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ABSTRACT 
 

In arid and semi-arid parts of the Old World, Phlebotomus paptasi is a significant biting 

pest of man and is the primary vector of Leishmania major, the causative agent of zoonotic 

cutaneous leishmaniasis (ZCL). Phlebotomus papatasi exhibits a close association with the 

burrowing rodents that serve as the reservoirs of L. major. Rodent burrows are considered to be 

the primary habitat of immature P. papatasi in ZCL foci, and sand fly larvae have been observed 

feeding on rodent feces. In laboratory studies, five insecticides (diflubenzuron, novaluron, 

methoprene, pyriproxyfen, or ivermectin) were incorporated into the diet of Syrian hamsters and 

evaluated as feed-throughs to control immature sand flies. Feces of hamsters fed a diet 

containing approximately 10 mg/kg diflubenzuron, novaluron, or pyriproxyfen, or 20 mg/kg 

ivermectin killed 100% of sand fly larvae that consumed these feces. Feces of hamsters fed a diet 

containing up to 978.8 mg/kg methoprene caused significant, but not complete, mortality of sand 

fly larvae. Feces of novaluron-treated hamsters also were held under simulated field conditions 

for up to 30 d, and all larvae that consumed these feces died before pupation; a significant 

reduction in treated larval survival relative to control was observed when the feces were aged for 

up to 150 d. Novaluron also was shown to be effective as a feed-though larvicide when 

novaluron-treated food made up only a portion of the diet of hamsters. Ivermectin also was 

evaluated as a systemic insecticide; ivermectin treatment of hamsters was 100% effective against 

bloodfeeding sand flies for up to 7 d after hamsters were withdrawn from ivermectin-treated 

diets. In the final study, proof of concept was established for a novel biomarker system using a 

feed-through fluorescent dye. The value of this method is that it can mark rodents and their feces 

to establish the consumption of treated-baits, mark adult female sand flies that feed rodents for 

the duration of persistence of the dye in rodents, and mark adult male and female sand flies that 

had fed on feces of bait-fed rodents as larvae. 
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INTRODUCTION 
 

Phlebotomine sand flies are major biting pests of man and are the vectors of several 

viruses, the bacterium Bartonella bacilliformis, and, most importantly, the protozoan parasites 

that cause leishmaniasis. Worldwide, there are an estimated 2 million new cases of leishmaniasis 

annually, and 12 million people are currently believed to be infected (WHO 2006). Throughout 

North Africa, the Middle East and Southwest Asia, Phlebotomus papatasi is the primary vector 

of Leishmania major, the causative agent of zoonotic cutaneous leishmaniasis (ZCL). 

While larvicides are commonly used to control mosquitoes and many other flies of 

medical and veterinary importance, there is no current use of larvicides for phlebotomine sand 

fly control. In arid and semi-arid foci, P. papatasi exhibits a close association with several 

burrowing rodent reservoirs of L. major (Neronov and Gunin 1971). In ZCL foci in the Old 

World, rodent burrows are considered to be the primary immature habitats for P. papatasi, but 

introducing an insecticide into the burrows is generally precluded by the length and complexity 

of the tunnels which comprise the burrows (Seyedi-Rashti and Nadim 1973, Karapet’ian et al. 

1983).  

In Old World ZCL foci, sand fly larvae also have been observed feeding on the feces of 

rodents (WHO 1968). Because of this fact, rodent feed-through insecticides are a potential means 

of controlling sand fly larvae. Therefore, the chitin synthesis inhibitors diflubenzuron and 

novaluron, the juvenile hormone analogs methoprene and pyriproxyfen, and the macrocyclic 

lactone ivermectin were evaluated as rodent feed-through insecticides to control sand fly larvae. 

The development and survival of P. papatasi larvae fed feces of Syrian hamsters, Mesocricetus 

auratus, that had been fed a diet containing an insecticide were measured. Additional studies 

were conducted to determine the effectiveness of novaluron as a feed-though larvicide to control 

sand flies under simulated field conditions. 
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Because populations of P. papatasi that live in burrows rely upon rodent reservoirs of L. 

major as a bloodmeal source, incorporating a systemic insecticide into rodent bait could be a 

potential way to control this epidemiologically important group of adult sand flies. Therefore, 

experiments were conducted to determine whether the post-bloodmeal survival of adult sand flies 

would be affected by feeding their rodent hosts a diet containing ivermectin. In this study the 

insecticidal effect of ivermectin treatments against bloodfed sand flies was monitored for 14 d 

after rodents were withdrawn from their ivermectin-treated diets, and bioassays with larval sand 

flies were conducted using feces voided by ivermectin-treated rodents over this same time 

period. 

Prior to or simultaneous with field evaluations of feed-through or systemic control of 

sand flies in the different sand fly/rodent associations that exist, establishing whether the larvae 

of different species of sand fly feed exclusively on the feces of rodents must be demonstrated. 

There are currently no available methods to directly demonstrate if the larval diet of 

phlebotomine sand flies is exclusively rodent feces. Although sand fly larvae have been 

recovered from rodent burrows and have been observed feeding on the feces of rodents, larval 

sampling is an impractical method to demonstrate the larval diet of sand flies. An objective of 

this research was to establish a fluorescent tracer technique using rhodamine B as a rodent feed-

through to identify adult sand flies that had fed on the feces of rhodamine-B treated hamsters as 

larvae. We also evaluated rhodamine B as a biomarker of bait-fed rodents and the female flies 

that fed upon them. 
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CHAPTER 1. LITERATURE REVIEW 

1.1 Taxonomy of Phlebotomine Sand Flies 

1.1.1 Family Psychodidae 

Phlebotomine sand flies belong to the family Psychodidae, which is among the most 

primitive families of Diptera (Young and Duncan 1994). The family Psychodidae is 

characterized by their wing venation (the presence of numerous parallel veins running to wing 

margin), and the presence of dense hairs on the wings and thorax (Triplehorn and Johnson 2005).  

1.1.2 Subfamily Phlebotominae 

Phlebotomine sand flies are classified within the subfamily Phlebotominae, and are called 

phlebotomine sand flies to distinguish them from other flies that are sometimes referred to as 

sand flies (such as members of families Simulidae or Ceratopogonidae). Phlebotomine sand flies 

are differentiated from other subfamilies within Psychodidae by the presence of biting 

mouthparts that are longer than the head, five-segmented palps, nearly cylindrical antennae, a 

five-branched radial vein on the wing, and the absence of an eye-bridge (Triplehorn and Johnson 

2005). Some general attributes that can often be used to distinguish sand flies from other small 

flies include their size (1.5 to 2.5 mm in length), characteristic hopping flight, and the “V” 

position in which they hold their wings while resting. 

1.1.3 Phlebotomine Sand Fly Genera 

 There are three New World genera within subfamily Phlebotominae: Brumptomyia 

França & Parrot, Warileya Hertig, and Lutzomyia França (Young and Duncan 1994). Sand flies 

in the genus Brumptomyia have not been reported feeding on humana, and are distinguished 

from sand flies in other genera by differences in the morphology of male external genitalia 

(Young and Duncan 1994). Sand flies in the genus Warileya are reported to be anthropophilic, 

but they have not been implicated in the transmission of any human pathogens (Young and 
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Duncan 1994). Sand flies in the genus Lutzomyia feed on mammals and are the only medically 

important genus of sand flies in the New World. Lutzomyia is distinguished from Brumptomyia 

by the number of rows of teeth on the cibarium (Lutzomyia has 1 row of transverse teeth, 

Brumptomyia has 4 horizontal rows of teeth), and from Warileya by the presence of episternal 

setae (Lutzomyia has episternal setae, and Warileya does not). 

There are two Old World genera within the subfamily Phlebotominae: Sergentomyia 

França and Phlebotomus Rondani & Berté (Lewis 1982). Sand flies in the genus Sergentomyia 

feed primarily on lizards, and may be the vectors of the agents of saurian leishmaniasis. Sand 

flies of the genus Phlebotomus feed on mammals, and represent all of the medically important 

sand flies in the Old World. Sand flies of the genus Phlebotomus can often be distinguished from 

those within Sergentomyia by the cibarium; Phlebotomus does not have a row of teeth and 

usually does not have a patch of pigment (Lewis 1982).  

1.2 Sand Fly Biology, Ecology, and Sampling 

1.2.1 Immature Stages  

The eggs of phlebotomine sand flies are dark brown or black and elliptical in shape. The 

eggs have ridges in species-specific patterns that potentially could be used for identification. The 

number of eggs laid by a single female at one time varies greatly by species and by factors such 

as species of bloodmeal host or ambient temperature, but typically is between 40 to 70 eggs 

(Young and Duncan 1994). Eggs are laid in batches on moist substrates, and the presence of 

conspecific eggs can serve as an oviposition attractant and stimulant (Elnaiem and Ward 1991, 

Srinivasan et al. 1995). The hatching of eggs usually occurs within 10 d after oviposition, but 

hatching of some eggs in a batch is sometimes delayed for as long as 30 d (Young and Duncan 

1994).  
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Sand fly larvae have four instars. Sand fly larvae are covered in setae along the length of 

their bodies, and have four caudal setae by the time they reach 4th instar. Sand fly larvae feed on 

organic matter near the site of oviposition. The larval stage of phlebotomine sand flies is 

completed in as few as 18 d, but typically lasts longer and can be dependent on temperature 

(Young and Duncan 1994). Before pupation, sand fly larvae cease feeding and some species may 

travel a short distance upward to a drier location. Pupae sometimes attach to rocks or other fixed 

objects. 

The sand fly larval habitats have been identified for only a handful of species. In the Old 

World, immature stages of P. argentipes, P. martini, P. papatasi, P. celiae, P. ariasi, P. 

perfiliewi, and P. langeroni have been recovered from soil taken from inside of structures 

housing humans or domesticated animals (Dhiman et al. 1983, Mutinga et al. 1989, Killick-

Kendrick 1987, Bettini 1989, Doha et al. 1990). Larvae of P. martini, P. papatasi, and P. 

duboscqi have consistently been recovered from soil taken from inside of rodent burrows 

(Mutinga et al. 1986, Mutinga et al. 1989, Doha et al. 1990, Dedet et al. 1982, Perfil'ev 1968, 

Artemiev et al. 1972, Morsy et al. 1993). Larvae of the sand flies P. martini and P. celiae have 

been recovered from termite mounds in East Africa (Mutinga et al. 1989). 

 In the New World, structures housing livestock have been shown to be a larval habitat for 

L. longipalpis, and L. intermedia (Deane and Deane 1957, Forattini 1954). Larvae of other 

species, including many of medical importance (including, L. trapidoi, L. umbratalis, L. anduzei, 

and L. whitmani), have been found among soil and leaf litter on the forest floor (Rutledge and 

Ellenwood 1975, Arias and Freitas 1982, Casanova 2001). 

For many of the species listed above, very few immature specimens have been recovered, 

and thus little can be stated about the importance of their larval habitats. However, for some 

species, enough evidence has been compiled to make more definitive conclusions about their 
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larval habitat. For example, the primary immature habitat of P. papatasi outside of urbanized 

areas is considered to be rodent burrows. Similarly, larvae of P. duboscqi have been recovered 

consistently from inside of rodent burrows; this is considered to be the principle larval habitat for 

this species. 

Several methods have been employed for sampling immature sand flies. However, the 

process remains time consuming and frequently unproductive regardless of the method used. To 

illustrate this point, researchers in Central Asia processed over 6 tons of soil and recovered only 

around 150 immature sand flies (Petrischeva and Izyumskaya 1941). The first sand fly larva (P. 

mascittii) recovered in nature was found by direct examination of a soil sample taken from a 

cellar in Rome (Grassi 1908). Direct examination of soil to find sand fly larvae was the method 

used throughout the early 20th century and is still the preferred method of some more recent 

researchers (Dhiman et al. 1983). A method of extracting immature sand fly larvae from soil 

samples though differential flotation in salt or sugar solutions also has been used, but there is no 

improvement in the rate of success and it is no less labor intensive (McCombie-Young et al. 

1926). This method has been modified by combining differential flotation with passing the soil 

samples through a series of nested sieves, but the modified method still was no simpler or 

productive than flotation or direct examination (Hansen 1961). The larvae of P. papatasi also 

have been extracted from soil samples through dessication with some success in Iran (Seyedi-

Rashti and Nadim 1972). This method was validated in the laboratory by extracting larvae from 

soil samples that had been spiked with larvae from a laboratory colony (Killick-Kendrick 1987). 

Breeding sites also have been identified by isolating soil samples and recovering adult sand flies 

as they emergea either through the incubation of soil samples in the laboratory, or by placing 

emergence traps over suspected breeding sites in the field (Mutinga and Kamau 1986, Bettini et 

al. 1986). 
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1.2.2 Adults 

 Male adult sand flies typically emerge before females from the same egg batch, and they 

become sexually mature within 1 d (Young and Duncan 1994). Male sand flies can find potential 

mates through the use of pheromones, or by locating vertebrate hosts or resting sites to which 

female sand flies also may be attracted. Both specific pheromones and wing-beat rhythms have 

been identified for mate location for the sand fly L. longipalpis (Phillips et al. 1986, Ward and 

Morton 1991). 

Adult male and female sand flies obtain energy by ingesting sugars. Sugar meals can be 

obtained from a variety of sources, including the sap of plants and honeydew from aphids 

(Schlein and Warburg 1986, Killick-Kendrick and Killick-Kendrick 1987, Cameron et al. 1995). 

In arid areas where sand flies are found, the available sources of sugar can be limited to a 

handful of plant species (Schlein and Yuval 1987). Female sand flies also are required to feed on 

the blood of vertebrate hosts for the production of eggs. Females of most species take 

bloodmeals only once per gonotrophic cycle, though females of some species, such as L. 

shannoni, will feed multiple times throughout the gonotrophic cycle (Young and Duncan 1994). 

 Because of their characteristic short, hopping flight, sand flies are often perceived as 

weak fliers unable to travel long distances. For many species this holds true: the longest recorded 

dispersal distance for a P. papatasi sand fly was 280 m. Sand flies in forested areas of the New 

World also do not have long flight ranges; in one study in Panama in which 20,000 sand flies 

were marked with fluorescent powder and released, the majority of re-captured sand flies were 

collected within about 50 m of the release site; four sand flies were recaptured 200 m away 

(Chaniotis et al. 1984). However, P. ariasi sand flies have been shown to fly as far as 2 km in 

southern France (Killick-Kendrick et al. 1984). 
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Adult sand flies of all species are active at night. During the day, adults of the majority of 

New World sand fly species have been found resting in tree holes or the buttresses of trees. 

Adults of the majority of Old World species and some New World species have been found 

resting in rock crevices, caves, or in man-made structures such as cellars, wells, or animal sheds. 

Adults of L. anthophora, P. papatasi, and P. duboscqi are all frequently recovered from the 

burrows or nests of rodents. 

In addition to collecting adult sand flies through direct examination of potential resting 

sites, sand flies can be sampled using either interception traps or attraction traps. Trapping by 

interception samples the population of sand flies that is active in an area with little bias. Malaise 

traps (mesh, tent-like devices placed across the suspected flight paths of insects) are often used in 

New World forests to collect sand flies. This method collects sand flies of both sexes, but 

generally collects low numbers of sand flies and many non-target insects that may damage sand 

fly specimens (Alexander 2000). Sticky traps are the most commonly used tool in the Old World 

for sampling sand fly by interception. The typical design of a sticky trap is a sheet of paper 

dipped in castor oil and placed in an area where sand flies are thought to be active, including 

man-made structures, fields, rock crevices, or at the openings of animal burrows and nests 

(Alexander 2000). Sticky traps are used less frequently in Central and South America because 

the traps are less effective in areas with high humidity. 

Sampling sand flies by attraction can be conducted using animal baited traps. The Disney 

trap is an effective and simple animal baited trap in which a small animal (often a rodent) is 

placed in a cage on a tray coated with castor oil (Disney 1966). As sand flies approach the caged 

animal in short hops, they are trapped in the castor oil. A cone trap has been developed for 

attracting sand flies to larger animals (Montoya-Lerma and Lane 1996). An animal, such as a 
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horse, is tethered inside a mesh cage with concave cones that allow sand flies to enter the cage 

but not exit. The trapped sand flies then can be collected off of the interior walls of the cage. 

 Battery-operated light traps also have been used to sample sand flies. Light traps are not 

attractive to sand flies over a great distance; the maximum distance was 2m for P. ariasi, 6 m for 

L. youngi, and about 2.5 m for L. intermedia and L. whitmani (Killick-Kendrick et al. 1985, 

Valenta et al. 1995, Campbell-Lendrum et al. 1999). Light traps have been shown to 

preferentially sample females of certain species. This sampling bias is particularly present in the 

some New World sand flies; for example, over 75% of adult L. whitmani collected by light traps 

were female, but females made up less than 25% of the catch when the bulbs were removed from 

the traps (Campbell-Lendrum et al. 1999). Using carbon dioxide in conjunction with light traps 

can be used to increase the number of sand flies collected as well as the range of attraction 

(Gillies 1980). 

1.3 Disease Agents Transmitted by Sand Flies 

Sand flies of more than 30 species in the genus Lutzomyia and 40 species in the genus 

Phlebotomus are vectors of human pathogens. Phlebotomine sand flies are the vectors of several 

viruses, the bacterium Bartonella bacilliformis, and, most importantly, nearly 20 species of 

protozoan parasites in the genus Leishmania.  

1.3.1 Viruses 

Sand flies have been shown to be vectors of medically important viruses in three families: 

Bunyaviridae, Reoviridae, and Rhabdoviridae. The most important viruses transmitted to man by 

sand flies are in the family Bunyaviridae and genus Phlebovirus. In the New World, more than 

30 serotypes of the genus Phlebovirus have been identified, but their medical importance is not 

fully known (Tesh et al. 1989). However, in the Old World, two viruses in the genus Phlebovirus 

are of significant public health importance: Sandfly fever Sicilian virus (SFSV) and Toscana 



 10

virus (TOSV, species Sandfly fever Naples virus), and. Human infections with SFSV have been 

confirmed in Italy, Cyprus, Egypt, Iran, and Pakistan; SFSV antibodies have been found in 

humans in Israel, Jordan, Algeria, Tunisia, Sudan, and Bangladesh (Karabatsos 1985, Papa et al. 

2006, Batieha et al. 2000, Cohen et al. 1999, McCarthy et al. 1996, Chastel et al. 1983, 

Gaidamovich 1984, Izri et al. 2008). The vector of SFSV has been shown to be the sand fly P. 

papatasi, and it is suspected that the distribution of SFSV coincides with the distribution of P. 

papatasi (Karabatsos 1985). The symptoms of infection with SFSV typically are pyrexia and 

myalgia, and cases usually resolve within a week. 

Toscana virus has been found in many countries around the Mediterranean including 

Italy, Spain, Portugal, France, Slovenia, Cyprus, Greece, and Turkey (Hemmersbach-Miller et al. 

2004, Peyrefitte et al. 2005, Mendoza-Montero et al. 1998, Echevarria et al. 2003, Eitrem et al. 

1985). Two species of sand flies have been incriminated as vectors of TOSV: P. perniciosus and 

P. perfiliewi (Charrel et al. 2005). Unlike human infections with SFSV, infection with TOSV can 

be life-threatening. In Italy, TOSV is considered to be a leading etiological agent of aseptic 

meningitis (Charrel et al. 2005).  

In the New World, a number of viruses in the genus Orbivirus and family Reoviridae 

have been shown to be transmitted to man and other mammals by sand flies (Rosa et al. 1984). In 

man, these little-studied viruses are believed to produce symptoms similar to infection with 

Phlebovirus. 

 Chandipura virus (CHPV) is in the genus Vesiculovirus and family Rhabdoviridae and 

has been isolated from sand flies in India and West Africa (Dhanda et al. 1970, Fontenille et al. 

1994). Human infections with CHPV typically involve fever, but encephalopathy was reported in 

one fatal case. The sand fly P. papatasi is believed to be the vector of CHPV in India, but the 

vector remains unknown in West Africa. Venereal transmission of CHPV in P. papatasi has been 
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demonstrated in the laboratory, and P. argentipes has been shown to be a competent vector 

(Mavale et al. 2006, Mavale et al. 2007). 

On an uninhabited island in the Atlantic Ocean off the coast of Georgia, USA, the sand 

fly L. shannoni serves as the vector of another virus in the family Rhabdoviridae, the New Jersey 

serotype of Vesicular stomatitis virus (VSV-NJ). The virus has been isolated from the sand fly 

vector, and from swine and other mammals; because the island is uninhabited, humans are not at 

risk of infection (Clarke et al. 1996). 

1.3.2 Bartonella bacilliformis 

The bacterium Bartonella bacilliformis is transmitted by the sand fly L. verrucarum in 

Peru and parts of Ecuador. There is no known non-human reservoir for B. bacilliformis. The 

disease resulting from infection with B. bacilliformis is called bartonellosis or Carrión’s Disease 

(named after Daniel Carrión, who died in 1885 after inoculating himself with infectious material 

taken from a patient). There are two distinct clinical forms of disease: verruga peruana and 

Oroya fever. Verruga peruana, the benign form of bartonellosis, is characterized by the 

appearance of numerous painless nodules on the skin of patients, which, if untreated, resolve 

within a year. Oroya fever is characterized by fever, arthralgia, hemolytic anemia, and jaundice, 

and if untreated has a mortality rate of up to 90% (Grey et al. 1990). Both clinical forms of 

bartonellosis can be treated successfully with antibiotics, such as chloramphenicol. 

1.3.3 Leishmania spp. 

 Leishmania is a genus of heteroxenous parasites in the family Trypanosomatidae. 

Leishmania parasites are the etiological agents of a complex of diseases with a broad clinical 

spectrum called leishmaniasis. Nearly 20 species of Leishamania have been shown to cause 

human disease (Desjeux 2004). Worldwide, 2 million new cases of leishmaniasis are believed to 

occur annually, and as many as 12 million people currently may be infected (WHO 2006). 
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Traditionally, species within the genus Leishmania have been categorized according to the form 

of leishmaniasis they cause: visceral leishmaniasis (VL) or cutaneous leishmaniasis (CL). 

Visceral leishmaniasis (fever, wasting, anemia, and enlargement of the liver and spleen) is often 

fatal if untreated, and CL, while not life-threatening, can cause long-lasting lesions that can leave 

disfiguring scars after they heal. The species of Leishmania also are further categorized 

according to the whether or not non-human reservoirs are important in the transmission cycle: 

zoonotic leishmaniasis (ZCL and ZVL) or anthroponotic leishmaniasis (ACL and AVL). 

Leishmania parasites are transmitted to humans by phlebotomine sand flies of around 30 species 

in the genus Lutzomyia in the New World, and of the genus Phlebotomus in the Old World 

(Desjeux 2004). 

New World 

 In the New World, the main etiological agents of ZCL are L. mexicana and L. 

amazonensis. Infections with L. mexicana occur primarily among people working or living in 

forested areas in Central America and Mexico. Climbing rats (Ototylomys phyllotis) and other 

forest rodents serve as the primary reservoirs of L. mexicana parasites (Disney 1968). The vector 

species for L. mexicana in Central America and Mexico are L. olmeca and L. ayacuchensis, 

respectively (Eduardo 1991). Human cases of ZCL due to infection with L. mexicana have been 

reported in Texas, where the Southern Plains woodrat (Neotoma micropus) serves as the enzootic 

host (Kerr et al. 1995). The sand fly L. anthophora frequently is collected in and around woodrat 

nests and has been incriminated as the vector of L. mexicana in Texas.  

 Infections with L. amazonensis occur in northern South America (Bolivia, Colombia, 

Ecuador, Venezuela Brazil, and French Guyana) and, like L. mexicana, occur primarily in 

inhabitants of settlements that encroach into forests or in visitors to these areas. The incriminated 

vector of L. amazonensis is the sand fly L. flaviscutellata, and the reservoir of L. amazonensis is 
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believed to be the spiny rat (Proechimys spp.) and a large number of other small mammals 

(Dedet et al. 1989). Human infections with several other Leishmania species that cause ZCL 

have been reported, including L. guyanensis, L. peruviana, L. lainsoni, L. panamensis, L. shawi, 

L. naiffi, L. colombiensis, and L. venezuelensis (Young and Arias 1992). 

 Infection with L. braziliensis causes a primary lesion that occurs at the site of infection 

and a delayed secondary lesion that occurs in the buccal and nasal mucosa. The cartilage and 

surrounding tissue degenerate and often become necrotic and subject to secondary bacterial 

infection. This condition can last for several years and can result in severe deformity, removing 

the palate, lips, and nose. Infections with L. braziliensis occur in Brazil, Colombia, Venezuela, 

and Bolivia, where it is transmitted by several species of sand flies including L. wellcomei, L. 

complexus, L. whitmani, and L. ovalessi (De Souza et al. 1996, De Queiroz et al. 1994, 

Feliciangeli and Rabinovich 1998, Warburg et al. 1991, Young and Arias 1992). Nearly a dozen 

other sand fly species are suspected to be vectors of L. braziliensis. The reservoirs of L. 

braziliensis parasites are believed to be sloths and other forest-dwelling mammals (Dedet 1992). 

 New World ZVL is caused by L. infantum. Infections with L. infantum occur throughout 

Central and South America, where the sand fly L. longipalpis (an abundant, peridomestic 

species) serves as the vector (Young and Arias 1992). Many sylvatic animals, particularly foxes, 

are suspected as important reservoirs of L. infantum parasites. However, the role of dogs in the 

transmission cycle is well established, and they are considered to be the most important reservoir 

host (Dedet 1992). 

Old World 

 In the Old World, ACL is caused by L. tropica. Human infections with L. tropica have 

been reported in the Middle East, Southwest Asia, and North and East Africa. Transmission 

generally occurs in densely populated areas, where the peridomestic sand flies P. sergenti and P. 
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guggisbergi serve as vectors (Lawyer et al 1991, Al-Zahrani et al. 1988, Killick-Kendrick et al. 

