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ABSTRACT 

 Aspects of the population ecology of a parasitoid (Pseudacteon tricuspis) of the red 

imported fire ant (Solenopsis invicta) in Louisiana were studied.  The spatio-temporal 

abundance patterns, dispersal, population spread, aggregation, direct mutual interference 

and functional response characteristics of this parasitoid were studied to address 

deficiencies in our knowledge about phorid flies, particularly Pseudacteon parasitoids.  

This endoparasitoid was discovered to manipulate host ant behavior in ways that benefit its 

own survival.  Laboratory experiments to gain insights into behavioral and functional 

responses revealed that fly aggregations were density-dependent and interference was not 

significant when 1-3 females were simultaneously confined with hosts, although per 

capita oviposition success appeared to decline.  Searching efficiency of 2-3 

simultaneously ovipositing females was not significantly different than solitary females.  

Solitary females parasitized a constant proportion of hosts according to a Type 1 

functional response.  Modelling of the local spatial population structure of P. tricuspis, 

and relationship of abundances to host social form and pathogen-infected colonies, 

revealed no significant spatial associations between fly counts and infected host colonies.  

When fly populations peaked, significant count clusters were associated with polygyne 

colonies.  Fly counts reflected a random spatial and temporal distribution, as count 

patterns were not stable.  Dispersal experiments were conducted to quantify local fly 

movement.  Diffusion rates tended to decline over time after release and most dispersal 

density-distributions did not conform to a simple diffusion model, implying 

heterogeneous population dispersal.  Long-term population spread was monitored for two 

expanding populations of P. tricuspis.  Range expansion accelerated the first four years 



 ix 

post release, contrasting with a linear pattern expected with simple diffusion.  Annual 

rates of spread were low in the first two years, increased rapidly years 3-4, and leveled 

off years 5-6, peaking at 15-25 km/yr.  Finally, daily and seasonal dynamics of P. 

tricuspis were studied.  Findings resulted in a protocol for sampling P. tricuspis 

populations in Louisiana.  In addition to providing essential information about P. tricuspis 

population ecology, results of this study will be useful in conservation, augmentation, 

sampling and management of P. tricuspis and other species of Pseudacteon that have 

been released in the United States. 
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INTRODUCTION 

A population is frequently defined as a group of organisms of the same species 

occupying a particular place at a particular time, and these individuals have the potential 

to interbreed and interact (Krebs 1994).  Population ecology addresses population 

densities, dynamics, spatial distributions, movement and how and why population 

numbers change spatially and temporally (Turchin 2003, Vandermeer and Goldberg 

2003).  Biological control of invasive organisms relies on theory and principles that are 

grounded in population ecology. 

Populations of the red imported fire ant, Solenopsis invicta Buren, are 5-10 times 

higher in the United States than in their native South America, and are a ubiquitous and 

significant economic pest in the southeastern United States (Lofgren 1986, Porter et al. 

1992).  Additionally, two species of North American fire ants, S. geminata (F.) and S. 

xyloni (McCook) have been largely displaced by S. invicta (Wilson 1951, Wilson and 

Brown 1958, Porter et al. 1988, Porter and Savignano1990).  Earlier efforts to eradicate 

S. invicta with chemical control were ineffective and ultimately abandoned because of 

concerns that large-scale applications of broad-spectrum insecticides were harmful to 

non-target organisms and the environment (Taber 2000, Tschinkel 2006).  Current 

efforts have shifted toward biological control of S. invicta by importing natural enemies 

from the indigenous range of S. invicta in South America, including parasitoid flies of 

the dipteran family Phoridae.  This endeavor is promising because phorid flies are 

thought to be an important contributor to low abundances of S. invicta in South America 

(Porter 1998) and may similarly suppress S. invicta populations in the United States. 
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Phorid flies of the genus Pseudacteon Coquillet exert a powerful influence on 

host ant behavior.  Much research has been directed at understanding how phorid flies 

influence competitive interactions between various ant species (see Feener 1981; Feener 

and Brown 1992; Folgarait and Gilbert 1999; Morrison 2000a, Orr et al. 1995, 2003).  In 

the presence of phorid flies Solenopsis workers often curtail or terminate foraging activity 

(Feener and Brown 1992, Orr et al. 1995).  Resource retrieval rates decline by as much as 

84% when under attack by Pseudacteon (Feener and Brown 1992, Morrison 1999).  A 

single attacking P. tricuspis Borgmeier female per 200 foraging S. invicta workers can 

decrease colony protein consumption almost 2X and significantly reduce numbers of 

large-sized workers 50 days later (Mehdiabadi and Gilbert 2002). 

Female Pseudacteon are solitary endoparasitoids and hover over their host before 

penetrating the intersegmental membrane and inserting a single egg into the hosts‟ thorax 

(Porter et al. 1995).  After the egg hatches, the maggot moves into the head where it feeds 

on internal head structures, and eventually pupates inside the decapitated host‟s empty 

head capsule (Porter et al. 1995, 1997; Porter 1998; Cônsoli et al. 2001).  Development 

from egg to adult occurs in 5-6 weeks, depending on temperature (Porter et al. 1995, 

Folgarait et al. 2002 a, b). 

Despite the research that has accumulated on Pseudacteon, our understanding of 

phorid fly population ecology remains weak (Morrison 2000b), particularly in the United 

States.  In fact, little information is available concerning the spatial and temporal 

dynamics of the Phoridae in general (Disney 1994).  Fundamental information about P. 

tricuspis biology and ecology, and its associations with S. invicta are still unknown or are 

inadequate, particularly under climatic conditions unique to Louisiana. 
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REVIEW OF THE LITERATURE 

Phorid Flies 

The Phoridae are commonly referred to as scuttle, humpbacked and manure flies.  

The common name „scuttle flies‟ is probably a reference to the habit of adults to engage 

in short swift runs.  Very little is known about this family, and most of what is known 

was compiled by Disney (1994) (but see Morrison (2000b) for a review of the biology of 

Pseudacteon parasitoids).  Adult phorid flies are thought to comprise nearly 2% of all 

animal species, while larvae have diverse habits but are mainly saprophagous or parasitic 

on other insects, primarily ants (Disney 1994).    However, the interaction between phorid 

flies and ants has attracted the most attention because of their important influence on ant 

behavior. 

Behavior and Fate of Parasitized Fire Ant Hosts 

Parasitism rates of S. invicta by P. tricuspis were estimated by Morrison and 

Porter (2005) from field colonies that were collected and monitored in the laboratory.  In 

contrast to expectations, P. tricuspis puparia did not appear until approximately eight 

days after field collection, although they were expected to have appeared at least within 

the first few days.  Morrison and Porter (2005) hypothesized behavioral changes in older 

parasitized ants were responsible for their exclusion from collection. 

In earlier laboratory studies of S. invicta and Pseudacteon spp., S. invicta workers 

removed remains of parasitized colony members and deposited them in nearby middens 

(Porter et al. 1995, 1997) as a function of their necrophoric behavior (Howard and 

Tschinkel 1976).  However, Porter et al. (1995) posed several questions about the 

behavior and fate of parasitized S. invicta under natural conditions, and the effect of the 
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environment on the phorid puparium.  If the necrophoric behavior observed in the 

laboratory also occurs under natural conditions, what happens to phorid puparia if they 

are discarded in middens?  The upper lethal thermal limit of S. invicta is approximately 

40º C (Cokendolpher and Phillips 1990).  Consequently, P. tricuspis pupae may be killed 

from lethal temperatures and desiccation if they are placed in middens piles along with 

other trash.  Furthermore, under laboratory conditions S. invicta chew open head capsules 

containing the parasitoid and kill it (Porter et al. 1997).  These hostile conditions imply 

that these parasitoids have an alternative strategy for the successful transition from 

inhabiting a host ant inside an ant colony into free-living adult flies. 

Aggregation and Mutual Interference 

It is known that Pseudacteon parasitoids are attracted to host ant aggregations 

along foraging trails, disturbed mounds, alate flights and aggressive intraspecific 

interactions (Williams et al. 1973, Orr et al. 1995, Pesquero et al. 1993, Morrison and 

King 2004).  These parasitoids detect ant semiochemicals, and exploit these cues to 

locate their hosts (Porter 1998, Morrison and King 2004).  The only information 

regarding aggregative responses of Pseudacteon under field conditions is from Morrison 

and King (2004), who found that increasing the number of non-nestmate S. invicta workers 

at baits already occupied by S. invicta led to enhanced numbers of P. tricuspis.  This is 

presumably because increased alarm pheromone production by fighting non-nestmates 

attracted more flies. 

Males in phorid aggregations are aggressive towards conspecifics (Feener and 

Brown 1992, Porter et al. 1995, Morrison et al. 1999).  However, aggressive interactions 

also occur between P. tricuspis females that are attacking S. invicta, i.e. females have 
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been observed bumping into and chasing other females (Pers. Obs).  Searching 

parasitoids that encounter other searching parasitoids may react by temporarily ceasing to 

search or will otherwise disperse from the area (e.g. Hassell and Varley 1969, Hassell 

1971, Hassell et al. 1976).  This type of interaction is known as direct mutual 

interference, where a decrease in parasitoid searching efficiency occurs with increasing 

parasitoid density, due to increased intraspecific interactions (Free et al. 1977). 

No research has been published that has quantified interference or determined the 

functional response curve of any Pseudacteon.  Most laboratory research on Pseudacteon 

has been directed at oviposition behavior (Porter et al. 1995, Morrison et al. 1997, Porter 

1998, Folgarait et al. 2002a, Wuellner et al. 2002).  Pseudacteon females have been 

observed attacking host ants in the laboratory for up to an hour or more, with several 

attacks per minute, and can make >100 oviposition attempts (Morrison et al. 1997).  

Actual rates of oviposition success of Pseudacteon are between 11 and 35% (Porter et al. 

1995, 1997; Morrison et al. 1997). 

Spatial and Temporal Abundance Patterns 

Study of the spatial structure of P. tricuspis populations may facilitate 

identification of microclimates and other landscape features that could potentially 

influence the distribution of these species in a spatial context.  Populations of 

Pseudacteon parasitoids of S. geminata in central Texas were characterized as having 

significant variations in abundance, both spatially and temporally (Morrison et al. 1999).  

Wuellner and Saunders (2003) discovered that S. geminata and its phorid parasitoids co-

exist under similar conditions of temperature and humidity, but not light intensities.  

Morrison and King (2004) determined that P. tricuspis abundances were not uniform at 



 7 

disturbed fire ant mounds, and abundances were high at some colony locations and rare 

or absent at nearby colony locations.  However, these abundance patterns of P. tricuspis 

were not modeled spatially or temporally.  Also, no studies relating P. tricuspis spatial 

distribution to that of their host have been attempted.  Current spatial software (S-Plus, 

SADIE) allows modeling of spatial features and attributes, including those derived from 

data describing soil features, temperatures, population densities, etc. 

Dispersal and Spread 

Quantifying dispersal of insects is an integral part of understanding insect 

population dynamics (Osborne et al. 2002).  Data from dispersal studies are vital in 

understanding animal movement behavior, and are needed to build predictive models of 

species spread (Turchin 1998).  No detailed studies of phorid dispersal have been 

attempted (Disney 1994), and no methodology for quantifying and modeling dispersal of 

Pseudacteon have been developed.  Only a few studies have given some insight into 

Pseudacteon dispersal and spread.  Morrison et al. (1999) studied dispersal of 

Pseudacteon parasitoids of S. geminata in central Texas and determined that Pseudacteon 

parasitoids dispersed up to 650 meters from the nearest S. geminata colonies.  In terms of 

population spread, Porter et al. (2004) documented P. tricuspis population rates of spread 

in north-central Florida of 10-30km/year, and spread rates increased over time.  With an 

additional two years of data, Pereria and Porter (2006) reported revised expansion rates 

approaching 57 km/year, with expansion rates faster to the north of release areas. 

Daily and Seasonal Dynamics 

Diurnal activity patterns of P. tricuspis and P. litoralis were studied in Brazil by 

Pesquero et al. (1996).  In Brazil, activity of P. tricuspis peaked during mid-day, and 
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abundances were significantly related to air temperature, soil temperature and humidity.  

At warmer temperatures Pseudacteon parasitoids of S. geminata in Texas appear earlier 

in the morning and remain active later in the day (Wuellner and Saunders 2003).  Adult 

Pseudacteon are not active when air temperatures fall below 20° C (Morrison et al. 

1999), but are active at temperatures exceeding 35° C (Henne et al. 2007). 

Abundances of Pseudacteon parasitoids of S. geminata were studied in relation to 

biotic and abiotic variables by Morrison et al. (2000).  No single abiotic variable 

accounted for more than 23% of the variation in Pseudacteon activity, and abundances 

were only weakly correlated with host ant activity.  In an arid region of Argentina, daily 

flight periods of P. tricuspis were associated with hotter, drier conditions (Folgarait et al. 

2007). 

Fowler et al. (1995) evaluated seasonal activity of Pseudacteon in Brazil and 

found P. tricuspis to be the seasonally most abundant species.  Folgarait et al. (2003) 

studied the seasonal activity patterns of adult Pseudacteon that attack S. richteri Forel in 

Argentina, with P. tricuspis among the species studied.  It was determined that P. 

tricuspis was most abundant during months having greater rainfall and fewer days with 

frosts, mainly those in the fall.  In north-central Florida, P. tricuspis is present all months 

of the year, but abundances are highest during November (Morrison and Porter 2005).  

Morrison et al. (1999, 2000) studied the phenology of Pseudacteon parasitoids of S. 

geminata in central Texas and found that phorid abundances varied seasonally, with 

rainfall patterns possibly linked to these abundances. Morrison et al. (2000) also 

determined that soil moisture levels were often a good predictor of phorid abundance.   

As an indication that adults have limited life spans under natural conditions, considerable 
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weekly variations in population abundances of Pseudacteon have been observed 

(Morrison et al. 2000).  Abundances of Pseudacteon at three sites separated by 8-16 km 

in north-central Florida were positively correlated over time (Morrison and Porter 2005). 

Sex ratios of Pseudacteon parasitoids that appear at disturbed colonies and along 

foraging trails are often male-biased (Pesquero et al. 1993, Morrison et al. 2000, 

Wuellner and Saunders 2003).  For example, Calcaterra et al. (2005) found that P. 

tricuspis male-female sex ratios at fire ant mounds at multiple locations in three regions of 

southern South America were approximately 2:1, and Morrison and Porter (2005) found 

male to female sex ratios of 2.65:1 in north-central Florida. 

STUDIES IN LOUISIANA 

Here, studies of P. tricuspis population ecology were conducted as a vital step 

towards addressing gaps in our knowledge about this parasitoid, and to supplement 

existing knowledge and test theory of host-parasitoid biology and ecology.  The release 

and establishment of P. tricuspis in Louisiana (see Henne et al. 2007) provided the 

opportunity to study the population ecology of this species.  In Chapter 2, laboratory 

studies were conducted to gain insights into the behavior of parasitized S. invicta workers 

in the hours leading up to their decapitation, and to determine possible parasitoid 

pupariation sites.  In Chapter 3 laboratory experiments were conducted to quantify 

aggregative responses of P. tricuspis adults to variable host densities, determine effect of 

direct mutual interference between pairs of ovipositing P. tricuspis females confined with 

host S. invicta, elucidate the effect of confining one or two additional males with already 

mated females on progeny sex ratios, and, finally, determine the form of the functional 

response of individual ovipositing P. tricuspis to varying host densities.  In Chapter 4, field 
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studies were conducted to characterize the spatial and temporal abundances of P. tricuspis 

populations at three study sites over five weeks, and attempt to relate the abundances of P. 

tricuspis to host social form and presence/absence of the microsporidian parasite 

Thelohania solenopsae Knell, Allen and Hazard.  In Chapter 5, dispersal of P. tricuspis 

was studied by performing mass-release-recapture experiments.  This was done to obtain 

information about P. tricuspis redistribution away from the release point at 30 minute 

intervals, up to two hours after release.  Another objective in Chapter 5 was to determine 

the redistribution patterns of P. tricuspis dispersers, and to fit the data to a simple 

diffusion model.  The aim of Chapter 6 was to describe and model the spread of two 

established P. tricuspis populations in Louisiana, and determine if spread rates were 

consistent with simple linear models of species spread.  In Chapter 7, the daily and 

seasonal dynamics of P. tricuspis were studied at two locations in south Louisiana.  The 

objectives were to determine the following: daily activity pattern of P. tricuspis, and 

relate these patterns to various abiotic variables, the dynamic behavior of P. tricuspis 

populations over an extended time, if populations are synchronized over small and large 

spatial scales, and if they are correlated with various abiotic variables, the sex ratios and 

frequency distributions of P. tricuspis that appear at disturbed S. invicta mounds, and 

determine the minimum sample size and sampling methodology that will provide an 

estimate of the true relative population mean of P. tricuspis at any location. 

SIGNIFICANCE OF STUDY 

 In addition to providing critical information about P. tricuspis population biology 

and ecology, results of this study will be useful in conservation, augmentation, sampling 

and management of P. tricuspis, and important contributions will be made towards 
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understanding host-parasitoid interactions.  In South America, 20 species of Pseudacteon 

attack S. invicta (Porter and Pesquero 2001).  At least three species of Pseudacteon have 

been imported and released in the United States: P. tricuspis Borgmeier (Graham et al. 

2001, Porter et al. 2004), P. curvatus Borgmeier (Graham et al. 2003), and P. litoralis 

Borgmeier (Porter and Alonso 1999).  Other Pseudacteon species are being evaluated for 

release in the United States in the next few years: P. borgmeieri Schmitz (Folgarait et al. 

2002a), P. cultellatus Borgmeier (Folgarait et al. 2002b), P. obtusus Borgmeier (Folgarait 

et al. 2005), and P. nocens Borgmeier (Folgarait et al. 2006).  The first species of 

Pseudacteon introduced into the United States for biological control of S. invicta was P. 

tricuspis, released in Texas in 1995 (Gilbert 1996) and Florida in 1997 (Porter et al. 

1999).  Valuable knowledge about phorid flies is obtained by studying the population 

ecology of P. tricuspis.  Additionally, information obtained here may be extended to 

evaluating other species of parasitic phorids as well. 
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INTRODUCTION 

Few ecological associations are as intimate as the host-parasite (or parasitoid) 

interaction (Poulin 1995).  The ability of parasites to influence host behavior is an 

important feature of host-parasite biology (Price 1980), because reproductive success of 

the parasitoid is dependent on the behavior of its host.  Parasitoid survival relies on 

aspects of host growth, development and survival.  If the host dies before the parasitoid 

reaches a critical point of development, then the parasitoid also dies (Fritz 1982).  

Consequently, changes in host behavior that minimize premature host mortality during 

parasitoid development ultimately benefit the parasitoid. 

There are many examples reported in the literature of parasitoids that induce 

behavioral changes in their hosts towards the end of their development.  For example, 

Chelonus inanitus (L.) (Hymenoptera: Braconidae) causes its host caterpillar, Spodoptera 

litoralis (Boisduval) (Lepidoptera: Noctuidae) to dig into the soil at its fourth instar rather 

than the sixth instar (Rechav and Orion 1975).  Another Chelonus sp. causes its host, 

Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae) to prematurely initiate metamorphosis 

by spinning a cocoon but not actually pupating; this way the protective structure of the 

cocoon is provided to the developing parasitoid (Jones 1985).  Ants that are parasitized 

by nematodes will drown themselves in water so that the nematodes can emerge (Kaiser 

1986, Maeyama et al. 1994). 

In recent years, several species of parasitoids in the genus Pseudacteon Coquillet 

(Diptera: Phoridae), collectively referred to as „decapitating flies,‟ have been introduced 

in the United States as biological control agents of the red imported fire ant, Solenopsis 

invicta Buren (Hymenoptera: Formicidae).  These parasitoids oviposit in host ants that 
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are engaged in various activities outside of the nest and eventually pupariate inside the 

decapitated host‟s empty head capsule (Porter et al. 1995, 1997). 

Morrison and Porter (2005) estimated P. tricuspis Borgmeier parasitism rates in S. 

invicta field colonies that were collected and monitored in the laboratory.  No P. tricuspis 

puparia were found until approximately eight days after field collection, although they 

were expected to have appeared within the first few days.  Behavioral changes in 

parasitized ants were hypothesized as being responsible for this effect. 

In previous laboratory studies of S. invicta and Pseudacteon spp., S. invicta 

workers removed the remains of parasitized colony members and deposited them in 

nearby middens (Porter et al. 1995, 1997) during the course of normal S. invicta 

necrophoric behavior (Howard and Tschinkel 1976).  Porter et al. (1995) posed several 

questions about the behavior and fate of parasitized S. invicta under natural conditions, 

and the resulting effect of the environment on the phorid puparium.  For example, if this 

necrophoric behavior also occurs under natural conditions, what would happen to phorid 

puparia that are exposed to high soil surface temperatures?  The upper critical thermal 

limit of S. invicta is reported to be approximately 40º C (Cokendolpher and Phillips 

1990). Our field measurements of exposed soil surface temperatures in the summer 

showed that thermal limits that are lethal to S. invicta are commonly exceeded.  In many 

cases, soil surface temperatures exceeding 55º C were recorded (Henne and Johnson, 

unpubl. data).  Consequently, P. tricuspis puparia that are inside S. invicta head capsules 

could be vulnerable to lethal temperatures and desiccation if they are discarded in a 

middens pile.  Moreover, under laboratory conditions S. invicta will chew open head 

capsules containing the parasitoid and kill it (Porter et al. 1997, pers. obs.).  These hostile 
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conditions would imply that an alternative strategy exists for these parasitoids to 

successfully develop into adult flies. 

Our observations of P. tricuspis parasitized S. invicta colonies in a large 

laboratory arena revealed that these parasitized ants were exhibiting behaviors that 

appeared consistent with host manipulation to benefit survival of the parasitoid.  The 

objective of this study was to describe the behavior of parasitized S. invicta workers in 

the hours leading up to their decapitation and to determine possible parasitoid pupariation 

sites in the laboratory. 

MATERIALS AND METHODS 

Four monogyne S. invicta colonies were collected at the Louisiana State 

University Agricultural Experiment Station in St. Gabriel, Louisiana (30º 16′ N, 91º 05′ 

W) (two in February 2006, two in July 2006).  As of 2006, expanding populations of P. 

tricuspis in Louisiana had not yet reached this location.  Colonies were separated from 

soil by the drip flotation method (Banks et al. 1981).  Ants from each colony were then 

sieved to yield 5-6 grams (approximately 600-1,000 ants · gram
-1

) of individuals that 

were within the preferred size class for P. tricuspis females (approximately 1 mm head 

width (see Morrison et al. 1997)).  Ants plus a small amount (approximately 1 gram) of 

brood were placed inside a open plastic container (Glad
®
 1.89 L) lined with Fluon

®
 to 

prevent ants from escaping.  Ants were subjected to continuous oviposition attack by 50-

100 P. tricuspis females for four days at a temperature of 28º C and 80% relative 

humidity. 

To establish that parasitoid-induced behavior consistently occurred among several 

unrelated colonies, two initial set-ups were done consecutively during the spring of 2006.  
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These set-ups involved placing a mound of moist potting soil (approximately 50 cm
3
) in 

the middle of the arena.  After exposure to P. tricuspis, ants entered this mound and 

constructed a nest.  Two subsequent set-ups were also done consecutively in the summer 

of 2006 and involved the placement of inverted plastic containers (Ziploc
®
 236 ml snap 

lid containers) in the middle of the arena so that internal observations of the colony could 

be made (Figure 2.1). 

 

Figure 2.1: Experimental arena, containing three plastic observation nest units and lateral 

PVC foraging tubes. 

 

A moistened plaster block was placed inside each container.  Two 15 cm PVC 

tubes were inserted into opposite ends of each container to imitate foraging tunnels 

associated with S. invicta colonies under natural conditions (Markin et al. 1975).  The 

entire container was covered with a removable cardboard sleeve.  The PVC tubes were 



 22 

also covered with cardboard to block light.  After exposure to P. tricuspis, ants were 

placed on the floor inside the arena, and they quickly moved into all three containers.  

Temperature inside the arena was maintained at approximately 25 ± 2º C and 60% 

relative humidity.  Water and sugar water were provided for ants ad libitum. 

Observations were made through a large enclosed Plexiglas
®
 arena (60 cm x 120 

cm x 60 cm) that was illuminated by an overhead fluorescent lamp and heated by a 75 W 

infrared lamp (Figure 2.1).  While foraging ants were observed daily inside the arena, 

parasitized ants did not appear outside of the nest until approximately 15 days after P. 

tricuspis oviposition.  Observations continued daily between 0700 h and 1600 h for two 

subsequent weeks.  More than two-thousand ants were randomly collected inside the 

arena from all four trials combined and examined under a stereo microscope to determine 

their status as parasitized or unparasitized.  The late third-instar maggot was always 

observed moving around inside the ventral portion of the parasitized ants‟ head capsule, 

and the maggot‟s cephalopharyngeal skeleton could be seen moving as well. 

To determine possible P. tricuspis pupariation sites, ants (n=100 - 120) that were 

confirmed to be parasitized were placed in a Fluon
®
-lined 31.4 cm x 25.6 cm x 9.7 cm 

plastic container (Pioneer Plastics, model 395C, Dixon, KY) with a 5 cm thick layer of 

sod containing grass and thatch.  Moist sand and moist potting soil were also placed 

between two vertical 5mm thick sheets of clear plastic, with 1 cm between sheets, and the 

top and sides plugged with cotton.  Parasitized ants were placed on the substrate surface 

to determine if parasitized ants burrowed into these substrates. 

To determine the insulating properties of the soil thatch layer, temperature 

measurements were made on 10 cm x 10 cm x 5 cm pieces of sod and bare soil obtained 
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from a pasture and placed under an infrared lamp.  A thermoprobe was placed on the 

surface of bare soil, and the distance between the soil surface and infrared lamp was 

adjusted until the temperature stabilized at 40 ± 0.2º C (approximately 5 cm).  Then the 

infrared lamp was placed over sod with the grass and thatch layer intact, with 5 cm 

between the infrared lamp and the top of the thatch layer.  The thatch layer was 

approximately 2 cm thick, and the thermoprobe was placed at the soil-thatch layer 

interface.  Measurements were repeated 10 times. 

RESULTS 

Parasitized ants routinely left their nest approximately 8-10 hours prior to 

decapitation (n>500 observations from four replicate colonies).  Initially, their behavior 

was indistinguishable from unparasitized ants.  Unlike unparasitized foragers that were 

also collected in the arena, parasitized ants never returned to the nest after leaving.  After 

exiting, parasitized ants were observed walking around the arena floor for 2-4 hours 

before collapsing.  They would then sit motionless for several more hours, sometimes 

twitching their legs.  Parasitized and unparasitized ants were frequently observed inside 

the PVC tubes and would mass near the exit holes before exiting (Figure 2.2). 

Parasitized ants examined under a stereo microscope were found capable of some 

degree of defense, since they attempted to sting the forceps being used to hold them.  

Additionally, droplets of venom were frequently observed exuding from the stinger, and 

the ants repeatedly rubbed this venom on their legs and the forceps.  However, parasitized 

ants were unable to bite, since damage to the mandibular muscles by the parasitoid was 

evident.  In all cases (n>500), positive identification of the maggot inside the head 

capsule was made. 
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Figure 2.2:  Ants inside PVC foraging tubes.  These ants left the PVC tubes shortly after 

this photo was taken.  They were later confirmed to contain P. tricuspis maggots inside 

their heads 

 

More than 100 parasitized ants that were placed in a container with sod were later 

found in the sod thatch layer, generally within approximately 5 mm of the surface.  

Results of the plastic vertical sheets observations showed that at least some parasitized 

ants burrowed into moist sand to a depth of 21 ± 4.2 mm (Mean ± SE, n=6) and in moist 

potting soil to a depth of 5 ± 0.52 mm (Mean ± SE, n=9), but if no structure was available 

to hide in most (n=100-120) would collapse on the surface, or make feeble attempts to 

burrow but unable to because their mandibles were no longer functional.  Temperatures at 

the bottom of the thatch layer were approximately 15º C lower (25 ± 0.51º C, mean ± SE, 

n=10) than bare soil temperatures 5 cm under an infrared lamp. 
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DISCUSSION 

This study revealed that ants parasitized by P. tricuspis probably do not die inside 

the nest, but instead leave the nest shortly before their decapitation.  Other studies 

reporting that phorid pupae are deposited in the middens pile involved colonies in small 

containerized environments, which restricted parasitized ants from wandering away to 

die. 

