placed so that the front and rear foot movements are opposite of each

other. This causes the cadence of foot contact to be alternating, allowing movement

in the direction of the foot in contact with minimal drag. The foot dimensions and

crawler diagram are found in Table 1 and Figure 2. Three reference frames are used

to describe the relevant geometry and kinematics. The upper case vectors (R) are
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used to describe points on the crawler in the global (X, Y ) reference frame, and

lowercase (r) are used to describe points on the crawler relative to the center of mass

at point G in the local (xG, yG) reference frame. Static dimensions relative to the

local origin at the rear of the crawler on the neutral axis, and located globally by R0,

are described using the (x, y) reference frame.

Many SWUMs require the use of multiple modes working in tandem to achieve

a desired movement. In 2001, Kim maintains the first longitudinal and fourth bend-

ing mode in his stator using four stacked piezoelectric actuators [12]. These actuators

that require multiple piezoelectric actuators often require multi-phase excitation to

maintain the desired mode shape. However, in 2003 Friend developed a single-phase,

single piezoelectric stack actuator capable of bidirectional movement [7]. His tun-

ing fork actuator combines bending and shearing modes that follow a quasi-elliptical

path at the contact interface. Driving his actuator in the second tuning fork mode

reversed the shearing direction of the forks, allowing the actuator to reverse. The

crawler described herein is also a single phase bidirectional actuator, operating with

a single piezoelectric element.

Though the crawler is simple in build and function, the mechanisms behind

it’s movement are complicated. Current papers written on the contact mechanics

of vibrating actuators fall into two categories. The first being quasi-static analyses

in very discrete time frames as demonstrated by Hagedorn and Wallaschek [8]. By

removing the temporal component of the problem, the steady-state parameters are

more easily solved. The second category of analysis comes when transient behavior

becomes a necessity. In full transient analyses, problems become exponentially harder

with the degrees of freedom included. Papers written by Zhao [23] account for a single

degree of freedom or at most two as shown by Liu [14] in the analysis of pizza tossing.
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Table 1. Material properties and dimensions of crawler
Piezoelectric element
Material PZT-5A
Length (x2 − x1) 1.545 cm
Width 1 cm
Thickness 0.5 cm
Density 7700 kgm−3

Piezoelectric Strain Constant, d31 −171 × 10−12 m/V
Stator
Material Steel
Young’s Modulus 170 GPa
Poisson’s Ratio 0.3
Length 2.8 cm
Width 1 cm
Thickness 0.05 cm
Density 7850 kgm−3

xF (x-coordinate of front foot relative to G) 0.8 cm
xR (x-coordinate of rear foot relative to G) 2.31 cm
rPZT (neutral axis to the mid-plane of the PZT element) 0.27 cm

A primary concern in a full transient analysis is avoiding the stochastic regions in the

bifurcation plots of an actuator’s kinematic behavior. Variables like foot placement,

amplitude of forcing, and contact surface can quickly turn periodic behaviors into

fully chaotic scenarios. Examples of such behavior can be found in the analysis of

the bouncing dimer [5] and bouncing rod [21].

o
R

x
1

2
x

rn

fnG

y
G

Figure 2. Schematic of relevant crawler kinematic geometry.
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Papers similar to those described above by Dorbolo and Liu show stochastic

behavior as vibration acceleration exceeds gravity. This paper explores the kinematic

behavior and stability of the crawler in the Y-direction, despite flexible body accel-

erations thousands of times greater then gravity. The behavior in the X-direction

is much more complex and will be left for future study. The paper begins with

the derivation of the free and forced beam equations before delving into the contact

behavior and kinematics of the crawler.

3. ANALYSIS OF FORCED FREE-FREE BEAM

The solution of a Euler-Bernoulli beam, with free-free boundary conditions,

as derived by Soedel [19] can be written as:

u (x, t) = U (x)T (t) (1)

where U(x) represents the spatial solution of the problem represented by

U (x) = sinh (βnx) + sin (βnx) + C (cosh (βnx) + cos (βnx)) (2)

with,

C = − sinh (βnL) − sin (βnL)

cosh (βnL) − cos (βnL)
(3)

Passing an alternating current through the piezoelectric (PZT) crystal causes a

proportional extension and contraction. The resulting tensile and compressive states

on the PZT causes a moment couple about the opposite ends of the PZT element.

When bonded to a beam, this moment causes a bending motion. For this derivation

extensional effects in the x-direction are ignored; the stator is in pure bending.