1995). Transmission of L. tropica appears to be maintained indefinitely in humans without the 

involvement of non-human reservoirs, although some possible non-human reservoirs such as the 

rock hyrax have been suggested (Sang et al. 1992).  

 The primary etiological agent of ZCL in the Old World is L. major. Human infections 

with L. major have been reported throughout the arid zone stretching from North Africa through 

the Middle East and into Central and Southwest Asia, and also in arid areas of Sub-Saharan 

Africa. Leishmania major exists as a zoonosis among populations of burrow-dwelling rodents in 

the family Muridae. Humans are infected with L. major when they encroache into enzootic foci 

(for example, during development projects, urban expansion, or military movements). In Central 

and Southwest Asia and Iran the rodent reservoirs of L. major are Rhombomys opimus and 

Meriones spp., and the sand fly vector is P. papatasi (Yaghoobi-Ershadi et al. 2004). In North 

Africa and the Middle East, Psammomys obesus, Meriones spp., and Gerbillus spp. are the main 

rodent reservoirs, and P. papatasi serves as the vector (Saliba et al 1994, Rioux et al. 1982, 

Rioux et al. 1992, Morsy et al 2001, Morsy et al. 1996, Fichet Calvet 2003). In Sub-Saharan 

Africa, a number of agricultural and peridomestic rodent pests serve as the reservoirs, and P. 

duboscqi is the only incriminated vector species (Gebre-Michel et al. 1993, Githure et al. 1984, 

Githure et al. 1986). 

 Leishmania aethiopica also is an etiological agent of ZCL in the Old World. Human 

infections with L. aethiopica have been reported in Kenya and Ethiopia. Cases of ZCL due to L. 

aethiopica often present with multiple lesions, and the disease is sometimes called diffuse 

cutaneous leishmaniasis. Hyraxes (Procavia spp. and Heterohyrax spp.) have been implicated as 

reservoirs of L. aethiopica, and two species of sand flies have been incriminated as vectors: P. 

pedifer and P. longipes (Gemetchu 1990). 
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 In the Old World, as in the New World, ZVL is caused by L. infantum. Human cases 

have been reported primarily in the Mediterranean littoral, but also in Southwest and Central 

Asia. As in the New World, the primary reservoir for L. infantum is the dog. The sand fly species 

that have been incriminated as vectors of L. infantum include P. ariasi, P. langeroni, P. 

neglectus, P. perfiliewi, and P. perniciosus (Rioux et al. 1979, Pires et al. 1984, Maroli et al. 

1987, Doha and Shehata 1992). 

 Leishmania donovani is the causative agent of AVL in the Old World. Cases of AVL due 

to L. donovani have been reported in Kenya, Ethiopia, Sudan, and the Indian subcontinent. 

Infection with L. donovani is similar to infection with L. infantum, and AVL often is fatal if 

untreated. After treatment, a small percentage of patients develop post-kala-azar dermal 

leishmaniasis: a condition in which the skin is covered in large nodules that can be disfiguring. 

Humans are thought to be the only reservoirs for L. donovani, but several animals such as the 

mongoose have been suggested as potential non-human reservoirs (Elnaiem et al 2001). The 

vectors of L. donovani in Africa are the sand flies P. orientalis, P. martini, and P. celiae 

(Elnaiem et al. 1996, Gebre-Michel and Lane 1993), while Phlebotomus argentipes serves as the 

vector of L. donovani in the Indian subcontinent (Joshi et al 1986). 

1.4 Rodent/Sand Fly Associations 

1.4.1 Sand Flies Associated with Rodent Reservoirs of New World ZCL and Old World VL 

Phlebotomine sand flies of many species are associated with rodents. The closeness of 

this association varies by habitat and the involvement of other (non-rodent) mammals in the 

transmission of a particular Leishmania parasite. In Central and South America, the known 

reservoirs of Leishmania parasites in ZCL foci include rodents such as the spiny rat, Proechimys 

spp., and climbing rat, Ototylomys phyllotis. However, many other forest mammals also are 

suspected to be reservoirs including rodents (Sciurus vulgaris, Heteromys desmarestianus, 
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Oryzomys capito, Nyctomys sumichrasti, Akodon sp., Sigmodon hispidus, Rattus rattus, Coendu 

sp., and Agouti paca), marsupials, edentates, carnivores, and non-human primates (Dedet 1992). 

The larval habitats of many of the sand fly vectors of ZCL in Central and South America have 

been shown to be leaf litter and other organic debris dispersed throughout the forest floor 

(Hanson 1961, Hanson 1968, Arias and Freitas 1982, Vieira et al. 2000, Casanova 2001, 

Rutledge and Ellenwood 1975). The presence of many alternative hosts and the widely dispersed 

habitats for immature sand flies make control measures that target reservoir hosts and sand fly 

larvae improbable. 

 In the Old World, some sand fly species that are vectors of the agents that cause VL are 

associated with rodents. Rodents have not been shown to be reservoirs of L. infantum or L. 

donovani, and adult sand flies have not been associated with rodents or the rodents’ nests or 

burrows. However, larvae of P. martini and P. langeroni, have been recovered from inside 

rodent burrows (Mutinga et al. 1989; Doha et al. 1990). Each of these sand fly species also has 

many alternative larval habitats in a single VL focus. In Kenya, larvae of P. martini have been 

recovered with greater frequency from termite mounds, and also from inside houses and tree 

holes (Mutinga et al 1989). A single specimen of P. langeroni was recovered from soil inside of 

a rodent burrow; larvae of P. langeroni are much more commonly recovered from piles of rocks 

and garbage, animal sheds, and wells (Doha et al. 1990). 

1.4.2 Sand Flies Associated with Rodent Reservoirs of Old World ZCL 

Three species of medically important sand flies exhibit a very close association with the 

rodents that serve as reservoirs of Leishmania parasites in ZCL foci: L. anthophora, P. duboscqi, 

and P. papatasi (Table 1.1). Each of these rodent/sand fly associations occurs in arid or semi-arid 

habitats and involves rodents that construct burrows and sand flies that are frequently collected 

from rodent burrows.  
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Adult female sand flies require nutrients from mammalian blood for reproduction, and by 

sharing a burrow with rodents they have continuous access to a source of blood. This relationship 

creates an environment suitable for the intense transmission of Leishmania parasites among 

rodent populations. 

In arid and semi-arid areas, rodents construct burrows as refuges from the high diurnal 

temperatures (and a number of other external stresses including predation and fire). The air 

temperature within the burrows of desert rodents remains relatively stable, and the burrows can 

serve as a heat-sink to remove the animal’s excess metabolic heat (Grenot 2001). In one study 

the soil temperature within the burrow of P. obesus was shown to be 27 °C and constant 

throughout the day, while the temperature of the soil outside the burrow reached over 60 °C 

(Grenot 2001). Sand flies also benefit from the temperature moderating effects of rodent 

burrows; laboratory colonies of sand flies are kept between 24 and 29 °C. 

The relative humidity within rodent burrows in arid environments has been found to be 

very high or near saturation (Grenot 2001, Shenbrot et al. 2002). The concentration of fine earth 

and organic matter lining the burrows of rodents increases the water-holding capacity of the soil, 

and on a larger scale, burrows also may affect the hydrology of the surrounding area by allowing 

rainfall to infiltrate the soil (Shenbrot et al. 2002). Both adult and immature sand flies benefit 

from the humid microhabitat created within rodent burrows; sand fly colonies are typically 

maintained in conditions with a relative humidity between 75 and 100%. 

 In arid environments, the burrows of desert rodents often are in close proximity to 

vegetation. The rodents benefit from constructing their burrows beneath the root systems of 

plants by gaining structural integrity and soil retention, which helps prevent tunnel collapse 

(Hole 1981). The plants also serve as a food source for the rodents, and by building their burrows 

nearby plants, rodents can avoid extended intervals outside foraging in high temperatures and 
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under threat of predation (Hole 1981). Adult sand flies also benefit from the proximity to plants, 

from which they obtain sugar meals (Schlein and Warburg 1986).  

 

Table 1.1 Burrowing Rodent Reservoirs of Leishmania spp. and Associated Sand Fly Vectors 
Reservoir species Sand fly 

vector 
Location 

Muridae   
   Murinae   
       Aethomys kaiseri P. duboscqi Kenya 
       Arvicanthis spp P. duboscqi Kenya, Senegal, Sudan 
       Mastomys spp P. duboscqi Kenya, Nigeria, Senegal 
       Nesokia indica P. papatasi Iran, Palestine 
   Gerbillinae   
       Gerbillus pyramidum P. papatasi Egypt 
       Meriones crassus P. papatasi Israel 
       Meriones hurriannae P. papatasi India 
       Meriones libycus P. papatasi Iran, Libya, Saudi Arabia, Tunisia, Uzbekistan 
       Meriones persicus P. papatasi Iran 
       Meriones rex P. papatasi Saudi Arabia 
       Meriones sacramenti P. papatasi Egypt 
       Meriones shawi P. papatasi Algeria, Morocco,  Tunisia 
       Psammomy obesus P. papatasi Algeria, Egypt, Israel, Jordan, Libya, Palestine, 

Saudi Arabia, Syria, Tunisia 
       Rhombomys opimus P. papatasi Afghanistan, Iran, Kazakhstan, Tajikistan, 

Turkmenistan, Uzbekistan 
       Tatera gambiana P. duboscqi Nigeria, Senegal 
       Tatera robusta P. duboscqi Kenya 
       Taterillus emini P. duboscqi Kenya 
Cricetidae   
   Neotominae   
        Neotoma micropus L. anthophora Texas 
 

 

The availability of habitats and food for immature sand flies is severely limited in rural 

arid environments, and may be limited to rodent burrows. In nature, rodent burrows contain 

feces, nest material, and other organic detritus, which support sand fly larval development. In a 

ZCL focus in Central Asia, sand fly larvae have been observed feeding on the feces of rodents 

(WHO 1968). The larval diet used in laboratory colonies of sand flies typically includes the feces 
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of rodents or other small mammals (Young et al. 1981). For example, Mascari et al. (2007) have 

reared sand fly larvae using a 1:1 mixture of rabbit feces and rabbit food, or the feces of hamsters 

alone. 

Association between Lutzomyia anthophora and Neotoma micropus 

In the semi-arid ZCL foci in Southern Texas, L. mexicana parasites are transmitted by the 

sand fly L. anthophora among populations of the southern plains woodrat, N. micropus (Table 

1.1; McHugh et al. 1991). Woodrat nests typically consist of subterranean tunnels beneath a 

small constructed pile of woody debris and cactus. The burrows are simple, with a common 

chamber for food storage and bedding; feces are scattered throughout the burrow. Adult L. 

anthophora were first collected from woodrat nests near San Antonio, Texas, USA in 1965 

(Young 1972). Since then, adult L. anthophora have been collected in and around woodrat nests 

throughout Southern Texas (Young and Duncan 1994, McHugh et al. 2001). Bloodfed female L. 

anthophora sand flies have been found resting among the bedding inside of woodrat nests 

(Young 1972). Soil samples taken from woodrat nests have been examined for immature stages 

of L. anthophora, but none have been recovered (Young 1972). Because there are believed to be 

no alternative micro-environments appropriate for the development of sand fly larvae in these 

arid and semi-arid ZCL foci in Texas, woodrat nests are considered to be the likely habitat for 

immature L. anthophora. 

Association between Phlebotomus duboscqi and Burrowing Rodents 

In the arid belt south of the Sahara Desert, P. dubsocqi is the vector of L. major parasites 

among populations of different burrowing rodents (Table 1.1). The ecology of the sand flies, 

vectors, and rodents have been studied extensively in an enzootic of L. major focus in Baringo 

District, Kenya, and there is considerable evidence promoting the idea that both adult and 

immature P. duboscqi use rodent burrows as their primary habitat. Adult P. duboscqi sand flies 
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have been recovered from the burrows of rodent reservoirs of L. major by direct aspiration, 

sticky paper traps, and updraft traps (Mutero et al. 1991). During entomological surveys of 

potential diurnal resting sites, the majority of adult P. duboscqi sand flies typically are collected 

from rodent burrows; in one study, the number of adult P. duboscqi sand flies collected from 

rodent burrows was more than 19-times greater than the number collected from termite mounds 

(Basimike 1992). Larvae of P. duboscqi also have been collected from the burrows of rodents in 

ZCL foci in Kenya. The mean temperature of the soil inside of rodent burrows from which P. 

duboscqi sand flies had been recovered was 25.6 °C; the optimum temperature shown to promote 

the development and survival of P. duboscqi in laboratory colonies is 27 °C (Basimike et al. 

1990, Beach et al. 1986). 

Association between Phlebotomus papatasi and Burrowing Rodents 

In North Africa and the Middle East, Psammomys obesus, Nesokia indica, Gerbillus 

pyramidum, and Meriones spp. have been identified as the reservoirs of L. major (Table 1.1; 

Desjeux 1991, Gunders et al. 1968, Schlein et al. 1984). In Iran and Southwest and Central Asia, 

Rhombomys opimus replaces P. obesus as the most ubiquitous reservoir of L. major (Kellina 

1981, Nadim et al. 1979). In India, the rodent implicated in the enzootic cycle of L. major is 

Meriones hurrianae (Mohan and Suri 1975). All of these rodents are in the family Muridae, and 

all are within the subfamily Gerbillinae except for Nesokia indica (subfamily Murinae). Rodents 

in each of these species construct burrows: from simple burrows constructed in sand and loose 

soil by Meriones crassus, to the expansive burrow complexes constructed by R. opimus that are 

used by many generations over a period of decades (Shenbrot et al. 2002). 

 Adult P. papatasi sand flies are collected from diverse habitats. Around human 

settlements in arid areas, adult P. papatasi are recovered from animal sheds and cellars, and also 

from burrows of rodents. Similarly, in areas of human habitation, larvae of P. papatasi have been 
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recovered from animal sheds, stone piles, and rodent burrows (Artemiev et al. 1971, Doha et al. 

1990). However, in less-developed or natural habitats, adult and immature P. papatasi are 

recovered almost exclusively from rodent burrows (Desjeux 1991). Because of the very close 

association between P. papatasi (the sole vector species for L. major in the region) and 

burrowing rodents that serve as reservoirs of L. major, the prevalence of infection with L. major 

parasites can be as high as 21% in P. papatasi and 85% in the rodent population (Wasserberg 

2003, Nadim and Amini 1970). Populations of P. papatasi sampled in rodent burrows and in 

villages in an area do not appear to be genetically distinct (Parvizi et al. 2003). 

1.5 Control of Leishmaniasis 

1.5.1 Introduction 

The World Health Organization considers leishmaniasis to be an emerging and 

uncontrolled disease (WHO 2005). As a vector-borne zoonosis, control of leishmaniasis could be 

achieved through: A) control of Leishmania parasites, B) control of mammalian reservoirs, C) 

control of sand fly vectors, D) or protection of humans against infection.  

1.5.2 Control of Leishmania Parasites 

Control of Leishmania parasites could be achieved through treatment of all infected 

human and non-human hosts. However, current chemotherapy for leishmaniasis is with sodium 

stibogluconate, meglumine antimonite, amphotericin B, or liposomal amphotericin administered 

by injection daily for at least 28 d (Abramowitz 2004). Therefore, this approach would not be 

cost effective for use in domestic animals nor practical for use in wildlife. 

1.5.3 Host-Targeted Control 

There are two notable cases where host-targeted control of mammalian reservoirs of 

leishmaniasis has brought about a reduction in the incidence of leishmaniasis: A) canine 

reservoirs of L. infantum, and B) rodent reservoirs of L. major. Host-targeted control methods 
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have played an integral part in campaigns to reduce the incidence of VL in South America, the 

Mediterranean littoral, and in Iran, where dogs serve as the primary non-human reservoir of L. 

infantum parasites. The cornerstone in the current approach to control of VL is the use of 

insecticide-impregnated dog collars. In Brazil, polyvinylchloride collars impregnated with 

deltamethrin reduced the feeding rates of L. longipalpis and L. migonei sand flies on treated dogs 

for up to eight months (David et al. 2001). Furthermore, the survival of sand flies exposed to 

dogs wearing deltamethrin-impregnated collars also was reduced for up to eight months (David 

et al. 2001). Deltamethrin-treated dog collars also had anti-feeding and insecticidal effects 

against P. perniciousus sand flies in Southern France and P. papatasi sand flies in Iran for up to 

8 months, which could protect a dog throughout the entire annual period of sand fly activity 

(Killick-Kendrick et al. 1997, Halbig et al. 2000). A large scale (multiple village) evaluation of 

the use of deltamethrin-impregnated dog collars also was conducted in Iran; children in villages 

in which all domestic dogs were fitted with insecticide-treated collars had a significantly lower 

seroconversion rate for L. infantum (Gavgani et al. 2002). Topical treatment of dogs with 

insecticides also has been evaluated as a potential control method against VL. Spot-on treatments 

of imidacloprid and permethrin showed significant repellent and insecticidal effect against P. 

papatasi sand flies for up to a month after treatment (Mencke et al. 2003). 

 In parts of the former Soviet Union in Central Asia, attempts to control the great gerbil , 

R. opimus, (the primary reservoir of L. major in the area) and their burrows through plowing or 

crushing with heavy machinery was conducted. Zonal control of the great gerbil (eliminating all 

burrows within a 2 to 3 km radius of all towns) was found to be inadequate due to re-invasion of 

the controlled areas by great gerbils (Sergiev 1978, Eliseev 1980). On the other hand, massive 

campaigns to eradicate the great gerbil and their burrows were carried out over vast areas 

surrounded by natural borders such as mountain ranges and rivers, and yielded lasting reductions 
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in the sand fly population (by a factor of 270) and no cases of ZCL reported within the areas for 

at least 4 years afterwards (Sergiev 1978, Eliseev 1980). In Central Asia, large scale eradication 

of the great gerbil through poisoned baits successfully eliminated the rodent, but had no effect on 

the population of P. papatasi (Dergacheva and Zherikhina 1980). 

Attempts to reduce the incidence of ZCL in Isfahan, Iran by treating the burrows of the 

rodent reservoirs (R. opimus and M. libycus) with dichloro-diphenyl-trichloroethane (DDT) 

powder were unsuccessful (Seyedi-Rashti and Nadim 1974). In a concurrent study, rodents also 

were poisoned with baits containing zinc phosphide, yielding a reduction in the number of 

rodents, but having no effect on the incidence of human infection with L. major (Seyedi-Rashti 

and Nadim 1974). A successful campaign to reduce incidence of ZCL was undertaken in 

Badrood, Iran. All rodent burrows within 500 m of several villages were systematically 

excavated (and any surviving rodents were killed with bait containing zinc phosphide). 

Subsequently, the incidence of L. major infection in humans was significantly lower than the 

incidence in untreated villages. 

1.5.4 Control of Sand Fly Vectors 

Adult Control 

Control measures targeting the sand fly vectors remain a major component of control of 

leishmaniasis and other sand fly-borne diseases. Control measures against phlebotomine sand 

flies include chemical control measures (contact insecticides and larvicides) and control through 

environmental modification.  

The earliest report of chemical control of sand flies was carried out in a bartonellosis 

endemic region of Peru in 1944 (Hertig and Fairchild 1948). Spraying houses with DDT 

protected inhabitants from sand fly bites for around one week after treatment. This approach was 

attempted on a small scale in Italy, Greece, and Palestine to prevent new infections of sand fly 
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fever and anthroponotic CL with some degree of success (Hertig 1949, Jacusiel 1947, Hertig and 

Fisher 1945). In India, residual spraying of houses and cattlesheds with DDT and benzene 

hexachloride (BHC) reduced the number of sand flies (P. papatasi and other medically important 

species); reductions lasted for up to 8 months for DDT and less than one month for BHC (Ghosh 

1950). On a larger scale, ACL due to L. tropica was eliminated in the Central Asian republics of 

the former Soviet Union through the use of residual BHC and DDT (Nadzharov 1966, 

Nadzharov and Gasan-Zade 1980). Initially, entire villages were treated with the residual 

insecticides; after a few years of control, the disease was eliminated by follow-up treatment of 

the houses of leishmaniasis cases. 

Control of sand flies and sand fly-borne diseases also was achieved in several countries 

as a collateral effect of intense large-scale campaigns to eradicate malaria. All successes in 

reducing the incidence of sand fly-borne diseases through residual insecticide spraying were with 

pathogens for which humans can serve as an important reservoir of infection (L. tropica, L. 

donovani, and Sand Fly Fever virus). This suggests that control using residual house spraying 

may be successful only under certain epidemiological circumstances, such as with certain species 

of sand fly or with certain peri-domestic populations of sand fly. In Pakistan and India in the 

1950s and 1960s, visceral leishmaniasis was nearly eliminated during the anti-malaria campaign, 

which involved spraying all houses with DDT (Sanyal et al. 1979). However, a resurgence of the 

disease was observed immediately following the cessation of the campaign. In Greece, the 

antimalaria campaign significantly (and temporarily) reduced the incidence of sand fly fever but 

not of visceral leishmaniasis (Tesh and Papaevangelou 1977).   

In foci of zoonotic leishmaniasis in Iran, control of malaria with DDT yielded no effect 

on incidence of leishmaniasis or the sand fly population (Seyedi-Rashti and Nadim 1975). 

Similarly, in South America, residual spraying of houses with DDT for control of malaria and 
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chagas disease had no detectable effect on the incidence of zoonotic leishmaniasis (Viokov 

1987). 

In the aftermath of the global campaign to eradicate malaria with DDT, the infrastructure 

to spray houses with residual insecticides to control sand flies rarely is present. Nevertheless, 

several residual insecticides have since been evaluated against sand flies in different foci around 

the world. In India, cattlesheds were treated with a single application of malathion, leading to a 

reduction in the sand fly population for up to 8 months (Pandya 1983). In Egypt, the residual 

effect of propoxur, permethrin, malathion, and BHC after 75 d was evaluated against P. papatasi 

(Morsy et al. 1993). The results were not encouraging; after sand flies were exposed to treated 

surfaces for 30 minutes, mortality was around 75% for propoxur, and 50% for permethrin, 

malathion, or BHC. In Bolivia, the effect of treating houses and animal sheds with deltamethrin 

differed among sand fly species. The vector of L. infantum (L. longipaplis) was eliminated for up 

to 10 months, while the population density of the vector of the parasites that cause CL (L. 

nuneztovari) was unchanged (Le Pont et al. 1989). The authors pointed out that this difference 

likely was due to the endophilic behavior of L. longipalpis and the exophilic behavior of L. 

nuneztovari. This point was further demonstrated by Alexander et al. (1995), who showed that 

treating houses in a village in a Colombian forest with deltamethrin had no effect on the number 

of sand flies collected in and around the houses, even though the treated surfaces of the houses 

were shown to be insecticidal to sand flies. 

Spraying residual insecticides to form a protective barrier around a human settlement has 

been evaluated in sylvatic areas of Central and South America where leishmaniasis is associated 

with human encroachment into forests. In an early attempt at barrier spraying in the 1950s in a 

forested region in French Guiana, tree trunks (which were known to be resting sites of sand flies 

in the area) were sprayed with DDT (Floch 1957). There was no reduction in the number of sand 
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flies collected inside of the treated area. However, another study in French Guyana in the 1980s 

found that clear-cutting the forest to create a 400 m wide barrier around human settlements 

effectively reduced the number sand flies collected and the incidence of human cases of 

leishamaniasis, and eliminated all mammals, removing all potential reservoirs of Leishmania 

parasites from the area (Esterre et al. 1986). In Panama, spraying trees and vegetation bimonthly 

with malathion to form a 100 m diameter treated area in a forest yielded a small reduction in the 

number of sand flies (approximately 30%) collected off of human bait or on tree trunks within 

the barrier (Chaniotis et al. 1982). Perich et al. (1995) reported the successful application of 

barrier spraying to control sand flies in a small-scale trial conducted in Guatamala. Cyfluthrin 

was sprayed on vegetation, forming a 100 m treated band around a simulated human settlement, 

and the number of sand flies collected inside the treated area was significantly lower than outside 

the area for more than 80 d. 

 Larval Control 

The larval habitat for many sand fly species is unknown, and therefore larval control has not 

played a large part in sand fly control. Nevertheless, larval control methods could play a role in 

certain situations where a larval habitat is well defined. 

The possibility of sand fly larval control in houses and cattlesheds has been shown on a 

small-scale in India (Dhiman 1995). Crevices suspected of harboring larvae of P. papatasi were 

covered with cement, and a reduction in the number of sand flies collected inside of the buildings 

(up to 70% reductions) was reported. However, this species is known to have alternative larval 

habitats outside of human settlements (such as in rodent burrows). Therefore this control 

measure may have a limited impact on the transmission of ZCL. 

The sporulating bacterium Bacillus thuringiensis israelensis was the first larvicide 

evaluated in the laboratory for sand flies, and it was found to cause significant mortality when 
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fed to larvae of P. papatasi and L. longipalpis (De Barjac et al. 1982). Bacillus sphaericus also 

has been evaluated as a control agent for sand fly larvae. A high level of mortality was observed 

for larvae of P. papatasi that had been fed a diet treated with B. sphaericus, and sand fly eggs 

treated with B. sphaericus were significantly less likely to hatch than control eggs (Pener and 

Wilamowski 1996, Robert et al. 1998). An elaborate system using adult sand flies that had 

ingested sugar baits containing B. sphaericus to deliver the insecticide to the larval habitat of 

sand flies also has been evaluated (Robert et al. 1997). The authors of this study reported a 

reduction in the sand fly population for up to 12 weeks after treatment. 

1.5.5 Protection of Humans against Infection  

Since adequate parasite, reservoir, and vector control measures are currently not available 

for many epidemiological settings, humans could be protected against sand fly bites and 

infection with sand fly-borne pathogens by using vaccines or personal protective measures such 

as insecticide treated materials (clothing, curtains, wall cloths, bed sheets, screens, and bednets) 

or repellents (topical and area-wide). 

