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ABSTRACT 

 

Composites are becoming the material of choice in applications where weight 

savings are critical, like aerospace structures. The common composites used are- 

Carbon/Epoxy and Carbon/Bismaleimide (BMI). BMI based systems are preferred in 

applications which involve operating temperatures higher than conventional epoxies. 

Carbon/BMI laminates are traditionally fabricated in an autoclave, which is associated 

with high operating costs. In this work, a low cost out of autoclave (OOA) process is 

evaluated. It is desirable to have BMI OOA prepreg systems cure at reasonably low 

temperatures with sufficient degree of cure and green strength to maintain rigidity for 

subsequent freestanding post cure Carbon/BMI composite laminates are manufactured 

using an OOA compatible prepreg and the effect of varying base cure cycles on the green 

strength (strength before post cure) is investigated.  

In aerospace structures, Carbon/BMI composites are used in high temperature 

applications. Fiber optic sensors are a compact non-intrusive means of structural health 

monitoring under these conditions. Optical fiber based sensors have many advantages 

like their compact size, resistance to corrosion, immunity from electromagnetic 

interference, and multiplexing capabilities. Embedded fiber optic sensors are used to 

study stresses developed during cure of carbon/BMI composite laminates. The same 

sensors are then used to measure strain developed in the composite on the application of 

mechanical loads. 
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1. INTRODUCTION 

 

1.1. BISMALEIMIDES IN AEROSPACE APPLICATIONS 

In structural applications, fiber-reinforced polymer matrix composites offer 

significant advantages over other materials because of their low density and high specific 

strength. These composites are especially attractive for use in the  aerospace industry, 

where weight savings are critical. This reduction in weight can have substantial benefits 

in the form of lower fuel consumption, an increased load carrying capacity, or increased 

speed and maneuverability (Military airplanes). 

The durability of composites used in aerospace components is critical. Some 

important material requirements are a high glass-transition temperature (Tg) resistance to 

environmental degradation, and good mechanical properties over a wide range of 

temperatures. Conventional epoxies used in aerospace industry are limited by an 

operating temperature of about 250 °F. Bismaleimide resins generally exhibit a glass 

transition temperature greater than 500 °F which make them ideal candidates for use in 

temperature range  above conventional epoxy resins. 

 

Figure 1.1 Structure of BMI resin, Ar- aromatic group 

In industrial applications, processability of composites is a key concern. Polymers 

with structures like aromatic rings in the backbone, can have a high Tg, but can exhibit 
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poor solubility in most organic solvents, high melting or softening points, and melt 

viscosities that are too high to allow their processing by conventional techniques. 

Major advantages of BMIs are that they combine high temperature performance 

with an epoxy-like processing. They also have properties comparable to that of medium 

epoxies (MTE) and high toughness epoxies (HTE, Table 1.1) used in aerospace 

applications. This enables their use in aerospace grade composite structures.  

Table 1.1 Comparison of properties of BMI with MTE and HTE*  

Property 
5250-4 IM7/ 

BMI 
977-3 G40-
800 MTE 

5276-1 
G40-800 
HTE 

Tensile properties        
Strength (MPa) 2827 2758 2827 
Modulus (Gpa) 161 163 164 

0 ° Compression strength        

RT (MPa) 1689 1689 1586 
80 °C (MPa) 1586 1448 1310 

Open Hole compression       

RT (MPa) 324 325 310 
80 °C/wet (MPa) 283 283 348 
125 °C/wet (MPa) 262 262 193 
175 °C/wet (MPa) 241 NA NA 

Compression after impact  185-200     

Tg        

Dry °C 280 210 180 
Wet °C 210 165 145 

               

 *Stenzenberger  H.D., “Structural Adhesives:Developments in resins and primers, A.J. Kinloch ed.”,  

  book pp. 77-126 (1986)
 

1.2. COMPOSITE MANUFACTURING PROCESSES 

Aerospace grade composites are traditionally cured in an autoclave under high 

pressures of around 100 psi. The composite layup is sealed by a vacuum bag and 
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connected to a vacuum pump. This establishes a pressure differential which forces 

entrapped air out of the laminate stack and ensures high part quality. Traditionally, BMI 

composite laminates for aerospace applications were manufactured in an autoclave. The 

high pressure ensures good compaction of the laminate and reduces void contents. 

It is highly desirable to be able fabricate high quality composite parts without the 

use of an autoclave. OOA Vacuum bag only process offers one viable solution. OOA 

processes offer design flexibility in the manufacture large structural composites with 

complex geometries as they are not limited by the size of an autoclave.  They also offer 

significant savings in operating costs, process time, capital investment and energy 

efficiency.  

