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ABSTRACT 

The sugarcane borer, Diatraea saccharalis (F.), is a dominant corn stack boring pest and 

a major target of Bacillus thuringiensis (Bt)-corn in many areas of the mid-southern region of the 

United States. A Cry1Ab-resistant strain of D. saccharalis, capable of survival on commercial Bt 

corn plants, was established using an F2 screening procedure. Larval survival of Cry1Ab-

resistant, -susceptible, and -heterozygous genotypes was evaluated on five non-Bt and seven Bt 

field corn hybrids at two plant stages. During the vegetative stages, all seven Bt corn hybrids 

were highly efficacious against the three genotypes, while 8-18% of the heterozygous genotype 

survived on reproductive stage plants for four Bt corn hybrids. Susceptibilities of Cry1Ab-

susceptible and -resistant strains were evaluated for four Bt proteins: Cry1Aa, Cry1Ac, 

Cry1A.105, and Cry2Ab2. LC50 values of the Cry1Ab-resistant strain were >80-, 45-, 4.1-, and -

0.5-fold greater than that of the susceptible strain to the four proteins, respectively. Relative 

fitness on non-toxic diet, diet treated with low concentrations of Cry1Ab toxin, and on 

conventional corn plants was compared for five genotypes of D. saccharalis. Larvae of Cry1Ab-

susceptible and Cry1Ab-resistant strains on both non-toxic diet and non-Bt corn plants developed 

normally. There were no significant differences between the two strains in all measured 

biological parameters, suggesting a lack-of-fitness cost of the Cry1Ab resistance in D. 

saccharalis.  Larval development, growth, and survival of the Cry1Ab-susceptible strain were 

significantly affected on diet treated with low concentrations of Cry1Ab toxin, while the effect to 

the resistant strains was not/or less significant. Using various genetic crosses, inheritance of 

Cry1Ab resistance in D. saccharalis was assessed on Bt corn leaf tissue, intact Bt corn plants, 

and diet containing Cry1Ab toxin. Cry1Ab resistance in D. saccharalis was inherited as a single 

autosomal gene. The resistance was incompletely or nearly completely recessive on Bt corn leaf 

tissue and intact Bt corn plants, while the dominance increased as Cry1Ab concentrations 
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decreased when it was tested on Cry1Ab-treated diet. Results generated from this study will 

provide valuable information in understanding Bt resistance mechanisms and developing 

effective strategies for managing resistance of D. saccharalis to Bt corn.  

  

 

 

 

 

 

 

 

 

 

 



CHAPTER 1 

INTRODUCTION 

As a major feed grain for livestock, food resource for humans, and raw material for ethanol 

production, corn, Zea mays L., is the most widely planted field crop in the United States. In 2007, 

a total of 93.6 million acres of field corn was planted in the United States (NASS 2007). Field 

corn also represents substantial acreage and contributes significant crop value to Louisiana 

agriculture.  In 2007, a total of 730,000 acres of field corn was planted in Louisiana (NASS 

2007). 

Bacillus thuringiensis 

Bacillus thuringiensis (Bt) is a widespread soil dwelling bacterium. It was first discovered in 

1901 by a Japanese scientist (Gill et al. 1992).  The Japanese Bt strain was found to kill the 

silkworm, Bombyx mori L., at a silk production farm.  Another strain was found in Germany 

about 10 years later by Ernst Berliner. Like the other members of genus Bacillus, Bt is aerobic 

and capable of producing endospores (Madigan and Martinko 2005). When nutrients are lacking, 

the bacterium produces crystal insecticidal δ-endotoxins. The crystal insecticidal proteins are 

often called “Cry” toxins. These Cry toxins have specific activities against some species within 

the orders of Lepidoptera, Diptera, and Coleoptera.  Since 1955, Bt Cry toxins have been used as 

important biological insecticides under various trade names, such as AbleTM, Biobit®, Dipel®, 

and Thuricide® (NPTN 2000).  

Compared to traditional chemical insecticides, Bt microbial insecticides exhibit many 

advantages. For example, Bt insecticides are usually very safe to most non-target organisms 

including natural enemies of insects (predators and parasites), pollinators, i.e., honeybees, and 

fish. Bt insecticides can also be well integrated with other control methods in many pest 
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management (IPM) programs. Bt proteins are essentially nontoxic to people, pets, and wildlife. 

As a biological control agent, Bt toxins are the most widely used microbial insecticides, 

accounting for 90-95% of the biological insecticide market in the world (Gill et al. 1992).  

Transgenic Bt Plants 

Bt microbial insecticides have some disadvantages for insect management. Control efficacy 

of Bt microbial insecticide applications can be affected by many factors including weather 

conditions, poor coverage, and instability to UV light. These factors greatly limited the use of Bt 

microbial insecticides for managing insect pests in many crop systems. The advances in 

biotechnology have allowed scientists to transfer Bt genes into plant genomes. Transgenic plants 

directly produce insecticidal Bt proteins within their tissues (Höfte et al. 1986). The first 

genetically engineered Bt plant, Bt tobacco, was developed in 1985 by a Belgian company, Plant 

Genetic Systems (Höfte et al. 1986).  Since then, many plant species have been bio-engineered to 

express Bt proteins for controlling insect pests (Huang et al. 1999a). During 1996, three of these 

Bt crops (i.e., potato, cotton, and corn) became commercially available in the United States and 

several other countries. Since then, adoption of Bt crops has increased rapidly because of the 

high efficacy in controlling the target pests. By 2007, the number of countries planting Bt crops 

increased to 21 with a total of > 36.8 million hectares throughout the world (James 2007). Corn 

and cotton have been the predominant commercialized Bt crops. Only a very small acreage of Bt 

potato and Bt rice have been planted in the United States and Iran, respectively. Among the 36.8 

million hectares of Bt crops planted in 2007, about 23.3 million hectares (or 63%) were Bt corn 

planted in 15 countries and about 13.5 million hectares (or 37%) were Bt cotton planted in 9 

countries. Since the commercialization of Bt crops, the United States has been the leading 

country in planting Bt crops, accounting for approximately one-third of the accumulated Bt crop 
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acreage during the past 12 years. During 2007, the United States alone planted 18.4 million 

hectares of Bt corn and 2.6 million hectares of Bt cotton, which accounted for approximately 49% 

and 59% of the total acres, respectively (NASS 2007).   

The first generation of Bt corn hybrids produced only a single Bt Cry protein. For example, 

the most commonly planted Bt corn, YieldGard®, expresses only the Cry1Ab Bt protein.  Newer 

transgenic Bt corn hybrids can express two or more Cry proteins and are able to control more 

than one group of insect pests. For example, YieldGard® Plus corn produces both the Cry1Ab 

and Cry3Bb1 proteins which are efficacious against both Lepidopteran stalk-boring pests and 

Coleopteran corn rootworms, and shows some activity against earworms, and armyworms (US 

EPA 2005a). Currently, both Bt crops expressing single Bt gene or multi Bt genes are planted in 

the United States. It is expected that the use of stacked-gene varieties will be increased. Single-

Bt-gene varieties such as YieldGard® will likely be phased out in the United States and other 

countries in the near future (Johnson 2007).  

Transgenic Bt corn was first planted commercially in the mid-southern region of the United 

States in 1999 (Castro et al. 2004a). Since then, adoption of this technology has increased rapidly 

across the region because of increasing yield losses from a complex of corn stalk boring pests 

including the European corn borer, Ostrinia nubilalis (Hübner), southwestern corn borer, 

Diatraea grandiosella Dyar, and sugarcane borer, Diatraea saccharalis (F.) (Castro et al. 2004a, 

Sankula and Blumenthal 2004, Porter et al. 2005, Huang et al. 2006a, Huang and Leonard 2008). 

Yield loss in non-Bt corn caused by corn stalk boring pests was estimated > 30% in this region 

(Sankula and Blumenthal 2004). Currently, Bt corn is the primary tool for managing corn stalk 

borer problems in the mid-southern region, including Louisiana. Bt corn acreage in this region 
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has reached the maximum level (50%) allowed by the US Environmental Protection Agency (US 

EPA) for Bt resistance management (Huang and Leonard 2008, Yue et al. 2008). 

Diatraea saccharalis 

D. saccharalis, is native to the western hemisphere, but not to the United States (Kelsheimer 

et al. 1950, Capinera 2001, Falco et al. 2001). It was introduced into Louisiana about 1855, and 

then spread to the warmer portions of other Gulf Coast States. D. saccharalis also occurs 

throughout the Caribbean, Central America, and the warmer portions of South America to 

northern Argentina (Kelsheimer et al. 1950, Capinera 2001, Falco et al. 2001, Reagan 2001). D. 

saccharalis has a wide range of hosts, infesting plants in the family Gramineae. Though it is 

primary a pest of sugarcane, Saccharum officinarum L., D. saccharalis also feeds on other crops 

such as corn, rice, Oryza sativa L., sorghum, Sorghum bicolor, sudangrass, Sorghum X 

drummondii, and many wild or weed grasses including Johnsongrass, Sorghum halepense, 

Paspalum sp., Panicum spp., Holcus sp., and Adropogon sp. (Reagan 1981, Ogunwolu et al. 

1988, Capinera 2001, Braga et al. 2003). D. saccharalis is also a pest of sweet corn in the 

southern United States such as Florida (Kelsheimer et al. 1950).  

In Louisiana, three corn borer species are known to infest corn: O. nubilalis, D. grandiosella, 

and D. saccharalis (Castro et al. 2004a). As a key sugarcane pest, D. saccharalis once was a 

sporadic pest of field corn in Louisiana, but has recently expanded its geographic range and 

become the dominant corn stalk borer in the state and other areas of the mid-southern region 

(Castro et al. 2004a, Porter et al. 2005, Huang and Leonard 2008). In Louisiana, field corn was 

severely damaged by D. saccharalis during 2002-2003. Corn yield loss to non-Bt corn caused by 

this corn borer pest was estimated to be >30% during the two years in many fields across the 

state.  A recent four-year (2004-2007) field survey in Louisiana showed that D. saccharalis 
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accounted for 82% of the total corn borer populations across the major corn-producing areas of 

this state (Huang and Leonard 2008). The remaining infestations were determined to be D. 

grandiosella (17%) and O. nubilalis (<1%). D. grandiosella and O. nubilalis occur only in the 

northern region of the state. D. saccharalis has also been a predominant corn borer species in the 

central gulf coastal area of Texas (Porter et al. 2005).  Field samples collected during 2006 and 

2007 showed that D. saccharalis accounted for >95% of the total corn borer populations in the 

coastal area of TX (RP and FH, unpublished data). In some corn fields, an average of >10 

larvae/plant could be found during the 2007 growing season D. saccharalis damage to field corn 

was also observed in Mississippi and Arkansas, two other states of the mid-southern region 

(Davis et al. 1999). Because of the economical importance in corn production in the mid-

southern region, D. saccharalis was recently officially listed as a target pest of Bt corn in the 

United States (US EPA 2005a, b).  

Field Corn Stalk Borer Management 

Prior to use of transgenic Bt corn, management of corn borers in corn depended primarily on 

application of chemical insecticides. Suggested insecticides included Mustang Max™, Furadan® 

4F, Asana® XL, Pounce®, Warrior T®, Intrepid®, and Baythroid® (Baldwin et al. 2008). Some 

cultural practices are also recommended for D. saccharalis control. Late instars of D. saccharalis 

can overwinter in the stubble of corn, sorghum, and rice in the non-sugarcane growing areas of 

Louisiana (Huang et al. 2006a). Therefore, destruction of overwintering habitats could reduce 

overwintering populations. Some D. saccharalis - resistant/tolerant corn varieties also have been 

identified (Hoisington et al. 1996). Since 1999, Bt corn hybrids have been used to manage corn 

stalk borers across the mid-southern region (Castro et al. 2004a, Huang et al. 2006a). Transgenic 

Bt corn hybrids have been very effective against D. saccharalis, and are currently the most 
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important tool for controlling D. saccharalis on corn in Louisiana, accounting for approximately 

50% of the state’s total corn acreage (Huang and Leonard 2008, Yue et al. 2008).  

Importance of Resistance Management for Bt Corn in Louisiana 

The widespread acceptance of transgenic Bt corn, will place a high level of selection 

pressure on the target insect and may result in development of resistance in these populations 

(Ostlie et al. 1997; Gould 1998; Tabashnik et al. 1991, 2003). Recent studies have shown that 

management of D. saccharalis resistance to Bt corn is more important than that proposed for O. 

nubilalis and D. grandiosella for some areas of the mid-southern region, especially Louisiana 

(Huang et al. 2007a, b; Huang and Leonard 2008). Two published studies indicated that 

performance of Cry1Ab corn against D. saccharalis varied among different Bt corn cultivars 

(Castro et al. 2004b, McAllister et al. 2004). Laboratory bioassays also showed that D. 

saccharalis is significantly less susceptible to Cry1Ab compared to O. nubilalis and D. 

grandiosella (Huang et al. 2006b). In addition, a major Bt resistance allele has been detected in 

three Louisiana populations of D. saccharalis since 2004 (Huang et al. 2007a, Huang and 

Leonard 2008).  Unlike laboratory-selected Bt-resistant strains of O. nubilalis (Huang et al. 1997, 

Bolin et al. 1999, Chaufaux et al. 2001), the Cry1Ab-resistant strain of D. saccharalis is capable 

of surviving and completing larval development (neonate to pupa stage) on intact commercial Bt 

corn plants (Huang et al. 2007a, Wu et al. 2007). This resistant D. saccharalis strain has shown a 

significant resistance level to purified trypsin-activated Cry1Ab toxin (Huang et al. 2007b). This 

resistance allele detected in D. saccharalis is the first major resistance allele to Cry1Ab corn 

documented for any cornstalk borer species worldwide.   