Vaccines 

The development of an effective vaccine against any of the Leishmania spp. presents an 

ongoing challenge. The earliest attempt to induce immunity to Leishmania parasites was by 

inoculating people with infectious material taken from patients infected with L. major, a process 

called leishmanization. Leishmanization was intended to cause a single, self-healing lesion that 

would confer lifelong immunity against re-infection, and was carried out throughout the Middle 

East and Soviet Union from the 1940s until the 1990s (Palatnik-de-Sousa 2008). However, 

leishmanization largely has been discontinued because of the risk of complications resulting 

from infection with L. major including the development of multiple and persistent lesions, the 

potential migration of parasites to the spleen and liver, and ethical concerns. A live vaccine for 
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humans has been licensed for use in Uzbekistan and is used in some circumstances in Iran, such 

as the movement of troops into areas of high risk of infection (Nadim et al. 1997, Kamesipour et 

al. 2006). In Brazil, a killed-parasite vaccine for the agents that cause cutaneous leishmaniasis 

has shown some efficacy when used in conjunction with antimony chemotherapy, but it is not 

used as a monotherapy vaccine for the prevention of leishmaniasis (Mayrink et al. 2006). 

Currently there are several vaccine candidates in different phases of clinical trial, and stable 

multiple-gene DNA vaccines are considered to be a promising line of investigation (Palatnik-de-

Sousa 2008).  

Insecticide Treated Materials 

Anecdotal evidence suggests that sand fly bites (and subsequently, CL lesions) occur on 

parts of the body where skin is exposed because sand flies, unlike some other hematophagous 

flies, do not bite through clothing. Evidence that clothing may provide a physical barrier against 

sand fly bites was provided by Dedet et al (1987) who reported the location of multiple CL 

lesions relative to clothed and exposed areas on patients who had travelled to French Guyana. As 

no lesions were present in places that had been covered by the patients’ clothing at the time of 

infection, the authors concluded that sand flies were unable to bite through the fabric. As a short-

term preventive measure Dedet et al. (1987) recommended that travelers to areas of CL 

transmission wear long pants and long-sleeved shirts. 

Laboratory studies have been conducted to determine whether the protection against sand 

fly bites conferred by clothing could be enhanced by impregnating the fabric with permethrin. In 

one published study, permethrin-treated clothing did not cause significant “knock-down” in sand 

flies (P. papatasi) exposed to the material for short periods of time (as would occur during 

feeding attempts in a field setting); the majority of sand flies exposed for up to 3 minutes were 

unaffected and potentially able to feed (Fryauff et al. 1996). 
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Field trials evaluating the effectiveness of insecticide-treated clothing to prevent sand fly 

bites and leishmaniasis also have been conducted. In a field evaluation in a lowland tropical 

forest in Panama, human subjects wearing permethrin-treated uniforms received fewer sand fly 

bites per hour than control subjects (Schreck et al. 1982). However, the number of sand fly bites 

received by treated subjects was high (16 bites per hour), and the sand flies did not appear to 

experience quick “knock-down” after exposure to the permethrin-treated uniforms. Sand flies 

exposed to treated uniforms for 15 min were still able to feed to repletion (Schreck et al. 1982). 

A double-blind placebo controlled study of insecticide-treated clothing as preventive measure 

against CL was conducted with Iranian soldiers (Asilian et al. 2003). Soldiers in the intervention 

group were provided with permethrin-treated uniforms (shirts, undershirts, pants, socks, and a 

hat), and their use was strictly monitored over a period of 3 months. The attack rates of CL in 

soldiers in the intervention and control groups were not significantly different, and the authors 

concluded that permethrin-treated uniforms alone were not sufficient to prevent sand fly bites or 

CL (Asilian et al. 2003). While results of these two studies suggest that insecticide-treated 

uniforms do not effectively prevent sand fly bites, the use of insecticide-treated uniforms has 

been adopted by the U.S. Armed Forces, as well as other militaries around the world, as a 

personal protective measure against sand fly bites and leishmaniasis.  

The use of insecticide-treated curtains as a means of protection against sand flies has 

been evaluated in diverse ecological settings with varying degrees of success. The use of 

insecticide-treated curtains to prevent sand flies from entering houses was first evaluated in 

Burkina Faso against P. duboscqi and several Segentomyia spp (Majori et al 1989). Cotton 

curtains impregnated with permethrin were placed in doorways and under the eaves of houses, 

and a nearly 100% reduction in the number of sand flies collected inside of treated houses was 

observed.  Similarly, in Italy the number of specimens of P. papatasi and P. perniciosus 
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collected in light traps inside stables was significantly reduced by placing permethrin-

impregnated curtains over windows (Maroli and Majori 1991). In Khartoum, the number of sand 

flies obtained by pyrethrum knockdown collection was significantly different between rooms 

with permethrin-treated curtains and rooms without curtains or with untreated curtains (Elnaiem 

et al. 1999). 

 Insecticide-treated curtains also have been evaluated in the New World. In one field trial 

in Colombia, the number of sand flies collected during human landing catches in rooms with 

deltamethrin-treated or untreated curtains was not significantly different (Alexander et al. 1995). 

However, a study in Venezuela found that using curtains treated with lambdacyhalothrin 

provided significant reductions in the number of sand flies collected inside of houses as well as a 

reduction in the incidence of cutaneous leishmaniasis (Kroeger et al. 2002). 

The use of insecticide-treated wall cloth has been evaluated as a control measure against 

endophilic sand flies in Kenya (Mutinga et al. 1992). In this study, cotton cloth was treated with 

permethrin and used to cover the interior walls of houses. The number of sand flies (P. duboscqi 

and P. martini) collected using sticky paper traps inside of treated houses was significantly lower 

(more than 75% lower) than control houses. 

Insecticide-treated bednets, which are widely used for protection against mosquito 

vectors of malaria, have been evaluated as a personal protective measure in many different foci 

of leishmaniasis. In Kabul, which is an endemic area for ACL, significant differences in the 

incidence of infection with L. tropica have been observed between people using permethrin-

treated bednets (2.4%) and people receiving no intervention (7.2%): approximately 65% 

protective efficacy was reported (Reyburn et al. 2000). In Southeastern Anatolia, another ACL 

endemic area, people using deltamethrin-treated bednets also had a significantly lower incidence 

of infection than controls; no impact was detected on the overall abundance of sand flies (Alten 
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et al. 2003). A large-scale study was conducted in over a dozen villages near Aleppo suggested 

that the use of deltamethrin-treated bednets reduced incidence of ACL (Jalouk et al. 2007). The 

study also found that when the use of bednets was interrupted, incidence of ACL rebounded to 

pre-intervention levels within 1 to 2 years, suggesting that the use of insecticide-treated bednets 

as a personal protective measure must be sustainable in order to be effective. 

In a ZCL hyperendemic area near Isfahan, the use of deltamethrin-treated bednets also 

has been evaluated as a personal protective measure against sand fly bites and protection against 

infection with Leismania parasites (Yaghoobi-Ershadi et al. 2006). Rates of infection with L. 

major were significantly different after insecticide-treated bednets were used, and the incidence 

also was significantly lower than the control. There was no reduction in the mean total density of 

P. papatasi in areas that received insecticide-treated bednets, presumably because this sand fly 

feeds on a number of non-human hosts. 

Insecticide-treated bednets also have been used to prevent sand fly bites and infection 

with the causative agents of visceral leishmaniasis (L. infantum and L. donovani). In a case 

control study in Nepal, analysis of several potential risk factors indicated that the ownership and 

use of a bednet was a significant protective factor against visceral leishmaniasis (Bern et al. 

2000). In a VL endemic area of Sudan, lambdacyhalothrin-treated bednets were found to 

completely protect people sleeping beneath them, as indicated by human landing catches 

(Elnaiem et al. 1999). In practice, however, it was found that few men were protected against 

sand fly bites when they used insecticide-treated bednets because the peak biting-time of vector 

sand flies was earlier than most men went to bed. The authors suggested that children (the group 

with the highest incidence of VL) could be protected against VL by going to bed earlier.  

In a New World VL endemic area in Brazil, deltamethrin-treated bednets have been 

evaluated as a protective measure against L. longipalpis sand flies, the primary vector of L. 
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infantum parasites (Courtenay et al. 2007). Compared with untreated nets, insecticide-treated 

nets significantly decreased the human-landing rate and increased the 24-h mortality rate of sand 

flies inside the bednets. However, as indicated by human landing catches, the peak activity 

period of host seeking L. longipalpis sand flies is between 19 – 23 h, and a substantial part of this 

period is before people have gone to bed. Furthermore, despite the 24-h mortality observed for 

sand flies that contacted or penetrated insecticide-treated bednets, death was not immediate and 

would allow time for sand flies to bite and potentially transmit Leishmania infantum parasites. 

In parts of the Middle East and Southwest Asia, people frequently sleep outdoors during 

warmer months, and in the absence of any potential protection against sand flies conferred by 

residual insecticides or insecticide treated materials, expose themselves to sand fly bites (Alten et 

al. 2003). To address this issue, a control trial of top sheets (chaddars) treated with permethrin 

was conducted (Reyburn et al. 2000). The incidence of cutaneous leishmaniasis for people 

provided with treated sheets was 65% lower than controls, and was found to be equally effective 

as insecticide treated bednets, and more effective than residual spraying. However, insecticide 

treated top sheets were the least popular intervention (compared to residual spraying or bednets) 

among people included in the study. 

Repellents 

The first documented evaluations of a chemical repellent used to protect against sand 

flies and sand fly-borne diseases were conducted during World War II. United States Army 

personnel in Egypt (and the Eastern Mediterranean as a whole) experienced a large number of 

cases of sand fly fever; the sand fly fever case rate at the study site in Egypt was reported to be 

25% in 1943 (Philip et al. 1944). A placebo-controlled trial of topical applications of dimethyl 

phthalate (DMP) as a repellent against the vector species, P. papatasi, was conducted, and a 

higher percentage (43%) of treated participants reported a relief from sand fly bites compared to 
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patients receiving placebo (12%). The treatments also appeared to protect against infection, and 

six times as many cases were reported among participants receiving placebo than among 

participants receiving DMP treatments. Around the same time, Soviet researchers determined 

that xanthic disulphide (“K preparation”) was an effective topical repellent against sand flies 

(Jukova 1944). 

 The first laboratory comparison of the efficacy of repellents against sand flies was 

conducted in 1969 (Schmidt and Schmidt 1969). Nine repellents (diethyltoluamide (DEET); O-

ethoxy-N,N-diethylbenzamide; dimethyl carbate; ethyl hexanediol; dimethyl phthalate; O-

chloro-N,N-diethylbenzamide; N-butyryl-1,2,3,4-tetrahydroquinoline; indalone, and 2,2,4-

tetramethyl-1,3-pentanediol) were applied to the forearms of participants, and the repellent effect 

against P. papatasi sand flies was evaluated. The mean duration of the repellent effect of three of 

the nine compounds (DEET; O-ethoxy-N,N-diethylbenzamide; and O-chloro-N,N-

diethylbenzamide) was found to be greater than four hours when used at 5% concentrations. 

 The first laboratory evaluations of different repellent compounds against a New World 

sand fly species were conducted more than a decade later (Buescher et al. 1982). When applied 

to human skin, Indalone, DEET, and Citronyl were found to be effective repellents against L. 

longipalpis sand flies. Four other experimental compounds were found to be more repellent than 

DEET when they were applied to rabbits: Rohm & Haas 398; 3-[N-(n-butyl)-N-

acetyl]aminoproprionic acid-ethyl ester; N-(u-hexyl)-2-oxazolidine; and methyl N,N-di-(n-

hexyl)-ethylenediamine monocarbamate. The sand fly L. longipalpis was found to be more 

sensitive to DEET and other repellents than mosquitoes and other insect pests (Buescher et al. 

1982). 

Repellents against species of New World sand flies were first evaluated in the field in 

Panama in the 1980s (Schreck et al. 1982). In addition to DEET, four other compounds (p-
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isopropyl-N,N-dimethylbenzamide; 1-(3-cyclohexen-1-ylcarbonyl)piperidine; hexahydro-1-

[(2methylcyclohexyl) carbonyl]-1H-azepine; and N,N-dipropylcyclohexanecarboxamide) 

provided significant protection against bites of Lutzomyia spp., including two that are known 

vectors of Leishmania parasites in Panama. However, only one of the compounds (hexahydro-1-

[(2-methylcyclohexyl)carbonyl]-1H-azepine) provided complete protection against sand fly bites 

even in situations of low sand fly biting pressure on control subjects (fewer than 30 bites per 

hour). 

 Three repellents (DEET, indalone, and MGK11) have been evaluated against P. 

perniciosus, an important sand fly vector of L. infantum in Europe (Fossati and Maroli 1986). 

Comparing median effective dosages (ED50) of the repellents, the authors found that indalone 

and MGK11 were similarly effective against P. perniciosus, while the ED50 of DEET was 

significantly higher, indicating that it was less repellent. 

 The repellent and deterrent effects of DEET, picaridin, and SS220 have been evaluated 

for P. papatasi (Klun et al. 2006). As shown previously, when applied to the skin of human 

participants, the compounds deterred sand flies from feeding. Also, when the compounds were 

applied to cloth, sand flies were repelled from (and never landed on) the treated surfaces. These 

three compounds were shown to act primarily through affecting olfactory sensation of sand flies; 

biting activity of sand flies on treated participants was reduced by approximately one-half 

compared to control participants (Klun et al. 2006). 

 Naucke et al. (2006) evaluated the laboratory efficacy of the repellents IR3535 and DEET 

against the sand flies P. duboscqi and P. mascittii. Both IR3535 and DEET provided 

approximately 6 h protection against P. duboscqi. The mean protection time against P. mascittii 

was around 9 h with DEET, and more than 10 h with IR3535. 
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 Several compounds also have been evaluated as area repellents for sand flies. In a CL 

endemic area of Rajasthan, India, neem oil on a heated electric mat was shown to significantly 

reduce the number of sand flies (P. papatasi) collected in rooms compared to control rooms 

(Dhiman and Sharma 1994). In Turkey, allethrin was found to act as an area repellent and 

significantly reduced the number of sand flies collected during human landing catches (Alten et 

al. 2003). In Israel, citronella, linalool, and geraniol candles were evaluated as indoor area 

repellents for sand flies (Muller et al. 2008). Citronella candles were found to have only a slight 

repellent effect against sand flies (24.7%), while linalool and geraniol candles significantly 

reduced the number of sand flies collected during human landing catches (55.2% and 79.7%, 

respectively). 
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CHAPTER 2. LABORATORY EVALUATION OF DIFLUBENZURON AS A FEED-
THROUGH FOR CONTROL OF IMMATURE SAND FLIES (DIPTERA: 
PSYCHODIDAE)* 
 
2.1 Introduction 

∗Phlebotomine sand flies (Diptera: Psychodidae) are the vectors of the protozoan 

parasites that cause leishmaniasis. Sand flies also are vectors of the disease agents Bartonella 

bacilliformis and sandfly fever virus, and are notorious pests of humans. Worldwide, there are an 

estimated 400 000 cases of leishmaniasis annually, and a population of almost 350 million at risk 

of infection (Ashford et al. 1991). Throughout North Africa, the Middle East, and Asia, 

Phlebotomus papatasi Scopoli is the primary vector of Leishmania major, which is the causative 

agent of zoonotic cutaneous leishmaniasis (ZCL). 

In arid and semi-arid foci, P. papatasi exhibits a close association with the semi-fossorial 

rodents that serve as the reservoirs of L. major (Neronov and Gunin 1971). The temperatures 

within rodent burrows in arid environments are both cooler in the summer and warmer in the 

winter than outside the burrow, and the relative humidity is near saturation, creating conditions 

that are ideal for survival of all life stages of sand flies (Kay and Whitfield 1978). In ZCL foci in 

the Old World, rodent burrows are considered the primary immature habitats for P. papatasi, and 

larvae have been consistently recovered from organic detritus within burrow chambers 

(Artemiev et al. 1972, Morsy et al. 1993). 

The chemical control of sand flies in ZCL foci has rarely been successful due to the 

difficulty of delivering insecticides to their precise microhabitats (Seyedi-Rashti and Nadim 

1973, Karapet’ian et al. 1983). Introducing an insecticide into the burrows is generally precluded 

by the length and complexity of the tunnels that comprise the burrows. Additionally, even 

successful treatments are short-lived and would require frequent reapplication (Seyedi-Rashti 
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and Nadim 1973, Karapet’ian et al. 1983). Therefore, the development of new methods for the 

control of the vectors of ZCL is considered a priority for endemic countries. 

Diflubenzuron is a benzoylurea that has an arthropod-specific inhibitory effect on chitin 

formation and deposition in the cuticle. It has pathological effects on the terrestrial larvae of 

several species of Diptera including house flies (Musca domestica), face flies (Musca 

autumnalis), stable flies (Stomoxys calcitrans), and horn flies (Haematobia irritans) (Miller 

1974, Wright 1974, Kunz et al. 1977). Diflubenzuron also prevents the development of immature 

stages of Psychoda alternata, which is in the same family as P. papatasi (Ali and Kok-Yokomi 

1990).  

Phlebotomine sand fly larvae have been observed feeding on the feces of rodents (WHO 

1968), and incorporating larvicides into rodent bait as a method for sand fly larval control has 

been suggested (Perich, personal communication). The objective of this study was to assess 

diflubenzuron as a rodent feed-through. Thus, the development and survival of P. papatasi larvae 

fed feces from Syrian hamsters, Mesocricetus auratus, fed a diet containing diflubenzuron was 

evaluated. 

2.2 Materials and Methods 

2.2.1 Feeding Protocol 

Adult Syrian hamsters were housed individually in micro-isolator cages and maintained 

and used as described in Animal Care and Use Protocol 05-074, which was approved by the 

Institutional Animal Care and Use Committee at Louisiana State University, Baton Rouge, LA. 

Diflubenzuron [89.7% active ingredient (a.i.), Crompton Corporation, Middlebury, CT] was 

added to a meal form rodent food (5001 Rodent Diet, LabDiet®, PMI Nutrition International, 

Brentwood, MO). A stock of 100 g of food was prepared daily in a glass beaker for each diet 
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group, and diflubenzuron was added to achieve three diet concentrations: 8.97, 89.7, and 897 

mg/kg. The treated food was thoroughly mixed.  

To avoid the inclusion of hamsters that were refractory to eating a powdered diet in this 

study, the daily food intake of 43 hamsters was recorded for three days. The hamsters were 

ranked by mean daily food intake, and the twelve hamsters with the highest daily food intake 

were included in this study. Three hamsters were then randomly assigned to each of four diet 

groups (0, 8.97, 89.7, and 897 mg/kg diflubenzuron). The body weight of each hamster was 

recorded once on the day before treated diets were administered. 

All hamsters were provided 25 g of their respective diets in a ceramic bowl daily for nine 

days. Remaining food was removed every 24 h, and food intake was calculated. Daily doses of 

diflubenzuron were calculated by multiplying the daily food intake by the diet concentration. 

Body weight and daily food intake of hamsters in different diet groups were compared using a 

repeated measures analysis of variance (ANOVA), performed with the general linear model 

(GLM) procedure of SAS (SAS Institute 2001). The Tukey multiple comparison procedure was 

used to separate significantly different means. Within the four hamster diet groups, the ingested 

doses of diflubenzuron also were compared with a repeated measures ANOVA performed with 

the GLM procedure (SAS Institute 2001). 

All fecal pellets were removed from the hamster cages each day for nine days, placed in 

uncovered plastic cups, and dried at room temperature for one week. The samples of hamster 

feces were stored at -80 °C until used. 

2.2.2 Bioassay 

A colony of P. papatasi was established from larvae obtained from a long-standing 

colony at the Walter Reed Army Institute of Research (WRAIR, Department of Entomology, 503 

Robert Grant Ave., Silver Spring, MD). The colony originated from specimens collected in 
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Jordan. Immature sand flies were reared using a standard larval diet comprised of equal parts by 

weight of dried, decomposed rabbit chow (5321 Rabbit Diet, LabDiet®, PMI Nutrition 

International, Brentwood, MO) and rabbit feces (Young et al. 1981). Hamster feces collected 

from each diet group after the ninth day of treatment was used in these assays. Fecal pellets from 

the three hamsters in each diet group were pooled, ground with a pestle, and thoroughly mixed. 

A portion of the feces (approximately 0.1 g) was then placed in the vials. A second control group 

was provided with 0.1 g of the rabbit feces-rabbit chow standard larval diet to allow comparisons 

between the survival of sand fly larvae fed the two control diets. Bioassays of the 5 larval groups 

(3 treated and 2 control groups) were conducted in 26 mL (7 dram) polystyrene vials with a 1 cm 

thick basal layer of plaster of Paris extending through a hole drilled in the bottom. The plaster 

was saturated with distilled water prior to the experiment, and was blotted with filter paper to 

remove standing water immediately before use. 

Ten 2nd instars (13±1-d old) were transferred to each vial using a moistened wooden 

applicator stick. Each vial was closed with a polyethylene cap that was pierced ten times with an 

18-gauge needle. There were six replications (60 larvae total) for each larval diet group. The 

vials were placed in an environmental chamber at 28 °C, 90% relative humidity (RH), 14:10 

(L:D) photoperiod.  

Larval mortality was recorded daily; larvae were considered dead if they did not respond 

within 15 sec to prodding with a blunt probe. Alimentation was noted by observation of the 

presence of frass in the vials and dark material in the guts of the larvae. All larvae were observed 

for abnormal behavioral and morphological characteristics. 

The percent survival of sand flies and the age of the sand flies at death in each larval diet 

group were compared with a repeated measures ANOVA performed with the GLM procedure 

(SAS Institute 2001). The Tukey multiple comparison procedure was used to separate 
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significantly different means. The mean number of days until adult emergence for larvae fed 

each larval diet was compared using Student’s t-test (SAS Institute 2001). The percent survival 

of sand flies fed feces from untreated hamsters and the rabbit feces-rabbit chow standard larval 

diet also were compared using Student’s t-test (SAS Institute 2001). 

2.3 Results 

2.3.1 Feeding Protocol 

The mean body weight of the Syrian hamsters was 102.6±6.2 g, and there were no 

significant differences in mean body weight among diet groups. The mean daily food intake was 

7.68±1.04, 8.38±1.24, 7.67±0.99, and 7.36±0.82 g for hamsters receiving diets containing 0, 

8.97, 89.7, and 897 mg/kg diflubenzuron, respectively. The mean daily food intake of hamsters 

was not significantly different between diet groups (F = 1.27, df = 3, P = 0.29). The estimated 

mean daily doses of diflubenzuron for hamsters were 0.68 ± 0.09, 6.26 ± 0.66, and 62.28 ± 7.03 

mg/kg body weight for hamsters receiving 8.97, 89.7, and 897 mg/kg diflubenzuron, 

respectively.  

2.3.2 Bioassay 

Evidence of food ingestion was found for all larvae in each larval diet group. The mean 

percent survival from 2nd instar to adult was 95±5.5% for the control hamster feces larval group 

and 96.7±5.2% for the rabbit feces-rabbit chow larval group. Mean percent survival was not 

significantly different between sand flies fed feces from untreated hamsters and the rabbit feces-

rabbit chow standard larval diet groups (t = 0.54, df = 10, P = 0.5995; Table 2.1). Similarly, the 

time to adult emergence was not significantly different between the two control groups (larval 

diet: 21.48±2.73 d, feces 22.19±3.14 d; t = 1.30, df = 113, P = 0.20).  

All sand fly larvae that were fed feces from hamsters fed diets containing diflubenzuron 

failed to emerge as adults. Larvae fed feces from hamsters fed diflubenzuron began to die around 
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the same time as the first appearance of pupae in the sand flies fed either untreated hamster feces 

or the standard larval diet (13 d after treatment). Larvae fed feces from hamsters that had been 

fed diflubenzuron had malformed exoskeletons (translucent and fragile), were ataxic, and did not 

feed. None of the larvae successfully pupated in the groups fed feces from hamsters fed diets 

containing diflubenzuron (Table 2.1; Fig. 2.1). The mean age at death was 30.4±3.6, 30.0±2.5, 

and 27.6±2.5 d for larvae reared on feces from hamsters fed 8.97, 89.7, and 897 mg/kg 

diflubenzuron, respectively (Table 2.1). There was no significant difference in the age at death of 

the sand flies in the three diflubenzuron treatment groups (Table 2.1). 
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Figure 2.1 Cumulative Per Cent Survival of 2nd Instar (13±1-d old) P. papatasi Larvae Fed Feces 
from Three Treatment Groups of Syrian Hamsters Receiving Diets Containing Different 
Concentrations of Diflubenzuron, Feces from Untreated Control Syrian Hamsters, or an 
Untreated Control Laboratory Larval Diet (a 1:1 Rabbit Feces-Rabbit Chow Diet). Vertical 
Reference Lines Indicate the First Appearance of Pupae (13 d) and Adults (17 d) in Control Vials 
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Table 2.1 Percent Mortality and Age at Death of 2nd Instar (13±1 Days Old) P. papatasi Fed 
Feces from Three Treatment Groups of Syrian Hamsters Receiving Different Oral Doses of 
Diflubenzuron, Feces from Untreated Syrian Hamsters, or an Untreated Laboratory Larval Diet 
(a 1:1 Rabbit Feces-Rabbit Chow Diet) 

Treatment group 
Sand fly mortality 

% 
(mean* ± SE)# 

Sand fly age at death 
d 

(mean* ± SE)# 
Diflubenzuron   
    0.68 ± 0.09 mg/kg body weight 100.0a 30.4 ± 3.6a 

    6.26 ± 0.66 mg/kg body weight 100.0a 30.0 ± 2.5a 

    62.28 ± 7.03 mg/kg body weight 100.0a 27.6 ± 2.5a 

Control   
    Hamster feces 5.0 ± 5.5b 32.0 ± 1.4a 

    Laboratory larval diet 3.3 ± 5.2b 30.3 ± 3.1a 

* Six replicates, ten larvae per replicate 
# Values within a column followed by the same letter are not significantly different. P> 0.05 
 
 

2.4 Discussion 

Sand fly larvae fed feces from hamsters fed a diet containing diflubenzuron began to 

show morphological abnormalities and began to die at nearly the same time that control sand 

flies began to pupate suggesting a specific effect of diflubenzuron on the pupation of sand flies. 