Acquiring and operating large autoclaves, required for traditional manufacturing 

of high performance composites can be expensive. Moreover, the part size is limited by 

the size of the autoclave. Use of OOA processing can also result in reduced core crush 

and core stabilization (sandwich structures), use of low cost tooling and production 

flexibility. In OOA process, BMI composite laminates are manufactured at atmospheric 

pressure in an oven. The major downside of OOA processing is that removal of voids is 

not as efficient as in an autoclave, due to lower pressure differential during cure. Voids 

content in a composite laminate can result in reduced mechanical properties. 

1.3. CURING OF BMI BASED RESIN SYSTEMS 

Two step cure cycles are generally used to cure composite laminates. A dwell 

time is incorporated at the temperature where the resin shows maximum viscosity. This is 

done in order to increase the mobility of reacting groups and ensure more uniform curing. 
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The temperature is then ramped up to the actual cure temperature (base cure). It is held 

for a time based on thickness of laminate and type of resin. Epoxies and BMIs generally 

have a 2 hour cure time (Figure 1.2). Post curing of composite laminates can result in an 

increase in degree of cure due to a decrease in the percentage of unreacted monomer 

remaining in the sample. If a composite contains regions of insufficient degree of cure, it 

can be susceptible to creep. A free standing post cure is performed, after the base cure 

cycle, to avoid these issues. 

 

Figure 1.2 Cure cycle for OOA-BMI prepreg 

 

1.4. CONTRIBUTION OF THIS WORK  

Conventionally BMI systems have been manufactured using an autoclave. A 

wealth of literature is available, related to autoclave processing of BMI composites, but 

OOA processing of BMI is relatively new. The work presented in this thesis will focus on 

processing carbon fiber/BMI composites at atmospheric pressure in a conventional oven. 
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The first part will focus on optimizing the base cure cycle of BMI prepregs in order to 

obtain sufficient green strength after cure. The second part will investigate structural 

health monitoring of carbon fiber/BMI composites using fiber optic sensors. 
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I. PAPER 

INFLUENCE OF CURE CONDITIONS ON PERFORMANCE OF OUT- OF-

AUTOCLAVE CURED CARBON/BISMALEIMIDE COMPOSITES 

S.Anandan1, K. Chandrashekhara1 and V. Samaranayake2 

1Department of Mechanical and Aerospace Engineering ,2Department of Mathematics 

and Statistics 

ABSTRACT 

Bismaleimide (BMI) resins are a class of polyimides used in high-performance 

structural composites that require superior toughness and high-temperature resistance. 

Out-of-autoclave (OOA) processing of composites offers several key benefits compared 

to autoclave processing such as lower manufacturing cost resulting from a lower capital 

cost and lower energy consumption. Since few composite manufacturers have large, 

high-temperature autoclaves, OOA processing of BMI can broaden the use of these 

materials and expand the high-temperature composite parts supplier base. It is desirable 

to have BMI OOA prepreg systems cure at reasonably low temperatures with sufficient 

degree of cure and green strength to maintain rigidity for subsequent freestanding post 

cure. In the present work, high-temperature composite laminates are manufactured using 

BMI OOA prepreg. Venting of entrapped air from the prepreg stack is evaluated. 

Composite panels are manufactured using the most efficient venting method and short 

beam shear strengths are measured. Free-standing post cures are performed and the 

panels are monitored for droop. It was found that composite panels cured at 360 for six 

hours can produce properties similar to that of composites cured using the recommended 

cure cycle. 
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1. INTRODUCTION 

High performance composites in aerospace applications can be exposed to 

prolonged and sometimes extreme service conditions. In aerospace applications, 

durability and reliability of composites is critical. A high glass transition temperature, 

good properties at elevated temperatures, and low susceptibility to environmental 

conditions is preferred [1]. Bismaleimides (BMI) are polyimides which exhibit good 

thermal stability, low water absorption, and high mechanical properties at high 

temperature. BMI resins provide better mechanical performance at elevated temperatures 

compared to conventional toughened epoxy resins.  In addition, they possess desirable 

properties such as high tensile strength, corrosion and chemical resistance, and good hot-

wet performance [2]. 

Autoclave processing has been shown to provide low void content and high 

quality parts for aerospace applications but is associated with high costs. Out-of-

Autoclave (OOA) processes have a potential to reduce capital and operating costs. 