Current Resistance Management Strategy for Bt Corn in the United States 

Bt resistance in target insect populations is a primary concern for long-term success of the 

transgenic Bt corn technology as an effective pest management tool. In order to delay resistance 



development to Bt corn in target pests, the “high dose/refuge” insecticide resistance management 

(IRM) strategy has been implemented for planting Bt corn in the United States and Canada 

(FIFRA Scientific Advisory Panel 1998, US EPA 2001, Baute 2004). The principle of this IRM 

strategy is not very complicated. This strategy requires planting Bt corn in only a portion of the 

corn acreage in an area. The Bt corn should express a sufficient high dose to kill heterozygous 

individuals for Bt resistance. The remaining portion of the corn acreage should be planted with 

non-Bt corn as refuge for Bt-susceptible corn borers. Thus, the predominant number of 

susceptible individuals surviving from non-Bt corn refuge plants could randomly mate with those 

rare resistant homozygotes surviving on Bt corn plants. Therefore, the majority of their offspring 

carrying resistance alleles will be heterozygotes (carrying only a single resistance allele).  These 

heterozygous individuals should be killed by the high dose expressed Bt corn (Ostile et al. 1997, 

US EPA 2001, Baute 2004). As a result, resistance allele frequencies in the field insect 

populations should be maintained at a relatively low level. In the United States, when planting Bt 

corn to control corn borers, the current “high dose/refuge” IRM plan requires that growers must 

plant at least 20% non-Bt corn as refuge outside cotton-production regions, but need to plant a 

minimum of 50% non-Bt corn in regions that produce cotton. The non-Bt refuge should be 

planted within 800 m of the Bt corn on every farm with a field that contains Bt corn (US EPA 

2001).  

Key Assumptions of the “High Dose/Refuge” IRM Strategy 

There are four key assumptions for the success of this IRM strategy (Tabashnik 1994a, b). 

First, Bt corn plant must express a “high dose” of Bt proteins so that heterozygous individuals 

for Bt resistance can be killed. Second, resistance allele frequency in target insect populations 

should be very low (e.g. <0.001). Third, resistance should be inherited as a completely or 
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incompletely recessive gene. Finally, there is a random mating between resistant and susceptible 

populations of the target insect species. There are several practical definitions of “high dose”. A 

US EPA expert panel for Bt resistance management defined a high dose as a dose that kills >95% 

of resistant heterozygotes (Gould 1988, Van Rie 1991, Roush 1994). Another definition of “high 

dose” referred to 25 times the concentration needed to kill 99% of the susceptible individuals 

(Gould et al. 1994). 

The current “high dose/refuge” IRM strategy for Bt corn was developed primarily based on 

the information generated with O. nubilalis and D. grandiosella. These two species are the most 

economically important corn borer pests in the North Central and Midwestern US Corn Belts. 

Field and laboratory studies have shown all current commercial Bt corn for controlling corn 

borers express a high dose of Bt toxins for O. nubilalis and D. grandiosella (US EPA 2001). 

Intensive screenings for Bt resistance in nearly 20 populations of O. nubilalis and D. 

grandiosella collected in the United States have not detected major resistance alleles, suggesting 

that resistance alleles in these corn borer pests are rare (Andow and Alstad 1998; Andow et al. 

1998, 2000; Bourguet et al. 2003; Farinós et al. 2004; Huang et al. 2007c). Random mating 

assumption should be met by appropriate arrangement of non-Bt corn refuge as required for the 

IRM strategy (Bourguet et al. 2003). The genetic basis of corn borer resistance to Bt corn is 

unknown because highly resistant corn borer populations capable of survival on commercial Bt 

corn plants were not available prior to the establishment of the Bt resistant D. saccharalis strain 

in our laboratory.        

Previous studies on Bt resistance management have been focused on O. nubilalis and D. 

grandiosella. Limited research on Bt resistance has included D. saccharalis (Huang et al. 2006b). 

Information for use of the current “high dose/ refuge” IRM strategy for managing D. saccharalis 
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resistance to Bt corn is limited. It is necessary to validate if the currently adopted IRM strategy 

for O. nubilalis/D. grandiosella is also an effective approach for management of Bt resistance in 

D. saccharalis. Two objectives of the current study were designed to verify two of these four key 

assumptions of the “high dose/ refuge” strategy for managing D. saccharalis resistance to Bt 

corn.  

High Dose Clarification of Bt Corn Against D. saccharalis 

Larval survival of a Dipel®-resistant strain of O. nubilalis on Bt corn plants has been 

evaluated in the greenhouse (Huang et al. 2002). The results showed that the laboratory selected 

Dipel®-resistant strain of O. nubilalis could not survive on commercial Bt corn hybrids that 

expressed a high level of Cry1Ab toxin. To determine if Bt corn commonly planted in Louisiana 

qualifies as “high dose” against D. saccharalis as required for the “high/dose refuge” IRM 

strategy, larval survival of Cry1Ab-susceptible, -resistant, and heterozygous genotypes of D. 

saccharalis on several commercial Bt corn hybrids were evaluated in the greenhouse at different 

plant stages (Objective 1). Larval survival data of the heterozygous genotypes for Bt resistance 

were used to determine if a Bt hybrid qualifies as “high dose” based on the US EPA definition 

described above.  

Cross-Resistance 

Information on cross-resistance of D. saccharalis to various Bt toxins is useful in 

understanding resistance mechanisms and developing management strategies. Cross-resistance 

among Bt toxins has been evaluated in several insect species. Most published data indicated that 

selection for resistance to one Bt Cry toxin can lead to resistance to others (Tabashnik 1994b; 

Tabashnik et al. 1994, 1996, 2000; Gould et al. 1995; Sayyed and Wright 2001; Ferré and Van 

Rie 2002; Li et al. 2005). However, the patterns of cross-resistance can be varied in different 
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insect species and even among insect strains of a same species. Cross-resistance of D. 

saccharalis to Cry toxins has not been examined. In this study, susceptibility of the Cry1Ab-

resistant D. saccharalis to four Bt Cry proteins was assayed in the laboratory (Objective 2). 

These Cry proteins included Cry1Aa, Cry1Ac, Cry1A.105, and Cry2Ab2.  Cry1A.105 and 

Cry2Ab2 are the two Bt proteins expressed in a new Bt corn event, MON 89034 (Johnson 2007). 

This Bt event corn will offer broad control of Lepidopteran corn pests and may offer a valuable 

resistance management tool because of the presence of the two individually effective insecticidal 

Bt proteins against Lepidopteran pests. This new generation of Bt corn product has been 

approved by the U.S. regulatory authorities for commercial use beginning in 2009 under the 

trade name of YieldGard VT ProTM.  Results generated from this study should provide valuable 

information about the ability of MON 89034 hybrids to control D. saccharalis populations in the 

mid-southern region and in development of future IRM strategies for Bt corn.   

Fitness of Bt Resistance 

Fitness costs are often associated with resistance and can be used for Bt resistance 

management. Genes which provide resistance to novel challenges such as pesticides, toxins and 

pathogens often impose fitness costs on resistant phenotypes (Raymond et al. 2005). Significant 

non-recessive fitness costs associated with resistance imply that the resistance allele frequency in 

field insect populations will decrease once selection pressure is removed. For non-recessive 

fitness costs, resistance development in field insect populations can be significantly delayed or 

even be reversed, if the absence of selection pressure is long enough (Tabashnik et al. 2005). 

Therefore, understanding the fitness of insecticide resistance is important in development of 

effective IRM strategies.  

Studies on the fitness of Bt resistance have been conducted in several insect species 

targeted by transgenic Bt crops (e.g. Bt corn or Bt cotton) (Groeters et al. 1993, Oppert et al.



2000, Liu et al. 2001a, Akhurst et al. 2003, Snow et al. 2003, Bird and Akhurst 2004, Cerda and 

Wright 2004, Vacher et al. 2004, Carrière et al. 2005, Higginson et al. 2005, Raymond et al. 

2005, Anilkumar et al. 2008).  

In most cases, Bt resistance is associated with fitness costs and most are recessive 

(Anilkumar et al. 2008).  In some circumstances, fitness costs associated with Bt resistance can 

interact with environmental factors such as host plants (Carrière et al. 2005, 2006; Janmaat and 

Myers 2005, 2006; Bird and Akhurst 2005, 2007). In this study, larval growth and development 

of the Cry1Ab-susceptible, -resistant, and their F1 progeny of D. saccharalis were evaluated on a 

meridic diet with/without Bt toxin in the laboratory and on conventional non-Bt corn plants in 

the greenhouse (Objective 3). Data generated from this study should provide valuable 

information in understanding resistance mechanisms and developing appropriate strategies for 

managing D. saccharalis resistance to Bt corn.  

Inheritance of Bt Resistance 

Knowledge about the genetic modes of Bt resistance can improve resistance detection and 

monitoring, risk assessment, modeling, and development of IRM strategies (Bourguet 2004, 

Tabashnik and Carrière 2007). The genetic basis of Bt resistance has been assessed in many 

insect species (Heckel 1994; Ferré 1997; Liu and Tabashnik 1997; Tabashnik et al. 1997, 2002a, 

2004; Huang et al. 1999b; Bourguet et al. 2000; Sayyed et al. 2000; Ferré and Van Rie 2002; 

Morin et al. 2003; Sayyed and Wright 2004; Alves et al. 2006; Tabashnik and Carrière 2007). In 

most cases, a high level of Bt resistance is controlled by one or a few autosomal, recessive or 

incompletely recessive gene(s) (Liu et al. 2001b, Tabashnik et al. 2002b, Augustin et al. 2004, 

Kain et al. 2004, Sayyed et al. 2004, Liang et al. 2008). In contrast, low levels of resistance could 

be more dominant (Gould et al. 1992, Huang et al. 1999b, Kranthi et al. 2005). There are also 
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some exceptions (Chaufaux et al. 1997, Tang et al. 1997, Sayyed et al. 2003, Janmaat et al. 2004, 

Alves et al. 2006, Jackson et al. 2006). Inheritance of Bt resistance in corn stalk boring species 

has been examined for only three laboratory selected strains of O. nubilalis (Huang et al. 1999b, 

Alves et al. 2006). None of these three Bt-resistant strains of O. nubilalis have demonstrated the 

ability to survive on commercial Bt corn plants (Huang et al. 2002, Bourguet 2004). The 

availability of a Cry1Ab-resistant strain of D. saccharalis provided an opportunity to assess the 

genetic basis of Bt resistance for this species. Various cross-mating studies were used to 

characterize the genetic basis of Bt resistance in D. saccharalis and determine if resistance is 

controlled by a recessive gene (Objective 4).  

The specific objectives of this project include:  

Objectives 

I. Evaluate the performance of transgenic Bt corn hybrids against Cry1Ab-susceptible and -

resistant D. saccharalis to determine if Bt corn varieties commonly planted in Louisiana  

qualify as high dose as required for the current “high dose/refuge” IRM strategy for Bt 

corn; 

II. Determine susceptibilities of Cry1Ab-resistant and -susceptible D. saccharalis to four 

other Bt toxins to analyze the cross-resistance pattern and generate information needed 

for developing new Bt corn for managing D. saccharalis; 

III. Assess relative fitness of Cry1Ab-susceptible and -resistant D. saccharalis on diet and 

conventional corn plants to determine if fitness costs are associated with Cry1Ab 

resistance in D. saccharalis; and  
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IV. Characterize the inheritance of Cry1Ab resistance in D. saccharalis to verify if Bt 

resistance is controlled by a recessive gene as defined in the “high dose/refuge” IRM 

strategy for Bt corn. 
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CHAPTER 2 

EVALUATION OF TRANSGENIC BACILLUS THURINGIENSIS CORN HYBRIDS 
AGAINST CRY1AB-SUSCEPTIBLE AND -RESISTANT SUGARCANE BORER 

(LEPIDOPTERA: CRAMBIDAE) * 
 

Introduction 

Field corn, Zea mays L, represents substantial acreage and contributes significant crop value 

to agriculture in the mid-southern region of the United States (National Agricultural Statistics 

Service 2006). Transgenic field corn expressing Cry1Ab protein from Bacillus thuringensis (Bt) 

was commercialized in 1999 in the region. Adoption of this technology has increased rapidly 

across the region because of increasing yield losses from a complex of field cornstalk borers. Bt 

corn currently accounts for >40% of the total corn acreage in this area. However, the widespread 

acceptance of transgenic Bt corn could accelerate development of resistance, raising concerns 

about the long-term sustainability of Bt corn as an effective pest management tool (Tabashnik 

1994, Ostlie et al. 1997, Gould 1998, Baute 2004).  

To ensure the long-term sustainability of Bt corn, an insect resistance management (IRM) 

plan has been implemented as a mandatory requirement for planting Bt corn in the United States 

(US EPA 2001). The current IRM strategy is termed the “high dose/refuge” strategy, and it was 

developed specifically for managing European corn borer, Ostrinia nubilalis (Hübner), and 

southwestern corn borer, Diatraea grandiosella Dyar, resistance (Ostlie et al. 1997). Although O. 

nubilalis and D. grandiosella are the two most important corn borer species across the North 

Central and Midwestern regions of the Corn Belt, in the mid-southern region IRM strategies for 

sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae), should be considered 

equally important. In recent years, D. saccharalis has expanded its geographic range, and it has 
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become a dominant cornstalk-boring species in some areas of mid-southern states, especially in 

Louisiana and Texas (Castro et al. 2004a, Porter et al. 2005, Huang et al. 2006a). D. saccharalis 

infestations also have been reported on field corn in Mississippi and Arkansas (Davis et al. 1999, 

Huang et al. 2006b). For these reasons, D. saccharalis was recently listed as a target pest of Bt 

corn by the United States Environmental Protection Agency (United States Environmental 

Protection Agency 2005a, b). During 2004-2005, a major Cry1Ab resistance allele was 

documented in a Louisiana D. saccharalis population (Huanget al. 2007a, c).The resistance 

detected in this population is the first major resistance to the Cry 1Ab protein in commercial Bt 

corn documented for any cornstalk borer species. In addition, laboratory bioassays have shown 

that D. saccharalis is less susceptible to Bt corn cultivars expressing the Cry1Ab protein than the 

European corn borer and southwestern corn borer (Huang et al. 2006b). Two recent field studies 

from Louisiana also indicated that field performance of Bt corn against D. saccharalis varied 

among Bt corn cultivars (Castro et al. 2004b, Mc-Allister et al. 2004).  

The success of the “high-dose/refuge” IRM strategy requires that Bt corn plants must 

produce a high dose that can kill the heterozygous genotype for Bt resistance in the target species. 

The available information supporting the use of this strategy to manage Bt resistance in D. 

saccharalis is very limited. Therefore, it is necessary to validate this strategy for this species. 

The objectives of this study are to evaluate the performance of common Bt corn hybrids planted 

in Louisiana against a Cry1Ab-resistant D. saccharalis strain and thus to assess if these Bt corn 

hybrids qualify as high dose for managing this cornstalk-boring pest as required for the current 

IRM strategy for Bt corn. 