Wright (1974) observed that larvae of M. domestica and S. calcitrans that had been treated with 

diflubenzuron died during the transformation from larvae to pupae. Wright (1974) reported that 

the larvae of M. domestica and S. calcitrans that had been exposed to diflubenzuron also 

possessed malformed cuticles that appeared very thin a delicate. 

The food intake of the tested hamsters was not affected by the diflubenzuron treatments, 

suggesting that diflubenzuron treated diets are palatable to hamsters. The bait preferences of 

some of the rodent reservoirs of L. major are known. Rhombomys opimus and Meriones libycus, 

important reservoirs of L. major in parts of the Middle East and Asia, are commonly baited with 

grains (Yaghoobi-Ershadi 2000, Yaghoobi-Ershadi 2005). Reservoirs of L. major in Sub-Saharan 
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Africa, such as Arvicanthis spp, Mastomys spp, and Tatera spp., are granivorous and could be 

targeted with treated baits. 

The results of this study indicate that rodents could be used effectively as a vehicle to 

deliver insecticides to the larval habitats of sand flies that are otherwise difficult to locate and 

reach by conventional means. Diflubenzuron has pharmacokinetic characteristics that make it an 

appropriate feed additive to control immature flies that live in and feed on feces. Diflubenzuron 

has low mammalian toxicity, and the majority of the compound is excreted from mammalian 

systems unchanged in the feces (FAO 1981). It has been used successfully as a feed additive for 

cattle and chickens (Miller 1974, Miller 1975, Cook and Gerhardt 1977). Diflubenzuron also is 

relatively persistent in the environment. Miller et al. (1976) found that more than half of the 

original amount of diflubenzuron was present after 45 d in the feces of cattle fed 16 mg/kg body 

weight. 

The results of this study provide the proof of concept for the future development of feed-

through rodent baits containing diflubenzuron for field use for sand fly control. If shown to be 

effective in field trials, this new method of controlling sand fly larvae also may play a vital role 

in the prevention of ZCL. 
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CHAPTER 3. EVALUATION OF NOVALURON AS A FEED-THROUGH 
INSECTICIDE FOR CONTROL OF IMMATURE SAND FLIES (DIPTERA: 
PSYACHODIDAE)∗ 
 
3.1 Introduction 

Phlebotomine sand flies (Diptera: Psychodidae) are the vectors of the protozoan parasites 

that cause leishmaniasis and are notorious pests of humans. Worldwide, there are an estimated 2 

million new cases of leishmaniasis annually, and an estimated 12 million people are currently 

infected (WHO 1991). Throughout Asia and North Africa, the sand fly Phlebotomus papatasi 

Scopoli is the primary vector of Leishmania major, which is the causative agent of zoonotic 

cutaneous leishmaniasis (ZCL). 

Semi-fossorial rodents serve as the primary reservoir hosts of ZCL in arid and semi-arid 

Old World foci. In these ZCL foci, which have high diurnal temperatures and low relative 

humidity, populations of sand flies aggregate in the burrows of the rodent hosts of L. major. 

Sand fly larvae and adults thrive in the microclimate within the burrows where the abundant 

organic debris serves as the food source for sand fly larvae. In Old World ZCL foci, the larvae of 

P. papatasi frequently have been recovered from animal burrows (Artemiev et al. 1972, Morsy 

et al. 1993). 

The only historical successes in suppressing the transmission of L. major have involved 

the destruction of large areas of natural habitat to eliminate reservoirs, and vector breeding and 

resting places (Faizulin 1980). The use of insecticides to control sand flies in Old World ZCL 

foci has not been successful because insecticide applications introduced into rodent burrows do 

not reach the microhabitats of adult and immature sand flies due to the length and complexity of 

the tunnels that make up the burrows (Seyedi-Rashti and Nadim 1973, Karapet’ian et al. 1983). 

The development of new, efficacious methods for the control of the vectors of ZCL is needed. 

                                                 
∗ Reprinted by permission of the Journal of Medical Entomology 
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Phlebotomine sand fly larvae have been observed feeding on the feces of rodents (WHO 

1968). Feed-through rodent baits that contain insecticides have been suggested as a novel method 

for sand fly larval control, and the feasibility of this method has been established using 

diflubenzuron, a benzoylurea chitin synthesis inhibitor, to control larvae of P. papatasi (Mascari 

et al. 2007b). The objective of this study was to assess novaluron, which also is a benzoylurea 

chitin synthesis inhibitor, as a rodent feed-through to control sand fly larvae. The development 

and survival of P. papatasi larvae fed feces of Syrian hamsters, Mesocricetus auratus, which had 

been fed a diet containing novaluron, was evaluated. 

3.2 Materials and Methods 

3.2.1 Feeding Protocol 

Twelve Syrian hamsters were housed individually in micro-isolator cages. The 

maintenance of the hamsters and the experimental procedures of this research followed Animal 

Care & Use Protocol No. 05-074, which was approved by the Institutional Animal Care and Use 

Committee at Louisiana State University, Baton Rouge, LA. 

 Four hamster diets were prepared by adding novaluron (98.8% a.i., Makhteshim Agan 

Industries Ltd., Tel Aviv, Israel) to a meal form laboratory rodent diet (5001 Rodent Diet, 

LabDiet®, PMI Nutrition International, Brentwood, MO). Novaluron was added to the meal form 

hamster diet to achieve four concentrations in the diet (0, 9.88, 98.8 and 988 mg/kg) and was 

thoroughly mixed. 

 Three hamsters were randomly assigned to each of the four diet groups (0, 9.88, 98.8 or 

988 mg/kg novaluron). The initial body weight of the hamsters was measured on the day before 

the experiment. The body weight of hamsters in different diet groups was compared using 

analysis of variance (ANOVA), performed with the general linear model (GLM) procedure of 

SAS (SAS Institute 2001). 
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 At 12:00 h each day for 9 d, each hamster was provided 25 g of their respective diet. The 

uneaten portion of the food was collected the following day at 12:00 h, and the daily food intake 

for each hamster was calculated. The daily doses of novaluron that were ingested by the hamsters 

were calculated by multiplying the daily food intake by the concentration of novaluron in the 

hamster’s diet. Both the daily food intake and the daily doses of novaluron for individual 

hamsters were compared within hamster diet groups; daily food intake and the daily dose of 

novaluron also were compared between hamster diet groups. Each comparison was performed 

using a repeated measures ANOVA, performed with the GLM procedure of SAS (SAS Institute 

2001). The Tukey multiple comparison procedure was used to separate significantly different 

means. 

 The feces produced by each hamster were collected daily for 9 d. The feces were placed 

in uncovered glass vials and dried at room temperature for seven days. Once dry, the feces were 

stored at -80 °C until used. 

3.2.2 Bioassay 

A laboratory colony of sand flies was established at Louisiana State University using 

specimens obtained from a long-standing colony of a Turkish strain of P. papatasi at the Walter 

Reed Army Institute of Research (WRAIR, Department of Entomology, 503 Robert Grant Ave., 

Silver Spring, MD). The sand flies in the colony were reared using a larval diet composed of a 

dried and decomposed 1:1 mixture of rabbit feces and rabbit chow (Young et al. 1981). The 

colony was maintained in environmental chambers at 28 °C, 90% RH, 14:10 (L:D) photoperiod.   

 Six larval diets were used in sand fly larval bioassays. The feces collected from hamsters 

on day nine were pooled by treatments and crushed using a glass mortar and pestle. Four groups 

of larvae were fed feces of hamsters in each hamster diet groups. Two additional groups of sand 

fly larvae were fed the rabbit feces-rabbit chow larval diet containing either 0 or 988 mg/kg 
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novaluron. This allowed comparisons between the survival of sand fly larvae fed feces of 

hamsters that had been fed diets without novaluron and the untreated rabbit feces-rabbit chow 

larval diet, as well as comparisons between the survival of sand fly larvae fed feces of hamsters 

that had been fed diets containing novaluron and a larval diet treated directly with novaluron. 

 The larval bioassays were conducted according to the methods described by Mascari et 

al. (2007a) A 0.1 g portion of the larval diets was transferred to the plaster surface of each 

bioassay vial. Ten second instars (13±1-d old) were transferred to each bioassay vial and held in 

an environmental chamber at 28 °C, 90% RH, 14:10 (L:D) photoperiod. Six bioassay vials were 

used for each of the six larval diet groups. 

 The larvae were observed under magnification daily. Larval mortality, defined as the lack 

of response to prodding with a blunt probe after 15 s, was recorded, and the larvae were observed 

for abnormal behavioral and morphological characteristics. Evidence of feeding, the presence of 

frass in the vials and dark material in the guts of larvae, also was monitored.  

The percent survival of sand flies and the age of the sand flies at death in each larval diet 

group were compared with a repeated measures ANOVA performed with the GLM procedure 

(SAS Institute 2001). The Tukey multiple comparison procedure was used to separate 

significantly different means. The mean number of days until adult emergence for larvae fed 

each larval diet was compared using Student’s t-test (SAS Institute 2001). The percent survival 

of sand flies fed feces of untreated hamsters and the untreated rabbit feces-rabbit chow standard 

larval diet also was compared using Student’s t-test (SAS Institute 2001). 

3.3 Results 

3.3.1 Feeding Protocol 

The mean body weight of the twelve Syrian hamsters was 136.0±20.1 g, and the mean 

body weights of hamsters in the different hamster diet groups were not significantly different (F 
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= 0.57, df = 3, P = 0.65). The mean daily food intake of the hamsters was 7.6±1.7, 8.2±1.7, 

7.7±1.3, and 7.6±0.8 g for hamsters receiving diets containing 0, 9.88, 98.8, and 988 mg/kg 

novaluron, respectively, and was not significantly different (F = 1.00, df = 3, P = 0.40). The 

estimated mean daily doses of novaluron for hamsters were 0.6±0.1, 6.2±0.9, and 56.6±7.7 

mg/kg body weight for hamsters receiving 9.88, 98.8, and 988 mg/kg novaluron, respectively.  

3.3.2 Bioassay 

Larvae in each of the larval diet groups were observed feeding, and frass was found in 

each bioassay vial. The mean percent survival from 2nd instar to adult for the sand flies in the 

untreated hamster feces larval diet group was 100% and was not significantly different from the 

98.3±4.2% survival for sand flies in the rabbit feces-rabbit chow larval diet group (t = -1.00, df = 

10, P = 0.34; Table 3.1).  

 
Table 3.1 Percent Mortality and Longevity of 2nd Instar (13 ± 1 Day Old) P. papatasi Larvae  
Fed Feces of Syrian Hamsters That Had Been Fed a Diet Containing 0, 9.88, 98.8, and 988 
mg/kg, or an Aged 1:1 Rabbit Feces-Rabbit Chow Larval Diet Containing 0 and 988 mg/kg 
Novaluron 

Larval diet group 
Mortality 

% 
(mean* ± SE)# 

Longevity 
d 

(mean* ± SE)# 
Hamster feces   
    988 mg/kg 100.0a 4.7 ± 1.9a

    98.8 mg/kg 100.0a 4.9 ± 2.0a

    9.88 mg/kg 100.0a 4.8 ± 1.7a

    0 mg/kg 0.0b n/a§ 
Aged rabbit feces-rabbit chow   
    988 mg/kg 100.0a 4.4 ± 1.6a

    0 mg/kg 1.7 ± 4.18b n/a§ 
* Six replicates, ten larvae per replicate 
# Values within a column followed by the same letter are not significantly different from each 
other, P> 0.05 
§ Not applicable 

 
Sand fly larvae that were fed feces of hamsters that had consumed diets containing 

novaluron and larvae that had been fed the rabbit feces-rabbit chow larval diet containing 988 
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mg/kg novaluron were ataxic, ceased feeding, and died before pupation (Table 3.1). The mean 

longevity of sand fly larvae fed feces of hamsters that had been fed 9.88, 98.8, and 988 mg/kg 

novaluron, or the rabbit feces-rabbit chow larval diet containing 988 mg/kg novaluron was not 

significantly different (Table 3.1). 

3.4 Discussion 

The quantity of food eaten by the hamsters in this study was not affected by the 

incorporation of novaluron in a powdered diet. This suggests that novaluron treated diets are 

palatable to hamsters, and that novaluron could be incorporated into baits for other rodents. 

Some important rodent reservoirs of L. major in parts of the Middle East and Asia, including 

Rhombomys opimus and Meriones libycus, are readily attracted to grain-based baits (Yaghoobi-

Ershadi 2000, Yaghoobi-Ershadi 2005). In Sub-Saharan Africa rodent reservoirs of L. major, 

such as Arvicanthis spp, Mastomys spp, and Tatera spp., are granivorous and also could be 

targeted with treated baits. 

Sand fly larvae fed feces of hamsters that had been fed a diet containing novaluron began 

to die at a time when the control sand flies were molting from second to third instar. This 

observation is consistent with second instar spined soldier bugs (Podisus maculiventris) that had 

been exposed to a novaluron-treated substrate, and later exhibited ataxia and died as larvae 

(Cutler et al. 2006). The mortality of 2nd instar Culex quinquefasciatus and Aedes aegypti 

principally occurred during the larval stage when they were exposed to 1 ppb novaluron in water 

(Mulla et al. 2003; Su et al. 2003).  

Previously, diflubenzuron was evaluated as a rodent feed-through for sand fly larvae 

(Mascari et al. 2007a). Unlike the present findings with novaluron, 2nd instar sand flies that were 

fed feces of hamsters that had been fed diets containing diflubenzuron died during the larva to 

pupa molt.  
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The pharmacokinetics of novaluron in mammalian systems makes it an appropriate 

choice for use in treated rodent baits. Novaluron is of very low toxicity to mammals by ingestion 

and other routes of exposure (FAO 2005). Following ingestion the majority of novaluron is 

eliminated unchanged in the feces (FAO 2005). Novaluron is persistent in the environment. In a 

rotational crop study where 100 g novaluron per ha was applied to soil, between 32 – 49% of the 

original compound was still present after 127 to 195 d (FAO 2005). The results of this study 

suggest that a control strategy using rodent baits containing novaluron to control phlebotomine 

sand flies and zoonotic cutaneous leishmaniasis may be possible. 
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CHAPTER 4.  IVERMECTIN AS A RODENT FEED-THROUGH INSECTICIDE FOR 
CONTROL OF IMMATURE SAND FLIES (DIPTERA: PSYCHODIDAE)∗ 
 
4.1 Introduction 

Phlebotomine sand flies (Diptera: Psychodidae) are important both as biting pests of 

humans and as the vectors of human pathogens. Most importantly, sand flies are the vectors of 

the protozoan parasites that cause leishmaniasis. Worldwide, 2 million new cases of 

leishmaniasis are believed to occur annually, and as many as 12 million people currently may be 

infected (WHO 2006). Throughout North Africa, the Middle East, and Southwest Asia, the sand 

fly Phlebotomus papatasi Scopoli is the vector of Leishmania major, which is the causative 

agent of zoonotic cutaneous leishmaniasis (ZCL). 

The reservoir hosts of L. major in arid and semi-arid Old World foci are burrowing 

rodents. Sand flies proliferate inside rodent burrows, where the habitat provides high relative 

humidity and is protected from extreme temperatures. Adult sand flies live in close proximity to 

sources of blood (from the rodents living within the burrows) and sugar (from plants that grow 

near the burrow entrances), whereas the larvae develop within the abundant organic matter inside 

the burrows. The direct treatment of rodent burrows with insecticides has been largely 

unsuccessful for controlling sand fly populations. Insecticide applications in and around rodent 

burrows do not reach the microhabitats of adult or immature sand flies that may be located deep 

within the burrows (Seyedi-Rashti and Nadim 1973, Karapet’ian et al. 1983). Since 

leishmaniasis is an uncontrolled and emerging disease that disproportionately affects human 

populations in developing countries, the development of new, efficacious methods for the control 

of the vectors of ZCL is needed (Saravia 2004). 

In ZCL foci in the Old World, rodent burrows are considered to be the primary habitats 

for immature P. papatasi, and larvae have been observed feeding on the feces of rodents (WHO 
                                                 
∗ Reprinted by permission of the Journal of the American Mosquito Control Association 
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1968). Based on this aspect of sand fly ecology, a rodent feed-through method could be a 

potential means to control sand fly larvae. Proof of concept for this method has been established 

using two chitin synthesis inhibitors (diflubenzuron and novaluron) against larvae of P. papatasi 

(Mascari et al. 2007a; Mascari et al. 2007b). Ivermectin is a macrocyclic lactone that acts as a 

broad-spectrum endectocide against numerous nematodes and arthropods, and has been shown to 

have broad insecticidal effects in many feed-through systems, particularly in cattle (Miller et al. 

1981). The objective of this study was to assess ivermectin as a rodent feed-through to control 

sand fly larvae. The development and survival of P. papatasi larvae fed feces of Syrian hamsters, 

Mesocricetus auratus, that had been fed a diet containing ivermectin were evaluated. 

4.2 Materials and Methods 

4.2.1 Sand Flies 

The sand flies used in these studies were from a laboratory colony of a Turkish strain of 

P. papatasi established at Louisiana State University (Mascari et al. 2007b). Larvae were reared 

using a lab diet consisting of composted and dried rabbit feces and rabbit chow mixed 1:1 

(Young et al. 1981). Adults were provided 20% sucrose solution ad libitum and obtained blood 

meals from Syrian hamsters. The colony was maintained in environmental chambers at 28 °C, 

90% RH, and 14:10 (L:D) photoperiod.   

4.2.2 Syrian Hamsters 

A total of 24 Syrian hamsters were housed individually in micro-isolator cages as 

described by Mascari et al. (2007a). The maintenance of the hamsters and all experimental 

procedures followed Animal Care & Use Protocol No. 05-074, which was approved by the 

Institutional Animal Care and Use Committee at Louisiana State University, Baton Rouge, LA. 

Research involving the hamsters was conducted in compliance with the Animal Welfare Act and 

other federal statutes and regulations relating to animals and experiments involving animals and 
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adheres to principles stated in the Guide for the Care and Use of Laboratory Animals, NRC 

Publication, 1996 edition. 

4.2.3 Feed-Through 

 Two separate feed-through experiments were conducted using different concentrations of 

ivermectin. Hamster diets were prepared by adding technical ivermectin (Merck & Co., Inc., 

Whitehouse Station, NJ, USA) to a meal form laboratory rodent diet (5001 Rodent Diet, 

LabDiet®, PMI Nutrition International, Brentwood, MO) and thoroughly mixing the diets. 

Ivermectin was added to hamster food to obtain diet concentrations of 2, 6, and 10 mg/kg 

in the first experiment, and 20, 60, and 100 mg/kg in the second experiment. In each experiment, 

three hamsters were randomly assigned to each of the three diet groups containing ivermectin 

and to a control diet group (0 mg/kg ivermectin). At 12:00 h each day for nine days, the hamsters 

were provided with 15 g of their respective diets. The uneaten portion of the food was collected 

the following day at 12:00 h, and the daily food intake for each hamster was calculated. The 

daily doses of ivermectin that were ingested by the hamsters were calculated in mg/kg body 

weight. The body weight of the hamsters was measured on the day before the experiment. The 

feces produced by each hamster were collected daily for nine days. The feces were dried at room 

temperature for seven days, and then were stored at -80 °C until used. 

In each experiment, the body weight and daily food intake of hamsters in the four diet 

groups was compared using repeated measures ANOVA, performed with the GLM procedure of 

SAS (SAS Institute 2001).  

4.2.4 Larval Bioassay 

 Hamster feces collected during the first and second feed-through experiments were 

assayed separately. The feces voided by hamsters after nine days of feeding were pooled by 

hamster diet group, and were crushed using a glass mortar and pestle. 
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In the first experiment, sand fly larvae were fed the feces of hamsters in each hamster diet 

group (0, 2, 6, and 10 mg/kg ivermectin). Two control larval diet groups also were included: an 

untreated control fed standard larval diet to identify potential differences in the survival of larvae 

fed hamster feces and the standard colony larval diet, and a positive control group fed larval diet 

containing 100 mg/kg ivermectin. In the second experiment, sand fly larvae were fed feces of 

hamsters that had been fed a diet containing 0, 20, 60, 100 mg/kg ivermectin for 9d. 

Larval bioassays were conducted as described by Mascari et al. (2007a). A 200 mg 

sample of larval diet (hamster feces or the lab diet) was transferred to the plaster surface of each 

bioassay vial. Ten 2nd instar (13±1-d old) larvae were transferred to each bioassay vial and held 

in an environmental chamber at 28 °C, 90% RH, 14:10 (L:D) photoperiod. Six bioassay vials 

were prepared for each larval diet group. 

 The larvae were observed under magnification daily. Larval mortality (defined as the lack 

of response to prodding with a blunt probe after 15 s) was recorded, and the larvae were 

observed for abnormal behavioral and morphological characteristics. Evidence of feeding (the 

presence of frass in the vials and dark material in the guts of larvae) also was monitored. 

Data collected in the bioassays using hamster feces from the first and second experiments 

were analyzed separately. The percent survival of immature sand flies to adult emergence after 

being fed their respective diets was compared with repeated measures ANOVA performed with 

the GLM procedure (SAS Institute 2001). The Tukey multiple comparison procedure was used to 

separate significantly different means. 

4.3 Results 

4.3.1 Feed-Through 

In the first feed-through experiment, the mean body weight of the 12 Syrian hamsters fed 

diets containing 0, 2, 6, and 10 mg/kg ivermectin was 128.2±9.1 g, and the mean body weights 
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of hamsters in these hamster diet groups were not significantly different (F = 0.87, df = 3, P = 

0.49). The mean daily food intake of the hamsters was 9.1±1.2, 9.6±1.5, 9.1±1.3, and 8.9±1.4 g 

for hamsters receiving diets containing 0, 2.0, 6.0, and 10.0 mg/kg ivermectin, respectively, and 

was not significantly different (F = 1.27, df = 3, P = 0.29). The estimated mean daily doses of 

ivermectin for hamsters were 0.2±0.1, 0.4±0.1, and 0.7±0.1 mg/kg body weight for hamsters 

receiving 2, 6, and 10 mg/kg ivermectin, respectively. 

 In the second feed-through experiment, the mean body weight of the 12 Syrian hamsters 

that were fed diets containing 0, 20, 60, and 100 mg/kg ivermectin was 124.2±14.6 g, and the 

mean body weights of hamsters in the different hamster diet groups were not significantly 

different (F = 2.78, df = 3, P = 0.11). The mean daily food intake of the hamsters was 7.2±2.6, 

7.2±1.5, 5.6±1.1, and 4.6±1.5 g for hamsters receiving diets containing 0, 20, 60, and 100 mg/kg 

ivermectin, respectively. The means of daily food intake of hamsters fed diets containing 0 and 

20 mg/kg ivermectin were significantly different from the mean daily food intake of hamsters fed 

diets containing 60 and 100 mg/kg ivermectin (F = 10.21, df = 3, P < 0.01). The means of daily 

food intake of hamsters fed diets containing 60 and 100 mg/kg were 22 and 36% lower, 

respectively, than the mean daily food intake of the hamsters fed a diet containing 0 mg/kg 

ivermectin. The estimated mean daily doses of ivermectin for hamsters were 1.2±0.3, 2.8±1.0, 

and 4.2±1.8 mg/kg body weight for hamsters receiving 20, 60, and 100 mg/kg ivermectin, 

respectively. 

4.3.2 Larval Bioassay 

In both the first and second experiments, larvae in each of the larval diet groups were 

observed feeding, and frass was found in each bioassay vial. In the first experiment, the mean 

percent survival was not significantly different between larval groups fed either feces from 

untreated hamsters or the lab diet (t = 0.54, df = 10, P = 0.60; Table 4.1). In the bioassay using 
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hamster feces collected in the first experiment, the mean percent emergence for the sand fly 

larvae fed feces from ivermectin treated hamsters was significantly different from larvae fed 

feces from untreated hamsters (F =  37.27, df = 3, P < 0.01; Table 4.1). The mean longevity of 

larvae after they were fed feces of hamsters that had been fed diets containing 2, 6, and 10 mg/kg 

ivermectin was 5.3±2.9, 6.2±4.1, and 4.0±3.2 d, respectively. Larvae fed the rabbit feces-rabbit 

chow diet containing 100 mg/kg ivermectin all died within 3 d. The larvae that were fed feces 

voided by ivermectin-treated hamsters and lab diet containing ivermectin became rigid and 

ceased feeding before they died. 

 
Table 4.1 Mortality of Second Instar Sand Flies Fed Feces Voided by Ivermectin-Treated or 
Untreated Hamsters, and Ivermectin-Treated or Untreated Laboratory Larval Diet (1:1 Rabbit 
Feces-Rabbit Chow w:v) 

Larval diet 
Mortality 

% 
(mean* ± SE) 

Experiment one  
     Hamster feces#  
          0 5.0 ± 5.5 
          2 85.0 ± 16.4 
          6 80.0 ± 22.8 
          10 93.3 ± 12.1 
     Laboratory diet§  
          0 8.3 ± 7.5 
          100 100 
Experiment two  
     Hamster feces#  
          0 5.0 ± 8.4 

          20 100 

          60 100 

          100 100 

* Six replicates, ten larvae per replicate 
# Concentration (mg/kg) of ivermectin in hamster diet  
§ Concentration (mg/kg) of ivermectin in laboratory diet 

 

In the larval bioassay using hamster feces collected in the second feed-through 

experiment, the mean mortality of larvae fed feces from untreated hamsters was 5%. The 
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mortality of larvae that were fed feces from ivermectin-treated hamsters was 100% (Table 4.1). 

The mean longevity of larvae after being fed feces of hamsters that had been fed diets containing 

20, 60, and 100 mg/kg ivermectin was 4.5±2.3, 3.5±1.9, and 4.3±2.6 d respectively. The larvae 

fed feces from ivermectin-treated hamsters in this bioassay also became rigid and ceased feeding 

before death. 