Parasitized ants seem to be under the control of the parasitoid larva in a way that 

benefits the survival of the parasitoid and ultimately the adult fly.  Once parasitized, ants 

never leave the nest until the parasitoid has virtually completed larval development.  A 

possible explanation is that the maggot is exploiting the host as a vehicle to locate a 

suitable microclimate for pupariation.  The host‟s brain is evidently still intact when the 

ants leave the colony.  The brain is reported to be the last structure in the head to be 

consumed by the parasitoid (Porter et al. 1995, 1997; Cônsoli et al. 2001).  Presumably 

the maggot is exploiting the host sensory system to seek out a suitable location for 

pupariation.  Whether other species of Pseudacteon affect their hosts in a similar manner 

is presently unknown. 

In our laboratory colonies, parasitized workers remained inside their nests and 

were among the other ants and brood in a cluster surrounding the moistened plaster 

blocks.  Dead parasitized ants were never observed inside the inverted plastic containers.  

Unparasitized foragers (25-50 per day) were observed walking around the arena during 

the first two weeks after exposure to P. tricuspis, but the majority of ants remained inside 

the nest (see Mirenda and Vinson 1981).  Parasitized hosts in social species suffer greater 

mortality if they behave differently (Curio 1976, Morse 1980).  Thus, parasitoids should 
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not cause their social insect hosts to elicit unusual behaviors (Fritz 1982).  It has been 

reported that in laboratory colonies, parasitized workers tend brood, are less aggressive 

and seldom forage, the last a feature that would contribute to the fitness of the parasitoid 

(Cônsoli et al. 2001) since the host would escape environmental hazards outside the nest.  

Parasitized ants in our study were never observed outside of their nests until they left just 

prior to decapitation.  Cônsoli et al. (2001) are correct that, during advanced parasitoid 

development, these ants are less aggressive.  However, our study found that they react to 

being handled by vigorously attempting to escape and expelling venom. 

Precisely where parasitized workers are to be found under natural conditions for 

the eight days prior to decapitation is still unknown.  The setup in the study reported here 

was not an exact replication of natural conditions and may have constrained some 

behaviors.  Tracking individual parasitized ants with visually detectable markers, such as 

paint, are not practical, as these marks are scraped off (Mirenda and Vinson 1979.  As 

Morrison and Porter (2005) hypothesized, it is likely that parasitized ants move into 

lateral foraging tunnels and, thus, escape collection.  Furthermore, it is suggested that 

behavioral changes in host ants likely begin shortly after injection of the egg into the 

host‟s thorax.  Cônsoli et al. (2001) discuss the role of possible chemicals injected with 

the egg and/or changes in host hormones or physiology as a consequence of parasitoid 

development. 

In our study, parasitized ants were often observed in the lateral PVC „foraging‟ 

tunnels provided.  This behavior, if it also occurs in the field, would seem to ultimately 

benefit the parasitoid, since it not only reduces the risk of mortality to its host but it also 

positions the ants near exit holes when it is time to leave the nest.  The fact that 
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parasitoids must leave the host at some time to complete their life cycle implies that 

survival of the parasitoid depends on its location in the environment when it leaves the 

host (Poulin 1995).  By moving into the thatch layer, a suitable incubation microclimate 

is achieved for P. tricuspis pupariation.  Multiple measurements of the temperature at the 

soil surface thatch layer interface confirmed that the thatch layer is a good insulator 

against high temperatures that would otherwise be lethal to P. tricuspis puparia. 

We do not know how far parasitized ants travel once they leave the nest, but it 

could be up to several meters. Pseudacteon tricuspis adults frequently appear at S. invicta 

mounds almost immediately after disturbance (pers. obs.), suggesting that they were 

already in the vicinity of the disturbed mound.  Cônsoli et al. (2001) reported that the 

cuticle of parasitized ants darken slightly during the time when the parasitoid is 

approaching pupariation.  This could be interpreted as a precursor to a form of crypsis 

that enables the parasitoid to avoid detection when the parasitized ant leaves the colony.  

Fritz (1982) discusses the implications of host behavioral manipulation by parasitoids and 

suggested that the degree of parasitoid benefit from this is proportional to the intensity of 

host predation.  By remaining in the nest until it is time for parasitoid pupation, the host 

of P. tricuspis escapes superparasitization and predation. 
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THE DECAPITATING FLY, PSEUDACTEON TRICUSPIS BORGMEIER 

(DIPTERA: PHORIDAE) 
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INTRODUCTION 

The study of host-parasitoid interactions has produced a wealth of theory.  Ever 

since the development of simple theoretical models by Thompson (1924) and Nicholson 

(1933), a proliferation of research has revealed that many factors interact to determine how 

many hosts a parasitoid can successfully parasitize.  These factors include host density, 

parasitoid density and the spatial distribution and density of hosts (Hassell and May 1973, 

Beddington 1975, Cook and Hubbard 1977).  The study of insect pests and their biological 

control have benefited from these theoretical insights, as there is intense interest in 

establishing the mechanisms by which parasitoids control host densities (Stiling 1987).  

However, more empirical research is needed to supplement theory (May 1978). 

One prediction of optimal foraging theory is that parasitoids should aggregate in 

higher density host patches in a density-dependent way in order to achieve maximal 

oviposition rates (Charnov 1976, Cook and Hubbard 1977). This has long been suggested 

as an important stabilizing factor allowing the persistence of discrete time host-parasitoid 

interactions, because parasitism risk is spatially heterogeneous (Hassell and May 1973, 

Chesson and Murdoch 1986, Godfray and Pacala 1992).  Small and/or sparsely distributed 

host populations can therefore escape parasitism spatially and/or temporally in refugia 

because they are at low risk to parasitism.  Conversely, in a continuous time framework 

density-dependent host mortality theoretically destabilizes the interaction (Murdoch and 

Stewart-Oaten 1989).  However, certain other factors are important when parasitoids 

aggregate that can stabilize host-parasitoid interactions. 

Hassell and Varley (1969) and Hassell and May (1973) recognized the importance 

of behavioral interactions between multiple searching conspecifics that encounter one 
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another, also known as direct mutual interference.  Multiple simultaneously ovipositing 

females may engage in aggressive interactions with conspecifics resulting in delayed 

searching, and resulting in more time wasted (Visser and Driessen 1991, Visser et al. 1999, 

Hassell 2000), thereby leading to declining rates of host parasitism as parasitoid density 

increases (Free et al. 1977).  These interactions present unique problems for individual 

parasitoids when faced with optimal foraging decisions (Maynard Smith 1974), such as 

maximizing host parasitism rates.  The resulting contribution of these interactions, if 

sufficiently strong, can lead to the long-term stability of host-parasitoid interactions 

(Hassell 2000). 

The study of insect predation rates at variable host densities led to the derivation of 

the well-known type I, II and III functional response curves (Holling 1966).  Solomon 

(1949) defined the functional response as the density-dependent rate of attack of a single 

natural enemy to changes in the number of hosts available.  Therefore, the functional 

response describes the relationship between per capita predation (parasitization) rate of a 

predator (parasitoid) and prey density (Holling 1959, 1961, 1966), and is a fundamental 

basis of all trophic (consumer-victim) interactions (Mills and Lacan 2004).  The three 

kinds of functional responses were derived according to the relative shape of the curve.  

The type I functional response characterizes arthropod predators (and parasitoids) that 

search for hosts randomly in a patch and attack at an increasingly linear rate to a 

maximum level, and attack rates become independent of increasing prey density (a 

combination of density-dependent and density-independent responses (Chong and 

Oetting 2006, Parajulee et al. (2006)).  The type II functional response, or „disk‟ equation, 

describes the nonlinear predation rate as a function of prey density.  As host density 
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increases, the number of hosts that can be attacked in a fixed period of time hyperbolically 

reaches an asymptote, as the predator is spending all its time handling prey (Holling 1961, 

Parajulee et al. 2006).  However, as host density increases the proportion of hosts 

parasitized by a type II parasitoid decreases exponentially (inverse density dependence) 

(Chong and Oetting 2006, Parajulee et al. 2006).  The type III functional response applies 

when the number of prey killed reaches an asymptote as a sigmoid function, where prey 

killed increases in proportion up to an inflection point and then decreases in proportion 

(Parajulee et al. 2006).  Therefore, functional responses are critical to descriptions of 

predation and parasitism (Hassell 2000), and can also be useful for parasitoid conservation 

(Parajulee et al. 2006). 

Beginning in the late 1990‟s, several species of parasitoids in the genus 

Pseudacteon Coquillet (Diptera: Phoridae), collectively referred to as „decapitating flies,‟ 

have been introduced in the United States as biological control agents of the exotic red 

imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae).  Parasitic phorid 

flies strongly mediate interspecific competitive interactions among ant species (Feener 

1981; Feener and Brown 1992; Folgarait and Gilbert 1999; Morrison 1999, 2000; Orr et 

al. 1995, 2003).  Solenopsis spp. workers will reduce or terminate foraging activity in 

response to attacks by Pseudacteon flies (Feener and Brown 1992, Orr et al. 1995, 

Morrison 1999).  Females of these solitary endoparasitoids insert a single egg into host 

ants that are engaged in various activities outside of the nest.  The maggot feeds on 

internal head structures and eventually pupariates inside the decapitated host‟s empty 

head capsule (Porter et al. 1995, 1997).  Pseudacteon phorid flies are considered an 
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important factor in maintaining lower abundances of S. invicta in South America (Porter 

et al. 1992), and may be useful in suppressing S. invicta populations in the United States. 

Under field conditions, aggregations of > 5 (but occasionally >50) P. tricuspis 

Borgmeier can be observed at individual disturbed S. invicta mounds (D.C. Henne and 

S.J. Johnson, unpublished data).  Both sexes are attracted to host aggregations and mating 

occurs while females are actively searching for hosts (Porter et al. 1997, Porter 1998).  

Additionally, aggressive interactions between conspecific males and females can be 

commonly observed under both laboratory and field conditions (Morrison and Porter 

2005a, Pers. Obs.).  Males are promiscuous and will mate with the same female multiple 

times (Porter et al. 1997, Pers. Obs.).  However, nothing is known about P. tricuspis 

aggregation, direct mutual interference and the functional response of individual females, 

necessitating exploratory research into these areas.  The objectives of this study were to: 

1) quantify aggregative responses of P. tricuspis adults to variable host densities, 2) 

determine effect of direct mutual interference between pairs of ovipositing P. tricuspis 

females confined with host S. invicta, 3) elucidate the effect of confining 1 or 2 additional 

males with already mated females on progeny sex ratios, and 4) determine the form of the 

functional response of individual ovipositing P. tricuspis to varying host densities. 

MATERIALS AND METHODS 

Monogyne S. invicta colonies were collected at the Louisiana Agricultural 

Experiment Station in St. Gabriel, Louisiana (30º 16′ N, 91º 05′ W).  As of 2006, 

expanding populations of P. tricuspis in Louisiana had not yet reached this location.  

Colonies were separated from soil in the laboratory by the drip flotation method (Banks 

et al. 1981).  Ants from each colony were then sieved to yield host ants that were within 
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the preferred size class for P. tricuspis females (approximately 1 mm head width (see 

Morrison et al. 1997)).  Except where otherwise indicated, all statistical analyses were 

conducted using Prism
®
 4.03 (GraphPad Software, Inc., San Diego, CA).  All statistical 

analyses (described below) were conducted at a significance level of α=0.05. 

A large enclosed Plexiglas
®
 cage (120 cm x 60 cm x 60 cm) that was illuminated 

by an overhead fluorescent lamp that was modified to eliminate flicker, and heated by a 

75 W infrared lamp was used to conduct laboratory trials.  Plaster blocks saturated with 

water were placed on the middle and corners of the cage floor to provide humidity.  

Trials were conducted when temperatures inside the cage was approximately 26-28° C 

and had 80-90% RH.  At least 200-300 newly emerged P. tricuspis were released inside 

the cage prior to the trials.  To minimize variance in performance of P. tricuspis, only 

flies less than 1 day old were used.  While many S. invicta colonies were used, in order to 

reduce variation, individual trials used ants from the same colony. 

A) Aggregative Responses 

Laboratory experiments were conducted to examine the relationship between host 

density and numbers of attacking P. tricuspis.  Ant densities used were typical of densities 

found under field conditions at hot dog bait stations (Henne and Johnson, unpublished 

data).  Prior to experiments, ants were weighed and placed in 90 mm x 15 mm Petri dishes.  

The inner walls of the Petri dishes were coated with Fluon
® 

to prevent ants from escaping.  

A weighed 0.10 g random sample contained 108 ants.  First, five trials were conducted with 

three host densities (1.0 g (1,080 ants), 0.25g (270 ants), and 0.06g (65 ants) - each 

successive density ¼ of the previous highest density).  Next, eight trials were conducted 

with four host densities (0.5g (540 ants), 0.25g (270 ants), 0.12g (135 ants), and 0.06g (65 
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ants) - each successive density ½ of the previous highest density).  Ant density treatments 

were grouped inside the cage according to a completely randomized design.  Finally, seven 

trials were conducted with five host densities (0.5g, (540 ants) 0.25g (270 ants), 0.125g 

(135 ants), 0.06g (65 ants), and 0.03g (32 ants) - each successive density ½ of the previous 

highest density).  During each trial, flies were counted at Petri dishes at 1, 5 and 10 minutes 

after lids were removed from the dishes.  In all trials, Petri dishes were separated by at least 

5 cm.  A preliminary experiment revealed no differences in attractiveness of hosts attacked 

for several hours vs. hosts that were never attacked.  After each trial, all Petri dishes were 

covered and then haphazardly rearranged within the arena. 

Statistical Analysis 

Data consisting of counts are frequently Poisson rather than normally distributed, 

with the result that the mean and variance will not be independent but will tend to vary 

together (Sokal and Rohlf 1995).  Therefore, P. tricuspis counts were ln x+1-transformed 

before analysis to achieve normality and stabilize variances.    A profile ANOVA was 

conducted on treatment effect (i.e. host density) and time (1, 5 and 10 minutes) (PROC 

GLM, SAS Institute 2002).  A profile ANOVA is a multivariate test (similar to repeated 

measures analysis; Simms and Burdick 1988), but allows for the sample trials to be non-

independent in time. 

B) Direct Mutual Interference 

Two laboratory trials were conducted to determine the effect of increasing the 

density of P. tricuspis females when confined with a constant density of S. invicta workers.  

In both trials 1, 2 or 3 female P. tricuspis were confined with 0.5 g (ca. 500 ants) of S. 

invicta workers.  In both trials, each parasitoid density was replicated four times  Ants were 
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weighed and placed into individually labelled plastic containers (Ziploc
®
 236 ml snap lid 

containers) lined with Fluon
®
 to prevent ants from escaping.  After newly emerged flies 

were released inside the cage, several hours were allowed to elapse before experiments 

were initiated.  We found that newly emerged P. tricuspis are not, or are only weakly, 

responsive to host S. invicta pheromones for 1-2 hours (Pers. Obs).  They also appear to 

undergo an obligate dispersal phase after emergence.  Males would actively fly along the 

top of the cage near the lights while females would sit on the walls of the cage. 

After this post emergence phase, a single container with approximately 1.0 g (ca. 

1,000 ants) of S. invicta was placed in the center of the cage to prime the flies to begin 

attacking hosts, and to allow the two sexes to mate.  Adults of P. tricuspis mate while 

females are attacking hosts (Porter 1998).  Ants were lightly probed to elicit alarm 

behavior and production of alarm pheromones, which attract both male and female P. 

tricuspis.  Phorid parasitoids locate their hosts by detecting ant semiochemicals (Porter 

1998, Morrison and King 2004). 

After 15 minutes, the primer container was removed and experimental containers 

were placed into the cage with their lids on.  Individual containers were randomly chosen 

among the replicates and the lid was opened, allowing flies access to host S. invicta.  The 

two sexes have different hovering behaviors; females hover a few mm from their hosts, 

while males tend to maintain a larger distance between themselves and S. invicta, and can 

also be distinguished from females by their searching behavior.  When searching for 

females, males tend to hover in place and turn from side to side at approximately 45-90° 

angles from center (see also Porter 1998).  They also tend to spend more time searching 
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among hosts that are more densely aggregated (Pers. Obs.).  When males descended into 

experimental containers, an aspirator was used to remove them. 

When the predetermined numbers of female P. tricuspis descended into individual 

containers and were confirmed to be attacking hosts, the lid was snapped into place and 

set aside in the cage.  The time that the lid was closed was written on a label on the lid 

and the next container was opened.  This process was continued until all replicates were 

done.  However, at the same time that flies were being confined with S. invicta, 

previously completed replicates were tapped lightly to induce ant alarm behavior and 

maintain fly activity.  When under attack by P. tricuspis, S. invicta tended to cluster and 

required occasional disturbance to disperse them.  Flies were confined with hosts for two 

hours after which the lids were removed, the flies allowed to escape or aspirated and the 

containers removed from the cage. 

After all flies were removed, a small (1 cm
3
) plaster block that was saturated with 

water was placed in the containers to provide humidity.  A 1 ml drop each of water and 

sugar water was also deposited on the bottom of the containers and the lids closed.  

Numerous small pinholes were made in the lids to provide ventilation.  Containers were 

placed in an environmental chamber (Percival Intellus 136 VL) with temperature set at a 

constant 28° C and a 14:10 photo/scotoperiod.  Every two days, the containers were 

cleaned of middens, and fresh water and sugar water provided.  Containers were 

randomly rearranged in the chamber daily.  Parasitized ants began to die approximately 

10 days after exposure to female P. tricuspis.  For two subsequent weeks, decapitated 

heads from individual replicates were carefully removed daily with soft forceps and 

placed onto moistened filter paper inside individual 90 mm x 10 mm Petri dishes bearing 
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the same information as the source containers.  The dishes were sealed with paraffin 

laboratory film to maintain humidity and held in an environmental chamber under the 

same conditions as described above. 

Male Interference 

Another experiment was conducted to determine if individual female parasitism 

rates were affected by confining males with mated females.  Mated solitary females were 

captured from an aggregation of flies that were attacking S. invicta inside the cage.  

Females were confined with zero, one and two males.  Each treatment was replicated 

eight times.  The procedure was similar to that described above, except that the 

combination of males and females that entered the containers was manipulated with an 

aspirator.  The post experiment handling of S. invicta and puparia was the same as 

described above. 

Statistical Analysis 

Numbers of hosts parasitized were ln - transformed prior to analyses, as above.  

Replicates with zero hosts parasitized were omitted from analyses, as female P. tricuspis 

in these replicates either failed to successfully parasitize at least one host, were captured 

and killed by S. invicta inside the container, or were otherwise defective.  A one-way 

ANOVA and Tukey‟s HSD tests were conducted on numbers of hosts parasitized by 1, 2 

or 3 females. 

The proportion of total hosts encountered by parasitoids per unit time (per capita 

searching efficiency) can be quantified in terms of the rate of decline in searching 

efficiency as parasitoid density increases (Hassell 2000).  Changes in per capita searching 
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efficiency (s) of P. tricuspis in relation to parasitoid density were estimated from the 

following equation (Visser and Driessen 1991): 
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Where Pt is density of P. tricuspis, Nt is the number of hosts and Na is the number 

of hosts killed.  Searching efficiency was regressed against ln host density using least 

squares regression. 

Finally, the effect of confining additional males with solitary females on progeny 

sex ratios was tested with a Pearson chi-square test.  The null hypothesis was that progeny 

sex ratios were not different among treatments.  Progeny sex ratios were also tested against 

a hypothesized 1:1 ratio with a Pearson chi-square test. 

C) Functional Response 

Four laboratory trials were conducted to determine the shape of the functional 

response when confining a single female P. tricuspis with variable densities of S. invicta.  

Ants were placed in plastic containers (Ziploc
®
 236 ml snap lid containers) that were 

lined with Fluon
®
 to prevent ants from escaping.  The procedure of confining female P. 

tricuspis with host S. invicta and maintenance of ants was the same as described above 

for the interference trials.  In trials 1 -3, individual female P. tricuspis were confined with 

135, 270, 540, 810 and 1080 ants, with each host density replicated four times.  In trial 4, 

individual female P. tricuspis were confined with 25, 50, 100 and 200 ants, with each 

host density replicated eight times.  Post experiment maintenance of exposed ants was the 

same as described above for the interference experiment.  Sex ratios of progeny adults 

were determined every second day when emergence began. 

 

(1) 
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Statistical Analysis 

In order to distinguish among the three types of host dependence in the functional 

response, a two-step approach recommended by Juliano (2001) was followed.  First, the 

shape of the functional response curve on the percentage of ant hosts successfully 

parasitized by P. tricuspis as a function of ant density was determined by logistic 

maximum likelihood regression (PROC CATMOD, SAS Institute 2002).  The logistic 

model is as follows: 
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Where the parameter No is the host density, Na is the number of hosts parasitized, 

and P0, P1, P2, and P3 are the logistic regression parameters associated with the slope of 

the curve.  The null hypothesis is that the linear parameters are not significantly different 

from zero.  A type I functional response is indicated by linear terms not significantly 

different from zero (i.e. zero slope), a type II functional response by a significant 

negative value of P0, and a type III functional response by a positive P0 parameter and a 

negative P1 (quadratic) parameter.  If the linear parameter computed from the logistic 

regression is not significantly different from zero, it indicates no effect of increased host 

density on the proportion of hosts parasitized and the type I functional response is fitted 

to the data by the following linear equation (Parajulee et al. 2006): 

0NN a       (3) 

Where Na is the number of hosts parasitized, N0 is the host density, and α and β 

are the intercept and slope of the attack rate prediction line, respectively. 
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Second, if the appropriate functional response form is determined to be type II or 

III, parameter estimation of a (attack constant) and b (functional response asymptote) are 

achieved by fitting the numbers of ants parasitized at variable host densities to the 

appropriate functional response selected by the logistic procedure using a non-linear least 

squares procedure (PROC NLIN, SAS Institute 2002).  Equations for Type II and III 

functional responses are given in Juliano (2001).  Since the results indicated P. tricuspis 

females attack according to a Type I functional response (see results), the slopes and 

intercepts of the mean number of hosts parasitized in relation to host density, and the 

proportion parasitized in relation to host density for trials 1-3 were compared with an 

ANCOVA (Sokal and Rohlf 1995).  Replicates where no puparia were produced (i.e. no 

successful attacks occurred) were excluded from the analysis, as these females either 

were defective or otherwise were captured and killed by S. invicta. 

RESULTS 

Aggregative Responses of P. tricuspis 

Flies quickly recruited to Petri dishes containing host S. invicta.  In general, 

proportional fly abundances among treatment levels were invariant over the 10-minute time 

interval, but the overall total number of flies that recruited slightly increased over time.  No 

significant effects of time or time x treatment effects on fly abundances were found in any 

of the experiments (p>0.05). 

With three host density levels (65, 270 and 1080 ants), more flies aggregated at the 

highest host density (1080 ants) than the other densities (Figure 3.1A).  With four host 

density levels (65, 135, 270 and 540 ants) more flies aggregated at host density 540 than 

the other three host densities, and host density 270 attracted higher numbers of flies than 
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densities 135 and 65 (Figure 3.1B).  With five host density levels (32, 65, 135, 270 and 540 

ants), more flies aggregated at host densities 540 and 270 than the other host densities 

(Figure 3.1C). 
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Figure 3.1:  Aggregation responses of P. tricuspis (mean ± SE) to (A) three levels of host 

density, (B) four levels of host density and (C) five levels of host density. 
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Figure 3.1 (con‟t) 
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Direct Mutual Interference 

Total Hosts Parasitized 

Tthe total number of S. invicta hosts that were successfully parasitized by P. 

tricuspis was not significantly different over the limited range of female densities evaluated 

(P>0.05) (Figure 3.2A).  No significant (P<0.05) reductions in the number of hosts 

successfully parasitized/female was found in both trials when more than one female was 

confined.  However, a trend toward lower numbers of successful parasitism per female was 

evident when the number of female conspecifics was increased (Figure 3.2B). 

 

(C) 
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Figure 3.2:  Results of laboratory trials evaluating total host S. invicta parasitized (A) and 

total host S. invicta parasitized per female (B) (Mean ± SE) at three levels of female P. 

tricuspis density. Bars with the same letters are not significantly different at α=0.05. 

(A) 

(B) 
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Searching Efficiency 

Although there was a declining trend in per capita searching efficiency, no 

correlation was found between the log searching efficiency and the log number of P. 

tricuspis (Figure 3.3) [(Trial 1: R
2
=0.22; df=1,10; F=2.883; P=0.12), (Trial 2: R

2
=0.31; 

df=1,11; F=4.835; P=0.05)].  Therefore, interference among several ovipositing P. tricuspis 

females does not appear to be significant at low female densities. 

 

 

Figure 3.3:  Results of direct mutual interference experiments, showing per capita searching 

efficiency of P. tricuspis in relation to female density: (A)=trial 1, (B)=trial 2. 

 

(A) 

(B) 
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Male Interference 

The presence of additional males confined with mated solitary females did not have 

a significant effect on the total number of successfully parasitized hosts (P<0.05).  The chi-

square analysis showed no significant effect on progeny sex ratios from having additional 

males confined with already mated females (df=2, 132; X
2
=0.3; P=0.86).  Male to female 

sex ratios shifted over the range of treatments, 3.6:1 (0 males), 3:1 (1 male), 2.8:1 (2 

males).  The progeny sex ratios deviated significantly from a hypothetical 1:1 ratio (no 

males: df=1, X
2
=14.7, P=0.0001; 1 male: df=1, X

2
=8.0, P=0.005; 2 males: df=1, X

2
=12.8, 

P=0.0003). 

Functional Response 

None of the linear parameters in the logistic models were significantly different 

from zero (P>0.05), suggesting that P. tricuspis parasitism rates follow a type I functional 

response under laboratory conditions (Table 3.1, Figure 3.4).  Therefore, attack rates are 

host density-independent.  The results of the ANCOVA for comparing slopes and 

intercepts of mean number of hosts parasitized in relation to host density, and the mean 

proportion parasitized in relation to host density for trials 1-3 indicated no significant 

differences between either slopes or intercepts [mean hosts parasitized (slopes: dfn=2, 

dfd=9; F=0.49; P=0.63) (intercepts: dfn=2, dfd=11; F=0.30; P=0.74); calculated pooled 

slope for trials 1-3 is 0.002 and the pooled intercept is 2.45], [mean proportion hosts 

parasitized (slopes: dfn=2, dfd=9; F=0.64; P=0.55) (intercepts: dfn=2, dfd=11; F=0.12; 

P=0.89); calculated pooled slope for trials 1-3 is -1.18e-005 and the pooled intercept is 

0.015]. 
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Table 3.1:  Results of the maximum likelihood estimates by PROC CATMOD for the 

functional response of P. tricuspis to varying host densities. 

 

Trial Logistic regression parameters Estimate ± SE Χ
2 

d.f. P-value 

 

1 

 

Intercept 

 

-3.71 ± 1.10 

 

11.38 

 

1 

 

0.0007 

 P0 -0.005 ± 0.007 0.60 1 0.44 

 P0
2
 8.9 x 10

-6
 ± 1.2 x 10

-5
 0.58 1 0.44 

 P0
3
 -5.2 x 10

-9
 ± 5.9 x 10

-9
 0.77 1 0.38 

 Likelihood ratio  24.00 13 0.03 

      

2 Intercept -2.49 ± 0.96 6.80 1 0.009 

 P0 -0.01 ± 0.007 2.31 1 0.13 

 P0
2
 1.4 x 10

-5
 ± 1.3 x10

-5
 1.08 1 0.30 

 P0
3
 6.04 x 10

-9
 ± 7.1 x 10

-9
 0.72 1 0.40 

 Likelihood ratio  7.37 11 0.77 

      

3 Intercept -4.89 ± 1.06 21.23 1 <0.0001 

 P0 0.005 ± 0.007 0.56 1 0.45 

 P0
2
 1.0 x 10

-5
 ± 1.2 x 10

-5
 0.95 1 0.33 

 P0
3
 6.3 x 10

-9
 ± 6.6 x 10

-9
 0.91 1 0.34 

 Likelihood ratio  16.37 13 0.23 

      

1-3 Intercept -3.60 ± 0.57 39.73 1 <0.0001 

 P0 -0.004 ± 0.004 1.15 1 0.28 

 P0
2
 4.5 x 10

-6
 ± 6.8 x 10

-6
 0.43 1 0.51 

 P0
3
 2.2 x 10

-9
 ± 3.6 x 10

-9
 0.39 1 0.53 

 Likelihood ratio  55.90 48 0.15 

      

4 Intercept -0.17 ± 0.67 0.06 1 0.80 

 P0 -0.05 ± 0.03 2.77 1 0.10 

 P0
2
 4.1 x 10

-4
 ± 3.3 x 10

-4
 1.53 1 0.22 

 P0
3
 1.1 x 10

-6
 ± 1.0 x 10

-6
 1.19 1 0.28 

 Likelihood ratio   24 <0.0001 
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Figure 3.4:  Results of functional response trials: A, C, E, G, I are mean hosts parasitized 

(mean ± SE) at varying levels of host density; B, D, F, H, J are mean proportion of hosts 

parasitized at varying levels of host density: A,B=Trial 1; C,D=Trial 2; E,F=Trial 3; 

G,H=Trials 1-3 pooled; I,J=Trial 4. 

