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ABSTRACT

This thesis develops a theoretical framework, termedε −BLU, to characterize the

relation between temperatures, thermal contact and borehole length as it relates to the heat

transfer processes in ground coupled heat exchangers used for ground source heat pump

systems.

Borehole outflow temperature depends on the inflow temperature, the heat imposed

on the borehole and the temperature history of the ground. Inaddition, variation of outflow

temperature influences inflow temperature, even for the caseof constant heat pump load.

Because of this kind of feedback, the borehole inflow temperature may not be constant even

with a fixed building load. Considering the complexity, the research is divided into two

sections: “open loop” problems and “closed loop”problems.For “open loop” problems,

the inflow temperature is specified and taken to be independent of the outflow temperature.

The development of theε −BLU analysis begins with the “open loop” problems. The

analysis is then extended to “closed loop” problems for which the inflow temperature is

dictated by outflow temperature and specified heat pump load.The impact of both steady

and periodic loads on the conductance and fluid temperaturesare quantified.

In theε −BLU analysis, the dimensionless conductance quantifies time-dependent

thermal contact between the circulating fluid and the groundsurrounding the borehole. The

dimensionless conductance quantifies the quasi-steady heat transfer with only three dimen-

sionless parameters: the Fourier Number, the Biot Number, and the Number of Borehole

Length Units. The resulting graphs enable determination ofoptimal borehole length, a

result not previously recognized. Seasonal equivalent conductance and peak borehole out-

flow temperature are used to evaluate the effect of building loads on heat transfer through

the borehole. A multi-year simulation has also been conducted to reveal the behavior of

ground heat exchangers under periodic load.
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1. INTRODUCTION

The design process for ground coupled heat exchangers (GCHEs) utilized in ground

source heat pumps (GSHPs) requires consideration of multiple issues. First, the building

load varies with time, both daily and seasonally, so the temperature of inlet water into the

borehole and the heat flux through the borehole is not constant. Over long time periods,

several years or more, the building loads may also change theground temperature, so as

to influence the heat pump performance. Important considerations include configuration of

multiple boreholes, individual borehole length and grout thermal properties. The engineer-

ing concern is how to determine borehole configurations thatprovide a balance between

performance and cost.

American Society of Heating, Refrigerating and Air-Conditioning Engineer has

sponsored a series of research projects to develop design guidelines for GCHEs. In ASHRAE

Handbook HVAC Applications [2011], Kavanaugh’s approach is adopted as the preferred

design method. Kavanaugh’s approach focuses on the determination of total required bore-

hole length. To do so, it accounts for three different pulsesof heat: long-term heat im-

balance, average monthly heat rate during the design month and maximum heat rate for

a design day. The method, in effect, estimates unit length thermal resistance which, with

required heat duty, enables estimation of total borehole length. Although practical, this

approach has its limitations. First, Kavanaugh’s approachis based on the cylindrical model

with constant heat flux boundary conditions, which is only a rough approximation of the

practical situation. Second, the quasi-steady equation isused to calculate only the overall

loop length, but fails to determine individual borehole length. Finally, Kavanaugh’s ap-

proach assumes the heat transfer rate through the borehole is directly propotional to loop

length. Our analysis begins from the observation that the fluid temperature varies along the

pipe, and since the far field temperature is constant for an isolated borehole, the heat flux
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necessarily varies along the length of an individual borehole. This thesis then develops an

original approach which incorporates the requirement for aspecified temperature change

in a borehole passage and its relation to geometry and the time-dependent, fluid-ground

thermal conductance.
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2. LITERATURE REVIEW

2.1. ANALYTICAL MODELS

A review of the current literature indicates that there are generally two analytical

methods used to charactrize the ground heat transfer processes for vertical ground heat

exchangers. One is the Kelvin’s line source model and the other is the so called cylindrical-

source model.

Kelvin’s line source model is the basis for the earliest approach to predicting the

heat transfer through ground heat exchanger pipes. Ingersoll [1954] cited this model and

applied it to calculate the temperature at selected points in the ground. This model assumes

the soil to be an infinite medium with uniform properties and initial temperature. The

borehole is assumed to be an infinite line source or sink with aconstant heat transfer rate

which is initiated at timet = 0. The heat flow along the length of borehole is neglected.

The temperature response of the ground at a specific positionis given by,

T −Tg,∞ =
q′

2πk
I(η)

whereTg,∞ is the initial temperature of the ground,q′ is the heat transfer rate per unit length

of borehole, and the dimensionless argument to the integralis η = r/(2
√

αt), wherer is

distance from the line source to the point of interest. Note that this can be rewritten as,

q′

T −Tg,∞
=

2πk
I(η)

where the right-hand side may then be recognized as an inverse thermal resistance. The

value of the integral termI(η) is tabulated by Ingersoll [1954] with respect to values of

η. As mentioned above, one of the assumptions made for this model is that the line source
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should be infinitely long, so that the heat flux has only a radial component. According to

Ingersoll, this equation should be applied only whenαt/r2
b > 20, or else an appreciable

error may be produced for a short time or a large pipe diameter. An important extension

of Kelvin’s line source theory comes from Hart and Couvillion [1986]. The far-field radius

is introduced, which is a critical distance to the line source. The far-field radius is given

as 4
√

αt, depending on the soil thermal diffusivity and the time the line source is active.

According to Hart and Couvillion, the temperature of the ground region outside the far-field

radius is free from the influence of the line source.

The cylindrical source model, detailed by Carslaw and Jaeger [1947], forms the ba-

sis of another widely used approach. With this model, the U-tube pipe is treated as a single

pipe centered in the borehole, surrounded by an infinite solid with constant properties. The

pipe is assumed to be infinitely long with axial heat transferneglected.

Assuming a constant heat transfer rate across the borehole boundary beginning at

t = 0, the analytical solution may be written as [Carslaw and Jaeger, 1947]

T −Tg,∞ =
q′

k
G(z, p)

wherez ≡ αt/r2
b andp ≡ r/rb. The functionG(z, p) depends on timet and distance from

the boreholer. Ingersoll [1954] tabulated some values ofG(z, p), and Kavanaugh and

Rafferty [1997] provided graphical values ofG(z, p) when p = 1 which represents the

surface of the borehole. Whenp = 1, the temperature of the borehole surface isT (z,1), at

a dimensionless timez.

Similarly, the result with a constant surface temperature has also been treated by

Carslaw and Jaeger [1947]. In this case the heat transfer rate per unit length is given by

q′ = k∆T F(z)
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Where∆T is the temperature difference between the pipe and initial ground temperature.

The values ofF(z) are tabulated by Ingersoll [1954].

Kavanaugh and Rafferty [1997] has built up a design method for vertical ground

coupled heat exchangers, which is based primarily on the cylindrical model with constant

heat transfer rate as boundary condition. The unique contribution by Kavanaugh is the

method to determine the required total length of pipe loop. The method uses the steady

state heat transfer equation, and considers three different pulses of heat, (1) long-term heat

imbalance, (2) average monthly heat rate during the design month and (3) maximum heat

rate for a short term period during a design day. The primary shortcoming of this approach

is the assumption that the heat transfer rate, per unit length, is constant. The temperature

variation of the circulated fluid along the borehole length is not accounted for.

Using Kavanaugh’s approach, a tabulation or plot ofG(z, p= 1) is all that is needed

to estimate total borehole length for a specified overall heat load. The ASHRAE Appli-

cations Handbook [ASHRAE, 2011] details Kavanaugh’s approach as the recommended

design method. The limitation however, is that the approachis based on constant heat flux

boundary condition, which is far from the true physical condition. Practically, the method

suggests the length of an individual borehole will not affect the heat transfer rate, and fails

to identify the optional depth for an individual borehole.