4.4 Discussion 

The sand fly larvae in this study readily fed on hamster feces, including the feces of 

hamsters that had been fed diets containing ivermectin. Larvae died soon after being fed feces 

from ivermectin-treated hamsters, typically within one week. These findings are consistent with 

the findings of Miller et al. (1981) in which horn fly, face fly, house fly, and stable fly larvae 

died after being fed feces from ivermectin-treated cattle. 

The quantity of food that was consumed by the hamsters tested in this study was not 

affected by the incorporation of 2, 6, 10, or 20 mg/kg ivermectin in their diet. However, hamsters 

that were fed diets containing 60 and 100 mg/kg ate significantly less than the control hamsters. 

The diet concentration of 20 mg/kg ivermectin did not reduce hamster feeding and was more 

effective than lower diet concentrations as a feed-through against sand fly larvae. The 

corresponding mean daily dose of ivermectin for hamsters fed a diet containing 20 mg/kg 

ivermectin (1.16±0.27 mg/kg body weight) was below the LC50 observed in orally dosed rats 

(42.8 to 52.8 mg/kg body weight), as well as the level at which sublethal effects (such as 

moderate incoordination) have been observed (4 mg/kg body weight; IPCS 1994). 

Previously, diflubenzuron and novaluron were evaluated as rodent feed-through 

insecticides for immature sand flies, and the feces of hamsters treated with these chitin synthesis 

inhibitors affected the development of sand fly larvae (Mascari et al. 2007a, 2007b). 

Diflubenzuron interrupted the development of larvae during the molt from larva to pupa, and 
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novaluron affected sand flies during larval molts. Sand fly larvae may survive for several days 

after ingesting diets containing chitin synthesis inhibitors because these compounds act at 

specific developmental stages in sand flies. In contrast, ivermectin induces an acute response in 

insects by enhancing glutamate-nergic neural and neuromuscular transmission that leads to 

paralysis and death. As expected, sand fly larvae fed feces from ivermectin-treated hamsters died 

rapidly, and their death was not linked to an event in their development.  

Ivermectin has pharmacokinetic properties that make it an appropriate feed additive for 

the control of fly larvae that feed on animal feces. Over 90% of orally administered ivermectin is 

excreted by various mammals (cattle, sheep, pigs, and rodents) unchanged in the feces (Campbell 

et al. 1983). Ivermectin excreted in animal feces also degrades at a slow rate under field 

conditions. Sommer and Steffansen (1993) did not observe a reduction in the amount of 

ivermectin in cow dung that was in a pasture for 45 d, and Madsen et al. (1990) found that dung 

from ivermectin-treated cattle remained toxic to house fly larvae after two months. 

The results of this study suggest that ivermectin-treated diets are effective as feed-

through for control of sand fly larvae at concentrations that are palatable to hamsters. In future 

field trials, several important rodent reservoirs of L. major could be targeted with ivermectin-

treated baits, particularly, Rhombomys opimus and Meriones libycus in parts of the Middle-East 

and Southwest Asia, and Arvicanthis spp, Mastomys spp, and Tatera spp. in Sub-Saharan Africa, 

all of which can be baited with grains (Yaghoobi-Ershadi et al. 2000, Yaghoobi-Ershadi et al. 

2005). If shown to be effective in field trials, rodent baits containing ivermectin may play a role 

in reducing sand fly populations, the burden of sand flies feeding on people, and the incidence of 

ZCL. 
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CHAPTER 5. EVALUATION OF JUVENILE HORMONE ANALOGUES AS RODENT 
FEED-THROUGH INSECTICIDES FOR CONTROL OF IMMATURE SAND FLIES 
(DIPTERA: PSYCHODIDAE) 
 
5.1 Introduction 

Phlebotomine sand flies (Diptera: Psychodidae) are significant biting pests of humans, 

and are the vectors of several human pathogens including Bartonella bacilliformis, Toscana 

Virus, Sicilian Virus, and Naples Virus. Most importantly, sand flies are the vectors of the 

protozoan parasites that cause leishmaniasis. Worldwide, 2 million new cases of leishmaniasis 

are believed to occur annually, and as many as 12 million people currently may be infected 

(WHO 2006).  

The sand fly species Phlebotomus papatasi Scopoli occurs in Mediterranean littoral 

countries and throughout Southwestern and Central Asia. In arid areas within its distribution, P. 

papatasi is the vector of Leishmania major, the causative agent of zoonotic cutaneous 

leishmaniasis (ZCL). The reservoir hosts of L. major are various species of locally abundant 

burrowing rodents. Sand flies aggregate within rodent burrows, which provide the microclimatic 

conditions they require for survival (darkness, high relative humidity, and protection from 

extreme temperatures). Adult sand flies live in close proximity to sources of blood (from the 

rodents living within the burrows) and sugar (from plants that grow near the burrow entrances), 

while the sand fly larvae develop within the organic matter inside the burrows. 

The close association between sand flies and rodent burrows has been demonstrated in 

many different sand fly/rodent associations in Old World ZCL foci. However, targeting burrows 

with insecticides has not been effective at controlling sand fly populations because insecticide 

applications in and around rodent burrows do not reach deep within the burrows where adult and 

immature sand flies are located (Seyedi-Rashti & Nadim 1973; Karapet’ian et al. 1983). Since 

leishmaniasis is an emerging disease that disproportionately affects human populations in 



 60

developing countries, the development of new and efficacious methods for the control of the 

vectors of ZCL is needed (Saravia 2004). 

The primary habitat for immature P. papatasi in ZCL foci is considered to be organic 

debris in rodent burrows, and sand fly larvae have been observed feeding on the feces of rodents 

(WHO 1968). Therefore, the use of rodent feed-through insecticides may be a potential method 

to control sand fly larvae. Proof of concept for rodent feed-through control of larvae of P. 

papatasi has been established in laboratory studies using two benzoylurea chitin synthesis 

inhibitors (diflubenzuron and novaluron) and a macrocyclic lactone (ivermectin) (Mascari et al. 

2007a, b; Mascari et al. 2008). The objective of this study was to evaluate the juvenile hormone 

analogs methoprene and pyriproxyfen as rodent feed-through insecticides to control sand fly 

larvae. The development and survival of P. papatasi larvae fed feces of Syrian hamsters, 

Mesocricetus auratus, that had been fed a diet containing methoprene or pyriproxyfen were 

measured. 

5.2 Materials and Methods 

5.2.1 Sand Flies 

 The sand flies used in these studies were from a laboratory colony of a Turkish strain of 

P. papatasi established at Louisiana State University (Mascari et al. 2007b). The sand fly larvae 

in the colony were reared using a larval diet composed of a composted and dried 1:1 mixture of 

rabbit feces and rabbit chow (Young et al. 1981). Adult sand flies were provided 20% sucrose 

solution ad libitum, and obtained blood-meals from Syrian hamsters. The colony was maintained 

in environmental chambers at 28 °C, 90% RH, and 14:10 (L:D) photoperiod.   

5.2.2 Syrian Hamsters 

A total of twenty-four Syrian hamsters were housed individually in micro-isolator cages. 

The maintenance of the hamsters and all experimental procedures followed Animal Care & Use 
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Protocol No. 05-074, which was approved by the Institutional Animal Care and Use Committee 

at Louisiana State University, Baton Rouge, LA, USA. Research involving the hamsters was 

conducted in compliance with the Animal Welfare Act and other federal statutes and regulations 

relating to animals and experiments involving animals and adheres to principles stated in the 

Guide for the Care and Use of Laboratory Animals, NRC Publication, 1996 edition. 

5.2.3 Feed-Through 

Hamster diets were prepared by adding pyriproxyfen 98.2% a.i., Valent USA 

Corporation, Walnut Creek, CA, USA] and methoprene (97.88% a.i., Central Life Sciences, 

Walnut Creek, CA, USA) to a meal form laboratory rodent diet (5001 Rodent Diet, LabDiet®, 

PMI Nutrition International, Brentwood, MO, USA). Pyriproxyfen was added directly to hamster 

food to achieve three concentrations (9.82, 98.2, or 982 mg/kg), and the diets were thoroughly 

mixed. An untreated control diet also was prepared. Technical methoprene is in liquid form, and 

it was diluted in pure soybean oil before being added to powdered hamster food. Diluted 

methoprene was added to hamster food at a rate of 100 g / 900 g powdered hamster food yielding 

hamster food containing three concentrations of methoprene: 9.788, 97.88, or 978.8 mg/kg. An 

additional control diet was prepared by adding soybean oil at a rate of 100 g / 900 g hamster 

food. 

Three hamsters were randomly assigned to each of the eight diet groups (three 

concentrations of pyriproxyfen, three concentrations of methoprene, a soybean oil control diet 

group, and an untreated control diet group). The hamsters were provided with 25 g of their 

respective diets each day for 9 d. The uneaten portion of the food was collected the following 

day, and the daily food intake for each hamster was calculated. The daily doses of pyriproxyfen 

and methoprene that were ingested by the hamsters were calculated in mg/kg body weight (the 

body weight of the hamsters was measured on the day before the experiment). The feces voided 
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by each hamster were collected daily for 9 d. All feces were dried at room temperature for seven 

days, and then were stored at -80 °C until used. 

The daily food intake of hamsters was compared using repeated measures analysis of 

variance (ANOVA), performed with the GLM procedure of SAS (SAS Institute 2001). The 

Tukey multiple comparison procedure was used to separate significantly different means. The 

daily doses of pyriproxyfen or methoprene for individual hamsters were compared within 

hamster diet groups using the same statistical analysis. 

5.2.4 Larval Bioassay 

Feces voided by hamsters after nine days of feeding on their respective diets were used as 

diets for sand fly larvae. The feces were pooled by hamster diet group and were manually 

crushed using a sterilized glass mortar and pestle. 

 Larval bioassays were conducted according to the methods described by Mascari et al. 

(2007a). A 0.4 g portion of feces was transferred to the plaster surface of each bioassay vial. Ten 

second instars (13±1-d old) were transferred to each bioassay vial and held in an environmental 

chamber at 28 °C, 90% RH, 14:10 (L:D) photoperiod. Five bioassay vials were used for each of 

the eight larval diet groups. 

 The larvae were observed under magnification daily. Mortality, which was defined as the 

lack of response to prodding with a blunt probe after 15 s, was recorded; and the sand flies were 

observed for abnormal behavioral and morphological characteristics. Evidence of feeding, which 

was defined by the presence of frass in the vials and dark material in the guts of larvae, also was 

monitored.  

The percent survival of sand flies and the age of the sand flies at death in each larval diet 

group were compared with repeated measures ANOVA performed with the GLM procedure 
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(SAS Institute 2001). The Tukey multiple comparison procedure was used to separate 

significantly different means 

5.3 Results 

5.3.1 Feed-Through 

The mean body weight of the 24 hamsters in this study was 132.6±6.4 g, and the body 

weights of hamsters assigned to different diet groups were not significantly different (F = 0.03, 

df = 7, P > 1.0000). The mean daily food intake of the 24 hamsters in this study was 9.6±1.8 g, 

and there were significant differences between the mean daily food intake of hamsters fed diets 

containing soybean oil (0, 9.788, 97.88, and 978.8 mg/kg methoprene) and without soybean oil 

(0, 9.82, 98.2, and 982 mg/kg pyriproxyfen; F = 17.64, df = 7, P < 0.0001). The mean daily food 

intake of hamsters fed diets containing soybean oil (10.7±1.6) was 24.4% higher than the mean 

daily food intake of the hamsters fed a diet without soybean oil (8.6±1.3). The amount of food 

eaten by hamsters in different diet groups containing soybean oil was not significantly different 

(F = 2.19, df = 3, P = 0.0941), and the amount of food eaten by hamsters in different diet groups 

without soybean oil also was not significantly different (F = 0.30, df = 3, P = 0.8242). 

The mean daily doses of methoprene for hamsters were 0.8±0.1, 7.8±1.3, and 80.5±12.1 

mg/kg body weight for hamsters fed diets containing 9.788, 97.88, or 978.8 mg/kg methoprene, 

respectively. The mean daily doses of pyriproxyfen for hamsters were 0.6±0.1, 6.5±1.1, and 

62.6±11.3 mg/kg body weight for hamsters fed diets containing 0, 9.82, 98.2, and 982 mg/kg 

pyriproxyfen, respectively. 

5.3.2 Larval bioassay 

The sand fly larvae in each larval diet group were observed feeding, and frass was found 

in every vial. The mean percent adult emergence was not significantly different between sand 

flies fed feces of hamsters fed an untreated diet or hamsters fed a diet containing untreated 
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soybean oil (F = 1.20, df = 1, P = 0.3052; Table 5.1). Control larvae (larvae that had been fed 

feces of hamsters fed an untreated diet or a diet containing soybean oil) first pupated when the 

sand flies were 24 d old. Adult emergence was first observed in both control groups when the 

sand flies were 30 d old. 

  
Table 5.1 Percent Pupation and Adult Emergence of Immature Sand Flies Fed Feces of Hamsters 
Fed Diets Containing Methoprene or Pyriproxyfen, or Control Diets 
Hamster diet 
(mg/kg) 

Pupation 

% 
(mean* ± SE)# 

Adult emergence
% 

(mean* ± SE)# 

Age at death 
d 

(mean* ± SE)# 

Control    
    Untreated 94.0 ± 8.9a 94.0 ± 8.9a n/a 
    Soybean oil§ 90.0 ± 10.0a 88.0 ± 8.4a n/a 
Pyriproxyfen    
    9.82 0b 0b 34.8 ± 6.0a 
    98.2 0b 0b 34.2 ± 5.6a 
    982 0b 0b 30.6 ± 5.3a 
Methoprene    
    9.788 10.0 ± 14.1b 4.0 ± 5.5b 34.0 ± 7.5a 
    97.88 2.0 ± 4.5b 0b 36.4 ± 7.2a 
    978.8 8.0 ± 8.4b 0b 32.7 ± 4.7a 
* Five replicates, ten larvae per replicate 
# Values within a column followed by the same letter are not significantly different from each 
other (P > 0.05). 
§ Rodent food + soybean oil (9:1 w/w) 
 
 

The rates of pupation for larvae fed feces of hamsters fed three concentrations of 

methoprene (9.788, 97.88, or 978.8 mg/kg) were significantly lower than the pupation rate of 

larvae in the control groups (F = 89.62, df = 3, P < 0.0001; Table 5.1). None of the larvae that 

were fed feces of hamsters that had been fed diets containing 97.88 or 978.8 mg/kg methoprene 

emerged as adults. Only 4.0±5.5% of sand flies fed feces of hamsters that had been fed a diet 

containing 9.788 mg/kg methoprene emerged as adults, which was significantly lower than the 

percent adult emergence of sand flies fed feces of control hamsters (F = 352.80, df = 1, P < 
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0.0001; Table 5.1). The age at death of sand flies fed feces of methoprene-treated hamsters as 

larvae was over 32 d (Table 5.1). 

In the pyriproxyfen larval bioassay, 100% mortality was observed during the larval stage 

for sand flies fed feces of hamsters fed diets containing 9.82, 98.2 or 982.0 mg/kg pyriproxyfen. 

The mean age of the larvae at death was over 30 d (Table 5.1). 

 

 
Fig. 5.1 A Pupa-Form Larva That Had Been Fed Feces of Hamsters Fed a Diet Containing 9.82 
mg/kg Pyriproxyfen as a Larva (A), and a Normal Pupa That Had Been Fed Feces of Untreated 
Hamsters as a Larva (B) 
 

The majority of the sand fly larvae that were fed feces of hamsters offered diets 

containing methoprene or pyriproxyfen died as late 4th instar larvae. The larvae in these groups 

developed at a normal rate (the same rate as control larvae). Like the control larvae, the larvae in 

the treatment groups eventually ceased feeding and cleared their guts as late 4th instar larvae. 

However, rather than progressing to the pupal stage, most of the sand fly larvae in the treatment 

groups remained as late 4th instar larvae for up to 19 d before eventually dying. Some of the 

larvae that were fed feces of methoprene- or pyriproxyfen-treated hamsters did transform from 

4th instar larvae into pupa-form larvae before dying (Fig. 5.1). These larvae developed normally 

as 2nd, 3rd, and 4th instar larvae, but became an intermediate form between larva and pupa after 
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they ceased feeding and cleared their guts. Pupa-form larvae survived for several days, but 

eventually died without becoming pupae. 

5.4 Discussion 

The food intake of the hamsters in this study was not affected by the methoprene or 

pyriproxyfen treatments at any of the concentrations tested. This finding suggests that the treated 

diets were palatable to hamsters. Furthermore, significantly more food was consumed by 

hamsters when it contained soybean oil, independent of insecticide treatment. The bait 

preferences are known for the rodents involved in many of the sand fly/rodent associations found 

in Old World ZCL foci, and insecticide-treated baits could be developed for use in field trials in 

these scenarios. In Southwest Asia Rhombomys opimus and Meriones spp. are readily baited with 

oats, and in Sub-Saharan Africa five rodent genera known be reservoirs of L. major  (Mastomys, 

Taterillus, Aethomys, Tatera, and Arvicanthis) have been successfully captured in traps baited 

with corn flour (Githure et al. 1986; Yaghoobi-Ershadi et al. 2000, 2005). 

The results of this study suggest that both methoprene and pyriproxyfen remained 

pharmacologically active after passing through the guts of hamsters, and that the compounds 

were present at sufficiently high concentrations to affect the development and survival of 

immature sand flies. As juvenile hormone analogues, both methoprene and pyriproxyfen were 

expected to have the same effect on the development of immature sand flies. The development of 

immature sand flies fed feces of hamsters fed diets containing methoprene or pyriproxyfen was 

identical to that of control sand flies until the 4th larval instar. At this point, nearly all of the 

surviving control larvae subsequently pupated. Larvae that had been fed feces of pyriproxyfen-

treated hamsters remained as 4th instar larvae or became pupa-form larvae, and all of these sand 

flies eventually died before pupation. The development of sand fly larvae fed feces of 

methoprene-treated hamsters was similar to that of larvae fed feces of pyriproxyfen-treated 
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hamsters. However, pupation of larvae fed feces of hamsters fed diets containing methoprene 

was observed at all concentrations, and adult emergence was seen at the lowest concentration. 

The finding that pyriproxyfen treatments fully prevented pupation and adult emergence at all 

concentrations tested while similar concentrations of methoprene resulted in some pupation and 

adult emergence is consistent with other studies that compared the effectiveness of methoprene 

and pyriproxyfen against other insects. The LC50 for methoprene was more than 20 x higher than 

pyriproxyfen in an evaluation of the relative toxicity of methoprene and pyriproxyfen in topsoil 

against immature Ctenocephalides felis (Rajapakse et al. 2002). Similarly, pyriproxyfen was 

found to be 21.5 x more toxic than methoprene to larvae of Aedes albopictus (Ali et al. 1995). 

Against larvae of Culex quinquefasciatus and A. albopictus, methoprene provided significant but 

incomplete inhibition of adult emergence, even at the highest concentrations tested (Nayar et al. 

2002). 

 The results of this study add the juvenile hormone analogues methoprene and 

pyriproxyfen to the list of insecticides that potentially can be used as rodent feed-throughs for the 

control of phlebotomine sand flies in certain sand fly/rodent associations. The identification of 

multiple insecticides that have been found to be effective as rodent feed-throughs against sand 

fly larvae in the laboratory increases the likelihood that a suitable compound will be found for 

use in field trials. However, future studies on the relative residual activity and environmental 

persistence of the compounds will be required before field trials can be conducted. 
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CHAPTER 6. EVALUATION OF NOVALURON AS A RODENT FEED-THROUGH 
UNDER SIMULATED FIELD CONDITIONS FOR CONTROL OF SAND FLY LARVAE 
(DIPTERA: PSYCHODIDAE)  
 
6.1 Introduction 

Phlebotomine sand flies are major biting pests of man and are the vectors of the 

protozoan parasites that cause leishmaniasis. Worldwide, there are an estimated 2 million new 

cases of leishmaniasis annually, and 12 million people are currently believed to be infected 

(WHO 2006). Throughout North Africa, the Middle East and SW Asia, Phlebotomus papatasi is 

the primary vector of Leishmania major, the causative agent of zoonotic cutaneous leishmaniasis 

(ZCL).  

In spite of their importance, there are no effective control or preventive measures 

currently available for sand flies in ZCL foci. In arid and semi-arid foci, P. papatasi exhibits a 

close association with several burrowing rodent that serve as reservoirs of L. major. In ZCL foci 

in the Old World, rodent burrows are considered to be the primary immature habitats for P. 

papatasi, and sand fly larvae have been observed feeding on the feces of rodents. Therefore, 

rodent feed-through insecticides are a potential means of controlling sand fly larvae.  

Proof of concept for rodent feed-through control of larvae of P. papatasi has been 

established in laboratory studies using the benzoylurea chitin synthesis inhibitor novaluron 

(Mascari et al. 2007b). All diet concentrations of novaluron tested in a preliminary rodent feed-

through study (9.88, 98.8 and 988 mg/mg) were 100% effective in killing sand fly larvae that fed 

on the feces of novaluron-treated rodents (Mascari et al. 2007b). However, additional laboratory 

studies are required to determine if novaluron would be appropriate for field use. There were 

three objectives of this study: 1) to determine the minimum concentration of novaluron mixed 

with hamster feces that would prevent development of sand fly larvae and the minimum dose of 

novaluron for hamsters that would be effective as a feed-through against sand fly larvae 2) to 
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determine the persistence of the larvicidal effect of novaluron in hamster feces held under 

simulated field conditions 3) to determine the effectiveness of novaluron as a feed-through in 

preventing the development of sand fly larvae when novaluron-treated food makes up only a 

portion of a hamster’s daily diet. 

6.2 Materials and Methods 

6.2.1 Sand Flies 

The sand flies used in these studies were from a laboratory colony of a Turkish strain of 

P. papatasi established at Louisiana State University (Mascari et al. 2007b). The sand fly larvae 

in the colony were reared using a larval diet composed of a composted and dried 1:1 mixture of 

rabbit feces and rabbit chow (Young et al. 1981). Adult sand flies were provided 20% sucrose 

solution ad libitum, and obtained blood meals from Syrian hamsters. The colony was maintained 

in environmental chambers at 28 °C, 90% RH.   

6.2.2 Hamsters 

Syrian hamsters were housed individually in micro-isolator cages. The maintenance of 

the hamsters and all experimental procedures followed Animal Care & Use Protocol No. 05-074, 

which was approved by the Institutional Animal Care and Use Committee at Louisiana State 

University, Baton Rouge, LA. Research involving the hamsters was conducted in compliance 

with the Animal Welfare Act and other federal statutes and regulations relating to animals and 

experiments involving animals and adheres to principles stated in the Guide for the Care and 

Use of Laboratory Animals, NRC Publication, 1996 edition. 

6.2.3 Experiment 1: Direct Treatment of Hamster Feces with Novaluron 

A series of ten-fold dilutions of technical novaluron (98.8% a.i., Makhteshim Agan 

Industries Ltd., Tel Aviv, Israel) was prepared in acetone. The feces of untreated hamsters were 

collected and dried at room temperature for 7 d. The feces were crushed using a sterilized glass 
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mortar and pestle and treated with novaluron solutions (at a rate of 1 mL/1 g feces) yielding eight 

concentrations ranging from 9.88x10-5 to 988 mg/kg novaluron. A solvent-control diet (made by 

treating feces with acetone) also was prepared. The acetone was allowed to evaporate for 12 h, 

and the feces were stored at -80 °C until used. Larval bioassays were conducted as described by 

Mascari et al. (2007). A 200 mg portion of feces was placed on the plaster surface of each 

bioassay vial. Ten 2nd instar (13±1-d old) larvae then were transferred to each bioassay vial and 

held in an environmental chamber at 28 °C, 90% RH. Four bioassay vials were prepared for each 

concentration of novaluron and for the solvent-control group. 

 Larvae were observed under magnification daily, and larval mortality (defined as the lack 

of response to prodding with a blunt probe after 15 s) and the percentage of sand flies that 

successfully emerged as adults were recorded. Larvae were observed for abnormal behavioral 

and morphological characteristics. Evidence of feeding (the presence of frass in the vials and 

dark material in the guts of larvae) also was monitored. The percent survival of sand flies and the 

age of sand flies at death were compared with repeated measures ANOVA performed with the 

GLM procedure (SAS Institute 2001). The Tukey multiple comparison procedure was used to 

separate significantly different means. 

6.2.4 Experiment 2: Minimum Effective Dose of Novaluron as a Feed-Through 

 Hamster diets were prepared by adding technical novaluron to a meal-form laboratory 

rodent diet (5001 Rodent Diet, LabDiet®, PMI Nutrition International, Brentwood, MO). 

Novaluron and the diet were thoroughly mixed to achieve six concentrations (9.88x10-5, 9.88x10-

4, 9.88x10-3, 9.88x10-2, 9.88x10-1, and 9.88 mg/kg). A control diet (untreated laboratory rodent 

diet) also was prepared. Three hamsters were randomly assigned to each of the seven hamster 

diet groups (six novaluron treatment groups and one control group). 
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At 12:00 h each day for nine days, the hamsters were provided with 15 g of their 

respective diet. The uneaten portion of the food was collected the following day at 12:00 h, and 

the daily food intake and daily doses of novaluron that were ingested by the hamsters were 

calculated. The daily doses of novaluron for individual hamsters were compared within hamster 

diet groups using repeated measures ANOVA, performed with the GLM procedure of SAS (SAS 

Institute 2001). The Tukey multiple comparison procedure was used to separate significantly 

different means. The feces voided by each hamster were collected daily for nine days. The feces 

of each hamster were placed in uncovered containers, dried at room temperature for seven days, 

and then stored at -80 °C until used. 

Feces voided by the three hamsters in each diet group were pooled. Larval bioassays 

were conducted as described above using hamster feces collected after 9 d of feeding as larval 

diets. Six bioassay vials were prepared for each of the six larval diets (feces of hamsters fed a 

diet containing five concentrations of novaluron or a control diet). The development and survival 

of sand fly larvae were monitored and statistically analyzed as described above for Experiment 1. 