 

(A) (B) 

(C) (D) 

(E) (F) 
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Figure 3.4 (con‟t) 
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DISCUSSION 

Aggregative Responses 

A density dependent aggregative response of P. tricuspis to host density was found 

under laboratory conditions.  Similarly, under field conditions Morrison and King (2004) 

found that increasing the number of nonnestmate S. invicta workers at baits already 

occupied by S. invicta led to enhanced numbers of P. tricuspis, presumably because 

increased alarm pheromone production by fighting nonnestmates attracted more flies.  

Furthermore, Morrison and Porter (2005b) established a positive correlation between P. 

(G) (H) 

(I) (J) 
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tricuspis abundance and S. invicta density in north-central Florida.  In the laboratory 

experiments described in this paper, P. tricuspis continued to aggregate at the higher host 

densities, even when Petri dishes were covered and the dishes rearranged.  Perhaps P. 

tricuspis are able to learn and distinguish between relative patch sizes in space.  Parasitoids 

can profit most when they aggregate and spend most of their time in patches where host 

densities are highest (Free et al. 1977). 

A lot of frenzied activity occurs when adults of P. tricuspis aggregate at patches of 

host S. invicta.  Not only are females competing with one another for access to hosts, males 

also aggressively compete with other males for access to females (Pers. Obs.).  A similar 

pattern of activity occurs with Scatophaga stercoraria L. (Diptera: Scatophagidae), where 

intra-male competition for females at dung pats is strong, as males outnumber females by 

4:1 (Parker 1974).  Male P. tricuspis are variable in size, with larger males often as large as 

some females (Pers. Obs.).  Presumably these larger males live longer and have an 

advantage in competing with smaller males for mates (Morrison et al. 1999). 

Pseudacteon tricuspis females are probably pro-ovigenic and egg-limited 

parasitoids.  No information on fecundity of P. tricuspis is available.  However, fecundity 

of the related P. wasmanni Schmitz ranges from 30 to nearly 300 eggs (Zacaro and Porter 

2003).  Egg-limited parasitoids characteristically have short handling times (Getz and Mills 

1996, Mills and Lacan 2004).  Handling time in P. tricuspis is very short (<1 s) in relation 

to overall time spent searching.   A small ratio of handling to search time in parasitoids that 

are confined to a single patch for a longer time than by choice could result in a linear 

functional response (Hassell 2000, but see Mills and Lacan 2004).  Therefore, the problem 

for parasitoid females, such as P. tricuspis, is to parasitize as many hosts in its short 
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lifespan (Wajnberg 2006).  Similarly, males should maximize their fitness by mating with 

as many females as possible.  Natural selection will enhance strategies that optimize not 

only female reproductive success, but mating success as well (Cook and Hubbard 1977, 

Parker 1978).  In the laboratory, males were often observed to appear at higher density host 

patches before females, a strategy that would increase probability of ultimate mating 

success when females appear at high density host patches also.  

Direct Mutual Interference 

No evidence of direct mutual interference was found when two or three female P. 

tricuspis were confined in small laboratory containers, although per capita oviposition 

success (measured as number of hosts killed) appeared to decline when more than two 

females were confined.  This study did not demonstrate any reductions in estimates of 

searching efficiency of at least 2 or 3 simultaneously ovipositing P. tricuspis females.  

However, Visser and Driessen (1991) warn that it is important to consider population and 

generation level effects of mutual interference on estimates of searching efficiency, as 

dispersal from patches containing high densities of conspecifics can lead to enhanced 

searching efficiency if hosts are uniformly distributed.  However, this study did not 

evaluate nor allow dispersal of females between host patches. 

Field studies of P. tricuspis populations in Louisiana revealed that approximately 

50% of P. tricuspis aggregations at disturbed S. invicta mounds include 1-3 females 

(Henne and Johnson, unpublished data).  Moreover, it was extremely difficult to 

consistently confine more than three P. tricuspis females together in small containers in the 

laboratory experiments described in this paper because some females tended to leave the 

container when too many females were present.  Therefore, direct mutual interference may 
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become more important when higher densities of ovipositing P. tricuspis are 

simultaneously present than those evaluated in this study.  The intensity of interactions 

usually increases at higher parasitoid densities, leading to greater mutual interference and 

overall suppressed searching efficiency of the parasitoid population (Visser and Driessen 

1991).  In contrast, indirect mutual interference is a reduction in searching efficiency at 

the population level due to superparasitism (Visser and Driessen 1991).  Superparasitism 

of individual S. invicta workers by P. tricuspis has been observed in the laboratory on 

numerous occasions, suggesting that P. tricuspis females are unable to discriminate 

between parasitized and unparasitized hosts.  A laboratory experiment comparing 

attractiveness of hosts exposed to P. tricuspis parasitism for four days versus non 

parasitized hosts showed no apparent differences in attractiveness, as equal numbers of 

flies were attracted (Henne and Johnson, unpublished data).  Superparasitism is probably 

rare under natural conditions, given that natural parasitism rates of S. invicta by P. 

tricuspis are very low (see Morrison and Porter 2005a). 

Male Interference 

This study did not reveal any significant effect of having additional males 

confined with single females.  However, the sex ratios trended downward toward a 1:1 

ratio when the number of males confined with a single female was increased from zero to 

two.  It is unclear what mechanism(s) is (are) responsible for shifts in sex ratio allocation 

in Pseudacteon spp.  Consistent with host size-dependent-sex allocation theory (Charnov 

et al. 1981), sex ratios of Pseudacteon spp. have been linked to host size, with more 

females arising from larger hosts (Morrison et al. 1999).  Secondary sex ratios may 

simply be an artifact of the size range of available host ants (Morrison and Porter 2005a). 
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Sex ratio shifts have been documented in other parasitoid species.  For example, 

Wylie (1965) found that increasing the ratio of Nasonia vitripennis (Walk.) 

(Hymenoptera: Pteromalidae) females to host Musca domestica L. (Diptera: Muscidae) 

resulted in a reduction in the proportion of progeny females.  Perhaps female P. tricuspis 

are able to adjust sex ratio allocation of progeny by differential selection of host sizes in 

response to interference by conspecifics.  The theory of local mate competition (Hamilton 

1967) has been proposed as an explanation for sex ratio shifts among Hymenopteran 

parasitoids, where an increase in the number of female conspecifics at a host patch results 

in an increase in the proportion of male progeny produced.  Unfortunately, a similar 

evaluation of sex ratio shifts when multiple females were confined was not conducted in 

this study, but this would be an interesting research direction to pursue.  Nevertheless, a 

P. tricuspis 3:1 sex ratio (males to females) has been consistently found under field 

conditions, and was reproduced under laboratory conditions. 

Functional Response 

None of the linear parameters in the logistic models were significantly different 

from zero suggesting that P. tricuspis had constant attack rates regardless of host density 

under the laboratory experimental design.  It is possible that host density levels evaluated 

in this study were too high, and therefore P. tricuspis attack rates were at an asymptotic 

level.  It should also be pointed out that these females were confined with their hosts and 

not allowed to disperse freely between host patches.  A different functional response 

curve may be relevant under more natural situations or laboratory settings where females 

are allowed unrestricted movement (Chong and Oetting 2006). 
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Type I functional responses among insect parasitoids are rare (see Mills and 

Lacan 2004 for examples).    However, Turchin (2003) argues that differences between 

Type I and Type II functional responses are minor.  It is important to mention that the 

functional response is not independent of host density alone and should account for the 

reality that parasitoids rarely exist as single individuals and more likely interact with 

conspecifics, necessitating the need for ratio-dependent functional response studies 

(Arditi and Ginzburg 1989, Mills and Lacan 2004, Chong and Oetting 2006).  

Furthermore, effects of temperature on functional response can be important (see 

Parajulee et al. 2006, Zamani et al. 2006) but were not evaluated in this study. 

CONCLUSIONS 

The studies conducted in this paper have provided some insights into P. tricuspis 

behavioral and functional responses that were until now unknown.  The density-dependent 

aggregations of P. tricuspis observed in the laboratory are consistent with theory and field 

observations.  Mutual interference of conspecific male and females at low densities does 

not appear to be significant, but may reveal itself at higher densities.  The Type I functional 

response found was unexpected on the grounds that most parasitoids appear to have a Type 

II functional response.  It is expected that the results obtained in this study will stimulate 

further research into Pseudacteon population ecology and test host-parasitoid theory. 
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INTRODUCTION 

Understanding the processes that affect the spatial distribution of plant and animal 

populations is a key subject in ecology (Tuda 2007).  However, the difficulty of directly 

studying movement of individual animals, particularly small and numerous species such as 

insects, presents special problems for ecologists (Perry 1998a).  For mobile animal species, 

spatial information is often restricted to trap counts at specific locations (Perry 1995).  For 

any species, these count locations may be spatially arranged in regular, random, or 

clustered patterns without regard to the properties of the count frequency distribution 

(Ferguson et al. 2000).  Given that population sampling relies on spatial dispersion patterns, 

determining the spatial population structure of organisms is important to understanding 

population dynamics. 

Traditional methods of analyzing counts of organisms that are based on sample 

variance-mean relationships and derivatives thereof (see Taylor 1984) only provide 

information on the numeric properties of the underlying frequency distribution, and, 

therefore, have limited capability to describe the essential spatial information of counts 

(Perry and Hewitt 1991, Perry et al. 1999).  For example, a highly skewed series of counts 

(e.g. negative binomial) with one or more very large values relative to the others may still 

be completely random in space (Perry and Dixon 2002).  Current analyses (Spatial 

Analysis of Distance IndicEs [SADIE]) of spatial and temporal distribution of insects 

utilize location information of sample units to detect and measure degree of 

nonrandomness in the spatial pattern in two-dimensional space (Perry 1998a), and spatial 

association between data sets collected on different occasions (Winder et al. 2001).  This 

methodology has been applied to the study of several host-parasitoid systems (e.g. 
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Ferguson et al. 2000, Weaver et al. 2005, and Ferguson et al. 2006).  As a result, key 

insights into spatial dynamics of host-parasitoid systems, such as spatial aggregations of 

parasitoids, may be achieved by incorporating spatial information of count data into 

analyses. 

The red imported fire ant, Solenopsis invicta Buren, is a ubiquitous exotic 

invasive insect in the United States, and is regarded as a significant economic pest 

(Lofgren 1986, Porter et al. 1992).  Hence, recent efforts have focused on biological 

control of S. invicta by importing several species of natural enemies from the indigenous 

range of S. invicta in South America and have included the introduction of parasitic flies 

of the genus Pseudacteon Coquillet (Diptera: Phoridae).  Pseudacteon spp. are solitary 

endoparasitoids of Solenopsis fire ants (Morrison and Porter 2005).  Adults of one 

Pseudacteon species, P. tricuspis Borgmeier, are attracted to alarm pheromones emitted by 

S. invicta (Morrison and King 2004).  Pseudacteon spp. females insert a single egg into the 

host ants‟ thorax, and the maggot eventually migrates to the hosts‟ head capsule, consumes 

the contents of the head over a two-week period, and eventually decapitates the host (Porter 

1998). 

Our understanding of phorid fly population dynamics is not very well developed 

(Morrison 2000).  In particular, very little information is available concerning the spatial 

and temporal dynamics of various Phoridae (Disney 1994), particularly in the United 

States.  Populations of Pseudacteon parasitoids of S. geminata (Fabricius) in central 

Texas were characterized as having significant variations in abundance, both spatially 

and temporally (Morrison et al. 1999).  Morrison and King (2004) evaluated phorid 

abundances at disturbed S. invicta mounds at several sites in north-central Florida over 
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time and determined that abundances deviated significantly from a uniform distribution.  

However, neither of these studies evaluated phorid abundances at the same individual 

mounds (i.e. spatial coordinates) over time nor modeled these abundances in a spatial-

temporal context.   

The microsporidian parasite, Thelohania solenopsae Knell, Allen and Hazard, has 

been isolated from polygynous S. invicta colonies and can cause significant mortality in 

infected colonies (Oi and Williams 2002).  However, to the extent that S. invicta social 

form or colonies infected with T. solenopsae influence P. tricuspis spatial distributions are 

unknown.  Therefore, the objectives of this study were to: 1) characterize the spatial and 

temporal abundances of P. tricuspis populations at three study sites, and 2) attempt to relate 

the abundances of P. tricuspis to host social form and presence/absence of T. solenopsae. 

MATERIALS AND METHODS 

Study Locations 

The P. tricuspis populations sampled in this study originated from a release 

conducted 17 km northeast of Covington, St. Tammany Parish, Louisiana (30° 36′ 35" N; 

90° 01′ 19" W) during 8-13 September 1999 (2,165 flies released) (Henne et al. 1997).  

Populations of P. tricuspis were sampled weekly at three widely separated locations in 

Washington Parish, Louisiana between 21 September and 19 October 2005.  These 

locations were part of a larger study conducted in the area.  The GPS coordinates for each 

study location were recorded with a Magellan
 TM

 GPS 315/320 (accurate to 25 m or 

better).  The first study location was 8 km south of Bogalusa (30° 41′ 49" N; 89° 53′ 30" 

W; hereafter called Farm 2), and was approximately 70 m x 70 m unmaintained cattle 

pasture.  The second study location was 14 km southwest of Franklinton (30° 48′ 40" N; 
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90° 18′ 35" W; hereafter called Farm 4), and was approximately 40 m x 60 m mowed 

cattle pasture.  The third study location was 16 km west of Bogalusa (30° 46′ 04" N; 90° 

01′ 52" W; hereafter called Farm 7), and was approximately 170 m x 100 m unmaintained 

cattle pasture. 

At each study site, at least 15-25 active S. invicta colonies were located in an 

arbitrarily defined area and permanently marked with a bar code to enable future location.  

The bar code consisted of a high durability weather-resistant polyester barcode label 

adhered to a 10 cm x 5 cm piece of rigid plastic sheeting that was anchored flush with the 

ground with 10 cm long wire staple.  The barcode label assigned a unique number to each 

S. invicta mound that was retained throughout the study phase.  A Symbol
®

 MC 3000 batch 

mobile computer (Motorola Inc., Holtsville, NY) was used to scan and record each 

barcode‟s unique value into a database. 

Decimal-degree locations of S. invicta mounds were taken with a GPS to obtain x, y 

– coordinates of sampling locations.  At each location, weekly mean soil moisture levels 

were obtained using a Lincoln soil moisture meter (Forestry Suppliers Part No. 3052), 

driven into the soil to a depth of 10 cm.  Ten measurements at 5 m intervals were made 

along a transect through each study area. 

Sampling P. tricuspis 

Sampling Pseudacteon parasitoids of Solenopsis involved simply disturbing host 

nests and awaiting arrival of flies.  Two observers disturbed individual S. invicta mounds 

in the following manner: mounds were vigorously disturbed with spades (5-10 sec) and 

crushed ants to release large amounts of semiochemicals to attract P. tricuspis (Morrison 

and King 2004).  The number of P. tricuspis adults that arrived at disturbed mounds 
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during the ensuing 5 minutes was counted.  Fly surveys were conducted between 1100 h 

and 1700 h (CDT) and when ambient temperatures were warm enough for Pseudacteon 

spp. fly activity (>20º C) (Morrison et al. 1999). 

Determination of Social Form and Presence of Thelohania 

Two social forms of S. invicta, monogyne (single-queen) and polygyne (multiple-

queens) occur in the United States (Glancey et al. (1973).  The two forms are regulated by a 

single gene that is homozygous (Gp-9
B
) in monogyne queens and heterozygous (Gp-9

B
 and 

Gp-9
b
) in polygyne queens (Ross and Keller 1998, Krieger and Ross 2002).  A sample of 

approximately 1 g of S. invicta workers was obtained from each mound on 21 September 

2005 by plunging a 20 ml glass scintillation vial into the mound.  The vials were coated 

with Fluon
®

 to keep S. invicta inside the vials.  After collection, the vials were filled with 

95% ethanol.  Social form was determined by the multiplex polymerase chain reaction 

(PCR) methods as described in Valles and Porter (2003).  Presence of Thelohania in the 

samples was determined by multiplex PCR methods as described in Valles et al. (2002).  

Analysis of P. tricuspis Spatial Distributions 

The spatial patterns of P. tricuspis counts were analyzed using SADIE 

(SADIEShell version 1.22 [Rothamsted Experimental Station, Harpenden, Herts, UK] 

http://www.rothamsted.bbsrc.ac.uk/pie/sadie/SADIE_home_page_1.htm) (Perry 1995, 

1998 a, b).  SADIE is a spatial analysis software program designed for use in situations 

where species are patchily distributed into discrete aggregations (Winder et al. 2001), and 

is appropriate to situations such as counting numbers of adult P. tricuspis appearing at S. 

invicta mounds.  SADIE compares the degree of spatial pattern in the observed count 

arrangement to the minimum effort that individuals in that sample would need to expend to 
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move to a regular arrangement.  This is also called the distance to regularity (D) where 

abundances would be equivalent in each sample unit (Perry et al. 1999).  Thus, spatially 

aggregated counts will have higher values of D than counts that are uniform (Perry and 

Dixon 2002).  The spatial pattern is quantified by randomly permuting the observed set of 

counts among the sample unit locations, thereby generating expected distances to regularity 

(Ea) to test the null hypothesis that counts are randomly arranged with respect to one 

another (Perry et al. 1999).  An overall aggregation index is computed as Ia=D/Ea for each 

sample data set to establish the dispersion pattern (Perry 1995, 1998b).  Values of Ia=1 

indicate randomly arranged counts, Ia<1 indicates a regular pattern of counts, while Ia>1 

indicates aggregation of observed counts into clusters.  The probability, Pa, that the 

observed data is more aggregated than expected from a random permutation of the counts 

is significant at P<0.05. 

The P. tricuspis spatial count data were also analyzed with SADIE to determine the 

degree of clustering.  SADIE calculates an overall mean of the sampled population and 

then assigns an index of clustering (v) to each sample location.  Sample locations that have 

counts greater than the sample mean are classified as positive (vi) „donor‟ units, while 

sample locations that have counts less than the sample mean are classified as negative (vj) 

„receiver‟ units.  Clusters of count data can occur as either patches (vi), areas of relatively 

high counts that are close together, or gaps (vj), areas of relatively low counts that are close 

together (Perry 1995).  The contribution of each sample unit to a patch or a gap is 

quantified with indices that measure the amount that each sample unit contributes to a patch 

or a gap (Perry 1998b, Perry et al. 1999).  Expected clustering indices approach 1 (vi or vj) 

for random counts, vi>1 for counts that belong in a patch and vj <-1 for counts that belong 



 67 

in a gap.  To test for nonrandomness the mean value of the clustering index over the patch 

units (V i) is compared with its expected value of 1.  Similarly the mean value of the 

clustering index over the gap units (V j) is compared with its expected value of -1.  

Significance levels for vi and vj are established through a 2-tailed test by the 95
th
 percentiles 

of the randomized distributions (permutations), where vi > 1.5 and vj < -1.5 are considered 

significant at the 0.025 and 0.975 levels, respectively. 

Finally, spatially-referenced data that share the same coordinates can be analyzed 

for spatial association (i.e. similarity in the spatial patterns of two data sets) (Perry et al. 

1999, Perry and Dixon 2002).  SADIE can be used to measure the evolution of temporal 

change in population structure when the same species is sampled at the same spatial 

coordinates over time, and can detect spatial association between two species (Winder et al. 

2001, Perry and Dixon 2002).  To compare consecutive weekly spatial patterns of P. 

tricuspis, an overall spatial association index, Χ (upper case chi), was calculated by SADIE 

based on the similarity of local clustering indices (vi and vj above) from the consecutive 

weekly distributions (Perry 1998b).  Similar association indices were computed for P. 

tricuspis vs. Thelohania and P. tricuspis vs. S. invicta social form (except for farm 7, which 

had only two T. solenopsae-infected mounds and was almost entirely polygyne).  Spatially 

associated distributions will have values of X>0 for patch coinciding with a patch, a value 

of X=0 for random and values of X<0 or dissociated distributions for patch coinciding with 

a gap.  Significance of X is tested against a random X derived from a randomization 

procedure of the clustering indices, and incorporates an adjustment for small-scale 

autocorrelation in the data sets (Dutilleul 1993, Perry and Dixon 2002).  The null 
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hypothesis is that there is no spatial association between the two sets of spatially-referenced 

data. 

A t-test was also performed on social form vs. P. tricuspis abundances for each 

sample date for farms 2 and 4 only (S. invicta at Farm 7 was 95% polygyne).  Spatial maps 

of P. tricuspis counts at individual S. invicta mounds, S. invicta social form and presence of 

T. solenopsae were generated using S-Plus™ 7.0 (Insightful Corporation, Seattle, 

Washington).  Contour maps showing significant gap and patch indices were generated 

using 3DField 2.9 (http://3dfmaps.com 
©
 Vladimir Galouchko). 

RESULTS 

T. solenopsae Infection and P. tricuspis 

Presence of T. solenopsae at Farms 2, 4 and 7 are mapped in Figures 4.1-4.3 (A), 

respectively.  Few S. invicta mounds were found to be infected with T. solenopsae (Farm 2, 

25%; Farm 4, 13%; and Farm 7, 10%).  No significant spatial associations were found 

between P. tricuspis abundances and mounds infected with T. solenopsae (P>0.025 for 

positive, and P<0.975 for negative spatial associations [2-tailed test]). 

Social Form and P. tricuspis 

Social form of S. invicta at Farms 2, 4 and 7 are mapped in Figures 4.1-4.3 (B), 

respectively.  The majority of S. invicta mounds sampled at each location were polygyne 

(Farm 2, 67%; Farm 4, 63%; and Farm 7, 95%).  A significant (P<0.05) positive spatial 

association between P. tricuspis abundances and the S. invicta social form, polygyne, was 

found at Farm 2 on 12 October, and was marginally significant on 5 October (Table 4.1).  

Significantly (P<0.05) more flies were often associated with disturbed polygyne than 

monogyne mounds (Table 4.2).   
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Spatio-temporal Distribution of P. tricuspis 

Weekly counts of P. tricuspis at individual disturbed S. invicta mounds at Farms 2, 

4 and 7 are shown in Figures 4.1-4.3 (C-G), respectively.  Extremely variable counts of P. 

tricuspis were typical of sample locations.  In general, fly abundances at Farms 2 and 7 

tended to increase during the first 2-3 weeks of this study, and declined thereafter (Table 

4.3).  The percentage of disturbed S. invicta mounds that attracted P. tricuspis also varied at 

each study location from week to week, and was generally highest during maximum soil 

moisture levels (Table 4.3).  Dynamic patterns of soil moisture levels at all three locations 

were identical.  Soil moisture readings increased during the first two weeks of the survey, 

were highest during the 28 September survey, and declined during each successive survey. 

Overall, P. tricuspis abundances showed a random spatial distribution pattern, with 

Ia values close to 1 (Table 4.3).  However, significant (P<0.05) aggregated spatial 

distribution patterns were detected at Farm 2 on 21 September, 5 October and 19 October 

and at Farm 7 on 5 October.  No significant temporal associations of P. tricuspis spatial 

patterns were detected for all weekly comparisons (P>0.025 for positive, P<0.975 for 

negative spatial associations [2-tailed test]).  Clustering of P. tricuspis into significant 

gaps (vj<-1.5) were identified at Farm 2 on 5, 12 and 19 October, and patches (vi>1.5) at 

Farm 2 on 5 and 19 October and Farm 7 on 5 October.  The cluster indices for these 

locations and dates are mapped in Figure 4.4 (A-D), (Table 4.3). 
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Table 4.1: Spatial associations between P. tricuspis abundances vs. S. 

invicta social form and presence of T. solenopsae 

 

Location Dates Social form 

association index 

value (X)
1
 and Pa 

Thelohania 

association index 

value (X) and Pa 

Farm 2 9/21 0.2726 (0.17)  0.5245 (0.04) 

 9/28 0.1206 (0.39) -0.0064 (0.38) 

 10/05 0.4544 (0.03)  0.1418 (0.29) 

 10/12 0.4776 (0.004)  0.5128 (0.04) 

 10/19 0.2757 (0.18)  0.2970 (0.14) 

    

Farm 4 9/21 0.1777 (0.35)  0.1126 (0.27) 

 9/28 0.4088 (0.09) -0.1921 (0.56) 

 10/05 0.1305 (0.37)  0.3402 (0.11) 

 10/12 0.4449 (0.07)  0.3051 (0.14) 

 10/19 0.2694 (0.23)  0.0767 (0.36) 
 

1 
Values in bold indicate significance (PI <0.025 for positive spatial  

association, or PI > 0.975 for negative spatial association) 

 

Table 4.2:  Numbers of P. tricuspis (Mean ± SE) associated with S. 

invicta social form 

 

Location Date n-Monogyne 

(Mean ± SE) 

n-Polygyne 

(Mean ± SE) 

Farm 2 21 September 7 (2.7 ± 0.8) a 13 (4.5 ± 1.0) a 

 28 September 7 (2.7 ± 0.7) a 13 (3.9 ± 1.5) a 

 5 October 7 (3.4 ± 3.1) a 14 (11.6 ± 2.1) b 

 12 October 7 (0.0 ± 0.0) a 13 (2.5 ± 0.8) b 

 19 October 5 (0.0 ± 0.0) a 12 (1.2 ± 0.6) b 

    

Farm 4 21 September 5 (1.0 ± 0.5) a 10 (1.7 ± 0.7) a 

 28 September 2 (0.5 ± 0.5) - 9 (4.7 ± 1.6) - 

 5 October 5 (1.6 ± 0.7) a 10 (2.1 ± 0.7) a 

 12 October 6 (1.3 ± 0.9) a 10 (7.0 ± 1.8) b 

 19 October 4 (3.5 ± 1.3) a 10 (6.9 ± 2.1) a 

 

Values followed by the same letter are not significantly different at 

P=0.05 (t-test) 
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Table 4.3:  Summary of P. tricuspis spatial and temporal abundances at three locations (Farms 2, 4 and 7), aggregation indices (Ia), 

and gap and patch indices (vi) and (vj), respectively. 