The equation of motion for the case described is written as:
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ρ ü+ γ u̇+M ′′ = 0 (4)

where M is the mechanical moment, which can be expressed in terms of stress:

M(x, t) = b
2∑

k=1

∫ yk+1

yk

yσk1 dy (5)

and σk1 can be represented by

σk1 = Ykε
k
1 − ek31E

k
3 (6)

where

εk1 = yu′′ (7)

combining (5), (6), and (7) and integrating yields

M(x, t) =
2∑

k=1

1

3
bY k

1

(
y3k+1 − y3k

)
− 1

2
bek31E

k
3

(
y2k+1 − y2k

)
(8)

M(x,t) can be rewritten as

M(x, t) =
bh3

12
Y1u

′′ − b rPZT d31YPZTφ(x, t) (9)

φ(x, t) = φo (H(x− x1) −H(x− x2)) sinωt (10)

φ is the the spatially distributed voltage of the PZT starting at x1 ending at x2. φo

is the amplitude of the applied voltage. Substitution of (9) and (10) into (4) yields:

ρü+ γu̇+ Y Iu(4) = b rPZT d31YPZTφo (H(x− x1) −H(x− x2)) sinωt (11)
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The modal expansion solution to Equation (11) may be written

u(x, t) =
∞∑
n=1

Un(x)ηn(t) (12)

Substitution of (12) into (11) yields:

∞∑
n=1

(
η̈n + 2ζnωnη̇n + ω2

nηn
)
Un(x) = Fo (H(x− x1) −H(x− x2)) sinωt (13)

where

Fo =
b rPZT d31YPZTφo

ρ
(14)

ωn = β2
n

Y I

ρ
=

(βnLb)
2

L2
b

√
Y I

ρ
(15)

and

2ζωn =
γ

ρ
(16)

Multiplying by Um(x) and integrating over the domain yields:

∞∑
n=1

(
η̈n + 2ζnωnη̇n + ω2

nηn
) ∫ Lb

0

Un(x)Um(x) dx

= Fo

∫ Lb

0

(H(x− x1) −H(x− x2))Um(x) sinωt dx (17)

The result, by orthogonality, for m = n, is given by

η̈n + 2ζnωnη̇n + ω2
nηn = Fn(t) (18)

where:

Fn(t) =
brPZTYPZTφo (U ′n(x2) − U ′n(x1))

ρNn

sinωt (19)

Nn =

∫ Lb

0

U2
n(x) dx (20)
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ηn(t) = Λn sin(ωn
√

1 − ζ2nt− φn) (21)

Λn =
Γn

ωn
√

(1 − r2n)2 + (2ζnωnrn)2
(22)

Γn =
brPZTYPZTφo (U ′n(x2) − U ′n(x1))

ρNn

(23)

and

φn =


arctan

(
2ζnωn

1−r2n

)
, if rn ≤ 1

π + arctan
(

2ζnωn

1−r2n

)
, for rn > 1

(24)

4. ANALYSIS OF BOUNCING BEHAVIOR

In this paper the assumption is made that the rotation of the center of gravity

(θG) is negligible and the contacting interfaces are assumed to be rigid. The subscript

i will be used to indicate a foot located at location xi for any number of feet located

between 0 to L:

Y (xi, t) = Yi(t) (1)

ri = (xi − xG) (2)

ü(xi, t) = üi(t) (3)

Defining the equations of motion:

mŸG(t) =
∑
i

Ni −mg (4)

Igθ̈G =
∑
i

ri ×Ni (5)
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A function Y(x,t) is created to represent a global coordinate dimension to any point

on the neutral axis of the actuator.

Y (x, t) = u(x, t) + (x− xG)θ(x, t) + YG(t) + Y0 (6)

where YG(t) is a global coordinate dimension representing the distance from the

ground to the unrotated rigid body frame, and Y0 is the initial height of the center

of gravity at time equals zero. θ(x, t) and YG(t) are the rigid body components of

movement, meaning they are invariant with respect to x. The second derivative

of Equation (6) is taken and integrated with respect to density terms to obtain an

equation for inertia.

ρbh

∫ L

0

Ÿ (x, t) dx = ρbh

∫ L

0

ü(x, t) dx+ (
x2

2
− x(xG))θ̈(t) + ρbhLŸG(t) (7)

A beam vibrating in the symmetric first mode has the integral
∫ L
0
ü(x, t) dx approxi-

mately equal to 0. Additionally, a crawler with feet of negligible mass placed nearly

symmetric about the center of gravity has the second term in (7) also equal to zero.

In other words, treating xG like a variable:

lim
xG→L/2

[x2
2

− x(xG)
]L
0

= 0 (8)

therefore, Equation (7) is reduced to a simpler form.

ρbh

∫ L

0

Ÿ (x, t) dx = ρbhLŸG(t) (9)

The remainder of this paper will delve into the three possible cases of contact for

the crawler: single foot contact, multi-foot contact, and no contact. For any foot in



14

contact at location xi,

Yi(t) = 0 = YG(t) + (xi − xG)θ(t) + ui(t) + Y0 (10)

solving for YG(t) and using Equations (4) and (9) yields the normal force for the foot

in question.

Ni =
IGm (g − üi(t))

IG +m (x− xG)2
(11)

From this equation the rigid body rotation and global coordinate to the center of

gravity can easily be solved for.