6.2.5 Experiment 3: Aging Feces under Simulated Field Conditions 

 A meal-form hamster diet containing 988 mg/kg technical novaluron and an untreated 

control hamster diet were prepared. Twelve hamsters were weighed and randomly assigned to 

each of the two hamster diet groups (total of 24 hamsters). Hamsters were fed their respective 

diets for 9 d as described above. The daily food intake and the daily doses of novaluron which 

were ingested by the hamsters were calculated, and were statistically analyzed as described 

above for Experiment 2. 

A total of 12 g of feces voided by control or novaluron-treated hamsters after 9 d of 

feeding on their respective diets (1 g of feces voided by each hamster) was placed in a 120 ml 

specimen cup with a 2 cm thick basal layer of plaster of Paris. The specimen cups containing 
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feces were stored in an environmental chamber at 28 °C, 90% RH (conditions which simulated 

the temperature and humidity within a rodent burrow; Kay and Whitford 1978). The specimen 

cups were placed on filter papers that were kept saturated with distilled water in glass dishes. 

Samples of the aged feces (2 g) were taken from the specimen cups at 30 d intervals for 150 d, 

and the aged feces were stored at -80 °C until used in sand fly larval bioassays. 

Aged hamster feces were fed to second instar sand flies as described above in Experiment 

1. Six bioassay vials were used for each of the 12 larval diet groups (feces of control or 

novaluron-treated hamsters aged for six time periods: 0, 30, 60, 90, 120, or 150 d). The 

development and survival of sand fly larvae were monitored and statistically analyzed as 

described above for Experiment 1. 

6.2.6 Experiment 4: Partial Consumption of Novaluron-Treated Food by Hamsters 

 Meal-form hamster diets containing 0 or 988 mg/kg novaluron were prepared. Three 

hamsters were randomly assigned to each of the following three groups: hamsters fed exclusively 

a diet containing 988 mg/kg novaluron for nine days, hamsters fed exclusively an untreated diet, 

or hamsters fed 1 g of diet containing 988 mg/kg novaluron for 3 h each day and then afterwards 

provided with untreated diet. The hamsters were fed using these protocols for 9 d. The daily food 

intake and daily doses of novaluron for each hamster were calculated as described above. The 

feces voided by each hamster were collected daily for 9 d and were processed as described 

above. 

The feces collected from hamsters after feeding for 9 d were pooled by treatments, 

crushed using a mortar and pestle, and used in sand fly larval bioassays. The larval bioassays 

were conducted as described above. Six bioassay vials were used for each of the three larval diet 

groups (feces of hamsters exclusively fed novaluron-treated or control diets, or feces of hamsters 
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fed novaluron-treated food as a portion of their diet). The development and survival of sand fly 

larvae were monitored and statistically analyzed as described above. 

6.3 Results 

6.3.1 Experiment 1: Direct Treatment of Hamster Feces with Novaluron 

Larvae in each of the larval diet groups were observed feeding, and frass was found in 

each bioassay vial. The percent survival from 2nd instar to adult was 100% for larvae fed acetone 

treated hamsters feces. At the concentrations of novaluron tested, the mean percent survival of                       

sand fly larvae fed novaluron-treated hamster feces ranged from 0 to 100% (Table 6.1). Mortality 

of larvae fed feces containing as little as 9.88x10-1 mg/kg novaluron was significantly different 

from mortality of control larvae (F = 199.47, df = 8 P < 0.0001); mortality was 100% at 9.88 

mg/kg and above (Table 6.1). The mean longevity of sand fly larvae that died after being fed 

novaluron-treated feces ranged from 3.0±0.2 to 4.1± 0.3 d (Table 6.1). 

 
 
Table 6.1 Mortality and Longevity of 2nd Instar Sand Flies Fed Hamster Feces Directly Treated 
with Novaluron Solutions 

Concentration (mg/kg) of 
novaluron in larval diet 

Mortality 
% 

(mean* ± SE)# 

Longevity 
d 

(mean* ± SE) 
0 0.0±0.0a n/a 
9.88x10-5 5.0±5.8a n/a 
9.88x10-4 2.5±5.0a n/a 
9.88x10-3 0.0±0.0a n/a 
9.88x10-2 0.0±0.0a n/a 
9.88x10-1 35.0±19.1b 4.0±0.4 
9.88 100.0±0.0c 4.1±0.3 
98.8 100.0±0.0c 3.0±0.3 
988 100.0±0.0c 3.0±0.3 
* Six replicates, ten larvae per replicate 
# Values within a column followed by the same letter are not significantly different from each 
other, P> 0.05 
n/a not applicable 
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6.3.2 Experiment 2: Minimum Effective Dosage of Novaluron as a Feed-Through 

The mean body weight of the 12 hamsters in this study was 143.3±3.0 g, and the body 

weights of hamsters assigned to different diet groups were not significantly different (F = 0.24, 

df = 5, P = 0.9358). The mean daily food intake of the 12 hamsters in this study was 7.2±1.4 g, 

and the amount of food eaten by hamsters in different diet groups was not significantly different 

(F = 0.28, df = 5, P = 0.9256). The mean daily doses of novaluron for hamsters ranged from 

4.8x10-5 to 5.1x10-1 (Table 6.2). 

 
 
Table 6.2 Means (±SE) of Body Weight, Food Intake, and Daily Dosages of Novaluron for 
Syrian Hamsters 

Concentration (mg/kg) of 
novaluron in diet 

Body weight 
g 

(mean ± SE) #

Food intake 
g/d 

(mean* ± SE) #

Daily dose 
mg/kg 

(mean* ± SE)# 

0 142.3±3.2a 7.3±1.5a n/a 
9.88x10-4 144.4±3.5a 6.9±1.6a 4.8x10-5±1.1x10-5 
9.88x10-3 144.0±1.0a 7.2±1.4a 5.0x10-4±9.4±10-5 
9.88x10-2 143.0±4.6a 7.2±1.1a 5.0x10-3±7.8x10-4 
9.88x10-1 144.0±3.6a 7.1±1.4a 4.9x10-2±9.7x10-3 
9.88 142.0±3.6a 7.3±1.1a 5.1x10-1±8.4x10-2 
* Nine replicates, three hamsters per replicate 
#  Values in a column followed by the same letter are not significantly different from each other, 
P>0.05 
n/a not applicable 

 
Evidence of feeding was observed for larvae in each of the larval diet groups. The percent 

survival from 2nd instar to adult was 90.0±8.2% for larvae fed feces of untreated hamsters (Table 

6.3). At the tested concentrations of novaluron fed to hamsters, the mean percent survival of sand 

fly larvae fed feces of novaluron-treated hamsters ranged from 0.0 to 95.0% (Table 6.3). 

Mortality of larvae fed feces of hamsters fed a diet containing as little as 9.88x10-1 mg/kg 

novaluron was significantly different from mortality of larvae fed feces of hamsters fed an 
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untreated diet (F = 188.61, df = 5, P < 0.0001; Table 6.3). The mean longevity of sand fly larvae 

that died after being fed feces of novaluron-treated hamsters ranged from 4.2 to 5.6 (Table 6.3). 

 
 
Table 6.3 Mortality and Longevity of 2nd Instar Sand Flies Fed Feces of Hamsters Fed Diets 
Containing Novaluron 

Hamster diet 
novaluron concentration 

(mg/kg) 

Mortality 
% 

(mean* ± SE)# 

Longevity 
d 

(mean* ± SE) 
0 10.0±8.2a n/a 
9.88x10-4 7.5±9.6a n/a 
9.88x10-3 12.5±9.6a n/a 
9.88x10-2 5.0±5.0a n/a 
9.88x10-1 100.0±0.0b 5.6±0.6
9.88 100.0±0.0b 4.2±0.6
* Six replicates, ten larvae per replicate 
# Values within a column followed by the same letter are not significantly different from each 
other, P> 0.05 
n/a not applicable 
 

6.3.3 Experiment 3: Aging Feces under Simulated Field Conditions 

The mean body weight of the 36 hamsters was 150.8±10.2 g, and the mean body weights 

of hamsters in the two hamster diet groups were not significantly different (F = 0.16, df = 1, P = 

0.85; Table 6.4). The mean daily food intake for hamsters fed diets containing 988 mg/kg 

novaluron or acetone alone were not significantly different (F = 1.65, df = 1, P = 0.19; Table 

6.4). The estimated mean daily dosage of novaluron was 63.1±10.0 mg/kg body weight.  

 
Table 6.4 Means (±SE) of Body Weight, Food Intake, and Daily Dosages of Novaluron for 
Syrian Hamsters 

Hamster diet group Body weight 
g 

(mean* ± SE) #

Food intake 
g/d 

(mean* ± SE) #

Daily dose 
mg/kg 

(mean* ± SE) 

Control (0 mg/kg) 151.0±11.7a 9.5±1.7a n/a 
Novaluron (988 mg/kg) 151.8±8.6a 9.7±1.6a 63.1±10.0 
* Nine replicates, three hamsters per replicate 
#  Values in a column with the same letter are not significantly different from each other, P>0.05 
n/a not applicable 
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Larvae in each of the larval diet groups were observed feeding, and frass was found in 

each bioassay vial. The mean percent adult emergence for sand flies fed feces of untreated 

hamsters that had been aged for any of the time periods (0 to 150 d) was over 90%. There were 

no significant differences between percent adult emergence at different aging periods (F = 

230.34, df = 11, P < 0.0001; Fig. 6.1).  
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Figure 6.1 Percent Adult Emergence of Sand Flies Fed Feces of Control or Novaluron-Treated 
Hamsters; Feces Were Aged under Simulated Field Conditions (28 °C, 90% RH) for up to 150 d 

 
 

The mean percent adult emergence for sand flies fed feces of novaluron-treated hamsters 

was significantly different from sand flies fed feces of control hamsters when the feces were 

aged for any of the time periods (Fig. 6.1). All larvae that had been fed feces of novaluron-

treated hamsters aged for 0 or 30 d died before adult emergence. The mean percentage of larvae 

that emerged as adults after being fed feces of novaluron-treated hamsters that had been aged for 
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60 (3.3±5.2%), 90 (10.0±8.9%), or 120 d (6.7±8.2%) was significantly lower than for larvae fed 

feces of control hamsters (Fig. 6.1). The mean percent adult emergence for larvae fed feces of 

novaluron-treated hamsters aged for 150 d was 16.7±12.1%, which was significantly different 

from both larvae fed feces of control hamsters and larvae fed feces of novaluron-treated hamsters 

aged for 0 or 30 d (Fig. 6.1). 

6.3.3 Experiment 4: Partial Consumption of Novaluron-Treated Food by Hamsters  

The mean daily food intake of the hamsters was 7.3±0.8 g. The mean daily food intake of 

hamsters fed novaluron-treated food as a portion of their daily diet was significantly different 

from the food intake of hamsters fed exclusively untreated or novaluron-treated diets (F = 6.30, 

df = 2, P = 0.0029; Table 6.5). The mean body weight of hamsters in this study was 136.0±13.0 

g, and the mean body weights of hamsters in the three hamster diet groups were not significantly 

different (F = 0.40, df = 2, P = 0.6846; Table 6.5). 

Hamster diet containing 988 mg/kg novaluron constituted 14.8±1.9% of the total daily 

food intake of hamsters in the partial feeding group (Table 6.5). The mean daily dose of 

novaluron for hamsters in the different diet groups are reported in Table 6.5. 

 
 
Table 6.5 Means (±SE) of Body Weight, Food Intake, and Daily Doses of Novaluron for Syrian 
Hamsters Offered Food Containing Novaluron as All, Part, or None of Their Diet 

Concentration 
(mg/kg) 

Body weight 
g 

(mean* ± SE)# 

Food intake 
g/d 

(mean* ± SE)# 

Portion of diet§ 
% 

(mean* ± SE) 

Daily dose 
mg/kg 

(mean* ± SE) 

0 141.3±20.5a 7.4±0.8a 0 0 
988 (all of diet) 131.0±8.9a 7.6±0.7a 100 57.4±6.0 
988 (part of diet) 135.7±9.9a 6.9±0.9b 14.8±1.9 7.3±0.4 
* Nine replicates, three hamsters per replicate 
# Values in a column followed by the same letter are not significantly different from each other, 
P>0.05 
§ Portion of diet that was novaluron-treated food 
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Larvae in each of the larval diet groups were observed feeding, and frass was found in 

each bioassay vial. The mean percent survival from 2nd instar to adult for the sand flies in the 

untreated hamster feces larval diet group was 96.7±3.3%. Sand fly larvae that were fed feces 

from hamsters that had consumed diets containing novaluron died before pupation (Table 6.6). 

Larvae that had been fed either feces from hamsters that exclusively had been fed a diet 

containing novaluron or both a diet containing 988 mg/kg novaluron and untreated hamster food 

were ataxic and ceased feeding, and none pupated. The mean longevity of sand fly larvae fed 

feces from hamsters that exclusively had been fed a diet containing 988 mg/kg novaluron and 

feces from hamsters were fed both diets containing novaluron and untreated diets was not 

significantly different (F = 0.95, df = 1, P = 0.3317; Table 6.6). 

 
Table 6.6 Mortality and Longevity of 2nd Instar Sand Flies Fed Feces of Hamsters Fed Diets 
Containing Novaluron. Hamsters Were Fed Novaluron-Treated Food as All, Part, or None of 
Their Daily Diet 

Hamster diet group 
Mortality 

% 
(mean* ± SE)# 

Longevity 
d 

(mean* ± SE)# 
Control 3.3 ± 5.2a n/a 
Novaluron-treated diet 100.0b 3.6 ± 1.2a 
Partial consumption 100.0b 3.8 ± 1.6a 
* Six replicates, ten larvae per replicate 
# Values within a column followed by the same letter are not significantly different from each 
other, P> 0.05 
n/a not applicable 
 

6.4 Discussion 

In experiments 1 and 2, complete control of sand fly larvae was observed when the larvae 

were fed either hamster feces containing 9.88 mg/kg novaluron or feces of hamsters fed a diet 

containing 9.88x10-1 mg/kg novaluron. The concentrations that were 100% effective against sand 

fly larvae in experiments 1 and 2 were different by an order of magnitude, but diet and fecal 

concentrations of novaluron cannot be equated. Laboratory studies on the metabolism and 
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excretion of novaluron in rats have shown that 95.4% of novaluron is eliminated in feces for up 

to 168 h (FAO 2005). If hamsters excrete novaluron at a rate similar to rats, an increase in the 

concentration of novaluron in the feces of hamsters over the 9-d period of this study would be 

expected. In experiment 2, the mean amount of food consumed by a hamster each day (7.2±1.4 

g) was higher than the amount of feces voided by a hamster (approximately 2 g). Since the 

majority of novaluron is eliminated in feces, the concentration of novaluron in the feces of a 

hamster should be higher than the concentration of novaluron in a hamster’s diet. The purpose of 

these experiments was to measure the effect of the treatments on the survival of sand flies fed 

feces of novaluron-treated hamsters, but the rate at which novaluron is eliminated from hamsters 

could be an important variable to measure in future studies. 

When feces of novaluron-treated hamsters were held under simulated field conditions (28 

°C, 90% RH) for up to 30 d, all larvae that consumed these feces died before pupation. A 

significant reduction in treated larval survival relative to control was observed when the feces 

were aged for up to 150 d. Based on the findings of experiment 1, we can conclude that feces of 

hamsters fed a diet containing 988 mg/kg that had been aged for 30 d contained at least 9.88 

mg/kg novaluron (a concentration that caused complete larval mortality). 

Studies on the fate of novaluron in soil have shown that between 32 and 49% of the 

compound can be present in soil after 127-195 d (FAO 2005). Therefore, baits containing 316 

mg/kg novaluron (32% of 988 mg/kg novaluron) could be expected to be 100% effective as a 

rodent feed-through for larval sand fly control. However, novaluron may have been degraded at a 

faster rate in hamster feces than in soil due to the rapid proliferation of fungi. While we 

approximated the temperature and humidity of a rodent burrow in experiment 3, in an actual field 

setting novaluron in feces could degrade at an even faster rate than we observed in this study. 
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Therefore, the rate at which novaluron in feces is degraded under different simulated field 

conditions could be another important topic for future studies.  

Novaluron-treated diet made up approximately 15% of the food consumed daily by 

hamsters in experiment 4, and the feces of these hamsters was equally as effective against sand 

fly larvae as feces of hamsters exclusively fed a novaluron-treated diet. The results of experiment 

4 suggest that when novaluron is eliminated by orally dosed hamsters, it is uniformly distributed 

in the feces. This is an important observation because artificial baits for wildlife do not fully 

supplant naturally available food sources. The results of experiment 4 indicate that novaluron 

would be effective under circumstances where baits make up only a small portion of the diet of 

the target rodents in a field setting.  

While target rodents in field trials of feed-through control measures for sand fly larvae 

cannot be expected to exclusively consume novaluron-treated baits, a key component of potential 

field work would be to identify baits that are readily consumed by target rodents in different foci. 

The amount of food consumed by study hamsters was not affected by novaluron treatments at 

any of the concentrations tested in experiments 2, and 3 (significant differences were only 

observed in experiment 4 when hamsters were fed novaluron-treated food as a portion of their 

diet, and this observation may have been a result of the frequent changing of food which 

disrupted the hamsters’ feeding). This observation is consistent with findings of Mascari et al 

(2007b), in which the authors reported that the quantity of food consumed by hamsters was not 

affected by concentrations of novaluron as high as 988 mg/kg. It is not known whether the food 

intake of the different rodents that could be targeted in field trails would be similarly unaffected 

by novaluron treatments. However, the grain-based baits that would be prepared for field trials 

could contain a palatability agent, such as a vegetable oil. Palatability agents are commonly used 
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in conjunction with rodenticides in order to increase bait uptake by target animals and may mask 

any potential odor or taste of novaluron. 

The important characteristics of an insecticide used in a rodent bait for control of sand fly 

larvae would be A) that it is excreted in feces of bait-fed rodents rather than metabolized, B) that 

it persists in the environment, and C) that it is effective in preventing the development and 

survival of sand fly larvae when the bait makes up only a portion of a target rodent’s diet. In this 

study, significant control of sand fly larvae was observed when they were fed feces of novaluron-

treated hamsters that had been aged for up to 150 d or feces of novaluron-treated hamsters when 

only 15% of their daily diet was novaluron-treated food. Therefore, novaluron is a good 

candidate for further evaluation as a rodent feed-through insecticide against sand fly larvae. 

Since the results of this study suggest that novaluron could be effective as a rodent feed-through 

insecticide in a field setting, the next step would be to evaluate the effects of novaluron-treated 

baits on sand fly populations in different rodent/sand fly associations. 
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CHAPTER 7. EFFECT OF ORAL IVERMECTIN TREATMENT OF RODENTS ON 
SURVIVAL OF SAND FLY (DIPTERA: PSYCHODIDAE) LARVAE FED ON THE 
RODENT FECES AND FEMALE SAND FLIES FED ON THE RODENTS 
 
7.1 Introduction 

Sand flies are hematophagous Diptera of the subfamily Phlebotominae, and, with the 

exception of New Zealand and some Pacific islands, are found in most parts of both the New 

World and Old World between 50 °N and 40 °S. Sand flies are often significant biting pests of 

man; their bites can cause acute dermatitis and delayed-type hypersensitivity reactions. Sand 

flies also are vectors of medically important viruses, bacteria, and protozoa. The protozoa of at 

least 20 Leishmania spp. are transmitted by sand flies and are the causative agents of human 

leishmaniasis (WHO 2008). Leishmaniasis is a zoonotic disease with a broad clinical spectrum 

that is estimated to affect as many as 12 million people, and 2 million new cases of leishmaniasis 

are believed to occur annually (WHO 2006). 

In the Old World, Leishmania major is the causative agent of zoonotic cutaneous 

leishmaniasis (ZCL), which has an enzootic transmission cycle among populations of locally 

abundant, burrow-dwelling rodents. Man becomes infected with L. major by the bite of 

infectious sand flies (Phlebotomus papatasi in Southwestern Asia, the Middle East, and North 

Africa; Phlebotomus duboscqi in Sub-Saharan Africa) in settlements located near areas of 

intense transmission or as a result of movement into enzootic areas, such as during military 

operations or during suburban expansion (Faulde et al. 2008; Traore et al. 2001). 

 No effective preventive or control measures are currently available for Old World ZCL. 

Personal protective measures (including the use of repellents, bednets, and insecticide treated 

materials) provide inconsistent and incomplete protection against sand fly bites and infection 

with L. major (Jumaian 1998). Despite the close association of rodent burrows and vector 
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species, direct treatment of burrows with insecticides has not been shown to have a significant 

effect on sand fly populations (Karapati’an et al. 1983). 

Proof of concept for ivermectin as a rodent feed-through insecticide for control of larval 

sand flies has been established; the feces of hamsters fed a a diet containing 20 mg/kg ivermectin 

were shown to be 100% effective against sand fly larvae (Mascari et al. 2008). While the 

majority of the drug is rapidly eliminated in the feces, ivermectin reaches detectable levels in the 

blood of orally dosed mammals (Pound et al. 2004; Campbell et al. 1983). Several field studies 

have demonstrated significant reductions in survival of mosquitoes that obtained bloodmeals 

from ivermectin-treated hosts (Tesh 1990; Cartel 1991; Foley 2000, Bockarie 1999). The toxicity 

of ivermectin has been demonstrated for phlebotomine sand flies fed ivermectin-treated blood 

through an artificial membrane (Kassem et al. 2001). Therefore, targeting rodents with an 

ivermectin feed-through also could affect post-bloodmeal survival of sand flies.  

 The primary objective of this research was to determine whether the post-bloodmeal 

survival of adult sand flies would be affected by feeding their rodent hosts a diet containing 

ivermectin. In this study the insecticidal effect of ivermectin treatments against bloodfed sand 

flies was monitored for 14 d after rodents were withdrawn from their ivermectin-treated diets, 

and sand fly larval bioassays were conducted using feces voided by ivermectin-treated rodents 

over this same time period. 

7.2 Materials and Methods 

7.2.1 Sand Flies 

The sand flies used in these experiments were from a laboratory colony of a Turkish 

strain of P. papatasi established at Louisiana State University (Mascari et al. 2007b). The sand 

fly larvae in the colony were reared using a larval diet made of a composted and dried 1:1 

mixture of rabbit feces and rabbit chow (Young et al. 1981). Adult sand flies were provided with 
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20% sucrose solution ad libitum, and they obtained bloodmeals from Syrian hamsters. The 

colony was maintained in environmental chambers at 28 °C, 90% RH.   

7.2.2 Hamsters 

Syrian hamsters were housed individually in micro-isolator cages. The maintenance of 

the hamsters and all experimental procedures followed Animal Care & Use Protocol No. 05-074, 

which was approved by the Institutional Animal Care and Use Committee at Louisiana State 

University, Baton Rouge, LA. Research involving the hamsters was conducted in compliance 

with the Animal Welfare Act and other federal statutes and regulations relating to animals and 

experiments involving animals and adheres to principles stated in the Guide for the Care and 

Use of Laboratory Animals, NRC Publication, 1996 edition. 

7.2.3 Hamster Treatments 

Ivermectin (Merck & Co., Inc., Whitehouse Station, NJ) was added to a meal-form 

laboratory rodent diet (5001 Rodent Diet, LabDiet®, PMI Nutrition International, Brentwood, 

MO). A diet containing 20 mg/kg ivermectin was prepared, and a control diet (untreated meal-

form rodent diet) also was prepared. 

Three hamsters were assigned randomly to each of the two diet groups (ivermectin-

treated diet or control diet). At 18:00 h each day for nine days, the hamsters were provided with 

25 g of their respective diets. The uneaten portion of the food was collected the following day at 

18:00 h, and the daily food intake for each hamster was calculated. The daily doses of ivermectin 

that were ingested by the hamsters also were calculated. Feces voided by each hamster were 

collected daily for 9 d during feeding. Feces were air-dried at room temperature for 7 d, and then 

stored at -80 °C until used in larval bioassays. After being fed their respective diets for 9 d, all 

hamsters were withdrawn from their meal-form diets and provided with an untreated pellet diet 
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(5001 Rodent Diet, LabDiet®, PMI Nutrition International, Brentwood, MO). Feces then were 

collected after 3, 7, and 14 d. 

7.2.4 Adult Bloodfeeding Assays 

Adult sand flies were allowed to feed on hamsters 0, 3, 7, and 14 d after they were 

withdrawn from untreated or ivermectin-treated meal-form diet. Bloodfeeding bioassays were 

conducted in clear polycarbonate boxes with a cloth sleeve to allow hamsters and sand flies to be 

introduced into the container. Thirty 2 to 4-d old nulliparous female sand flies were transferred 

using a mouth aspirator into each bioassay container. 

Hamsters were chemically immobilized with an anesthetic mixture of ketamine HCl (100 

mg/kg body weight) and xylazine HCl (10 mg/kg body weight) administered via intra-peritoneal 

(IP) injection. The depth of anesthesia was considered sufficient when hamsters were no longer 

ambulatory, and had lost their righting reflex (defined as the ability of hamsters to regain sternal 

recumbency) and superficial pain response (determined by pinching the skin over the anterior 

surface of the feet). Once immobilized, ophthalmic ointment was placed in the hamsters’ eyes to 

protect them against potential sand fly bites. 

 A single immobilized hamster was placed in each bioassay container. The sand flies were 

allowed to feed for 50 min before the hamsters were removed from the containers (Fig. 7.1). 

When the hamsters were recovered from anesthesia, they were returned to their micro-isolator 

cages. The number of engorged sand flies was recorded immediately, and they were provided 

with a piece of filter paper saturated with 20% sucrose solution. The sand flies were kept in the 

bioassay container for 24 h to allow them to form a peritrophic membrane around the bloodmeal; 

past experience has shown that moving sand flies by mouth aspirator before the peritrophic 

membrane is formed may increase mortality rates. After 24 h the mortality was recorded, and 

live sand flies were transferred using a mouth aspirator to a 150 mL glass jar with a plaster of 
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Paris base and a fine mesh lid. The sand flies were provided with 20% sucrose solution on a 

cotton pad. Mortality (defined as lack of movement during 30 s observation) was recorded again 

after 24 h (48 h post-bloodmeal). 

