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ABSTRACT 

Although implants made with bioactive glass have shown promising results for 

bone repair, their application in repairing load-bearing long bones is limited due to their 

poor mechanical properties as compared to human bones. This thesis study is on freeform 

extrusion fabrication of silicate based 13-93 bioactive glass scaffolds reinforced with 

titanium fibers.  A composite paste was prepared with 13-93 bioactive glass filled with 

titanium fibers (~16 µm in diameter and aspect ratio of ~250) having 0.1 to 0.4 vol. % of 

the bioactive glass scaffold. This paste was then filled into a syringe manually, and then 

extruded through a nozzle to fabricate scaffolds with an extrudate diameter of about ~0.8 

mm. The sintered scaffolds, with and without titanium fibers, had measured pore sizes 

ranging from 400 to 800 µm and a porosity of ~50%. Scaffolds produced with 0.4 vol. % 

titanium fibers were measured to have a fracture toughness of ~0.8 MPa•m1/2 and a flexural 

strength of ~15 MPa .Bioactive glass scaffolds without titanium fibers had a toughness of 

~0.5 MPa•m1/2 and strength of ~10 MPa. The addition of titanium fibers increased the 

fracture toughness of the scaffolds by ~70% and flexural strength by ~40%. The scaffolds’ 

biocompatibility and their degradation in mechanical properties in vitro were assessed by 

immersing the scaffolds in a simulated body fluid over a period of one to four weeks.  
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1. INTRODUCTION 

Bone possesses the intrinsic capacity for regeneration as part of the repair process 

in response to injury, as well as during skeletal development or continuous remodeling 

throughout adult life [1, 2]. Segmental bone defects and multiple fractures constitute a 

major portion of the musculoskeletal disorders seen in human beings. The current 

approaches towards treatment of such disorders include the use of intramedullary nailing, 

use of plates, and external fixations.  The limitations associated with such methods include 

prolonged course, poor reliability, high complication rate, and poor healing rates [3]. 

Another sophisticated and established method of treatment of bone repairs is the use of 

allografts. But the lack of structural integrity, limited availability, and morbidity of the 

donor site pose serious limitation to this approach [4]. 

 

 Over the past 10 years, biomaterials have been widely used in bone repair 

applications [5, 6]. A large number of synthetic substitutes like hydroxyapatite, calcium 

phosphate cements and glass ceramics have been investigated for bone repair [7, 8, 9, 10, 

11, 12]. Even though the above materials have osteoconductive and osteoinductive 

properties, they provide minimal structural support.   Fu et al.[13], Liu et al.[14], Kolan et 

al.[15], Doiphode et al[16]., and Rahaman et al.[17] studied the use of 13-93 bioactive 

glass in fabricating scaffolds for bone repair using a variety of fabrication techniques 

including slip casting, polymer foam replication, selective laser sintering, and robocasting. 

The investigation into mechanical and biological properties of the fabricated scaffolds has 

shown that 13-93 glass has favorable properties in repairing segmental bone defects [18, 

19].   
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  Most of the previous studies on 13-93 bioactive glass (bioglass) done by Rahaman 

et al. [18,19] have shown that the mechanical properties of 13-93 scaffolds fabricated by 

extrusion deposition are promising for applications in loaded bone repair. In-vivo 

assessment of 13-93 bioglass has shown good bonding between the scaffold and the 

surrounding tissues, in addition to new bone and tissue growth around the scaffold [20, 21, 

22]. However within four weeks of implantation, cracks were generated on the surface of 

the scaffolds due to reaction of the bioglass with blood, resulting in the formation of 

hydroxyapatite [23]. These cracks could potentially cause failure of the implant. Other 

bioglasses with slower conversion rates could be used for implants, but at the expense of 

unconverted glass that will remain in the host body.  

 

As to provide more structural integrity for the scaffolds, we propose addition of 

ductile metallic fibers into the bioglass matrix to form a composite with improved 

toughness. The addition of metallic fibers is expected to improve the ductility and lower 

the rate of degradation in vivo of the sintered scaffolds. Previous studies have shown that 

the strength and toughness of glasses are improved upon dispersion of metallic particles in 

them [24, 25, 26]. 

 

 In this study, titanium fibers are used to reinforce the bioglass matrix for fabrication 

of scaffolds. Titanium is used due to the following reasons:1) titanium is an FDA approved, 

widely used material for synthetic implants as it offers excellent biocompatibility;  2) the 

thermal coefficients of expansion of the titanium fiber and bioactive glass are close to each 

other, thereby reducing the localized thermal stresses that may be generated during the 
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fabrication process; and 3) the presence of silica in bioglass matrix and titanium oxide on 

the surface of titanium fibers will essentially provide good adhesion between these 

materials, thereby avoiding problems like de-bonding and voids.  