Complex parts can be manufactured using OOA processes in a simple, cost-effective 

manner. The major downside of OOA processing is the relatively higher void content (or 

porosity) [3]. Many researchers have investigated the effect of porosity on mechanical 

properties like compression [4], interlaminar shear [5, 6, 7], flexure strength [8] and  

tensile strength [9, 10]. When processing composites, entrapped air can be removed 

through the laminate by mass transport or momentum transport. In autoclave processing, 

high working pressures combined with vacuum evacuation gives rise to a high pressure 

differential that enhances removal of entrapped air by momentum transport [11]. OOA 

processes generally use atmospheric pressure and therefore venting entrapped air from 
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the laminate stack is a key concern. Entrapped gasses need to be removed through 

engineered pathways provided within the prepreg [12]. While substantial literature is 

available regarding autoclave cured BMI composites, limited work has been done to 

investigate out of autoclave oven cured BMI laminates. 

Resin properties such as degree of cure and composite properties like residual 

stresses are affected by the cure cycle [2, 13, 14]. Cure conditions affect mechanical 

properties of thermosetting resins and composites [6, 15]. Certain mechanical properties 

and glass transition temperature of composite laminates can be improved by 

incorporating a post cure cycle [16]. Post curing has also been shown to decrease the 

percentage of unreacted monomer present in a composite [17]. Thermal warping can be 

induced in the laminate due to volumetric contraction of the resin or mismatch in 

coefficients of thermal expansion between the resin and fiber.  

In the current work, air bleeding or venting of entrapped gasses within the 

laminate stack, is evaluated using three methods. The baseline method uses glass fabric 

as an edge bleeder. The second method uses Vac-Pak EB1590. In addition, a surface 

bleeder fabric, Trans-Textil C2003 is evaluated.  A suitable bleeding process is selected, 

based on void content tests, which is used to manufacture laminates for mechanical 

testing and cure cycle evaluation. The effect of varying base cure time on mechanical 

properties of green composite panels (before post cure) is evaluated using short beam 

shear (SBS) tests. Thermal warping induced during free standing post cure is studied.  
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2. MATERIALS 

Composite laminates were manufactured using IM7G/AR4550 BMI 

unidirectional prepreg system (Aldila Composite Materials). AR4550 is a toughened BMI 

resin system, ideal for OOA curing.  The unidirectional prepreg contains 35% resin by 

weight with a fiber areal weight of 200 g/m2. To bleed entrapped air from the edge of a 

laminate stack, a light weight 54 gsm leno glass cloth and a Vac-Pak EB1590 were used. 

EB1590 is an open weave, 600 °F, high tensile strength teflon-coated, and lightweight 

fiberglass material suitable for edge breathing. The teflon coating ensures easy release 

from the composite laminate. A third material, Trans-Textil C2003 was evaluated as a 

surface bleeder.  The C2003 is a lightweight multilayer, flexible membrane system that 

acts as a resin barrier and was evaluated for its effectiveness in removing air from the 

surface of a laminate stack.  

3. MANUFACTURING 

Laminates were manufactured using an Out-of-Autoclave (OOA) or Vacuum Bag 

Only (VBO) process (Figure 1). Two sets of BMI composite laminates were fabricated. 

Six in. square 16 ply laminates were manufactured for void content tests and 16 in. 

square 24 ply laminates for cure cycle evaluation. Each laminate was laid up in a 

symmetric quasi-isotropic configuration [0°, 90°, +45°, -45°].  
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Figure 1. OOA Process Bagging Assembly with Edge Bleeder 

In this study, debulking was performed every four layers for a duration of thirty 

minutes each to remove the entrapped air from the laminate stack and produce lower void 

contents in finished parts.  A two-step cure cycle was used to cure the laminate. The 

temperature was first raised to 290 °F for one hour, in order to enhance the mobility of 

reacting groups. The laminate was then cured in an oven according to one of the cure 

cycle options listed in Table 1. 

Table 1. Cure Cycle Options 

Panel Temperature 
(°F) 

Time     
(hours) 

Panel Temperature 
(°F) 

Time     
(hours) 

1 325 2 7 350 2 
2 375 2 8 350 6 
3 325 6 9 350 4 
4 375 6 10 350 4 
5 325 4 11 350 4 
6 375 4       
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4. EXPERIMENTAL TESTING 

 

4.1. BLEEDER EVALUATION 

Thermogravimetric analysis (TGA) was performed to investigate outgassing of 

the BMI prepreg under cure conditions. The curing time of a small sample of BMI was 

found to be 9 minutes by dynamic DSC runs. A prepreg sample was placed in the 

platinum pan and a shortened cure cycle was simulated in a TA800 instrument. The 

percentage mass drop, during cure at 375°F, was found to be negligible (Figure 2). There 

is little evolution of volatiles during the cure process.  

