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ABSTRACT

This thesis develops a theoretical framework, termedBLU, to characterize the
relation between temperatures, thermal contact and blerédrgth as it relates to the heat
transfer processes in ground coupled heat exchangers aisghbfind source heat pump
systems.

Borehole outflow temperature depends on the inflow temperatue heat imposed
on the borehole and the temperature history of the grounaddiition, variation of outflow
temperature influences inflow temperature, even for the aasenstant heat pump load.
Because of this kind of feedback, the borehole inflow tentpeeanay not be constant even
with a fixed building load. Considering the complexity, tlesearch is divided into two
sections: “open loop” problems and “closed loop”problerRsr “open loop” problems,
the inflow temperature is specified and taken to be indepemdd#me outflow temperature.
The development of the — BLU analysis begins with the “open loop” problems. The
analysis is then extended to “closed loop” problems for Wwhiwe inflow temperature is
dictated by outflow temperature and specified heat pump [dhd.impact of both steady
and periodic loads on the conductance and fluid temperatneeguantified.

In thee — BLU analysis, the dimensionless conductance quantifies-tliependent
thermal contact between the circulating fluid and the graurdounding the borehole. The
dimensionless conductance quantifies the quasi-steadyraesfer with only three dimen-
sionless parameters: the Fourier Number, the Biot Numiner tlae Number of Borehole
Length Units. The resulting graphs enable determinationptimal borehole length, a
result not previously recognized. Seasonal equivalendweciance and peak borehole out-
flow temperature are used to evaluate the effect of builddags$ on heat transfer through
the borehole. A multi-year simulation has also been coretlitd reveal the behavior of

ground heat exchangers under periodic load.
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1. INTRODUCTION

The design process for ground coupled heat exchangers (GQkEzed in ground
source heat pumps (GSHPs) requires consideration of neulipues. First, the building
load varies with time, both daily and seasonally, so the &radpre of inlet water into the
borehole and the heat flux through the borehole is not cons@wer long time periods,
several years or more, the building loads may also changgrthend temperature, so as
to influence the heat pump performance. Important congidesainclude configuration of
multiple boreholes, individual borehole length and griwatrimal properties. The engineer-
ing concern is how to determine borehole configurations phatide a balance between
performance and cost.

American Society of Heating, Refrigerating and Air-Corahing Engineer has
sponsored a series of research projects to develop desugliges for GCHEs. In ASHRAE
Handbook HVAC Applications [2011], Kavanaugh'’s approagladopted as the preferred
design method. Kavanaugh’s approach focuses on the detgran of total required bore-
hole length. To do so, it accounts for three different pulseseat: long-term heat im-
balance, average monthly heat rate during the design maemthmaximum heat rate for
a design day. The method, in effect, estimates unit lengthnihl resistance which, with
required heat duty, enables estimation of total borehaigtle Although practical, this
approach has its limitations. First, Kavanaugh’s apprasblased on the cylindrical model
with constant heat flux boundary conditions, which is onlypagh approximation of the
practical situation. Second, the quasi-steady equatiasasd to calculate only the overall
loop length, but fails to determine individual boreholedém Finally, Kavanaugh’s ap-
proach assumes the heat transfer rate through the borehdilectly propotional to loop
length. Our analysis begins from the observation that theé femperature varies along the

pipe, and since the far field temperature is constant for@atied borehole, the heat flux



necessarily varies along the length of an individual boleh®his thesis then develops an
original approach which incorporates the requirement fepecified temperature change
in a borehole passage and its relation to geometry and treedapendent, fluid-ground

thermal conductance.



2. LITERATURE REVIEW

2.1. ANALYTICAL MODELS

A review of the current literature indicates that there agaagally two analytical
methods used to charactrize the ground heat transfer @@xdsr vertical ground heat
exchangers. One is the Kelvin’s line source model and theragtthe so called cylindrical-
source model.

Kelvin's line source model is the basis for the earliest apph to predicting the
heat transfer through ground heat exchanger pipes. Inggr864] cited this model and
applied it to calculate the temperature at selected pairttsa ground. This model assumes
the soil to be an infinite medium with uniform properties andial temperature. The
borehole is assumed to be an infinite line source or sink witbrestant heat transfer rate
which is initiated at timeé = 0. The heat flow along the length of borehole is neglected.
The temperature response of the ground at a specific postgiven by,

/
T T = )
whereTy , is the initial temperature of the grourgi,is the heat transfer rate per unit length
of borehole, and the dimensionless argument to the intégrak=r /(2\/at), wherer is
distance from the line source to the point of interest. Nt this can be rewritten as,

q 2k
T-Tge 1(N)

where the right-hand side may then be recognized as an entleesmal resistance. The
value of the integral ternmh(n) is tabulated by Ingersoll [1954] with respect to values of

n. As mentioned above, one of the assumptions made for thighmothat the line source



should be infinitely long, so that the heat flux has only a lacbanponent. According to

Ingersoll, this equation should be applied only wiwn]{rg > 20, or else an appreciable
error may be produced for a short time or a large pipe diamétermportant extension

of Kelvin’s line source theory comes from Hart and Couvillid986]. The far-field radius

is introduced, which is a critical distance to the line seur@he far-field radius is given

as 4/at, depending on the soil thermal diffusivity and the time time Isource is active.

According to Hart and Couvillion, the temperature of thelgrd region outside the far-field
radius is free from the influence of the line source.

The cylindrical source model, detailed by Carslaw and J9d§4 7], forms the ba-
sis of another widely used approach. With this model, thellhetpipe is treated as a single
pipe centered in the borehole, surrounded by an infinitel sath constant properties. The
pipe is assumed to be infinitely long with axial heat transfeglected.

Assuming a constant heat transfer rate across the borebotelary beginning at

t = 0, the analytical solution may be written as [Carslaw anddgel 947]

/

T Tye = %G(z, D)

wherez= at/rZ andp = r/r,. The functionG(z p) depends on timeand distance from
the boreholer. Ingersoll [1954] tabulated some values ®fz, p), and Kavanaugh and
Rafferty [1997] provided graphical values G&f(z, p) when p = 1 which represents the
surface of the borehole. Whgn= 1, the temperature of the borehole surfacg (g 1), at
a dimensionless time

Similarly, the result with a constant surface temperatae &lso been treated by

Carslaw and Jaeger [1947]. In this case the heat transéepeatunit length is given by

q =kATF(2)



WhereAT is the temperature difference between the pipe and init@lrgd temperature.
The values of (z) are tabulated by Ingersoll [1954].

Kavanaugh and Rafferty [1997] has built up a design methodédical ground
coupled heat exchangers, which is based primarily on thadnytal model with constant
heat transfer rate as boundary condition. The unique dwtion by Kavanaugh is the
method to determine the required total length of pipe loope Tethod uses the steady
state heat transfer equation, and considers three diffptéses of heat, (1) long-term heat
imbalance, (2) average monthly heat rate during the desmmtimand (3) maximum heat
rate for a short term period during a design day. The primaoytsoming of this approach
is the assumption that the heat transfer rate, per unithemgtonstant. The temperature
variation of the circulated fluid along the borehole lengthat accounted for.

Using Kavanaugh’s approach, a tabulation or plds¢f, p= 1) is all that is needed
to estimate total borehole length for a specified overalt keed. The ASHRAE Appli-
cations Handbook [ASHRAE, 2011] details Kavanaugh’s appinoas the recommended
design method. The limitation however, is that the approatiased on constant heat flux
boundary condition, which is far from the true physical ctiod. Practically, the method
suggests the length of an individual borehole will not aftee heat transfer rate, and fails

to identify the optional depth for an individual borehole.