2.2. NUMERICAL MODELS

Both the Kelvin line source model and cylindrical source model are one-dimensional

analytical results which neglect the axial heat flow along the borehole length. Beginning

in the 1980s, several numerical models have been introducedwhich capture aspects of the

multi-dimensional heat transfer.

Eskilson and Claesson [1988] developed a two dimensional model accounting for

radial and axial components of heat transfer. It was a breakthrough that both radial and
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axial conduction are considered. In addition to that, the model uses finite length borehole

and diameter. The fluid borehole thermal resistance is neglected, and the ground tempera-

ture response is achieved based on constant boundary temperatures. In addition, Eskilson

introduced a superposition technique to simulate the thermal process of a number of ther-

mally interacting boreholes with regard to computation. However, this radial-axial finite

difference model is time-consuming, and difficult to be applied in practical ground coupled

heat exchanger design process.

Yavuzturk [1999] developed a short time-step model for heattransfer process in

vertical heat exchangers. This model uses a series of pie-sectors to approximate the geom-

etry of circular U-tube pipes. A two-dimensional finite volume approach was applied with

a several assumptions. First, the three-dimensional effects at the ground surface and the

bottom of the U-tube are ignored. The ground is assumed to have uniform thermal proper-

ties and finally, the effects of borehole surface temperature change along the depth are only

approximated. This model was proposed as a complement to thelong time-step model of

Eskilson.

In recent years, numerous researchers conducted numericalsimulations and vali-

dated the models with commercial software or experimental data. Carli and Zarrella [2010]

presented a computational capacity resistance model for vertical ground-coupled heat ex-

changers. This two-dimensional model considered different fluid flow patterns such as

a single U-tube, a double U-tube or coaxial pipes. With supply temperature to the heat

exchanger, the model can calculate the outflow temperature and the ground temperature

distribution. And this model was validated by a commercial software as well as a ground

thermal response test and a survey of an office building equipped with a ground coupled

heat pump. Su [2011] presented a fast simulation of a vertical U-tube ground heat ex-

changer using a one-dimensional transient numerical model. This model neglected the

vertical variation of temperature of the heat exchanger, and a mesh grid with uniform spa-

tial increment was created. Both heat load and inlet temperature can be used as the input.
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This model was compared with analytical models and validated by experimental data of

three boreholes. Although each of these studies have considered simulations with differ-

ent borehole dimensions, the nature of the heat transfer process and its variation along the

length of the borehole has not been revealed.
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3. AN EFFECTIVENESS-BASED ANALYSIS

The ground source heat pump system with ground coupled heat exchanger can be

illustrated as Figure 3.1. In this scheme, the two legs of theU-tube are treated as a single

pipe, which is co-axial with the borehole. The borehole is assumed to be immersed in soil

which forms an infinite medium having uniform properties andinitial temperature. The

time-varying building load,q(t), is imposed on the ground heat exchanger. The heat is

therefore driven into or absorbed from the ground through the borehole. In this figure, the

dimensional fluid temperatures at the inlet and outlet of theborehole are denoted byTf (t,0)

andTf (t,L), respectively. The far-field ground temperature isTg,∞. Because of the variation

in the borehole heat transfer, a variation ofTf (t,L)will influenceTf (t,0) in return. Because

of this feedback, the borehole inlet temperature is unlikely to be constant even with a fixed

building load. Recognizing the additional complexity associated with this feedback, our

analysis is divided into two parts. In the first part, a constant inflow temperature isolates

the thermal parameters and borehole geometry from the feedback. In this way, the system

behaves like an “open loop”. In the second part, the feedbackfrom Tf (t,L) will be added

and the influence on the heat transfer performance will be studied. For this part, the system

behaves like a “closed loop”.

In effect, the “open loop” assumes there is a heat source or heat sink between heat

pump and the borehole. The heat source or sink can supply or absorb energy from the

circulating fluid, so that the inflow temperature remains constant. Because of the virtual

heat source or heat sink, the heat load imposed on the borehole qb(t) may not be equal to

that imposed by the heat pumpq(t).
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HP
ql(t) q(t)

Ẇe(t)

Tf (t,0)

Tf (t,L)

z

z = L

qb(t)

Tg,∞

Figure 3.1: The scheme of “open loop”.

3.1. FORMULATION OF EFFECTIVENESS - BLU FRAMEWORK

An energy balance on a differential segment of the borehole yields

(ṁCp) f
∂Tf (t,z)

∂ z
=−U(t,z)P[Tf(t,z)−Tg,∞] (3.1)

whereU(t,z) is the local conductance between fluid in the borehole and theground at a

far field position,P is the perimeter of borehole surface, and ˙m is the mass flow rate of the

circulating fluid in the borehole.

The temperature scale is shown in Figure 3.2. The fluid temperature difference from

the inlet to the outlet of the heat pump,∆Tp, is also the temperature difference that, in a real

system must be reached across the borehole length. The temperature difference between

the borehole inlet and the far field ground temperature is denoted by∆Td and defines the

temperature limits in the problem. At constant mass flow rate, the cooling and heating

loads correspond directly to the temperature differences across the heat pump. The cooling

and heating season temperature differences are denoted by∆Tp,c and∆Tp,h, respectively,
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both being positive.

qp,c = (ṁCp) f ∆Tp,c (3.2)

qp,h =−(ṁCp) f ∆Tp,h (3.3)

However, the peak value of the temperature differences driving the fluid-ground heat trans-

fer may be written as

∆Td,c = Tf (t,0)−Tg,∞ = [Tf (t,L)+∆Tp,c]−Tg,∞ (3.4)

∆Tp,h = Tg,∞ −Tf (t,0) = Tg,∞ − [Tf (t,L)−∆Tp,h] (3.5)

The function of the ground heat exchanger is to reverse the temperature change imposed

on the circulating fluid by the heat pump, given the fluid-ground temperature difference in

the borehole. The ratio of the fluid temperature change to thetemperature limits may be

recognized as an effectiveness.

ε =
∆Tp

∆Td
(3.6)

A dimensionless temperature, depth and time may be defined according to,

T ∗ =
T −Tg,∞

∆Td,m
(3.7)

z∗ =
z
L

(3.8)

t∗ =
t
ts

(3.9)

whereL represents the borehole length, andts denotes one year. The fluid energy balance

then becomes,
∂T ∗

f (t
∗,z∗)

∂ z∗
=− UPL

(ṁCp) f
T ∗

f (t
∗,z∗) (3.10)
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Figure 3.2: The scheme of effectiveness and temperature scale.

Separating the conductance and borehole length into two separate terms:

UPL
ṁCp

=
U

kg/rb

PL
(ṁCp) f

(3.11)

two dimensionless parameters can be identified: a dimensionless conductance,U∗(t∗,z∗),

and the number of borehole length unit, BLU. TheU∗(t∗,z∗) characterizes the thermal

contact, which is dependent on time and depth; while the BLU characterizes the borehole

geometry, which is independent on time.

U∗ ≡ U
kg/rb

(3.12)

BLU ≡ (kg/rb)PbL

(ṁCp) f
(3.13)

The fluid energy balance then becomes,

∂T ∗
f (t

∗,z∗)

∂ z∗
=−BLU U∗(t∗,z∗)T ∗

f (t
∗,z∗) (3.14)
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defining length average conductance byU
∗
(t∗) =

∫ 1
0 U∗(z∗)dz∗, and integrating Eq. (3.14)

over the borehole length, and substituting Eq. (3.6), producing:

ε = 1−exp[−U
∗
(t∗)BLU] (3.15)

Equation (3.15) is the basis of the Effectiveness - BLU analysis proposed in this work. The

contribution of this equation is that, in a design process, with specified temperature con-

straints embodied in,ε and dimensionless conductanceU∗ estimated, the required borehole

length unit, BLU, and the required borehole depth can be estimated. The evaluation of the

dimensionless conductance is therefore a critically important step. The remainder of this

thesis will treat the determination of this dimensionless conductance and its parametric

dependence.