 

 Several additive manufacturing techniques are used in the fabrication of bioglass 

scaffolds. Cesarano et al. [27] used robocasting technique to fabricate HA latticework 

structures for load bearing bone repair applications. Lorrison et al. [28] used selective laser 

sintering to fabricate glass/ceramic scaffolds. Fused deposition modeling of latticework 

scaffolds and extrusion of hydroxyapatite on the scaffolds was done by Cristina et al. [29] 

to fabricate scaffolds with high density. Simpson et al. [30] and Krishna et al. [31] studied 

the effect of pore sizes and pore geometry on mechanical and biological properties of 

scaffolds manufactured by selective laser sintering. 3D printing was also used to fabricate 

cell-laden poly (ɛ-caprolactone)/alginate hybrid scaffolds that showed over 83% cell 

proliferation and uniform distribution [32]. Foam replication technique was used by Chen 

et al. [33] to fabricate highly porous (90%) bioactive glass scaffolds. But most of the 

scaffolds fabricated using additive manufacturing techniques had low toughness compared 

to conventional methods like hot pressing.  

 

 This study aims at fabricating titanium reinforced glass scaffolds using freeform 

extrusion on to a hot plate. An aqueous paste mix of 13-39 silicate bioactive glass, binders 

and titanium fibers were made for extrusion. Four types of scaffolds, each having different 

quantities of titanium fibers (0, 0.2, 0.3 and 0.4 vol. %) were fabricated and their heat 

treatment schedule was identified. Following this a comprehensive evaluation of its 
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mechanical and biological properties was done. The mechanical properties tested include 

fracture toughness, flexural strength and compressive strength. In addition to this, 

bioactivity and degradation of mechanical strength in vitro were also assessed.  
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2. EXPERIMENTAL PROCEDURE 

2.1. FABRICATION EQUIPMENT 

 

A 3D printer that extrudes material onto a hot plate (Figure 2.1) is used for the 

fabrication of scaffolds. It primarily consists of extrusion devices, a motion subsystem and 

a real time control sub-system. The printer has X, Y and Z-axis motion capabilities 

controlled by three stepper motors (Empire Magnetics, Rohnert Park, CA). A ram extruder 

is used to provide the extrusion force. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.  Overview of the machine used in the fabrication process 

 

The paste in the syringe (60 cc plastic syringe) is extruded through a 1.19 mm 

nozzle (Nordson EFD, Westlake, OH) on to a hot plate set at 40 °C as shown in Figure 2.1. 

Extrusion system  

(Step motor and load cell) 

 

Z axis 

 

Y axis 

 X axis 

 

Hot plate 

 

Syringe & needle 
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After the completion of one layer, the gantry moves up by the thickness of one layer. These 

steps are repeated until the entire part is formed. For printing a scaffold, the scaffold 

geometry was modeled in NX 9.0 (CAD software from Siemens, Inc.) with the desired 

dimensions (40 x 36 x 6 mm3), raster patterns, and pore size (800 µm) and later exported 

to the printer as G codes. 

 

2.2. PREPARATION OF PASTE  

 

The as-received water quenched 13-93 bioactive glass (50-56% silica, 17-23% 

calcium oxide, 3-5% phosphorous pentoxide, 5-7% sodium oxide, 10-14% potassium 

oxide, and 4-6% magnesium oxide, where the chemical composition is in weight.%) was 

crushed in a steel shatterbox (SPEX SamplePrep Crusher, Model 8500, Metuchen, NJ) and 

attrition-milled using de-ionized water for 3 h with ZrO2 as the grinding medium. The 

particles’ size distribution was measured using a laser diffraction-based particle size 

analyzer (Model LS 13 320; Beckman Coulter Inc., Fullerton, CA). To make an extrudable 

paste, the milled 13-93 bioactive glass particles were mixed with de-ionized water and 

additives including binder and dispersant. The mixture was then ball-milled for 18h with 

zirconium (grinding medium). Following milling, the mixture was heated for about 50 min 

at 70°C with continuous stirring along with the simultaneous addition of a thickening agent 

(Methocel) into the paste mix. Different types of pastes were used in this research with 

varying volume concentrations of titanium fibers (0.0, 0.2, 0.3 and 0.4 vol. %).  For 

preparing a paste with fibers, the fibers were added to the stirring mix along with methocel. 

This ensured uniform distribution of fibers within the paste. Following this the paste was 

vacuum-mixed for 4-5 min (WhipMix Vacuum Power Mixer Plus; WhipMix Corporation, 
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Louisville, KY) so as to remove any air bubbles present and then transferred into an air-

tight container. Figure 2.2 shows a paste with 0.3 vol. % of titanium fibers distributed in it. 

Since the fibers are added during the preparation of paste itself, a homogenous distribution 

is attained. The paste composition used is given in Table 2.1.  

 

 

 

 

 

 

 

 

 

 

Figure 2.2.  Paste with titanium fibers distributed in bioglass 

 

 

 

         Table 2.1.  Titanium reinforced 13-39 bioactive glass paste composition 

Component Concentration 

(vol. %) 

Manufacturer 

13-93 Glass particles 40 Mo-Sci Corp, Rolla, MO 

Darvan C 2 Vanderbilt Minerals LLC, 

Norwalk, CT 

Methocel 4.0 – 4.4 Dow Chemical Company, 

Midland, MI 

Titanium fiber 0.0 - 0.4 Intramicron LLC, Auburn, 

AL 

De-ionized water 54 - 
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2.3. MATERIAL CHARACTERIZATION 

The surface morphology of the scaffold was observed under a scanning electron 

microscope (S-4700; Hitachi, Tokyo, Japan) after coating it with Au/Pd. To analyze the 

presence of any crystalline phases in the as-received glass particles or in the sintered 

scaffold, X-ray diffraction (Philips X-Pert, Westborough, MA) was used. XRD was also 

used to check for the presence of hydroxyapatite on the surface of the scaffold, immersed 

in simulated body fluid (SBF). The surface of titanium fiber was examined for presence of 

oxides and carbides using an X-ray photoelectron spectrometer (Kratos Axis 165 

Photoelectron Spectrometer, Manchester, UK). 