2.2. NUMERICAL MODELS

Both the Kelvin line source model and cylindrical source el@te one-dimensional
analytical results which neglect the axial heat flow alorgltbrehole length. Beginning
in the 1980s, several numerical models have been introdubezh capture aspects of the
multi-dimensional heat transfer.

Eskilson and Claesson [1988] developed a two dimensiondeirexcounting for

radial and axial components of heat transfer. It was a binealsgh that both radial and



axial conduction are considered. In addition to that, thelehases finite length borehole
and diameter. The fluid borehole thermal resistance is oegleand the ground tempera-
ture response is achieved based on constant boundary &omest In addition, Eskilson
introduced a superposition technique to simulate the takpmocess of a number of ther-
mally interacting boreholes with regard to computation.widwer, this radial-axial finite
difference model is time-consuming, and difficult to be &mpbin practical ground coupled
heat exchanger design process.

Yavuzturk [1999] developed a short time-step model for hestsfer process in
vertical heat exchangers. This model uses a series of piersd¢o approximate the geom-
etry of circular U-tube pipes. A two-dimensional finite vola approach was applied with
a several assumptions. First, the three-dimensionaltefegcthe ground surface and the
bottom of the U-tube are ignored. The ground is assumed te tiaorm thermal proper-
ties and finally, the effects of borehole surface tempeeatbange along the depth are only
approximated. This model was proposed as a complement torigdime-step model of
Eskilson.

In recent years, numerous researchers conducted numsnualations and vali-
dated the models with commercial software or experimerati@.dCarli and Zarrella [2010]
presented a computational capacity resistance model ficaeground-coupled heat ex-
changers. This two-dimensional model considered diftefleid flow patterns such as
a single U-tube, a double U-tube or coaxial pipes. With syp@mperature to the heat
exchanger, the model can calculate the outflow temperangehe ground temperature
distribution. And this model was validated by a commercadtware as well as a ground
thermal response test and a survey of an office building eedipvith a ground coupled
heat pump. Su [2011] presented a fast simulation of a vértielbe ground heat ex-
changer using a one-dimensional transient numerical modlels model neglected the
vertical variation of temperature of the heat exchanget,aamesh grid with uniform spa-

tial increment was created. Both heat load and inlet tentper&an be used as the input.



This model was compared with analytical models and valdiate experimental data of
three boreholes. Although each of these studies have @mesidimulations with differ-
ent borehole dimensions, the nature of the heat transfeepsoand its variation along the

length of the borehole has not been revealed.



3. AN EFFECTIVENESS-BASED ANALYSIS

The ground source heat pump system with ground coupled kehteger can be
illustrated as Figure 3.1. In this scheme, the two legs otthiabe are treated as a single
pipe, which is co-axial with the borehole. The borehole suased to be immersed in soil
which forms an infinite medium having uniform properties anidial temperature. The
time-varying building loadg(t), is imposed on the ground heat exchanger. The heat is
therefore driven into or absorbed from the ground throughtbrehole. In this figure, the
dimensional fluid temperatures at the inlet and outlet obibrehole are denoted Ay(t, 0)
andTs (t,L), respectively. The far-field ground temperaturggs. Because of the variation
in the borehole heat transfer, a variatiormeft, L) will influenceT; (t, 0) in return. Because
of this feedback, the borehole inlet temperature is unjikebe constant even with a fixed
building load. Recognizing the additional complexity asated with this feedback, our
analysis is divided into two parts. In the first part, a constaflow temperature isolates
the thermal parameters and borehole geometry from the &&dln this way, the system
behaves like an “open loop”. In the second part, the feedbrack T (t,L) will be added
and the influence on the heat transfer performance will biiestiu For this part, the system
behaves like a “closed loop”.

In effect, the “open loop” assumes there is a heat sourceairdigk between heat
pump and the borehole. The heat source or sink can supplysortatenergy from the
circulating fluid, so that the inflow temperature remainsstant. Because of the virtual
heat source or heat sink, the heat load imposed on the bergt{b) may not be equal to

that imposed by the heat pum(t).



a (t) at) fe

Figure 3.1: The scheme of “open loop”.

3.1. FORMULATION OF EFFECTIVENESS - BLU FRAMEWORK
An energy balance on a differential segment of the boreheldy

(1Co) D — 0, 2PIT(,2)~ Ty 61)

whereU (t, z) is the local conductance between fluid in the borehole andjtbend at a
far field position,P is the perimeter of borehole surface, ands the mass flow rate of the
circulating fluid in the borehole.

The temperature scale is shown in Figure 3.2. The fluid teatpe difference from
the inlet to the outlet of the heat pumpl), is also the temperature difference that, in a real
system must be reached across the borehole length. Theromeedifference between
the borehole inlet and the far field ground temperature i®tdehbyATy and defines the
temperature limits in the problem. At constant mass flow, riite cooling and heating
loads correspond directly to the temperature differencessa the heat pump. The cooling

and heating season temperature differences are denot&@ipRyandAT, , respectively,



10

both being positive.

Op.c = (MCp) tATpc (3.2)
However, the peak value of the temperature differencesdyihe fluid-ground heat trans-
fer may be written as

ATgc=T¢(t,0) — Tgew = [T (t,L) + ATpc] — Ty (3.4)

ATph = Tgoeo — T (t,0) = Tge — [Ts(t,L) — AT (3.5)

The function of the ground heat exchanger is to reverse thpdeature change imposed
on the circulating fluid by the heat pump, given the fluid-grdtemperature difference in
the borehole. The ratio of the fluid temperature change tddimperature limits may be

recognized as an effectiveness.

ATy
€= AT, (3.6)
A dimensionless temperature, depth and time may be defirmxutding to,
. T—-Tgo
T = ATam (3.7)
z
Z'= L (3.8)
ol (3.9)
ts

whereL represents the borehole length, agdenotes one year. The fluid energy balance

then becomes,

oT{ (t,Z7) UPL
=—— T (t%, 7 3.10
dz (”Cp)f f ( ) ( )
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h C
1 1
Tr(t,0) Tr(t,L) Ty Te(t,L) T¢(t,0)
T, o,

ATy ATy
1 -1 0 1-¢ 1
0,0

Figure 3.2: The scheme of effectiveness and temperatule sca

Separating the conductance and borehole length into twaratepterms:

UPL U PL
Cp — Kg/To (TCp) (311)

two dimensionless parameters can be identified: a dimelesi®oonductanceél*(t*,z"),
and the number of borehole length unit, BLU. THUé(t*,z") characterizes the thermal
contact, which is dependent on time and depth; while the Bharacterizes the borehole

geometry, which is independent on time.

o Y
U= (3.12)
_ (Kg/rp)RL

The fluid energy balance then becomes,

oT{ (t*,Z)

e = —BLUU'(t.Z)T{ (t".2) (3.14)
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defining length average conductancelby(t*) = folu*(z*)dz*, and integrating Eq. (3.14)
over the borehole length, and substituting Eq. (3.6), pcodu

ge=1-exg—U"(t*)BLU] (3.15)

Equation (3.15) is the basis of the Effectiveness - BLU asialgroposed in this work. The
contribution of this equation is that, in a design proces# specified temperature con-
straints embodied irg, and dimensionless conductan¢eestimated, the required borehole
length unit, BLU, and the required borehole depth can benegéid. The evaluation of the
dimensionless conductance is therefore a critically ingrdrstep. The remainder of this
thesis will treat the determination of this dimensionlesaductance and its parametric

dependence.