3.2. PROBLEM 1: ZERO FLUID-BOREHOLE THERMAL RESISTANCE, INFI-
NITE BOREHOLE LENGTH

The borehole cross section scheme can be illustrated as in Figure 3.3. In this prob-

lem, the borehole is assumed to be an infinite long cylindrical heat source, immersed in

the soil which is considered as uniform medium of infinite extent. The heat transfer resis-

tance inside the borehole is ignored. The extent temperature along the cylindrical surface

is uniform and there is no axial heat transfer along the borehole depth. The dimensional

temperature distribution in the ground can be described as Eq. (3.16).

∂T
∂ t

=
α
r

∂
∂ r

(r
∂T
∂ r

) (3.16)

Taking dimensionless radius as

r∗ =
r
rb

(3.17)
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Figure 3.3: The borehole cross section scheme.

whererb is the borehole radius, and substituting this definition andthat of the dimensionless

temperature,
∂T ∗

∂ (αt/r2
b)

=
1
r∗

∂
∂ r∗

(r∗
∂T ∗

∂ r∗
) (3.18)

where groupαt/r2
b may be identified as the “time-to-pipe” ratio was firstly introduced by

Carslaw and Jaeger [1947]. This parameter represents dimensionless time as measured rel-

ative to a ground diffusivity time scale. In ASHRAE terminlogy, this parameter is referred

as Fourier number, Fo. According to the definition, different combinations of ground con-

ductivity and time may produce the same value of Fo. Recognizing that there is an essential

additional time scale, the time associated with the seasonal load variation, diffusion is not

elected as the time scale. The time scale for seasonal variation, ts, is one year. As a result,

this dimensionless parameter is determined only by ground diffusivity and borehole radius.

For the computation in this study, a default value of Fo is selected as 104. Substitute this

definition of Fo.
∂T ∗

∂ (t∗Fo)
=

1
r∗

∂
∂ r∗

(r∗
∂T ∗

∂ r∗
) (3.19)
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The dimensionless ground temperatureT ∗(t∗,r∗) is therefore a function of dimensionless

time t∗ and distancer∗, so the temperature contour will be a series of concentric circles.

Since these circles should be denser in the neighborhood of the borehole surface than in

the far field, a grid clustering transformation is introduced to resolve the sharp gradients at

r∗ ∼= 1.

r∗ = (
r∞
rb
)ξ = r∗∞

ξ (3.20)

The far field radius is denoted byr∞ and represents the radius at which ground temperature

is unaffected by heat flow from the borehole. This is, in effect, a computational boundary.

This transformation mapsr to ξ , whereξ = 0 is associated withr∗ = 1, and the position

whereξ = 1 is associated withr∗ = r∗∞.

Substituting Eq. (3.20) into Eq. (3.19), the partial differential equation (PDE) for

dimensionless temperature can be written as,

∂θ
∂τ

=
1

(lnr∗∞)2

1

(r∗∞)2ξ
∂ 2θ
∂ξ 2 (3.21)

The dimensionless temperature,θ(τ,ξ ) is defined by,

θ(t∗Fo, lnr∗/ lnr∗∞) = T ∗(t∗,r∗;Fo,r∗∞)

whereτ ≡ t∗Fo, and represents a Fourier-scaled dimensionless time. Since this is a one

dimensional diffusion equation, a simple implicit scheme is applied to solve the PDE,

1
∆τ

(θ n+1
i −θ n

i ) =
1

(lnr∗∞)2

1

(r∗∞)2i∆ξ
1

∆ξ 2(θ
n+1
i+1 +θ n+1

i−1 −2θ n+1
i ) (3.22)

where subscripti denotes space dimension and superscriptn notates time,∆τ is dimen-

sionless time step and∆ξ is dimensionless spatial grid size. Although the simple implicit

scheme is unconditionally stable,∆τ is selected to satisfy explicit stability to produce good
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accuracy. The far field radiusr∗∞ = r∞/rb is a constant, and was selected large enough to

have no impact on the solution. A value of 100 has been selected. Several cases were

run to verify thatr∗∞ = 100 was sufficiently large. A spatial increment, in computational

coordinates, of∆ξ = 0.001 is used in computation.

Recalling the definition oft∗, the dimensionless timet∗ varies from 0 to 1 over one

year. The dimensionless time step∆t∗ = ∆τ/Fo= 0.02/Fo, which is associated with a

period of physical time varying from 0.5 to 5 minutes for typical values of Fo. ASHRAE

[2011] suggests values for some thermal parameters and geometries, which are quoted in

Table 3.1. Based on these parameters, several dimensionless parameters can be determined,

shown in Table 3.2.

As a starting point,U(t) is determined by taking the fluid temperature constant,

φ(τ,0) = 1 (3.23)

whereφ represents the dimensionless fluid temperature,

φ(t∗Fo,z∗ = 0) = T ∗
f (t

∗,z∗ = 0;Fo)

The initial ground temperature is uniform,

θ(0,ξ ) = 0 (3.24)

and ignoring the resistance from fluid to borehole surface,

θ(τ,ξ = 0) = 1 (3.25)
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The dimensional conductanceU is defined by:

U =
q′′b

Tf −Tg,∞
(3.26)

whereq′′b is the heat flux through the borehole surface. Applying Fourier’s law,

U = − kg

Tf −Tg,∞

∂T
∂ r

∣

∣

∣

∣

r=rb

(3.27)

Substituting Eq. (3.12) into Eq. (3.27)

U∗(t∗) = − 1
T ∗

f

∂T ∗

∂ r∗

∣

∣

∣

∣

∣

r∗=1

(3.28)

and in computational coordinates

U∗(τ) = −1
φ

1
lnr∗∞

∂θ
∂ξ

∣

∣

∣

∣

ξ=0
(3.29)

In this way, the dimensionless conductanceU∗ can be determined by solving Eq. (3.21).

The analytical solution for this problem is given by Carslawand Jaeger in terms of heat

transfer rate per unit length,

q′b = kg(Tf −Tg,∞)F(τ)

where as before,τ = t∗Fo= αt/r2
b. Substituting this equation into the definition of dimen-

sionless conductance,U∗ = F(τ)/2π . This analytical result is an important verification of

the accuracy obtained by numerical method, and represents asimplest analytical model for

the time-dependent conductance associated with the groundheat transfer.

The numerical results for dimensionless conductanceU∗
g is shown in Figure 3.4, for

dimensionless timet∗ from 0 to 1, a physical period of one year. The subscriptg is added

to the numerically-computed conductance to highlight the fact that the sole contribution to
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Table 3.1: Typical range of dimensional properties and geometries.

Properties Units Minimum Maximum
α m2/day 0.042 0.14
rb mm 50 75
rp mm 10 20
kg w/mk 0.5 3.8
kb w/mk 0.7 2.4
h w/m2k 50 2.100
L m 15 350
ṁ kg/m 0.5 20

Tg∞
◦F 45 70

Tf c(t,0) ◦F 85 95
Tf h(t,0) ◦F 60 80

∆Tp
◦F 10 35

∆Tdc
◦F 20 30

∆Tdh
◦F 10 20

Table 3.2: Typical range of dimensionless parameters.

Parameters Minimum Maximum
Fo 2000 20000
Bi 0.05 5
ε 0.15 0.9

BLU 0.05 200

the conductance is the ground. The numerical results match well with the analytical results

provided by Ingersoll. The total conductance decreases rapidly and then more slowly, as

time advances. The dimensionless conductance finally reaches a nominally steady value at

approximatelyt∗ = 0.2. Any time variation of conductance is barely detectable atone year.