 

Location Sample 

Date 

Number 

of 

mounds 

sampled 

Percent 

mounds 

with 

flies 

Average 

number of 

flies at 

mounds
1
 

Soil 

moisture 

probe 

reading 

SADIE Ia and P-

value (in 

parentheses) 
2
 

SADIE Vj
3
 and P-

value (in 

parentheses) 

SADIE Vi
4
 and 

P-value (in 

parentheses) 

Farm 2 9/21 21 81   5.1 ± 0.7 0.7 1.21 (0.05) -1.305 (0.08) 1.132 (0.31) 

 9/28 21 81   4.3 ± 1.1 2 0.79 (0.85) -0.723 (0.85) 0.889 0.82) 

 10/05 22 73 12.9 ± 1.9 0.8 1.93 (0.03) -1.992 (<0.00001) 2.073 (<0.00001) 

 10/12 21 43   3.7 ± 0.9  0.3 1.05 (0.41) -1.184 (0.03) 0.996 (0.41) 

 10/19 18 22   3.5 ± 1.2  0.1 1.44 (0.03) -1.480 (0.03) 1.433 (0.03) 

         

Farm 4 9/21 17 65   2.6 ± 0.6 1.6 0.86 (0.59) -0.994 (0.31) 0.613 (0.85) 

 9/28 13 85   7.7 ± 2.4 5 0.81 (0.69) -0.786 (0.67) 0.878 (0.62) 

 10/05 17 65   3.5 ± 0.7 3 0.65 (0.89) -0.658 (0.90) 0.705 (0.87) 

 10/12 18 72   8.0 ± 1.6 1.8 1.30 (0.18) -1.346 (0.33) 1.478 (0.26) 

 10/19 15 87   6.5 ± 1.6 0.3 0.92 (0.49) -0.974 (0.49) 0.822 (0.56) 

         

Farm 7 9/21 21 43   2.0 ± 0.3 0.5 1.48 (0.10) -1.435 (0.15) 1.460 (0.10) 

 9/28 21 90   5.2 ± 0.9 3.3 0.92 (0.56) -0.952 (0.46) 1.073 (0.33) 

 10/05 21 76   7.1 ± 1.7 1.7 1.81 (0.03) -1.691 (0.08) 1.853 (0.03) 

 10/12 21 81   6.5 ± 1.4 0.6 0.67 (0.92) -0.684 (0.85) 0.567 (0.97) 

 10/19 21 43   5.0 ± 1.3 0.3 1.00 (0.44) -0.960 (0.36) 1.275 (0.08) 

 
1
 Only mounds at which flies were observed 

2
 Ia values in bold indicate aggregated spatial pattern (P<0.05) 

3
 Vj values in bold indicate significant presence of gaps (P<0.05) 

4
 Vi values in bold indicate significant presence of patchiness (P<0.05)
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Figure 4.1: (A) Locations of S. invicta mounds infected with T. solenopsae (1=presence, 

0=absence); (B) S. invicta social form (1=polygyne, 0=monogyne); (C (21 September), D 

(28 September), E (5 October), F (12 October), G (19 October)) time series of P. tricuspis 

abundances at disturbed S. invicta mounds at Farm 2, September-October 2005. 
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Figure 4.2: (A) Locations of S. invicta mounds infected with T. solenopsae (1=presence, 

0=absence); (B) S. invicta social form (1=polygyne, 0=monogyne); (C (21 September), D 

(28 September), E (5 October), F (12 October), G (19 October)) time series of P. tricuspis 

abundances at disturbed S. invicta mounds at Farm 4, September-October 2005. 
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Figure 4.3: (A) Locations of S. invicta mounds infected with T. solenopsae (1=presence, 

0=absence); (B) S. invicta social form (1=polygyne, 0=monogyne); (C (21 September), D 

(28 September), E (5 October), F (12 October), G (19 October)) time series of P. tricuspis 

abundances at disturbed S. invicta mounds at Farm 7, September-October 2005. 
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Figure 4.4:  Contour maps showing areas of significant patches (darker grey) and gaps 

(lighter grey).  A) Farm 2 (5 October 2005), B) Farm 2 (12 October 2005), C) Farm 2 (19 

October 2005), D) Farm 7 (5 October 2005). 
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Figure 4.4 (con‟t) 

 

 

 

  
 

 

 

(B) 



 77 

 

Figure 4.4 (con‟t) 

 

 

 

 
 

 

 

(C) 



 78 
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DISCUSSION 

This study addressed several questions regarding spatial patterns of abundances of 

adult P. tricuspis on a spatio-temporal scale, and provides a detailed and informative 

perspective of P. tricuspis population structure on a local scale.  The overall results 

suggest that P. tricuspis spatial patterns are generally random, but aggregations of high 

abundances occasionally occur in space.  In this study, the significant positive spatial 

association found between P. tricuspis and polygyne social form at Farm 2 is difficult to 

interpret in biological terms.  It may simply be a function of the dense population 

structure of polygyne S. invicta (Macom and Porter 1996).  The number of host workers 

in an individual mound is not correlated with P. tricuspis abundances (Morrison and King 

2004).  However, Morrison and Porter (2005) found a positive correlation between 

mound area (m
2
/ha) and P. tricuspis abundances in north-central Florida.  Consequently, 

high host population density may translate into higher abundances of parasitoids in a 

direct density-dependent way. 

Spatial theory predicts that patchy population distributions can arise even in 

continuous habitats through limited dispersal combined with host-parasitoid interactions 

(Maron and Harrison 1997).  Certainly, S. invicta nest sites have limited dispersal, 

generally moving only a few meters (Pers. Obs.).  Conversely, P. tricuspis can disperse 

several-hundred meters (see chapter 5) and can, therefore, respond to host semiochemicals 

at considerable distances.  Our study sites were relatively homogeneous pastures with no 

evident patchiness in vegetation or other potential heterogeneities that could account for the 

significant gaps and patches of P. tricuspis that were identified at Farms 2 and 7.  Other 

than the aggregated densities of polygyne S. invicta, there were no apparent landscape 
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features or environmental heterogeneity that would have potentially influenced abundances 

of P. tricuspis.  Another study (Henne, unpublished data) found no correlation between P. 

tricuspis abundances and grass heights or soil moisture levels that were measured adjacent 

to disturbed S. invicta mounds.  If landscape features were important, then we would expect 

to find some consistent temporal spatial structure in P. tricuspis populations.  Instead, there 

is no consistent spatial structure of P. tricuspis local populations over time in homogeneous 

pastures.  This is probably a consequence of the likelihood that P. tricuspis adults rarely 

live longer than a few days in nature (Porter et al 1995).  

Morrison et al. (1999, 2000) studied the phenology of Pseudacteon parasitoids of 

S. geminata in central Texas and found that phorid abundances varied seasonally, with 

rainfall patterns possibly linked to these abundances.  The last significant rainfall at the 

study sites prior to initiation of these surveys occurred on 29 August 2005, when 

Hurricane Katrina passed through southeastern Louisiana.  No measurable rain fell near 

these study sites after 29 August 2005.  The exception is Farm 4, where significant 

(>0.12 mm) rain fell nearby on 23-25 September 2005 (source: 

http://www.ncdc.noaa.gov/oa/ncdc.html).  Morrison et al. (2000) also determined that 

soil moisture levels were often a good predictor of phorid abundance.  Soil moisture 

levels at 10 cm depth did not rise after the Katrina rainfall until late September, a lag of 

approximately one-month.  Abundances of P. tricuspis also appeared to positively 

respond to this rain event with a lag of approximately one month, corresponding to the 

development time required for P. tricuspis, approximately 38 days at 27° C (Folgarait et 

al. 2002). 



 81 

We hypothesize that the rainfall associated with Hurricane Katrina 

(approximately 250 mm (http://www.ncdc.noaa.gov/oa/ncdc.html)) triggered widespread 

alate flight events after it passed through the area.  Alate flight events by S. invicta are 

triggered by rain > 5mm following a period of dry weather (Markin et al. 1971, Morrill 

1974).  During alate flights, S. invicta workers swarm over the surface of the mound and 

adjacent vegetation in a heightened state of alarm (Markin et al. 1971), presumably to 

attack potential predators of alate reproductives as they leave the nest.  In South America 

Pseudacteon phorids, including P. tricuspis, have been observed attacking fire ants 

swarming over mound surfaces during alate flight events (Pesquero et al. 1993).  

Consequently, high numbers of S. invicta workers may be vulnerable to attack by 

searching P. tricuspis females during alate flight events.  Thus, the dynamics of P. 

tricuspis would be driven in a density-dependent manner in response to a greater 

availability of S. invicta workers during area wide alate flight events.  This factor would 

account for the apparent synchrony in P. tricuspis population dynamics, particularly 

between Farms 2 and 7 (15 km apart).  Farm 4 was located nearly 30 km away from the 

nearest study site (Farm 7).  Large-scale spatial synchrony in animal population dynamics 

appears to be a general phenomenon among animal populations (Ranta et al. 1995, Heino 

et al. 1997).  Additionally, local patchiness in alate flight events may also lead to 

aggregations of P. tricuspis in space. 

The fact that P. tricuspis are attracted to disturbed mounds containing T. 

solenopsae-infected workers suggests that flies may not be able to differentiate between 

infected vs. non-infected ants from long distance cues.  However, because only a few S. 

invicta colonies were infected with T. solenopsae, a more detailed spatial representation 
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was not possible.  Studies to compare attack rates and/or survival of P. tricuspis on T. 

solenopsae-infected hosts have not been done, but would be interesting. 

The results found in this study have provided several insights into the spatial 

structure and dynamics of P. tricuspis populations in a homogeneous habitat.  First, it 

indicates that P. tricuspis counts have a random spatial distribution, but spatial 

aggregations occur when populations are high.  Second, sampling P. tricuspis populations 

should be done with the distribution of S. invicta populations in mind, particularly where 

polygyne populations occur.  Thus, any survey of P. tricuspis should attempt to sample a 

representative portion of the area.  In a related study (Chapter 7) it was determined that a 

minimum of 15 mounds should be sampled to achieve an estimate of the phorid population 

mean that is reasonably close to the true population mean.  At peak populations, significant 

patches and gaps in P. tricuspis abundances at S. invicta mounds can occur.  Therefore, 

phorid sampling should be conducted in several widely separated locations to ensure that 

spatial heterogeneity in phorid populations can be accounted for. 
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QUANTIFYING LOCAL MOVEMENT OF THE FIRE ANT DECAPITATING 

FLY, PSEUDACTEON TRICUSPIS BORGMEIER (DIPTERA: PHORIDAE), 

FROM POINT RELEASE EXPERIMENTS 
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INTRODUCTION 

As a basic process, it is well-known that organisms move at some point in their 

lifetimes, also known as dispersal.  The term dispersal can have different meanings, but 

commonly refers to a form of population redistribution that describes any movement of 

organisms away from a source aggregation or population (Freeman 1977, Southwood 

1978, Turchin 1998, Nathan et al. 2003).  Entomologists and ecologists have been 

interested in quantifying dispersal of insects and other organisms ever since Skellam‟s 

(1951) classic theoretical treatment of dispersal.  Quantifying dispersal of insects is 

fundamental to an understanding of insect population dynamics (Osborne et al. 2002), 

since local insect population abundances, their spatial structure, genetic structure and 

long-term persistence rely on aspects of movement (Turchin 1998). 

Methods of studying dispersal in insects include the recapture or observation of 

members of a population released from a single point at a single time, also known as an 

instantaneous point release (Plant and Cunningham 1991, Turchin 1998, Cronin et al. 

2001).  This method is often used in mass-release-recapture or mark-release-recapture 

studies, and enables the researcher to identify apparent directional components of the 

dispersal pattern, such as would be caused by prevailing winds or spatial anisotropy 

(Plant and Cunningham 1991).  It also enables the researcher to determine the rate at 

which individuals are moving to predict future spread. 

Conceptual approaches to modeling dispersal depend on whether data are 

collected with the goal of describing movements of individual organisms (Lagrangian), 

quantifying population redistribution from a point in space (Eulerian) and/or long-

distance dispersal (Turchin 1998, Nathan et al. 2003).  The simplest model of movement 



 88 

of organisms assumes a homogeneous environment and that individual movement is 

random (Kareiva 1983), and can, therefore, be modeled by a simple diffusion equation.  

Many forms of the diffusion equation exist, often in the form of partial differential 

equations (Turchin 1998), depending on the degree of heterogeneity of the environment, 

rates of loss of individuals from the population, and degree of departure of movement 

from random (see Turchin and Thoeny 1993, Turchin 1998).  It is often assumed that 

dispersal from the release point will be radially symmetrical according to an exponential 

or normal curve (i.e. Gaussian) (Plant and Cunningham 1991). 

Important opportunities for studying dispersal over geographic scales are 

presented when parasitoids are released during biological control programs (Godfray 

1994).  In most classical biological control programs, natural enemies are released at a 

few locations in their new environment, and then are expected to disperse on their own to 

locate and colonize suitable habitats (Hastings 2000, Sallam et al. 2001).  However, 

because of their small size, limited information is available on flight behavior and 

mobility of biological control agents, including parasitoids (Godfray 1994, Corbett and 

Rosenheim 1996, Bellamy and Byrne 2001).  This information could be useful when 

determining the number and proximity of multiple releases of biological control agents.  

For instance, Allee effects and natural enemy movement have been shown to be 

important for the successful establishment of introduced biological control agents 

(Hopper and Rousch 1993).  Natural enemy dispersal distances from a release point 

should be far enough to discover hosts near the release area, but not so far that they 

disperse into areas that lack suitable hosts (Hougardy and Mills 2006). 
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Parasitic flies of the genus Pseudacteon have been introduced to the United States 

for biological control of the exotic red imported fire ant Solenopsis invicta Buren 

(Hymenoptera: Formicidae).  Numerous releases of P. tricuspis Borgmeier have been 

conducted in the United States (Henne et al. 2007a and references therein).  However, no 

detailed studies of phorid fly dispersal have been attempted (Disney 1994), and no 

methodology for quantifying and modeling dispersal of Pseudacteon spp have been 

developed, despite many opportunities associated with the introduction of S. invicta-

specific parasitoids.  At least two studies have only given us limited insight into 

Pseudacteon dispersal.  Using trays baited with S. geminata workers, Morrison et al. 

(1999) found that Pseudacteon parasitoids in Texas dispersed up to 650 m from the 

nearest S. geminata population.  Henne et al (2007b) found that P. tricuspis established 

populations across the Mississippi River in Louisiana from populations more than 1 km 

away on the other side.  However, no information regarding dispersal rates and 

population redistribution patterns or whether Pseudacteon dispersal fits the theoretical 

expectations of random diffusion is available, necessitating exploratory research into this 

area.  In the case of P. tricuspis dispersal the assumption that individual movement is 

random and undirected may be violated because these flies orient toward alarm 

pheromones emitted by their hosts.  This problem may be mitigated, however, provided 

that pheromone sources are sufficiently far apart and overlap between respective areas of 

attraction is minimal (Turchin 1998). 

The study reported here is the first to address the above cited deficiencies in our 

knowledge regarding phorid fly dispersal.  The objective of this study was to determine 

the following features of P. tricuspis dispersal within a generation by performing mass-
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release-resighting experiments: 1) Numbers of P. tricuspis at various distances from a 

central release point at 30 minute time intervals, up to two hours after release, and 2) 

determine the redistribution patterns of P. tricuspis dispersers and fit a diffusion curve to 

the dispersal data.  Data of this sort are useful in understanding animal movement 

behavior, and is necessary to develop predictive models of species spread (Turchin 1998). 

MATERIALS AND METHODS 

Study Organism 

Pseudacteon spp. are thought to be an important factor in lower population 

densities of S. invicta in South America compared to the United States (Porter et al. 

1992), and consequently may similarly suppress S. invicta populations in the United 

States.  However, North American species of Pseudacteon that attack native North 

American fire ants, S. geminata (F.) and S. xyloni McCook, do not attack S. invicta 

(Porter et al. 1995).  Hypothetically, native ant communities in the United States that 

have been displaced by S. invicta may rebound by reuniting S. invicta with several of its 

native Pseudacteon parasitoids (Porter 1998). 

Phorid parasitoids find hosts by sensing volatilized ant semiochemicals (Porter 

1998, Morrison and King 2004).  For instance, P. tricuspis responds to S. invicta alarm 

pheromones that are emitted during mound disturbances, alate flights, and intra- and 

interspecific fighting (Williams et al. 1973, Pesquero et al. 1993, Morrison and King 

2004).  Female Pseudacteon insert an egg into the host ants‟ thorax, the maggot 

consumes the head contents over several weeks and eventually pupariates inside the 

decapitated head capsule (Porter et al. 1995). 
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There is strong evidence that parasitic phorid flies mediate competitive 

interactions between various ant species (e.g. Feener 1981; Feener and Brown 1992; 

Folgarait and Gilbert 1999; Morrison 1999, 2000; Orr et al. 1995, 2003).  Solenopsis 

workers often reduce or terminate foraging activity whenever Pseudacteon flies are 

present (Feener and Brown 1992, Orr et al. 1995, Morrison 1999) with significant 

impacts on colony growth.  For instance, a single attacking P. tricuspis female per 200 

foraging S. invicta workers was shown to decrease colony protein consumption almost 

two-fold, and significantly reduced numbers of large-sized workers 50 days later 

(Mehdiabadi and Gilbert 2002).  These studies demonstrate the potential for Pseudacteon 

parasitoids to reduce North American S. invicta populations (but see Tschinkel 2006 for a 

discussion of the limited potential for biological control of S. invicta in the United 

States). 

Pre-trial Dispersal Surveys 

During 2-16 June 2005, a P. tricuspis release was performed in a cattle pasture 14 

km south of Natchitoches in Natchitoches Parish, Louisiana (31º 37′ 57" N, 93º 4′ 7" W) 

in an attempt to re-establish this species at this location (see Henne et al. 2007a).  

Measurement of P. tricuspis dispersal from release areas were conducted on three 

occasions during the release period by vigorously disturbing S. invicta mounds variable 

distances up to 200 m away from the release areas for two hours after flies were released.  

Dispersal measurements were conducted at 2-3 day intervals and in areas that were 

widely separated (>500m) from previous releases to allow for mortality and natural 

dispersal of previously released flies.  Longevity of adult P. tricuspis under natural 
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conditions is unknown, but adults live only a few days in the laboratory (Henne and 

Johnson, Unpublished data). 

Dispersal Trials: Experimental Design 

An important requirement of mass-release-recapture studies is that a sufficient 

number of insects be released to enable adequate resighting frequencies for statistical 

analyses (Cronin et al. 2001).  However, when high densities of insects are released at a 

single point, biased estimates of movement rates or patterns can result if movement is 

density-dependent (Turchin 1998).  At high release densities, agitation dispersal may 

cause insects to disperse more widely, or movement paths to become more directed in 

order to minimize intraspecific encounters (Cronin et al. 2001).  Whatever the biological 

reasons for dispersal, the result is that the population density decreases with increasing 

distance from the central release point in a manner similar to Brownian motion, and the 

data set consists of measurements of density at several points in space and time (Freeman 

1977, Turchin 1998). 

Four dispersal experiment trials were conducted during September and October 

2005 at Montpelier in St. Helena Parish, Louisiana (30º 40′ 22" N, 90º 38′ 18" W), in an 

unmaintained cattle pasture that was relatively homogeneous (Table 5.1).  An attempt to 

establish P. tricuspis at this location during the fall of 2000 failed as repeated post-release 

surveys failed to detect the presence of this species (see Henne et al. 2007a).  The 

experimental design for evaluating P. tricuspis dispersal was constructed according to the 

following configuration:  Clear plastic trays [Pioneer plastics, Inc. P.O. Box 6, 1584 Hwy 

41A, North Dixon, KY 42409 #395 C (31.25 x 25.4 x 9.5 cm)] were dusted with talc to 

prevent escape of S. invicta, and were shaded with a 30 cm Styrofoam plate that was 
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pierced with a wire survey flag.  A sheet of 21.25 cm x 27.5 cm white paper was placed 

underneath each plastic tray to provide a contrasting background to observe flies.  Four 

trained observers placed these trays in a radial-pattern [similar to a design in Turchin and 

Thoeny (1993) and Turchin (1998) (p. 31) for quantifying southern pine beetle dispersal] 

at incremental distances from the release point (Figure 5.1). 

Note in Figure 5.1 that only two trays are placed in the first annulus and four in 

each of the five succeeding annuli.  Using this arrangement minimizes the potential for 

trays closer to the release point to compete for all of the flies that are released.  The 

trapping grid should extend far enough to sample a substantial proportion of disperser 

end points, which should ideally enclose 90–95% of dispersers; however, some 

extrapolation beyond the recapture grid may be necessary (Turchin 1998).  Attempting to 

maximize recapture of released organisms should not be the goal of a dispersal study, but, 

instead, the aim is to obtain a reasonable estimate of the spatial density of organisms 

(Turchin 1998).  The goal of recapturing flies is to obtain an estimate of the spatial 

density of flies to compute density-distance curves, and the estimates serve as basic data 

for fitting various spatial movement models (Southwood 1978, Sutherland 1996). 

There is the possibility that trays nearest the release point may attract a 

disproportionate number of flies, thereby depleting numbers that would otherwise reach 

more distant trays, and the resulting density-distance curve would be deformed from its 

true shape.  Trays nearest the release point should attract no more than a few percent of 

released flies, especially when pheromones are being used to study dispersal.  By placing 

trays that contain ants emitting pheromones too close to the release point, then it is 
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ensured that most flies will be primed to respond to the pheromone and end up being 

attracted to those trays, and, thus, one cannot reach any conclusions about dispersal. 

Table 5.1: Dispersal trial dates at Montpelier, Louisiana, numbers of P. tricuspis released 

and resighting distances. 

 

Trial Date # P. tricuspis released Resighting annuli (m) 

    

1 26 September 2005 705 25, 50, 100,150, 200, 250 

2 4 October 2005 408 5, 10, 15, 20, 25, 30 

3 13 October 2005 310 5, 10, 15, 20, 25, 30 

4 17 October 2005 750 10, 20, 30, 40, 50, 60 

 

 

Figure 5.1:  Pseudacteon tricuspis experimental design layout.   =trays containing 

nonnestmate S. invicta. 

 

At the start of the field trials, preweighed ants (~0.5g each in 20-dram vials) from 

two unrelated monogyne S. invicta laboratory colonies obtained from the Louisiana State 

University Agricultural Experiment Station in St. Gabriel, Iberville Parish, Louisiana (30º 

16′ N, 91º 05′ W) were poured into each tray.  In this approach, interspecific aggressive 

interactions involving the release of alarm pheromones that are attractive to P. tricuspis 
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(Morrison and King 2004) were exploited.  At 30, 60 and 90 minutes post-release, an 

additional 0.25g of S. invicta workers from each colony were added to each tray to 

maintain alarm pheromone production.  Also, every time ants were poured into the trays, 

a portion of the ants within all trays were crushed to release additional alarm 

pheromones.  Potential alarm pheromone contributions from the resident S. invicta 

population to dispersal of P. tricuspis in this study are unknown but were assumed to be 

negligible, provided nests were not disturbed during the experiments. 

Flies were transported inside a Plexiglas cage (40 x 30 x 35cm) from the 

laboratory to the dispersal area.  Ten plaster blocks saturated with water were placed 

inside the cage to maintain humidity near 80%.  The cage was also placed inside a black 

plastic bag to limit flight activity.  The cage was large enough to accommodate the flies 

so that confinement and agitation was minimized.  As flies that are held in cages may 

exhibit unusually high levels of activity and movement, termed agitation dispersal 

(Turchin 1998), flies to be released in each experimental trial were also held in darkness 

or shade, for at least 30 minutes before release during which time the experimental layout 

was measured and trays set out. 

At the start of the dispersal field trials, the cage was placed on the ground at the 

center of the experimental arena.  The plastic bag was removed, the container lid was 

opened, and flies allowed to exit and disperse on their own to locate hosts.  Flies were 

released in the center of the experimental area at approximately 1030-1100 h (CDT).  All 

trials were conducted at temperatures >21º C, as this is considered to be the lower flight 

threshold for Pseudacteon spp. (Morrison et al. 1999). 
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Four release trials were conducted during September and October 2005.  Numbers 

of flies/release ranged between 310-750 individuals (Table 5.1), because the density of 

flies that are released may affect movement patterns (Cronin et al. 2001).  Additionally, 

these experimental release densities are similar to daily release densities when attempting 

to establish P. tricuspis in Louisiana (see Henne et al. 2007a).  In view of the fact that 

sources of all previous releases of P. tricuspis in Louisiana have been laboratory-bred 

individuals, lab-reared P. tricuspis were used for all field experiments. 

Flies were counted at 30, 60, 90 and 120 minutes post-release.  Each observer 

would count flies at each tray, starting from the center to the edge of one transect 

direction.  Individual observers counted flies along each transect direction only once 

during each trial, and would switch to a different transect during each successive count.  

No attempt was made in the field to determine sex ratios of flies.  However, flies were 

collected on two occasions and sex identifications were later made in the laboratory (see 

below).  The following meteorological variables were recorded at the release point at the 

time of release and just prior to each data collection period:  air temperature, relative 

humidity, and dew point were recorded at 30 cm above ground, and wind speed and 

direction averaged over a 1-min period at 1.5 m above ground (Morrison et al. 2000) with 

a handheld digital weather instrument (Speedtech Instruments
®
 Skymate Plus Wind 

Meter SM-19, Forestry Suppliers Inc. Part No. 2320). 

Dispersal Distances of Fly Sexes 

To determine if there are differences in average distance dispersed by fly sex, a 

single release trial was performed in a cattle pasture approximately 9 kilometers east of 

Norwood in East Feliciana Parish, Louisiana (30º 59′ 8" N, 91º 00′ 55" W) on 6 October 
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2005.  A resident population of P. tricuspis was present in the area, having been 

established at this location during 2000 (Henne et al. 2007a).  In order to distinguish 

experimental flies from resident P. tricuspis, experimental flies were marked with a light 

dusting of pink fluorescent pigment (DayGlo Color Corporation, Cleveland, Ohio).  

Previous laboratory experiments showed no differences in behavior or longevity between 

marked and unmarked flies (Henne and Johnson, Unpublished data). 

Approximately 425 flies were released at 1100 h (CDT) in the same manner as 

described for the release trials at Montpelier.  After one hour had elapsed, resident S. 

invicta colonies surrounding the release point were disturbed to attract P. tricuspis.  A 

total of eight mounds were sampled, ranging from approximately 5 to 50 m from the 

release point.  A light breeze (10km/hr) was blowing from the north and the temperature 

was 30° C.  All flies that appeared at disturbed mounds were aspirated into individual 

vials and transported to the laboratory where they were frozen for later examination 

under a stereomicroscope to determine sex and marked vs. unmarked.  Additionally, at 

the termination of dispersal trial #4 at Montpelier on 17 October 2005, all resighted flies 

at the trays were aspirated into individual vials and also brought to the laboratory as 

above to determine fly sex.  In both trials, the average distances (in m) traveled by 

individuals of each sex were computed and differences were assessed using a paired t-

test. 

Statistical Analysis 

One intention of the mass-release-recapture experiments was to obtain 

information on the density distribution of flies during each census period.  Figures were 

generated to show the numbers of resighted P. tricuspis in each annulus away from the 
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release point during each census and the average of the censuses.  The average 

resightings were calculated for each trial by simply taking the number of resighted flies 

divided by the number of trays in each annulus. 

Description of Density-Distribution Curve and Fit of Dispersal to a Null Diffusion Model 

Statistical analyses of insect dispersal typically avoid assumptions about any 

explicit model describing the dispersal process, but instead focus on estimating statistical 

parameters that explain the pattern of dispersal when the data are viewed as a frequency 

distribution (Plant and Cunningham 1991).  Prior to fitting the density-distribution data to 

a model, methods that test for drift or non-randomness in the direction of dispersal are 

usually employed (Turchin 1998).  Detecting drift is done by calculating the mean and 

variance of the spatial points where each individual is observed.  By using a symmetric 

arrangement of spatial points to resight organisms, and assuming that drift is not 

significant, the expected mean displacement is then zero.  Thus, the null hypothesis that 

drift is not significant can be tested with a t-test by determining if the mean x- and y-

coordinates of resighted flies are significantly different from zero (x,y=0 at release point) 

(Turchin and Thoeny 1993, Turchin 1998).  Also, drift is significant if the 95% 

confidence intervals of the mean x and y coordinates do not overlap the origin (Cronin et 

al. 2001).  If drift is significant, the origin is reset as the mean x- and mean y-coordinates 

(Turchin 1998, Cronin et al. 2001).  The following formula was used to compute the x-

component of the average displacement of resighted flies during the census period of 

maximal resighting (Turchin and Thoeny 1993): 
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Where rij is the number of resighted flies in tray i during replicate j, xi is the x 

coordinate of the location of tray i, and n is the number of trays.  The y-component was 

computed in the same manner.  Trial 1 was excluded from analysis because it had 

insufficient data.  Therefore tests for drift were conducted for trials 2-4.  Trial four had 

identical numbers of maximal resightings during two consecutive census periods, and 

drift was computed for both periods.  As x-component drift was significant for the two 

census periods in trial 4 (see results), the x-coordinate of the origin was computed as the 

average from the two census periods. 

Quantitative analysis of density-distance data is normally accomplished by fitting 

the data to a density-distance curve (Turchin 1998).  The null model is a Gaussian curve, 

which is one particular solution of a simple diffusion equation, and describes the 

instantaneous density-distribution in space based on a point-release (Turchin 1998).  If a 

normal curve fits the data sufficiently then it is concluded that the movement pattern of 

the organism can be approximated by simple diffusion in a homogeneous environment 

(Turchin 1998).  Methods for testing simple diffusion are given in Karieva (1983), 

Turchin (1998) and Cronin et al. (2001). 