Material and Methods 

Insect Sources. Three genotypes of D. saccharalis were tested in this study. A Cry1Ab-

susceptible strain (Bt-SS) was established using larvae collected from cornfields near Winnsboro 



in northeastern Louisiana during 2004. The Cry1Ab-resistant strain (Bt-RR) was developed from 

a single iso-line family by using an F2 screen (Huang et al. 2007a). These Cry1Ab-resistant 

insects can complete larval development on commercial Bt corn hybrids and show a significant 

resistance level to the trypsin-activated Cry1Ab toxin (Huang et al. 2007c). During confirmation 

of Bt resistance, individuals of the Cry1Ab-resistant strain were backcrossed with those of the 

Cry1Ab-susceptible strain and reselected for Bt resistance in the F2 generation of the backcross 

(Huang et al. 2007a). The heterozygous genotype (Bt-RS: F1) was developed by crossing the 

Cry1Ab-resistant and -susceptible moths. 

Corn Hybrids. Five commercial non-Bt corn hybrids and seven YieldGard Bt corn hybrids 

adapted to Louisiana’s environment were evaluated in a greenhouse experiment. The five non-Bt 

corn hybrids included DK697 (Monsanto, St. Louis, MO), DG5515 (Dyna-Gro Seed, UAP Mid-

South, Cordova, TN), Golden Acres 2995RR (Golden Acres Genetics, Waco, TX), Pioneer 

31G66 (Pioneer Hi-Bred International, Johnston, IA), and TV 2140 (Terral Seed, Inc., Lake 

Providence, LA). The seven Bt corn hybrids were DKC69-70 (YGCB) (Monsanto), DKC69-71 

(RR2/ YGCB) (Monsanto), DG5528BT (Dyna-Gro Seed, UAP Mid-South), FFR900BT (FFR 

Seed, Southaven, MS), Golden Acres 2841 RRB (Golden Acres Genetics), Pioneer 31B13 

(Pioneer Hi-Bred International), and TV2160Bt (YieldGard) (Terral Seed, Inc.). The Bt corn 

hybrids produced from a seed company are genetically similar to the corresponding non-Bt corn 

hybrid from the same company. Expression of Bt Cry1Ab toxin in plants was verified with 

Cry1Ab/1Ac Lateral Flow QuickStix Strip Kit (Envirologix, Portland, ME). 

Two independent experiments validated the performance of the Bt corn cultivars against the 

Bt-SS, -RS, and -RR genotypes in 2005 and 2006. In each experiment, five corn seeds were 

planted in 18.9-liter pots containing ≈5 kg of a standard potting soil mixture (Perfect Mix, Expert 
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Gardener Products, St. Louis, MO), which were placed in a Louisiana State University 

Agricultural Center greenhouse located in Baton Rouge, LA. Seedlings were thinned to three 

plants per pot at 2 wk after seedling emergence. The plants were irrigated and fertilized for 

optimum growth during the tests. 

Insect Inoculation. Neonates (<24 h old) of the Bt-SS, -RS, and -RR genotypes of D. 

saccharalis were infested into plant whorls during vegetative stages (V7–V10) or in the collar of 

the leaf directly above or below the uppermost ear during reproductive stages (R1–R3) (Ritchie 

et al. 1993). A single plant for each corn hybrid was inoculated with 20 insects of a genotype. In 

2005 (experiment 1), D. saccharalis neonates were infested on V7–V8 (50 d after planting) and 

R1 (80 d after planting) stage corn plants to simulate damage from the first and second field 

generations, respectively. In 2006 (experiment 2), larvae were infested on V9–V10 (60 d after 

planting) and R1–R3 (90 d after planting) stage corn plants. Corn plants were dissected at 21 d 

after larval inoculation. The number of surviving larvae was recorded for each infested plant. In 

each experiment, three replicates (pots) were used for each combination of insect genotype and 

corn hybrid, and each pot contained two to three plants. 

Data Analysis. Larval survivorship on non-Bt and Bt corn hybrids was analyzed using a 

two-way analysis of variance (ANOVA) (SAS Institute 1999) with the insect genotype and corn 

hybrid as the two main factors. The LSMEANS test at the P = 0.05 level was used to determine 

treatment differences. Percentages estimating larval survivorship were subjected to the arcsine 

(x0.5) transformation before analysis with ANOVA (Zar 1984). Non-transformed data are 

presented in the figures. In addition, larval mortality of the Bt-RS genotype was used to 

determine whether a Bt corn hybrid would qualify as high dose for D. saccharalis. A Bt corn 
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hybrid is judged as high dose if it kills ≥95% heterozygotes (RS) for Bt resistance (FIFRA 

Scientific Advisory Panel 1998, United States Environmental Protection Agency 2001). 

Results 

Larval Survivorship of D. saccharalis on Non-Bt Corn, 2005. There were no significant 

differences in larval survivorship 21 d after infestation among the three D. saccharalis genotypes 

on vegetative stage plants of the five non-Bt corn hybrids (F = 0.05; df = 2, 30; P = 0.9505 for 

insect genotype, F = 1.70; df = 4, 30; P = 0.1760 for corn hybrid, and F = 1.83; df = 8, 30; P = 

0.1107 for interaction) (Fig. 2.1A). The overall larval survival rate across the three genotypes on 

non-Bt corn plants was 37.9 ± 1.6% (mean ± SEM).  

In contrast, larval survivorship of D. saccharalis on reproductive stage non-Bt corn plants 

was significantly different among insect genotypes (F = 6.03; df = 2, 30; P = 0.0063) (Fig. 2.1B). 

The survival rates of Bt-RS and -RR genotypes were significantly higher (P < 0.05) than that of 

the Bt-SS genotype. An average of 32.3 ± 1.9, 47.3 ± 3.4, or 41.6 ± 3.5% larvae survived on non-

Bt plants infested with Bt-SS, -RS, or -RR insects, respectively. The effect of non-Bt corn hybrid 

on larval survivorship was not significant (F = 1.93; df = 4, 30; P = 0.1312) and the interactions 

between insect genotype and corn hybrid also were not significant (F = 0.37; df = 8, 30; P = 

0.9293).  

Larval Survivorship of D. saccharalis on Bt Corn, 2005. Survivorship of D. saccharalis 

after 21 d on vegetative stage Bt corn plants was significantly different among insect genotypes 

(F = 31.83; df = 2, 42; P < 0.0001) (Fig. 2.2A).  

The overall survival rate of the Bt-RR genotype among the seven Bt corn hybrids was 9.6 ± 

1.8%, and was significantly greater (P < 0.05) than those of the Bt-SS (0.5 ± 0.3%) and -RS (1.4 

± 0.4%) genotypes. Difference in larval survivorship between Bt-SS and -RS genotypes was not 
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five non-Bt corn hybrids, 2005. 
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significant (P > 0.05). Larval survivorship varied among Bt hybrids (F = 2.52; df = 6, 42; P = 

0.0359). Survivorship of Bt-RR larvae was significantly lower (P < 0.05) on the TV2160Bt 

hybrid than that on the DKC69-70, DKC69-71, FFR 900BT, Golden Acres 2841RRB, and 

Pioneer 31B13 hybrids. Larval survivorship of Bt-RR insects on DG5528BT was also 

significantly less (P < 0.05) than on the FFR900BT and Golden Acres 2841RRB hybrids. The 

interaction between insect genotype and corn hybrid was not significant (F = 1.48; df = 12, 42; P 

= 0.1693). Larval survivorship of the Bt-RS genotype was <5% across the seven Bt corn hybrids.  

Larval survivorship of D. saccharalis on reproductive stage Bt corn plants was significantly 

different among insect genotypes (F = 34.99; df = 2, 42; P < 0.0001) (Fig. 2.2B). An average of 

1.5 ± 0.4% Bt-SS, 3.4 ± 0.8% Bt-RS, and 24.5 ± 4.3% Bt-RR larvae survived after 21 d. Larval 

survivorship between the Bt-SS and -RS genotypes was not significant (P > 0.05). The main 

effect of corn hybrid and the interaction between insect genotype and corn hybrid on larval 

survival were not statistically different (F = 0.60; df = 6, 42; P = 0.7295 for corn hybrid and F = 

0.37; df = 12, 42; P = 0.9667 for interaction). Approximately 7% of Bt-RS larvae survived on the 

Bt corn hybrid, Golden Acres 2841RRB. Survivorship of the Bt-RS genotype also reached 5% 

on DKC69-71 and Pioneer 31B13, whereas it was <5% for other Bt corn hybrids.  

Larval Survivorship of D. saccharalis on Non-Bt Corn, 2006. Differences in larval 

survivorship were significant on non-Bt plants during vegetative stages among the three insect 

genotypes (F = 15.3; df = 2, 30; P < 0.0001) but was not significant for corn hybrid (F = 2.05; df 

= 4, 30; P < 0.1120). The interaction of insect genotype and corn hybrid was also significant (F =  

2.57; df = 8, 30; P = 0.0289). Survivorship of Bt-RS and -RR on DK697, DG5515, and Pioneer 

31G66 was significantly higher (P < 0.05) than that of the Bt-SS strain (Fig. 2.3A). Larvae of Bt-
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RR genotype also demonstrated a greater (P < 0.05) survivorship on Golden Acres 2995 (57.5 ± 

5.2%) than Bt-SS larvae (34.2 ± 2.2%).  

Larval survivorship of D. saccharalis on reproductive stage plants of non-Bt corn was 

significantly different among insect genotypes (F = 5.23; df = 2, 30; P = 0.0113). Larval 

survivorship of the Bt-SS genotype was significantly greater (P < 0.05) than that of the Bt-RS 

and -RR genotypes (Fig. 2.3B). Survivorship of the Bt-SS, Bt-RS, and Bt-RR genotypes was 

43.2 ± 3.0, 32.0 ± 3.4, and 31.2 ± 2.7%, respectively, across the five non-Bt corn hybrids. The 

effect of corn hybrid on larval survivorship was not significant (F = 1.36; df = 4, 30; P = 0.2729) 

and the interaction between insect genotype and corn hybrid also was not significant (F = 0.76, 

df = 8, 30, P = 0.6369). 

Larval Survivorship of D. saccharalis on Bt Corn, 2006. Larval survivorship was 

significantly different among insect genotypes on vegetative stage plants (F = 56.11; df = 2, 42; 

P < 0.0001) (Fig. 2.4A). An average of 14.3 ± 2.5% larvae of the Bt-RR genotype survived on 

the seven Bt corn hybrid and was significantly higher (P < 0.05) than that observed with Bt-SS 

(0.0 ± 0.0%) and -RS (3.5 ± 0.6%) genotypes. Larval survivorship of the Bt-RS genotype was 

significantly greater than that of the Bt-SS genotype (P < 0.05). The main effect of corn hybrid 

and the interaction between insect genotype and corn hybrid was not significant (F = 1.82; df = 6, 

42; P = 0.1175 for corn hybrid and F = 0.74; df = 12, 42; P = 0.7075 for interaction). Larval 

survivorship of the Bt-RS genotype was ≤5% across the seven Bt corn hybrids. Larval 

survivorship was significantly different among insect genotypes on reproductive stage plants (F 

= 25.98; df = 2, 42; P < 0.0001). An average of 18.1 ± 2.4% Bt-RR larvae survived on Bt corn 

plants 21 d after infestation. Bt-RR larval survivorship was significantly greater (P < 0.05) than 

those of the Bt-SS (2.7 ± 1.40%) and -RS (6.8 ± 1.6%) insects (Fig. 2.4B).   
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Figure 2.3.  Larval survivorship (% mean ± SEM) of Cry1Ab-susceptible (SS), -heterozygous 
(RS), and -resistant (RR) D. saccharalis on vegetative (A) and reproductive (B) stage plants of 
five non-Bt corn hybrids, 2006. 
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Figure 2.4.  Larval survivorship (% mean ± SEM) of Cry1Ab-susceptible (SS), -heterozygous 
(RS), and -resistant (RR) D. saccharalis on vegetative (A) and reproductive (B) stage plants of 
seven Bt corn hybrids, 2006. 
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Survivorship of the Bt-SS and -RS genotypes also was significantly different (P < 0.05). 

The main effect of corn hybrid on survivorship was significant (F = 3.32, df = 6, 42; P = 0.0091). 

More larvae (P < 0.05) (mainly from Bt-RS and Bt-SS genotypes) survived on the TV2160Bt 

hybrid than on DKC69-70, DKC69-71, DG5528BT, FFR900BT, and Pioneer31B13 hybrids. 

Larval survivorship on Golden Acres 2841RRB also was significantly higher than that on 

Pioneer31B13. The interaction between insect genotype and corn hybrid was not significant (F = 

0.78; df = 12, 42; P = 0.6634). Survivorship of the Bt-RS genotype was >5% for TV2160Bt 

(17.5 ± 5.2%), FFR900BT (9.2 ± 4.2%), Golden Acres 2841RRB (8.3 ± 1.7%), and DKC69-70 

(7.5 ± 5.2%). Larval survivorship of Bt-RS genotype on TV2160Bt, FFR900BT, Golden Acres 

2841RRB, and DKC69-70 was significantly greater (P < 0.05) than that on Pioneer31B13. 

Survivorship on TV2160Bt was also significantly higher (P < 0.05) than that on DKC69-71 and 

DG5528BT. 

Discussion 

The Cry1Ab-resistant strain of D. saccharalis used in this study was previously confirmed 

to carry a major resistance gene(s) that allowed the insects to complete larval development (from 

neonate to pupal stage) on the Bt corn hybrid DKC69-70 (Huang et al. 2007a). Data from the 

current study showed that the larval survivorship of the Cry1Ab-resistant insects was 

considerably higher than that of the Bt-SS and -RS genotypes across the seven commercial Bt 

corn hybrids at both the vegetative and reproductive stages in both experiments. The relatively 

high survivorship of the Cry1Ab-resistant genotype further confirms that this Cry1Ab-resistant 

strain carries at least one major resistance gene to the Cry1Ab protein expressed in the Bt corn. 