To further characterize the transient behavior of dimensionless conductance, three

distinct periods are identified. They are the startup period, the transition period and the

stable period. The three periods are separated by two definedtimes. The time separating

the startup period and transition period is referred to as transition timet∗tr, and the instant
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Figure 3.4: Comparison of numerical resultsU∗
g from Problem 1 and analytical result by

Ingersoll [1954].

separating the transition period and stable period is called t∗∞. These two dividing times are

defined by Eq. (3.30) and Eq. (3.31).

∣

∣

∣

∣

dU∗

d(t∗Fo)

∣

∣

∣

∣

t∗=t∗tr

= 1 (3.30)

∣

∣

∣

∣

dU∗

d(t∗Fo)

∣

∣

∣

∣

t∗=t∗∞

= 10−4 (3.31)

For Problem 1, with a nominal value of Fo= 104, the values oft∗tr andt∗∞ are 4.6×10−5

and 3.83×10−2, respectively, which correspond to 0.4 hour and 4 days, respectively. The

values of the dimensional conductance at these times areU∗(t∗tr) = 1.2836 andU∗(t∗∞) =

0.2837.
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3.3. PROBLEM 2: FINITE FLUID-BOREHOLE THERMAL RESISTANCE, INFI-
NITE BOREHOLE LENGTH

IdentifyingRb as the thermal resistance of the borehole, inclusive of the convective

resistance, which is associated with fluid flowing through the pipe, and the conductive

resistance of the borehole material, it appears in series tothe thermal resistance of the

ground,Rg. The rate of heat transfer from fluid to borehole surface may then be written as,

q′b(t) =
1

R′
b
[Tf (t)−T(t,rb)], (3.32)

and invoking Fourier’s law,

1
R′

b
[Tf (t)−T(t,rb)] = −kg2πrb

∂T
∂ r

∣

∣

∣

∣

r=rb

(3.33)

rewriting in dimensionless form,

1
lnr∗∞

∂θ
∂ξ

∣

∣

∣

∣

ξ=0
=− 1

2πkgR′
b
[φ(τ)−θ(τ,0)] (3.34)

This statement provides a Robin type boundary condition forthe diffusion equation.

Problem 2 may therefore be summarized by Eq. (3.34), Eq. (3.21) and following boundary

conditions:

φ(τ) = 1

θ(0,ξ ) = 0

In Eq. (3.34), the dimensionless quantity 1/(2πkgR′
b) represents the ratio of ground con-

duction resistance and convection resistance in the borehole. This term therefore plays a

role similar to a Biot Number, which is an index of the ratio ofthe conduction resistances

inside a body and convection resistance at the surface [Incropera, 2007]. Therefore the Biot
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Number can be defined,

Bi ≡ 1
2πkgR′

b
(3.35)

and substitute this definition into Eq. (3.29)

U∗(τ) = Bi[φ(τ)−θ(τ,0)] (3.36)

It can be observed from Eq. (3.36), conductanceU∗ is dependent on timet∗, and parametri-

cally on Fo and Bi. The Biot Number, Bi is determined completely by borehole resistance

R′
b and ground conductivitykg. As the borehole resistance goes to zero, Bi grows large,

and can be ignored. In that limit, the Problem 2 results will approach those of Problem 1.

Figure 3.5 indicates howU∗ varies witht∗ at several Biot Numbers, Bi. It can be

observed that for Problem 2, when Bi is small, theU∗ is very small and doesn’t change

significantly with time; when Bi increases,U∗ tends to behave in the same pattern as that

of Problem 1. These observations are clearly in agreement with the discussion above.

How Bi will influenceU∗ can be seen more clearly if the conductanceU∗ and Bi are

scaled by dimensionless conductance as determined by Problem 1. Figure 3.6 shows how

U∗/U∗
g varies with Bi/U∗

g . The dimensionless conductance,U∗
g , represents dimensionless

conductance associated with the ground alone, from Problem1. This scaling clearly elim-

inates the time dependence ofU∗. It can be observed from this figure that the influence of

borehole resistance won’t be amplified when time increases.In a word, Bi dominates heat

transfer when it is relatively small, however when it is larger than Bi/U∗
g ≃ 10, the bore-

hole resistance can be ignored. Dimensionless conductancecan be read from this figure

and there is no need to compute cases with different Bi. This observation is very useful for

choosing suitable material used in the borehole.
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Figure 3.5: Comparison ofU∗ with different Bi from Problem 2 and analytical result by
Ingersoll [1954].

3.4. PROBLEM 3: ZERO FLUID-BOREHOLE THERMAL RESISTANCE, FINITE
BOREHOLE LENGTH

The fluid temperature in the borehole varies with depth, so the ground temperature

must vary not only in the radial direction, but also in the depth direction. The previous

two problems have, however, ignored this reality. As a first approximation the vertical heat

conduction in the ground is negligible compared with radialconduction; while the bound-

ary condition, based on fluid temperature, is different along depth. In this way, the problem

is transferred to a series of problems similar to Problem 1, with varying fluid temperature

forming a Dirichlet boundary condition. In dimensionless form, the fluid energy balance,
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Eq. (3.14), is then,
∂φ(τ,z∗)

∂ z∗
=−U∗(τ,z∗)φ(τ,z∗)BLU (3.37)

With the boundary conditions as follow, Eq. (3.37) and Eq. (3.21) can be used to compute

φ(τ,z∗) andθ(τ,z∗,ξ ). Figure 3.7 shows how the dimensionless conductanceU∗(τ,z∗)

varies along borehole depth.

φ(τ,0) = 1 (3.38)

θ(0,z∗,ξ ) = 0 (3.39)

φ(τ,z∗) = θ(τ,z∗,0) (3.40)
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The conductance behaves in a similar pattern at different depth. The finite borehole

length effect does enhance the heat transfer compared to Problem 1, since the conduc-

tance increases along the borehole depth, particularly in the initial period. At larger times

when the conductance decreases slowly, the conductance variation along the depth is in-

distinguishable. As a result, a conservative approach to estimatingU∗ would be using the

conductance without considering the influence from borehole length.

Before further analysis, an important concept, dimensionless break through time,

t∗b , is introduced. The heat transfer rate over the borehole canbe expressed as:

qb = (ṁCp) f [Tf (t,0)−Tf (t,L)] (3.41)
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The dimensionless borehole load is then

q∗b(t
∗) =

qb

(ṁCp) f ∆Tp
(3.42)

Substituting Eq. (3.41) and Eq. (3.6) into Eq. (3.42) produces,

T ∗
f (t

∗,0) = T ∗
f (t

∗,1)+ εq∗b(t
∗) (3.43)

In terms ofθ andφ ,

q∗b(τ) =
1
ε
[φ(τ,0)−φ(τ,1)] (3.44)

Under quasi-steady conditions, the heat transfer rate imposed by the heat pump

should be equal to the heat transfer rate over the borehole length, soq∗b = q∗. But for the

“open loop” problem, this relationship may not exist, because inlet temperature is specified

and, in effect, there must be a heat sink or source between theheat pump and borehole to

satisfy the fixed inlet temperature condition.

Defining length average conductanceU
∗
(τ), and integrating Eq. (3.37) over the

borehole length,

φ(τ,1) = φ(τ,0)exp[−U
∗
(τ)BLU] (3.45)

substitute Eq. (3.45) into Eq. (3.44)

q∗b(τ) =
φ(τ,0)

ε
{1−exp[−U

∗
(τ)BLU]} (3.46)

For the “open loop”,φ(τ,0) is constant soq∗b(τ) has a similar variation asU
∗
(τ).

Figure 3.8 indicates howq∗b varies with timet∗ at different BLU. In the computationU∗
g

from Problem 1 is used instead ofU
∗
(τ) from Problem 3, in order to save computation time.