An approach similar to that described in Cronin et al. (2001) for determining 

diffusion of a stem galling fly, Eurosta solidaginis (Diptera: Tephritidae), was employed 

here to determine the diffusion rate of P. tricuspis.  This experiment provided 

information on the density distribution of P. tricuspis at fixed points in time (i.e. 30, 60, 

90, 120 minute post-release censuses).  The null diffusion model that was tested is as 

follows: 

B
r

r AeN
2

 
(2) 
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Where A=ΦNo/4πDt, Φ is a scaling parameter that depends on observer resighting 

efficiency, No is the number of P. tricuspis released, D is the diffusion rate, and t is time 

since release.  The parameter B is equivalent to 4Dt and was averaged over the four 

census periods.  The diffusion rate, D, is estimated from the mean square displacement of 

released individuals M divided by 4t, where t is time since release (Kareiva 1982, 1983; 

Turchin 1998; Cronin et al. 2001).   

The diffusion model (equation 2) assumes that the diffusion rate for each census 

period is constant when organisms are repeatedly sampled over time (Kareiva 1982, 

1983; Turchin 1998).  To test this assumption, the mean square displacement of released 

individuals, and the diffusion rate for each 30 minute census period in trials 2-4 were 

calculated.  Decreasing or increasing trends in diffusion rates over time were computed 

with Pearson‟s product moment correlations between diffusion rates per census period 

and census period (Sokal and Rohlf 1995, Cronin et al. 2001).  If no significant trend was 

found, then the average diffusion rate D was computed.  The null diffusion model 

(equation 2) has the linear form as follows: 

BrAN
r /)ln()ln( 2  

The linear form of the null diffusion model (equation 3) was fitted using a least-

squares regression (Sokal and Rohlf, 1995) according to the following procedure:  The 

sum of individual ant trays in each of the second and subsequent annuli was 

approximately 1 m
2
 in area.  However, as the innermost annulus had half the number of 

trays as the outer annuli, the numbers of resighted flies in the first annulus were doubled.  

Next, the number of flies resighted per m
2
 (Nr) at each distance category was calculated 

by dividing the number of resighted flies by the area of the annulus upon which r is 

(3) 
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based.  Estimates of Nr used resighting data from the average of the four census periods 

for each trial.  In cases where there were zero resightings at distances, 0.01 was added to 

each value of Nr and then those values were natural log-transformed.  Separate least-

square regression analyses were performed for trials 2-4. 

Estimates of A and B for trials in which sufficient numbers of P. tricuspis were 

resighted during a census period were used to generate the expected Gaussian distribution 

of resighted flies (in 2-d space) (Cronin et al. 2001).  From this distribution, the standard 

deviation (σ) and the 50% (=0.674σ) and 95% (=1.96σ) quantiles were calculated.  The 

radius of a circle (r) containing those proportions of flies is represented by these 

quantiles.  All statistical analyses were performed using Prism
®
 4.03 (GraphPad 

Software, Inc., San Diego, CA). 

As previously mentioned, a high density of confined organisms may cause 

density-dependent dispersal.  Many insects have initially high diffusion rates that decline 

as time progresses. Density-dependent dispersal can be tested by releasing flies at various 

initial densities.  Alarm pheromones may also affect movement of flies, leading to 

directional attraction and flight arrestment.  Trays containing alarm pheromone-releasing 

ants may increase by orders of magnitude the numbers of flies that are attracted.  As the 

distance from the release point increases, the numbers of flies that reach that distance will 

be spread over a progressively greater area due to the area dilution effect (Turchin 1998). 

RESULTS 

Dispersal at Natchitoches Releases 

Flies were resighted at distances up to 185 m from the release areas within two 

hours of release.  At lower wind speeds (<10 km/h), flies were recaptured at disturbed S. 
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invicta mounds upwind and downwind from the release areas.  However, on one occasion 

when releases were being conducted, only one fly was were resighted 25 m upwind, 

compared with 100 and 175 m downwind.  During this release, wind speeds >20 km/h 

were recorded. 

Montpelier Dispersal Trials 

Tests for drift indicated significant westward (x-component) displacement during 

the periods of maximal resighting in trial 4 only (@ 60 minutes t=2.66, df=23, p=0.01; @ 

90 minutes t=2.99, df=19, p=0.008) (Figure 5.2).  The prevailing wind was toward the 

southeast, indicating that P. tricuspis dispersers may have been flying upwind toward S. 

invicta pheromone sources to the west-northwest.  Although not significant, there was 

also some displacement to the north of the release in trial 3.  The prevailing wind during 

trial 3 was towards the south (0-5 km/h), indicating that P. tricuspis may have been flying 

upwind toward S. invicta pheromone sources to the north of the release point.   

 
Figure 5.2:  Mean displacement of P. tricuspis during the period of maximum resighting 

for trials 2-4. 
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Recapture Rates and Fit of Movement to a Null Diffusion Model 

The numbers of P. tricuspis resighted at each time interval following release and 

the maximum percentage resighted are summarized in Table 5.2.  In general, about 5% of 

flies were resighted.  In trial 1, a maximum of only four flies of 705 released were 

resighted.  Most resighted flies were observed at the 50 m annulus after 90 minutes, but a 

single fly was resighted at 150 m, two hours post-release (Figure 5.3A).  In trials 2 and 3, 

the majority of flies were resighted within 15 m of the release point, but several flies 

were observed at 25-30 m (Figure 5.3B, C).  In trial 2, most flies (70%) were resighted at 

trays along the east-west axis.  The prevailing wind in trial 2 was approximately 10 

km/hr
-1

 and blowing towards the west-northwest, as a result flies may have been orienting 

to pheromone sources both upwind and downwind from the release point.  In trials 2 and 

3, no flies were resighted at the 20 m annulus until 120 minutes post-release.  In contrast, 

in trial 4 the highest resighting frequencies were at 20 m from the release point (Figure 

5.3D).  However, as indicated above, there was significant drift in this trial. 

Table 5.2: Results of dispersal trials at Montpelier, Louisiana: September-October 2005. 

 

Trial 

 

N released and max. resighted 

per census (30, 60, 90, 120 

minutes) 

 

% 

max. 

resighted 

 

Diffusion 

rate
a
 (D ± SE) 

 

Dt vs t 

(p-value) 

     

1 705 (0, 1, 4, 4) 0.5 * * 

2 408 (24, 19, 20, 18) 6  58.1 ± 10.3 -0.95 (0.05) 

3 310 (11, 14, 13, 21) 7 58.0 ± 7.6 -0.74 (0.26) 

4 750 (9, 31, 31, 22) 4 283.7 ± 99.8 -0.91 (0.09) 

*=insufficient data 
a
 Diffusion rate in m

2
/h 

 

 The diffusion rates estimated for each 30 minute census period tended to decline 

over time in trials 2-4.  However, Pearson product moment correlations were marginally 
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significant in trials 2 and 4 (Table 5.2).  Diffusion rates at the 30 minute censuses were 

nearly twice as high as the 60 minute census, but stabilized thereafter. 
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Figure 5.3: Average resightings with distances from release point: (A) Trial 1 (26 

September 2005), (B) Trial 2 (4 October 2005), (C) Trial 3 (13 October 2005), (D) Trial 

4 (17 October 2005).  Individual data points are the average resightings at each distance. 

(B) 

(A) 



 105 

Figure 5.3 (con‟t) 
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Estimated diffusion rates for trials 2 and 3 were nearly identical, but trial 4 had a 

much higher diffusion rate (Table 5.2).  This discrepancy may have been density-

(C) 

(D) 
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dependent, owing to the higher density of flies that were released in trial 4 (nearly 2x 

compared to trials 2 and 3).  The redistribution pattern of P. tricuspis was well described 

by a model of random diffusion for trial 4 only, but was marginally nonsignificant for 

trials 2 and 3 (Table 5.3, Figure 5.4C).  Dispersal quantiles, based on the predicted 

distribution of flies as an average of the four census periods, are presented in Table 5.3.  

On average, 50% of flies dispersed ≤ 10 m and 95% dispersed ≤ 29 m. 
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Figure 5.4: Pseudacteon tricuspis resightings-with-distance.  A linear association 

between the square of the resighting distance and the logarithm of the density of resighted 

individuals is predicted by diffusion model (3). Lines were fitted with least squares 

regression.  As diffusion rates were invariant with respect to time, results are the average 

of the four census periods: (A) trial 2 (4 October 2005), (B) trial 3 (13 October 2005), 

and (C) trial 4 (17 October 2005).  The origin in trial 4 was recalibrated to account for 

significant drift. 
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Table 5.3:  Fit of the diffusion model (3) to fly resighting data for trials 2-4, along with 

coefficients of determination and associated P-values.  Dispersal quantiles are radii of a 

circle (m) enclosing 50% and 95% of dispersers. 

 

   Dispersal quantiles (m) 

Trial R
2
 P 50% 95% 

     

2 0.55 0.09 6.18 17.99 

3 0.65 0.05 9.58 27.87 

4 0.93 0.002 14.61 42.47 

Mean ± SE 0.71 ± 0.11 0.05 ± 0.03 10.12 ± 2.45 29.44 ± 7.11 

 

Dispersal Distances by Fly Sex 

A total of 28 marked flies (7%) were recovered from the Norwood dispersal 

experiment (15 males, 13 females).  The mean distances dispersed by sex were not 

different at either location (Figure 5.5) (Norwood: t=0.5, df=21.4, p=0.6; Montpelier trial 

4: t=0.-0.26, df=12.8, p=0.8). 
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Figure 5.5:  Dispersal distances of recaptured P. tricuspis sexes: (A) Norwood, Louisiana 

(6 October 2005); (B) Montpelier, Louisiana (Trial 4, 17 October 2005). 

 

(A) 



 108 

Figure 5.5 (con‟t) 
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DISCUSSION 

With one exception, a departure from a density distribution predicted by a simple 

diffusion model occurred in this study.  Among insects, these departures are usually 

recaptures that are lower-than-expected near a point source and recaptures that are 

greater-than-expected farther from a point source (i.e. leptokurtic) and can occur when a 

population of dispersing insects is comprised of two or more subgroups that have 

different dispersal capabilities (Turchin 1998, Cronin et al. 2000).  The lack of fit of the 

simple diffusion model implies that redistribution in P. tricuspis may be better described 

with a heterogeneous diffusion model (see Cronin et al. 2000).  In trial 1, no flies were 

resighted at the innermost annulus (25 m), but were observed beyond that distance.  

Moreover, resighting gaps at 20 m were observed in trials 2 and 3.  These resighting gaps 

also suggest that there are two dispersal forms of P. tricuspis: slow moving and fast 

moving dispersers.  The null diffusion model failed to adequately describe redistribution 

patterns of P. tricuspis in trials 2 and 3, but fit the redistribution pattern well in trial 4.  

(B) 
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However, trial 4 had twice the source strength of dispersers compared to trials 2 and 3, 

and the resighting radii were twice that of trials 2 and 3.  It is possible that the random 

diffusion model fit the density distribution in trial 4 well because the data consisted of a 

majority of endpoint dispersers. 

Regardless of the means of dispersal, it is apparent that both sexes of P. tricuspis 

can disperse considerable distances in only two hours.  Although insufficient resighting 

data was obtained in the first Montpelier dispersal trial, it is nevertheless noted that at 

least one fly was resighted 150 m from the point of release, and flies were also resighted 

up to 185 m from release areas within two hours of release during preliminary trials at 

Natchitoches, Louisiana during June 2005.  Beyond these distances it would be very 

difficult to observe flies, owing to a dilution effect at greater distances from the release 

point.  However, by increasing the source strength of dispersers, it is possible to extend 

the limits of detection (see Nathan et al. 2003). 

Rare, long-distance dispersal (LDD) events are directly linked to population 

spread and colonization rates (Nathan et al. 2003).  Although critical to estimating the 

speed at which an introduced population might invade new habitats, the difficulty of 

quantifying tails of dispersal probability distributions (i.e. kernels) pose a challenge in 

ecological research because rare LDD events occur beyond observed dispersal distances, 

and are driven by complex and stochastic processes (Clark et al. 2001, Nathan 2006).  

Jump dispersal can result from intrinsic dispersal heterogeneities within a population due 

to differences in body size, wing morphology and movement behavior (Cronin et al. 

2000, Yamamura 2002), but passive dispersal by wind can also be important (Horn et al. 

2001, Compton 2002, Osborne et al. 2002). 
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Stratified dispersal patterns by P. tricuspis have been suggested as a means by 

which it attains annual population spread rates of 20-30 km in Louisiana (Henne et al. 

2007b) or more in Florida (Pereira and Porter 2006).  Like most small flying insects, P. 

tricuspis probably has a combination of long-distance undirected dispersal in upper winds 

and short-distance directed flights to host ants [see Compton (2002) for a recent review of 

wind dispersal].  High-speed atmospheric upper-level winds can transport parts of 

populations over considerable distances (Hengeveld 1989). 

Dispersal is critical for both persistence and evolution of species, especially in 

changing environments where species must move or adapt to survive (Walters et al. 

2006).  Dispersal can be costly in the short term in terms of energy expended, particularly 

for small-bodied dipterans, but long-term fitness is often higher as a result (Roff 1977).  

In South America, S. invicta occupies a seasonally flooded wetland and savanna area 

along the Paraguay River, known as the Pantanal (Tschinkel 2006).  Therefore, it is 

plausible that long-distance dispersal away from ephemeral or marginal habitats would 

have been strongly selected for by P. tricuspis in South America.  The metapopulation 

dynamics of both S. invicta and its parasitoids in South America in relation to seasonal 

flooding would be an interesting study. 

The pattern of displacement in trials 2 and 4 suggest that P. tricuspis was 

orienting upwind toward S. invicta alarm pheromones (see Figure 2).  Volatile attractants 

are detected downwind of their source, so insects must fly upwind to locate this source.  

It has been shown under field conditions that parasitoids orient to host habitats via 

upwind (positive) anemotaxis (Compton 2002, Williams et al. 2007).  In all dispersal 

trials at Montpelier, flies rapidly dispersed from the cage after the lid was removed, and 
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many were observed flying straight up in the air towards the sun.  In trial 3, several flies 

were resighted 30 m away from the release point, and many trays at 5-10 m had 2-4 flies, 

less than five minutes post-release.  In trial 4, a single fly was resighted 40 m from the 

release point at 10 minutes post-release.  It does not appear likely that flies traveled these 

distances without the aid of wind transport, as the energy costs would be considerable 

(Roff 1977).  Unfortunately, it is almost impossible to track individual movements of P. 

tricuspis due to their miniscule size and rapid flight. 

One possible shortfall of this study is that the duration of the dispersal studies 

reported here may have been too short relative to the lifespan of the flies.  The choice of a 

two hour study was decided because releases of P. tricuspis in Louisiana were normally 

done within a two hour time frame (Henne et al. 2007a).  Studies to evaluate post-release 

loss rates and mortality of P. tricuspis under natural conditions have yet to be done.  It is 

also possible that exposure to host volatiles are important to keep flies in the area.  For 

instance, Hougardy and Mills (2006) showed that Mastrus ridibundus (Grevenhorst) 

(Hymenoptera: Ichneumondiae) females deprived of host stimuli are much more 

dispersive than females that were provided with hosts prior to release.  The effect of 

presenting hosts to P. tricuspis females prior to release has not been evaluated. 

The results obtained here should be viewed as preliminary, and more field studies 

are encouraged.  For example, the recently described phorid fly sticky trap (Puckett et al. 

2007) could be a valuable device in future Pseudacteon dispersal studies to ascertain 

LDD events and model dispersal kernels.  Additionally, the putative role of wind in 

transporting P. tricuspis long distances should be tested experimentally.  Nevertheless, 
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the study reported here provides valuable information about phorid fly dispersal and 

redistribution that was previously unknown. 
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INTRODUCTION 

Classical biological control involving the introduction of natural enemies to 

suppress exotic pest species has been ongoing for more than a century (see Huffaker and 

Messenger 1976, Coulson et al. 2000).  Success of the biological control agent depends in 

part on its ability to establish, spread and eventually occupy the range of its host.  For 

example, successful biological control of the chestnut gall wasp, Dryocosmus kuriphilus 

Yasumatsu (Hymenoptera: Cynipidae), in Japan was achieved by the introduction and 

rapid spread (approximately 60 km/yr) of the introduced parasitoid, Torymus sinensis 

Kamijo (Hymenoptera: Torymidae) (Moriya et al. 2002).  Early models of the spread 

of animal and plant populations were based on the process of diffusion and predicted a 

simple linear rate of spread (Fisher 1937, Skellam 1951, reviewed by Hengeveld 1989, 

Andow et al. 1990, Okubo and Levin 2002, Hastings et al. 2005). However, empirical 

patterns of spread for many species are non-linear, likely attributable to appreciable rates 

of long-distance dispersal (e.g., Hengeveld 1989, Andow et al. 1993, Shigesada et al. 

1995, Johnson et al. 2006, Muirhead et al. 2006).  In these species, nascent populations 

appear well beyond the edge of an expanding range in what is known as stratified or 

“jump” dispersal (Hengeveld 1989). 

For many species, human transport processes, such as the movement of the 

Argentine ant (Linepithema humile (Mayr)) by cars and trucks (Suarez et al. 2001), or the 

zebra mussel (Dreissena polymorpha (Pallas)) by boats (Buchan and Padilla 1999) are 

thought responsible for jump dispersal.  Ignoring this component of dispersal can lead to 

significant underestimates of range expansion of invasive pests and natural enemies 

introduced for their biological control. 
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The red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae), 

is a ubiquitous and economically important pest in the southeastern United States 

(Lofgren 1986).  Much has been published about the introduction, spread, biology, 

economic and environmental impacts, and control of S. invicta in the United States (see 

Vinson 1997, Tschinkel 2006).  Early efforts to eradicate S. invicta with chemical control 

were met with limited success (Taber 2000, Tschinkel 2006).  Recently, more attention 

has focused on the potential for biological control of S. invicta by importing several 

specialist parasitoids in the genus Pseudacteon Coquillet (Diptera: Phoridae) from the 

indigenous range of S. invicta in South America. 

Pseudacteon tricuspis Borgmeier was the first phorid fly species introduced to the 

United States for biological control of S. invicta.  It was initially released in Texas in 

1995 (Gilbert 1996) and Florida in 1997 (Porter et al. 1999). In cooperation with the 

USDA-ARS, the first releases of P. tricuspis in Louisiana took place in September 1999 

and May 2000.  Pseudacteon tricuspis successfully established at each release site 

(Henne and Johnson, unpublished data).   

Available information on dispersal and spread of Pseudacteon flies is limited to 

three studies.  Using traps baited with S. geminata workers, Morrison et al. (1999a) found 

that Pseudacteon parasitoids in Texas dispersed up to 650 m from the nearest S. geminata 

population.  Porter et al. (2004) monitored the spread of P. tricuspis from multiple release 

sites in north-central Florida and found that the average rate of spread was 10-30 km/yr.  

With an additional two years of data, Pereira and Porter (2006) revised these latter 

estimates to 26-57 km/yr.  These studies did not evaluate whether Pseudacteon spread fit 

the theoretical expectations of neighborhood diffusion or that of stratified dispersal (see 
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Shigesada et al. 1995, Hastings et al. 2005). Data of this sort are useful in understanding 

animal movement behavior and is necessary to develop predictive models of species 

spread (Turchin 1998). The aim of this paper is to describe and model the spread of two 

established P. tricuspis populations in Louisiana. 

MATERIALS AND METHODS 

Biology of Pseudacteon Parasitoids 

Parasitic flies of the genus Pseudacteon contribute to maintaining lower 

abundances of S. invicta in South America (Porter et al. 1992), and thus may be useful in 

the suppression of S. invicta populations in the United States.  Although there are native 

species of Pseudacteon that attack native North American fire ants (S. geminata 

(Fabricius) and S. xyloni McCook), they have never been observed to attack S. invicta.  

By reuniting S. invicta with several species of its native Pseudacteon parasitoids, it is 

hoped that the ant communities in the United States that are currently dominated by S. 

invicta may shift in favor of native ant species (Porter 1998). 

Phorid parasitoids locate their hosts by detecting ant semiochemicals (Porter 

1998, Morrison and King 2004).  For example, P. tricuspis is attracted to alarm 

pheromones emitted by S. invicta during mound disturbances, alate flights, and intra- and 

interspecific fighting (Williams et al. 1973, Pesquero et al. 1993, Morrison and King 

2004), and primarily attacks major workers (Morrison et al. 1999b).  Female Pseudacteon 

inject a single egg into the host ants‟ thorax, the larva consumes the head contents and 

eventually pupariates inside the empty decapitated head capsule (Porter et al. 1995). 

A considerable body of evidence suggests that parasitic phorid flies mediate 

competitive interactions between various ant species (e.g. Feener 1981; Feener and 
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Brown 1992; Folgarait and Gilbert 1999; Morrison, 1999, 2000; Orr et al. 1995, 2003).  

Solenopsis spp. workers will reduce or terminate foraging activity in response to attacks 

by Pseudacteon flies (Feener and Brown 1992, Orr et al. 1995, Morrison 1999).  

Mehdiabadi and Gilbert (2002) found that a single attacking P. tricuspis female per 200 

foraging S. invicta workers decreased colony protein consumption almost two-fold and 

significantly reduced numbers of large-sized workers 50 days later.  These studies 

demonstrate the potential for Pseudacteon parasitoids to reduce S. invicta populations 

(but see Tschinkel 2006). 

Release Sites 

Initial P. tricuspis releases in Louisiana were conducted at the following 

locations: 1) 17 km northeast of Covington (St. Tammany Parish) (30° 36′ 35" N; 90° 01′ 

19" W), 8-13 September 1999 (2,165 flies released); 2) 9 km east of Norwood (East 

Feliciana Parish) (30° 59′ 05" N; 91° 00′ 46" W), 27 April-8 May 2000 (4,714 flies 

released).  These release sites were unmaintained pastures located approximately 100 km 

apart and had abundant S. invicta populations.  Adult P. tricuspis were released at 

disturbed S. invicta mounds over a 6-12 day period, and approximately 400 flies were 

released daily at ten disturbed S. invicta mounds.  Mounds were continuously disturbed 

for two hours to maintain S. invicta activity and availability to oviposition by P. tricuspis 

(Porter et al. 2004). 

Evaluating Population Expansion 

Post-release surveys to determine the annual spread limits of P. tricuspis were 

conducted during the fall of each year (September to November) when abundances were 

highest (Henne and Johnson, unpublished data).  Fly surveys were normally conducted 
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between 1100 h and 1700 h when ambient temperatures were warm enough for fly 

activity (>20º C) (Morrison et al. 1999a).  We monitored the spread of P. tricuspis along 

transects in four cardinal directions (i.e. north, south, east, and west) from the release 

point.  Every year, we started our survey along each transect, approximately 3 km 

outward from the previous year‟s range limit. Within a 100 m radius of that point, we 

located ten S. invicta mounds in disturbed habitat (e.g., roadsides, pastures). Two of us 

(D.H. and S.J.) would vigorously disturb the mounds with spades (5-10 sec) and count 

the number of P. tricuspis adults that arrived during the ensuing 30 min.  Normally, flies 

would appear within a few minutes of mound disturbance.  The sampling location was 

also recorded with a Magellan
 TM

 GPS 315/320 (accurate to within 25 m) for later 

plotting on a computer mapping program (Maptech
®
 Terrain Navigator Pro) or Google™ 

Earth. 

If no flies were detected at the disturbed mounds within 30 mins., we moved 

approximately 1 km (the exact distance depended on the presence of suitable S. invicta 

habitat) toward the release area.  If flies were present, the researchers moved 1-2 km 

further away from the release. The survey was continued in each direction until the limits 

of spread were established to within 1 km of their approximate locations.  Annual surveys 

were conducted from 1999 (approx. 40 days post-release) to 2005 for the Covington 

release and from 2001-2006 for the Norwood release (approx. 1 year post-release). 

Modeling P. tricuspis Range Expansion 

Average Radius of Spread 

The mean radius from a point of introduction is the simplest measure of a species‟ 

range and provides an estimate of the expansion rate when it is obtained at known time 
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intervals (Hengeveld 1989). The change in spread radius with time is expected to take on 

one of three forms: linear (constant rate of spread as predicted by early diffusion-based 

models), accelerating (rate of spread continually increases over time), or biphasic 

(initially slow rate of expansion followed by an abrupt transition to an accelerating 

expansion rate) (Shigesada et al. 1995, Turchin 1998).  The mean ± SE annual spread 

radius (based on four transects) for each expanding P. tricuspis population in Louisiana 

was computed.  Linear (null model) and quadratic polynomials were fitted to the mean 

annual spread radius of both populations and compared using the extra sum-of-squares F-

test in Prism
®
 4.03 (GraphPad Software, Inc., San Diego, CA).  The linear and quadratic 

terms were deemed significant if the associated P-values were ≤ 0.05. 

Annual Spread Rates 

Simple models of diffusion predict the spread rate of P. tricuspis to be constant 

over time (Shigesada et al.1995, Turchin 1998). If this is not the case, we can identify 

time periods for which the rate of spread is low (e.g., if an Allee effect is operating during 

the early stages of range expansion), or accelerating.  Because both populations exhibited 

consistent directional bias in expansion rates (see Results), separate curves were 

generated for each transect.  To more clearly depict the latent, accelerating and plateau 

phases of expansion over time, we plotted the relationship between annual spread rate 

(spread radius in year t minus the spread radius in year t-1) and year since release.  A 

logistic model was fit to the Covington 2000-2005 north and west annual spread rates, 

and to the 2000-2004 south and east spread rates using Prism
®
 4.03.  Because the 

Norwood population did not exhibit any measurable spread in the first two years (zero 

individuals in 2001 and 2 individuals among 74 mounds in 2002), there were too few data 
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points to fit the logistic model to its annual spread rates.  The logistic model used was a 

dose-response model, equivalent to a three-parameter logistic model (Motulsky and 

Christopoulos 2003) and had the analytic form: y = Bottom + [(Top – Bottom) / 1 + 10 

LogEC50-x
]. The parameters, bottom (constrained > 0) is the y-value at the bottom plateau, 

top is the y-value at the top plateau, and LogEC50 is the x-value halfway between bottom 

and top. 

Decline of P. tricuspis Abundances Away From Release Points 

One expectation of simple spatial spread models is that the density of the 

organism should decay at an approximately exponential rate with distance from the 

release point (Turchin 1998, Okubo and Levins 2002).  When abundances are ln-

transformed, the relationship is expected to be linear.  Data from P. tricuspis transect 

surveys were transformed [ln (n+1)], where n is the total number of flies observed at ten 

S. invicta mounds.  Linear regression was performed using Prism
®
 4.03. 

RESULTS 

P. tricuspis Range Expansion 

Both the Covington and Norwood P. tricuspis releases resulted in expanding 

populations (Table 6.1).  By the fall of 2005, the leading edges of the westward 

expanding Covington and eastward expanding Norwood populations were approximately 

8 km apart.  Based on expansion rates at that time (see below), these populations were 

projected to merge in 2006.  Thus, the Covington survey was terminated after the 2005 

survey.  The Norwood population was surveyed through 2006, but the presumed merger 

prevented us from determining its eastern expansion limit. 
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For both populations, the average annual radius of spread increased nonlinearly 

with year since release (Figure 6.1).  Adding a quadratic term to the linear models 

significantly improved the fit [Covington df=1,3 (F=164, P=0.001) y = 3x
2 

- 12000x + 

1.2e
0.007

 (R
2
=1.0, n=6); Norwood df=1,3(F=85, P=0.003), y = 4.2x

2 
- 17000x + 1.7e

0.007
 

(R
2
=0.99, n=6)].  In both populations, range expansion was biased to the north of each 

release site (Table 6.1). In Covington, northward expansion as of 2004 was 10.5 km (or 

41 %) farther than the mean expansion for the other three directions. In Norwood, the 

difference as of 2006 was 23.5 km (or 40%). 

The rate of spread of P. tricuspis varied tremendously among years between the 

Covington and Norwood releases (Figure 6.2). The annual rate of spread at the Covington 

site was sigmoidal over time – the spread rate was very low in the first two years 

following the release, then it increased rapidly during years 3-4, and finally appeared to 

slow down or level off at a mean maximal rate of spread of 23 km/yr (Table 6.1, Figure 

6.2A).  Although we do not have sufficient data from the Norwood release (Table 6.1, 

Figure 6.2B) to compare range expansion in the first couple of years to that from 

subsequent years, we do observe a steady increase in the rate of spread from years 3-5. 

The rates of spread during this time period are very comparable to those for the 

Covington release, differing only by an average of 2.6 km (or 15 %).  A paired t-test 

(using Prism 4.3) comparing year 3-5 spread rates between both populations was 

nonsignificant [df=2, t=1.39, p=0.3]. 
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Table 6.1:  Pseudacteon tricuspis cumulative spread radius (km), annual spread distance (radius at year t minus radius at t-1; in 

parentheses), and estimated area occupied (km
2
) for different transects and years at the Covington and Norwood releases. 