 

2.4. POST PROCESSING 

 

Thermogravimetric analysis (TGA) (NETZSCH STA 409 simultaneous thermal 

analyzer, Burlington, MA) was done on the green parts made with and without titanium 

fiber in order to identify the post processing schedule. The rate of heating, temperature 

holds, and sintering temperature were determined from the TGA results. Scanning electron 

microscopy (Hitachi S-4700 FESEM, Hitachi Co., Tokyo, Japan) images of green and 

sintered scaffolds were taken during most of the manufacturing and testing phases to look 

for visual clues towards defects in the scaffolds. X-ray diffraction (Philips X-Pert, 

Westborough, MA) run over 2θ range of 10° – 90° was used to identify the amorphous 

nature of sintered glass, as well as presence of titanium using Cu Kα radiation (λ = 

0.154056 nm). 
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2.5. MECHANICAL PROPERTIES 

 

 Flexure Test.  Scaffolds (3 x 5 x 25 mm3) with different volume fraction of 

titanium fibers were tested in flexure using an Instron testing machine (model 5881, 

Norwood, MA). Prior to testing, surface grinding (FSG-618, Chevalier Machinery Inc., 

Santa Fe Springs, CA) was done to prepare parallel contact surfaces.  A four point semi-

articulated fixture (outer span of 20 mm and inner span of 10 mm) at a cross head speed of 

0.2 mm/min using a 2 kN load cell was used in the flexure test and the load was applied 

along the z direction. The flexural stress was determined using the following equation              

(based on ASTM C1674-11): 

 

𝜎 =  
3𝑃𝑙

4𝑏𝑑2
 

 

where P is the applied force, l is the length of the outer span,  b is the width and d is the 

thickness of the sample. The strength of the samples tested is expressed as mean ± standard 

deviation (SD).             

                                             

2.5.2 Fracture Toughness Test.  A chevron notched beam test was used to assess 

the fracture toughness of the scaffolds (3 x 5 x 25 mm3). A notch was made at the mid span 

of the scaffold using a dicing saw (Accu-Cut 5200, AREMCO Products Inc., Ossining, 

NY) with a 0.15 mm thick diamond blade. A four-point, semi-articulated fixture mentioned 

above was used for this testing too. The fracture toughness was calculated using the 

following equation (based on ASTM C1421-10): 
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𝐾𝑐 = 𝐹𝑚𝑌∗

𝑚𝑖𝑛(𝑆𝑜 − 𝑆𝑖)10−6/𝐵𝑊3/2 
 

where Kc is the fracture toughness, Fm is the maximum load, So and Si are outer and inner 

spans of the fixture used, B is the depth, and W is the width of the specimen. Y*min is the 

minimum of the geometric function (calculated based on ASTM C1421-10 guidelines). At 

least six samples each were tested for different levels of fiber. The toughness is expressed 

as mean ± standard deviation (SD). 

 

2.6. IN VITRO ASSESSMENT OF SCAFFOLDS 

For in vitro assessment two different scaffolds were used, one without fiber and 

one with 0.3 vol. % fiber.  As-fabricated scaffolds (5 x 5 x 5 mm3) were cleaned thrice in 

distilled water and then by ethanol using an ultrasonic cleaner (Crest CP 500T, Trenton, 

NJ), and dried overnight at 65 ℃ . The scaffolds were then weighed and immersed in 

simulated body fluid (SBF) prepared according to the Kokubo method with a starting pH 

of 7.40. 100 ml of SBF solution was used per gram of the scaffold, and the scaffold and 

SBF solution were placed in plastic Nalgene bottles. The samples were then kept in an 

incubator maintained at 37℃. Scaffolds were removed every week until four weeks, and 

then dried overnight. The following assessments were then performed.  

 

 2.6.1. Degradation of Compressive Strength in SBF.  The scaffolds removed 

from SBF were tested in compression using an Instron testing machine (model 5881, 

Norwood, MA) at a crosshead speed of 0.5 mm/min using a 10 kN load cell. As mentioned, 

prior to testing the scaffolds were dried at 65℃ overnight. The compressive strength was 
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calculated by dividing the force by cross-sectional area. Five samples were used for 

compressive strength assessment and the strength is reported as mean ± SD.  

 

2.6.2. Weight Loss of Scaffolds in SBF.  Weight of the scaffolds were measured 

before immersing in SBF solution. After removal the weight was measured only after 

drying them overnight at 65℃. The weight loss was calculated according to the following 

formula. 

 

𝑊𝑒𝑖𝑔ℎ𝑡 𝐿𝑜𝑠𝑠 =
𝑊𝑏 − 𝑊𝑎

𝑊𝑏
 × 100 

 

where Wb is the initial dry weight of the sample and Wa is the dry weight of the sample after 

removal from SBF. The weight loss percentage is plotted against immersion time as to 

investigate physical and chemical changes to the scaffolds.  