θ(t) =
m(xi − xG)2

IG +m(x− xG)2

(
gt2

2
− ui(t) + u̇i(t0)t+ ui(t0)

)
+ θ̇(t0)t− θ(t0) (12)

YG(t) = u(xG, t) + (Γ − 1)ui(t) −
Γgt2

2
− Γυ(t) − s(t) + Y0 (13)

where,

Γ =
m(xi − xG)2

IG +m(xi − xG)2
(14)

υ(t) = u̇(t0)t+ ui(t0) (15)

s(t) = (xi − xG)
(
θ̇(t0)t− θ(t0)

)
(16)

A similar process is followed for solving the case of multiple foot contact. The problem

will be solved assuming that only two feet are present at locations xi and xj and are

in contact at the same time, thus

Yi(t) = Yj(t) = 0. (17)



15

Following a similar process to single foot contact the kinematics and forces on the

crawler can be achieved.

θ(t) =
uj(t) − ui(t)

xi − xj
(18)

Ni =
(xG − xj) (xi(üj + g) − xj(üi + g) + xG(üi − üj)) − IG(üi − üj)

(xi − xj)2
(19)

Nj =
(xi − xG) (xi(üj + g) − xj(üi + g) + xG(üi − üj)) + IG(üi − üj)

(xi − xj)2
(20)

YG(t) = uG(t) +

(
ui(t)(xG − xj) + uj(t)(xi − xG)

xi − xj

)
+ Y0 (21)

The last case is one of no foot contact, specifically:

Ni = Nj = 0 (22)

Following this, the equations of motion become synonymous with parabolic motion

equations.

YG(t) = Y0 + YG(t0) + ẎG(t− t0) −
g

2
(t− t0)

2 (23)

where θ, having no forces to drive it simply becomes a product of it’s previous state

θ(t) = θ̇(t0)t+ θ(t0) (24)

In order to solve for tn, the time of contact for the nth collision, Equation (23) is set

equal to the expression of YG(t) of when the foot is to be in contact next.

YG(t0) + ẎG(tn − t0) −
g

2
(tn − t0)

2 = − (ω(tn) + ui(tn) + Y0) (25)
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5. RESULTS

A 30 V signal is applied to the piezoelectric element with the first natural

frequency of 32.3 kHz found via Equation (15). A material damping parameter of

ζ=0.001 is used to get the amplitude shown in Figure 4a. When compared to the

experimental result, found by using a scanning laser doppler vibrometer (LDV) to

the underside of the crawler, the amplitude is shown to be in agreement as shown in

Figure 4c. Additionally, the damping parameters are in agreement with the maple

simulation using ζ=0.001 and the finite element method using ζ=0.0012.

(a) Maximum deflection of the first mode

using Maple.

(b) Experimental LDV scan of underside

of crawler showing deflection.

Figure 3. Comparison of maximum deflection of crawler found via simulation and
experimentation.

The forced vibration behavior is superimposed onto a rigid contacting inter-

face and the vertical stability is observed. A vertical loss parameter is added via a

coefficient of restitution that is varied to 0.3, 0.6, and 0.9. The crawler is released

from an initial height of 13.75 µm and allowed to contact and bounce off of the rigid

surface. The transient vibrational effects of the crawler as well as the vibrations

transmitted through contact are ignored. Rotation about the center of gravity is

assumed to be small and the crawler operates on a frictionless surface; the goal of
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this simulation is to prove vertical periodicity and stability of the crawler. As shown

in Figure 4, despite the initial conditions the crawler always reaches an equilibrium

height of 2.75 mm, with minimal bounce. The explanation for this remarkable be-

havior can be found in examining the nature of the combined rotor-stator design the

crawler consists of.

An ultrasonic actuator typically consists of a stator being moved by a powered

rotor with a preload, guaranteeing contact and predictable shear friction behavior.

The crawler, having the stator itself powered and acting as the rotor, does not have

this preload allowing free rigid body and flexure of the center of gravity. This rigid

body effect is found in Figure 4 which shows the foot is in contact with the ground

near it’s maximum amplitude. It would seem intuitive that at the point of contact,

the acceleration of the crawler foot (which exceeds gravity by a factor of 2500) would

immediately launch the crawler into the air. On the contrary, a specific chain of

events must occur before the foot can propel the crawler upwards.

Due to the large differences between acceleration and gravity of the foot, a

generic sine and cosine wave is shown in Figure 5 to illustrate this concept. Three

events must happen simultaneously in order for the crawler to propel itself upwards:

the foot must be in contact with the ground, the foot velocity must be directed down-

wards, and the acceleration of the foot must exceed gravity. When the foot fulfills

all of these conditions, it ”transmits” energy as indicated by region one in Figure 5.