This is a conservative approach sinceU∗
g is smaller. It can be observed from Figure 3.8 that

q∗b decreases along witht∗, similar to conductanceU∗. When BLU is very small, theq∗b
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Figure 3.8: Comparison ofq∗b(t
∗) with different BLU for Problem 1, withε = 0.3.

is also very small. When BLU is larger than some value, such as1, q∗b will start from

1/ε and then decreases along thet∗. If q∗b is larger than 1, the heat transfer rate over

borehole is larger than that through heat pump. In other words, the borehole is capable of

delivering a heat transfer rate larger than the load on the heat pump. There is a critical time

however,which is denoted as breakthrough time,t∗b , whenq∗b = 1. The breakthrough time

is determined by

q∗b(t
∗
b)≡ 1=

1
ε
{1−exp[−U

∗
(t∗b)BLU]}

for Problem 1 sinceφ(τ,0) ≡ 1. At the breakthrough time,t∗b , the heat transfer rate over

the borehole matches that across the heat pump. Figure 3.9 shows how breakthrough time

t∗b varies with BLU. It can be observed from this figure thatt∗b increases as BLU increases,
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Figure 3.9: Relationship oft∗b with BLU at different effectivenessε for Problem 1.

sinceU
∗

decreases with time. Potentially more useful from a practical standpoint, one

could determine the BLU necessary to reach the breakthroughpoint, q∗b = 1, at the time

when the conductance has reached the point of being nominally steady,t∗∞, as defined in

Equation 3.31. Referring to this dimensionless borehole length as BLU∞, it is defined for

Problem 1 by,

q∗b(t
∗
∞)≡ 1=

1
ε
{1−exp[−U

∗
(t∗∞)BLU∞]}

From Problem 1 results, the computed values of BLU∞ are 0.4, 1.5, 2.5, 4.5 and 8.5 for the

effectivenessε of 0.1, 0.3, 0.5, 0.7 and 0.9, respectively.

Similar results can be achieved ifU∗(t∗) from Problem 2 is used. Figure 3.10 shows

how breakthrough timet∗b varies with BLU for different values of Bi whenε = 0.5. It can
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be observed from the figure that to produce the same break through timet∗b , the required

BLU decreases when Bi increases. This is because resistanceinside borehole decreases

when Bi increases, so ground thermal resistance becomes dominant.

Figure 3.11 shows the required BLU∞ with different Bi andε. It can be observed

from this figure that, when Bi= 10, the required BLU∞ is 0.4, 1.5, 3.0 and 4.5, respectively

whenε is 0.1, 0.3, 0.5 and 0.7. This result is very close to that of Problem 1.

Returning to Problem 3, Figure 3.12 shows how scaled dimensionless conductance

U
∗
(t∗)/U∗

g (t
∗) varies witht∗ at different values of BLU withε = 0.3. Figure 3.13 shows

the results withε = 0.5, and Figure 3.14 shows the results withε = 0.7. TheU∗
g (t

∗)

is dimensionless conductance from Problem 1, which does notaccount for the influence

of borehole length and presumes negligible borehole thermal resistance. Thus, only for
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the initial period does the length average conductance differ fromU∗
g , for BLU ≃ BLU∞.

If the BLU varies from 50% to 150% of BLU∞, the deviation of scaled dimensionless

conductance is reduced to about 10% in 9 hours (t∗ = 10−3) and reduced to 5% in 4 days

(t∗ = 10−2). The BLU affects the dimensionless conductanceU∗ primarily in the startup

period, for large enough BLU.

To reveal to what extent the BLU affect theU∗ in the startup period, the dimen-

sionless transition timet∗tr is computed at different values of BLU, shown as Figure 3.15.

In Figure 3.15 the horizontal axis BLU/BLU∞ evaluates the borehole length and varies

from 0.5 to 1.5. The vertical axis provides an indication of,t∗tr, how fast the dimensionless

conductance enters the transition period, as described in Problem 1. The figure indicates

that no matter the valueε, the bigger the BLU, the longer it takes for the dimensionless
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conductance to enter the transition period. Inclusion of the borehole length effect increases

t∗tr, which is in all cases larger than thet∗tr in Problem 1. In addition, whenε increases, the

transition time increases too.

3.5. PROBLEM 4: FINITE FLUID-BOREHOLE THERMAL RESISTANCE, FI-
NITE BOREHOLE LENGTH

This problem can be seen as the combination of Problems 2 and 3. The dimen-

sionless conductanceU∗(t∗,z∗;Fo,Bi,BLU) therefore has a functional dependence upon

depth and time, in addition to its parametric dependence upon Fo, Bi and BLU. Similar to

Problem 3, it is assumed that the vertical heat conduction inthe ground is negligible; while

the boundary condition is different along borehole depth. In that way, this problem can
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be transferred to a series of problems similar to Problem 2, with different borehole surface

temperature as boundary conditions.

The Eq. (3.4) still works for this problem, while ground temperatureT (t,z,r) de-

pends not only time, but also borehole depth and distance from borehole. Similar to Prob-

lem 2, at a particular time t, apply the energy balance from fluid to borehole surface and

Fourier’s law on the borehole surface, gives

1
Rb

[Tf (t,z)−T(r,z,rb)] =−kg2πrb
∂T (t,z,rb)

∂ r
(3.47)
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Recasting into dimensionless form

1
lnr∗∞

∂θ(τ,z∗,0)
∂ξ

=−Bi[φ(τ,z∗)−θ(τ,z∗,0)] (3.48)

This equation is different from Problem 2 only in that groundtemperature and fluid temper-

ature also depend on depth. The parabolized one-dimensional diffusion equation, Eq. (3.14),

still determines borehole fluid temperature. The initial conditions are the same as Problem

3. In this scheme, the conductance and ground temperature distribution can be solved.

The influence on dimensionless conductance from borehole thermal resistance and

borehole length has been addressed in Problem 2 and 4, respectively. To reveal any com-

bined effect of these two parameters together, the histories of dimensionless borehole heat
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transfer rateq∗b(t
∗) of all 4 of the problems are compared in Figure 3.16. In Figure3.16,

the q∗b is computed with effectivenessε = 0.5 and BLU= BLU∞ = 2.5. The Problem 1

is zero fluid-borehole resistance and infinite borehole length; the Problem 2 is finite fluid-

bore resistance and infinite borehole length; the Problem 3 is zero fluid-borehole resistance

and finite borehole length; the Problem 4 is finite fluid-bore resistance and finite borehole

length. For both Problem 2 and 4, computation is conducted with 3 different values of Bi.

According to Figure 3.6, the Bi= U∗
g,∞/2 lies in the range where Bi significantly affects

conductance; Bi= 2U∗
g,∞ lies in the range where Bi has moderate influence on conduc-

tance; Bi=U∗
g,∞ lies between the two. Several observations can be made from this figure.

Firstly, theq∗b from Problem 3 is very close to that of Problem 1, and that fromProblem

2 is nearly the same as that of Problem 4. It can also be inferred that no matter for zero
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Figure 3.16: Dimensionless heat transfer rateq∗b from all “open loop” problems, with
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4. For Problem 2 and 4, 3 different Biot Numbers are considered, they are Bi/U∗

g,∞ = 2,
Bi/U∗

g,∞ = 1 and Bi/U∗
g,∞ = 0.5. The results of Problem 2 and Problem 4 are nearly the

same with particular Bi.

fluid-borehole resistance or finite fluid-borehole resistance conditions, the borehole length

effect on dimensionless conductance is minimal when BLU= BLU∞. Then theq∗b from

Problem 2 has significant deviation with different values ofBi, even whent∗ = 1 which

represents a whole year period. Finally according to the behavior ofq∗b from Problem 2 and

Problem 7, there is no combination effect on dimensionless conductance of BLU and Bi.
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3.6. SUMMARY

In this section several “open loop” problems have been introduced which vary in

the degree to which they capture key aspects ofU∗ determination.