 

Figure 2. Mass loss of BMI prepreg under cure conditions 

Removal of entrapped air is an important part of the OOA process as working 

pressure differential is not high enough (compared to autoclave processing) to remove 

entrapped air completely [11]. Efficient air bleeding is required in order to obtain a 

relatively void free composite panel. In the current study, three bleeding techniques were 
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evaluated- fiber glass cloth edge bleeder, Vac-Pak EB1590 (Figure 3) edge bleeder and 

Trans-Textil C2003 (Figure 4) surface bleeder.  Six 6-in. square, 16 layer quasi-isotropic 

laminates ([0°, 90°, +45°, -45°]2s) were manufactured in order to evaluate bleeder 

selection. The manufacturer recommended base cure cycle of 375 °F for two hours was 

used for all bleeder evaluation panels. 

 

Figure 3. Edge Bleeding in OOA Process 

 

Figure 4. Surface Bleeding in OOA Process 

 Each panel was tested for void content by acid digestion according to ASTM 

D3171 [19]. Five, 1 in. square, samples were cut from the composite panels and density 

measured by water displacement according to ASTM D792. The samples were dissolved 

in concentrated sulfuric acid and the resin was oxidized using hydrogen peroxide. The 

fibers were separated and weighed. Void contents were measured using equations 1-3.  
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laminate
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Table 2. Evaluation of bleeders 

Panels Bleeder Debulking Void content (%) 

1 fiberglass cloth Yes 0.78 

2 fiberglass cloth No 3.85 

3 EB1590 Yes 0.31 

4 EB1590 No 1.44 

5 C2003 Yes 4.27 

6 C2003 No 3.84 
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(2) 

�� � 100 � �� � �� , 

where, ��= mass percent of fiber, ��= mass percent of resin, ��= volume percent 

of fiber, ��= volume percent of resin, �� = void content 

(3) 

Usage of baseline bleeder as well as EB1590, with debulking, resulted in the low 

void contents (Table 2). Vac-Pak EB1590 offers easy release from the laminate as 

compared to the 54 gsm glass cloth. Therefore, further laminates, used to evaluate 
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variations in the cure cycle, were manufactured using the Vak-Pak EB1590 bleeder and a 

debulk cycle. 

4.2. MECHANICAL TESTING 

Green strength of the composite panels was evaluated using Short beam shear 

test. Eleven composite panels, measuring 16 in. square, were manufactured. Each 

laminate had 24 layers arranged in quasi isotropic stacking sequence [0°, 90°, +45°, -

45°]3S. Five 0.3 in. x 1.5 in. short beam shear (SBS) samples were extracted from each 

panel. The test was performed on an Instron 5985 machine at room temperature. A short 

span ratio of 3:1 was used to cause failure dominated by delamination [18]. 

The influence of cure cycle on delamination resistance was studied for a series of 

fabricated composite panels using the short beam shear test (Figure 5). Samples were 

loaded under three point bending on a loading span of 0.8 in., in accordance with ASTM 

D2344 [20]. A machine crosshead speed of 0.05 in. per minute was used to apply the 

load. Acceptable mode of failure in SBS is shear failure between the central layers of the 

specimen. The interlaminar shear strength (ILSS) was calculated using the following 

equation, 

����   � 0.75 �
"#

� � �
 , 

 

(4) 

Where "# = peak load, �= sample width, �= depth of the specimen 
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Figure 5. Short Beam Shear Test Setup 

4.3. DROOP AFTER FREE-STANDING POST-CURE 

Shrinkage of matrix around the reinforcing fibers gives rise to residual stresses. 

These stresses are capable of introducing dimensional changes in a laminate with low 

green strength. In the present work, droop during free standing post cure is studied. Test 

specimens measuring 14 in. x 10 in. were cut from panels manufactured, and placed 

between 1 in. wide aluminum mounting blocks (Figure 6). The panels were post-cured at 

400 °F for two hours and droop was measured. 