 

2.6.3. Quantification of Titanium Ion Release to SBF Solution.  Inductively 

coupled plasma mass spectrometry (ICP-MS) was used to quantify the amount of any 

titanium related compounds/ions released from scaffolds to the SBF solution. A NexION 

350D ICP-MS (PerkinElmer, Waltham, MA) instrument was used for conducting the 

study. This test can detect traces of elements to parts per billion levels. The estimated Ti 

instrument detection limit is 0.25 μg/L, instrument quantification limit is 0.5 μg/L, and 

quantification method detection limit (MDL) is 2.5 μg/L. The operating conditions used 

are listed in Table 2.2. 
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Table 2.2: Operating conditions for the ICP-MS test 

ICP-MS Operating Condition 

Nebulizer Gas Flow (L/min) 1.04* 

Auxiliary Gas Flow (L/min) 1.2 

Plasma Gas Flow (L/min) 18 

ICP RF Power (W) 1600 

Analog Stage Voltage (V) -1675 

Pulse Stage Voltage (V) 1400 

Cell Entrance Voltage (V) -2 

Cell Exit Voltage (V) -2 

Cell Rod Offset -15 

Sampler Cones Platinum 

Skimmer Cones Platinum 

Sample Introduction System Cyclonic Spray Chamber with Meinhard Nebulizer 

Analyte Ti-47, Ti-49 

Dwell Time (ms) 50 

*Optimized daily 
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3. RESULTS AND DISCUSSION 

3.1. FABRICATION OF SCAFFOLDS 

 

The size distribution of attrition-milled glass particles is shown in Figure 3.1.a. The 

particles size varied from ~0.2 to ~12 µm with an average of 2.3 µm.  The SEM images of 

the as-received and attrition-milled bioglass are given in Figure 3.1.b and 3.1.c 

respectively. A typical irregular shape of the milled glass particles can be observed which 

will aid in achieving appropriate viscous flow characteristics during sintering. The irregular 

shape combined with small particle size could potentially reduce the micro pores in the 

scaffolds. 

 

Figure 3.1.  (a) Particle size distribution of attrition-milled bioglass (b) SEM image of the 

as-received glass particles (c) SEM image of attrition-milled glass particles. 
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The fabrication process consists of three basic steps: preparing the paste, printing 

the scaffolds, and sintering them. The attrition-milled bioglass was mixed with the 

additives listed in Table 2.1 to create a paste. The amount of titanium added to this paste 

varied based on the desired volume fraction. The paste making process is explained in 

detail in the appendix. 

 

Scaffolds were fabricated using the extrusion fabrication machine (Figure 2.1). The 

prepared paste is filled into a syringe manually and is extruded onto a hot plate maintained 

at 40℃ using layer by layer deposition through a 1.19 mm diameter nozzle (Nordson EFD, 

Ohio, USA). The extrusion force used varied between 200 N and 320 N based on the 

amount of titanium fibers in the paste and the viscosity of the paste. An as-fabricated 

scaffold with a 0.3% volume fraction of fibers in it is depicted in Figure 3.2. The green 

scaffold was 40 mm x 36 mm x 6.0 mm in size and the pore sizes varied from 750 to 1000 

µm.  

 

 

 

 

 

 

             Figure 3.2.  An as-fabricated scaffold with 0.3 vol. % titanium fiber. 
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Figure 3.3.  Thermogravimetric analysis of paste 

 

The binder burnout schedule for the ‘green scaffold’ was developed from the 

thermogravimetric curve in Figure 3.3. This curve shows the changes in weight of the 

‘green scaffold’ as a function of increasing temperature.  Noticeable changes in the weight 

of the scaffold were observed at approximately 100 °C and 300 ℃. The residual water 

evaporates at 80-120 ℃ and Methocel and Darvan C burn out at around 300-350 ℃. 

Holding temperatures were designed based on the curve, as to aid slow burn-out of the 

additives in the scaffold. These observations were used to prepare the binder burnout and 

sintering schedule in Table 3.1. 
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                                           Table 3.1.  Binder Burnout Schedule 

Starting 

Temperature (℃) 

Ending 

Temperature (℃) 

Heating Rate 

(℃/min) 

Hold Period (h) 

20 350 0.3 2 

350 700 2 1 

700 50 10 - 

 

A sintered scaffold with 0.4 vol. % fiber is pictured in Figure 3.4.a. Shrinkage was 

observed in the final sintered part.  The average shrinkage in the scaffold length, width and 

thickness was 25%, 29% and 17%, respectively. The pore sizes varied from 600 – 850 µm. 

Optical images (Figure 3.4.b, c) of the sintered scaffolds (shown in Figure 3.4.a) reveal 

that the fibers are dispersed in the glass matrix.  Figure 3.c shows the sintered part a higher 

magnification. The Ti fibers oriented along the direction of the extruded filament can also 

be clearly observed in Figure 3.4.c. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4.  (a) Sintered 13-93 glass scaffold with 0.4 vol. % titanium fibers and (b) (c) 

Optical images of the corresponding scaffolds 

a 

b 

b c b 
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XRD was conducted to verify that the sintered glass scaffold had an amorphous 

structure. The XRD patterns of both the sintered scaffold and the starting glass particles 

were found to have similar ‘bumps’ characteristic of amorphous materials under XRD 

(Figure 3.5). In an amorphous phase, i.e., when the atoms are randomly organized in the 

3D space, X-rays will be scattered in many directions. This leads to large bumps along the 

2Ɵ angle in the XRD patterns. These patterns made it clear that no considerable amount of 

crystallization was present in the final sintered scaffolds. XRD was also done on scaffolds 

that had different volume fractions of titanium fibers. All of the patterns revealed the 

amorphous nature of the final part. The XRD patterns of the scaffolds that had 0.4 vol. % 

fibers and as-received titanium fibers are given in Figure 3.6. The matching titanium fiber 

peaks (marked by red stars) in the scaffold with 0.4 vol% fiber can be seen in the XRD 

pattern.  