 

Release location Year North South East West Mean radii ± SE Area Occupied (km
2
)‡ 

Covington 1999 0.1 0.1 0.1 0.1 0.1 ± 0.0 0.03 

 2000 0.8 (0.8) 0.4 (0.4) 0.4 (0.4) 0.4 (0.4) 0.5 ± 0.1 0.8 

 2001 1.6 (0.8) 0.8 (0.4) 1.6 (1.2) 0.8 (0.4) 1.2 ± 0.2 4.5 

 2002 3.3 (1.7) 1.6 (0.8) 4.4 (2.8) 1.6 (0.8) 2.7 ± 0.7 22.9 

 2003 12.4 (9.1) 11.6 (10) 14.2 (9.8) 8.6 (7) 11.7 ± 1.2 

 

430.0 

 2004 36.5 (24.1) 24.5 (13.1) 27.2 (13) 26.1 (17.5) 28.6 ± 2.7 2,569.7 

 2005 59.8 (23.3) *1 *2 47.1 (21) 50.7 ± 3.0 8,075.4 

 2006 

 

- - - -   74.3 ± 5.9 *5 17,343.1 

 2007 - - - - 102.1 ± 9.2 *5 32,749.2 

Norwood   2000* 3 0.1 0.1 0.1 0.1 0.1 ± 0.0 0.03 
 2001 0.1 0.1 0.1 0.1 0.1 ± 0.0 0.03 

 2002 0.1 0.1 0.1 0.1 0.1 ± 0.0 0.03 

 2003 9.3 1.6 3.2 1.6 4.1 ± 1.95 52.8 

 2004 19.4 (10.1) 10 (8.4) 9.1 (5.9) 8.8 (7.2) 11.8 ± 2.5 437.4 

 2005 40.7 (21.3) 27.4 (17.4) 34.5 (25.4) 36 (27.2) 34.7 ± 2.8 3,782.8 

 2006 82.2 (41.5) 55.2 (27.8) *4 62.2 (26.2) 68.2 ± 9.7 14,612.3 

 2007 - - - -   99.3 ± 12.9 *5 30,977.6 

 2008 - - - - 140.3 ± 20.6 *5 61,839.4 

 

‡ Based on the area of a circle (πr
2
) 

*1 Southward expansion reached Lake Pontchartrain in 2004*2 Eastward expansion merged with Mississippi P. tricuspis in 2005 

*3 2000 - 2002 Norwood radii based on 1999 Covington radii 

*4 Eastward expansion merged with Covington P. tricuspis in 2006 

*5 Predicted radii computed from quadratic models (see text)
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Figure 6.1: The change in Pseudacteon tricuspis range radius (km) over time in four 

cardinal directions (and mean of all directions) for two release sites: Covington (A) and 

Norwood (B), Louisiana. Curves are derived from polynomial least-squares regression 

(see Results). 

(A) 

(B) 
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The logistic models provided a very good fit to the latent, accelerating and plateau 

phases of the Covington spread rate data: North y = 0.4528 + [(25.25 – 0.4528)/ 1 + 10 

log4.199-x
] (R

2
=0.99), South y = 1.0 e

-0.007
 + [(14.2 – 1.0 e

-0.007
)/ 1 + 10 

log3.740-x
] (R

2
=0.98), 

East y = 0.5659 + [(13.6 – 0.5659)/ 1 + 10 
log3.636-x

] (R
2
=0.99), West y = 0.2096 + [(21.43 

– 0.2096)/1 + 10 
log4.336-x

] (R
2
=0.99).  Covington asymptotic spread rates are projected by 

the logistic models to be approximately 25 km/yr (north), 14 km/yr (south and east), and 

21 km/yr year (west).  The Norwood western spread distance in 2006 was similar to the 

2005 spread distance (26 km vs. 27 km). 

Decline of P. tricuspis Abundances Away From Release Points 

For both point-in-time surveys of the abundances of P. tricuspis at the edge of the 

Norwood range, we found that ln fly abundances declined linearly with increasing 

distance from the release point, [2005 east transect df=1, 3 (F=133.5) (R
2
 = 0.98, n=5) p< 

0.01; 2006 south transect df=1, 3 (F=37.59) (R
2
 = 0.93, n=5) p< 0.01; Figure 6.3]. 

DISCUSSION 

Range expansion by P. tricuspis was not linear as predicted by classical models of 

diffusive spread.  Instead, the rate of spread  accelerated during the first five years post 

release and appeared to slow down or level off in subsequent years (at least for the 

Covington site). For both Covington and Norwood, populations were spreading at a rate 

of approximately 15-25 km/yr by the end of the study.  The accelerating phase of range 

expansion is similar to the type 3, bi-phasic curve described by Shigesada et al. (1995). It 

is also suggestive of stratified dispersal in P. tricuspis.  Rapid expansion rates, such as 

those observed in the 3
rd

 through 4
th
 years following the release of P. tricuspis in 

Covington and Norwood, can occur when a few mated female parasitoids disperse very  



 128 

0

5

10

15

20

25

30

2000 2001 2002 2003 2004 2005

Year

A
n

n
u

a
l 

ra
te

 o
f 

s
p

re
a

d
 (

R
t 
–

 R
t-

1
)

North

Sout
h
East

West

Mean

 

0

5

10

15

20

25

30

35

40

45

2004 2005 2006

Year

A
n

n
u

a
l 

ra
te

 o
f 

s
p

re
a
d

 (
R

t-
R

t-
1
)

North

South

East

West

Mean

 
Figure 6.2: Annual directional rate of spread (km/year = radius at timet- radius at timet-1) 

for P. tricuspis at the Covington (A) and Norwood (B) release sites. A logistic growth 

curve (see Methods) is fit to each individual transect and the mean of all four transects. 
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Figure 6.3: ln number of P. tricuspis/10 mounds at different distances from the release 

point at Norwood. (A)  East transect, 10 October 2005, (B) South transect, 11 October 

2006. 
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far in relation to the typical neighborhood movements of most individuals (Hastings 

2000).  Jump dispersal can result from intrinsic dispersal heterogeneities within a 

population, owing to differences in body size, wing morphology and movement behavior 

(Cronin et al. 2000, Yamamura 2002).  It can also result from human-assisted transport of 

a small subset of the population (e.g., Buchan and Padilla 1999, Suarez et al. 2001). 

Presently, we do not have any information on whether P. tricuspis exhibits intrinsic 

differences in dispersal ability or if humans might assist in their spread. 

At low initial population densities, the few long-distance dispersers would have 

little impact on the velocity of the advancing neighborhood diffusion wave (Hengeveld 

1989).  However, as densities increase, the number of long-distance dispersers will 

increase and may become a dominant component of the advancing wave (Hengeveld 

1989). Eventually, even with stratified dispersal, spread rates should reach an asymptote 

as densities equilibrate; after which time the mean radius of spread (or square root of area 

occupied) versus time function would become linear (see Hengelveld 1989, Moriya et al. 

2002, Yamamura 2002). 

Many organisms introduced to a new environment undergo an initial period of 

little or no expansion, called a „latent phase‟ (Turchin 1998).  This is an important first 

step in the eventual establishment and spread of introduced organisms. It is a time when 

the population presumably adapts to local conditions and increases its numbers (Turchin 

1998, Andow 1999).  This latent phase may be caused by an Allee effect, whereby 

introduced insects dispersing into a new environment may become so rare that males and 

females often fail to encounter one another (Hopper and Roush 1993).  In their review of 

the literature, Hopper and Roush (1993) found that establishment success of introduced 
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parasitoids depended on the release density and number of releases. This suggests that 

Allee effects may represent an important constraint on the success of biological control 

programs using parasitoids. 

Introduced organisms may also have an „eclipse‟ period in which abundances 

shortly after the release fall below a detection threshold, (Hopper and Roush 1993).  This 

can occur in situations when dispersal rates are high, thereby acting as a „drain‟ on local 

populations at the release site (Kean and Barlow 2000).  Despite high P. tricuspis 

abundances (>5 flies/mound) at the Norwood release site during 2000, flies were not 

detected at the release site one year later, and only two flies were observed the second 

year after introduction, despite intensive sampling.  By the third year post-release, P. 

tricuspis had already spread up to 10 km away from the release area.  A combination of 

slower-than-expected local increase at the release site (i.e., during the eclipse period), 

followed by rapidly increasing rates of spread beginning in the third year (Figure 6.2) , 

may have been responsible for the sudden appearance of P. tricuspis so far from the 

release site (Kean and Barlow 2000).  Clearly, the negligible population abundances at 

the Norwood release site 1-2 years post-release were not a reliable indication of the true 

status of this population.  In future releases, more intensive and wider-ranging surveys 

should be conducted initially when population densities are low. 

Porter et al. (2004) documented P. tricuspis expansion rates that were comparable 

to the rates we found in the Louisiana releases -- 10-30 km/yr in central Florida versus 

15-25 km/yr in Louisiana. The Florida releases also appeared to exhibit accelerating 

spread rates, although Porter et al. (2004) did not attempt to quantify this pattern.  

Expansion rates in Florida appeared to have accelerated more quickly than in Louisiana, 
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reaching approximately 23 km/yr only three years post-release.  Porter et al. (2004) also 

found that P. tricuspis abundances decreased with increasing distances away from release 

points, and Morrison et al. (1999a) documented declining abundances of Pseudacteon 

parasitoids of S. geminata at increasing distances from host colonies in Texas.  A species‟ 

population density tends to be highest near the center and gradually declines towards the 

margin of its geographical range (Guo et al. 2005).  This can be attributed to an area-

dilution effect (Turchin 1998).  As distance from the release point increases, the numbers 

of organisms reaching that distance are spread over a progressively larger area.  The log-

linear declines of P. tricuspis abundances with increasing distance away from the source 

population suggest a probability distribution function (kernel) with a long tail of P. 

tricuspis dispersers (i.e. exponential decline in abundance).  Similar declines in 

abundances along other transects near the range edges were observed in both Louisiana 

populations (Henne and Johnson, unpublished data). 

Another similarity between our Louisiana releases and the Florida releases 

(Pereira and Porter 2006) is that there is a northward bias in P. tricuspis spread. Areas 

near coastal Louisiana are subjected to afternoon sea breezes that blow north from the 

Gulf of Mexico and occur almost daily during the warm season (Smith and Fuelberg 

2005).  Morrison et al. (1999a) suggested that most Pseudacteon remain close to the 

ground during high winds, but also that passive transport by wind may be an important 

factor in long-distance dispersal.  In support of this claim, P. tricuspis have successfully 

dispersed across the Mississippi river (>1 km) and beyond dense forest stands (e.g. 

Bogue Chitto National Wildlife Refuge) that were at least five km wide and at least 20 

km deep (as measured in Google
TM 

Earth). 
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Microinsects routinely form concentrated well-defined plumes in thermal currents 

of rising air (Geerts and Miao 2005) suggesting that long-distance dispersal via winds 

may be important in the spatial spread of these species.  The detection of P. tricuspis 

nearly 42 km further north of the Norwood release site in the 2006 as compared to the 

2005 survey was considerably farther than any previous recorded spread distance for this 

species, including the Florida releases reported in Porter et al. (2004).  An explanation for 

this may have been the influence of two hurricanes (Katrina and Rita) that made landfall 

in Louisiana in 2005.  High winds associated with these large-scale synoptic events as 

they approached and moved northward through Louisiana 

(http://www.nhc.noaa.gov/2005atlan.shtml) would have transported dispersing P. 

tricuspis adults farther away than normal.  In Florida, four hurricanes with a generally 

northward trajectory in 2004 (Charley, Frances, Ivan and Jeanne) 

(http://www.nhc.noaa.gov/2004atlan.shtml) may explain the enhanced P. tricuspis spread 

rates reported by Pereira and Porter (2006) in Florida.  Several studies have shown that 

tropical cyclones account for long-distance transport of many insects (e.g. Larsen and 

Pedgley 1985, Torres 1988, Richardson and Nemeth 1991, Clarke and Zalucki 2004).  

Thus, model-based predictions of future expansion distances may be prone to 

considerable directional bias.  Regardless of how directional bias occurs, P. tricuspis 

populations do spread considerable distances on an annual basis, a feature that will 

contribute to its ability to quickly occupy the range of S. invicta (see also Porter et al. 

2004, Pereira and Porter 2006). 

Nearly 20 species of Pseudacteon are known to attack S. invicta in South America 

(Porter and Pesquero 2001), and at least three species of Pseudacteon have already been 
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imported and released in the United States: P. tricuspis (Graham et al. 2001, Porter et al. 

2004), P. curvatus Borgmeier (Graham et al. 2003), and P. litoralis Borgmeier (Porter 

and Alonso 1999).  Pseudacteon borgmeieri Schmitz (Folgarait et al. 2002a) and P. 

cultellatus Borgmeier (Folgarait et al. 2002b) are currently under evaluation for possible 

release in the United States in the next few years.  This study provides valuable 

information about P. tricuspis population spread that can be used in predicting spread 

rates and distances (with directional bias) for this and other Pseudacteon species.  The 

fact that P. tricuspis spread patterns and rates are so similar in Louisiana and Florida 

suggests that our predictions would be robust for releases of this species throughout the 

southeastern United States. 
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DAILY AND SEASONAL DYNAMICS OF THE DECAPITATING FLY, 

PSEUDACTEON TRICUSPIS BORGMEIER (DIPTERA: PHORIDAE) IN 

LOUISIANA 
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INTRODUCTION 

 

Introductions of non-native organisms for long-term biological control of exotic 

insects and weeds (i.e. classical biological control) have been ongoing for over 100 years 

(Greathead 1986, Godfray and Waage 1991).  A crucial aspect of biological control 

programs should be the study of how populations of introduced biocontrol organisms 

respond to alien environments.  Post-release monitoring of biological control 

introductions is vital, not only for assessing impacts on target pests, but also to determine 

population trends and develop sampling methodology.  Therefore, obtaining information 

on daily and seasonal activity patterns of these organisms and, if possible, relating these 

patterns to environmental correlates should be a major thrust of biological control 

programs. 

The red imported fire ant, Solenopsis invicta Buren, is an ubiquitous exotic insect 

in the southeastern United States, and is regarded as a significant economic pest in this 

region (Lofgren 1986, Porter et al. 1992).  Beginning in the late 1990‟s, several species of 

parasitoids from the indigenous range of S. invicta in South America have been imported 

for the biological control of S. invicta.  One promising attribute of this effort is based on 

the potentially significant role that parasitic flies of the dipteran family Phoridae play in 

maintaining lower abundances of S. invicta in South America (Porter et al. 1997).  Phorid 

flies of the genus Pseudacteon Coquillet affect Solenopsis foraging behavior, and 

research has focused on how parasitic phorid flies mediate competitive interactions 

between various ant species (e.g. Feener 1981; Feener and Brown 1992; Folgarait and 

Gilbert 1999; Orr et al. 1995, 2003).  Studies of Solenopsis foraging activity in response 

to attacks by Pseudacteon flies reveal that Solenopsis workers often terminate foraging 
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activity in the presence of phorid flies (Feener and Brown 1992, Orr et al. 1995).  

Reuniting S. invicta with several species of its native Pseudacteon parasitoids may 

ameliorate the ecological dominance currently enjoyed by S. invicta in the U.S. (Porter 

1998). 

The first species of Pseudacteon considered for S. invicta biocontrol in the United 

States was P. tricuspis Borgmeier.  This species was released in Texas during 1995 

(Gilbert 1996) and Florida during 1997 (Porter et al. 1999), and is now currently 

established in multiple states throughout the southeastern United States (Porter et al. 

2004), including Louisiana (Henne et al. 2007).  These parasitoids detect semiochemicals 

used by ants for communication, and use these cues to find their hosts (Porter 1998).  For 

example, P. tricuspis are attracted to alarm pheromones emitted by S. invicta during 

mound disturbances and intra- and interspecific encounters (Morrison and King 2004), 

and primarily attack S. invicta major workers (Morrison et al. 1999a).  Larvae of these 

flies decapitate their hosts and make use of the empty head capsule as a pupariation 

compartment (Porter et al. 1995). 

Understanding of phorid fly population dynamics is not well developed (Disney 

1994, Morrison 2000).  Like most Phoridae, fundamental information about P. tricuspis 

population ecology remains unknown or is inadequate, particularly under climatic 

conditions unique to Louisiana.  Very little information exists concerning the spatial and 

temporal dynamics of various Pseudacteon spp. (Disney 1994), particularly in the United 

States.  Nearly 20 species of Pseudacteon are known to attack S. invicta in South 

America (Porter and Pesquero 2001), and three species of Pseudacteon have already been 

imported and released in the United States: P. tricuspis (Graham et al. 2001), P. curvatus 
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Borgmeier (Graham et al. 2003) and P. litoralis Borgmeier (Porter and Alonso 1999).  

Several other species are currently under evaluation for possible release in the United 

States in the next few years as well [e.g. P. borgmeieri Schmitz (Folgarait et al. 2002a), 

P. cultellatus Borgmeier (Folgarait et al. 2002b, P. obtusus Borgmeier (Folgarait et al. 

2005), and P. nocens Borgmeier (Folgarait et al. (2006)].  Studying the population 

dynamics of P. tricuspis in Louisiana will not only provide valuable knowledge about the 

natural history of phorid flies, the results will also be useful in evaluating the population 

dynamics of other species of parasitic phorids as well. 

This study addressed the following objectives to enhance our understanding of 

Pseudacteon population dynamics, particularly in Louisiana, by supplementing previous 

studies on Pseudacteon spp. in the United States by Morrison et al. (1999b) in Texas, and 

Morrison and Porter (2005a) in Florida: 1) determine the daily activity pattern of P. 

tricuspis, and relate these patterns to various abiotic variables; 2) determine the dynamic 

behavior of P. tricuspis populations over an extended time, determine if populations are 

synchronized over small and large spatial scales, and determine if populations are 

correlated with various abiotic variables; 3) determine the sex ratios and frequency 

distributions of P. tricuspis at disturbed S. invicta mounds; and 4) determine the 

minimum sample size and sampling methodology that will provide an estimate of the true 

relative population mean of P. tricuspis at any location. 

MATERIALS AND METHODS 

Daily and Seasonal Survey Sample Locations 

The developmental rate of P. tricuspis from egg to adult is approximately 33 days 

at 30 °C (Morrison et al. 1997).  Therefore, multivoltinism in P. tricuspis is likely to 
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occur in Louisiana and elsewhere in the southern United States.  Consequently, P. 

tricuspis daily activity and relative abundances were evaluated at approximately monthly 

intervals from June to October 2004, and January to November 2005 at two sites in 

southeast Louisiana, separated by approximately 100 km.  The first study site: (30° 59 ′ 

05" N; 91° 00′ 46" W), located along LA 422, 9 km east of Norwood (East Feliciana 

Parish) was characterized as unmaintained pasture, approximately 20-30 ha in size, and 

surrounded by mature hardwood trees along its border.  The second study site: (30° 32 ′ 

33" N; 90° 02′ 50" W) located along LA 1082, 9 km northeast of Covington (St. 

Tammany Parish) was characterized as a horse-training facility, with approximately 6 

acres of unmaintained pasture and included two large (~0.5ha) ponds.  Whenever 

possible, both sites were sampled within a few days of one another. 

2004-2005 Surveys and Sampling Methodology 

Three 0.5 ha plots were permanently established at each site to obtain variance 

estimates of P. tricuspis relative abundances (i.e. # P. tricuspis/mound) and evaluate 

spatial correlations in abundances (Figure 7.1).  At hourly intervals, between 0900h and 

1600h Central Standard Time (CST), five S. invicta mounds were haphazardly selected in 

a subsection of each plot and marked with a wire stake flag.  Plots were separated by at 

least 50-100 m to minimize effects of sampling S. invicta mounds on P. tricuspis 

populations in adjacent plots.  Hourly surveys were conducted in a diagonal pattern 

(figure 7.1) so that consecutive surveys were conducted as far apart as possible.  

Morrison et al. (1999b) determined that Pseudacteon parasitoids of S. geminata near 

Austin, TX were attracted to S. geminata colonies at distances of <50 m.  It is unknown if 

P. tricuspis are similarly attracted from these distances.  However, the five randomly 
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disturbed mounds were usually >10 m apart and were disturbed within a short period of 

time (1-2 mins.). 

 

Figure 7.1: Hourly sampling pattern inside 0.5 ha survey plots.  Numbers indicate order 

of sampling. 

 

Williams et al. (1973) determined that a significantly greater number of phorids 

appear at disturbed mounds than at undisturbed mounds, and disturbing S. invicta mounds 

has been the conventional method of attracting and quantifying P. tricuspis populations 

in Louisiana since 1999.  Therefore, a circular depression (approximately 15 cm 

diameter) was made in S. invicta mounds using a small spade.  Wire stake-pierced 

Styrofoam discs (30 cm diameter) were used to shade disturbed fire ant mounds from the 

sun to prevent overheating and to maintain fire ant activity at the soil surface.  All 

mounds were vigorously disturbed for at least ten seconds, and five minutes was allowed 

to elapse before counts of P. tricuspis were made.  Two minutes observation time was 
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periods so that all three plots could be sampled on an hourly basis. Population surveys 

were conducted only when air temperatures exceeded 20° C, as this temperature is 

considered a threshold temperature for Pseudacteon activity (Morrison et al. 1999b). 

Before hourly surveys began, soil moisture at 10 cm depth in one plot was 

measured with a Lincoln soil moisture meter (Forestry Suppliers Part No. 3052), which 

ranks soil moisture on a scale of 1-10 (1=driest, 10=wettest).  Ten measurements were 

made at 5 m intervals along a transect running from the corner towards the center of one 

plot, and the average of these values used in statistical analyses (Morrison et al. 2000).  

Readings were taken at approximately the same locations during each survey.  To obtain 

an estimate of soil % moisture, three soil samples, each approximately 15 cm x 15 cm x 

10 cm, were excavated with a shovel from random areas within one plot, placed in 

individual plastic bags and returned to the laboratory, where vegetation was carefully 

removed and weighed, and the soil samples dried in a desiccating oven for one week at 

70º C and dry weights taken.  Rainfall data was recorded with an HOBO
®

 event recorder 

w/rainwise 1/100" self-emptying rain gauge (Gempler‟s Item No. G77651).  Long-term 

hourly temperature and relative humidity data were recorded with HOBO
®
 H8 Pro Series 

RH/Temp data loggers (Onset Computer, Pocasset, MA, Part No. H08-032-08). 

At the beginning of each sample period the following variables were recorded: the 

air temperature, relative humidity, and dewpoint was recorded at 30 cm above ground in 

the shade (see Morrison et al. 2000), and wind speed and direction, averaged over a 10-

second period at 1.5 m above ground with a handheld digital weather instrument 

(Speedtech Instruments
®

 Skymate Plus Wind Meter SM-19, Forestry Suppliers Inc. Part 

No. 2320).  Barometric pressure was recorded with a Brunton
®
 ADC Summit™ weather 
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meter (Forestry Suppliers Inc. Part No. 89225).  Maximum light intensity during a 20-

second period was recorded with a light meter (Extech™ light meter, Forestry Suppliers 

Inc. Part No. 1393).  Soil temperature at 2 cm soil depth was recorded with a temperature 

probe (Forestry Suppliers Part No. 89102), also at the same location over time.  

Temperatures recorded are correlated with S. invicta foraging activity (Porter and 

Tschinkel 1987) and were used as a proxy for ant activity due to time constraints. 

2006 Surveys 

The 2006 surveys were conducted on three occasions (June, July and September) 

at the Norwood and Covington locations described above, and on two occasions (June 

and October) at multiple locations (n=8) within Washington Parish, Louisiana.  For each 

survey, at least 30-45 S. invicta mounds were randomly sampled and disturbed over a 3-4 

hour period during the late morning and early afternoon.  All P. tricuspis that appeared at 

disturbed mounds were captured into individual 2-dram glass vials with an Allen-type 

double chamber vial aspirator (BioQuip
®
 #1135C), labeled and returned to the laboratory 

for sex determination.  For each sample occasion, the percentages of mounds that 

attracted the numbers of the following were calculated: flies, males, females, males alone, 

females alone, and males and females together. 

Statistical Analyses 

Daily Activity Patterns 

To determine if daily fly abundance patterns were correlated with measured 

environmental variables, total hourly fly survey counts for each of the Norwood and 

Covington populations during 2004 and 2005 were log10n+1-transformed (where n is the 

number of P. tricuspis) and regressed against the following variables: dewpoint, air, soil 
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surface temperature (ºC), soil temperature at 2 cm depth (ºC), relative humidity (%), light 

intensity (lux), air pressure (kPa), average wind speed (km/h) and time of day (CST).  

Adding one to fly counts was necessary to allow for log10-transformation of zero values.  

Linear and quadratic functions were fitted and compared using the extra sum-of-squares 

F-test in Prism
®
 4.03 (GraphPad Software, Inc., San Diego, CA).  To account for 

changing photoperiod through the seasons, hourly sample times were also standardized 

according to the number hours elapsed since sunrise (see Pesquero et al. 1996) and were 

determined using the U.S. Naval observatory data service at http://aa.usno.navy.mil/.  

The linear and quadratic terms were considered significant if the associated p-values were 

≤ 0.05. 

Seasonal Dynamics 

To determine if the three plot populations at each of the Norwood and Covington 

study sites fluctuated synchronously during 2004 and 2005, the total numbers of P. 

tricuspis observed in each of the three plots for each individual survey were log10n+1-

transformed and Pearson Product-Moment Correlation (PPMC) coefficients computed.  

Similarly, to determine if the Norwood and Covington populations fluctuated 

synchronously over time, the mean log10n+1-transformed fly counts for each individual 

survey during 2004 and 2005 were also analyzed and PPMC coefficients computed.  

Additionally, PPMC coefficients were computed to describe how log10n+1-transformed 

individual monthly survey total fly counts at Norwood (June 2004 to October 2005) and 

Covington (July 2004 to October 2005) covaried with the following environmental 

variables: total monthly rainfall (mm), mean soil probe reading, average soil surface 

temperature (ºC), soil temperature at 2 cm depth (ºC), and air temperatures (°C) 
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(Morrison et al. 2000).  Finally, the mean Norwood and Covington populations over the 

entire 2004-2005 survey were compared.  The total daily fly counts for each population 

were log10n+1-transformed and compared with a 2-tailed t-test at a significance level of 

α=0.05. 

Time Series Analysis 

Analyses of population dynamics usually employ time series methodology to 

analyze population abundances to determine the time lag on which negative feedback 

processes are acting, such as density dependence (Hunter and Price 1998, Benton et al. 

2006).  Data consisting of observations taken over time may be autocorrelated, where the 

assumption of independent error terms may not be valid (Bence 1995).  Ordinary least 

squares procedures on autocorrelated data can lead to Type 1 errors in hypothesis testing, 

as well as confidence intervals that are smaller in size than they should be (Hurlbert 1984, 

Bence 1995, Neter et al. 1996).  Here, tests for autocorrelation on P. tricuspis time series 

data were conducted using a first-order autoregressive (AR) model, followed by a 

Durbin-Watson test for lag-1 autocorrelation.  This model assumes positive 

autocorrelation (i.e. population abundance at time t depends on the population abundance 

at time t-1), which decreases steadily with increasing time between observations (Bence 

1995).  The Durbin-Watson test scrutinizes the difference between consecutive errors 

compared to the error values themselves (Sall et al. 2005). 

Time series statistical analyses were performed on the 2004-2005 Norwood and 

Covington survey data using the time series modeling feature in S-Plus™ 7.0 (Insightful 

Corporation, Seattle, Washington).  Autocorrelation coefficients (ACF) and partial 

correlation coefficients (PACF) of log10n+1-transformed total daily fly counts were 
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computed and plotted for time lags 1-16 for both sites.  The PACF has been employed as 

a useful tool for diagnosing the order of an AR process (Box and Jenkins 1976, Turchin 

1990).  Zero counts at Norwood during the February and March 2005, and Covington 

February 2005 surveys required the addition of one to the counts before log10-

transformation (see Turchin 2003).  Because surveys were not conducted during 

November and December 2004, linear interpolation was used to estimate fly counts at 

both locations for a single point in time between late October 2004 and early January 

2005. 