 

Figure 6. Droop under Free-Standing Post Cure 

 

Droopaluminum block

laminate

10 in.1 in. 1 in.
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5. STATISTICAL ANALYSIS 

Results from experiments were evaluated using statistical methods using Analysis 

of Variance technique. Interlaminar shear strength, flexure strength and droop were 

selected as the response variables. The control factors are input variables, set at 

predetermined levels. Two factors are involved, cure temperature and curing time.  A 

face centered central composite design and the number of panels needed was determined 

based on that design. Central composite designs can be used to fit a first order model 

while providing information regarding contribution of second order terms. Using 

dynamic DSC scans, it was found that the onset of cure of the BMI resin is 290 °F. The 

extreme points of the central composite design were temperatures of 325 °F and 375 °F 

and cure times of 2 hours and 6 hours (Figure 7). The face centered cubic design was 

selected with axial points corresponding to 350 °F/2 hours, 350 °F/6 hours, 325 °F/2 

hours and 375 °F/4 hours.  The center point, 350 °F/4 hours was replicated thrice in order 

to determine whether first and second order terms have an effect on the response 

variables. Composite panels were manufactured as in Table 1. 

 

 

 

 

 

Figure 7. Face Centered Cubic Design 
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6. RESULTS AND DISCUSSION 

Test results were evaluated using Minitab statistical software. In the current study, 

the null hypothesis is, “A change in factor levels, cure temperature and time, does not 

produce a significant change in the response variable”. If the p-value, calculated using 

analysis of variance (ANOVA), is less than a pre-determined significance level, the null 

hypothesis can be rejected i.e. a change in factor levels results in a significant change in 

the response variable. In the current study, a significance level of 5% is used. Therefore, 

if p<0.05, a change in factor levels is significant. 

Table 3. Table of Results 

Panel Cure Temp. 
(°F) 

Cure Time 
(hours) 

ILSS         
(MPa) 

Droop 
(mm) 

1 325 2 2.4 0.508 

2 375 2 37.43 0.304 

3 325 6 13.27 0.406 

4 375 6 41.06 0.152 

5 325 4 7.11 0.279 

6 375 4 40.64 0.101 

7 350 2 14.92 0.177 

8 350 6 34.02 0.101 

9 350 4 23.4 0.457 

10 350 4 22.71 0.406 

11 350 4 23.68 0.279 

Significance of factors 
 

0.001 0.612 
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6.1. MECHANICAL TESTING 

Results of mechanical testing of composite specimens, before post cure, are 

shown in Table 3. Since the p-values for both ILSS and flexure tests are less than 0.05, a 

change in cure conditions has a significant effect on the mechanical properties of the 

composite laminate.  Figure 8 depicts response surface plot of the effect of curing 

conditions on the ILSS of the composite panels. 

The delamination resistance increases with a rise in curing temperature an 

improvement in degree of cure and crosslink density, with a rise in curing temperature 

and time , resulting in a  better bond between the fiber and matrix. All samples failed by 

delamination between the central layers. ILSS is also shown to increase with a rise in the 

curing time.  

 

Figure 8. Contour Plot of ILSS vs Cure Temperature and Time 

Direction of 

increasing ILSS 
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The laminate fabricated using a base line cure of 375 °F/ 6 hours exhibited the 

greatest ILSS of 41.06 MPa.  A 7 °F drop in cure temperature is capable of producing a 

similar effect on delamination resistance, compared to a 1.5 hour drop in cure time. By 

interpolation, it is evident that a cure cycle of 360 °F for 6 hours can produce a composite 

laminate having an ILSS equivalent to one cured at the manufacturer recommended cure 

cycle of 375 °F/ 2 hours.  

6.2. DROOP TEST 

Droop due to thermal warping under a free standing post cure (400 °F for 2 hours) 

was studied and the maximum vertical displacement of the composite laminate was 

recorded using a dial gauge with a least count of 10-3 in. (Table 3). A very small amount 

of droop was observed in all laminates. The p-value, calculated from ANOVA, was found 

to be 0.612. Since p-value >0.05, a change in curing conditions, within the selected 

bounds of this study, showed no significant effects on the thermal warping of the 

composite panel. But, since the number of center point replicates is low, there is a 

possibility that the test conducted is not powerful enough to detect minute effects of 

changes in base cure cycle on droop. 

6.3. VERIFICATION OF RESULTS 

A composite panel was manufactured using a cure cycle of 360 °F/6 hours. The 

average cured ply thickness was 0.118 in. (2.99 mm), void content was 0.83% and the 

density was 1.56 g/cm3. Five samples were removed and their ILSS was measured by 

short beam shear. The average ILSS was calculated to be 38.1 MPa. The samples failed 
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by pure interlaminar shear, initiated by cracking of central layers, followed by 

delamination of the other layers (Figure 10). 