3.2. PROBLEM 1: ZERO FLUID-BOREHOLE THERMAL RESISTANCE, INFI-
NITE BOREHOLE LENGTH

The borehole cross section scheme can be illustrated agumeF3.3. In this prob-
lem, the borehole is assumed to be an infinite long cylintlheat source, immersed in
the soil which is considered as uniform medium of infiniteegit The heat transfer resis-
tance inside the borehole is ignored. The extent temperafong the cylindrical surface
is uniform and there is no axial heat transfer along the bmestiepth. The dimensional
temperature distribution in the ground can be describedjag316).

oT ad oT

Taking dimensionless radius as

r=— (3.17)
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-
r
-
-y
)

Tt (t, Z)

T

Mo

Figure 3.3: The borehole cross section scheme.

wherery, is the borehole radius, and substituting this definitiontaiadlof the dimensionless

temperature,
o 10 0T
a(at/rd) rear = or*

) (3.18)

where groupat/ rg may be identified as the “time-to-pipe” ratio was firstly oduced by
Carslaw and Jaeger [1947]. This parameter represents giomess time as measured rel-
ative to a ground diffusivity time scale. In ASHRAE termiglg this parameter is referred
as Fourier number, Fo. According to the definition, différe@mbinations of ground con-
ductivity and time may produce the same value of Fo. Recogpthat there is an essential
additional time scale, the time associated with the sed$oaa variation, diffusion is not
elected as the time scale. The time scale for seasonalivarift is one year. As a result,
this dimensionless parameter is determined only by groiffusivity and borehole radius.
For the computation in this study, a default value of Fo iesteld as 1 Substitute this

definition of Fo.
oT* _i 0 (r*dT*
d(t*Fo) rxadr** oJr*

) (3.19)
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The dimensionless ground temperatlirét*, r*) is therefore a function of dimensionless
timet* and distance*, so the temperature contour will be a series of concentrides.
Since these circles should be denser in the neighborhoduedidrehole surface than in
the far field, a grid clustering transformation is introdd¢e resolve the sharp gradients at
re=1.

= (rr;‘;)f —xé (3.20)

The far field radius is denoted Iy and represents the radius at which ground temperature
is unaffected by heat flow from the borehole. This is, in dffaccomputational boundary.
This transformation mapsto &, whereé = 0 is associated with* = 1, and the position
whereé = 1 is associated with* =r.

Substituting Eq. (3.20) into Eq. (3.19), the partial diffietial equation (PDE) for

dimensionless temperature can be written as,

L, 1 1 09%6
9t = (Inrg)2 (r3)% 982 (5.2

The dimensionless temperatué, £) is defined by,
O(t*Fo,Inr*/Inry) = T*(t*,r*;Fo,ry)
wheret = t*Fo, and represents a Fourier-scaled dimensionless tinmee $his is a one

dimensional diffusion equation, a simple implicit schemapplied to solve the PDE,

1
A_T(ein—i-l . 9|n> _

1 1 1
(IN15)2 (s, 268 AE2 (67 + oMt —26M) (3.22)

where subscript denotes space dimension and superseripbtates timeAr is dimen-
sionless time step ant¥ is dimensionless spatial grid size. Although the simpleliaip

scheme is unconditionally stabIt is selected to satisfy explicit stability to produce good
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accuracy. The far field radiug, = r../rp is a constant, and was selected large enough to
have no impact on the solution. A value of 100 has been selec®everal cases were
run to verify thatry, = 100 was sufficiently large. A spatial increment, in compotal
coordinates, ofAé = 0.001 is used in computation.

Recalling the definition of*, the dimensionless tinté varies from 0 to 1 over one
year. The dimensionless time stAp" = At/Fo = 0.02/Fo, which is associated with a
period of physical time varying from 0.5 to 5 minutes for tygli values of Fo. ASHRAE
[2011] suggests values for some thermal parameters andagaes) which are quoted in
Table 3.1. Based on these parameters, several dimens@alesneters can be determined,
shown in Table 3.2.

As a starting pointJ (t) is determined by taking the fluid temperature constant,

@(r,0)=1 (3.23)

whereg represents the dimensionless fluid temperature,

@(t*Fo.Z" = 0) = T/ (t*, 2" = 0;F9

The initial ground temperature is uniform,

0(0,6) =0 (3.24)

and ignoring the resistance from fluid to borehole surface,

0(1,6 =0)=1 (3.25)
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The dimensional conductantkis defined by:

/!
Uy

U= T Tom (3.26)
whereqy is the heat flux through the borehole surface. Applying Faisriaw,
ky 0T
U= ————F——— 3.27
Tf _Tg7oo 0[’ r=rp ( )
Substituting Eqg. (3.12) into Eq. (3.27)
ce  LloT
U*(t") _T_f* o r*_ (3.28)
and in computational coordinates
1 1 06
(M= ————== 2
Ui(m) @Inrg 0& o (3.29)

In this way, the dimensionless conductabicecan be determined by solving Eq. (3.21).
The analytical solution for this problem is given by Carslamd Jaeger in terms of heat

transfer rate per unit length,

O = Kg(Tr = Tgeo)F(T)

where as beforg, =t*Fo= at/rg. Substituting this equation into the definition of dimen-
sionless conductance,” = F(1)/2m. This analytical result is an important verification of
the accuracy obtained by numerical method, and represaittgadest analytical model for
the time-dependent conductance associated with the gitweatdransfer.

The numerical results for dimensionless conductafces shown in Figure 3.4, for
dimensionless tim&* from 0 to 1, a physical period of one year. The subsaijgtadded

to the numerically-computed conductance to highlight #e that the sole contribution to
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Table 3.1: Typical range of dimensional properties and geoges.

Properties Units Minimum Maximum
a m?/day 0.042 0.14

Iy mm 50 75
Mo mm 10 20
Kg w/mk 0.5 3.8
Ko w/mk 0.7 2.4
h w/mPk 50 2.100
L m 15 350
m kg/m 0.5 20
Te  °F 45 70
Tic(t,0)  °F 85 95
Tin(t,0)  °F 60 80
ATp °F 10 35
ATyc °F 20 30
ATyh °F 10 20

Table 3.2: Typical range of dimensionless parameters.