In this state of transmission the foot rebounds, causing an upward acceleration of

the center of gravity. Adversely, when the foot velocity and acceleration are directed

upwards the crawler reaches a state of absorption. It is in this absorbing domain

shown in region two, where there is a net energy loss and the crawler sticks to the

surface. Similar behavior occurs in the other two regions but are areas of improbable

contact. Improbable since fulfilling these scenarios will either require a preload or

eccentric rotation about the center of gravity to maintain contact. Since there is no
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preload and rotation is assumed to be negligible, these scenarios are not considered.

The results of the crawler show that each foot lands on the edge of the transmitting

region. This is due to the crawler being able to reach an equilibrium rigid body

height near the maximum amplitude of the feet, where the foot velocity is near zero.

Coincidentally, this is the reason why the lack of preload does not allow the crawler

enough rebounding to become airborne, ensuring periodic steady state behavior given

enough time.

(a) ε=0.3 (b) ε=0.6

(c) ε=0.9

Figure 4. Steady state behavior of crawler at various coefficients of restitution.
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Figure 5. Illustration of foot phase and resulting kinematic energy

6. CONCLUSION

The crawler SWUM has shown that an actuator of simple design can demon-

strate complex behaviors. This paper takes the unique approach of analyzing the

kinematics of a bouncing and vibrating body, which from the outcome of this study

demonstrates that there are differences with similar studies of bouncing bodies. Pa-

pers involving preloads or rigid objects rebounding on bouncing platforms show in-

stabilities at accelerations much higher then gravity. Most analyses of this type stay

far below the acceleration of gravity region to avoid such stochastic behaviors.

The stability of this crawler is shown and is proven that given a wide array

of damping parameters and initial heights, the crawler inevitably reaches a state

of periodicity. Some bouncing is expected initially with primary driving variables

being the initial kinematic state, excitation amplitude, and foot cadence. Landing at

the boundary of the absorb/transmit region means that little energy is transmitted

through the stator-rotor with the net outcome being a decay of the bouncing. This

is shown to be the case for the crawler contacting multiple surfaces.
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In the process of creating the mathematical model described herein, the full X

and Y behaviors were sought, specifically the steady state velocity of the X-direction.

To accurately produce this, the rotational behavior about the center of gravity and

deformation would have to be included. As previously stated many authors opt to

solve either the reduced degree of freedom problem (as shown in this paper) or a

quasi-static (hertzian type) model to avoid transient behavior. If both rotation and

deformation were included, the problem bypasses these simplifications and becomes

exponentially more difficult to solve for. This opens up the possibility of future study

to develop such a deformable, three degree of freedom, transient model.



21

II. FINITE ELEMENT ANALYSIS OF SINGLE-PHASE,
BI-DIRECTIONAL, ULTRASONIC CRAWLER-ACTUATOR

Dwight S. Maness, Daniel S. Stutts

MAE Department, Missouri University of Science & Technology,

Rolla, MO 65409

ABSTRACT

The dynamics of a standing wave linear type actuator crawler is modeled

using the finite element method. A transient multi-body, nonlinear contact model

is developed to predict the contact behavior between the vibrating body and target

surface. Crawler behaviors are confirmed through experimental means. Comparisons

of finite element and experimentation in steady-state yield similar results.
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7. NOMENCLATURE

T Period of Vibration

[M ] Mass Matrix

[K] Stiffness Matrix

[C] Structural Damping Matrix

un Nodal Displacement Vector at Time tn

[F ] Forcing Function Matrix

[T ] Stress Vector

[D] Electric Flux Density Vector

[cE] Elasticity Matrix

[ε]S Dielectric Matrix

[S] Elastic Strain Vector

[E] Electric Field Intensity Vector

[K]Z Piezoelectric Coupling Matrix

[K]D Element Dielectric Permitivity Coefficient

[L] Vector of Nodal, Surface, and Body Charges

8. INTRODUCTION

This paper describes a self-driving, linear, standing wave ultrasonic actuator

(SWUM). This crawler is the simplest of its kind; consisting of only a beam and a

single piezoelectric patch to drive it, similar to what is used in patent 4,612,472 [10].

Shown in Figure 1, the stator consists of a steel beam with strategically placed feet

and a piezoelectric patch placed topside. As shown by Zhao in 2011 [22], this single

piezoelectric patch when electrically excited will maintain a standing wave within

the stator. More specifically, this sinusoidal forcing causes the piezoelectric ceramic

to expand and contract longitudinally. This causes strain on the top surface of the
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stator and the resulting coupled moment causes the stator to vibrate at the excitation

frequency.

The vibrating stator does not produce any useful longitudinal movements

without the use of strategically placed feet. He et al demonstrates how the placement

of feet along key points on a mode shape can result in bulk movement of a stator

[9]. The crawler feet are placed so that the X and Y movements are opposite of each

other. This causes the cadence of foot contact to be alternating, allowing movement

in the direction of the foot in contact and minimizing interference of the opposite

foot. The foot dimensions and general crawler dimensions are found in Table 1.