 

Figure 9. Short Beam Shear Test, Load vs Extension 

 

            Figure 10. Cross Section of Tested Specimen 
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7. CONCLUSIONS 

Bismaleimide composite laminates were manufactured successfully using the 

OOA process. Three different bleeders were evaluated for effectiveness, and one was 

selected for use in subsequent testing based on void contents measured by acid digestion. 

The selected bleeder was used to manufacture composite laminates for evaluation of cure 

cycle variation on ILSS and thermal warping after post cure. As expected, the mechanical 

properties increased with increase in cure temperature and duration. All cure cycle 

options were found to be capable of producing a panel with sufficient green strength to 

prevent warping during post cure. Based on the results of mechanical testing, a laminate 

cured at 360 °F for 6 hours can result in high interlaminar shear strength. Results of 

statistical analysis were verified. Future work in this area will investigate the effect of 

post cure cycles on performance of BMI composite laminates. 
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ABSTRACT 

Bismaleimide (BMI) composites are used in applications that require good 

mechanical properties at high temperatures.  In this paper, a Non-destructive inspection 

technique for BMI composites which can be used at high temperatures is presented. 

cavity based External Fabry-Perot Interferometer (EFPI) optical sensors have been 

developed and embedded in the laminates. These sensors are capable of operating in 

temperatures up to 800°C. The embedded sensors are used to perform real time cure 

monitoring of a BMI composite. The composite is cured using an out-of-autoclave 

(OOA) process. Once the composite is cured, the same sensors are used to measure 

mechanical performance of the laminate. The embedded fiber optic sensors were found to 

be capable of structural health monitoring as well as in-situ cure monitoring of an OOA 

cured carbon/BMI laminate. 
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1. INTRODUCTION  

High performance Bismaleimide (BMI) composites are generally used in 

aerospace applications as they provide good mechanical performance at elevated 

temperatures. They are used as a high temperature substitute for toughened epoxy resins. 

A variety of processes can be used to manufacture composites like vacuum bag autoclave 

technique, hot press molding and Out-of-Autoclave (OOA) techniques. OOA methods 

can be used to manufacture high quality parts while providing great reductions in cost of 

manufacturing compared to traditional autoclave manufacturing. In the present work, 

Carbon fiber/ BMI composite laminates (IM7/AR4550 from Aldila Composites) are 

manufactured using the OOA process. 

Mechanical properties of composites are strongly influenced by chemical and 

thermal events during cure. Stresses can be built up as a result of constrained thermal 

deformation during cure   [1]. This can lead to microcracking of the matrix and thermal 

warping of the cured composite laminate. The residual stresses can reduce fatigue life of 

the manufactured composite [2]. Monitoring these effects in situ can help in optimization 

of cure cycles as well as damage detection in the composite laminate. Fiber optic sensors 

provide a cost effective means of evaluating residual stresses produced during the 

manufacturing process and detection of damage during cure [3-6]. 

Composites in aerospace applications can be exposed to prolonged and sometimes 

extreme service conditions. Optical fiber based sensors have many advantages like their 

compact size, resistance to corrosion, immunity from electromagnetic interference, and 

multiplexing capabilities. As a result of their compact size, embedding an optical sensor 
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produces minimal distortion in the strain field within the specimen. Various optical 

sensors like Fiber Bragg gratings, Extrinsic Fabry-Perot Interferometer (EFPI) based 

sensors, Intrinsic Fabry-Perot Interferometer (IFPI) based sensors, Long Period Fiber 

gratings (LPFG), and combinations of these sensors have been used for health monitoring  

[7-9].  Feedback from structural health monitoring of composite materials can provide 

valuable information regarding in-service behavior of these materials.  

EFPI based sensors are well suited for strain monitoring under elevated 

temperature conditions. Bragg gratings, and IFPI sensors can be used for strain 

monitoring [10,11] but they are very sensitive towards the ambient temperature. On the 

other hand, EFPI based optical fiber sensor is almost insensitive towards the ambient 

temperature when compared to its sensitivity towards the strain. Femtosecond (fs) laser 

fabrication yields thermally stable structures that can withstand high temperatures. An fs 

laser fabricated micro-cavity based embeddable assembly free EFPI sensor for strain 

monitoring at high temperatures is presented in this paper. The sensor is minimally 

sensitive to temperature. This sensor is embedded in Carbon fiber/ BMI composite 

laminated fabricated using an OOA process. Residual strain developed during cure is 

measured. The same sensor is then used to measure strain under tensile loading at room 

temperature as well as elevated temperatures. 
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2. METHODOLOGY  