 

 

Figure 3.5. The XRD patterns of (a) a sintered scaffold without fibers and (b) a scaffold 

with as-received glass particles. 

(b) As-received glass particles 

 

(a) Sintered scaffold without fibers 
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Figure 3.6. The XRD patterns of (a) a sintered scaffold with fibers and (b) the as received 

titanium fibers. 

 

The titanium fibers had an average diameter of 16 µm and aspect ratio of 250. Their 

surface chemistry and morphology were each studied so as to better understand the fiber’s 

bonding properties with the glass matrix. The SEM images of the fibers at varying 

magnifications are given in Figure 3.7. The fiber has uneven surface with irregularities that 

will help the glass matrix to better bond to the fiber and will aid in avoiding possible de-

bonding during sintering process.  

 

 

 

 

 

(a) Sintered scaffold with fibers 

 

(b) Titanium fibers  
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  Figure 3.7 SEM images of fibers that reveal their rough surface.  

 

XPS analysis was conducted on the fiber surface to analyze the surface chemistry 

of the fibers. In XPS analysis, X-rays are used to irradiate the surface of a material. The X-

rays excite the electrons of the atoms on the surface of the material. If the X-ray energy is 

higher than the binding energy, electrons will be emitted from the surface. The kinetic 

energy of the emitted electrons is measured and subtracted from the incident energy of the 

X-ray to obtain the binding energy of that electron. From this, the element of atom can be 

determined. Further based on what element the parent atom is bonded to, the binding 

energy of the emitted electrons will vary. The instrument is capable of measuring such 

energy shifts. From this data, the chemical composition of any compound present of the 

surface could be determined. So essentially XPS result is a series of intensity peaks 

corresponding to binding energies of the photoelectrons emitted from the surface of the 

material. XPS can typically analyze the extreme outer thin layer (10-100 Angstroms) of a 

material. Figure 3.8 shows the pattern obtained after performing XPS analysis on the 

surface of the titanium fibers. The peaks for oxygen, titanium and carbon can be seen 

clearly from the pattern. Figure 3.9 shows the XPS pattern of the Ti-2p3 region from the 
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XPS pattern obtained. The peak for Ti 2p3 electron has convoluted peaks. The 2p3 binding 

energy values of these peaks are 457.60 eV, 459.2 eV and 462.8 eV. CasaXPS software 

was used to study the curve. These binding energy values correspond to titanium oxide, 

elemental titanium, and titanium carbide respectively. The presence of titanium oxides and 

carbides could result in slight changes in the thermal expansion coefficient of fibers. But 

after sintering, no observable de-bonding of fibers was observed. 

   

  

 

  Figure 3.8. XPS pattern of (a) titanium fiber surface. 

                                 

 

 

(a) 
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Figure 3.9. Detailed XPS pattern for Ti-2p3 peak observed in Figure 3.8 

3.2. MECHANICAL PROPERTIES OF SCAFFOLDS 

 

The flexural strength of scaffolds with varying vol. % of titanium fibers are 

summarized in Table 3.2. This strength varied from 10.4 MPa (0 vol. % of titanium fibers) 

to 14.9 Mpa (0.4 vol. % of titanium fibers).  The flexural strength increased as the Ti fiber 

volume fraction increased. Previous mechanical testing studies on 13-93 bioglass scaffolds 

prepared by robocasting studies have shown that the value of flexural strength of 13-93 

bioactive glass is in the range of 11 ± 3 MPa [18]. These values are similar to those obtained 

in this study. The flexural strength and flexural modulus of scaffolds with varying vol. % 

of fibers is listed in Table 3.2. The flexural modulus of the scaffolds increased to 15 GPa 

from 11 GPa due to addition of 0.4 vol. % titanium fibers into the scaffold. The trend in 

modulus clearly shows that the flexural strength increases with addition of fibers. The 

flexural strength reported in this study is similar to that of human trabecular bone (10-20 

MPa) [34, 35].  