Analysis of Fly Count Frequency Distributions 

Counts of many biological populations, including insects, are described by the 

negative binomial distribution (Anscombe 1949).  As part of a different study, P. 

tricuspis populations were sampled during October 2006 in Washington Parish, 

Louisiana.  Poisson and negative binomial distributions were fit to the P. tricuspis survey 

count frequency distributions using log-likelihood regression (SAS PROC GENMOD) 

and compared with expected frequencies using SAS PROC FREQ (SAS Institute 2002, 

http://www.stat.lsu.edu/faculty/moser/exst7024/distributions/discretedata-body.html). 

Sample Size 

Determining sample size is an important consideration for any sampling program.  

It should be large enough to enable suitably precise parameter estimation, but not 

unreasonably large (Manly 2001).  The allowable precision level in ecological research is 

normally 10-25% (Southwood 1978), and is defined as xSED /  where x  is the 

sample mean abundance and SE  is the standard error of the mean abundance (Zhou et al. 

2004).  Equations to estimate sample sizes are available, but normally apply to samples 
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obtained from unit areas (i.e. absolute population estimates sensu Southwood 1978).  In 

this study, disturbed S. invicta mounds serve as „traps‟ and therefore only provide an 

estimate of relative P. tricuspis abundances.  To determine the minimum sample size that 

would provide a precise estimate of the population mean and standard error, the October 

2006 Washington Parish P. tricuspis survey counts (n=80) were randomly subsampled 

using S-Plus 7.0.  After three outliers were removed, random samples of 5, 10, 15, 20, 25, 

30 50, 77 and 100 with replacement were taken from the truncated dataset to obtain 

estimates of the mean, standard error and 95% confidence intervals.  Next, nonlinear curve 

fitting of sample sizes plotted against the standard error divided by the mean was 

performed using Prism
®
 4.03. 

RESULTS 

Daily Activity Patterns 

The only regression variables that were significantly correlated with fly 

abundances over time at both locations were light intensity and time of day.   The 

Norwood and Covington fly activity as a function of light intensity were best fit by a 

straight line [Norwood light intensity (df=1, 61; F=15.61; p=0.0002), y = 0.37 + 0.0007x, 

(R
2
=0.20, n=63)], Covington light intensity [(df=1, 74; F=4.52; p=0.04), y = 0.65 + 

0.0004x, (R
2
=0.06, n=76)].  Adding a quadratic term to the linear fly activity vs. time of 

day models significantly improved the fit: [Norwood (df=1,60; F=16.16; p=0.0002), y = -

4.64
e-0.006

x
 2 

+ 0.012x - 6.53 (R
2
=0.25, n=63, Figure 7.2A); Covington: (df=1,66; F=8.39; 

p=0.005), y = -3.63
e-0.006

x
 2 

+ 0.0094x - 4.93 (R
2
=0.23, n=77, Figure 7.2B); Norwood and 

Covington pooled: (df=1,137; F=18.29; p<0.0001), y = -3.85
e-0.006

x
 2 

+ 0.01x - 5.29 

(R
2
=0.18, n=140, Figure 7.2C)]. 
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Fly abundances at both study locations generally peaked at midday (1100-1300h 

CST), at approximately the time of solar maximum.  The x-intercepts of the quadratic 

models suggest a fly activity period lasting from approximately 0700h to 1800h (CST).  At 

Norwood, fly abundances were also positively correlated with wind speed (km/h) [(df=1, 

47; F=4.46; p=0.04), y = 0.77 + 0.04x, (R
2
=0.09, n=63)], and negatively correlated with 

relative humidity (%) [(df=1, 61; F=5.73; p=0.02), y = 1.59 - 0.01x, (R
2
=0.09, n=63)] and 

dewpoint temperature (°C) [df=1, 61; F=6.46; p=0.01), y = 1.83 - 0.04x, (R
2
=0.10, n=63)]  

At Covington, fly abundance was also negatively correlated with soil surface temperature 

[df=1, 30; F=13.83; p=0.0008), y = 54.39 - 1.007 x, (R
2
=0.32, n=32)]. 
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Figure 7.2:  Daily activity pattern of P. tricuspis as a function of time of day (CST): (A) 

Norwood, (B) Covington, (C) Pooled. 
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Figure 7.2 (con‟t) 
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Figure 7.3: Daily activity pattern of P. tricuspis as a function of hours elapsed since 

sunrise: (A) Norwood, (B) Covington, (C) Pooled. 
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The hourly survey data corrected for elapsed time since sunrise gave a different 

pattern of results.  The Norwood hourly survey data was best fit by a straight line 

(y=0.123x + 0.212, Figure 7.3 A).  Adding a quadratic term did not significantly improve 

the fit (df=1, 60; F=0.58; p=0.45). However, adding a quadratic term significantly 

improved the fit of the Covington survey data [(df=1,66; F=8.049; p=0.006) y = -0.0436x
 2 

+ 0.5962x - 0.9251 (R
2
=0.17, n=77, Figure 7.3B)].  The combined data from Norwood 

and Covington was also best fit by a straight line (y=0.1x + 0.35).  Adding a quadratic 

term did not significantly improve the fit (df=1, 129; F=3.09; p=0.08, Figure 7.3C). 

Seasonal Dynamics 

Pseudacteon tricuspis abundances at Norwood and Covington were generally 

highest in the late summer and early fall in Louisiana during both survey years (Figure 7.4).  

However, flies were still active at both locations during early January 2005, but were rare 

or absent during February and March 2005, despite temperatures that were warm enough 

for fly activity.  During 2005, both populations displayed three discrete peaks in 

abundance: late May, late July and late September at Norwood, and late April, late June 

and late September at Covington.  During 2004, population abundances at both locations 

were not significantly correlated with soil probe readings (Norwood Pearson r=-0.44, 

p=0.38, r
2
=0.20, n=6; Covington Pearson r=-0.17, p=0.78, r

2
=0.03, n=5).  In 2005, 

population abundances at both locations were significantly correlated with soil probe 

readings and had nearly identical PPMC coefficients [Norwood (May to November): 

Pearson r=0.82, p=0.04, r
2
=0.68, n=7; Covington (April to October): Pearson r=0.83, 

p=0.02, r
2
=0.69, n=7]. 
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Figure 7.4:  Time series graph of mean # P. tricuspis/mound and soil moisture probe 

readings: (A) Norwood, Louisiana; (B) Covington, Louisiana 2004-2005. 
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Local Spatial Correlation 

Pearson product-moment correlations coefficients between plot fly abundances over 

time were significant at Norwood (Pearson r=0.30, p=0.04, r
2
=0.09, n=48, Figure 7.5A), 

but not significant at Covington (Pearson r=0.24, p=0.11, r
2
=0.06, n=45, Figure 7.5B).  

However, fly abundances in plots B and C at Covington were significantly correlated 

(Pearson r=0.38, p=0.03, r
2
=0.15, n=30).  Overall, the time series fly abundances of the 

Norwood and Covington populations were significantly correlated (Pearson r=0.69, 

p=0.004, r
2
=0.48, n=15). 

 

 

Figure 7.5:  Time series graph of log-transformed P.tricuspis inside individual sample 

plots (A) Norwood, (B) Covington. 

 

(A) 
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Figure 7.5 (con‟t) 

 

Time Series 

The Norwood P. tricuspis population autocorrelation function (ACF) plot 

revealed minimally significant autocorrelation at lag 1 (Figure 7.6A), indicating that the 

fly population at time t is dependent on the population at time t-1.  In contrast, the 

Covington ACF plot (Figure 7.6B) showed no significant lag 1 autocorrelation.  Partial 

autocorrelation function (PACF) graphs of both populations (Figures 7.6C, D) had single 

positive spikes at lag 1, but again this was only significant for the Norwood fly 

population (Norwood PACF 0.53, Covington PACF 0.44). 

(B) 
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Figure 7.6: Autocorrelation (ACF) and partial autocorrelation function (PACF) plots of 

the P. tricuspis population time series: (A) Norwood ACF, (B) Covington ACF, (C) 

Norwood PACF, (D) Covington PACF.  Dashed lines indicate 95% confidence intervals. 
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Figure 7.6 (con‟t) 
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Soil probe readings were significantly correlated with lag 1-month rainfall (mm) 

at Norwood (Pearson r=0.75, p=0.0009, R
2
=0.56, n=16), but not at Covington (Pearson 

r=0.07, p=0.79, R
2
=0.005, n=16).  The survey log-transformed mean fly populations at 

Norwood and Covington were not significantly different (Mean ± SE: Norwood 1.53 ± 

0.18, Covington 1.59 ± 0.18, t-test p=0.81). 

Frequency Distributions, Sex Ratios and Sample Size 

Between June and November 2006, nearly 1,500 P. tricuspis adults were collected 

at 52% of disturbed S. invicta mounds (range: 22-96%, n=460) (Table 7.1).  Of the 

mounds that attracted flies (i.e. positive), males appeared at an average of 88% (range: 

74-100%, n=211) and females 67% (range: 40-91%, n=160).  Disturbed mounds that 

yielded only males occurred at an average of 33% of positive mounds (range: 10-60%, 

n=79), and females at only 14% (range 0-26%, n=29).  Males and females occurred 

together at an average of 55% of positive mounds (range: 4-91%, n=131).  The overall 

male to female sex ratio at all locations was 1.75:1, at Covington 2.5:1, at Norwood 

1.29:1 and at pooled Washington Parish sample locations 1.9:1. 

All October 2006 Washington Parish survey frequency distributions were fit well 

by a negative binomial distribution, as evidenced by goodness-of-fit values close to one 

(Figure 7.7).  Out of 80 S. invicta mounds that were disturbed, 75 attracted P. tricuspis.  

Males outnumbered females at 59 mounds, females outnumbered males at only eight 

mounds, while the other eight had equal numbers of both sexes (Table 7.1).  Males 

appeared at 100% of mounds during the fall surveys in Washington Parish.  The 

percentage of mounds with female appearances increased from spring to fall. 
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Table 7.1:  Summary of P. tricuspis collections made during 2006 at Norwood (N), Covington (C) and multiple locations (n=8) within 

Washington Parish (WP), Louisiana. 

 

            

Location Date Mounds Mounds w/ Flies ♂♂ ♀♀ ♂♂ only ♀♀ only ♂♂ + ♀♀ 
Total 
♂♂ 

Total 
♀♀ #/mound 

            

C 6/1/06 45 10 (22.2%) 8 (80%) 4 (40%) 6 (60%) 2 (20%) 2 (4.4%) 12 4 1.6 

N 6/5/06 75 39 (52%) 31 (79.5%) 19 (48.7%) 20 (51.3%) 8 (20.5%) 11 (14.7%) 57 28 2.2 

WP 6/6/06 80 23 (28.8%) 17 (73.9%) 13 (56.5%) 10 (43.5%) 6 (26.1%) 7 (8.8%) 40 19 2.6 

C 7/26/06 45 29 (64.4%) 25 (86%) 18 (62.1%) 11 (37.9%) 4 (13.8%) 14 (31.1%) 83 35 4.1 

N 7/28/06 45 22 (48.9%) 19 (86.4%) 16 (72.7%) 6 (27.3%) 3 (13.6%) 13 (28.9%) 74 54 5.8 

N 9/14/06 45 28(62.2%) 25(89.3%) 23(82.1%) 5(17.9%) 3(10.7%) 20(71.4%) 102 98 7.1 

C 9/20/06 45 14 (31.1%) 11 (78.6%) 7 (50%) 6 (42.9%) 3 (21.4%) 4 (28.6%) 25 9 2.4 

WP 10/18/06 30 27 (90%) 27(100%) 17(63%) 10(37%) 0 (0%) 17 (63%) 151 64 8.0 

WP 11/1/06 50 48 (96%) 48 (100%) 43(91%) 5(10%) 0(0%) 43(91%) 386 221 12.7 

            

  460 240 (52%) 211 (88%) 160 (67%) 79 (33%) 29 (14%) 131 (55%)    

            

        All sites 930 532  

        C 120 48  

        N 233 180  

        WP 577 304  
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Figure 7.7: Frequency distribution of P. tricuspis collected from disturbed S. invicta 

mounds in Washington Parish, Louisiana October 2006: (A) males, (B) females, (C) both 

sexes combined. 

 

The results of subsampling the October 2006 Washington Parish survey data set 

indicated no differences in mean # flies/mound when subsamples are compared (df=6, 220; 

F=0.938; p=0.47).  The plot of standard error as a percentage of the mean vs. sample size 

was fit very well by a one phase exponential decay model (R
2
=0.99) (Figure 7.8).  If a 

standard error that is 25% of the mean is acceptable then approximately 15 samples should 

be taken and a 10% level would require slightly more than 50.  However, small sample 

sizes should be viewed with caution, since confidence intervals are wider. 

(A) (B) 

(C) 
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Figure 7.8: Plot of standard error percentage of mean at several sample sizes based on 

October 2006 Washington Parish survey data. 

 

DISCUSSION 

Daily Activity 

Diurnal fly activity in Louisiana increased gradually to maximum levels at midday 

and early afternoon and gradually declined during the late afternoon and evening.  Diurnal 

activity patterns of P. tricuspis and P. littoralis Borgmeier were studied in Brazil by 

Pesquero et al. (1996).  Activity of P. tricuspis in Brazil peaked during midday, and 

abundances were significantly related to air temperature, soil temperature and humidity.  

Folgarait et al. (2007) found that P. tricuspis in western Argentina were absent for the 

first two hours following sunrise.  In the laboratory, P. tricuspis emerge during the early 

morning hours, with many adults emerging before sunrise, and peak male emergence 

occurred approximately one or more hours before peak female emergence (Henne and 

Johnson, Unpublished data).  Wuellner et al. (2002) described a similar emergence pattern 

for P. curvatus Borgmeier.  The diurnal pattern of P. tricuspis is probably entrained by 
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photoperiod during the preceding days before eclosion.  Although fly abundances were also 

positively correlated with light intensity on certain days, this activity pattern also occured 

on cloudy days as well, and even when midday light intensity was very low (i.e. <200 lux).  

However, Wuelner and Saunders (2003) found that warmer morning temperatures resulted 

in Pseudacteon parasitoids of S. geminata (F.) in Texas appearing earlier in the morning.  

This can probably be attributed to faster physiological development after adult eclosion, 

allowing adults to become active sooner in the day (see also Wuellner et al. 2002, Folgarait 

et al. 2007).  The linear pattern of fly activity based on hours elapsed since sunrise implies 

that fly abundance was greatest in the late afternoon and evening.  This is consistent with 

Folgarait et al‟s (2007) finding that P. tricuspis were most abundant during the late 

afternoon and evening in western Argentina.  However, on any given sampling day in 

Louisiana, P. tricuspis abundances peaked during the early afternoon and gradually 

declined into the evening in a quadratic pattern. 

Even though insect diurnal activity patterns tend to be correlated with daily 

fluctuations in light, temperature, and other environmental variables (Disney 1994), 

stepwise multiple regression procedures were not utilized in this study to model P. tricuspis 

daily activity patterns with environmental correlates.  Other researchers (Pesquero et al. 

1996; Morrison et al. 1999a, 2000; Folgarait et al. 2003; Wuellner Saunders 2003) have 

found significant positive correlations between phorid abundance and air temperature, soil 

temperature negative correlations with humidity.  However, in the studies conducted in 

Louisiana, relative humidity was also found to be inversely related to temperature, so 

correlations of phorid abundance with certain environmental variables may simply be 

coincidental.  Using stepwise multiple regression techniques to explain patterns in nature 



 165 

and to predict future trends has been severely criticized (see Whittingham et al. 2006).  

Without conducting manipulative laboratory and field experiments to experimentally test 

the effects of these environmental variables on phorid fly behavior, broad generalizations 

about environmental correlates might be misleading and should be viewed with caution. 

Seasonal Dynamics 

Generally, the highest and lowest fly abundances were almost always found in the 

same plots and plot abundances at local and regional scales fluctuated synchronously.  

Morrison and Porter (2005a) also found that abundances were positively correlated among 

survey sites located 8-16 km apart in north-central Florida.  Additionally, fly abundances 

are known to be positively correlated with S. invicta density (Morrison and Porter 2005b).  

Although S. invicta mound populations were not evaluated per se, the plots that had higher 

phorid abundances in Louisiana had more fire ant mounds.  Large-scale spatial synchrony 

in animal population dynamics appears to be a general phenomenon among animal 

populations (Ranta et al. 1995, Heino et al. 1997), including P. tricuspis populations in 

Louisiana that are separated by 100km. 

In Louisiana, P. tricuspis populations fluctuated throughout the year, but were 

highest during the late summer and fall and lowest during the winter and early spring.  This 

is consistent with findings by Morrison and Porter (2005b) in north-central Florida.  Fowler 

et al. (1995) evaluated seasonal activity of Pseudacteon spp. in Brazil and found P. 

tricuspis to be the seasonally most abundant species.  Folgarait et al. (2003) studied the 

seasonal activity patterns of adult Pseudacteon spp. that attack S. richteri Forel in 

Argentina and determined that P. tricuspis was associated with certain months, mainly 

those in the fall, with greater rainfall and fewest days with frosts.  Pseudacteon tricuspis 
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is active in all months of the year in north-central Florida (Porter et al. 2004, Morrison 

and Porter 2005a).  In Louisiana, P. tricuspis were rare or absent at both locations during 

February and March 2005.  It is unknown why adults were difficult to collect during the 

late winter, even though ambient temperatures were warm (>25° C).  However, the soil 

temperatures at 2 cm depth were only 18-20° C from January through March 2005 at 

Norwood and during January and February 2005 at Covington. Cool soil temperatures 

during the winter may have slowed development of phorid pupae, or they were in 

diapause.  Folgarait et al. (2007) discuss the possibility of pupal diapause in Pseudacteon 

in Argentina. 

Morrison et al. (1999b, 2000) studied the phenology of Pseudacteon parasitoids 

of S. geminata in central Texas and discovered that phorid abundances varied seasonally, 

with rainfall patterns possibly linked to these abundances.  Morrison et al. (2000) also 

determined that soil moisture levels were often a good predictor of phorid abundance.  In 

Louisiana, seasonal dynamics of P. tricuspis at both locations were significantly correlated 

with the soil moisture readings at 10 cm depth during 2005, but not during 2004.  Frequent 

heavy rain occurred during much of June 2004 at both Norwood and Covington.  Inclement 

weather would have suppressed fly activity significantly, and this was observed on several 

occasions during 2004 when light rain and drizzle often curtailed or stopped fly activity. 

Three peaks in abundances occurred at both Louisiana locations during 2005.  

Morrison and Porter (2005a) also documented three seasonal peaks in P. tricuspis 

abundances in north-central Florida.  These abundance peaks may be linked to S. invicta 

alate flights.  Alate flight events in S. invicta are triggered by rainfall > 5mm following a 

period of dry weather (Markin et al. 1971, Morrill 1974).  Populations of P. tricuspis in 
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Brazil peak during the spring, in accordance with fire ant mating flights (Fowler et al. 

1995).  During alate flights, S. invicta workers swarm over the surface of the mound and 

adjacent vegetation in a heightened state of alarm (Markin et al. 1971), presumably to 

attack potential predators of alate reproductives as they leave the nest.  In South America, 

Pseudacteon phorids, including P. tricuspis, have been observed attacking fire ants 

swarming over mound surfaces during alate flight events (Pesquero et al. 1993).  In this 

scenario, many S. invicta workers would be vulnerable to attack by searching P. tricuspis 

females during alate flight events.  Hypothetically, the population dynamics of P. 

tricuspis may be driven in a density-dependent manner in response to a greater 

availability of S. invicta workers during area wide alate flight events that occur after a 

rainfall.  This factor could explain the synchrony in P. tricuspis population dynamics in 

adjacent plots and in widely separated populations. 

Morrison et al. (2000) discussed the importance of environmental variables on the 

development of Pseudacteon parasitoids and their population dynamics.  Phorid 

abundances during any sampling period will be a function of environmental variables 

from some previous time, the effect of these environmental variables on adults of the 

previous generation, and the durations of larval and pupal stages in the intervening time.  

The environmental conditions present during sampling would not be suitable predictors 

of numbers of phorids attracted to ants.  In other words, there would be a time lag in 

phorid population response to certain environmental conditions that existed between 

generations.  The autocorrelation functions in the time series analyses behave like a 

damped sine wave, indicating an endogenous component in the population dynamics 

(Turchin 1990).  However, as Berryman and Turchin (1997) warn, time series analysis 
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should not be employed as a test of hypotheses, but instead be used as a means of 

identifying potential hypotheses that can then be experimentally tested.  If P.tricuspis 

population dynamics are driven by rainfall patterns and alate flight events, then this could 

be experimentally tested by artificially irrigating large areas of fire ant habitat after an 

extended dry period and leaving similar areas unirrigated as a control  Additionally, local 

patchiness in alate flight events may also lead to aggregations of P. tricuspis in space.  

However, variance in P. tricuspis developmental rates may make it difficult to link P. 

tricuspis population dynamics to exogenous drivers or delayed density-dependence (see 

also Turchin 1990, Hunter and Price 1998). 

Frequency Distributions, Sex Ratios and Sample Size 

Male to female sex ratios in Louisiana varied by locations, but were roughly 2:1 

overall.  Calcaterra et al. (2005) found that P. tricuspis male-female sex ratios at fire ant 

mounds at multiple locations in three regions of southern South America were also 

approximately 2:1.  Morrison and Porter (2005a) found male to female sex ratios of 2.65:1 

in north-central Florida.  Sex ratios of Pseudacteon parasitoids that appear at disturbed 

colonies and along foraging trails are often male-biased (Pesquero et al. 1993, Morrison 

et al. 2000, Wuellner and Saunders 2003). A discussion of sex ratio theory and P. 

tricuspis sex ratios is presented in Chapter 3. 

Pesquero et al. (1993) found that many phorid males were attracted to alate 

swarms emanating from fire ant colonies, presumably as an assembly cue to encounter 

female phorids.  Males of P. tricuspis are often present at S. invicta mounds and appear to 

feign attacks on ant workers (Porter 1998, Morrison 2000).  It is thought that this 

behavior elicits the production of alarm pheromones by S. invicta workers, potentially 
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attracting P. tricuspis females to these ants, and allowing males to copulate with these 

females (Porter 1998). 

Overall, P. tricuspis was collected from 52% of disturbed S. invicta mounds in the 

2006 Louisiana surveys, with a similar pattern from surveys conducted during 2004 and 

2005.  In Calcaterra et al.‟s (2005) study, 14 Pseudacteon species were collected at 51% of 

disturbed fire ant mounds in South America.  The percentage of disturbed mounds that 

attracted P. tricuspis in Louisiana tended to increase from spring through fall. 

The fly count frequency distributions were highly skewed to the left, with many 

counts of 1-3 flies/mound.  Furthermore, the variance was much larger than the mean in all 

fly surveys, suggesting a negative binomial distribution.  However, it is important to 

mention that the true spatial dispersion pattern of flies is unknown.  The count frequency 

distributions presented here merely reflects the count distribution of flies attracted to 

disturbed fire ant mounds, not the distribution in the environment.  Given that P. tricuspis 

aggregates at disturbed fire ant mounds, a negative binomial distribution was expected. 

In contrast to findings reported by Puckett et al. (2007), mechanically disturbing S. 

invicta mounds regularly attracted many P. tricuspis, and is viewed as a reliable method of 

sampling P. tricuspis.  During the late summer and fall in Louisiana, >100–200 

flies/mound can be attracted within a few minutes of disturbance, and often appear at >90% 

of disturbed mounds.  Extremely vigorous trauma was inflicted upon S. invicta mounds in 

the Louisiana surveys, which probably enhanced attractiveness to P. tricuspis.  The surveys 

conducted in Louisiana were very labor-intensive but were necessary to determine broad 

spatial and temporal activity patterns. 
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Findings in this study indicate that the following protocols should be followed 

when sampling P. tricuspis populations in Louisiana, should disturbing fire ant mounds be 

the chosen method of attracting flies.  Sampling should be conducted during the late 

morning or early afternoon, during peak fly activity, as long as temperatures are >20° C. 

However extremely hot temperatures (>36° C, Henne et al. 2007) or rain may curtail fly 

activity.  In Louisiana, P. tricuspis population abundances can vary considerably 

throughout the year, but abundances consistently peak during the late summer and fall, 

predominantly October.  Therefore, sampling should be conducted during the late summer 

and fall.  At least 15 fire ant mounds should be sampled to obtain an estimate of the true P. 

tricuspis population mean with a precision level of 25%.  As abundances can vary 

considerably at local spatial scales (see also Chapter 3), it is recommended that samples be 

taken in several locations so that a representative portion of an area is sampled.  In addition 

to providing essential information about P. tricuspis population ecology in Louisiana, 

results of this study will be useful in conservation, augmentation, sampling and 

management of P. tricuspis. 
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SUMMARY 

In this dissertation, laboratory and field observations and experiments on the 

population ecology of a red imported fire ant parasitoid, P. tricuspis were conducted.  

These studies were necessary to fill considerable gaps in our knowledge about phorid 

flies in general and Pseudacteon parasitoids in particular.  The laboratory studies 

described in Chapter 2 revealed that parasitized S. invicta workers remained inside the 

nest during parasitoid larval development, and left the colony approximately 8-10 hours 

before decapitation by the parasitoid.  When parasitized ants left the colony, they were 

highly mobile, were responsive to tactile stimuli, and showed minimal defensive 

behavior.  Ants ultimately entered into a grass thatch layer, where they were decapitated 

and the fly maggots pupated.  This study reveals that parasitized ants exhibit behaviors 

that are consistent with host manipulation to benefit survival of the parasitoid.  An 

important outcome of this study will be for future researchers to determine the 

mechanisms by which the P. tricuspis maggot manipulates its host. 

The studies conducted in Chapter 3 provided insights into P. tricuspis behavioral 

and functional responses that were unknown until now.  I conducted laboratory 

evaluations to quantify aggregative responses of P. tricuspis adults to variable host 

densities, determine effect of direct mutual interference between pairs of ovipositing P. 

tricuspis females confined with host S. invicta, elucidate the effect of confining 1 or 2 

additional males with already mated females on progeny sex ratios, and, lastly, determine 

the form of the functional response of individual ovipositing P. tricuspis to varying host 

densities.  The density-dependent aggregations of P. tricuspis observed in the laboratory 

were consistent with theory and field observations.  No evidence of direct mutual 
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interference was found when two or three female P. tricuspis were confined with hosts in 

small containers, although per capita oviposition success, measured as number of hosts 

killed, appeared to decline when more than two females were confined.  This study did 

not demonstrate any reductions in estimates of searching efficiency of at least 2 or 3 

simultaneously ovipositing P. tricuspis females.  This study also did not reveal any 

significant effect of having additional males confined with solitary mated females.  

Together, mutual interference of conspecific male and females at low densities does not 

appear to be significant, but may become important at higher densities.  However, the sex 

ratios trended downward toward a 1:1 ratio when the number of males confined with a 

single female was increased from zero to two.  None of the linear parameters in the 

logistic models were significantly different from zero suggesting that P. tricuspis had 

constant attack rates regardless of host density under the laboratory experimental design.  

The Type I functional response found was unexpected on the grounds that most parasitoids 

appear to have a Type II functional response.  It is expected that the results obtained in this 

study will stimulate further research into testing host-parasitoid theory with Pseudacteon 

flies. 

Chapter 4 was an attempt to model the population structure of P. tricuspis on a 

local spatial scale, and relate P. tricuspis spatial abundances to host social form and 

colonies infected with the fire ant pathogen, Thelohania solenopsae.  No significant 

spatial associations were found between P. tricuspis counts and host S. invicta colonies 

infected with T. solenopsae.  However, significant clustering of counts occurred when P. 

tricuspis populations peaked, and were associated with polygyne host colonies.  Overall, 

P. tricuspis count patterns were largely random spatially and temporally. 
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In Chapter 5, I was interested in quantifying local movement of P. tricuspis by 

conducting multiple mass-release-recapture studies to determine the redistribution 

patterns of P. tricuspis dispersers and fit a diffusion curve to the dispersal data.  Drift of 

dispersing flies was found on several occasions, and was probably wind-induced.  

Diffusion rates ranged between 58 m
2
/h and 280 m

2
/h, and tended to decline over time 

after release.  A departure from a density-distribution predicted by a simple diffusion 

model occurred in this study.  The lack of fit of the simple diffusion model implies that 

redistribution in P. tricuspis may be better described with a heterogeneous diffusion 

model (see Cronin et al. 2000).  The recently described phorid fly sticky trap (Puckett et 

al. 2007) could be a useful tool in other Pseudacteon dispersal studies to ascertain long-

distance dispersal events and model dispersal kernels.  Additionally, the putative role of 

wind in transporting P. tricuspis long distances should be tested experimentally.  