Many SWUMs require the use of multiple modes working in tandem to achieve

a desired movement. In 2001 Kim uses the first longitudinal and fourth bending

mode in his stator using four stacked piezoelectric actuators [12]. These actuators

that require multiple piezoelectric actuators often require multi-phase excitation to

maintain the desired mode shape. However, in 2003 Friend developed a single-phase,

single piezoelectric stack actuator capable of bidirectional movement [7]. His tuning

fork actuator combines bending and shearing modes that follow a quasi-elliptical

path at the contact interface. Driving his actuator in the second tuning fork mode

reversed the shearing direction of the forks, allowing the actuator to reverse. The

crawler described herein is also a single phase bidirectional actuator, operating with

a single piezoelectric element.
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Table 1. Crawler Properties
Piezoelectric Patch
Material PZT-5A
Length 2.8 cm
Width 1 cm
Thickness 0.5 cm
Density 7700 kgm−3

Piezoelectric Strain Constant, d31 −171 × 10−12 m/V
Stator
Material Steel
Young’s Modulus 170 GPa
Poisson’s Ratio 0.3
Length 1.545 cm
Width 1 cm
Thickness .05 cm
Density 7850 kgm−3

xF 0.8 cm
xR 2.31 cm

forward

PZT element

feet

electrode

steel beam

b

h
rn fn

Figure 1. Crawler schematic.

Though the crawler is simple in build and function, the mechanisms behind

it’s movement are unexpectedly complicated. Current papers written on the contact

mechanics of vibrating actuators fall into two categories. The first being quasi-static

analyses in very discrete time frames as exemplified by Hagedorn and Wallaschek [8].
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By removing the temporal component of the problem, the steady-state parameters

are more easily determined. The second category of analysis comes when transient

behavior becomes a necessity. In full transient analyses, problems become exponen-

tially harder with the degrees of freedom included. Most papers such as those written

by Zhao [23] account for a single degree of freedom or at most two as shown by Liu et

al [14] in the analysis of pizza tossing. A primary concern in a full transient analysis

is avoiding the stochastic regions in the bifurcation plots of an actuator’s kinematic

behavior [5]. Variables like foot placement, amplitude of forcing, and contact surface

can quickly turn periodic behaviors into fully chaotic scenarios. Lastly, adding to

the kinematic difficulties are the additional complexities that come with contact me-

chanics: deformation of contacting surfaces causes higher contact time (altering foot

phase), increased damping, losses, and micromechanical behaviors that may need to

be accounted for.

Due to the complexity of the kinematics and dynamics of such vibratory sys-

tems, Finite Element Analysis (FEA) is typically used as Fernandez demonstrates

[6]. Moal [17] and Maeno [16] demonstrate further cases of FEA use to predict the

speed and torque values of ultrasonic motors. The free-vibration behavior will first

be proven, followed by the full transient problem. Comparisons with experimental

results are shown in the second half of the paper.

9. FREE VIBRATION

9.1. FINITE ELEMENT ANALYSIS. The crawler model was developed

using ANSYS 14 and the adaptive parametric design language (APDL) functionality.

The piezoelectric patch is lined with multiphysics elements while the stator is lined

with flexible structural elements that propagate the piezoelectric excitation into the
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proper deformations and outputs. Both the piezoelectric and stator elements use

constant plane stress assumptions.

Modal analysis determines the natural frequencies of the unpowered crawler.

The natural frequencies forthe first seven predominant bending modes are given in

Table 2.

Table 2. Natural Frequencies in free-vibration given in FEA.

Mode Natural Frequency (KHz)

1 29.11

2 67.56

3 85.68

4 110.68

5 154.99

6 170.97

7 192.54

A harmonic analysis is performed to display the amplitude and mode shape

of the crawler in steady state at a particular frequency. The harmonic analysis of

the crawler is forced at each resonant frequency with the damping ratio ζ = 0.12%.

Inspection of the foot cadence and direction for the first and third mode show the

greatest likelihood of bidirectional behavior. The results of the simulation can be

seen in Figure 2. The color spectrum displayed in the figure show the spectrum of

Y-direction displacements with respect to the undeformed model.
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(a) First Mode

(b) Third Mode

Figure 2. Mode shape of the first and third modes using a damping ratio of ζ = .12%.

9.2. EXPERIMENTAL RESULTS. An HP 4294A impedance analyzer

is used to provide verification of the natural frequencies and damping ratios. An

impedance trace shows that the forward and reverse modes lie at 30.71 and 89.36 KHz,

respectfully. The same impedance analyzer can output the piezoelectric equivalent

circuit for our crawler. Using the equivalent circuit model, the parameters are: R1 =

312.17 Ω, L1 = 667.49 mH, C1 = 40.30 pF, C0 = 3.51 nF for the forwards mode

and R1 = 136.83 Ω, L1 = 261.27 mH, C1 = 12.12 pF, C0 = 3.51 nF for the reverse
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mode. The use of Equation (1) gives a damping ratio of approximately ζ = 0.0012

and ζ = 0.000466 for the forward and reverse modes, respectively.