Parameters Minimum Maximum

Fo 2000 20000

Bi 0.05 5

£ 0.15 0.9
BLU 0.05 200

the conductance is the ground. The numerical results magdiwith the analytical results
provided by Ingersoll. The total conductance decreaseadlyagnd then more slowly, as
time advances. The dimensionless conductance finally esachominally steady value at
approximately* = 0.2. Any time variation of conductance is barely detectablenatyear.
To further characterize the transient behavior of dimeamegs conductance, three
distinct periods are identified. They are the startup pertibd transition period and the
stable period. The three periods are separated by two ddfined. The time separating

the startup period and transition period is referred to assition timet;;, and the instant
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Figure 3.4: Comparison of numerical results from Problem 1 and analytical result by
Ingersoll [1954].

separating the transition period and stable period is@d#lleThese two dividing times are

defined by Eq. (3.30) and Eq. (3.31).

du*
e -1 (3.30)
du*
B =104 31

For Problem 1, with a nominal value of Fe10%, the values of;; andt;, are 46 x 10>
and 383 x 102, respectively, which correspond to 0.4 hour and 4 daysgewily. The
values of the dimensional conductance at these timed gitg ) = 1.2836 andJ *(t5) =

0.2837.
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3.3. PROBLEM 2: FINITE FLUID-BOREHOLE THERMAL RESISTANCE, INFI-
NITE BOREHOLE LENGTH

Identifying R, as the thermal resistance of the borehole, inclusive of theextive
resistance, which is associated with fluid flowing througé pipe, and the conductive
resistance of the borehole material, it appears in seriegeeddhermal resistance of the

ground,Ry. The rate of heat transfer from fluid to borehole surface rhay be written as,

(1) = g [Ti )~ T01) (3.32
and invoking Fourier’s law,
R MO -Tr) = Hg2mr| (333)

rewriting in dimensionless form,

1 06 1

Tz 98 E:OZ —m[(l’(w—e(ﬂoﬂ (3.34)

This statement provides a Robin type boundary conditiothi@diffusion equation.
Problem 2 may therefore be summarized by Eq. (3.34), Eql)3uzd following boundary

conditions:

p(1)=1

In Eq. (3.34), the dimensionless quantity(2rikyR;) represents the ratio of ground con-
duction resistance and convection resistance in the blerefAis term therefore plays a
role similar to a Biot Number, which is an index of the ratictlé conduction resistances

inside a body and convection resistance at the surfaceojppeca, 2007]. Therefore the Biot
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Number can be defined,

Bi=_—— (3.35)

and substitute this definition into Eq. (3.29)

U*(1) = Bi[e(T) — 6(1,0)] (3.36)

It can be observed from Eq. (3.36), conductadc¢eas dependent on tim, and parametri-
cally on Fo and Bi. The Biot Number, Bi is determined compiels/ borehole resistance
R, and ground conductivitky. As the borehole resistance goes to zero, Bi grows large,
and can be ignored. In that limit, the Problem 2 results viapr@ach those of Problem 1.

Figure 3.5 indicates how * varies witht* at several Biot Numbers, Bi. It can be
observed that for Problem 2, when Bi is small, the is very small and doesn’t change
significantly with time; when Bi increasels,* tends to behave in the same pattern as that
of Problem 1. These observations are clearly in agreemehttiaeé discussion above.

How Bi will influenceU * can be seen more clearly if the conductad¢eand Bi are
scaled by dimensionless conductance as determined byelrdbl Figure 3.6 shows how
U*/Ug varies with ByUg. The dimensionless conductantk, represents dimensionless
conductance associated with the ground alone, from Problehhis scaling clearly elim-
inates the time dependencelf. It can be observed from this figure that the influence of
borehole resistance won'’t be amplified when time incredses word, Bi dominates heat
transfer when it is relatively small, however when it is Erghan ByU; ~ 10, the bore-
hole resistance can be ignored. Dimensionless conductarcee read from this figure
and there is no need to compute cases with different Bi. Tihéekvation is very useful for

choosing suitable material used in the borehole.
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t*,7/Fo

Figure 3.5: Comparison & * with different Bi from Problem 2 and analytical result by
Ingersoll [1954].

3.4. PROBLEM 3: ZERO FLUID-BOREHOLE THERMAL RESISTANCE, FINITE
BOREHOLE LENGTH

The fluid temperature in the borehole varies with depth, satiound temperature
must vary not only in the radial direction, but also in the tthegirection. The previous
two problems have, however, ignored this reality. As a fipgraximation the vertical heat
conduction in the ground is negligible compared with rad@duction; while the bound-
ary condition, based on fluid temperature, is different gldepth. In this way, the problem
is transferred to a series of problems similar to Problemith varying fluid temperature

forming a Dirichlet boundary condition. In dimensionlessm, the fluid energy balance,
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0.1 -1 I 0 I 1 I 2 3
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Bi/Ug

Figure 3.6:U* /Uy with respect to BiUg at different timet*. In this figure, the results are
shown in the situations when dimensionless tifne 0.01,t* = 0.1,t* =1,t* = 5,t* = 10
andt* = 20. The difference between these results are clearly indisishable.

Eq. (3.14), is then,
d¢(1,Z)
0z

= —U*(1,Z)0(1,2")BLU (3.37)

With the boundary conditions as follow, Eq. (3.37) and EQR{3 can be used to compute
@(1,z°) and6(t1,z*,&). Figure 3.7 shows how the dimensionless conduct&hide,z")
varies along borehole depth.

9(1,00=1 (3.38)
6(0,2',&) =0 (3.39)

o(1,Z')=06(1,7',0) (3.40)
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10° 10° 10% 10° 10° 10" 10°

t*,7/Fo

Figure 3.7: Comparison & * at different deptlz* for Problem 3 and analytical results by
Ingersoll [1954], with BLU= 1.5.

The conductance behaves in a similar pattern at differguthdd@ he finite borehole
length effect does enhance the heat transfer compared tdeRrdl, since the conduc-
tance increases along the borehole depth, particularlyanritial period. At larger times
when the conductance decreases slowly, the conductanegiamaralong the depth is in-
distinguishable. As a result, a conservative approachtimasngU * would be using the
conductance without considering the influence from borelesigth.

Before further analysis, an important concept, dimensssmbreak through time,

t;, is introduced. The heat transfer rate over the boreholdeaxpressed as:

Ob = (MCp) ¢ [T#(t,0) — Te(t,L)] (3.41)
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The dimensionless borehole load is then

% (4% Ob

t") = ———— 3.42
qb( ) (rGC)fATp ( )

Substituting Eq. (3.41) and Eq. (3.6) into Eq. (3.42) praghjc
T{(t5,0) =T (t5,1) + eqi(tF) (3.43)

In terms of@ and g,
. 1

Go() = < [9(1.0)— 9(1,1) (3.44)

Under quasi-steady conditions, the heat transfer rate segpdy the heat pump
should be equal to the heat transfer rate over the borehogghiesog; = g*. But for the
“open loop” problem, this relationship may not exist, besmunlet temperature is specified
and, in effect, there must be a heat sink or source betwedmetiteoump and borehole to
satisfy the fixed inlet temperature condition.

Defining length average conductarﬁé(r), and integrating Eqg. (3.37) over the
borehole length,

o(1,1) = ¢(1,0)exg—U " (1)BLU] (3.45)
substitute Eq. (3.45) into Eq. (3.44)

(1) = @{1— exp—U"(1)BLU]} (3.46)

For the “open loop”g(1,0) is constant saj(7) has a similar variation a3 (1).
Figure 3.8 indicates howj, varies with timet* at different BLU. In the computatiody
from Problem 1 is used insteaddf (1) from Problem 3, in order to save computation time.
This is a conservative approach sitigis smaller. It can be observed from Figure 3.8 that

q; decreases along with, similar to conductance*. When BLU is very small, they;
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Figure 3.8: Comparison af;(t*) with different BLU for Problem 1, witte = 0.3.

is also very small. When BLU is larger than some value, such, ag will start from
1/¢ and then decreases along tife If g is larger than 1, the heat transfer rate over
borehole is larger than that through heat pump. In other sydrae borehole is capable of
delivering a heat transfer rate larger than the load on thegenp. There is a critical time
however,which is denoted as breakthrough titjewhengj = 1. The breakthrough time
is determined by

Gh(t5) = 1= S {1- expl~U" (t;)BLU]}

for Problem 1 sincep(71,0) = 1. At the breakthrough time,, the heat transfer rate over
the borehole matches that across the heat pump. Figure @& $tow breakthrough time

t; varies with BLU. It can be observed from this figure thaincreases as BLU increases,
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Figure 3.9: Relationship daf with BLU at different effectiveness for Problem 1.

sinceU™ decreases with time. Potentially more useful from a pratstandpoint, one
could determine the BLU necessary to reach the breakthrpogt, g = 1, at the time
when the conductance has reached the point of being nomstathdyt;, as defined in
Equation 3.31. Referring to this dimensionless borehaigtle as BLU,, it is defined for
Problem 1 by,

1= %{1— exp—U " (t%)BLUw]}

Ob(te)
From Problem 1 results, the computed values of Blade 0.4, 1.5, 2.5, 4.5 and 8.5 for the
effectivenesg of 0.1, 0.3, 0.5, 0.7 and 0.9, respectively.