Development of Bt resistance in insect pests is a primary concern for long-term success of 

transgenic Bt corn technology. To delay resistance development in target insect pests, the high-
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dose/refuge structured strategy has been implemented in the United States (FIFRA Scientific 

Advisory Panel 1998, United States Environmental Protection Agency 2001) and Canada (Baute 

2004). The success of this strategy requires that Bt corn plants produce a sufficient concentration 

of Bt protein to ensure that heterozygotes (RS) for Bt resistance can be killed (Ostlie et al. 1997, 

Bourguet et al. 2003). The high-dose qualification has not been directly evaluated for European 

corn borer and southwestern corn borer because major resistance traits have not been found in 

these species (FIFRA Scientific Advisory Panel 1998, Bourguet et al. 2003), in spite of extensive 

sampling (Andow et al. 1998, 2000; Bourguet et al. 2003; Stodola et al. 2006; Huang et al. 

2007b). Therefore, an indirect criterion of high dose was suggested by the EPA Scientific 

Advisory Panel on Bt Plant-Pesticides and Resistance Management (FIFRA Scientific Advisory 

Panel 1998, United States Environmental Protection Agency 2001). The panel used empirical 

data to suggest that a definition of high dose should include “a dose 25 times the toxin 

concentration needed to kill Bt-susceptible larvae.” This indirect measurement of high dose has 

been used to evaluate the high dose qualification of Bt corn hybrids against corn stalk borers and 

other target insect species (United States Environmental Protection Agency 2001). The panel 

also recognized that it is conceivable that a Bt-resistant heterozygote may develop with higher 

than 25-fold resistance (FIFRA Scientific Advisory Panel 1998, United States Environmental 

Protection Agency 2001). Field and laboratory data have shown that many of the commercial Bt 

corn hybrids are very effective against European corn borer and southwestern corn borer 

(Buschman et al. 1999, Huang et al. 1999). Based upon those results, all commercial Bt corn 

hybrids are likely to fulfill the high-dose requirement for European corn borer and southwestern 

corn borer (United States Environmental Protection Agency 2001). 
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The availability of a Cry1Ab-resistant D. saccharalis strain provided an opportunity to test 

directly the high-dose assumption by measuring larval survivorship of heterozygous genotype for 

Bt resistance on Bt corn plants. The low larval survivorship (≤5%) of the Bt-RS genotype on 

seven Bt corn hybrids at vegetative plant stages suggests all seven corn hybrids expressed a high 

dose of Bt protein against D. saccharalis during early plant stages as defined by the FIFRA 

Scientific Advisory Panel (FIFRA Scientific Advisory Panel 1998). The high efficacies (≤5% 

larval survivorship) of the three Bt corn hybrids (DKC69-71, DG5528BT, and Pioneer 31B13) 

against the Bt-RS genotype during reproductive stages indicate that these hybrids might also 

express a high dose of Bt protein at the later plant stages. However, survivorship of the Bt-RS 

genotype on TV2160Bt, Golden Acres 2841RRB, FFR 900BT, and DKC69-70 Bt corn hybrids 

during later reproductive stages was >5%, suggesting that these hybrids did not produce a high 

dose of Bt protein during those reproductive stages. 

To ensure no insects from escaping isolation within the greenhouse, all experiments were 

terminated before larvae developed to the pupal stage (21 d after larval infestation). Additional 

insect mortality of Bt-SS, -RS, and -RR genotypes on Bt corn plants might have occurred if they 

were exposed to plant tissue for a longer period. The laboratory bioassay with Bt corn plant 

tissue showed that additional mortality of Cry1Ab-resistant larvae was low 15 d after inoculation 

(Huang, data not shown), suggesting that 21 d-survivorship data are reasonable for estimating the 

efficacy of Bt corn plants against the three genotypes of D. saccharalis. 

Larvae of the Bt-SS, -RS, and -RR genotypes adapted well (>23% survivorship) to plants of 

the five non-Bt corn hybrids in the greenhouse. However, the performance of the three insect 

genotypes on the five non-Bt corn hybrids was not consistent across plant stages, or between the 

two experiments (2005 and 2006). Natural resistance in specific corn hybrids and developmental 
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stages within a hybrid could produce variable effects on D. saccharalis (Kumar and Mihm 1996, 

Davis et al. 1999, Maredia and Mihm 1999). The differences in plant stages and planting date 

between 2005 and 2006 may provide a partial explanation for the differences in larval 

survivorship between the two experiments. 

With the exception of the TV2160Bt hybrid at reproductive stages, very low survivorship 

(0–3.5%) of the Bt-SS insects were observed across the treatment combinations of Bt corn 

hybrids and plant growth stages in the two experiments. The results showed the YieldGard trait 

in these Bt corn hybrids expressing the Cry1Ab protein was effective against Cry1Ab-susceptible 

D. saccharalis. Similar results were reported from two previous studies (Castro et al. 2004b, 

McAllister et al. 2004). Castro et al. (2004b) reported that several locally adapted hybrids from 

the MON810 Bt corn event were very effective against southwestern corn borer, whereas 

significant variation in efficacy among those Bt hybrids was observed against D. saccharalis. 

McAllister et al. (2004) also found plant stage, plant structure, and Bt corn variety could affect 

the efficacy of the Cry protein in Bt corn against D. saccharalis. 

In addition, this study showed that larval survivorship of the Bt-RS genotype of D. 

saccharalis on Bt corn plants was considerably lower than that of the Bt-RR insects across all 

treatments in the 2-yr study. However, survivorship of the Bt-RS genotype on Bt corn plants was 

consistently greater than that of the Bt-SS genotype. The difference in larval survivorship on Bt 

corn plants between Bt-SS and -RS genotypes was significant (P < 0.05) in two of the four 

treatment combinations of plant growth stage and experimental time. These results indicate that 

Bt resistance in D. saccharalis may be inherited as a partially recessive trait. More detailed 

segregation analysis is needed to determine whether Bt resistance in D. saccharalis is controlled 

36 
 



by a single recessive or at least partially recessive as required for the high-dose/refuge IRM 

strategy for Bt corn (Ostlie et al. 1997, Bourguet et al. 2003). 

In summary, this study demonstrated that the Bt resistant strain of D. saccharalis can 

survive on the common commercial Bt corn hybrids in Louisiana. The results from this study 

suggested that a high-dose Bt corn for European corn borer and southwestern corn borer may not 

qualify as high dose for D. saccharalis. Furthermore, a high dose expressed by a Bt corn hybrid 

during vegetative plant stages may not produce a high dose during reproductive stages of 

development. Variability in performance of different Bt corn hybrids and in different plant 

growth stages within the same Bt corn hybrid also suggests a requirement to validate high dose 

qualification against D. saccharalis for each Bt corn hybrid, at different plant stages, and even 

perhaps in different environments. In addition, the natural resistance levels of a corn hybrid and 

the expression of Cry1Ab protein in Bt corn plants might be different in open field conditions. 

Therefore, careful monitoring of D. saccharalis survivorship is necessary after a greenhouse 

verified high dose Bt corn cultivar is planted in open fields. 
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CHAPTER 3 

SUSCEPTIBILITY OF CRY1AB-SUSCEPTIBLE AND -RESISTANT SUGARCANE 
BORER (LEPIDOPTERA: CRAMBIDAE) TO FOUR  

BACILLUS THURINGIENSIS PROTEINS * 
 

Introduction 

In recent years, the sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae), 

has expanded its geographic range and has become a dominant corn borer species across many 

areas of the mid-southern region of the United States, especially in Louisiana and Texas (Castro 

et al. 2004, Porter et al. 2005, Huang et al. 2007a). In Louisiana, field corn was seriously 

damaged by late-season populations of D. saccharalis during 2002 and 2003. Yield losses to 

non-Bt corn from this stalk boring pest exceeded 30% in many fields during these two years.  A 

four-year corn stalk-boring pest survey (2004 – 2007) in Louisiana showed that D. saccharalis 

accounted for more than 80% of the total corn borer populations (Huang and Leonard 2008). In 

Texas, field corn was severely damaged by D. saccharalis in 2005.  Economic infestations were 

reported from Corpus Christi to Victoria, and north to the Dallas area (Porter et al. 2005). Field 

samples collected during 2006 and 2007 showed that D. saccharalis accounted for >95% of the 

total corn borer populations in these areas (RP and FH, unpublished data).   

Since 1999, transgenic corn hybrids, Zea mays L., expressing the Bacillus thuringiensis (Bt) 

insecticidal Cry1Ab protein (e.g. YieldGard® corn) have been used successfully for managing 

corn borer problems in the mid-southern region. Acreage of Cry1Ab-expressing Bt corn is 

currently near the maximum level (50%) allowed by the United States Environmental Protection 

Agency for Bt resistance management in this region. More recently, genes encoding for Bt 

Cry1A.105 and Cry2Ab2 proteins have been transferred into corn hybrids with a novel method 

called Vector-Stack transformation (or VecTran technology) (Monsanto 2007), resulting in an 
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event, MON 89034, that contains both of these Bt proteins expressed at high levels. These 

hybrids will offer control of a broad spectrum of Lepidopteran corn pests and may serve as a 

valuable resistance management tool because of the presence of the two Lepidopteran active and 

highly effective insecticidal Bt proteins (Monsanto 2007). This new generation of Bt corn 

products has been approved by U.S. regulatory authorities for commercial use beginning 2009 

under the trade name of YieldGard VT ProTM.   

During 2004-2007, a major Cry1Ab resistance allele was documented in three populations 

of D. saccharalis collected from northeast and central Louisiana (Yue et al. 2008, Huang and 

Leonard 2008).  These Cry1Ab-resistant insects can complete larval development on commercial 

Cry1Ab corn hybrids (YieldGard) (Huang et al. 2007a, Wu et al. 2007) and showed a significant 

level of resistance (> 100-fold) to a trypsin-activated Cry1Ab toxin (Huang et al. 2007b). The 

resistance allele detected in D. saccharalis represents the first major resistance allele to the 

proteins found in commercial Bt corn for any corn stalk borer species. Recently, field resistance 

to Bt corn was reported for the stem borer, Busseola fusca (Fuller), in South Africa (van 

Rensburg 2007). 

Information on cross-resistance of insect pests to insecticides is essential in understanding 

resistance mechanisms and development of management strategies. Cross-resistance among Bt 

toxins has been evaluated in several insect species. Most published data suggest that selection for 

resistance to one Bt Cry toxin can lead to resistance to others (Tabashnik 1994; Tabashnik et al. 

1994, 1996, 2000; Gould et al. 1995; Ferré and Van Rie 2002; Li et al. 2005), but the patterns of 

cross-resistance vary among insect species and even among insect strains within the same 

species.  The objective of this study was to determine the susceptibility of the Cry1Ab-resistant 
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D. saccharalis to four Bt Cry proteins, including the proteins that are present in MON 89034: 

Cry1Aa, Cry1Ac, Cry1A.105, and Cry2Ab2.   

Materials and Methods 

Cry1Ab-Susceptible and -Resistant Strains of D. saccharalis. A Cry1Ab-susceptible 

strain (Cry1Ab-SS) of D. saccharalis was established from larvae collected from corn fields near 

Winnsboro in Northeast Louisiana during 2004 (Huang et al. 2006). A Cry1Ab-resistant strain 

(Cry1Ab-RR) of D. saccharalis was developed from a single two-parent family-line collected 

from the same location as the Cry1Ab-susceptible strain and was identified as carrying major 

resistance alleles by using an F2 screen (Huang et al. 2007a). These Cry1Ab-resistant insects 

completed larval development on commercial Bt corn hybrids expressing the Cry1Ab protein 

and demonstrated a significant resistance level (> 100-fold) to purified trypsin-activated Cry1Ab 

toxin, while the Cry1Ab-SS strain was susceptible to the Bt corn (Huang et al. 2007a, Wu et al. 

2007) and purified Cry1Ab protein (Huang et al. 2007b). During confirmation of Bt resistance, 

individuals of the Cry1Ab-resistant strain were backcrossed with those of the Cry1Ab-

susceptible strain and re-selected for Bt resistance with Cry1Ab corn leaf tissue in the F2 

generation of the backcross. The backcrossed and reselected resistant strain was used in the 

current study.   

Sources of Cry Proteins. Susceptibility of the Cry1Ab-SS and -RR strains of D. 

saccharalis was evaluated for four individual Cry proteins: Cry1Aa, Cry1Ac, Cry1A.105, and 

Cry2Ab2. Purified (99.9%) Cry1Aa and Cry1Ac proteins were obtained from Dr. Marianne 

Puztai-Carey, Case Western Reserve University, Ohio. The Cry proteins were produced using 

recombinant Escherichia coli culture and were subsequently activated with trypsin. The activated 

Cry proteins were lyophilized before they were used in the bioassays.  The purity of these two 
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proteins was determined using high-performance liquid chromatography and sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (Pusztai-Carey et al.1995, Masson et al. 1998).  

Cry1A.105 and Cry2Ab2 were provided by Monsanto Company (St. Louis, MO). The 

Cry1A.105 was produced in a culture of E. coli containing the pMON96851 expression plasmid 

and had a molecular weight of 58.1 – 131.5 kDa. This protein was 80% pure and was provided at 

a concentration of 1.2 mg/mL in a buffer (named as buffer A) consisting of 25 mM CAPS, pH 

10.3, 1 mM benzamidine-HCl, 0.1 mM EDTA, and 0.2 mM DTT. The Cry2Ab2 protein was 

produced in a culture of E. coli containing the pMON70520 expression plasmid and had a 

molecular weight 61.1 kDa. The protein was provided in a buffer named as buffer B consisting 

of 50 mM CAPS, pH 11, and 2 mM DTT with a purity of 87% and a concentration of 0.5 mg/mL.   

Insect Bioassay. Susceptibility of Cry1Ab-SS and –RR strains of D. saccharalis to the four 

Cry proteins was determined using a method similar to that described by Huang et al. (2007b). 

Each individual Cry protein was incorporated into a meridic diet prepared for rearing D. 

saccharalis (Bio-Serv, Frenchtown, NJ). Each bioassay included seven Bt concentrations and 

one (for assaying with Cry1Aa and Cry1Ac) or two (for assaying with Cry1A.105 and Cry2Ab2) 

non-Bt controls. The Cry protein concentrations used in each bioassay ranged from 0.016 to 64 

μg /g for Cry1Aa and Cry1Ac and 0.031 to 128 μg /g for Cry1A.105 and Cry2Ab2. Diet mixed 

with distilled water only was included as a blank control in all bioassays.  In testing with 

Cry1A.105 and Cry2Ab2, diet mixed with buffer only was used as an additional negative control. 