The “open loop” which keeps inflow temperature to be constantassumes there is

a heat source or heat sink between heat pump and the borehole.Problem 1 provides the

simplest non-trivial case of the “open loop” problems. Thisproblem assumes the fluid

temperature to be uniform at the borehole entrance, ignoresvariation ofU∗ with depth, and

neglects fluid-borehole thermal resistance. The numericalresults match well with the an-

alytical results provided by Ingersoll. The history of dimensionless conductanceU∗(t∗) is

divided into three periods: startup period, transition period, and stable period. The division

between the startup period and transition period is calledt∗tr, and the division between the

transition period and stable period is calledt∗∞.

Problem 2 accounts the finite fluid-borehole resistance on the basis of Problem 1.

The Bi is used to measure the thermal resistance from fluid to borehole surface. When

Bi is very small, the Bi dominates the dimensionless conductance; when Bi is an order

of magnitude larger thanU∗, identical when Bi/U∗
g = O(10), the borehole thermal resis-

tance is irrelevant and results are identical to Problem 1. Figure 3.6 is useful to read the

dimensionless conductance without computation.

Problem 3 accounts the finite borehole length on the basis of Problem 1. This

problem is converted to a series of Problem 1 with different fluid temperature along the

borehole depth. In this way, the two dimension problem is parabolized simplified as a series

of one dimension problems, which can save the computation time. The results indicate that

the effect of finite borehole length is to enhance the heat transfer compared to Problem 1.

The dimensionless conductanceU∗(t∗,z∗) increases along the depth and has a parametric

dependence on Fo and BLU. For “open loop”, the dimensionlessbreak through timet∗b

is introduced to identify the moment the heat transfer rate over the borehole equals that
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across the heat pump. For Problem 1t∗b increases as the BLU increases. For Problem 2

to produce the samet∗b , the required BLU decreases as the Bi increases. BLU∞ is defined

as the minimum BLU which makes the heat transfer rate over theborehole not smaller

than that across the heat pump for most of the time. As long as the BLU= BLU∞, the

borehole is able to carry on the building load for most of the time. So BLU∞ is a very

useful index for “open loop” problems. For Problem 3, when BLU varies from 50% to

150% of BLU∞, the deviation of scaled dimensionless conductance is reduced to about

10% in 9 hours and reduced to 5% in 4 days. This result indicates that the BLU mainly

affects the dimensionless conductance in short time period. The dimensionless length of the

startup period,t∗tr can be used to quantify the BLU’s effect on dimensionless conductance

in short time period.

Problem 4 accounts for finite fluid-bore resistance and finiteborehole length. It can

be concluded from the results of Problem 4 that besides the influence of Bi and BLU, there

is no combination effect on heat transfer process when both the values of Bi and BLU are

finite.
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4. STEADY PERIODIC HEAT LOAD

In the “closed loop”, there is no virtual heat sink or heat source between the heap

pump and borehole, and the borehole outflow temperature directly affects the borehole in-

flow temperature. A schematic of the “closed loop” system is shown as Figure 4.1. The

load across the heat pump will be totally imposed on boreholeat any time, and thus, sym-

bolically, q∗b(t
∗) = q∗(t).

Over the borehole length, the inflow temperature and outflow temperature must still

satisfy Eq. (3.45), the integrated fluid energy balance

T ∗
f (t

∗,1) = T ∗
f (z

∗,0)exp[−U
∗
(t∗)BLU]

whereU
∗
(t∗) is the length-average dimensionless conductance. The expression indicates

that the inflow temperature is dependent on the outflow temperature and the outflow tem-

perature depends, in turn, on the BLU. The expectation is that computation of conductance

U∗(t∗,z∗) for this “closed loop” will be very sensitive, and computations show this to be

true. In fact, including the borehole length dependency proved to be essential to avoiding

numerical instability. Therefore it has been treated only the “closed loop” analogs to the

“open loop” Problems 3 and 4.

For every infinitesimally small segment of the borehole, Eq.(3.37) is used to com-

pute the fluid temperature.

∂φ(τ,z∗)
∂ z∗

=−U∗(τ,z∗)φ(τ,z∗)BLU

For the “closed loop”, there are several assumptions to be made. First, the initial ground
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Figure 4.1: The schematic of “closed loop”.

temperature distribution is assumed to be uniform, just like in “open loop”.

θ(0,z∗,ξ ) = 0

and the initial borehole outflow temperature is assumed to beequal to ground temperature.

φ(0,1) = 0 (4.1)

Assuming that the load is imposed on the heat pump and borehole whent∗ = 0, a latency

of one time step is used for the temperature change across theheat pump. Symbolically,

Eq. (3.43) is changed to:

T ∗
f (t

∗+∆t∗,0) = T ∗
f (t

∗,1)+ εq∗(t∗)

and in terms ofφ ,

φ(τ +∆τ,0) = φ(τ,1)+ εq∗(t∗) (4.2)
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The diffusion equation for ground temperature is unchangedso that Eq. (3.21), Eq. (3.14),

Eq. (3.39), Eq. (4.1), and Eq. (4.2) describe the “closed loop” problem.

4.1. PROBLEM 5: CLOSED LOOP WITH ZERO FLUID-BOREHOLE RESIS-
TANCE, FINITE BOREHOLE LENGTH

This problem is the “closed loop” counterpart of Problem 3, examined as one of the

“open loop” problems. As for Problem 3, the fluid-borehole resistance is ignored, so the

fluid temperature equals the borehole surface temperature at the same depth, which can be

expressed as

T ∗
f (t

∗,z∗) = T ∗(t∗,z∗,1).

or in terms ofφ andθ ,

φ(τ,z∗) = θ(τ,z∗,0). (4.3)

As a result, Problem 5 can be summarized by Eq. (3.21), Eq. (3.14), Eq. (3.39), Eq. (4.1),

Eq. (4.2), and Eq. (4.3). In addition, the building load is taken to be constant, which means

q(t) = qp,m and the dimensionless heat load isq∗(t∗) = 1. The ground temperature distri-

butionT ∗(t∗,z∗,ξ ), fluid temperature distributionT ∗
f (t

∗,z∗) and the conductanceU∗(t∗,z∗)

may then be computed.

Figure 4.2 shows results ofU∗(t∗,z∗) with ε = 0.5 and BLU= 2.5. The selected

value of borehole length units, BLU= 2.5, corresponds to the value of BLU∞ for “open

loop” with ε = 0.5 . For “open loop” problems BLU∞ was defined as the minimum value

of BLU which enables the borehole to satisfyq∗b ≥ 1 for t∗ ≤ t∗∞. TheU∗(t∗,z∗) of “closed

loop” provess to behave in a pattern similar to the “open loop”. The U∗(t∗,z∗) increases

along the depth, so the length averageU
∗
(t∗) is larger thanU∗(t∗,0).

The length averageU∗
(t∗) of “open loop” at the same condition is also included

in Figure 4.2. The values ofU∗
(t∗) for “open loop” and “closed loop” are essentially the

same.
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In the examination of “open loop” conditions, thet∗∞ is introduced to identify the

time when the conductance is hardly decreasing and about to settled to a constant value.