Similar results can be achieveddf (t*) from Problem 2 is used. Figure 3.10 shows

how breakthrough timg; varies with BLU for different values of Bi whea = 0.5. It can
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Figure 3.10: Relationship af with BLU at different Bi for Problem 2, witlz = 0.5.

be observed from the figure that to produce the same breakghromet;, the required
BLU decreases when Bi increases. This is because resistaide borehole decreases
when Bi increases, so ground thermal resistance becomeasaam

Figure 3.11 shows the required BlL.Wvith different Bi ande. It can be observed
from this figure that, when B 10, the required BLW is 0.4, 1.5, 3.0 and 4.5, respectively
whene is 0.1, 0.3, 0.5 and 0.7. This result is very close to that oblem 1.

Returning to Problem 3, Figure 3.12 shows how scaled dimeatess conductance
U*(t*)/Ug(t*) varies witht* at different values of BLU witte = 0.3. Figure 3.13 shows
the results withe = 0.5, and Figure 3.14 shows the results wéth= 0.7. TheUg (t*)
is dimensionless conductance from Problem 1, which doeseawiunt for the influence

of borehole length and presumes negligible borehole therasestance. Thus, only for
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Figure 3.11: Relationship of BL&Jwith Bi at different effectiveness for Problem 2.

the initial period does the length average conductancerditmUy, for BLU ~ BLU .

If the BLU varies from 50% to 150% of BLL), the deviation of scaled dimensionless
conductance is reduced to about 10% in 9 hotirs=(10~3) and reduced to 5% in 4 days
(t* = 10~2). The BLU affects the dimensionless conductabéeprimarily in the startup
period, for large enough BLU.

To reveal to what extent the BLU affect th& in the startup period, the dimen-
sionless transition timg; is computed at different values of BLU, shown as Figure 3.15.
In Figure 3.15 the horizontal axis BLABLU., evaluates the borehole length and varies
from 0.5 to 1.5. The vertical axis provides an indicationtfpf,how fast the dimensionless
conductance enters the transition period, as describetbinidtn 1. The figure indicates

that no matter the value, the bigger the BLU, the longer it takes for the dimensiosles
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Figure 3.12: History ofJ" (t*) /Ug (t*) with different BLU, withe = 0.3.

conductance to enter the transition period. Inclusion eftbrehole length effect increases
tr, which is in all cases larger than thgin Problem 1. In addition, whea increases, the

transition time increases too.

3.5. PROBLEM 4: FINITE FLUID-BOREHOLE THERMAL RESISTANCE, FI-
NITE BOREHOLE LENGTH

This problem can be seen as the combination of Problems 2 afith& dimen-
sionless conductandé*(t*,z*; Fo,Bi,BLU) therefore has a functional dependence upon
depth and time, in addition to its parametric dependence oo Bi and BLU. Similar to
Problem 3, it is assumed that the vertical heat conductitimarground is negligible; while

the boundary condition is different along borehole deptithiat way, this problem can
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Figure 3.13: History ofJ" (t*) /Ug (t*) with different BLU, withe = 0.5.

be transferred to a series of problems similar to Problemith, different borehole surface

temperature as boundary conditions.

The Eq. (3.4) still works for this problem, while ground teengtureT (t,z r) de-

pends not only time, but also borehole depth and distance @arehole. Similar to Prob-

lem 2, at a particular time t, apply the energy balance froma fla borehole surface and

Fourier’s law on the borehole surface, gives

oT(t,zrp)
AR

o (3.47)

%[Tf (t,2) = T(r,z,rp)] = —kg2rr
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Figure 3.14: History OU*(t*)/UJ(t*) with different BLU, withe = 0.7.

Recasting into dimensionless form

1 06(1,z°,0)
Inrk 0¢

= —Bi[p(1,Z) - 6(1,7",0)] (3.48)

This equation is different from Problem 2 only in that growechperature and fluid temper-
ature also depend on depth. The parabolized one-dimemnsiffnaion equation, Eq. (3.14),
still determines borehole fluid temperature. The initialditions are the same as Problem
3. In this scheme, the conductance and ground temperagitriédtion can be solved.

The influence on dimensionless conductance from borehetentl resistance and
borehole length has been addressed in Problem 2 and 4, tigspyeclo reveal any com-

bined effect of these two parameters together, the histofidimensionless borehole heat
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Figure 3.15: Effects of BLU on transition tinig for Problem 3.

transfer rateg (t*) of all 4 of the problems are compared in Figure 3.16. In Fighfes,

the g, is computed with effectiveness= 0.5 and BLU= BLU = 2.5. The Problem 1

is zero fluid-borehole resistance and infinite boreholetlentye Problem 2 is finite fluid-
bore resistance and infinite borehole length; the Problesrz8rio fluid-borehole resistance
and finite borehole length; the Problem 4 is finite fluid-basistance and finite borehole
length. For both Problem 2 and 4, computation is conductéd 3viifferent values of Bi.
According to Figure 3.6, the Bk Uy, /2 lies in the range where Bi significantly affects
conductance; Bi= 2Ug, lies in the range where Bi has moderate influence on conduc-
tance; Bi= Uy, lies between the two. Several observations can be made fisrfigure.
Firstly, theqgy from Problem 3 is very close to that of Problem 1, and that ffenmblem

2 is nearly the same as that of Problem 4. It can also be infeh& no matter for zero
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Figure 3.16: Dimensionless heat transfer rgtefrom all “open loop” problems, with
BLU =25 ande = 0.5. P1, P2, P3 andP4 denote the results of Problem 1, 2, 3 and
4. For Problem 2 and 4, 3 different Biot Numbers are consttieteey are BiUg,, = 2,
Bi/Uj. = 1 and BjUg,, = 0.5. The results of Problem 2 and Problem 4 are nearly the
same with particular Bi.

fluid-borehole resistance or finite fluid-borehole resistaconditions, the borehole length
effect on dimensionless conductance is minimal when BLBLU.. Then theg; from
Problem 2 has significant deviation with different valuesBBgfeven whert* = 1 which
represents a whole year period. Finally according to thevaehofg;, from Problem 2 and

Problem 7, there is no combination effect on dimensionleasslactance of BLU and Bi.
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3.6. SUMMARY

In this section several “open loop” problems have been dhtced which vary in
the degree to which they capture key aspectd ‘ofletermination.