 

 
Figure 7.1 Sand Flies Taking a Bloodmeal from a Chemically Immobilized Ivermectin-Treated 
Syrian Hamster 
 

 
Differences in mean survivorship of sand flies that had taken bloodmeals from 

ivermectin-treated or control hamsters that had been withdrawn from their meal-form diets for 

different time periods were compared after 24 and 48 h using repeated measures ANOVA (SAS 

Institute 2001). Treatment means were separated by Tukey’s honestly significant difference 

(HSD) multiple comparison test. 

The viability (successful hatching) of eggs deposited by bloodfed sand flies on the plaster 

surface of the jars also was recorded. Sand flies were allowed to lay eggs until 12 d post-

bloodmeal (sand flies from this colony typically lay eggs 5 d post-bloodmeal, and eggs begin to 
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hatch 7 d after being deposited). Eggs were observed for signs of hatching up to 14 d after the 

first eggs were deposited. After the eggs hatched, larvae were counted and removed from the jars 

to allow an accurate count of newly hatched eggs each day. The mean number of eggs per jar and 

the mean percent of eggs that hatched were calculated and compared using Student’s t-test (SAS 

Institute 2001). 

7.2.5 Larval Feed-Through Bioassays 

 Feces voided by hamsters 0, 3, 7, and 14 d after being withdrawn from an untreated or 

ivermectin-treated meal-form diet were collected. Feces of the three hamsters in each diet group 

were pooled and then crushed using a sterilized glass mortar and pestle. 

Larval bioassays were conducted as described by Mascari et al. (2007a). A 200 mg 

sample of crushed hamster feces was transferred to the plaster surface of each bioassay vial. Ten 

2nd instar (13±1-d old) larvae were transferred to each bioassay vial (six vials per treatment) and 

held in an environmental chamber at 28 °C, 90% RH, 14:10 (L:D) photoperiod. Larvae were fed 

feces of control or ivermectin-treated hamsters collected at each of the time periods (0, 3, 7, and 

14 d after being returned to untreated, pellet diet). 

 The larvae were observed under magnification daily. Larval mortality (defined as the lack 

of response to prodding with a blunt probe after 15 s) was recorded, and the larvae were 

observed for abnormal behavioral and morphological characteristics. Evidence of feeding (the 

presence of frass in the vials and dark material in the guts of larvae) also was monitored. 

The percent survival of immature sand flies to adult emergence after being fed their 

respective diets was compared using repeated measures ANOVA performed with the GLM 

procedure (SAS Institute 2001). The Tukey multiple comparison procedure was used to separate 

significantly different means. 
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7.3 Results 

7.3.1 Hamster Treatments 

The mean body weight of the six hamsters in this study was 137.3±18.6 g, and the body 

weights of hamsters assigned to different diet groups were not significantly different (F = 0.2, df 

= 1, P = 0.6816). The mean daily food intake of the hamsters was 7.4±1.4 g. The amount of food 

consumed by ivermectin-treated hamsters was significantly greater than for control hamsters (F 

= 5.31, df = 1, P = 0.0253; Table 7.1). 

 
 
Table 7.1 Means (±SE) of Body Weight, Food Intake, and Daily Dosages of Ivermectin for 
Syrian Hamsters 

Hamster diet group Body weight 
g 

(mean ± SE) #

Food intake 
g/d 

(mean* ± SE) #

Daily dosage 
mg/kg 

(mean* ± SE) 

Control 141.0±21.7a 7.0±1.4a 0 
Ivermectin (20 mg/kg) 133.7±18.9a 7.9±1.2b 1.0±0.3 
* Nine replicates, three hamsters per replicate 
#  Values in a column followed by the same letter are not significantly different from each other, 
P>0.05 
 
 
 
7.3.2 Adult Bloodfeeding Assays 

All sand flies that were exposed to a hamster for 50 min successfully took a bloodmeal. 

All sand flies survived for at least 48 h after taking bloodmeals from hamsters that had been 

withdrawn from an untreated meal-form diet for 0, 3, 7, or 14 d (Table 7.2; Table 7.3). The 24 h 

post-bloodmeal mortality of sand flies that had taken bloodmeals from hamsters withdrawn from 

an ivermectin-treated diet for 0, 3, or 7 d was greater than 50% (Table 7.2). The 48 h survival 

was 0% for sand flies that took a bloodmeal from hamsters withdrawn from an ivermectin-

treated diet for 0, 3, or 7 d (Table 7.3). The 24 and 48 h post-bloodmeal survival was 100% for 

sand flies fed on hamsters withdrawn from an ivermectin-treated diet for 14 d. 
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Table 7.2 Post-Bloodmeal (24 h) Survival of Sand Flies Fed on Ivermectin-Treated Hamsters 

Hamster diet 
 

Survival (at 24 h) 
% 

(mean* ± SE) # 
0 DAT§ 3 DAT§ 7 DAT§ 14 DAT§ 

Control     
    0 ppm 100.0±0.0a 100.0±0.0a 100.0±0.0a 100.0±0.0a

Ivermectin     
    20 ppm 42.2±8.3b 13.3±14.5b 46.7± 18.6b 100.0±0.0a

* 3 hamsters, 30 sand flies per hamster 
#  Values in a column followed by the same letter are not significantly different from each other, 
P>0.05 
§ Days after hamsters were withdrawn from an untreated or ivermectin-treated meal-form diet 
 
 
 
Table 7.3 Post-Bloodmeal (48 h) Survival of Sand Flies Fed on Ivermectin-Treated Hamsters 

Hamster diet 
 

Survival (at 48 h) 
% 

(mean* ± SE) # 
0 DAT§ 3 DAT§ 7 DAT§ 14 DAT§ 

Control     
    0 ppm 100.0±0.0a 100.0±0.0a 100.0±0.0a 100.0±0.0a

Ivermectin     
    20 ppm 0.0±0.0b 0.0±0.0b 0.0±0.0b 100.0±0.0a

* 3 hamsters, 30 sand flies per hamster 
#  Values in a column followed by the same letter are not significantly different from each other, 
P>0.05 
§ Days after hamsters were withdrawn from an untreated or ivermectin-treated meal-form diet 

 
 

The mean number of eggs deposited by sand flies that took bloodmeals from untreated or 

ivermectin-treated hamsters 14 d after withdrawal from their respective meal-form diets was not 

significantly different (t = 0.17, df = 4, P = 0.8725; Table 7.4). Additionally, the mean 

percentage of eggs that hatched after being deposited by sand flies that took bloodmeals from 

untreated or ivermectin-treated hamsters 14 d after withdrawal from their respective meal-form 

diets also was not significantly different (t = 0.28, df = 4, P = 0.7913; Table 7.4). 
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Table 7.4 Mean Number and Viability of Eggs Deposited by Sand Flies That Had Taken 
Bloodmeals from Hamsters 14 d after Being Withdrawn from an Untreated or Ivermectin-
Treated Diets 

Hamster diet 
No. eggs Percent hatch 

mean* ± SE# Range mean* ± SE# range 
Control     
     0 mg/kg 831.3±142.0a 689-974 71.9±6.1a 64.9-76.0 
Ivermectin     
     20 mg/kg 808.3±184.6a 690-1021 74.4±13.4a 59.5-85.6 
* 3 repetitions, 30 bloodfed sand flies per repetition 
#  Values in a column followed by the same letter are not significantly different from each other, 
P>0.05 
 

7.3.3 Larval Feed-Through Bioassays 

Feces voided by hamsters on the same day they were withdrawn from an ivermectin-treated diet 

(0 d) were fed to sand fly larvae and yielded 100% larval mortality. The percent survival 

No. days after withdrawal from untreated or ivermectin-treated diets
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Figure 7.2 Percent Adult Emergence (Mean ± SE) of Sand Flies Fed as 2nd Instars the Feces of 
Untreated or Ivermectin-Treated Hamsters; Feces Used in This Bioassay Were Voided by 
Hamsters 0, 3, 7, or 14 d after the Hamsters Were Withdrawn from Their Respective Diets 
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of sand fly larvae fed feces of hamsters withdrawn from an ivermectin-treated diet for 3 and 7 d 

(28.3±14.7% and 13.3±12.1%, respectively) was significantly different from the survival of 

larvae fed feces of untreated hamsters collected at the same time periods (85.0±13.8% and 

93.3±8.2%, respectively; F = 96.60, df = 7, P < 0.0001). The mean percent survival was not 

significantly different between larvae fed feces voided by hamsters 14 d after they were 

withdrawn from an ivermectin-treated or untreated diet (91.7±11.7% and 96.7±8.2%, 

respectively). 

7.4 Discussion 

Ivermectin treatment of hamsters was 100% effective against bloodfeeding sand flies for 

up to 7 d after hamsters were withdrawn from ivermectin-treated diets. This is consistent with 

other studies showing the effects of ivermectin against a broad range of nematodes and 

arthropods. In humans, ivermectin is commonly used in mass drug administrations (a single dose 

of 0.2 mg/kg body weight) to clear microfilaria of Wuchereria bancrofti and Onchocerca 

volvulus. During these mass drug administrations, ivermectin also has been shown to remain 

active against mosquitoes feeding on treated humans for long periods of time after treatment. 

Post-bloodmeal survival of Anopheles farauti mosquitoes fed on ivermectin-treated humans was 

significantly lower than control for up to 44 d post-treatment (Foley et al. 2000). Remarkably, a 

significant reduction in post-bloodmeal survival of Aedes polynesiensis mosquitoes fed on 

ivermectin-treated humans was reported for up to 6 months post-treatment (Cartel et al. 2001). 

The survival of ticks also has been shown to be affected by treating hosts with ivermectin. 

Significant mortality was observed for the ticks Ornithodoros moubata and Boophilus microplus 

that had fed on ivermectin-treated cattle, and the effect persisted for up to 21 d post-treatment 

(Centurier and Barth 1980, Nolan et al. 1981). However, the post-treatment duration of the 

insecticidal effects of ivermectin on bloodfeeding sand flies was less than 14 d. The hamsters in 
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this study received a mean daily dose of 1.0±0.3 mg/kg ivermectin for 9 consecutive days, which 

is substantially higher than the 0.2 mg/kg administered once orally or by injection to humans and 

other animals. The shorter duration of effect against sand flies suggests that ivermectin may be 

rapidly eliminated by hamsters or that sand flies are less susceptible to the serum concentrations 

of ivermectin that may be present in hosts more than 1 wk after treatment (Chiu and Lu 1989).  

The results of this study also can be used to direct the frequency with which ivermectin-

treated baits should be delivered in a field setting. Since the effects of oral treatment of rodents 

on sand fly adults and larvae persisted for at least 1 wk, treatment of target rodents with 

ivermectin (or access of target rodents to ivermectin-treated baits) does not need to be 

continuous, but should not be withdrawn for more than 1 wk. 

Fecundity was not significantly different for sand flies that took a bloodmeal from an 

untreated or ivermectin-treated hamster 14 d post-treatment. A previous study reported that sand 

flies that had ingested a sub-lethal dose of ivermectin in a bloodmeal produced around 2/3 the 

number of eggs as control sand flies (Kassem et al. 2001). It is possible that the results of this 

study did not detect a similar effect of ivermectin on sand fly fecundity because a sub-lethal 

serum concentration of ivermectin may have occurred in hamsters between 7 and 14 d post-

treatment. The percent hatch of eggs of sand flies that ingested sub-lethal doses of ivermectin 

was not lower than control sand flies in the study conducted by Kassem et al. (2001), nor was it 

lower for sand flies that took a bloodmeal from an ivermectin-treated hamster in this study. 

Feces of ivermectin-treated hamsters were 100% effective against sand fly larvae when 

collected immediately after hamsters were withdrawn from ivermectin-treated diets (0 d), which 

is consistent with the results of Mascari et al. (2008). The results of this study also are consistent 

with the elimination profile of ivermectin in other rodents. In rats, only about 2% of ivermectin is 

eliminated via urine of orally dosed rats; the remainder is eliminated in feces (Chiu and Lu 
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1989). The rate at which ivermectin is eliminated in feces also has been described using a rat 

model; 57.4 to 58.4% of the administered drug is eliminated 1 d after administration. These 

figures increase to between 83.0% and 91.7% five days after administration (WHO Food 

Additives Series 27: 696. Ivermectin). Despite the rapid elimination of ivermectin in feces, the 

high dose of ivermectin administered to the hamsters in this study led to the significant effects 

against sand fly larvae that were observed up to 7 d after hamsters were withdrawn from an 

ivermectin-treated diet. 

This study confirms that ivermectin-treated rodent baits developed as a feed-through to 

control sand fly larvae also could have a collateral effect on bloodfeeding adult sand flies, thus 

affecting a larger portion of the sand fly population than would be estimated due to larvicide 

activity alone. While ivermectin treatment of rodent hosts of L. major may reduce the overall 

population of sand flies, this approach would have its greatest impact on the most 

epidemiologically important subset of the sand fly population: females that have taken a 

bloodmeal from potentially infected rodents. In this study sand flies that have taken a bloodmeal 

from an ivermectin-treated hamster died within 2 d. The extrinsic incubation period of L. major 

in P. papatasi is approximately 6 d, and female P. papatasi sand flies take bloodmeals every 5 to 

7 d. Therefore, targeting rodents in ZCL foci with ivermectin-treated baits could, in effect, turn 

L. major-infected hosts into dead-end hosts in the transmission cycle by killing sand flies before 

the extrinsic incubation period for L. major can be completed. Furthermore, since female sand 

flies that take bloodmeals from ivermectin-treated rodents would not feed again, the ivermectin 

treatments would eliminate any infectious sand flies, serving as a dead-end in transmission of L. 

major parasites for 5 to 7 d.  

Sand fly species that feed on the feces of rodents as larvae could be controlled using feed-

through insecticides, and for those species that do not feed on rodent feces, treating rodent hosts 
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with a systemic insecticide could be an effective control measure. Whereas domesticated animals 

that serve as reservoirs for Leishmania infantum, such as dogs, can be topically treated with 

insecticides or fitted with insecticide treated collars to prevent sand fly bites and transmission to 

humans, this approach is not practical for wild mammals (Halbig et al. 2000, Mencke et al. 

2003). In fact, with the exception of foci of visceral leishmaniasis in which dogs serve as the 

primary reservoir, there are no effective control measures for sand flies. In these situations, 

reservoirs of Leishmania spp. could be targeted with baits containing a systemic insecticide to 

control sand flies and potentially reduce the incidence of human infection. 

 Additional studies (such as on the persistence of ivermectin in feces over time under 

simulated field conditions and the effectiveness of ivermectin-treated baits when they make up 

only a portion of a target rodent’s daily diet) will be required before conducting a field 

evaluation of ivermectin-treated rodent baits to control sand flies. Results of these studies would 

determine whether ivermectin would be effective as a stand-alone feed-through and systemic 

insecticide, or whether it would be more suitable as a systemic insecticide used in conjunction 

with a potentially more effective feed-through insecticide. Additional insecticides also should be 

evaluated for potential use as systemic or dual systemic/feed-through agents against 

phlebotomine sand flies. 
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CHAPTER 8. EVALUATION OF RHODAMINE B AS AN ORALLY DELIVERED 
BIOMARKER FOR RODENTS AND A FEED-THROUGH TRANS-STADIAL 
BIOMARKER FOR PHLEBOTOMINE SAND FLIES (DIPTERA: PSYCHODIDAE) 
 
8.1 Introduction 

Phlebotomine sand flies are major biting pests of man and are the vectors of the 

protozoan parasites that cause leishmaniasis. Worldwide, there are an estimated 2 million new 

cases of leishmaniasis annually, and 12 million people are currently believed to be infected 

(WHO 2006). Throughout North Africa, the Middle East and SW Asia, Phlebotomus papatasi is 

the primary vector of Leishmania major, the causative agent of zoonotic cutaneous leishmaniasis 

(ZCL). 

In arid and semi-arid foci, P. papatasi exhibits a close association with several burrowing 

rodent reservoirs of L. major. Sand fly larvae are found in habitats that provide darkness, a moist 

substratum, organic matter for food, and protection from unfavorable weather conditions (for 

example temperature and precipitation). In ZCL foci in the Old World, rodent burrows are 

considered to be the primary immature habitats for P. papatasi. 

While larvicides are commonly used to control mosquitoes and many other flies of 

medical and veterinary importance, there is no current use of larvicides for phlebotomine sand 

fly control. There are hundreds of species of phlebotomine sand fly found in a diverse range of 

habitats around the world, and the larval habitats remain entirely unknown for many species. 

Identifying and locating the larval habitats of sand flies is challenging due to the difficulty of 

sampling for sand fly larvae, which can involve the processing of large quantities of soil with 

little or no result (Feliciangeli 2004). For the few species for which the larval habitats are known 

to be within rodent burrows, delivering insecticides to the precise larval habitats can be difficult 

to achieve, and attempts have largely been unsuccessful (Karapati’an et al. 1983). Nevertheless, 
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some insecticides (Bacillus thuringiensis israelensis and Bacillus sphaericus) have been shown 

to be effective against immature sand flies in the laboratory (Wahba 2000, Wahba et al. 1999). 

Larvae of several species of phlebotomine sand flies have been recovered from soil taken 

from rodent burrows including P. papatasi, P. langeroni, P. martini, P. duboscqi, and P. 

chinensis (Mutinga et al. 1986, Doha et al. 1990, Artemiev et al. 1972, Morsy et al. 1993, 

Nicolescu and Bilbie 1980). In Old World ZCL foci, sand fly larvae also have been observed 

feeding on the feces of rodents (WHO 1968). Because of this fact, rodent feed-through 

insecticides are a potential means of controlling sand fly larvae, and this approach has recently 

been evaluated in laboratory studies using chitin synthesis inhibitors (diflubenzuron and 

novaluron), juvenile hormone analogs (methoprene and pyriproxyfen), and ivermectin (Mascari 

et al. 2007a, Mascari et al. 2007b, Mascari et al. 2008). The results of these studies constituted 

proof of concept for feed-through rodent baits for the control of sand fly larvae.  

Prior to or simultaneous with field evaluations of feed-through control of sand flies in the 

different sand fly/rodent associations that exist, establishing whether the larvae of different 

species of sand fly feed on the feces of rodents must be demonstrated. While sand fly larvae have 

been recovered from rodent burrows and have been observed feeding on the feces of rodents, 

larval sampling is an impractical method to demonstrate the larval diet of sand flies. However, 

there are currently no alternative methods available to directly demonstrate if the larval diet of 

phlebotomine sand flies is largely or exclusively rodent feces. 

The primary objective of this study was to develop a method to identify adult sand flies 

that had fed as larvae on the feces of bait-fed rodents. Numerous techniques exist for marking 

insects including tagging, painting, mutilation, dusting with fluorescent powder, dyeing, marking 

with radio-isotopes or trace elements. Of these, the use of dyes, radio-isotopes, and trace-

elements are most appropriate for use in mark-capture studies (as opposed to mark-release-
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recapture studies) because the insects can be self-marked in nature by contact with or ingestion 

of the markers. The use of a dye was selected for this study because of cost, safety, and the 

ability to detect small quantities of certain dyes at low concentrations using a fluorescence 

microscope or a spectrofluorometer. Rhodamine B (a xanthene dye with fluorescent properties) 

was chosen as a potential feed-through dye because of its reported low mammalian toxicity, 

because it is eliminated in the feces of orally dosed mammals, and because rhodamine B is an 

efficient fluorophore (has a high quantum yield) allowing its detection at low concentrations. 

Currently, rhodamine B is used as a biomarker to determine the diet of the nematodes 

Trichostrongylus colubriformis and Nippostrongylus braziliensis that parasitize the intestines of 

mammals (Bansemir and Sukhdeo 2001, Bottjer and Bone 1984). Rhodamine B also was shown 

to function as a trans-stadial marker for sawflies; larvae were fed a diet containing rhodamine B 

and the dye was detected in larvae, pupae, and adults (Heron 1968). The primary objective of 

this research was to develop a fluorescent tracer technique using rhodamine B as a rodent feed-

through to identify adult sand flies that had fed on the feces of rhodamine-B treated hamsters. 

We also made observations on rhodamine B marking of bait-fed rodents and the female flies that 

fed upon them. 

8.2 Materials and Methods 

8.2.1 Sand Flies  

A laboratory colony of a Turkish strain of P. papatasi was established at Louisiana State 

University (Mascari et al. 2007). The sand flies in the colony were reared using a larval diet 

consisting of a dried and decomposed 1:1 mixture of rabbit feces and rabbit chow (Young et al. 

1981). The colony was maintained in environmental chambers at 28 °C, 90% RH, 14:10 (L:D) 

photoperiod.   
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8.2.2 Syrian Hamsters 

Twelve Syrian hamsters were housed individually in micro-isolator cages. The 

maintenance of the hamsters and the experimental procedures of this research followed Animal 

Care & Use Protocol No. 05-074 which was approved by the Institutional Animal Care and Use 

Committee at Louisiana State University, Baton Rouge, LA. Research involving the hamsters 

was conducted in compliance with the Animal Welfare Act and other federal statutes and 

regulations relating to animals and experiments involving animals and adheres to principles 

stated in the Guide for the Care and Use of Laboratory Animals, NRC Publication, 1996 edition. 

8.2.3 Feed-Through 

Rhodamine B (Sigma-Aldrich, St. Louis, MO) was added to a meal-form laboratory 

rodent diet (5001 Rodent Diet, LabDiet®, PMI Nutrition International, Brentwood, MO) 

containing soybean oil (100 g/kg) as a palatability and sticking agent. Three concentrations of 

rhodamine B in rodent diet were prepared (50, 500, and 5,000 mg/kg); a control rodent diet also 

was prepared (a powdered rodent diet containing 100 g/kg soybean oil).  

Three hamsters were assigned randomly to each of the four diet groups (three diets 

containing rhodamine B, and one control diet). At 12:00 h each day for nine days, the hamsters 

were provided with 25 g of their respective diets. The uneaten portion of the food was collected 

the following day at 12:00 h, and the daily food intake for each hamster was calculated. The 

daily doses of rhodamine B also were calculated for each hamster (in mg/kg body weight). Feces 

voided by each hamster were collected daily for 9 d during feeding. Feces were air-dried in 

darkness at room temperature for 7 d, and then stored at -80 °C until being examined for the 

presence of rhodamine B or used in larval bioassays. 

After being fed their respective diets for 9 d, the hamsters were returned to an untreated 

pellet diet (5001 Rodent Diet, LabDiet®, PMI Nutrition International, Brentwood, MO). The 
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hamsters were examined weekly for 8 wk under white light using the overhead lighting of the 

vivarium, and the presence and location of markings (pink color) on the hamsters was recorded. 

8.2.4 Bioassay 

Feces voided after nine days of feeding in the rhodamine B feed-through experiment 

were collected, pooled by hamster diet group, and crushed using a glass mortar and pestle. Four 

larval diets were used in sand fly larval bioassays: feces of hamsters fed 0, 50, 500, or 5,000 

mg/kg rhodamine B. The larval bioassays were conducted according to the methods described by 

Mascari et al. (2007a). Portions of the larval diets (0.2 g) were transferred to the plaster surfaces 

of each bioassay vial. Ten 2nd instar larvae (13±1-d old) were transferred to each bioassay vial 

and were held in darkness in an environmental chamber at 28 °C, 90% RH. Six bioassay vials 

were used for each of the four larval diet groups. 

The larvae were observed under magnification daily in subdued lighting, and larval 

mortality (defined as the lack of response to prodding with a blunt probe after 15 s) was 

recorded. Evidence of feeding, the presence of frass in the vials, dark material in the guts of 

larvae, and the visual presence of rhodamine B in larvae also was monitored. Sand flies were 

killed by freezing within 1 d of emergence and were stored in darkness at -80 °C. The percent 

adult emergence of sand flies in each larval diet group was compared using repeated measures 

ANOVA performed with the GLM procedure (SAS Institute 2001). The Tukey multiple 

comparison procedure was used to separate significantly different means. 

8.2.5 Blood-Feeding 

Hamsters were fed diets containing 0 and 5,000 mg/kg rhodamine B for 9 d. On the ninth 

day, the hamsters were chemically immobilized with an anesthetic mixture of ketamine HCl (100 

mg/kg body weight) plus xylazine HCl (10 mg/kg body weight) administered via IP injection. 

When the hamsters were immobilized, they were placed individually in clear, polycarbonate 
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cages (30.5 x 30.5 x 30.5 cm) containing 15 adult female sand flies (2 to 4-d old). The sand flies 

were allowed to feed on the hamsters for 30 min before the hamsters were removed. 

Immediately after feeding, five sand flies from each group were transferred to a 150 mL 

jar lined with plaster of Paris and were provided with 20% sucrose solution ad libitum; the 

remaining blood-fed sand flies were killed by freezing, transferred to 2 mL cryogenic vials, and 

stored at -80 °C. After 5 d (after the sand flies had fully digested their bloodmeals), the sand flies 

were transferred to 120 mL jars with a moistened plaster of Paris base, and the sand flies were 

allowed to lay eggs. The oviposition jars were stored at 28 °C, 90% RH. After 3 d (8 d post-

bloodmeal), the adult sand flies were killed by freezing, transferred to 2 mL cryogenic vials, and 

stored at -80 °C. Eggs were monitored daily, and upon hatching the larvae were fed a larval diet 

ad libitum (rabbit feces-rabbit chow). As adult sand flies emerged, they were killed by freezing, 

transferred to 2 mL cryogenic vials, and stored at -80 °C. 