ζ =
R1

2

√
C1

L1

(1)

A scanning laser doppler vibrometer shows the maximum amplitudes of the

crawler at every point in it’s length. Comparing the magnitudes of this figure with

that shown for the finite element (Figure 2a) shows agreeable causatum: amplitudes

at the feet are at 0.3-0.6 micrometers, maximum displacements at the end are ap-

proximately 3 micrometers, and displacement at the center of the beam is 0.16-0.18

micrometers. A scan of the reverse mode is not obtained for this paper.

Figure 3. Displacement scan of LDV for crawler SWUM.

10. FORCED VIBRATION AND TRANSIENT CONTACT

10.1. FINITE ELEMENT ANALYSIS. To solve the difficulties of this

problem, the harmonic behavior is juxtaposed onto a contacting surface. Thus, the

nonhomogeneous forced vibration equation becomes coupled with a nonlinear tran-

sient contact problem. Relevant assumptions and methods from the ANSYS APDL
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Theory Reference [2] are summarized below to illustrate the amalgamation of equa-

tions involved in solving this model. Shown in Equation (1) is a general equation for

a second order forced system.

[M ]ü+ [C]u̇+ [K]u = F (1)

The Newmark time integration method is used for an implicit expression of

Equation (1) to solve for the dependent variable in question, u. Following that

method, the dependent variables and derivatives of the previous state at time tn are

known:

(a0[M ] + a1[C] + [K])un+1

= F + [M ] (a0un + a2u̇n + a3ün) + [C] (a1un + a4u̇n + a5ün) (2)

u̇n+1 = u̇n + a6ün + a7ün+1 (3)

ün+1 = a0 (un+1 − un) − a2u̇n − a3ün (4)

where a0...a7 are Newmark time integration coefficients [4]. Additionally, since the

multi-physics model incorporates piezoelectric actuation, Equation (1) will need to

be augmented with the governing equations for piezoelectric materials.

T
D

 =

[cE] [e]

[e]T −[ε]S


 S

−E

 (5)

Through the application of variational principle and finite element discretization

shown in [1], the final coupled transient piezoelectric matrices are produced.
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[M ] [0]

[0] [0]


 ü
V̈

+

[C] [0]

[0] [0]


 u̇
V̇

+

 [K] [KZ ]

[KZ ]T [KD]


u
V

 =

F
L

 (6)

Lastly, the contact method used to derive interaction with a surface is a simple

Coulomb friction model using the augmented Lagrangian method. This method is

used to update the contact pressure at every iteration so that the contact pressure

represented by:

P =


0, if un > 0

Knun + λi+1, if un ≤ 0

(7)

λi+1 =


λi +Knun, if un > ε

λi, if un ≤ ε

(8)

where Kn and un are the normal contact stiffness and gap size, respectively; λ is the

lagrange multiplier component at iteration i, while ε is the contact tolerance.

In addition to the elements already in place, contact elements are placed so the

desirable contact parameters can be outputted. A rigid line is used as the contacting

interface to reduce simulation time and resources, that would otherwise be necessary

for a fully deformable surface. Additionally, the simulation is more numerically stable

in element formulations between time steps with only one deformable surface. The

contact elements were superimposed over the structural elements that made up the

feet. Similarly, rigid target elements were placed over the rigid line intended to act

as the surface interface.

In this transient solution, sinusoidal forcing with an amplitude of 30 V is

used. 80,000 substeps over the course of 0.13 seconds are specified amounting to
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approximately 20 substeps/cycle to minimize aliasing. Three surfaces are used in

this simulation: Delrin, Nylon, and Plexiglas. The coefficients of kinetic friction were

found experimentally, using the method shown in the experimental results. Figure 6

shows how a typical output for an finite element simulation would look; shown is the

output for µ = 0.25.

Sought after is the behaviour of the crawler as it reaches steady-state con-

ditions. In Figure 4a and 4b are shown contact and shear friction pressures that

look anything but steady-state. The normal pressure at times deviates at 15 MPa,

while the shear friction show seemingly unpredictable negative and positive behavior.

However, the contrary is shown in results for the contact status and velocity. Shown

in Figure 4c is the state of the crawler contact at any moment in time. A value of

1 correlates to the crawler in near contact, values above that show the actuator in

full slip contact conditions. Viewing the full record for contact status, the contact is

shown to be periodic in contact duration for the majority of the record.

Figure 8 presents the transient behavior of the crawler as it reaches steady-

state. The large sinusoidal fluctuation is from the inclusion of both the rigid body

and extensional mode velocities. A listing of the averaged steady-state results are

shown in Table 3, to give a valid comparison between the surfaces. The duty cycle

shown in this figure uses Equation (9) and data from the contact status to determine

an average steady-state contact duty cycle.