 

(b) 
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Table 3.2 Flexural strength and flexural modulus of scaffolds with varying vol. % of 

titanium fibers 

 

Fiber 

Volume 

Fraction 

(Vol.%) 

# Flexural 

Strength 

 

(MPa) 

Average Standard 

Deviation 

Flexural 

Modulus 

 

(GPa) 

Average Standard 

Deviation 

 

 

0.0 

1 11.45  
 
 
 

10.4 

 
 
 
 

2.4 

10.24  
 
 
 

11.2 

 
 
 
 

2.1 

2 9.57 12.79 

3 7.97 9.1 

4 12.35 11.02 

5 8.15 10.96 

6 7.55 13.3 

7 13.71 9.87 

8 12.75 12.15 

        

 

 

0.2 

1 10.84  
 
 
 

10.9 

 
 
 
 

1.8 

7.1  
 
 
 

11.4 

 
 
 
 

4.3 

2 9.56 9.65 

3 11.01 7.99 

4 12.45 12.91 

5 8.34 15.52 

6 11.22 8.56 

7 9.92 14.03 

8 13.97 15.7 

        

 

 

0.3 

1 15.77  
 
 
 

13.4 

 
 
 
 

1.9 

13.65  
 
 
 

13.8 

 
 
 
 

3.2 

2 13.34 16.93 

3 14.27 10.6 

4 11.87 14.37 

5 10.95 11.12 

6 15.75 12.49 

7 11.46 17 

8 13.62 15.88 

        

 

 

0.4 

1 14.94  
 
 
 

14.9 

 
 
 
 

1.3 

13.29  
 
 
 

15.2 

 
 
 
 

4.1 

2 16.56 19.24 

3 14.78 11.10 

4 13.98 15.75 

5 15.63 19.31 

6 13.75 12.18 

7 16.46 11.96 

8 12.87 18.87 
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The fracture toughness of scaffolds with varying vol. % of titanium fibers is 

summarized in Table 3.3. The scaffolds with a 0.4 vol. % of titanium fibers were found to 

have the highest fracture toughness (~0.8 MPa•m1/2 ) and those without fibers had a 

toughness of ~0.5 MPa•m1/2. This trend indicates that the fracture toughness increases in a 

manner similar to that observed in flexural strength when the amount of fibers in the 

scaffold increases. The fracture toughness of scaffolds with varying vol. % of fibers with 

their standard deviation is summarized in Table 3.3. The trend in increase of toughness 

combined with increase in flexural modulus clearly shows that the mechanical properties 

are increasing with addition of fibers in the scaffolds. 

Table 3.3. Fracture toughness of scaffolds with varying vol. % of fibers 

Fiber Volume 

Fraction (Vol. %) 

# Fracture Toughness 

      (MPa.m1/2) 

Average Standard 

Deviation 

 

0.0 

1 0.42  
 
 

0.47 

 
 
 

0.03 
 
 

2 0.48 

3 0.50 

4 0.46 

5 0.44 

6 0.50 

 

0.2 

1 0.58  
 
 

0.59 

 
 
 

0.06 

2 0.55 

3 0.61 

4 0.70 

5 0.56 

6 0.52 

 

0.3 

1 0.61  
 
 

0.71 
 
 

 
 
 

0.13 

2 0.65 

3 0.77 

4 0.48 

5 0.90 

6 0.77 

 

0.4 

1 0.81  
 
 

0.79 

 
 
 

0.07 

2 0.73 

3 0.89 

4 0.71 

5 0.85 

6 0.76 
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Studies have shown that the mechanical properties of borosilicate glass matrix 

improved (five-fold improvement in fracture toughness to 3.85 MPa.m1/2) due to addition 

of Hastelloy X fibers (15 vol. %) in them [25]. XPS analysis performed on the fibers 

showed a presence of TiO2 on the surface of the Ti fibers. The presence of a layer of TiO2 

could aid in bonding of the Ti fiber with the 13-93 bioglass matrix which predominantly 

consists of several oxides including SiO2. In addition, the rough and uneven surface of Ti 

fiber assists the bioglass matrix to better bond with the Ti fibers. An increased adhesion 

between the glass matrix and the Ti fibers will increase the strength of scaffolds [37]. 

Below a fine layer of TiO2 on surface of the fibers, pure elemental Ti is present at the core. 

The Ti fibers have an average tensile strength in the range from 246 to 370 MPa which 

would help reinforce the brittle glass matrix by transferring the bending stresses from the 

matrix to the fibers [36, 25]. 

 

In this study, titanium fibers were added during the production of paste and not 

during the fabrication process. This type of pre-impregnation creates a homogenous matrix, 

which in turn increases the strength considerably as compared to when the fibers are added 

manually. The thermal expansion coefficients of the 13-93 bioglass and the titanium fibers 

were 8.6 x 10-6 m/m K and 10.2 x 10-6 m/m K, respectively. After sintering, the glass matrix 

will be in contraction and the Ti fibers will be in tension, preserving the bond between the 

matrix and fiber. An enhanced matrix-fiber adhesion can modify the character of local 

stresses. It can also impact the connectivity of the yielded micro zones adjacent to 

neighboring fibers resulting in an increase of the mechanical properties of the scaffolds 

[38].  
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The addition of fibers improves the resistance of the scaffolds to crack propagation. 

There are basically three possibilities once the crack reaches a fiber: (i) The crack 

propagates through the fiber either by breaking the fiber or by plastic deformation; (ii) 

deflection of the crack due to the fiber, and along a weaker fiber-matrix interface; and (iii) 

a localized de-bonding occurs at the fiber-glass interface and the crack propagation energy 

is dissipated, resulting in delayed/no crack propagation.   

 

As to better understand crack propagation, pressed pellets (with bioactive glass and 

fibers) were fabricated. On the pellets, indents were made using a Vickers indenter (Struers 

Duramin-500, Cleveland, OH) and the propagation of cracks was studied using an optical 

microscope.  Figure 3.10 reveals that the fiber delays the growth of crack through it. In 

addition Figure 3.10 shows a crack deflecting along the fiber-matrix interface and finally 

propagating through it. This kind of ‘deflections’ are also effective toughening mechanisms 

as they delay the crack propagation. The arrows in the Figure 3.10 shows the deflections 

in crack near the fiber.  