Since the conductance of “closed loop” is the same as that of “open loop”, thet∗∞ is the

same for both conditions. In “open loop” conditions, the break-through time,t∗b , identifies

the moment when the heat transfer rate over the borehole equals the load across the heat

pump, which meansq∗b = 1. However, in “closed loop” operation, the load across the heat

pump is imposed on the borehole, which meansq∗b = q∗ for all the time. The breakthrough

time is therefore meaningless for the “closed loop” condition. However, the “closed loop”

condition produces a time-varying outlet temperature. A characteristic which is critically
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important to operation of real systems. The fluid temperature history along borehole depth

is shown in Figure 4.3. The borehole inflow and outflow temperatures increase simulta-

neously. The instant dimensionless temperature difference, T ∗
f (t

∗,0)−T ∗
f (t

∗,1), is main-

tained at a constant value ofε as long as building load is constant. This is different from the

situation of “open loop”. For “open loop” the inflow temperature is constant and the out-

flow temperature changes following Eq. (3.14), which means that the instant dimensionless

temperature differenceT ∗
f (t

∗,0)−T ∗
f (t

∗,1) varies with time.

For operation of the heat pump system, the borehole outflow temperature is a par-

ticularly important parameter. The heat pump may not work effectively if the inlet temper-

ature is too high in cooling season or too low in heating season. To examine howT ∗
f (t

∗,1)

varies with time and borehole length, a series of computation cases have been conducted.

In the “open loop”, BLU∞ was introduced to measure the minimum dimensionless

borehole length required to assure the borehole carries theload on the heat pump. This

definition won’t work for “closed loop”, for the load over theborehole is always equal to

that on the heat pump. The important quantity becomes the borehole outlet temperature.

Figure 4.4 shows the borehole outflow temperature history atdifferent values of

BLU varying from 0.25 to 2 times of BLU∞, all with ε = 0.5. It can be observed that

T ∗
f (t

∗,1) increases and then reaches a stable value. The larger that BLU is, the smaller the

final stable number is. Introducingt∗f ,∞ to denote the time when the fluid outlet temperature,

T ∗
f (t

∗,1), reaches a stable condition, associated with Eq. (4.4).

∣

∣

∣

∣

∣

dT ∗
f (t

∗,1)

d(t∗Fo)

∣

∣

∣

∣

∣

t∗=t∗f ,∞

= 10−5 (4.4)

The outflow temperature att∗= t∗f ,∞ is defined asT ∗
f ,∞, and referred to as the stable borehole

outflow temperature. Applying Eq. (4.4), forε = 0.5, thet∗f ,∞ andT ∗
f ,∞for different values

of BLU can be read from Figure 4.4, and the results oft∗f ,∞ are plotted as Figure 4.5. It can

be seen from Figure 4.5 that when BLU increases, the time required forT ∗
f (t

∗,1) to become
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Figure 4.3: History of fluid temperature along the borehole depth, with BLU= 2.5 and
ε = 0.5.

stable decreases significantly. The stable borehole outflowtemperature,T ∗
f ,∞, at different

BLU andε are plotted in Figure 4.6. Because the same borehole length will have different

influence onT ∗
f (t

∗,1) for different values ofε, the ratio BLU/BLU∞ of particularε is used

as the index of borehole length. It can be observed that when BLU/BLU∞ increases, the

stable outflow temperatureT ∗
f ,∞ decreases significantly, and it can be inferred that if BLU

marches to infinite, theT ∗
f ,∞ will be zero. In addition to that, the larger theε is, the smaller

theT ∗
f ,∞ is, becauseε measures the potential of heat transfer over the borehole. The high

endε = 1 happens when the outflow temperature is equal to far field temperature (T ∗
f ,∞ = 0).
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4.2. PROBLEM 6: CLOSED LOOP WITH FINITE FLUID-BOREHOLE RESIS-
TANCE, FINITE BOREHOLE LENGTH

Similar to the “open loop” Problem 4, the thermal resistancebetween fluid and bore-

hole surface is now taken to be finite. The only difference between Problem 4 and Problem

6 is that the inflow temperature is constant in the “open loop”, while for “closed loop”,

the inflow temperature is determined at each time step by the imposed heat pump load.

Problem 6 may therefore be summarized by Eq. (3.21), Eq. (3.14), Eq. (3.39), Eq. (4.1),

Eq. (4.2), and Eq. (3.48). Together, these enable computation of the ground temperature

distributionT ∗(t∗,z∗,ξ ), fluid temperature distributionT ∗
f (t

∗,z∗) and total dimensionless

conductanceU∗(t∗,z∗).
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The previous “open loop” and “closed loop” problems were limited to constant

building load. The reason for this simplification is to separate the influence of building

loads on the heat transfer, so the effect of borehole resistance and borehole length can be

identified. Relaxing this constraint, it is focused on how the building load affects the heat

transfer process. Assume a triangular shaped building load, shown as Figure 4.7. The

building load lasts for a dimensionless period of∆t∗l , which is less than 1. Fromt∗ = 0

to t∗ = ∆t∗l /2 theq∗(t) increases linearly from zero to 1 and then decreases to zero after

t∗ = ∆t∗l /2.

Figure 4.8 shows the history of dimensionless loadq∗(t∗), and borehole inflow

and outflow temperature for a case with BLU= 3.125, Bi=10,ε = 0.5 and∆t∗l = 1. The

results indicate that the shape of fluid temperature variaton in time is similar to the shape of
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load. The fluid temperature increases or decreases following the load, and the highest fluid

temperature occurs approximately when the building load reaches its peak value. The larger

the loadq∗ is, the larger the temperature difference between inflow andoutflow is. When

the load decreases to zero, the inflow and outflow temperaturedo not drop to zero. For

the “triangular” shape load, the maximum value of outflow temperatureT ∗
f ,∞ is 0.47. This

maximum value is smaller than the maximum outflow temperature of 0.51 observed when

the building load is maintained as a constant,q∗ = 1. The lower energy transfer reduces the

maximum observed outlet temperature profile. Figure 4.9 shows the ground temperature

history. The temperature history in the ground is similar tothat of the fluid in the borehole,

and as the radial distance increases, the ground temperature is damped significantly.
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Figure 4.10 shows the history of dimensionless conductanceU∗(t∗,z∗) at different

depths as well as the length average value,U
∗
(t∗). The dimensionless conductance behaves

in a manner similar to the other problems, except that there are some negative values of

conductance when the building load is very low. Heat is therefore being transferred from

the ground to the borehole. It occurs because the fluid temperature is nearly in phase with

the building load, while the latency effect for the ground temperature is quite significant.

There is a period of some time for which the fluid temperatureφ(t∗,z∗) is smaller than the

borehole surface temperatureθ(t∗,z∗,0). Because the conductance is dependent on time

and depth, to evaluate the influence of building loadq∗, the average value of length-average

dimensionless conductance,U
∗
, over the operation period∆t∗l can be determined from

〈U∗〉= 1
∆t∗l

∫ ∆t∗l

0
U

∗
(t∗)dt∗ (4.5)

While seemingly straightforward, this method is unstable at the transition period between

cooling and heating season, since there may exist some time when the heat transfer direc-
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tion between the borehole surface and the ground changes along the borehole depth. This

transition results in a vanishingly small temperture difference and a singularity in calcula-

tion of U∗(t∗,z∗).