Duty Cycle =
tcontact
T

× 100% (9)
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(a) Contact Pressure (b) Shear Friction

(c) Contact Status (d) X-direction Velocity

Figure 4. Sample output of dynamic forces and kinematic parameters for crawler
running on Delrin (µ = 0.25). Front foot represented by blue and rear foot represented
by magenta

Figure 5. Transient x-direction velocities of the crawler.
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Table 3. Summary of Averaged Finite Element Results

Comparison of Contact Duration

Material Dynamic Coefficient Duty Cycle Contact Force Steady-State

of Friction Front / Rear Front / Rear Velocity

Delrin 0.25 15% / 30% 0.8 N / 0.5 N 0.08 m/s

Nylon 0.30 18% / 33% 1.2 N / 0.8 N 0.08 m/s

Plexiglas 0.50 30% / 60% 2.7 N / 1.1 N 0.11 m/s

The same method is performed to analyze motion in the third mode. Due

to a significantly lower vibration amplitude in the reverse mode, the data becomes

more difficult to examine. Figure 6a is the velocity displayed for the crawler on

Delrin, showing that the low rigid body velocity is obscured by the extensional mode

velocity. Only upon viewing the displacement and adding a linear interpolation, can

a hypothesis for the steady-state velocity be made (Figure 6b). The outcome of this

linear interpolation (shown in the figure) is a steady state velocity that approaches

0.7 mm/s. The simulations for Nylon and Plexiglas are identical.
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(a) X-direction velocity for crawler in third

mode

(b) Displacement in third mode exhibiting

backwards behavior (linear interpolation in-

cluded)

Figure 6. Transient data output for crawler in third mode, shown for Delrin

10.2. EXPERIMENTAL RESULTS. Figure 7 shows two simple, custom

made devices used to measure the contact friction, velocity, and foot cadence. The

device shown in Figure 7a is created to determine the contact duration of the front

and rear feet. The objective is to be able to compare the timing and phase of the

feet relative to each other, in addition to the crawler as a whole. For this device,

two sets of parallel plates are energized with a 5 V source. When the front foot is in

contact for the set of front plates, the signal reads low (0 V). Likewise, when the foot

is airborne it will read high (5 V). A sampling of the transient behaviour is shown



35

in Figure 8, while an averaged set of steady state data is shown in Figure 4. The

assumption is made that the contact duration on the copper is similar to that of the

three materials, absent sticking. Comparisons with Table 3 show this is a reasonable

statement.

5 KΩ 5 KΩ5 KΩ

5 V

Function Generator

and Amplifier
Copper Clad

Nonconductive Substrate

V1

V2V

crawler
V

(a) Contact duty cycle device.

crawler

PIC 18F MCU

Test Surface

Copper Contacts

0.05 m/s

V

d

(b) Velocity and friction coefficient de-

vice.

Figure 7. Copper contact devices for verifying contact behaviours.

The transient behavior in Figure 8 shows that it takes the crawler approxi-

mately 2 microseconds to reach steady-state like behaviour. For 0.75 microseconds,

the rear foot appears to be dragging on the ground until the excitation reaches an

appreciable amplitude. Conversely, the front foot appears to be in the air for more

than 2 microseconds before reaching semi-periodic timing. Upon closer observation

of the front foot data, high frequency noise is seen during that period around the 5

V mark. This can be attributed to aliasing of our measuring device and is exhibiting

some very high frequency bouncing of the front foot prior to reaching the correct

sync with the rear. The previously stated 2 microsecond steady-state time is in stark

contrast to the finite element results that show steady-state behaviour at approxi-

mately 0.1 seconds. This differing steady state behaviour can be attributed to the

damping losses that finite element analysis does not account for. Apart from the
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structural damping ratio specified, there are no other significant structural or viscous

losses accounted for in the finite element model.

Examining the data shown in steady-state (Figure 9), shows that as one foot

leaves the ground the other is in contact soon afterwards, i.e. there is a very short

time they are both in contact. The conclusion is made that the crawler moves with

each foot galloping in succession, similar to how Zhao in 2011 demonstrates his two-

phase actuator [22]. Comparing the full length of the experimental data with that

found in the finite element model, the high frequency bouncing observation is again

seen. Although the crawler moves with steady-forward velocity, the contact behavior

seems to be quasi steady-state at best.

Figure 8. Transient state behavior of crawler taken with contact plates.
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Figure 9. Steady state type behavior taken with contact plates.

The same contact plate is run for the crawler in the third mode. However, due

to the amplitude being more then an order of magnitude smaller and the decrease

in velocity, the crawler does not move across the copper plate. The roughness of the

copper plate likely is another contributing factor to the lack of cadence data in the

third mode.

Figure 7b shows another set-up involving two sets of parallel copper plates.

The plates are used as inputs to a PIC microcontroller running a simple timer and

LCD display. Used in conjunction with the copper plates, a time to traverse one set

of copper patches to the other is obtained. This setup is used to first determine the

kinetic friction coefficient of the three surfaces shown in Figure 3 using a tilt test [3]

and an unpowered crawler. The platform is then levelled and the crawler powered to

determine the steady-state velocity of the same crawler. The averaged velocities can

be found in Table 4 with the rest of the contact data.