For diet incorporation assays, individual Cry proteins were suspended and diluted in distilled 

water or in buffer solution.  The desired Cry protein concentrations were achieved by mixing 

appropriate volumes of Cry protein solution into the diet just prior to dispensing the diet into 

individual cells of 128-cell trays (Bio-Ba-128, C-D International, Pitman, NJ). In the bioassay, 
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approximately 0.7 ml of treated diet was poured into each cell using 10 or 20-ml syringes 

(Becton, Dickinson and Company, Franklin Lakes, NJ). One neonate (< 24-h old) was placed on 

the diet surface of each cell. Each combination of insect strain by Cry protein concentration was 

replicated four times with 16 to 32 larvae in each replication. The bioassay trays were held in an 

environmental chamber maintained at 28 oC, 50% RH, and a photoperiod of 16:8 (L:D) h. Larval 

mortality, larval weight, and the number of surviving larvae that did not gain significant weight 

(< 0.1 mg per larva and still in first instar) were recorded on the 7th d after inoculation.  

Data Analysis. As described in Huang et al. (2007b), larval mortality was analyzed with 

two criteria: actual larval mortality and ‘practical’ mortality. Actual larval mortality was 

calculated using the number of dead larvae divided by the total number of larvae assayed.  The 

practical mortality was obtained using the equation:  Practical mortality (%) = 100 x (number of 

dead larvae + number of surviving larvae that had a body weight of < 0.1 mg per larva) / total 

number of insects assayed. The ‘practical’ mortality criterion is a more feasible and accurate 

measurement than the actual mortality in determining susceptibility of D. saccharalis to Bt 

toxins because it takes into account both actual mortality and larval growth inhibition (Huang et 

al. 2007b). A similar mortality criterion has been used in previous studies to measure Bt 

susceptibility in several lepidopteran species (Sims et al. 1996, Marçon et al. 1999). 

The actual larval mortality of the Cry1Ab-RR strain was low (< 62%) for three of the four 

Cry proteins at all concentrations tested. These data could not be analyzed with probit analysis 

for determining lethal concentrations (e.g. LC50). Therefore, the actual mortality data observed 

from both insect strains were transformed using an arcsine transformation (x0.5) and were 

subjected to a two-way analysis of variance (ANOVA) (SAS institute 2007) with insect strain 
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and Cry protein concentration as the two main factors. Treatment differences were determined 

using the least squares difference test at the α = 0.05 level. 

Data on the ‘practical mortality’ of D. saccharalis observed on Cry protein-treated diet were 

corrected for the mortality on non-treated control diet or the buffer-treated diet (Abbott 1925) 

and then were subjected to probit analysis using the SAS Proc probit program (SAS institute  

2007) to calculate the median lethal concentration (LC50) and the corresponding 95% confidence 

intervals (CI). Resistance ratios for each Cry protein were calculated using the LC50 value of 

Cry1Ab-resistant strain divided by the LC50 of the Cry1Ab-susceptible strain. The lethal 

concentration ratio test described in Robertson and Preisler (1992) was used to determine if the 

differences in LC50s between the two insect strains was significant at the α = 0.05 level for each 

Cry protein.  

Percentage of D. saccharalis  growth inhibition on a Bt-treated diet was calculated using the 

formula described in Huang et al. 2007b: larval growth inhibition (%) = 100 x (body weight of 

larvae feeding on non-treated control diet – body weight of larvae feeding on Bt diet or on 

buffer-treated diet) / (body weight of larvae feeding on non-treated control diet). The growth 

inhibition data were transformed using arcsine (x0.5) before being subjected to statistical analysis. 

A two-way ANOVA was used to analyze the larval growth inhibition data with insect strain and 

Bt concentration as the two main factors, followed by the least squares difference test at a = 0.05 

level to compare treatments (SAS institute 2007).  

Results 

Actual Larval Mortality. Actual mortality of the Cry1Ab-SS and Cry1Ab-RR strains on 

the non-Bt control diet at 7 d was low (0 - 8.6 %). The effects of Cry protein concentration and 

insect strain on larval mortality were significant for all Cry proteins (F  ≥ 26.98; df = 6-8, 39-54;



P < 0.0001) and insect strains (F ≥  7.28; df = 1, 39-54; P ≤ 0.0103). The interaction between 

Cry concentration and insect strain was also significant for the four Cry proteins (F  ≥ 8.26; df = 

5 - 8, 39 - 54; P < 0.0001). Larval mortality at Cry1Aa concentrations of ≤ 4 μg/g was low (< 

25%) for both insect strains (Fig.3.1).  

Larvae of the Cry1Ab-RR strain feeding on Cry1Aa-treated diet at 16 μg/g had significantly 

lower (P < 0.05) mortality than the Cry1Ab-SS strain.  Mortality of both insect strains at 64 μg/g 

was high (> 90%) and did not differ significantly (P > 0.05) between the two strains. In the 

Cry1Ac bioassays, larval mortality of the two insect strains increased as the Cry1Ac 

concentration increased. At concentrations of  ≥ 0.25 μg/g, mortality of Cry1Ab-RR larvae was 

significantly lower (P < 0.05) than that of the Cry1Ab-SS strain. For the Cry1A.105, at 

concentrations of ≤ 0.5μg/g, differences in mortality between the two insect strains were not 

significant (P > 0.05). At concentrations of ≥ 2μg/g, mortality of the Cry1Ab-SS strain was 

significantly greater (P < 0.05) than that of the Cry1Ab-RR strain. Compared to larvae feeding 

on control diet, significantly higher mortality was observed in Cry1Ab-SS strain at 

concentrations ≥ 0.125 μg/g and mortality reached 90% at 128 μg/g. In contrast to the Cry1Ab-

SS strain, significant mortality of the Cry1Ab-RR strain occurred only at the Cry1A.105 

concentration of 8 μg/g, but mortality reached only 33% at 128 μg/g. Treated with the Cry2Ab2 

diet, Cry1Ab-SS and Cry1Ab-RR strains expressed relatively low mortality levels compared to 

the other three Cry proteins. No significant larval mortality was observed for both insect strains 

until the concentration of Cry2Ab2 reached 128 μg/g.  At this concentration, approximately 72% 

of the Cry1Ab-SS strain were killed, which was significantly higher (P < 0.05) than that (27%) 

for the Cry1Ab-RR strain. 
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Figure 3.1.  Actual larval mortality (% mean ± SEM) of the Cry1Ab-susceptible and -resistant 
strains of D. saccharalis exposed to a diet treated with Bacillus thuringiensis Cry1Aa, Cry1Ac, 
Cry1A.105, or Cry2Ab2 proteins at 7 day after inoculation. For each Cry protein concentration, 
mean values followed by asterisk * are significantly different between the two insect strains (P < 
0.05; LSMEANS test). 
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Practical Mortality. Practical mortality of the Cry1Ab-SS and Cry1Ab-RR strains of D. 

saccharalis on non-Bt control diet ranged from 0 – 15% across all the bioassays. The practical 

mortality of Cry1Ab-SS strain on Cry1Aa-treated diet was high (> 96%) even at the lowest 

concentration (0.016 µg/g) tested, and it reached 100% at 0.063 µg/g. LC50 values of Cry1Aa 

against the Cry1Ab-SS strain could not be calculated, but based on the current bioassays, it 

should be less than 0.016 µg/g. Larval practical mortality of the Cry1Ab-RR strain ranged from 

3.3 ± 1.3 % (mean ± SEM) at the Cry1Aa concentration of 0.063 μg/g to 100% at 16 μg/g. The 

calculated LC50 value of Cry1Aa based on practical mortality was 1.25 μg/g with a 95% CI of 

0.99 to 1.58 μg/g (Table 3.1). With the larval mortality of the Cry1Ab-SS strain as a standard, 

the resistance ratio of the Cry1Ab-RR strain was > 80-fold for the Cry1Aa protein. The Cry1Ab-

RR strain also demonstrated a significant level of cross-resistance to Cry1Ac. Practical mortality 

of the Cry1Ab-SS strain was 2.7 ± 1.2 % at the Cry1Ac concentration of 0.016µg/g and reached 

100% at 1 µg/g, while the Cry1Ab-RR strain required higher concentrations to generate the 

similar mortality levels. The calculated LC50 value of Cry1Ac for Cry1Ab-RR strain was 3.61 

μg/g, which was 45-fold greater than that for the Cry1Ab-SS strain (Fig 3.2, Table 3.1).  

The difference in the LC50 values of the two strains was significant (P < 0.05) based on the 

lethal dose ratio tests. Practical mortality levels of the Cry1Ab-SS larvae on Cry1A.105 treated-

diet ranged from 12.8 ± 5.5% at 0.031 μg/g to 100% at 8 μg/g . Practical mortality levels of the 

Cry1Ab-RR strain ranged from 6.4 ± 2.8% at 0.031 μg/g to 100% at 32 μg/g. The calculated 

LC50 values of Cry1A.105 for the Cry1Ab-SS and Cry1Ab-RR strains were 0.27 and 1.11μg/g, 

respectively (Table 3.1). The 4-fold difference in the LC50s between the two strains was 

statistically significant (P < 0.05) based on the lethal dose ratio test. Practical mortality levels of 

the Cry1Ab-SS strain on Cry2Ab2 treated-diets ranged from 15.0 ± 15.0% at 0.031μg/g to 100% 
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at 128 μg/g. Practical mortality levels of the Cry1Ab-RR strain ranged from 10.3 ± 0.8% at 0.125 

μg/g to 94.7 % at 128 μg/g. The calculated LC50 values for Cry2Ab2 against the Cry1Ab-SS and 

Cry1Ab-RR strains were 11.87 and 6.01μg/g, respectively, and did not differ significantly 

between the two insect strains (Fig. 3.2, Table 3.1).  

 Cry1Ab-resistant strainCry1Ab-susceptible strain

0.016 0.063 0.025 1 4 16 64

0

20

40

60

80

100

*

* * * *Cry1Aa

0.016 0.063 0.025 1 4 16 64

0

20

40

60

80

100

*

*
* * * *Cry1Ac

0.031 0.125 0.500 2 8 32 128

0

20

40

60

80

100 Cry2Ab2 *

0.031 0.125 0.500 2 8 32 128

0

20

40

60

80

100 Cry1A.105

*

*

*

* *

Cry protein concentration (µg/g)

La
rv

al
 m

or
ta

lit
y 

(%
)

Figure 3.2.  Practical mortality (% mean ± SEM) of the Cry1Ab-susceptible (SS) and Cry1Ab-
resistant (RR) strains of D. saccharalis exposed to a diet treated with Bacillus thuringiensis 
Cry1Aa (a), Cry1Ac (b), Cry1A.105 (c), or Cry2Ab.280 (d) proteins at 7 day after inoculation. 
For each Cry protein concentration, mean values followed by asterisk * are significantly different 
between the two insect strains (P < 0.05; LSMEANS test). 
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Table 3.1.  Median lethal concentrations (LC50) and 95% confidence intervals (CI) based on 
practical mortality of B. thuringiensis Cry1Ab-susceptible and -resistant strains of D. saccharalis 
to four other Cry proteinsa. 

Toxin Insect Strain n b Slope ± SE 
P-value  

χ2 test 

LC50(95%CI) 

(µg/g) 

Resistance 

Ratio d 

Cry1Aa Susceptible 862 --- --- << 0.0156 c --- 

  Resistant 624 1.87±0.15 0.0680 1.25 (0.99-1.58) > 80  

Cry1Ac Susceptible 476 2.78±0.23 0.9977 0.08 (0.07-0.09) --- 

  Resistant 529 1.45±0.02 <0.0001 3.61 (2.25-5.46) 45s 

Cry1A.105 Susceptible 379 1.89 ± 0.22 0.0816 0.27 (0.20-0.36) --- 

  Resistant 491 1.42 ± 0.16 0.0007 1.11 (0.75-1.67) 4.1s 

Cry2Ab2 Susceptible 604 0.76 ± 0.11 <0.0001 11.87 (5.91-30.83) --- 

  Resistant 556 0.72 ± 0.13 <0.0001 6.01 (2.49-18.97) - 0.51ns 

a ‘Practical mortality’ is defined as the total of dead larvae and surviving larvae that did not 
demonstrate significant weight gain (<0.1 mg/larva and still in first instar) in a 7-day bioassay 
divided by the total number of larvae in the test.  
b n = total number of neonates assayed. 
c Mortality of the Cry1Ab-SS strain of D. saccharalis on Cry1Aa treated diet was high across all 
the concentrations tested. It was 96% at 0.016 µg/g, the lowest concentration assayed.   
d Resistance ratio to a Cry protein was calculated using the LC50 value of the Cry1Ab resistant-
strain divided by the LC50 of the Cry1Ab-susceptible strain.  
s Resistance ratios were significant (P < 0.05) based on the lethal dose ratio test (Robertson & 
Preisler 1992). 
ns Resistance ratios were not significant (P > 0.05) based on the lethal dose ratio test.  
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Figure 3.3.  Larval growth inhibition (% mean ± SEM) of the Cry1Ab-susceptible and -resistant 
strains of D. saccharalis exposed to a diet treated with B. thuringiensis Cry1Aa, Cry1Ac, 
Cry1A.105, or Cry2Ab2 proteins at 7 day after inoculation. These values were calculated using 
the formula: growth inhibition (%) = 100 × (body weight of larvae feeding on non-treated control 
diet – body weight of larvae feeding on Cry protein-treated diet or buffer-treated diet) / (body 
weight of larvae feeding on non-treated control diet). For each Cry protein concentration, mean 
values followed by asterisk * are significantly different between the two insect strains (P < 0.05; 
LSMEANS test). 
 

Larval Growth Inhibition. Both Cry1Ab-SS and Cry1Ab-RR strains developed normally 

on diet treated with buffer compared to the insects reared on the blank control diet. Growth 

inhibition of larvae feeding on buffer-treated diet was low (-0.7 to 11%) and not significant 

across insect strains and Cry proteins (Fig. 3.3). The effects of Cry protein concentration and 
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insect strain on larval growth inhibition were significant for each of the four Cry proteins (F ≥ 

97.39; df = 6-7, 42-48; P <0.0001 for protein concentration and F ≥ 4.74; df = 1, 42-48; P ≤ 

0.0352 for insect strain).  The interaction between Cry protein concentration and insect strain 

was significant for Cry1Aa, Cry1Ac, and Cry1A.105 (F ≥ 4.41; df = 5-7, 45-48; P ≤0.0041), but 

not significant for Cry2Ab2 (F = 1.94; df = 6, 42; P = 0.2626). 