 

 

 

 

 

 

 

Figure 3.10. Crack deflections resulting in delay of crack growth through the glass matrix 
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3.3.  IN-VITRO EVALUATION OF SCAFFOLDS  

 

Degradation of compressive strength of scaffolds, both with and without fibers as 

a function of immersion time in SBF can be seen in Figure 3.11. The compressive strength 

of scaffolds without fibers, before immersion, was 103 ± 33 MPa. This strength was 

reduced to 67 MPa (reduction by ~30 %) after the scaffolds were immersed in SBF for four 

weeks. This reduction is in accordance with similar studies conducted previously [17]. The 

scaffold’s strength with fibers, before immersion, was 128 ± 30 MPa. This strength was 

reduced by ~39% after 4 weeks to 88 MPa. The compressive strengths obtained (before 

immersion into SBF) are similar to that of human cortical bone [34, 35]. The scaffolds lost 

weight when hydroxyapatite was formed on the surface and elements dissociated into the 

SBF solution. The weight loss of scaffolds, both with and without fibers as a function of 

immersion time is given in Figure 3.12. The weight loss in the first two weeks was ~ 8%, 

because of hydroxyapatite formed on the fresh surface. The weight loss decreased in the 

third and fourth week (~ 3%). This trend is similar to that observed in compressive strength. 

This weight loss could also be a potential reason behind the reduction in compressive 

strength in-vitro.   

 

Figure 3.11. Variation in the compressive strength of: (a) scaffolds without fibers;  

(b) with fibers, when immersed in SBF. 
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Figure 3.12. Weight loss of scaffolds with and without fiber in SBF as a function of time. 

 

The SEM images of a scaffold surface, with fibers immersed in SBF for two weeks 

are given in Figure 3.13. A thick crystalline layer with cracks was formed on the surface. 

Needle-like structures similar to that of hydroxyapatite were observed at a higher 

magnification [13, 18, 23]. A fiber that pulled out of the glass matrix can be seen in Figure 

3.13.c.  Since the fiber was pulled out from the bioglass matrix, it had a bioglass residuals 

on the surface. A hydroxyapatite like material can be seen at the tip of this fiber, mostly 

due to conversion of bioglass residuals on the surface of the fiber. The XRD pattern that 

was received after the scaffolds (both with and without fibers) were analyzed, had peaks 

that matched to the reference synthetic HA (JCPDS 72-1243), as pictured in Figure 3.14. 

The patterns for scaffolds with and without fibers were identical, likely because of the low 

volume fraction of Ti fibers used.  
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Figure 3.13. SEM images of (a) Surface of scaffolds after immersion in SBF for 2 weeks 

at 1000X, (b) magnified image of the same surface at 10000X , (c) fiber on the surface of 

the scaffold at 1000X, (d) needle like HA crystals formed on the surface at 33000X. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14. The XRD patterns of (a) the scaffold with 0.3 vol. % of fibers immersed in 

SBF for 2 weeks and (b) the reference hydroxyapatite (JCPDS 72-1243). 
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The results gathered from the ICP-MS test are listed in Table 3.4.  The 

concentration of Ti in SBF solution after four weeks of immersion was 0.26 µg/L. It can 

be seen that at the end of 2 weeks, the Ti concentration was 0.32 µg/L. The concentrations 

listed are for a total of five scaffolds immersed in SBF. The titanium fibers on the surface 

of the scaffold’s surface came into contact with the SBF solution during the initial four 

weeks. In case of scaffolds immersed in SBF for both three and four weeks, the amount of 

fibers on the surface that was exposed to SBF solution was low. This is the primary reason 

behind low titanium ion concentration rates as compared to the scaffolds that were used in 

the first two weeks. 

   Table 3.4 Titanium ion concentration in SBF solution 

Sample Titanium concentration (µg/L) 

Quality control blank                        << 0.25 

 

Scaffolds with 

fibers immersed in 

SBF for: 

1 week 0.30 

2 weeks 0.32 

3 weeks 0.25 

4 weeks 0.26 

 

The formation of hydroxyapatite confirms the bioactivity of the scaffolds. When 

the bioglass scaffolds are placed in the SBF solution Na+, K+ and (SiO4)
4- ions dissolve 

into the solution. Hydroxyapatite is formed due to the reaction of CaO present in the 

bioglass with phosphate ions in the SBF solution.  In conversion of silicate based 13-93 

bioglass, a thin layer of SiO2 is formed on the surface of scaffolds on exposure to SBF 

solution. This primarily slows down the conversion rate after a few days as shown by the 

weight loss data. Since the volume fraction of fibers added was low (0.3 vol.%), a 

considerable difference in weight loss due to addition of fibers was not observed.  
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The conversion of bioglass scaffolds into hydroxyapatite also results in the 

reduction of its mechanical properties. This is shown by the reduction in the compressive 

strength of the scaffolds (Figure 3.12). The reduction in the compressive strength of both 

types of scaffolds, with and without fibers, is a desirable property of bone implants. The 

scaffolds with fibers had average compressive strength of 88 MPa after being immersed in 

the SBF solution for four weeks. The high strength (88 MPa) of the scaffolds, even after 

immersion in SBF for four weeks, leads to the possibility that the scaffolds could be used 

for load bearing applications. 