8.2.6 Fluorescence Microscopy 

All adult sand flies that had been killed by freezing in the larval and bloodfeeding 

bioassays were examined using fluorescence microscopy; three randomly selected fecal pellets 

voided by each hamster also were examined using fluorescence microscopy. Individual 

specimens (adult sand flies or hamster feces) were placed in the well of a glass concavity slide 

and covered with a glass cover-slip to prevent air currents in the lab from moving specimens 

during observation. The slides were placed on the stage of a fluorescence stereomicroscope 

(Zeiss SteREO Lumar.V12, Zeiss, Göttingen, Germany) and observed using incandescent 

illumination. Digital images were captured using Zeiss AxioVision (version 4.6) using a 200 ms 

exposure time. The specimens then were observed using fluorescence microscopy using a 

rhodamine filter cube (excitation wavelength 540 nm, emission wavelength 625 nm). Three 

exposure times (1, 4, and 15 s) were used for capturing images during fluorescence microscopy 
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to identify the optimal exposure time for distinguishing fluorescence due to rhodamine B in 

specimens experimentally exposed to the dye from potential auto-fluorescence in control 

specimens. Specimens were considered positive for the presence of rhodamine B using 

fluorescence microscopy if they appeared red and could be distinguished readily from the black 

background. 

8.3 Results 

8.3.1 Feed-Through 

The mean body weight of the hamsters was 133.8±5.3 g, and the mean body weights of 

hamsters in the different hamster diet groups were not significantly different (F = 0.83, df = 3, P 

= 0.4795; Table 8.1). The mean daily food intake of the hamsters was 10.8±1.2 and there was no 

significant difference between hamsters in the different diet groups (F = 0.95, df = 3, P = 0.4600; 

Table 8.1). The mean daily dose of rhodamine B for treated hamsters ranged from 4.0 to 401.8 

mg/kg (Table 8.1). 

 
 
Table 8.1 Means (±SE) of Body Weight, Food Intake, and Daily Dosages of Rhodamine B for 
Syrian Hamsters Fed Rhodamine B-Treated or Untreated Diets for 9 d 
Concentration (mg/kg) of  
Rhodamine B in diet 

Body weight 
g 

(mean* ± SE) #

Food intake 
g/d 

(mean* ± SE) #

Daily dose 
mg/kg 

(mean* ± SE)# 

0 132.0±4.0a 10.7±1.4 a 0  
50 131.3±5.0 a 10.6±1.2 a 4.0±0.5
500 134.0±6.0 a 10.8±1.0 a 40.4±3.9
5,000 138.0±6.0 a 11.1±1.0 a 401.8±38.3 

* Nine replicates, three hamsters per replicate 
#  Values in a column followed by the same letter are not significantly different from each other, 
P>0.05 

 

 
Hamsters fed diets containing 50, 500, or 5,000 mg/kg rhodamine B were marked by the 

dye after feeding on their diets for 1 d. Bright pink coloration was present on the skin of the 
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hamsters’ footpads, muzzle, tail, and urogenital and anal areas, and also on the pelage (Table 8.2; 

Fig 8.1). The markings on hamsters fed diets containing 50 or 500 mg/kg rhodamine B faded 

within 2 wk of being withdrawn from a rhodamine B-treated diet. The markings on hamsters fed 

diets containing 5,000 mg/kg rhodamine B had not diminished noticeably after observation over 

8 wk. 

 
 
Table 8.2 Duration and Location of Markings after Hamsters Were Withdrawn from Untreated 
Diets or Diets Containing Rhodamine B 

Diet 
concentration 

mg/kg 

Marked 
1 wk 2 wk 3 wk 8 wk 

D O P U T D O P U T D O P U T D O P U T
0 - - - - - - - - - - - - - - - - - - - - 
50 + + + + + - + - + + - - - - - - - - - - 
500 + + + + + - + + + + - - - - - - - - - - 
5,000 + + + + + + + + + + + + + + + + + + + +

D = dorsal pelage, O = oral mucosa, P = Paws, U = urogenital area, T = tail 
 
 
 

 
Fig. 8.1 A Hamster That Had Been Fed a Diet Containing Rhodamine B. Pink Coloration Was 
Visible on the Dorsal Pelage (A), Oral Mucosa (B), Paws (C), and Urogenital Area and Tail (D) 
 
 

A B 

D C
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Feces of hamsters fed a diet containing rhodamine B were pink, and the feces could be 

distinguished from feces of control hamsters when they were viewed under incandescent 

illumination (Fig. 8.2). An increasing intensity of the pink coloration in feces appeared to be 

associated with increasing doses of rhodamine B. When examined using fluorescence 

microscopy with a 1 s exposure time, feces of hamsters fed diets containing all three 

concentrations of rhodamine B (50, 500, 5,000 mg/kg) appeared red, while feces of control 

hamsters appeared as a black field (Fig. 8.2). 

 

 
Fig. 8.2 Images of Feces of Four Hamsters Taken under Incandescent Lighting (A, B, C, and D), 
and Using Fluorescence Microscopy with a 1 sec Exposure Time (E, F, G, and H). The Feces 
Pictured Are from a Hamster Fed a Control Diet (A and E), or a Diet Containing 50 (B and F), 
500 (C and G) or 5,000 mg/kg Rhodamine B (D and H) 
 

8.3.2 Bioassay 

The mean percent adult emergence in the larval bioassay was 97.5±5.3 d, and there was 

no significant difference in percent emergence of sand flies in different larval diet groups (F = 

0.18, df = 3, P = 0.9118; Table 8.3). The mean age of sand flies at adult emergence was 30.0±1.3 

d, and there was no significant difference in age of emergence of sand flies in different larval diet 

groups (F = 1.35, df = 3, P = 0.2592; Table 8.3). 

 

A B C D

E F G H
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Table 8.3 Results of the Rhodamine B Feed-Through Larval Bioassay (Percent Adult 
Emergence, Age at Adult Emergence, and Fluorescence of Adult Sand Flies That Were 
Fluorescent when Observed Using Fluorescence Microscopy). Second Instar Sand Flies Were 
Fed Feces of Hamsters That Had Been Fed a Diet Containing 0, 50, 500, or 5,000 mg/kg 
Rhodamine B 
Larval diet 

mg/kg 
Adult emergence 

% 
(mean* ± SE)# 

Age at adult emergence 
d 

(mean* ± SE)# 

Marked 

0 98.3 ± 4.1a 30.2 ± 1.4 a not marked 
50 96.7 ± 5.2 a 30.0 ± 1.3 a inconsistent marking 
500 98.3 ± 4.1 a 29.7 ± 1.3 a all marked 
5,000 96.7 ± 8.2 a 30.1 ± 1.2 a all marked 
* Six replicates, ten larvae per replicate 
# Values within a column with the same letter are not significantly different, P> 0.05 
 
 

Adults that as larvae were fed feces of rhodamine B-treated hamsters were positive for 

the presence of rhodamine B (appeared red) when examined using fluorescence microscopy. An 

exposure time of 15 s was used to detect fluorescence due to rhodamine B in sand flies. At this 

exposure time, adult sand flies fed feces of untreated hamsters as larvae appeared as a black 

field. All sand flies fed feces of hamsters that had been fed a diet containing 5,000 mg/kg 

rhodamine B as larvae were fluorescent (n = 58); sand flies fed feces of hamsters fed a diet 

containing 500 mg/kg rhodamine B exhibited a fainter fluorescence, but were all still discernable 

from control flies (n = 59). Adult sand flies that had been fed as larvae the feces of hamsters fed 

a diet containing 50 mg/kg rhodamine B were difficult or impossible to distinguish from control 

sand flies. As indicated by fluorescence, rhodamine B was principally located in the thoraces and 

femurs, but often also was present in the abdomen (Fig. 8.3; Fig. 8.4). Rhodamine B appeared to 

be absent from the head, wings, and the legs below the femur. 

8.3.3 Blood-Feeding 

All of the sand flies exposed to anesthetized hamsters successfully obtained bloodmeals 

(Fig. 8.5). The sand flies that were killed immediately after feeding on rhodamine B-treated  
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Fig. 8.3 Images of Two Female Sand Flies Taken under Incandescent Lighting (A and B), and 
Using Fluorescence Microscopy (C and D). The Sand Fly Pictured in the First Column (A and C) 
Had Been Fed as a Larva the Feces of a Hamster That Had Been Fed a Diet Containing 5,000 
mg/kg Rhodamine B, and the Sand Fly Pictured in the Second Column (B and D) Had Been Fed 
as a Larva the Feces of a Hamster That Had Been Fed a Control Diet 
 

 
Fig. 8.4 Images of Two Male Sand Flies Taken under Incandescent Lighting (A and B), and 
Using Fluorescence Microscopy (C and D). The Sand Fly Pictured in the First Column (A and C) 
Had Been Fed as a Larva the Feces of a Hamster That Had Been Fed a Diet Containing 5,000 
mg/kg Rhodamine B, and the Sand Fly Pictured in the Second Column (B and D) Had Been Fed 
as a Larva the Feces of a Hamster That Had Been Fed a Control Diet 

A B 

C D 

A B 

C D 
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hamsters were positive for the presence of rhodamine B (appeared red) when examined using 

fluorescence microscopy with an exposure time of 15 s. As indicated by fluorescence, rhodamine 

B was located is in the thorax, femur, posterior tip of the abdomen, and the malpighian tubules. 

Rhodamine B appeared to be absent from the head, the legs below the femur, and the bloodmeal 

itself (Fig. 8.6). Sand flies that took bloodmeals from untreated hamsters appeared as a black 

field using fluorescence microscopy with an exposure time of up to 15 s exposure time. 

 

 
Fig. 8.5 A Female Sand Fly Taking a Bloodmeal from the Hind Foot of an Anesthetized, 
Rhodamine B-Treated Hamster 
 

Sand flies that were killed 8 d after feeding on control or rhodamine B-treated hamsters 

were not marked (were not considered positive for the presence of rhodamine B) when examined 

with fluorescent microscopy using an exposure time up to 15 s. Similarly, the eggs, larvae, and 

adult progeny of sand flies that took a bloodmeal from a control or rhodamine B-treated hamster 



 107

also were not marked when examined with fluorescence microscopy using a 15 sec exposure 

time. 

 

 
Fig. 8.6 Images of Two Bloodfed Female Sand Flies Taken under Incandescent Lighting (A and 
B), and Using Fluorescence Microscopy (C and D). The Sand Fly Pictured in the First Column 
(A and C) Had Taken a Bloodmeal from a Hamster That Had Been Fed a Diet Containing 
Rhodamine B, and the Sand Fly Pictured in the Second Column (B and D) Had Taken a 
Bloodmeal from a Hamster Fed a Control Diet 
 

8.4 Discussion 

To be an effective biomarker, the marker must be non-toxic and readily consumed by 

target animals. In this study, there was no significant difference in the amount of food consumed 

by hamsters at any of the diet concentrations of rhodamine B tested. Furthermore, rhodamine B 

is a dye with low mammalian toxicity (LD50 887 mg/kg mouse oral), and has been used safely in 

a wide variety of mammals (Fisher 1999). The finding that the food intake of hamsters was not 

affected by rhodamine B treatments is consistent with results for other small mammals. For 

example, there was no difference in the bait preference of ground squirrels targeted with 

untreated baits or baits containing 2500 mg/kg rhodamine B (Sullens and Verts 1978). Similarly, 

red-backed voles and field voles did not discriminate between untreated food or food containing 

C D 

B A
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rhodamine B (Buckner 1968). The results of this study support the idea that rhodamine B does 

not affect the palatability of baits for rodents, and suggest that effective baits containing 

rhodamine B could be prepared for the various rodents present in different ZCL foci. 

All hamsters that consumed diets containing rhodamine B in this study were visibly 

marked. Hamsters fed a diet containing 50 or 500 mg/kg rhodamine B were marked for a period 

of up to 2 wk, while hamsters fed a diet containing 5,000 mg/kg rhodamine B were marked for 

more than 8 wk. Persistence of markings due to rhodamine B have been shown to vary between 

different mammalian species. For example, coypu fed a diet containing 5,000 mg/kg rhodamine 

B remained marked for up to 225 d, whereas mountain beavers fed a diet containing 1000 to 

3400 mg/kg rhodamine B remained marked for only 2 wk (Fichet-Calvet 1999; Lindsey 1983). 

This is the first report of rhodamine B being used as a biomarker for hamsters and adds support 

for the use of rhodamine B as an orally delivered marker for mammals. The findings in this study 

also demonstrate that the persistence of rhodamine B as a biomarker in hamsters is associated 

with the dose of rhodamine B. 

Numerous biomarkers have been used to monitor the ingestion of baits by mammals 

including fat-soluble markers such as Dupont oil blue A, antimicrobial markers such as 

tetracycline hydrochloride and sulfadimethoxine, and the cholecyctographic agent iophenoxic 

acid (Southey et al. 2002; Creekmore et al. 2002). Unlike rhodamine B, none of these oral 

biomarkers for mammals have been detected in the feces of orally dosed mammals. In rats, only 

3-5% of orally dosed rhodamine B is excreted unchanged in feces (Webb and Hansen 1961). 

Nevertheless, in this study feces of hamsters that consumed rhodamine B-treated diets were 

fluorescent. This finding is consistent with studies using rhodamine B to mark other small 

mammals. For example, feces of black-tailed jackrabbits and cottontail rabbits orally dosed with 

rhodamine B also were reported to be visibly marked and fluorescent under UV illumination 
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(Evan and Griffith 1973). The results of this study suggest that examining feces for rhodamine B 

could provide an alternative measure of bait uptake by target rodents that would be less invasive 

and time consuming than examining the rodents themselves. 

Sand fly larvae fed feces of hamsters that had been fed a diet containing 500 or 5,000 

mg/kg rhodamine B were fluorescent as adults when examined using fluorescence microscopy. 

The results of this study constitute the first report of a feed-through biomarker for larvae and the 

subsequent adult insects for a medically important insect. In this study, fluorescence due to 

rhodamine B was detected primarily in the thorax of sand flies. This finding indicates that a 

marking system using rhodamine B would be compatible with the processing required to identify 

sand flies. Sand flies are cleared before identification, and key taxonomic characteristics are 

located in the head and abdomen (the cibarium of a sand fly is used to distinguish medically 

important Phlebotomus spp. from Sergentomyia spp., and the spermatheca of female sand flies or 

the external genitalia of male sand flies are necessary to differentiate species within Phlebotomus 

spp.). 

The results of this study suggest that fluorescence due to rhodamine B is transient in sand 

flies that have taken a bloodmeal from rhodamine B-treated hamsters. Using fluorescence 

microscopy, rhodamine B was observed in the malpighian tubules of recently engorged sand 

flies. In insects, the malpighian tubules are the primary system responsible for excretion, 

suggesting that rhodamine B is rapidly eliminated as the bloodmeal is processed. This hypothesis 

is further supported by the absence of fluorescence due to rhodamine B in the bloodmeal itself. 

A biomarker incorporated into a rodent bait to demonstrate the suitability of rodent feed-

through control of sand fly larvae in a rodent/sand fly association must: A) be palatable to 

rodents, B) mark the rodents and their feces, C) be excreted unchanged in the feces of bait-fed 

rodents (rather than metabolized), and D) be detectable in adult sand flies that have consumed 
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feces of bait-fed rodents as larvae. In this study hamsters readily consumed food containing high 

concentrations of rhodamine B (up to 5,000 mg/kg), and markings due to rhodamine B were 

detected on the hamsters and their feces. Adult male and female sand flies that had been fed 

feces of rhodamine B-treated hamsters as larvae could be distinguished from control sand flies 

using fluorescence microscopy. Therefore, rhodamine B is a good candidate for further 

evaluation as a biomarker for rodents and sand flies in feed-through studies. Since the results of 

this study suggest that rhodamine B could be an effective biomarker, the next step would be to 

evaluate potential interactions between rhodamine B and feed-through insecticides, to evaluate 

rhodamine B in additional rodent and sand fly models, and to develop a high-throughput and 

quantitative technique, such as spectrofluorometry, for detecting rhodamine B in specimens. 

Additional fluorescent dyes with non-overlapping excitation an emission wavelengths also could 

be evaluated for potential use in conjunction with rhodamine B and feed-through or systemic 

insecticides. 

Using rhodamine B incorporated rodent baits in the field could allow the identification of 

specific foci with sand fly/rodent associations that would be susceptible to control using feed-

through or systemic insecticides, through the detection of adult male and female sand flies that 

had fed on the feces of baited rodents as larvae, and adult female sand flies that have taken a 

bloodmeal from bait-fed rodents. The development of rhodamine B as a feed-through biomarker 

also could have an enormous impact on future studies on sand flies, and could be the 

breakthrough for several unanswered questions: What percentage of sand flies in an area are 

associated with rodents? Which of the sand fly species feed on rodent feces as larvae? What 

percentage of human-biting flies in an area could potentially be eliminated using rodent baits 

containing insecticides? How far do sand flies disperse from their immature habitat? What 
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distance around human settlements must be targeted with insecticide-treated rodent baits to 

create an appropriate barrier? 

 Using rhodamine B as a feed-through biomarker also could provide detection of changes 

in sand fly populations due to larval control measures. Currently, monitoring the effects of larval 

control of phlebotomine sand flies during field trials is a problematic. The ideal method of 

demonstrating successful larval control would be to directly measure reductions in the larval 

population through larval sampling, which is impractical. Alternatively, adult sampling 

techniques (such as sticky paper traps and light traps) could be used, but there are inherent 

problems with adult sampling to demonstrate larval control, including potential false negative 

interpretations of results (such as not detecting control when it happens, which could happen 

through immigration of adult sand flies into the study area) or false positive interpretations of 

results (which would be attributing a reduction in adult populations to successful larval control, 

when it actually is a natural seasonal population decline or differential changes in microclimates 

of test sites).  

 In conclusion, this study is the first report of a fluorescent dye fed to larvae and then 

detected in adults of a medically important insect. The value of this method is that it can mark 

rodents and their feces to establish the consumption of treated-baits, mark adult female sand flies 

that feed rodents for the duration of persistence of the dye in rodents, and mark adult male and 

female sand flies that had fed on feces of bait-fed rodents as larvae. In specific rodent sand fly 

associations, the differential marking of both male and female sand flies or only female sand flies 

can be used to direct field control studies: a rodent bait containing a systemic insecticide would 

be used at sites where only female sand flies that fed on rodents are marked, while if male and 

female sand flies are marked, feed-through insecticides also could be used. 
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SUMMARY AND CONCLUSIONS 

In North Africa, the Middle East, and Southwest Asia, the sand fly P. papatasi is the 

vector of L. major, the causative agent of ZCL. All life stages of P. papatasi exhibit a close 

association with the burrowing rodent reservoirs of L. major. Despite this close association, 

currently there are no effective control measures available for the sand fly P. papatasi. However, 

the primary larval habitats of P. papatasi in ZCL foci are rodent burrows, and sand fly larvae 

have been observed feeding on the feces of rodents. Because of this fact, novel control methods 

targeting sand fly larvae that feed on rodent feces (using rodent feed-through insecticides) and 

adult sand flies that take bloodmeals from rodents (using a systemic insecticide) were evaluated 

in this study. Furthermore, a novel biomarker system was evaluated that marked rodents and 

their feces, adult female sand flies that took bloodmeals from treated rodents, and adult male and 

female sand flies that had fed on feces of bait-fed rodents as larvae. This biomarker system could 

be a valuable tool for monitoring host-targeted control trials for sand flies in the field. 

The studies presented in Chapters 2 to 5 of this dissertation evaluated the development 

and survival of P. papatasi larvae fed feces from Syrian hamsters that had been fed a diet 

containing the chitin synthesis inhibitors diflubenzuron and novaluron, the juvenile hormone 

analogs pyriproxyfen and methoprene, or the macrocyclic lactone ivermectin. In the studies on 

diflubenzuron, novaluron, methoprene, and pyriproxyfen, the mean daily food intake of the 

insecticide-treated hamsters was not significantly different from the food intake of control 

hamsters at any of the concentrations tested (up to approximately 1000 mg/kg a.i.), but the mean 

daily food intake of hamsters was significantly lower than control for hamsters fed a diet 

containing more than 20 mg/kg ivermectin. Sand fly larvae (2nd instars) that had been fed feces 

of hamsters fed diets containing approximately 10, 100, or 1000 mg/kg diflubenzuron, 

novaluron, or pyriproxyfen, or 20 mg/kg ivermectin all died before adult emergence. Feces of 
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hamsters fed a diet containing up to 978.8 mg/kg methoprene caused significant but less than 

100% mortality of immature sand flies. The results of the studies in Chapters 2 to 5 constitute 

proof of concept for feed-through control of sand fly larvae using diflubenzuron, novaluron, 

pyriproxyfen, and ivermectin. 

The studies presented in Chapter 6 of this dissertation determined the minimum effective 

dose of novaluron as a feed-through for control of sand fly larvae, and evaluated novaluron feed-

through under simulated field conditions. Complete control of sand fly larvae was observed 

when they were fed hamster feces containing 9.88 mg/kg novaluron, or when they were fed the 

feces of hamsters fed a diet containing 9.88x10-1 mg/kg novaluron. Feces of hamsters fed a diet 

containing 988 mg/mg novaluron were aged for up to 150 d at 28 °C and 90% RH. All larvae 

that had been fed feces of novaluron-treated hamsters aged for 0 or 30 d died before adult 

emergence, and the mortality of sand fly larvae fed feces aged up to 150 d was significantly 

different from control. The last experiment presented in Chapter 6 evaluated the effectiveness of 

novaluron as a feed-through in preventing the development of sand fly larvae when novaluron-

treated food made up only a portion of a hamster’s daily diet. All larvae that had been fed either 

feces from hamsters that exclusively had been fed a diet containing novaluron or hamsters that 

consumed novaluron-treated food as approximately 15% of their daily diet died before pupation.  

In this study, significant control of sand fly larvae was observed when they were fed 

feces of novaluron-treated hamsters that had been aged for up to 150 d or feces of novaluron-

treated hamsters when only a portion of their daily diet was novaluron-treated food. Therefore, 

novaluron is a good candidate for further evaluation as a rodent feed-through insecticide against 

sand fly larvae. Since the results of this study suggest that novaluron could be effective as a 

rodent feed-through insecticide in a field setting, the next step would be to evaluate the effects of 

novaluron-treated baits on sand fly populations in different rodent/sand fly associations. 
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The studies presented in Chapter 7 of this dissertation evaluated whether the post-

bloodmeal survival of adult female sand flies would be affected by feeding their rodent hosts a 

diet containing ivermectin. The 48 h survival was 0% for sand flies that took a bloodmeal from 

hamsters withdrawn from an ivermectin-treated diet for 0, 3, or 7 d, but was 100% for sand flies 

fed on hamsters withdrawn from an ivermectin-treated diet for 14 d. Feces voided by ivermectin-

treated hamsters also were collected 0 to 14 d after the hamsters were withdrawn from their 

ivermectin-treated diets, and the feces were fed to sand fly larvae. Mortality was 100% for larvae 

fed feces voided 0 d after withdrawal, and was significantly higher than control larvae for up to 7 

d after withdrawal. The mean percent survival of sand fly larvae fed feces of ivermectin-treated 

hamsters 14 d after they were withdrawn from an ivermectin-treated diet was not significantly 

different from control.  

This study confirms that ivermectin-treated rodent baits developed as a feed-through to 

control sand fly larvae also could have a collateral effect on bloodfeeding adult sand flies, thus 

affecting a larger portion of the sand fly population than would be estimated due to larvicide 

activity alone. While ivermectin treatment of rodent hosts of L. major may reduce the overall 

population of sand flies, this approach would have its greatest impact on the most 

epidemiologically important subset of the sand fly population: females that have taken a 

bloodmeal from potentially infected rodents. 

In the studies presented in Chapter 8 of this dissertation, hamsters were fed diets 

containing rhodamine B, and the mean daily food intake of the rhodamine B-treated hamsters 

was not significantly different from the food intake of control hamsters at any of the 

concentrations tested (50, 500, or 5000 mg/kg rhodamine B). Hamsters fed diets containing 

rhodamine B were marked by the dye after feeding on their diets for up to 8 weeks. Feces of 

rhodamine B-treated hamsters also were marked when examined using fluorescence microscopy. 
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The development and survival of sand fly larvae fed feces of rhodamine B-treated hamsters was 

not significantly different from control sand flies. Adult male and female sand flies that had were 

fed as larvae the feces of rhodamine B-treated hamsters were fluorescent when examined using 

fluorescent microscopy, and could be distinguished from control sand flies. Adult female sand 

flies that took bloodmeals from rhodamine B-treated hamsters were fluorescent, but not when 

they were examined 8 d after bloodfeeding.  

Using rhodamine B incorporated rodent baits in the field could allow the identification of 

specific foci with sand fly/rodent associations that would be susceptible to control using feed-

through or systemic insecticides, through the detection of adult male and female sand flies that 

had fed on the feces of baited rodents as larvae, and adult female sand flies that have taken a 

bloodmeal from bait-fed rodents. The development of rhodamine B as a feed-through biomarker 

also could have an enormous impact on future studies on sand flies, and could be the 

breakthrough for several unanswered questions about sand fly ecology. 
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Control Association: 
 
Mascari, T.M., Mitchell, M.A., Rowton, E.D. and Foil, L.D. 2008. Ivermectin as a rodent feed-
through insecticide for control of immature sand flies (Diptera: Psychodidae). Journal of the 
American Mosquito Control Association 24: 323-326 
 
Please note that this material is copyrighted by the American Mosquito Control Association and 
all content is required to be properly cited. The Journal of the American Mosquito Control 
Association must be listed as the source of any information.  
 
Please do not hesitate to contact me with any questions or concerns.  
  
Thank you, 
 
Sarah Gazi 
AMCA Executive Director 
15000 Commerce Parkway, Suite C 
Mount Laurel, NJ 08054 
Ph: 856-439-9222 
Fax: 856-439-0525 
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Louisiana, in May 1979. Thomas completed a Bachelor of Arts at Louisiana State University, 

majoring in Anthropology, in 2001. In 2002, he completed a Master of Science at the London 

School of Hygiene and Tropical Medicine, under the late Professor Christopher Curtis. The title 

of his masters project was “Baseline data collection on Wuchereria bancrofti infection 

prevalence and intensity, the evaluation of LF diagnostic tools, and the measurement of 

lymphoedema patient leg volumes in Newala District, Tanzania.” In 2003, he returned to 

Louisiana State University and began work on a Doctor of Philosophy under Dr. Michael Perich. 

Following Dr. Perich’s death later in 2003, Thomas continued his studies under Dr. Lane Foil. 
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