In general, growth inhibition of both Cry1Ab-SS and Cry1Ab-RR strains increased as Cry 

protein concentrations increased (Fig.3.3). At most of the concentrations tested, growth of the 

Cry1Ab-RR strain was less affected than the Cry1Ab-SS insects, regardless of Cry protein. 

Cry1Aa and Cry1Ac at 0.063 µg/g inhibited larval growth by 91% and 63%, respectively, in the 

susceptible strain, whereas only 33% and 43% inhibition was observed in the resistance strain, 

respectively, at the same concentrations. In the bioassays with Cry1A.105, significant growth 

inhibition of the Cry1Ab-SS strain was observed at 0.031 μg/g, the lowest Bt concentration 

tested, while more protein (0.125 μg/g) was needed to achieve a similar level of inhibition in the 

Cry1Ab-RR strain. For Cry1A.105, approximately 8 μg/g toxin completely inhibited larval 

growth of the Cry1Ab-SS strain, while 32 μg/g toxin was necessary to completely inhibit growth 

in the Cry1Ab-RR strain. For Cry2Ab2, growth of both Cry1Ab-SS and Cry1Ab-RR strains was 

significantly inhibited at concentrations ≥ 0.5 μg/g and growth inhibition significantly increased 

in direct proportion to Bt concentrations. Larval growth of both insect strains was virtually 

completely inhibited at 128 μg/g of Cry2Ab2.  

Discussion 

In general, meridic diet treated with the buffer only did not cause significant larval mortality 

or growth inhibition of D. saccharalis in the bioassays with Cry1A.105 and Cry2Ab2 for either 

Cry1Ab-SS or Cry1Ab-RR strains. No buffer was used in the testing with Cry1Aa and Cry1Ac. 
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These results indicate that the observed larval mortality and growth inhibition can be 

attributed to the toxicity of the respective Cry proteins. 

Among the four Cry proteins tested in the present study, Cry1Aa was most toxic against 

both the Cry1Ab-SS and Cry1Ab-RR strains, followed by the Cry1A.105 protein.  Larvae of the 

Cry1Ab-SS strain were also very sensitive to Cry1Ac, but the Cry1Ab-RR larvae were more 

resistant to the Cry1Ac than to Cry1Aa and Cry1A.105. The Cry2Ab2 protein demonstrated the 

least efficacy against both insect strains. Based upon the results of a previous assay with purified 

trypsin-activated Cry1Ab protein (Huang et al. 2007b), Cry1Ac and Cry1A.105 were equally 

effective against the Cry1Ab-SS strain, but Cry1A.105 was more effective against the Cry1Ab-

RR insects than the Cry1Ab protein. 

Cross-resistance of different Bt toxins have been investigated in several lepidopteran species 

targeted by Bt cotton and Bt corn (Tabashnik et al. 2000, Gould et al. 1995, Ferré and Van Rie 

2002, Li et al. 2005).  Evidence is mounting that selection for resistance to one Bt toxin can lead 

to resistance in other related toxins. Cross resistance patterns and their underlying physiological 

mechanisms are complex and somewhat unpredictable (Bauer 1995). In general, the spectrum of 

cross resistance can vary for different Bt toxins, insect species, and even among insect strains of 

a same species. One of the most likely factors underlying the cross-resistance patterns may be the 

specific Bt binding sites in the midgut brush border membrane of an insect species. 

Unfortunately, the specific binding sites of Bt toxins remains unknown for most insect species.  

In Bt-SS diamondback moth, Plutella xylostella (L.), it is believed that there may be four 

different Bt binding sites in the midgut brush border membrane: site 1 for Cry1Aa; site 2 for 

Cry1Aa, Cry1Ab, Cry1Ac, Cry1F, and Cry1B;  site 3 for Cry1B; and site 4 for Cry1C (Ferré and 

Van Rie 2002). Results of the present study showed that the Cry1Ab-RR strain of D. saccharalis 

was also resistant to Cry1Aa and Cry1Ac, indicating these three Bt toxins could share a similar 
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binding sites, as suggested in P. xylostella. In contrast with Cry1Aa and Cry1Ac, the Cry1Ab-RR 

D. saccharalis demonstrated only a low level (4-fold) of cross-resistance to Cry1A.105 and had 

no cross-resistance to the Cry2Ab2, suggesting these two toxins may have independent 

mechanisms or target sites. 

The first generation of transgenic Bt corn hybrids (e.g. YieldGard® corn) expressed only a 

single cry protein and thus had a relatively narrow target spectrum.  This single Bt protein 

expression in crop plants has been of considerable concern in many pest management systems 

because the target insects may be able to more rapidly adapt to single toxins than to multiple 

toxins. To broaden the insecticidal spectrum and/or delay resistance development in target insect 

pests, a gene-stacking strategy has been used to develop transgenic plants that express two or 

more Bt proteins. It is believed that stacking two or more Bt genes with different insecticidal 

mechanisms (e.g. Bt binding sites) into one plant for controlling target species should delay Bt 

resistance development (Roush 1998).  Recently, genes encoding for Cry1A.105 and Cry2Ab2 

proteins were transferred into corn plants (Monsanto 2007). The resulting Bt event, MON 89034, 

with stacked-genes encoding both the Cry1A.105 and Cry2Ab2 proteins is expected to become 

commercially available in the United States in 2009 under the trade name of YieldGard VT 

ProTM (Monsanto 2007). Bioassay data from the present study indicate that Cry1Ab-RR D. 

saccharalis demonstrates relatively low cross-resistance (4-fold) to the Cry1A.105 protein and 

no cross-resistance to Cry2Ab2. Albeit limited, these results do provide some evidence that the 

new Bt corn with stacked genes of Cry1A.105 and Cry2Ab2 may provide a means to delay 

resistance development in D. saccharalis. In addition, Cry1Aa was the highly efficacious against 

both the Cry1Ab-SS and Cry1Ab-RR strains indicates that the Cry1Aa protein may be a good 

candidate for use in Bt corn to manage D. saccharalis.  
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CHAPTER 4 

RELATIVE FITNESS OF CRY1AB-SUSCEPTIBLE AND -RESISTANT SUGARCANE 
BORER (LEPIDOPTERA: CRAMBIDAE) ON MERIDIC DIET AND  

NON-BT CORN PLANTS 
 

Introduction 

Genes which provide resistance to novel challenges such as pesticides, toxins or pathogens 

often impose fitness costs on individuals that display a resistant phenotype (Raymond et al. 

2005). Significant non-recessive fitness costs associated with resistance imply that a frequency 

of resistance alleles in field insect populations will decrease once the selection agent is removed. 

For a non-recessive fitness cost, resistance development in field populations can be significantly 

delayed or even be reversed if the absence of selection pressure is sufficient long (Tabashnik et 

al. 2005). Therefore, understanding the fitness of resistant insects is important in development of 

effective resistance management strategies. Studies on the relative fitness of Bacillus 

thuringiensis (Bt) resistant populations have been conducted on several insect species targeted by 

transgenic Bt crops (e.g. Bt corn or Bt cotton) (Akhurst 2003; Snow et al. 2003; Bird and 

Akhurst 2004; Cerda and Wright 2004; Vacher et al. 2004; Carrière et al. 2005, 2006; Higginson 

et al. 2005; Raymond et al. 2005; Anilkumar et al. 2008). In most cases, Bt resistance is 

associated with fitness costs and most of the fitness costs were associated with recessive 

inheritance (Anilkumar et al. 2008). In some cases, fitness costs associated with Bt resistance can 

interact with environmental factors such as host plants (Carrière et al. 2004, 2005; Janmaat and 

Myers 2005, 2006; Raymond et al. 2006; Bird and Akhurst 2005, 2007). 

Since 1999, transgenic corn, Zea mays L., expressing Bt toxins (e.g., YieldGard corn), has 

been widely and successfully planted for managing corn stalk borer pests in the mid-southern 

region of United States. Bt corn acreage in this region is currently close to the maximum level 
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(50%) allowed by the United States Environmental Protection Agency for Bt resistance 

management. The sugarcane borer, Diatraea saccharalis (F.), is the most economically 

important corn stalk boring pest and the primary target of transgenic Bt corn in Louisiana and 

some other areas of the mid-southern region (Castro et al. 2004, Huang and Leonard 2008). A 

Cry1Ab-resistant D. saccharalis strain capable of completing larval development on commercial 

Cry1Ab corn has been selected using a novel F2 screening technique (Huang et al. 2007a). The 

resistance allele identified in this D. saccharalis population represents the first major resistance 

allele documented in any corn stalk boring specie worldwide.  

The availability of this Cry1Ab-resistant strain provides opportunities to examine the 

relative fitness of Bt resistant D. saccharalis. In this study, larval growth and development of 

Cry1Ab-susceptible, -resistant, and their F1 progeny of D. saccharalis were evaluated on a 

meridic diet with/without a Bt toxin (Cry1Ab) in the laboratory and on conventional non-Bt corn 

plants in the greenhouse. Data generated from this study should provide valuable information in 

developing appropriate strategies for managing resistance of D. saccharalis to Bt corn.  

Materials and Methods 

Insect Sources. A Cry1Ab-susceptible strain (Bt-SS) of D. saccharalis was established 

from larvae collected in corn fields near Winnsboro in Northeast Louisiana during 2004 (Huang 

et al. 2007a). A Cry1Ab-resistant strain of D. saccharalis was originated from a single two-

parent family-line using an F2 screen (Huang et al. 2007a). The two-parent family-line carrying 

the Cry1Ab resistance allele was developed from a field collection in 2004 near the same 

location as the Bt-SS strain. During confirmation of Bt resistance, individuals of the original Bt 

resistant strain were backcrossed with those of the Bt-SS strain and re-selected for Bt resistance 

with Cry1Ab corn leaf tissue in the F2 generation of the backcross. The re-selected Cry1Ab-
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resistant strain (Bt-RR) completed larval development on commercial Bt corn hybrids expressing 

the Cry1Ab protein and demonstrated significant resistance levels (≈100-fold) to purified 

trypsin-activated Cry1Ab toxin (Huang et al. 2007a, 2007b; Wu et al. 2007). The Bt-RR strain 

had been maintained in the laboratory with continuous selection for approximately two years 

when this study was started. Another Bt resistant strain (Bt-R’R’) was developed by 

backcrossing the Bt-RR with the Bt-SS and reselection for Bt resistance on Cry1Ab corn leaf 

tissue in the F2 generation. Progeny of the subsequent generation of the reselected Bt-R’R’ were 

used in the current study. In addition, two F1 genotypes (Bt-R’mSf and Bt-R’fSm) were developed 

by reciprocal crosses of Bt-SS with Bt-R’R’. In this study, all five genotypes of D. saccharalis 

were assayed on meridic diet with/without Cry1Ab toxin and on intact conventional non-Bt corn 

plants to determine the relative fitness across a range of Bt exposure.  

Source of Cry1Ab Toxin. Purified (99.9%) Cry1Ab protein was obtained from Dr. 

Marianne Puztai-Carey, Case Western Reserve University, Ohio. The Cry1Ab was produced 

using recombinant Escherichia coli cultures and was subsequently activated with trypsin. The 

activated Cry protein was lyophilized before it was used in the bioassays. 

Corn Plants. A commercial non-Bt corn hybrid, DK697 (Monsanto, St. Louis, MO) was 

planted in 18.9-liter pots containing approximately 5 kg of a standard potting soil mixture 

(Perfect Mix, Expert Gardener Products, St. Louis, MO) in a greenhouse at the Louisiana State 

University Agricultural Center, Baton Rouge, LA. Five corn seeds were planted in each pot. 

Seedlings were thinned to two plants per pot at 2 wk after seedling emergence. The plants were 

irrigated and fertilized for optimum growth during the tests.   

Fitness of Five D. saccharalis Genotypes on Non-Treated Diet or Cry1Ab-Treated Diet. 

Larvae of the five D. saccharalis genotypes were inoculated on a non-treated regular diet and 
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three diets containing low concentrations (0.01, 0.05, 0.1µg/g) of Cry1Ab toxin. The three low 

concentrations used in the current study were determined from previous bioassays (Huang et al. 

2007b). At these Cry1Ab concentrations, larval mortality of D. saccharalis at 7 days after 

inoculation (DAI) was expected to be very low (Huang et al. 2007b). The Cry1Ab treated diets 

were prepared by mixing appropriate volumes of Cry1Ab solutions into the diet. An equivalent 

amount of distilled water was added to the non-treated diet so that the total amount of water in 

the Cry1Ab-treated diet was equal to that in the non-treated diet. Immediately after mixing, 1.0 

ml of Cry1Ab treated or non-treated diet was placed into each cell of the 128-cell trays (Bio-Ba-

128, C-D International Inc. Pitman, NJ) using 20-ml syringes (Becton, Dickinson and Company, 

Franklin Lakes, NJ). One neonate (<24 h old) was placed on the diet surface in each cell. The 

bioassay trays were held in an environmental chamber maintained at 28 oC, 50% RH, and a 

photoperiod of 16:8 (L:D) h. There were four replications for each combination of insect strain 

by Cry1Ab concentration with 30 larvae in each replication. After 10 days, survivors were 

transferred into 30-ml-cups (1 larva/cup) (SOLO, Chicago, IL) containing approximately 5 ml of 

diet at the same Cry1Ab concentrations and were allowed to develop to pupation. After the first 

pupa was observed, all cups were observed daily until all insects pupated or died. Pupation time, 

pupation success, sex ratio, and pupal weight were recorded for each treatment.  

Fitness of Five D. saccharalis Genotypes on Non-Bt Corn Plants/Non-Treated Diet. At 

50 days after planting, 10 neonates (>24 h old) from each of the five genotypes were manually 

released into the whorl of a corn plant in the greenhouse. There were three replications (3 pots or 

6 plants of non-Bt corn hybrid, DK697) for each insect genotype. Corn plants were dissected at 

19 DAI. The number of surviving larvae and insect body weight were recorded. At this time, 

most (>90%) survivors were in larval stages. All larvae recovered from plants were transferred 

into 30-ml plastic cups (1 larva/cup) containing approximately 5 ml of non-treated diet and 
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allowed to develop to pupation (thereafter refer to as combined rearing) in growth chambers at 

the same environmental conditions described previously. Insects were evaluated daily until all 

insects pupated or died. Pupation time, pupation success, sex ratio, and pupal weight were 

recorded for each treatment.  