 

A significant amount of titanium ions remained absent from the SBF solution even 

after four weeks of immersion of the scaffolds (titanium ions in the solution for five 

scaffolds was < 0.4 µg/L).  Previous studies on Ti implants have shown that Ti surface on 

exposure to body fluids (20 mL Hank’s solution of pH 4.0) , develops a thin coating of 

titanium dioxide on its surface [39]. This provide high corrosion resistance and 

biocompatibility to the titanium implant.  Joesph et al. [40], studied the release of Ti ions 

from titanium and TiAl6Nb7 samples (10 mm x 10 mm x 1 mm) in different body fluids 

(20 mL Hank’s solution of pH 4.0) for an extended period of 12 weeks. The concentration 

of Ti ions reported after 12 weeks was 0.6 mg/L. Fabian et al. [41] investigated the effect 

of TiO2 nano particles injected intravenously into rat body on the normal functionality.    

5 mg/kg of TiO2 was the dose used in this study. However no toxic effect was evident from 

the experimental results. The study concluded that TiO2 at low concentration (< 5 mg/kg)   

is not toxic and can be used safely in implants. Frisken et al. [42], studied the titanium 

release into body organs after insertion of a screw implant into the mandibles of a sheep 
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for 12 weeks.  According to that study, minor elevations in Ti levels (300 ppb of Ti ) were 

observed in the lungs and lymph nodes. But the concentration is unlikely to cause a health 

problem. The study, however, warns using multiple implants, as the amount of Ti released 

will be comparatively high as to cause a significant level of toxicity. The titanium ions 

released into SBF solution in our study is < 0.4 µg/L, when compared to the amounts 

mentioned above. The chances of a systemic effect due to the leaching out of titanium ions 

from the fibers in the scaffolds at the current concentration should be negligible. The fibers 

are likely to become embedded in the newly formed bone as the new bone grows through 

the scaffolds. 
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4. CONCLUSION 

This study investigated the feasibility of fabricating titanium fiber reinforced 13-93 

bioglass scaffolds using the freeform extrusion fabrication technique. Scaffolds reinforced 

with 0.4 vol. % fibers had a fracture toughness of ~ 0.8 MPa•m1/2 and flexural strength of 

~ 15 MPa. The fracture toughness of scaffolds with fibers increased by 70% compared to 

that without fibers and the flexural strength increased by 40%. The in vitro assessment of 

scaffolds revealed that the addition of biocompatible titanium fibers to the bioactive glass 

reinforced the scaffold mechanically without inhibiting its bioactive properties. The 

improved mechanical properties with compressive strengths of ~88 MPa even after four 

week degradation in simulated body fluid shows the potential of the 13-93 bioglass+Ti 

composite implants for load bearing bone repair applications. 
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APPENDIX   

 

Recipe for preparing 13-93 bioactive glass paste 

 

1. Fill a 500 ml Nalgene bottle one-third of the way with zirconia media.  

2. Weight out 110 g of attrition milled 13-93 bioactive glass into it.  

3. Add 54 ml of water along with 1.13 ml of Darvan C to the above mixture. 

4. Close the bottle and shake it by hand for a couple of minutes as to prepare a slurry. 

5. Ball mill for ~18 hours at 40 rpm.  

6. After the ball milling operation, connect the water jacket to water bath. Place the 

beaker on top of a stir plate. Set the water bath to 70°C. Do not remove the bottle 

off the ball mill until the water reaches 70°C. 

7. Once the set temperature is reached, put a stir bar in the beaker and set it to speed 

400 RPM. Pour the slurry into the water jacketed beaker. Make sure the media do 

not fall into the beaker. 

8. Cover the beaker with a watch glass. 

9. While waiting for the water bath temperature to come back to 70°C, weigh out 3.5 

g of Methocel. 

10. Lifting the watch glass with one hand put a small amount of Methocel with a spatula 

in the other hand. Cover the beaker with the watch glass while the Methocel added 

is stirred into the slurry. Although the Methocel should be added slowly, the beaker 

should not remain uncovered for long since that will lead to water evaporation and 

the paste will not turn out as expected. 

11. Once all the Methocel is added in, let the slurry stir for 5 minutes. 
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12.  Now weigh out the required amount of fibers (based on the Vol % 

required) and add it slowly into the above mixture.  

13. After 5 minutes, set the water bath to 20°C. Make sure to check on it every once in 

a while. If a layer starts forming, stir the slurry with the spatula. The paste will start 

setting. When the stir bar cannot possibly stir the paste, turn off the stir plate. 

14. When the water bath reaches 20°C, use the spatula to put the paste in the Whip Mixer 

container. Close it with the lid. Connect the vacuum line. Turn it on. Whip mix it for 

5 minutes. Using a cooking spatula, scrape the paste off the blade. Whip mix it for 

another 5 minutes. Let it cool for 2 minutes. Whip mix it another 5 minutes for a 

total of 15 minutes. 

15. Disconnect the vacuum line. Turn the Whip Mix on for a minute to clean the line 

and lubricate the motor. 

16. Using a cooking spatula put the paste in a bottle. 
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