The “open loop” which keeps inflow temperature to be constastimes there is
a heat source or heat sink between heat pump and the bordProlelem 1 provides the
simplest non-trivial case of the “open loop” problems. Thisblem assumes the fluid
temperature to be uniform at the borehole entrance, ignamégtion ofU * with depth, and
neglects fluid-borehole thermal resistance. The numemsallts match well with the an-
alytical results provided by Ingersoll. The history of dimsénless conductant&*(t*) is
divided into three periods: startup period, transitionquirand stable period. The division
between the startup period and transition period is cafiednd the division between the
transition period and stable period is caltgd

Problem 2 accounts the finite fluid-borehole resistance erb#sis of Problem 1.
The Bi is used to measure the thermal resistance from fluidbtehmle surface. When
Bi is very small, the Bi dominates the dimensionless corahu®; when Bi is an order
of magnitude larger thad *, identical when BiUy = &/(10), the borehole thermal resis-
tance is irrelevant and results are identical to Problemigurg 3.6 is useful to read the
dimensionless conductance without computation.

Problem 3 accounts the finite borehole length on the basigaslém 1. This
problem is converted to a series of Problem 1 with differamtftemperature along the
borehole depth. In this way, the two dimension problem ispalized simplified as a series
of one dimension problems, which can save the computatiog. tThe results indicate that

the effect of finite borehole length is to enhance the heasfest compared to Problem 1.

The dimensionless conductaridé(t*, z*) increases along the depth and has a parametric

dependence on Fo and BLU. For “open loop”, the dimensioridesak through time;

is introduced to identify the moment the heat transfer rater ¢the borehole equals that
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across the heat pump. For Probleny;increases as the BLU increases. For Problem 2
to produce the sanmg, the required BLU decreases as the Bi increases. Bisllefined
as the minimum BLU which makes the heat transfer rate ovebtrehole not smaller
than that across the heat pump for most of the time. As lonp@8tU = BLU, the
borehole is able to carry on the building load for most of tineet So BLU, is a very
useful index for “open loop” problems. For Problem 3, whenlBlaries from 50% to
150% of BLU,, the deviation of scaled dimensionless conductance isceztito about
10% in 9 hours and reduced to 5% in 4 days. This result incicthiat the BLU mainly
affects the dimensionless conductance in short time pefibd dimensionless length of the
startup periodt;; can be used to quantify the BLU'’s effect on dimensionlessiootance
in short time period.

Problem 4 accounts for finite fluid-bore resistance and flbotehole length. It can
be concluded from the results of Problem 4 that besides thesirce of Bi and BLU, there
is no combination effect on heat transfer process when Ihetivalues of Bi and BLU are

finite.
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4. STEADY PERIODIC HEAT LOAD

In the “closed loop”, there is no virtual heat sink or heatrseltbetween the heap
pump and borehole, and the borehole outflow temperaturetljifects the borehole in-
flow temperature. A schematic of the “closed loop” systemhisnn as Figure 4.1. The
load across the heat pump will be totally imposed on boreabémy time, and thus, sym-
bolically, gj(t*) = g*(t).

Over the borehole length, the inflow temperature and outfoaperature must still

satisfy Eq. (3.45), the integrated fluid energy balance

T/ (t*,1) = T{(Z,0)exp —U " (t*)BLU]

whereU" (t*) is the length-average dimensionless conductance. Thessipn indicates
that the inflow temperature is dependent on the outflow teatpes and the outflow tem-
perature depends, in turn, on the BLU. The expectation ictiraputation of conductance
U*(t*,z*) for this “closed loop” will be very sensitive, and computats show this to be
true. In fact, including the borehole length dependencyguido be essential to avoiding
numerical instability. Therefore it has been treated ohb/ ‘tlosed loop” analogs to the
“open loop” Problems 3 and 4.

For every infinitesimally small segment of the borehole, Bc37) is used to com-

pute the fluid temperature.

% — _U*(1,2)0(1,7)BLU

For the “closed loop”, there are several assumptions to lemairst, the initial ground
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Figure 4.1: The schematic of “closed loop”.

temperature distribution is assumed to be uniform, justiiik‘open loop”.

6(0,2,¢{)=0

and the initial borehole outflow temperature is assumed &rjo@l to ground temperature.

9(0,1)=0 (4.1)

Assuming that the load is imposed on the heat pump and b@eltent* = 0, a latency
of one time step is used for the temperature change acrose#tgoump. Symbolically,

Eq. (3.43) is changed to:

T{ (1" +A,0) = T (t%,1) + g™ (t¥)

and in terms ofp,

@(1+A1,0) = @(1,1) + £q° (t¥) (4.2)
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The diffusion equation for ground temperature is uncharsgetthat Eq. (3.21), Eqg. (3.14),
Eq. (3.39), Eg. (4.1), and Eq. (4.2) describe the “close@’l@ooblem.

4.1. PROBLEM 5: CLOSED LOOP WITH ZERO FLUID-BOREHOLE RESIS
TANCE, FINITE BOREHOLE LENGTH

This problem is the “closed loop” counterpart of Problemx&rained as one of the
“open loop” problems. As for Problem 3, the fluid-boreholsistance is ignored, so the
fluid temperature equals the borehole surface temperattine aame depth, which can be
expressed as

T (t5,2) =T*(t",Z°,1).

or in terms ofp andé,

o(1,Z") = 6(1,7,0). (4.3)

As a result, Problem 5 can be summarized by Eq. (3.21), Et¢)3EQ. (3.39), Eq. (4.1),
Eq. (4.2), and Eq. (4.3). In addition, the building load issiato be constant, which means
q(t) = qp,m and the dimensionless heat loadjigt*) = 1. The ground temperature distri-
butionT*(t*,z*, £), fluid temperature distributiofi (t*,z*) and the conductandg* (t*, z*)
may then be computed.

Figure 4.2 shows results &f*(t*,z*) with € = 0.5 and BLU= 2.5. The selected
value of borehole length units, BLY 2.5, corresponds to the value of BLdfor “open
loop” with € = 0.5 . For “open loop” problems BLL) was defined as the minimum value
of BLU which enables the borehole to satigfy> 1 fort* <t;. TheU*(t*,z") of “closed
loop” provess to behave in a pattern similar to the “open’lodfhe U*(t*,z*) increases
along the depth, so the length aver&bét*) is larger thar*(t*,0).

The length averagd ™ (t*) of “open loop” at the same condition is also included
in Figure 4.2. The values & (t*) for “open loop” and “closed loop” are essentially the

same.



39

t*,7/Fo

Figure 4.2: The dimensionless conductance along borerepéhdor Problem 5, with

BLU = 2.5 ande = 0.5. The length average conductaide is included, as well as the
length average conductance of open lddg, The dimensionless positoiri = 0 denotes

ground surface angi = 1 denotes bottom of borehole.

In the examination of “open loop” conditions, thg is introduced to identify the
time when the conductance is hardly decreasing and aboettledsto a constant value.
Since the conductance of “closed loop” is the same as thabpérf loop”, the is the
same for both conditions. In “open loop” conditions, thedkr¢hrough timet;;, identifies
the moment when the heat transfer rate over the boreholdsetiigaload across the heat
pump, which meangj, = 1. However, in “closed loop” operation, the load across tkath
pump is imposed on the borehole, which meghs- g* for all the time. The breakthrough
time is therefore meaningless for the “closed loop” conditiHowever, the “closed loop”

condition produces a time-varying outlet temperature. Arahteristic which is critically
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important to operation of real systems. The fluid tempeeshistory along borehole depth
is shown in Figure 4.3. The borehole inflow and outflow tempees increase simulta-
neously. The instant dimensionless temperature differefjgt*,0) — T¢(t*,1), is main-
tained at a constant value ©&s long as building load is constant. This is different frow t
situation of “open loop”. For “open loop” the inflow tempaue is constant and the out-
flow temperature changes following Eqg. (3.14), which mehasthe instant dimensionless
temperature differenc®’(t*,0) — T¢ (t*,1) varies with time.