Data Analysis. Larval development time and larval/pupal body weight for each insect 

genotype were transformed to log (x + 1) scale, while survival/pupation rate were transformed to 

angular values to normalize treatment variances before statistical analysis (Zar 1984). 

Transformed data were subjected to a two-way analysis of variance (ANOVA) with the insect 

genotype and Cy1Ab concentration as the two main factors (SAS Institute 2008).  Treatment 

means among insect genotypes within same Cry1Ab concentrations were separated using the 

least square difference test at the α = 0.05 level (SAS Institute 2008). Data associated with the 

tests on corn plants were analyzed using one-way ANOVA and differences among insect 

genotypes were separated using the Fisher’s Protected LSD test at the α = 0.05 level (SAS 

Institute, 2008). Untransformed means and standard errors are presented in the figures and tables.   

Results 

Neonate-to-Pupa Development for D. saccharalis on Non-Treated Diet or Cry1Ab-

Treated Diet.  Larval-to-pupa development times of both male and female D. saccharalis were 

significantly different among Cry1Ab concentrations (F > 17.56; df = 3, 60; P < 0.0001) and 

insect genotypes (F ≥ 4.12; df = 4, 60; P ≤ 0.0051). The interaction of Cry1Ab concentration and 

insect genotype was also significant (F ≥ 3.71; df = 12, 60; P ≤ 0.0003). Compared to Cry1Ab-

susceptible insects (Bt-SS), Bt- R’R’ did not show fitness costs in larval development on non-

treated diet. The neonate-to-pupa development time of male D. saccharalis was not significantly 

different (P > 0.05) among the five genotypes on non-treated diet and at the Cry1Ab 

concentration of 0.01 μg/g (Fig. 4.1). Male neonates took an average of 21.8 days to become 
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pupae on non-Bt diet. Male development time to pupation was significantly (P < 0.05) delayed 

for Bt-SS genotypes at the two higher Cry1Ab concentrations (e.g. 0.05 and 0.1 μg/g). The larval 

development time of the Bt-R’mSf genotype was also significantly longer (P < 0.05) than that of 

the other three genotypes at these two Cry1Ab concentrations. A similar pattern was observed 

for the female D. saccharalis among the five genotypes (Fig. 4.1). The average time needed for 

female neonate to pupa was 1.5 days longer than that of the males. Except the Bt-RR on non-

treated diet, there were no significant differences (P > 0.05) in larval development time among 

all genotypes on non-treated diet and diet treated with 0.01 μg/g Cry1Ab.  As observed for the 

males, larval development of Bt-SS females was significantly (P < 0.05) delayed at Cry1Ab 

concentrations of 0.05 and 0.1 μg/g.  

Pupal Weight of D. saccharalis on Non-Treated Diet or Cry1Ab-Treated Diet. No 

significant difference in pupal weight was observed among the five genotypes on non-treated 

diet. Cry1Ab at all concentrations did not significantly reduce pupal weight (Fig. 4.2). The main 

effect of Cry1Ab concentration and insect genotype on male pupal weight was not significant (F 

= 1.49; df = 3, 60; P = 0.2259 for Cry1Ab concentration and F = 1.68; df = 4, 60; P = 0.1657 for 

insect genotype). The interaction of the two factors also was not significant (F = 1.15; df =12, 60; 

P = 0.3393).  On non-treated diet, a male pupa had an average weight of 94.2 mg. Male pupal 

weight did not differ significantly (P > 0.05) among the five genotypes at all Cry1Ab 

concentrations (Fig. 4.2). Female pupae of D. saccharalis weighed more than males with an 

average weight of 158.6 mg/pupa. The main effects of Cry1Ab concentration and insect 

genotype on female pupal weight was significant (F = 4.96; df = 3, 60; P = 0.0016 for Cry1Ab 

concentration and F = 6.75; df = 4, 60; P = 0.0005 for insect genotype). However, there were no 

significant differences among the five genotypes on non-treated diet or at each of the three 

Cry1Ab concentrations (Fig. 4.2). 
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Figure 4.1.  Neonate-to-pupa development time (day: mean ± SEM) of five genotypes of D. 
saccharalis on non-treated diet and diet treated with low concentrations of B. thuringiensis 
Cry1Ab toxin. Insect genotypes: Bt-SS = Cry1Ab-susceptible; Bt-RR = original Cry1Ab-
resistant; Bt-R’R’= Bt-RR back-crossed with Bt-SS and re-selected resistant; Bt-R’mSf = F1 of 
Bt-R’R’ male × Bt-SS female; and Bt-R’fSm = F1 of Bt-R’R’ female × Bt-SS male. Mean values 
within a Cry1Ab concentration across five insect genotypes followed by a same letter are not 
significantly different (P > 0.05; LSMEANS test). 
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Figure 4.2.  Pupal weight (mg/pupa, mean ± SEM) of five genotypes of D. saccharalis on non-
treated diet and diet treated with low concentrations of B. thuringiensis Cry1Ab toxin. Insect 
genotypes: Bt-SS = Cry1Ab-susceptible; Bt-RR = original Cry1Ab-resistant; Bt-R’R’= Bt-RR 
back-crossed with Bt-SS and re-selected resistant; Bt-R’mSf = F1 of Bt-R’R’ male × Bt-SS 
female; and  Bt-R’fSm = F1 of Bt-R’R’ female × Bt-SS male. Mean values within a Cry1Ab 
concentration across five insect genotypes followed by a same letter are not significantly 
different (P > 0.05; LSMEANS test).  
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Pupation Success of D. saccharalis on Non-Treated Diet or Cry1Ab-Treated Diet. 

There were no obvious fitness differences in pupation success rates among the five genotypes on 

non-treated diet. However, pupation success rates on Cry1Ab- treated diet were considerably 

different among the insect genotypes across Cry1Ab concentrations (Fig. 4.3). The main effect of 

Cry1Ab concentration and insect genotype on pupation rate was significant (F = 20.19; df = 3, 

60; P < 0.0001 for Cry1Ab concentration and F = 5.98; df = 4, 60; P = 0.0004 for insect 

genotype). The interaction of the two factors was also significant (P = 6.77; df = 12, 60; P < 

0.0001).  Pupation success rates on non-treated diet ranged from 76.6 to 93.8% among the five 

genotypes and but was not significantly different (P > 0.05) between the Cry1Ab-susceptible and 

- resistant strains.  

The pupation success rate was lower on diet treated with 0.05 or 0.1 μg/g Cry1Ab for all 

genotypes, but the reduction was significantly greater (P < 0.05) for Bt-SS than that for the other 

four genotypes. The Bt-R’R’ at 0.1 µg/g appeared to have a higher pupation success rate than the 

two heterozygous and Bt-RR genotypes (Fig. 4.3).    

Sex Ratio of D. Saccharalis on Non-Treated Diet or Cry1Ab-Treated Diet. There were 

no significant fitness differences in sex ratio among the five genotypes on non-treated diet (Fig. 

4.4). Cry1Ab in diet at the concentrations tested also did not have a significant effect on sex ratio 

(Fig. 4.4). The main effect of Cry1Ab concentration and insect genotype, and their interaction on 

sex ratio were not significant (F ≤ 2.65; df = 3, 4; 60; P ≥ 0.0566 for the two main factors and F= 

0.86; df = 12, 60; P = 0.5881 for the interaction).  

The overall sex ratio of male: female across insect genotypes and Cry1Ab concentrations 

was 1.33: 1.  
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Figure 4.3.  Pupation rate (%: mean ± SEM) of five genotypes of D. saccharalis on non-treated 
diet and diet treated with low concentrations of B. thuringiensis Cry1Ab toxin. Insect genotypes: 
Bt-SS = Cry1Ab-susceptible; Bt-RR = original Cry1Ab-resistant; Bt-R’R’= Bt-RR back-crossed 
with Bt-SS and re-selected resistant; Bt-R’mSf = F1 of Bt-R’R’ male × Bt-SS female; and Bt-
R’fSm = F1 of Bt-R’R’ female × Bt-SS male. Mean values within a Cry1Ab concentration across 
five insect genotypes followed by a same letter are not significantly different (P > 0.05; 
LSMEANS test). 
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Figure 4.4.  Sex ratio (male/female: mean ± SEM) of five genotypes of D. saccharalis on non-
treated diet and diet treated with low concentrations of B. thuringiensis Cry1Ab toxin. Insect 
genotypes: Bt-SS = Cry1Ab-susceptible; Bt-RR = original Cry1Ab-resistant; Bt-R’R’= Bt-RR 
back-crossed with Bt-SS and re-selected resistant; Bt-R’mSf = F1 of Bt-R’R’ male × Bt-SS 
female; and Bt-R’fSm = F1 of Bt-R’R’ female × Bt-SS male. Mean values within a Cry1Ab 
concentration across five insect genotypes followed by a same letter are not significantly 
different (P > 0.05; LSMEANS test).  
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Larval Survival and Growth of D. Saccharalis on Non-Bt Corn Plants. There were no 

significant fitness differences in larval survival and development on non-Bt corn plants 

associated with Bt resistance in D. saccharalis. Larval survival rates of the five D. saccharalis 

genotypes on non-Bt corn plants in the greenhouse were not significantly different (F = 1.98; df 

= 4, 10; P = 0.1733) with an overall average survival rate of 51% after 19 days (Table 4.1). 

Larval body weights were also not significantly different among the genotypes (F = 0.84; df = 4, 

10; P = 0.5324) with an average of 94 mg/larva after feeding on non-Bt corn plants for 19 days 

(Table 4.1).   

67 
 



Table 4.1.  Larval survival (%, mean ± SEM) and growth (%, mean ± SEM) of five genotypes of 
D. saccharalis on a conventional non-Bt corn hybrid (DK697). 

Genotype1 
Survival rate2 

(%) 

Larval body weight2,3 

(mg/larva) 

Bt-SS 42.8 ± 3.4 a 87.8 ± 6.0 a 

Bt-RR 53.9 ± 6.4 a 103.0 ± 10.5 a 

Bt-R’R’ 55.0 ± 4.9 a 99.2 ± 3.4 a 

Bt-R’mSf 56.6 ± 1.1 a 93.5 ± 8.1 a 

Bt-R’fSm 48.6 ± 1.7 a 87.4 ± 7.5 a 
1 D. saccharalis genotypes: Bt-SS = Cry1Ab-susceptible; Bt-RR = original Cry1Ab-resistant; Bt-
R’R’= Bt-RR back-crossed with Bt-SS and re-selected resistant; Bt-R’mSf = F1 of Bt-R’R’ male 
× Bt-SS females; and Bt-R’fSm = F1 of Bt-R’R’ female × Bt-SS male. 
2 Means within a column followed by a same letter are not significantly different (P < 0.05; by 
Fisher’s Protected LSD test).  
3 Larval body weight was measured at 19 DAI. 
 
Table 4.2.  Larval development (%, mean ± SEM), pupation rate (%, mean ± SEM), and sex 
ratio (mean ± SEM) of five D. saccharalis genotypes on a non-Bt conventional corn hybrid 
(DK697) and meridic diet. 

Insect 
genotype1 

Neonate-pupa  

development time2 

(day) 

Pupation 
rate2  

(%) 

Pupal weight2 

(mg/pupa) Sex ratio2  

Male Female Male Female 

Bt-SS 23.2 ± 0.7 a 24.6 ± 0.9 a 42.8 ± 3.4 a 84.7 ± 1.6 a 142.5 ± 5.3 a 1.66 ± 0.23 a 

Bt-RR 22.3 ± 1.1 a 24.2 ± 0.2 a 53.9 ± 6.4 a 86.2 ± 1.5 a 161.3 ± 5.4 a 1.08 ± 0.33 a 

Bt-R’R’ 25.4 ± 1.3 a 26.2 ± 1.4 a 52.5 ± 6.4 a 88.5 ± 4.3 a 156.4 ± 2.2 a 1.14 ± 0.09 a 

Bt-R’mSf 22.8 ± 1.1 a 25.2 ± 1.0 a 56.7 ± 1.1 a 89.0 ± 1.2 a 155.0 ± 1.4 a 0.94 ± 0.13 a 

Bt-R’fSm 24.0 ± 0.6 a 25.0 ± 0.9 a 44.6 ± 4.0 a 88.0 ± 2.1 a 155.6 ± 6.5 a 1.71 ± 0.29 a 
1 D. saccharalis genotypes: Bt-SS = Cry1Ab-susceptible; Bt-RR = original Cry1Ab-resistant; Bt-
R’R’= Bt-RR back-crossed with Bt-SS and re-selected resistant; Bt-R’mSf = F1 of Bt-R’R’ male 
× Bt-SS female; and Bt-R’fSm = F1 of Bt-R’R’ female × Bt-SS male. 
2 Means within a column followed by a same letter is not significantly different (P < 0.05; by 
Fisher’s Protected LSD test).  
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Relative Fitness of D. Saccharalis on Non-Bt Corn Plants with Transfer to Non-Treated 

Diet. No notable fitness differences for all biological parameters were observed among the five 

genotypes for the combined rearing on corn plant and diet (Table 4.2). Neonate-to-pupa 

development time was not significantly different among the five insect genotypes on the 

combined rearing (F = 1.37; df = 4, 0; P = 0.3102 for male and F = 0.58; df = 4, 10; P = 0.6850 

for female), with an overall average development time of 23.5 days (male) and 25.0 days 

(female). Approximately 50% neonates of the five genotypes successfully pupated and there 

were no differences among the genotypes (F = 1.7; df = 4, 10; P = 0.2252) (Table 4.2). There 

were also no significant differences in pupal weight among the insect genotypes (F = 0.52; df = 4, 

10; P = 0.7267 for male and F = 2.42; df = 4, 10; P = 0.1162 for female) (Table 4.2). An average 

male pupa weighed 87.3 mg and a female weighed 154.2 mg.  Sex ratios among the five 

genotypes was also not significantly different (F = 3.32; df = 4, 10; P = 0.1284) with an ratio of 

1.31:1(male: female) (Table 4.2).   

Discussion 

Results of this study showed that there was no major fitness costs associated with Cry1Ab 

resistance in D. saccharalis. All biological parameters (e.g. larval growth, development, and 

survival, pupation rate, larval and pupal weight, sex ratio) of D. saccharalis on non-treated 

meridic diet and on conventional non-Bt corn plants were similar among the five genotypes with 

few exceptions.  