As an alternative, a seasonal equivalent conductance is introduced, which is based

on the load and observed temperatures. At a given instant, the building load can be ex-

pressed as

q(t) =UPL(T f −Tg,∞) (4.6)

whereU is the dimensional length-average conductance andT f is the length average fluid

temperature. Recalling definitions of dimensionless building load, temperature and con-

ductance, the dimensionless instantaneous heat transfer rate may be rewritten as

q∗ = (BLU/ε)U∗
T
∗
f (4.7)

A dimensionless, instantaneou length-average conductance may then be computed from

U
∗
(t∗) =

ε
BLU

q∗

T
∗
f

(4.8)

integrating over the duration of a cooling or heating season,

∫ ∆t∗l

0
q∗(t∗) =

BLU
ε

∫ ∆t∗l

0
U

∗
(t∗)T ∗

f (t
∗)dt∗ (4.9)

a seasonal equivalent conductanceU
∗
a may be defined based upon seasonal-average fluid

temperatureT ∗
f ,a:

U
∗
aT

∗
f ,a =

1
∆t∗l

∫ ∆t∗l

0
U

∗
(t∗)T ∗

f (t
∗)dt∗ (4.10)
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Substitute Eq. (4.10) into Eq. (4.9),

U
∗
a =

BLU
ε

1
∆t∗l

1

T
∗
f ,a

∫ ∆t∗l

0
q∗(t∗)dt∗ (4.11)

where

T
∗
f ,a =

1
∆t∗l

∫ ∆t∗l

0
T
∗
f dt∗ (4.12)

The seasonal average conductance,U
∗
a, therefore depends on building loadq∗ and season

length∆t∗l when borehole size is fixed. Figure 4.11 indicates how〈U∗〉 andU
∗
a vary with

season length∆t∗l . Both〈U∗〉 andU
∗
a decreases as season length increases. The difference

between the two results is smaller than 8%, which indicatesU
∗
a is an acceptable equivalent.

Figure 4.12 shows how the peak value of outflow temperature varies with season

length∆t∗l . Clearly, the peak value of outflow temperature increases asthe season length

∆t∗l increases. The increase in the energy transferred to the ground drives increased ground

temperature and affects the fluid outlet temperature in return.

In many geographic regions, the heat pump system operates inboth cooling sea-

son and heating season, following an annual cycle. To see howthe heat transfer process

behaves under an annually periodic building load, the computation is conducted with a

triangular shaped building load for five years, with the peakcooling load is equal to the

peak heating load. For comparision, the BLU, Bi andε are kept the same as above, and

∆t∗l is 0.3. Figure 4.13 shows the dimensionless building load. Since the transition period

between cooling and heating seasons prevents calculatoin of 〈U∗〉, the seasonal average

conductance,U
∗
a, is computed.

Figure 4.14 shows the peak outflow temperature,T ∗
f ,∞, in each cooling season of

the five years. It can be observed that the peak outflow temperature in the first cooling

season is slightly larger than in the other cooling seasons,and for all five heating seasons,

the value of peak outflow temperature is nearly the same. Similar results are produced for
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Figure 4.8: History of inflow and outlfow temperature and building load for Problem 6 with
the triangular shaped load, with BLU= 3.125,ε = 0.5 and Bi= 10.

the seasonal average conductance. It can be observed from Figure 4.15 that the seasonal

average conductance in the first cooling season is slightly smaller than in the other cooling

seasons, and in all the five heating seasons, the values of seasonal average conductance are

nearly the same.

4.3. SUMMARY

This section has focused on the “closed loop” condition in which the borehole out-

flow temperature affects the borehole inflow temperature directly. The heat pump load is

imposed on the fluid loop and the borehole inlet temperature reflects the borehole outlet

temperature and the load. For “closed loop”, two problems have been examined.
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Problem 5 accounts for finite borehole length, with a building load assumed to be

constant. The length average dimensionless conductanceU
∗
(t∗) of this “closed loop” prob-

lem is identical to that of the “open loop”. The important concequence of this observation

is that the inflow temperature does not affect the conductance. The borehole inflow and

outflow temperatures increase simultaneously, and the instantaeous temperature difference

T ∗
f (t

∗,0)−T ∗
f (t

∗,1) is constant and equal toε for fixed building load. The outflow tempera-

ture increases initially and reaches a stable value, which has been termed the dimensionless

peak outflow temperature. The peak outflow temperature is particularly important for de-

sign process. The larger the BLU is, the smaller the peak outflow temperature is. The peak

outflow temperature of different values of BLU can be read from Figure 4.6. While BLU∞
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Figure 4.10: Dimensionless conductance along borehole depth for Problem 6, with BLU=
3.125,ε = 0.5 and Bi= 10.

was introduced in the “open loop” problems, and the concept doesn’t have a direct conse-

quence in “closed loop”, it proves to be the appropriate scale for suitable BLU values even

in the “closed loop” problems.

Problem 6 accounts for finite fluid-bore resistance and finiteborehole length. These

results are the closest approximation to the actual heat transfer process in the borehole of the

models developed in this thesis. This problem is mainly usedto figure out how the building

loads affect the heat process. The triangular shaped load isapplied in computation. At first,

only a cooling season is considered and the relationship between dimensionless peak out-

flow temperature and dimensionless season length is plottedin Figure 4.12. The longer the

season length is, the larger the peak outflow temperature will be. Another concept defined
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ε = 0.5 and Bi= 10. The item〈U∗〉 is the time average value of length average dimension-
less conductance over an operation season; the definition ofitemU

∗
a is shown as Eq. (4.11).

to evaluate the building loads effects is seasonal equivalent dimensionless conductance. It

is introduced to measure the overall dimensionless conductance through the whole season

length. The longer the season length is, the smaller the seasonal equivalent dimensionless

conductance will be.

The five-year successive simulation is then conducted. The annually periodic build-

ing load contains both cooling loads and heating loads. The peak load value and season

length of cooling season and heating season are equal, whichmakes a balanced load pro-

file. The results of peak outflow temperature and seasonal equivalent conductance of both

cooling season and heating season are nearly the same in the five years.
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5. CONCLUSION

The detailed conclusions are given for each aspect of the work in Sections 3-4.

This section provides a brief overall summary of the work andrecommendations for future

work.

The motivation of this research is to reveal how borehole configuration and building

loads affect the borehole heat transfer processes through borehole. The essential insight is

the strong parallel to conventional heat exchangers with one fluid of infinite heat capac-

ity. To this end, an effectiveness - BLU framework has been established which proves the

ability to estimate required borehole depth based upon specified fluid temperatures and esti-

mated overall conductance. A series of problems are examined to compute, with increasing

accuracy, the dimensionless conductance under different assumptions.

The scope of research is divided into two sections: “open loop” and “closed loop”.

In “open loop” problems, the inflow temperature is not influenced by the outflow temper-

ature but is specified explicity. In “closed loop”, the inflowtemperature is influenced by

outflow temperature through specified heat load. The dimensionless conductance is the

fundamental outcome for each of the problems. The results show that the time variation of

the dimensionless conductance for “open loop” and “closed loop” are essentially the same,

the parametric dependencies observed for “open loop” thus apply for “closed loop”.

One of the significant contributions of this work is the introduction and definition

of suitable dimensionless parameters. The typical range ofthese dimensionless parame-

ters are easily calculated with the data provided by ASHRAE handbook. The quantitative

results produce insight to the heat transfer process through the borehole, and they can be

readily easily applied in a design process, without extra numerical computation. The Biot

Number is used to measure the borehole resistance and its quantity relationship to dimen-

sionless conductance is plotted in a form which makes additional computation unnecessary.
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The number of borehole length units emerges as a scaled borehole length which, together

with dimensionless conductance, dictates performance. The effectivenessε is defined to

measure the potential of heat transfer cross the borehole. The effectiveness ratio determines

the scale of the fluid-ground temperature difference.

An important contribution is the use of a parabolized assumption in which the ver-

tical conduction in ground is neglected while the fluid temperature distribution along the

depth is accounted for through the boundary condition. In this way, the two-dimensional

finite difference system is converted to a series of one-dimensional finite difference system.

This scheme provides great economy in computation time.

This research can be viewed as a preliminary step to develop adesign method for

vertical heat exchangers. For next step, more computation cases can be conducted so that

the graphic results on those dimensionless parameters willhave higher resolution. And for

Problem 6, the unbalanced building loads can be applied. To testify the accuracy of this

model, physical building loads can be applied, with the results compared with experimental

data.
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