For operation of the heat pump system, the borehole outflowpéeature is a par-
ticularly important parameter. The heat pump may not woragifzely if the inlet temper-
ature is too high in cooling season or too low in heating sea$o examine how /(t*, 1)
varies with time and borehole length, a series of computatases have been conducted.

In the “open loop”, BLW, was introduced to measure the minimum dimensionless
borehole length required to assure the borehole carriep#teon the heat pump. This
definition won't work for “closed loop”, for the load over thmrehole is always equal to
that on the heat pump. The important quantity becomes threhbte outlet temperature.

Figure 4.4 shows the borehole outflow temperature histodifegrent values of
BLU varying from 0.25 to 2 times of BLUY, all with € = 0.5. It can be observed that
T#(t*,1) increases and then reaches a stable value. The larger thkisBthe smaller the
final stable number is. Introducirtg,, to denote the time when the fluid outlet temperature,

T{ (t*,1), reaches a stable condition, associated with Eq. (4.4).

dTy(t,1)

105
TRy =10 (4.4)

U=t

The outflow temperature &it=t; ., is defined ady ., and referred to as the stable borehole
outflow temperature. Applying Eq. (4.4), fer= 0.5, thet*@ ande*:oofor different values
of BLU can be read from Figure 4.4, and the result&‘gof are plotted as Figure 4.5. It can

be seen from Figure 4.5 that when BLU increases, the timenejfor T/ (t*, 1) to become
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Figure 4.3: History of fluid temperature along the borehaett, with BLU= 2.5 and
e=05.

stable decreases significantly. The stable borehole outﬁmperature‘,l’;:m, at different
BLU and¢ are plotted in Figure 4.6. Because the same borehole lentjthave different
influence onl{(t*, 1) for different values o€, the ratio BLU/BLU,, of particulare is used

as the index of borehole length. It can be observed that whe&h/BLU,, increases, the
stable outflow temperatufg’,, decreases significantly, and it can be inferred that if BLU
marches to infinite, theé;’,, will be zero. In addition to that, the larger tigas, the smaller
the Ty, is, because measures the potential of heat transfer over the borehdie.high

ende = 1 happens when the outflow temperature is equal to far fielgeeature (¢’ ,, = 0).
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Figure 4.4: The peak outflow temperature with different ealof BLU, withe = 0.5 and
BLU = 2.5.

4.2. PROBLEM 6: CLOSED LOOP WITH FINITE FLUID-BOREHOLE RESIS
TANCE, FINITE BOREHOLE LENGTH

Similar to the “open loop” Problem 4, the thermal resistadmeveen fluid and bore-
hole surface is now taken to be finite. The only differencevieen Problem 4 and Problem
6 is that the inflow temperature is constant in the “open lpagiile for “closed loop”,
the inflow temperature is determined at each time step bynip@sed heat pump load.
Problem 6 may therefore be summarized by Eq. (3.21), Eg4)3Hg. (3.39), Eq. (4.1),
Eq. (4.2), and Eqg. (3.48). Together, these enable computafithe ground temperature
distributionT*(t*,z*, &), fluid temperature distributiom (t*,z*) and total dimensionless

conductance) *(t*, z").
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Figure 4.5: The relationship d)fym and BLU, withe = 0.5 and BLU, = 2.5.

The previous “open loop” and “closed loop” problems wereitéd to constant
building load. The reason for this simplification is to segarthe influence of building
loads on the heat transfer, so the effect of borehole resistand borehole length can be
identified. Relaxing this constraint, it is focused on how building load affects the heat
transfer process. Assume a triangular shaped building Isiaown as Figure 4.7. The
building load lasts for a dimensionless periodf, which is less than 1. Fronf =0
to t* = At"/2 theq*(t) increases linearly from zero to 1 and then decreases to #ero a
t* = At/2.

Figure 4.8 shows the history of dimensionless l@gft*), and borehole inflow
and outflow temperature for a case with BEU3.125, Bi=10,e = 0.5 andAt] = 1. The

results indicate that the shape of fluid temperature varigmtme is similar to the shape of
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Figure 4.6: The relationship g%, and BLU at different. The four curves denotates four
differente, and the BLU, of eache is different.

load. The fluid temperature increases or decreases folipthimload, and the highest fluid
temperature occurs approximately when the building loadhes its peak value. The larger
the loadq® is, the larger the temperature difference between inflowarntlow is. When
the load decreases to zero, the inflow and outflow temperadtumeot drop to zero. For
the “triangular” shape load, the maximum value of outflowrhremzatureT;i00 is 0.47. This
maximum value is smaller than the maximum outflow tempeeatdil0.51 observed when
the building load is maintained as a constapt= 1. The lower energy transfer reduces the
maximum observed outlet temperature profile. Figure 4.9vshbe ground temperature
history. The temperature history in the ground is similahtat of the fluid in the borehole,

and as the radial distance increases, the ground temperaaamped significantly.
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Figure 4.7: Scheme of triangular shaped load.

Figure 4.10 shows the history of dimensionless conductlri¢g’, z*) at different
depths as well as the length average vallié}*). The dimensionless conductance behaves
in a manner similar to the other problems, except that thexesame negative values of
conductance when the building load is very low. Heat is tlogeebeing transferred from
the ground to the borehole. It occurs because the fluid teatyeris nearly in phase with
the building load, while the latency effect for the grounthfeerature is quite significant.
There is a period of some time for which the fluid temperatp(té, z*) is smaller than the
borehole surface temperatudét*, z*,0). Because the conductance is dependent on time
and depth, to evaluate the influence of building lgadhe average value of length-average
dimensionless conductand#,, over the operation perict; can be determined from

. 1Ay
)= a0 /0 0" (t")dt* (4.5)
While seemingly straightforward, this method is unstalbltha transition period between

cooling and heating season, since there may exist some tirae the heat transfer direc-
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tion between the borehole surface and the ground changeg tide borehole depth. This
transition results in a vanishingly small temperture défece and a singularity in calcula-
tion of U™ (t*,z").

As an alternative, a seasonal equivalent conductancereliunted, which is based
on the load and observed temperatures. At a given instamtyuhding load can be ex-
pressed as

q(t) =UPL(Tt — Ty) (4.6)

whereU is the dimensional length-average conductanceTanid the length average fluid
temperature. Recalling definitions of dimensionless lngdoad, temperature and con-

ductance, the dimensionless instantaneous heat traagéaneay be rewritten as

q° = (BLU/&)U T; (4.7)

A dimensionless, instantaneou length-average conduetaay then be computed from

TTX /% & q*
)= —— 4.
integrating over the duration of a cooling or heating season
A . BLU AT s
| ey === [ U i (4.9

a seasonal equivalent conductah_r;emay be defined based upon seasonal-average fluid
temperaturd ¢ ,;

T 1 A LT A *
U.T) o= A_t,*/o U ()T (t")dt (4.10)
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Substitute Eq. (4.10) into Eq. (4.9),

-+ BLU 1 1 At
U :——T/ “(tF)dt" 411
where
e 1 Atl*_*d
T:,=— T:dt* 4.12

The seasonal average conductamgg, therefore depends on building logtiand season
lengthAt" when borehole size is fixed. Figure 4.11 indicates How) andU , vary with
season lengtht". Both (U™") andU, decreases as season length increases. The difference
between the two results is smaller than 8%, which indiddigis an acceptable equivalent.