 

2.1. CURE MONITORING 

Cavity based EFPI sensors were manufactured using a lab integrated femtosecond 

laser micromachining system at Missouri S&T. Out-of-autoclave cure of Carbon 

fiber/BMI composite laminates was performed and monitored using these EFPI sensors 

(Figure 1). Six layer unidirectional laminates were fabricated.  First, three layers of BMI 

prepreg were placed on an aluminum mold. The fiber optic sensor was placed in the 

middle of the layup to avoid edge effects. A protective tube was used to protect the egress 

point which is prone to breaking. Three layers of prepreg were placed, followed by a 

layer of ETFE release film. A resin dam was placed around the perimeter of the laminate 

along with an edge bleeder. The layup was covered by a breather fabric and the sealed 

using a vacuum bag under full atmospheric pressure (29 mm Hg, 0.0038 MPa). The layup 

was placed in an oven. The fiber optic sensor was connected to an Optical Spectrum 

Analyzer (OSA) to monitor the cure. A 100 nm laser source (B&W TEK INC.) was used 

as input and a 3 dB coupler was used to send the signal to the sensor. The reflected signal 

was then recorded using an OSA. 
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Figure 1. Cure monitoring layup, sectional view 

Curing of the BMI takes place in two steps (Figure 2). First, the prepreg layup is 

heated to 121.1 °C (250 °F) for 1 hour. At this stage, the viscosity of the resin increases. 

Then, it is heated to 190.5 °C (375 °F) for two hours. The resin begins to cure as a 

rubbery viscoelastic material. Glass transition temperature (Tg) increases with a decrease 

in the fraction of unreacted monomer.  As the Tg of the system approaches its cure 

temperature, vitrification phase begins [12]. On further curing, the Tg of the resin 

increases and the material transforms to a brittle glass-like structure. Volumetric 

contraction of the cured resin gives rise to compressive strains. The cured laminate is 

cooled to room temperature.  As the cured laminate cools, residual stresses are induced 

due to a difference in the coefficient of thermal expansion between the fiber and the 

matrix. The compressive stresses increase further which corresponds to a shift in the 

wavelength in the optical fiber. 
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Figure 2. BMI prepreg cure cycle 

2.2. MECHANICAL TESTING 

Tensile testing samples measuring 304.8 mm x 25.4 mm (12 in. x 1 in.) were 

fabricated. Tabs, measuring 25.4 mm x 25.4 mm (1 in. square), were bonded at the ends 

using an epoxy adhesive.  The strain response of the embedded sensors was investigated 

under tensile loading using an Instron 5584 testing machine and an OSA. Strain is 

transferred to the optical fiber by shear loads which lead to a corresponding change in 

wavelength of reflected light. Since cured BMI polymer is a brittle material, bonds 

between the sensor and resin can weaken and/or break under strain. This gives rise to 

hysteresis on the unloading curve. Strain transfer was studied under loading and 

unloading and unloading cycles to evaluate hysteresis, if any. The maximum strain limit 

of the sensor was evaluated. Mechanical tests were performed at room temperature. 

Samples were loaded to a maximum of 4000 µstrain which is the breaking point of the 

sensor at the cavity. 
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3. RESULTS AND DISCUSSION 

 

3.1. CURE MONITORING  

Figure 3 represents the cure monitoring of a [0°]6 Carbon fiber/ Bismaleimide 

composite. The different phases associated with curing of the composite laminate can be 

discerned. In the first phase, the layup is heated to 121.1 °C (250 °F), in order to heat the 

resin and increase the mobility of reacting groups. At this point bonds between optical 

fiber and the resin are weak. The sensor shows a small shift in wavelength due to the 

temperature change. As the resin temperature increases to 190.5 °C (375 °F), the 

composite begins to cure. Bonding between the sensor and the matrix improves, and 

volumetric contraction of the resin induces compressive strain in the optical fiber which 

is shown as a corresponding decrease in wavelength.  