Similar to the contact plate data, velocity data is not easily measured due to

the drastic decrease in speed from the forwards to the reverse modes. Only through

placing the actuator on a very smooth graphite surface, can steady movement in the
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Table 4. Experimentally obtained friction coefficients and averaged steady-state be-
haviors.

Comparison of Contact Duration
Material Dynamic Coefficient of Duty Cycle Steady-State

Friction Front/ Rear Velocity
Delrin 0.25 32%/ 51% 0.048 m/s
Nylon 0.30 32%/ 51% 0.067 m/s
Plexiglas 0.50 32%/ 51% 0.110 m/s

backwards direction to be seen. Through visual inspection and the use of a stopwatch,

the crawler is measured to move at an averaged 1 mm/s. This bodes well with the

information found via finite element that predicts a steady state speed of 0.7 mm/s

(Figure 6b).

11. CONCLUSION

It is uncommon in articles that a full transient, multiphysics, contact problem

is accurately described. Coupling the piezoelectric excitation with the vibration of

the bar and superimposing that onto a contacting interface leads to problems with

element interfacing, shear locking, proper damping specifications, and transient con-

vergence to name a few. It is no wonder then that many authors look at very discrete

events within contact problems to obtain a quasi-static answer. This paper takes the

unique approach of solving for all of these problems simultaneously in the analysis of

the single-phase, piezoelectric, crawler actuator.

Through the use of ANSYS 14 APDL, forwards and backwards movement

of this simple crawler has been proven operating in the first and third modes, re-

spectively. Though simplified in build and geometry, the transient and steady-state

solutions demonstrate the complex relationship between foot cadence and steady-

state behavior. The results show that many of the driving variables exhibited in

Figure 6 show anything but steady state behavior, the net behavior of the crawler
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is one that tends toward stability. The combination of the crawler’s additive and

subtractive frictions reaching equilibrium, the crawler reaching a steady contact time

for each foot, and the foot kinematics all play a contributing role to reaching steady-

state. Contact duration and velocities are corroborated with experimental means,

through the use of copper contact devices. Additionally, the bidirectional behavior

of this crawler is proven, though magnitudes slower does open possibilities for future

studies.
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SECTION

2. CONSLUSIONS

The crawler SWUM has shown that an actuator of simple design can demon-

strate complex behaviors. This paper takes the unique approach of analyzing the

kinematics of a bouncing and vibrating body, which from the outcome of this study

demonstrates that there are differences with similar studies of bouncing bodies. Pa-

pers involving preloads or rigid objects rebounding on bouncing platforms show in-

stabilities at accelerations much higher then gravity. Most analyses of this type stay

far below the acceleration of gravity region to avoid such stochastic behaviors.

The stability of this crawler is shown and is proven that given a wide array

of damping parameters and initial heights, the crawler inevitably reaches a state of

periodicity. What this means is if a surface can accurately be modeled as rigid with

a coefficient of restitution, this crawler would have steady and predictable behavior.

Some bouncing is expected initially with primary driving variables being the initial

kinematic state, excitation amplitude, and foot cadence. Landing at the boundary

of the absorb/transmit region means that little energy is transmitted through the

stator-rotor with the net outcome being a decay of the bouncing. This is shown

to be the case for the crawler contacting multiple surfaces. The next step in this

study will be a full parametric examination of the stochastic behavior of this crawler.

Variables like the length, foot placement, and excitation will be varied to evaluate

the robustness of the stability claimed in this paper.

It is uncommon in articles that a full transient, multiphysics, contact problem

is accurately described. Coupling the piezoelectric excitation with the vibration of

the bar and superimposing that onto a contacting interface can lead to problems
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with element interfacing, shear locking, proper damping specifications, and transient

convergence to name a few. It is no wonder then that many authors look at very

discrete events within contact problems to obtain a quasi-static answer. This paper

takes the unique approach of solving for all of these problems simultaneously in the

analysis of the single-phase, piezoelectric, crawler actuator. Through the use of AN-

SYS 14 APDL, forwards and backwards movement of this simple crawler has been

proven operating in the first and third modes modes, respectively. Though simplified

in build and geometry, the transient and steady-state solutions demonstrate the com-

plex relationship between foot cadence and steady-state behavior. The results show

that many of the driving variables exhibited show anything but steady state behav-

ior, however the net behavior of the crawler is one that tends toward stability. The

combination of the crawler’s additive and subtractive frictions reaching equilibrium,

the crawler reaching a steady contact time for each foot, and the foot kinematics all

play a contributing role to reaching steady-state. Contact duration and velocities are

corroborated with experimental means, through the use of copper contact devices.

Additionally, the bidirectional behavior of this crawler is proven, though magnitudes

slower does open possibilities for future studies.
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