Nevertheless, the study reported in Chapter 5 provides valuable information about phorid 

fly dispersal and redistribution that was previously unknown. 

In Chapter 6, the long-term pattern of spread of P. tricuspis was monitored in four 

directions at two widely separated release sites in Louisiana from 1999-2006.  At both 

sites, P. tricuspis range expansion, measured as the mean radius of the range from four 

cardinal directions, was accelerating during the first four years post release. This pattern 

also contrasted with a linear pattern expected with simple diffusion, suggesting that 

population spread involved both a neighborhood diffusion and long-distance dispersal 

component. This is known as stratified or jump dispersal. This is consistent with findings 

in Chapter 5, where diffusion was not well described by a simple model of random 

diffusion.  Annual rates of spread were low in the first two years post release, possibly 
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owing to an Allee effect, increased rapidly in years 3-4, and slowed down or leveled off 

by years 5-6.  Annual spread rates reached a peak of 15-25 km/yr, with the northward 

spread being about 40% greater than the spread in the other cardinal directions.  High 

rates of spread in the latter years and directional bias in the spread of P. tricuspis may 

have been driven by prevailing winds and two northward-moving hurricanes.   Together, 

the results in Chapters 5 and 6 are important contributions toward understanding animal 

movement. 

Finally, in Chapter 7 the daily and seasonal dynamics of P. tricuspis were studied.  

I was interested in relating these dynamics to various abiotic variables, determine if 

populations were synchronized over small and large spatial scales, determine the sex 

ratios and frequency distributions of P. tricuspis that appear at disturbed S. invicta 

mounds, and determine the minimum sample size and sampling methodology that would 

provide an estimate of the true relative population mean of P. tricuspis at any location.  

Daily patterns of relative abundance followed a quadratic pattern, with peak fly activity 

during the afternoon.  Seasonally, P. tricuspis relative abundances were variable and 

appear positively correlated with soil moisture levels.  Peak seasonal abundances 

occurred during the late summer and fall in Louisiana, while abundances were lowest 

during the late winter and early spring.  The following protocols were derived from the 

results in Chapter 7, and are recommended when sampling P. tricuspis populations in 

Louisiana, should disturbing fire ant mounds be the chosen method of attracting flies.  

Sampling should be conducted during the late morning or early afternoon, during peak fly 

activity, as long as temperatures are >20° C; however, extremely hot temperatures (>36° C, 

Henne et al. 2007) or rain may curtail fly activity.  In Louisiana, P. tricuspis population 
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abundances can vary considerably throughout the year, but abundances consistently peak 

during the late summer and fall, predominantly October.  Therefore, sampling should be 

conducted during the late summer and fall.  At least 15 fire ant mounds should be sampled 

to obtain an estimate of the true P. tricuspis population mean with a precision level of 25%.  

As abundances can vary considerably at local spatial scales (see also Chapter 3), it is 

recommended that samples be taken in several locations so that a representative portion of 

an area is sampled. 

In conclusion, a very broad range of studies were conducted to evaluate aspects of 

P. tricuspis behavior and population ecology that were either unknown or poorly known.  

In addition to providing essential information about P. tricuspis population ecology in 

Louisiana, results of this study will be useful in conservation, augmentation, sampling 

and management of P. tricuspis.  It is expected that the findings here will applicable to 

other species of Pseudacteon that have been released in the United States for the 

biological control of the red imported fire ant. 
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title 'functional response A'; 
data functional_response; 

 input NO REP FATE NE;/*N0 = initial number of prey, REP = 

replicate number, 

 FATE: 0 = prey eaten 1 = prey alive, NE = count of prey in each 

FATE */ 

 NO2=NO**2; /*initial number of prey squared*/ 

 NO3=NO**3; /*initial number of prey cubed*/ 

 cards; 

 135 1 0 1 

 135 1 1 134 

 135 2 0 2 

 135 2 1 133 

 270 1 0 3 

 270 1 1 267 

 270 2 0 5 

 270 2 1 265 

 270 3 0 2 

 270 3 1 268 

 540 1 0 1 

 540 1 1 539 

 540 2 0 10 

 540 2 1 530 

 540 3 0 1 

 540 3 1 539 

 540 4 0 5 

 540 4 1 535 

 810 1 0 6 

 810 1 1 804 

 810 2 0 7 

 810 2 1 803 

 810 3 0 7 

 810 3 1 803 

 810 4 0 6 

 810 4 1 804 

 1080 1 0 2 

 1080 1 1 1078 

 1080 2 0 8 

 1080 2 1 1072 

 1080 3 0 1 

 1080 3 1 1079 

 1080 4 0 6 

 1080 4 1 1074 

 ; 

PROC CATMOD DATA=functional_response; 

DIRECT NO NO2 NO3; 

MODEL FATE = NO NO2 NO3/ML NOPROFILE; 

POPULATION NO REP; 

WEIGHT NE; 

DATA functional_response2; 

SET functional_response;  

IF FATE=0; PROPEAT= NE/NO; 

PROC MEANS DATA=functional_response2; 

BY NO NOTSORTED; 

VAR PROPEAT; 

OUTPUT OUT=funcMEAN MEAN=MEANPROP; 
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run; 

title 'functional response B'; 

data functional_response; 

 input NO REP FATE NE;/*N0 = initial number of prey, REP = 

replicate number, 

 FATE: 0 = prey eaten 1 = prey alive, NE = count of prey in each 

FATE */ 

 NO2=NO**2; /*initial number of prey squared*/ 

 NO3=NO**3; /*initial number of prey cubed*/ 

 cards; 

 135 1 0 2 

 135 1 1 133 

 135 2 0 5 

 135 2 1 135 

 135 3 0 2 

 135 3 1 133 

 270 1 0 3 

 270 1 1 267 

 270 2 0 4 

 270 2 1 266 

 540 1 0 2 

 540 1 1 538 

 540 2 0 1 

 540 2 1 539 

 540 3 0 4 

 540 3 1 536 

 810 1 0 3 

 810 1 1 807 

 810 2 0 6 

 810 2 1 804 

 810 3 0 3 

 810 3 1 807 

 1080 1 0 6 

 1080 1 1 1074 

 1080 2 0 3 

 1080 2 1 1077 

 1080 3 0 3 

 1080 3 1 1077 

 1080 4 0 4 

 1080 4 1 1076 

 ; 

PROC CATMOD DATA=functional_response; 

DIRECT NO NO2 NO3; 

MODEL FATE = NO NO2 NO3/ML MAXITER=100 NOPROFILE; 

POPULATION NO REP; 

WEIGHT NE; 

DATA functional_response2; /* obtaining means and SE's for observed 

proportions eaten */ 

SET functional_response;  

IF FATE=0; PROPEAT= NE/NO; 

PROC MEANS DATA=functional_response2; 

BY NO NOTSORTED; 

VAR PROPEAT; 

OUTPUT OUT=funcMEAN MEAN=MEANPROP; 

run; 
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title 'functional response C'; 

data functional_response; 

 input NO REP FATE NE;/*N0 = initial number of prey, REP = 

replicate number, 

 FATE: 0 = prey eaten 1 = prey alive, NE = count of prey in each 

FATE */ 

 NO2=NO**2; /*initial number of prey squared*/ 

 NO3=NO**3; /*initial number of prey cubed*/ 

 cards; 

 135 1 0 1 

 135 1 1 134 

 135 2 0 1 

 135 2 1 134 

 135 3 0 1 

 135 3 1 134 

 270 1 0 3 

 270 1 1 267 

 270 2 0 4 

 270 2 1 266 

 270 3 0 7 

 270 3 1 263 

 270 3 0 5 

 270 3 1 265 

 540 1 0 2 

 540 1 1 538 

 540 2 0 5 

 540 2 1 535 

 540 3 0 2 

 540 3 1 538 

 540 4 0 7 

 540 4 1 533 

 810 1 0 2 

 810 1 1 808 

 810 2 0 6 

 810 2 1 804 

 810 3 0 6 

 810 3 1 804 

 1080 1 0 6 

 1080 1 1 1074 

 1080 2 0 4 

 1080 2 1 1076 

 1080 3 0 5 

 1080 3 1 1075 

 1080 4 0 1 

 1080 4 1 1079 

 ; 

PROC CATMOD DATA=functional_response; 

DIRECT NO NO2 NO3; 

MODEL FATE = NO NO2 NO3/ML NOPROFILE; 

POPULATION NO REP; 

WEIGHT NE; 

DATA functional_response2; SET functional_response;  

IF FATE=0; PROPEAT= NE/NO; 

PROC MEANS DATA=functional_response2; 

BY NO NOTSORTED; 

VAR PROPEAT; 

OUTPUT OUT=funcMEAN MEAN=MEANPROP;run; 
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title 'functional response ABC'; 

data functional_response; 

 input NO REP FATE NE;/*N0 = initial number of prey, REP = 

replicate number, 

 FATE: 0 = prey eaten 1 = prey alive, NE = count of prey in each 

FATE */ 

 NO2=NO**2; /*initial number of prey squared*/ 

 NO3=NO**3; /*initial number of prey cubed*/ 

 cards; 

 135 1 0 1 

 135 1 1 134 

 135 2 0 2 

 135 2 1 133 

 135 3 0 2 

 135 3 1 133 

 135 4 0 5 

 135 4 1 135 

 135 5 0 2 

 135 5 1 133 

 135 6 0 1 

 135 6 1 134 

 135 7 0 1 

 135 7 1 134 

 135 8 0 1 

 135 8 1 134 

 270 1 0 3 

 270 1 1 267 

 270 2 0 5 

 270 2 1 265 

 270 3 0 2 

 270 3 1 268 

 270 4 0 3 

 270 4 1 267 

 270 5 0 4 

 270 5 1 266 

 270 6 0 3 

 270 6 1 267 

 270 7 0 4 

 270 7 1 266 

 270 8 0 7 

 270 8 1 263 

 270 9 0 5 

 270 9 1 265 

 540 1 0 1 

 540 1 1 539 

 540 2 0 10 

 540 2 1 530 

 540 3 0 1 

 540 3 1 539 

 540 4 0 5 

 540 4 1 535 

 540 5 0 2 

 540 5 1 538 

 540 6 0 1 

 540 6 1 539 

 540 7 0 4 

 540 7 1 536 
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 540 8 0 2 

 540 8 1 538 

 540 9 0 5 

 540 9 1 535 

 540 10 0 2 

 540 10 1 538 

 540 11 0 7 

 540 11 1 533 

 810 1 0 6 

 810 1 1 804 

 810 2 0 7 

 810 2 1 803 

 810 3 0 7 

 810 3 1 803 

 810 4 0 6 

 810 4 1 804 

 810 5 0 3 

 810 5 1 807 

 810 6 0 6 

 810 6 1 804 

 810 7 0 3 

 810 7 1 807 

 810 8 0 2 

 810 8 1 808 

 810 9 0 6 

 810 9 1 804 

 810 10 0 6 

 810 10 1 804 

 1080 1 0 2 

 1080 1 1 1078 

 1080 2 0 8 

 1080 2 1 1072 

 1080 3 0 1 

 1080 3 1 1079 

 1080 4 0 6 

 1080 4 1 1074 

 1080 5 0 6 

 1080 5 1 1074 

 1080 6 0 3 

 1080 6 1 1077 

 1080 7 0 3 

 1080 7 1 1077 

 1080 8 0 4 

 1080 8 1 1076 

 1080 9 0 6 

 1080 9 1 1074 

 1080 10 0 4 

 1080 10 1 1076 

 1080 11 0 5 

 1080 11 1 1075 

 1080 12 0 1 

 1080 12 1 1079 

 ; 

PROC CATMOD DATA=functional_response; 

DIRECT NO NO2 NO3; 

MODEL FATE = NO NO2 NO3/ML MAXITER=50 NOPROFILE; 

POPULATION NO REP; 
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WEIGHT NE; 

DATA functional_response2; /* obtaining means and SE's for observed 

proportions eaten */ 

SET functional_response;  

IF FATE=0; PROPEAT= NE/NO; 

PROC MEANS DATA=functional_response2; 

BY NO NOTSORTED; 

VAR PROPEAT; 

OUTPUT OUT=funcMEAN MEAN=MEANPROP; 

run; 

title 'functional response 25_200'; 

data functional_response; 

 input NO REP FATE NE;/*N0 = initial number of prey, REP = 

replicate number, 

 FATE: 0 = prey eaten 1 = prey alive, NE = count of prey in each 

FATE */ 

 NO2=NO**2; /*initial number of prey squared*/ 

 NO3=NO**3; /*initial number of prey cubed*/ 

 cards; 

 25 1 0 4 

 25 1 1 21 

 25 2 0 1 

 25 2 1 24 

 25 3 0 13 

 25 3 1 12 

 25 4 0 8 

 25 4 1 17 

 25 5 0 5 

 25 5 1 20 

 25 6 0 6 

 25 6 1 19 

 25 7 0 5 

 25 7 1 20 

 50 1 0 14 

 50 1 1 36 

 50 2 0 3 

 50 2 1 47 

 50 3 0 21 

 50 3 1 29 

 50 4 0 3 

 50 4 1 47 

 50 5 0 2 

 50 5 1 48 

 50 6 0 8 

 50 6 1 42 

 50 7 0 2 

 50 7 1 48 

 100 1 0 14 

 100 1 1 86 

 100 2 0 14 

 100 2 1 86 

 100 3 0 7 

 100 3 1 93 

 100 4 0 13 

 100 4 1 87 

 100 5 0 24 

 100 5 1 76 
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 100 6 0 6 

 100 6 1 94 

 100 7 0 2 

 100 7 1 98 

 200 1 0 7 

 200 1 1 193 

 200 2 0 31 

 200 2 1 169 

 200 3 0 9 

 200 3 1 191 

 200 4 0 29 

 200 4 1 171 

 200 5 0 22 

 200 5 1 178 

 200 6 0 18 

 200 6 1 182 

 200 7 0 9 

 200 7 1 191 

 ; 

PROC CATMOD DATA=functional_response; 

DIRECT NO NO2 NO3; 

MODEL FATE = NO NO2 NO3/ML NOPROFILE; 

POPULATION NO REP; 

WEIGHT NE; 

DATA functional_response2; /* obtaining means and SE's for observed 

proportions eaten */ 

SET functional_response;  

IF FATE= 0; PROPEAT= NE/NO; 

PROC MEANS DATA=functional_response2; 

BY NO NOTSORTED; 

VAR PROPEAT; 

OUTPUT OUT=FUNCMEAN MEAN=MEANPROP; 

run; 
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Title "Male Pseudacteon tricuspis at fire ant mounds"; 

Data maleflies; 

 Input Y Frequency; 

 Do i=1 To Frequency; 

  Output; 

 End; 

 Keep Y; 

Datalines; 

 0   5 

 1  10 

 2   8 

 3   4 

 4   6 

 5   6 

 6   3 

 7   5 

 8   8 

 9   4 

10   4 

; 

 

/*  

 * Show original frequency table 

 */ 

Proc Freq Data=maleflies; 

 Table Y; 

Run; 

 

/* 

 * Examine a histogram of the data 

 */ 

Proc GChart Data=maleflies; 

 VBar Y / Discrete; 

Run; 

 

Proc Univariate Data=maleflies; 

 Var Y; 

Run; 

 

/* 

 * Fit a Poisson distribution to the data 

 */ 

Title3 "Poisson Model"; 

Proc Genmod Data=maleflies; 

 Model Y = / Dist=Poisson Link=Log LRCI; 

 Estimate "Population Mean" Intercept 1 / Exp; 

 ODS Output ParameterEstimates=Parms; 

Run; 

 

/* 

 * Compute Expected Probabilities. These 

 * will be used in a GOF test to follow. 

 */ 

Data Expected; 

 If _N_=1 Then 

  Do; 

   Set Parms; 
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   Lambda=Exp(Estimate); /* First obs is ln(lambda) */ 

   ELambda=Exp(-Lambda); 

   Retain Lambda ELambda; 

  End; 

 Do Y=0 To 10; 

  Prob=(Lambda**Y)*ELambda/Gamma(Y+1); /* Poisson Probability */ 

  Expected=63*Prob; 

  Cummulative+Prob; 

  InvCum=1-Cummulative+Prob; 

  Output; 

 End; 

 Stop; 

 Keep Y Prob Expected Lambda Cummulative InvCum; 

Run; 

Title4 "Expected Probabilities"; 

Proc Print Data=Expected; 

Run; 

  

/* 

 * Can use PROC FREQ to do GOF test, though 

 * d.f. are not correct. Since some expected 

 * values will be less than 1, we will group 

 * the data for Y>=4 into a common group. 

 */ 

Proc Format; 

 Value YGroup 4-High="4+"; 

Run; 

 

/* 

 * Since there will be 5 cells in this table, 

 * PROC FREQ will compute the d.f. to be 5-1=4. 

 * However, the probabilities were predicted 

 * by estimating the parameter Lambda using the 

 * same data. Thus we need to lose 1 more d.f. 

 * Thus, d.f.=5-1-1=3. 

 */ 

Title4 "Pearson Chi-square Goodness-of-fit Test"; 

Title5 "Note: Degrees of Freedom Should Be 3"; 

Proc Freq Data=maleflies; 

 Table Y / Chisq NoCum TestP=(1.085 4.907 11.100 16.738 65.479); 

 Format Y YGroup.; 

Run; 

 

/* 

 * Repeat analysis using the Negative Binomial Model. 

 */ 

Title3 "Negative Binomial Model"; 

Proc Genmod Data=maleflies; 

 Model Y = / Dist=NegBin Link=Log LRCI MaxIter=500; 

 Estimate "Population Mean" Intercept 1 / Exp; 

 ODS Output ParameterEstimates=Parms; 

Run; 

 

Data Expected; 

 If _N_=1 Then 

  Do; 

   i=1; 
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   Set Parms Point=i Nobs=Nobs; 

   Mu=Exp(Estimate); /* First obs is ln(Mu) */ 

   i=2; 

   Set Parms Point=i Nobs=Nobs; 

   k=Estimate;    /* Second obs is dispersion parameter */ 

   kinv=1/k; 

   VarY=Mu+k*Mu**2; 

   Retain Mu k VarY kinv; 

  End; 

 Do Y=0 To 10; 

  

Prob=Gamma(Y+kinv)/(Gamma(Y+1)*Gamma(kinv))*(k*mu)**Y/((1+k*mu)**(Y+kin

v)); /* Neg binomial Probability */ 

  Expected=63*Prob; 

  Cummulative+Prob; 

  InvCum=1-Cummulative+Prob; 

  Output; 

 End; 

 Stop; 

 Keep Y Prob Expected Mu k kinv VarY Cummulative InvCum; 

Run; 

Title4 "Expected Probabilities"; 

Proc Print Data=Expected; 

Run; 

 

Proc Format; 

 Value YGroup 5-High="5+"; 

Run; 

 

Title4 "Pearson Chi-square Goodness-of-fit Test"; 

Title5 "Note: Degrees of Freedom Should Be 3"; 

Proc Freq Data=maleflies; 

 Table Y / Chisq NoCum TestP=(6.964 11.830 13.743 13.503 12.059 

35.568); 

 Format Y YGroup.; 

Run; 

 

Title "Female Pseudacteon tricuspis at fire ant mounds"; 

Data femaleflies; 

 Input Y Frequency; 

 Do i=1 To Frequency; 

  Output; 

 End; 

 Keep Y; 

Datalines; 

 0  20 

 1  10 

 2   9 

 3  10 

 4   6 

 5   6 

 6   3 

 7   4 

 8   5 

 9   3 

10   0 

; 
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/*  

 * Show original frequency table 

 */ 

Proc Freq Data=femaleflies; 

 Table Y; 

Run; 

 

/* 

 * Examine a histogram of the data 

 */ 

Proc GChart Data=femaleflies; 

 VBar Y / Discrete; 

Run; 

 

Proc Univariate Data=femaleflies; 

 Var Y; 

Run; 

 

/* 

 * Fit a Poisson distribution to the data 

 */ 

Title3 "Poisson Model"; 

Proc Genmod Data=femaleflies; 

 Model Y = / Dist=Poisson Link=Log LRCI; 

 Estimate "Population Mean" Intercept 1 / Exp; 

 ODS Output ParameterEstimates=Parms; 

Run; 

 

/* 

 * Compute Expected Probabilities. These 

 * will be used in a GOF test to follow. 

 */ 

Data Expected; 

 If _N_=1 Then 

  Do; 

   Set Parms; 

   Lambda=Exp(Estimate); /* First obs is ln(lambda) */ 

   ELambda=Exp(-Lambda); 

   Retain Lambda ELambda; 

  End; 

 Do Y=0 To 10; 

  Prob=(Lambda**Y)*ELambda/Gamma(Y+1); /* Poisson Probability */ 

  Expected=76*Prob; 

  Cummulative+Prob; 

  InvCum=1-Cummulative+Prob; 

  Output; 

 End; 

 Stop; 

 Keep Y Prob Expected Lambda Cummulative InvCum; 

Run; 

Title4 "Expected Probabilities"; 

Proc Print Data=Expected; 

Run; 

  

/* 

 * Can use PROC FREQ to do GOF test, though 
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 * d.f. are not correct. Since some expected 

 * values will be less than 1, we will group 

 * the data for Y>=4 into a common group. 

 */ 

Proc Format; 

 Value YGroup 4-High="4+"; 

Run; 

 

/* 

 * Since there will be 5 cells in this table, 

 * PROC FREQ will compute the d.f. to be 5-1=4. 

 * However, the probabilities were predicted 

 * by estimating the parameter Lambda using the 

 * same data. Thus we need to lose 1 more d.f. 

 * Thus, d.f.=5-1-1=3. 

 */ 

Title4 "Pearson Chi-square Goodness-of-fit Test"; 

Title5 "Note: Degrees of Freedom Should Be 3"; 

Proc Freq Data=femaleflies; 

 Table Y / Chisq NoCum TestP=(5.179 15.333 22.697 22.398 34.366); 

 Format Y YGroup.; 

Run; 

 

/* 

 * Repeat analysis using the Negative Binomial Model. 

 */ 

Title3 "Negative Binomial Model"; 

Proc Genmod Data=femaleflies; 

 Model Y = / Dist=NegBin Link=Log LRCI MaxIter=500; 

 Estimate "Population Mean" Intercept 1 / Exp; 

 ODS Output ParameterEstimates=Parms; 

Run; 

 

Data Expected; 

 If _N_=1 Then 

  Do; 

   i=1; 

   Set Parms Point=i Nobs=Nobs; 

   Mu=Exp(Estimate); /* First obs is ln(Mu) */ 

   i=2; 

   Set Parms Point=i Nobs=Nobs; 

   k=Estimate;    /* Second obs is dispersion parameter */ 

   kinv=1/k; 

   VarY=Mu+k*Mu**2; 

   Retain Mu k VarY kinv; 

  End; 

 Do Y=0 To 10; 

  

Prob=Gamma(Y+kinv)/(Gamma(Y+1)*Gamma(kinv))*(k*mu)**Y/((1+k*mu)**(Y+kin

v)); /* Neg binomial Probability */ 

  Expected=76*Prob; 

  Cummulative+Prob; 

  InvCum=1-Cummulative+Prob; 

  Output; 

 End; 

 Stop; 

 Keep Y Prob Expected Mu k kinv VarY Cummulative InvCum; 
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Run; 

Title4 "Expected Probabilities"; 

Proc Print Data=Expected; 

Run; 

 

Proc Format; 

 Value YGroup 5-High="5+"; 

Run; 

 

Title4 "Pearson Chi-square Goodness-of-fit Test"; 

Title5 "Note: Degrees of Freedom Should Be 3"; 

Proc Freq Data=femaleflies; 

 Table Y / Chisq NoCum TestP=(21.871 19.264 15.250 11.620 8.681 

20.066); 

 Format Y YGroup.; 

Run; 

 

Title "Pseudacteon tricuspis at fire ant mounds"; 

Data flies; 

 Input Y Frequency; 

 Do i=1 To Frequency; 

  Output; 

 End; 

 Keep Y; 

Datalines; 

 0   5 

 1   4 

 2   7 

 3   6 

 4   6 

 5   2 

 6   0 

 7   11 

 8   1 

 9   3 

10   5 

; 

 

/*  

 * Show original frequency table 

 */ 

Proc Freq Data=flies; 

 Table Y; 

Run; 

 

/* 

 * Examine a histogram of the data 

 */ 

Proc GChart Data=flies; 

 VBar Y / Discrete; 

Run; 

 

Proc Univariate Data=flies; 

 Var Y; 

Run; 

 

/* 
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 * Fit a Poisson distribution to the data 

 */ 

Title3 "Poisson Model"; 

Proc Genmod Data=flies; 

 Model Y = / Dist=Poisson Link=Log LRCI; 

 Estimate "Population Mean" Intercept 1 / Exp; 

 ODS Output ParameterEstimates=Parms; 

Run; 

 

/* 

 * Compute Expected Probabilities. These 

 * will be used in a GOF test to follow. 

 */ 

Data Expected; 

 If _N_=1 Then 

  Do; 

   Set Parms; 

   Lambda=Exp(Estimate); /* First obs is ln(lambda) */ 

   ELambda=Exp(-Lambda); 

   Retain Lambda ELambda; 

  End; 

 Do Y=0 To 10; 

  Prob=(Lambda**Y)*ELambda/Gamma(Y+1); /* Poisson Probability */ 

  Expected=76*Prob; 

  Cummulative+Prob; 

  InvCum=1-Cummulative+Prob; 

  Output; 

 End; 

 Stop; 

 Keep Y Prob Expected Lambda Cummulative InvCum; 

Run; 

Title4 "Expected Probabilities"; 

Proc Print Data=Expected; 

Run; 

  

/* 

 * Can use PROC FREQ to do GOF test, though 

 * d.f. are not correct. Since some expected 

 * values will be less than 1, we will group 

 * the data for Y>=4 into a common group. 

 */ 

Proc Format; 

 Value YGroup 4-High="4+"; 

Run; 

 

/* 

 * Since there will be 5 cells in this table, 

 * PROC FREQ will compute the d.f. to be 5-1=4. 

 * However, the probabilities were predicted 

 * by estimating the parameter Lambda using the 

 * same data. Thus we need to lose 1 more d.f. 

 * Thus, d.f.=5-1-1=3. 

 */ 

Title4 "Pearson Chi-square Goodness-of-fit Test"; 

Title5 "Note: Degrees of Freedom Should Be 3"; 

Proc Freq Data=flies; 

 Table Y / Chisq NoCum TestP=(0.966 4.481 10.396 16.080 67.250); 



 198 

 Format Y YGroup.; 

Run; 

 

/* 

 * Repeat analysis using the Negative Binomial Model. 

 */ 

Title3 "Negative Binomial Model"; 

Proc Genmod Data=flies; 

 Model Y = / Dist=NegBin Link=Log LRCI MaxIter=500; 

 Estimate "Population Mean" Intercept 1 / Exp; 

 ODS Output ParameterEstimates=Parms; 

Run; 

 

Data Expected; 

 If _N_=1 Then 

  Do; 

   i=1; 

   Set Parms Point=i Nobs=Nobs; 

   Mu=Exp(Estimate); /* First obs is ln(Mu) */ 

   i=2; 

   Set Parms Point=i Nobs=Nobs; 

   k=Estimate;    /* Second obs is dispersion parameter */ 

   kinv=1/k; 

   VarY=Mu+k*Mu**2; 

   Retain Mu k VarY kinv; 

  End; 

 Do Y=0 To 10; 

  

Prob=Gamma(Y+kinv)/(Gamma(Y+1)*Gamma(kinv))*(k*mu)**Y/((1+k*mu)**(Y+kin

v)); /* Neg binomial Probability */ 

  Expected=76*Prob; 

  Cummulative+Prob; 

  InvCum=1-Cummulative+Prob; 

  Output; 

 End; 

 Stop; 

 Keep Y Prob Expected Mu k kinv VarY Cummulative InvCum; 

Run; 

Title4 "Expected Probabilities"; 

Proc Print Data=Expected; 

Run; 

 

Proc Format; 

 Value YGroup 5-High="5+"; 

Run; 

 

Title4 "Pearson Chi-square Goodness-of-fit Test"; 

Title5 "Note: Degrees of Freedom Should Be 3"; 

Proc Freq Data=flies; 

 Table Y / Chisq NoCum TestP=(6.333 11.220 13.408 13.444 12.108 

36.416); 

 Format Y YGroup.; 

Run; 
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