As the degree of cure of the resin increases, it's Tg increases. At one point, the Tg 

of the system becomes equal to the curing temperature. This is the vitrification phase in 

the cure cycle. The material transforms from a viscoelastic material to a brittle glassy 

material, as the curing progresses. This is shown as a relatively flat region in the 

measured wavelength, followed by a change in the slope of the curve.. As the laminate 

cools to room temperature, the compressive strain increases due to thermal stresses. The 

residual thermal strain is calculated and the strain in the laminate was calculated to be 

678 µstrain. 
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Figure 3. Cure monitoring of BMI composite laminate 

3.2. MECHANICAL TESTING 

Figure 4 shows the strain response of the sensor measured at room temperature. A 

crosshead speed corresponding to strain rate of 0.1 % per minute was used. The sensor 

response was recorded using an OSA. This was compared with the applied strain. The 

shift in wavelength was found to increase linearly with applied strain. A linear 

wavelength shift indicates existence of strong interfacial bonds between the optical fiber 

and surrounding resin. Slope of the loading curve was measured to be 36.22 °. This 

shows good correlation between measured strain and applied strain in the laminate. Little 

hysteresis was noticed when the sample was tested under room temperature. The 

unloading curve closely follows the loading curve. Interfacial bonds between the fiber 

and matrix were left intact when the laminate is loaded to a maximum of 4000 µstrain. A 

slope of 36° to 39° was recorded in successive experiments under the same conditions. 
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Figure 4. Tensile testing of specimens at room temperature 

4. CONCLUSIONS 

Cavity based fiber optic sensors were manufactured successfully using a 

femtosecond laser at Missouri S&T. These sensors were embedded into Carbon fiber/ 

BMI composite laminates manufactured using the OOA process. Cure monitoring was 

performed in-situ and the residual strain due to thermal expansion was measured. The 

residual strain during cure was measured to be 678 µε. These sensors were then used to 

monitor strain in the sample under tensile loading. The sensor response was linear at 

room temperature. A strong interfacial bond exists between the fiber optic sensor and the 

composite laminate. Fiber optic sensors can be used in structural health monitoring of 

OOA cured BMI composite laminates. 
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SECTION 

2. CONCLUSIONS 

Bismaleimide composite laminates were manufactured successfully using the 

OOA process. In the first part of the work, effect of processing variable on the quality of 

BMI composite laminates was studied. An effective bleeder was selected based on the 

results of void content tests on manufactured laminates. Effect of varying cure cycles on 

the green strength of laminates was investigated. All cure cycle options were found to be 

capable of producing a panel with sufficient green strength to prevent warping during 

post cure. Based on the results of mechanical testing, a laminate cured at 360 °F for 6 

hours can result in high interlaminar shear strength. Results of statistical analysis were 

verified.  

In the second part, cavity based fiber optic sensors were manufactured 

successfully using a femtosecond laser at Missouri S&T. These sensors were embedded 

into Carbon fiber/ BMI composite laminates manufactured using the OOA process. Cure 

monitoring was performed in-situ and the residual strain due to thermal expansion was 

measured. The residual strain during cure was measured to be 678 µε. These sensors were 

then used to monitor strain in the sample under tensile loading. The sensor response was 

found to be linear at room temperature. These sensors are capable of performing 

structural health monitoring. 
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APPENDIX 

A.1 Effect of base cure cycles on flexural strength of OOA cured BMI laminates 

Flexural tests were performed according to ASTM D790 at a span to thickness 

ratio of 40:1. The samples were loaded using a three point bending fixture (figure 3.1) at 

a rate of 0.4 in. per min on a loading span of 6 in. Flexure stress was calculated using 

equation below. 

σ �
3PL

2bd+
 

 

(3.1) 

Where, P =load in N,  L=span length, b=sample width, d=depth of the specimen 

 

Figure 3.1. Flexure Test Setup 

Figure 3.2 shows a contour plot of the change in flexure stress at failure of panels 

cured at varying cure cycles. When loaded under large span to depth ratios (40:1), the 

failure of test specimens is dominated by flexure. In composites that have low 

compressive strength compared to tensile strength, failure is initiated by compressive 

fracture of upper layers followed by delamination.  
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In case of samples cured at 325 °F, failure was dominated by delamination due to 

low ILSS. However, in case of laminates cured at temperatures of 350 °F and 375 °F, 

flexural failure was observed. The contour plot shows an increase in flexure strength with 

an increase in cure temperature as well as cure time. Flexure strength of 431.91 MPa was 

obtained using a base line cure of 375 °F/ 6 hours. Reducing the cure time to 2 hours at 

375 °F can result in flexure strength of 400 MPa. This can also be obtained using a cure 

cycle of 354 °F and 6 hours. In order to fabricate a laminate that has high ILSS as well as 

flexure strength, a cure cycle of 375 °F/ 4.5 hours can be used. 

 

Figure 3.2 Contour plot of variation of flexure strength with cure time and temperature 
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