Figure 4.12 shows how the peak value of outflow temperatuiewavith season
lengthAt;". Clearly, the peak value of outflow temperature increasebeseason length
At increases. The increase in the energy transferred to theddrives increased ground
temperature and affects the fluid outlet temperature immetu

In many geographic regions, the heat pump system operatastlincooling sea-
son and heating season, following an annual cycle. To seettm@Wweat transfer process
behaves under an annually periodic building load, the cdatjoun is conducted with a
triangular shaped building load for five years, with the peakling load is equal to the
peak heating load. For comparision, the BLU, Bi andre kept the same as above, and
At is 0.3. Figure 4.13 shows the dimensionless building loaiaiceSthe transition period
between cooling and heating seasons prevents calculatdld 9, the seasonal average
conductancd), is computed.

Figure 4.14 shows the peak outflow temperatdig,, in each cooling season of
the five years. It can be observed that the peak outflow terysera the first cooling
season is slightly larger than in the other cooling seasams for all five heating seasons,

the value of peak outflow temperature is nearly the same.|&imgisults are produced for
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Figure 4.8: History of inflow and outlfow temperature andding load for Problem 6 with
the triangular shaped load, with BLH 3.125,¢ = 0.5 and Bi= 10.

the seasonal average conductance. It can be observed fgureH.15 that the seasonal
average conductance in the first cooling season is slightgller than in the other cooling
seasons, and in all the five heating seasons, the valuessoirsg@verage conductance are

nearly the same.

4.3. SUMMARY

This section has focused on the “closed loop” condition inciwhhe borehole out-
flow temperature affects the borehole inflow temperaturectly. The heat pump load is
imposed on the fluid loop and the borehole inlet temperatefteats the borehole outlet

temperature and the load. For “closed loop”, two problenve lieeen examined.
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Figure 4.9: History of ground temperaturezat= 0.4 for Problem 6 with triangular shaped
load, with BLU= 3.125,¢ = 0.5 and Bi= 10. The radial dimensionless distante- 0
denotes borehole surface ahd= 1 denotes far field.

Problem 5 accounts for finite borehole length, with a buddimad assumed to be
constant. The length average dimensionless conductan(¢e) of this “closed loop” prob-
lem is identical to that of the “open loop”. The important cequence of this observation
is that the inflow temperature does not affect the conduetaiitie borehole inflow and
outflow temperatures increase simultaneously, and thanteous temperature difference
T#(t*,0) —T{(t*,1) is constant and equal &for fixed building load. The outflow tempera-
ture increases initially and reaches a stable value, whastbeen termed the dimensionless
peak outflow temperature. The peak outflow temperature tecplarly important for de-
sign process. The larger the BLU is, the smaller the peakavutémperature is. The peak

outflow temperature of different values of BLU can be readfeigure 4.6. While BLU,
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Figure 4.10: Dimensionless conductance along boreholidepProblem 6, with BLU=
3.125,¢ = 0.5 and Bi= 10.

was introduced in the “open loop” problems, and the concepsd't have a direct conse-
guence in “closed loop”, it proves to be the appropriatesstra suitable BLU values even
in the “closed loop” problems.

Problem 6 accounts for finite fluid-bore resistance and flrehole length. These
results are the closest approximation to the actual hestfeaprocess in the borehole of the
models developed in this thesis. This problem is mainly usdidure out how the building
loads affect the heat process. The triangular shaped l@guplsed in computation. At first,
only a cooling season is considered and the relationshipdset dimensionless peak out-
flow temperature and dimensionless season length is pliotfedure 4.12. The longer the

season length is, the larger the peak outflow temperatutéevilAnother concept defined
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Figure 4.11: Relationship of seasonal equivalent condgetandit”, with BLU = 3.125,
£ =0.5and Bi=10. The item{U") is the time average value of length average dimension-
less conductance over an operation season; the definititendl, is shown as Eq. (4.11).

to evaluate the building loads effects is seasonal equivdienensionless conductance. It
is introduced to measure the overall dimensionless coaduaetthrough the whole season
length. The longer the season length is, the smaller th@sabsquivalent dimensionless
conductance will be.

The five-year successive simulation is then conducted. mhealy periodic build-
ing load contains both cooling loads and heating loads. Hak fjoad value and season
length of cooling season and heating season are equal, wiakhs a balanced load pro-
file. The results of peak outflow temperature and seasonalaqnt conductance of both

cooling season and heating season are nearly the same inelyedirs.
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Figure 4.12: Relationship of peak outflow temperatureigwith BLU = 3.125,6 = 0.5
and Bi= 10.
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Figure 4.13: History of periodic building load.
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Figure 4.14: Absolute value of peak outflow temperature cheegear, with BLU= 3.125,
€ =0.5and Bi= 10.
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Figure 4.15: Absolute value of seasonal equivalent coraheet in each year, with BLY
3.125,¢ = 0.5 and Bi= 10.
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5. CONCLUSION

The detailed conclusions are given for each aspect of th& woSections 3-4.
This section provides a brief overall summary of the work ssmbmmendations for future
work.

The motivation of this research is to reveal how boreholdigaration and building
loads affect the borehole heat transfer processes throughdle. The essential insight is
the strong parallel to conventional heat exchangers withfand of infinite heat capac-
ity. To this end, an effectiveness - BLU framework has be¢aldished which proves the
ability to estimate required borehole depth based uponfsgeiuid temperatures and esti-
mated overall conductance. A series of problems are exahtinempute, with increasing
accuracy, the dimensionless conductance under diffessaaptions.

The scope of research is divided into two sections: “opep’land “closed loop”.
In “open loop” problems, the inflow temperature is not infloed by the outflow temper-
ature but is specified explicity. In “closed loop”, the infl@amperature is influenced by
outflow temperature through specified heat load. The dimaless conductance is the
fundamental outcome for each of the problems. The resuits fimat the time variation of
the dimensionless conductance for “open loop” and “closeg@’l are essentially the same,
the parametric dependencies observed for “open loop” thpky dor “closed loop”.

One of the significant contributions of this work is the imtugtion and definition
of suitable dimensionless parameters. The typical rangbesfe dimensionless parame-
ters are easily calculated with the data provided by ASHRARdAbook. The quantitative
results produce insight to the heat transfer process thrthe borehole, and they can be
readily easily applied in a design process, without extraerical computation. The Biot
Number is used to measure the borehole resistance and isitgualationship to dimen-

sionless conductance is plotted in a form which makes amditicomputation unnecessary.
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The number of borehole length units emerges as a scaledddereingth which, together
with dimensionless conductance, dictates performance. efflectiveness is defined to
measure the potential of heat transfer cross the borehbkeeffectiveness ratio determines
the scale of the fluid-ground temperature difference.

An important contribution is the use of a parabolized asdionpn which the ver-
tical conduction in ground is neglected while the fluid tenaere distribution along the
depth is accounted for through the boundary condition. isway, the two-dimensional
finite difference system is converted to a series of one-adgio@al finite difference system.
This scheme provides great economy in computation time.

This research can be viewed as a preliminary step to develigsign method for
vertical heat exchangers. For next step, more computaéisesccan be conducted so that
the graphic results on those dimensionless parameterbavidl higher resolution. And for
Problem 6, the unbalanced building loads can be appliedetifyt the accuracy of this
model, physical building loads can be applied, with the ltssiompared with experimental

data.
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