Bt resistance in other insect species targeted by Bt crops, however, was often associated 

with fitness costs. For example, significant fitness costs in insect growth and development, larval 

survival including overwintering survival, and/or mating success and reproductive capacity have 

been documented in several Bt-resistant populations of the pink bollworm, Pectinophora 

69 
 



gossypiella (Saunders), cotton bollworm, Helicoverpa armigera (Hübner) and H. zea (Boddie) 

(Carrière et al. 2001, 2005; Tabashnik et al. 2003; Bird and Akhurst 2004, 2005; Anilkumar et al. 

2008; Liang et al. 2008; Zhao et al. 2008). Significant fitness costs also were associated with Bt 

resistance in Chrysomela tremulae, a target pest of transgenic-Bt poplar trees (Wenes et al. 2006), 

and  Trichoplusia ni (Janmaat and Myers 2005, 2006), an insect species that has developed high 

levels of resistance to Bt insecticide sprays.  

However, there are some exceptions. A Bt-resistant strain of the tobacco budworm, 

Heliothis virescens (F.), a primary target of Bt cotton in the United States, did not differ in larval 

development and survival on non-Bt diet compared to Bt-susceptible larvae (Gould and 

Anderson 1991). Both field and laboratory-selected Bt resistant populations of diamondback 

moth, Plutella xylostella (L.), another major pest that has developed high level of resistance to Bt 

insecticide spray in the field, did not show fitness costs compared to Bt-susceptible stains (Tang 

et al. 1997, Sayyed and Weight 2001). Larval development and survival of a Dipel-resistant 

strain of European corn borer, Ostrinia nubilalis (Hübner), on non-Bt diet was similar compared 

to those of Bt-susceptible strain (Huang et al. 2005). Larval development time and survivorship 

indicated that a fitness cost was associated with resistance to Bt in some Bt-resistant colonies, 

but not in others such as Indianmeal moth, Plodia interpunctella (Hübner) (Oppert et al. 2000).  

The lack-of-fitness costs in Bt resistant D. saccharalis could make it an even greater 

challenge in managing Bt resistance for this important corn stalk boring species. Previous studies 

have shown that D. saccharalis is much less susceptible to Cry1Ab compared to the other two 

major corn borer pests, O. nubilalis and southwestern corn borer, D. grandiosella Dyar (Huang 

et al. 2006). Bt resistance allele frequency in field populations of D. saccharalis was estimated to 

be greater than that of O. nubilalis and D. grandiosella (Huang and Leonard 2008). In addition, a 
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greenhouse study suggested that most current commercial Bt corn (e.g. YieldGard corn) may 

express a marginal “high dose” to D. saccharalis (Wu et al. 2007). All these results suggest that 

there may be a relatively higher potential for D. saccharalis populations to develop resistance to 

Bt corn. Information generated from the current and previous studies support the need for a 

scientifically sound resistance management plan to ensure the long-term success of Bt corn 

technology in the mid-southern region of the United States.  

Response of insects to low concentrations of Bt toxins has usually been reported to reduce 

larval growth, development, and reproduction (Gould et al. 1991, Nyouki et al. 1996, Liu et al. 

2001, Huang et al. 2005). The results observed in the current study with D. saccharalis appear to 

be in agreement with those previous published results. Several past studies also have compared 

the effects of low concentrations of Bt toxins on development and reproduction of Bt-susceptible 

and -resistant strains of several important agricultural lepidopteran species (Brewer 1991, Gould 

and Anderson 1991, Liu et al. 2001). Compared to Bt-susceptible insects, resistant larvae reared 

on diet treated with low concentrations of Bt toxins usually had lower larval mortality, greater 

larval and pupal weights, and higher fecundity. In the current study, larval development and 

pupation of Cry1Ab-susceptible larvae of D. saccharalis was significantly affected by the low 

concentrations of Cry1Ab in diet. However, the effect was not significant on larval development 

and less significant on pupation success rates on Bt-RR, Bt-R’R’ and Bt-R’S genotypes. The 

overall performance of the two F1 genotypes on the Cry1Ab treated diet, especially at 0.01 and 

0.05 µg/g, was similar to the two Cry1Ab-resistant strains, suggesting a dominant inheritance of 

the Bt resistance at the low concentrations. Cry1Ab-resistance in this D. saccharalis strain was 

inherited as an incompletely recessive gene at higher Cry1Ab concentrations and commercial 

Cry1Ab corn plants or completely recessive at a very high Cry1Ab concentration (e.g. 128 µg/g) 
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(Wu et al. unpublished data). It is possible to develop Bt corn plants that express a sufficient 

dose of Bt proteins to “make” Bt resistance in D. saccharalis functionally (completely) recessive.     

In the current study, fitness of the original Cry1Ab-resistant strain (Bt-RR) of D. 

saccharalis on diet and plants was evaluated along with the backcross-and-reselected genotype 

(Bt-R’R’) and Bt-SS.  Except for the neonate-to-pupa development time on non-Bt diet, all 

biological parameters measured on both non-Bt diet and non-Bt corn plants were not 

significantly different among these three genotypes. In addition, all biological parameters 

measured on diet treated at the three concentrations of Cry1Ab were similar between the Bt-RR 

and Bt-R’R’ strains except for the pupation rate at 0.1µg/g.  
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CHAPTER 5 

INHERITANCE OF RESISTANCE TO BACILLUS THURINGIENSIS CRY1AB 
PROTEIN IN THE SUGARCANE BORER (LEPIDOPTERA: CRAMBIDAE) 

 

Introduction 

Information about the genetic background of Bacillus thuringiensis (Bt) resistance in insect 

can improve resistance detection and monitoring, risk assessment, modeling, and development of 

insecticide resistance management (IRM) strategies (Bourguet 2004, Tabashnik and Carrière  

2007). The current IRM strategy for Bt corn is termed the “high dose/refuge” strategy (Ostlie et 

al. 1997, US EPA 2001). This strategy relays on a high dose of Bt toxins expressed in Bt corn 

plants to kill all or nearly all resistant heterozygotes. Sufficient number of susceptible moths 

developed on non-Bt refuge plants are then available to mate with the rare resistant homozygotes 

that survived on Bt corn plants. Therefore, most individuals carrying Bt resistance alleles of the 

target insect species will be heterozygous in the field. These heterozygous individuals should be 

killed with high dose Bt corn such that resistance allele frequency will be maintained at a very 

low level in the field insect populations for a long period of time. One of the key assumptions for 

the success of the “high/dose refuge” IRM strategy is that the resistance of the target pest to Bt 

toxins should be recessive or at least incompletely recessive (Ostlie et al. 1997, US EPA 2001).  

The genetic basis of Bt resistance has been assessed in many insect species (Heckel 1994, 

Tabashnik et al. 1997, Huang et al. 1999, Bourguet 2004, Ferré and Van Rie 2002, Alves et al. 

2006, Tabashnik and Carrière 2007). In most of these reports, a high level of resistance was 

controlled by one or a few autosomal, recessive or incompletely recessive gene(s) (Liu et al. 

2001; Tabashnik et al. 2002; Sayyed et al. 2003, 2004; Kain et al. 2004; Augustin et al. 2004; 

Liang et al. 2008). In contrast, low levels of resistance could exhibit a more dominant trait 

compared to those instances of intense levels of resistance (Gould et al. 1992, Huang et al. 1999, 
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Kranthi et al. 2005). There are also some exceptions (Chaufaux et al. 1997, Tang et al. 1997, 

Sayyed et al. 2004, Janmaat et al. 2004, Alves et al. 2006, Jackson et al. 2006).  

The sugarcane borer, Diatraea saccharalis (F.), is the primary corn borer pest species in 

Louisiana and some areas of Texas (Porter et al. 2005, Huang and Leonard 2008). Transgenic Bt 

corn (e.g. YieldGard corn) currently is the most important tool for managing corn stalk boring 

pests in the United States including Louisiana (Huang and Leonard 2008, Yue et al. 2008). 

During 2004, a major Bt resistance allele was detected in a D. saccharalis population collected 

from non-Bt corn fields in northeast Louisiana (Huang et al. 2007a). The Cry1Ab-resistant strain 

survived and completed larval development (neonate to pupa) on intact commercial Bt corn 

plants and showed a significant resistance level to purified trypsin-activated Cry1Ab toxin 

(Huang et al. 2007a, 2007b; Wu et al. 2007). Inheritance of Bt resistance in corn stalk boring 

species has been examined for three laboratory- selected strains of the European corn borer, 

Ostrinia nubilalis (Hübner), (Huang et al. 1999, Alves et al. 2006). None of these three Bt-

resistant O. nubilalis strains has demonstrated the ability to survive on commercial Bt corn plants 

(Bourguet et al. 2000, Huang et al. 2002). The availability of the Cry1Ab-resistant strain of D. 

saccharalis provided an opportunity to assess the genetic basis of Bt resistance for this corn 

borer species. In this study, several genetic cross experiments were conducted to determine the 

inheritance of Bt resistance in D. saccharalis. The results of this study should provide useful 

information to improve IRM strategies for Bt corn in D. saccharalis and other related corn borer 

species.  

Materials and Methods 

Sources of Cry1Ab-Susceptible and -Resistant D. saccharalis. A Cry1Ab-susceptible 

strain (Cry1Ab-SS) of D. saccharalis was established from larvae collected from corn fields near 
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Winnsboro in Northeast Louisiana during 2004 (Huang et al. 2006). A Cry1Ab-resistant strain 

(Cry1Ab-RR) of D. saccharalis was developed from a single two-parent family-line by 

screening 230 F2 family-lines collected from non-Bt corn fields at the same location as the 

Cry1Ab-SS strain  (Huang et al. 2007a). The Cry1Ab-resistant strain of D. saccharalis was able 

to survive and complete entire larval development (neonate to pupal stage) on commercial 

transgenic corn plants expressing the Cry1Ab protein (Huang et al. 2007a, Wu et al. 2007). 

Genetic Crosses. To develop the genotypes with appropriate genetic backgrounds to 

analyze Bt resistance inheritance in D. saccharalis, pupae were classified by sex. Females from 

one population were mass-crossed with males from the other population in 3.8-liter cardboard 

cartons (Neptune Paper Products, Newark, NJ). The design of the cardboard cartons for the 

genetic crosses was similar to the containers used for adult mating and oviposition described in 

Huang et al. (2007b). For egg collection, a piece of wax paper was lined against the inside wall 

of the cartons to serve as the oviposition site. The cardboard cartons were placed in an 

environmental chamber maintained at 28oC, 65% RH, and a 14:10 (L: D) h photoperiod.  Wax 

paper containing eggs was removed from the carton and immediately washed with 75% alcohol 

solution and dried in room condition. Eggs on the wax paper were placed in the wells of the 

eight-well trays (Bio-Ba-8, C-D International, Pitman, NJ) containing wetted-filter paper for 

maintaining appropriate moisture levels for egg hatching. Trays containing eggs were placed in a 

growth chamber maintained at 28oC, 50% RH, and a 16:8 (L: D) h photoperiod. 

Three types with a total of eight different crosses were conducted (Fig. 5.1). These genetic 

crosses included (a) two reciprocal parental crosses between Cry1Ab-SS and Cry1Ab-RR strains; 

b) two F1 by F1 crosses; and c) four backcrosses of F1 with Cry1Ab-RR strain. Bioassays with 

two F1 populations showed Cry1Ab resistance in this D. saccharalis strain was incompletely 
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recessive, therefore, backcrosses were conducted by crossing F1 insects with the Cry1Ab-RR 

parents. The F1 populations produced from two reciprocal crosses used in this study were F1a: 

progeny of Cry1Ab-RR males crossed with Cry1Ab-SS females, and F1b, progeny of Cry1Ab-

RR females crossed with Cry1Ab-SS males. The two F2 populations were F2a: progeny of the 

sib-mating within F1a, and F2b: progeny of the sib-mating within F1b. The four backcross 

populations were Backcross A: progeny of F1a males and Cry1Ab-RR females, Backcross B: 

progeny of F1a females and Cry1Ab-RR males, Backcross C: progeny of F1a males and Cry1Ab-

RR females, and Backcross D: progeny of F2a females and Cry1Ab-RR males (Fig. 5.1). 

Neonates from the eight cross-populations and the two parental populations (Cry1Ab-SS and 

Cry1Ab-RR) were used in this study to estimate the inheritance of Cry1Ab resistance in this 

population of D. saccharalis. 

 

Parent:

F1:                                 (F1a)                                          (F1b)

F2:                                 (F2a)                                          (F2b)  

BCR:                             (Backcross A)                           (Backcross B)

(Backcross C)                           (Backcross D)  

Cry1Ab‐RR Cry1Ab‐SS

RmSf RfSm

F1am × F1af F1bm × F1bf

F1af × RRm F1bm × RRf

F1am × RRf F1bf × RRm

Figure 5.1.  Illustration of various genetic crosses for determining inheritance of Cry1Ab 
resistance in D. saccharalis. Cry1Ab-SS = parental Cry1Ab-susceptible strain, Cry1Ab-RR =  
parental Cry1Ab-resistant strain,  F1a = progeny of Cry1Ab-RR male crossed with Cry1Ab-SS 
female,  F1b = progeny of Cry1Ab-RR female crossed with Cry1Ab-SS male, F2a = progeny of 
sib-mating within F1a,  F2b= progeny of sib-mating within F1b, Backcross A = progeny of F1a 
male and Cry1Ab-RR female, Backcross B= progeny of progeny of F1a female and Cry1Ab-RR 
male, Backcross C= progeny of F1a male and Cry1Ab-RR female, and Backcross D = progeny of 
F2a female and Cry1Ab-RR male. 
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Source of Cry1Ab Toxin. Purified (99.9%) Cry1Ab protein was obtained from Dr. 

Marianne Puztai-Carey, Case Western Reserve University, Ohio. The Cry1Ab was produced 

using recombinant Escherichia coli cultures and was subsequently activated with trypsin. The 

activated Cry1Ab protein was lyophilized before it was used in the bioassays. 

Dose-Response Bioassays. A diet incorporation method described in Huang et al. (2007b) 

was used to determine the response of the Cry1Ab-SS, Cry1Ab-RR, and the eight cross-

populations to purified Cry1Ab toxin. Seven Cry1Ab concentrations, 0.016, 0.063, 0.25, 1, 4, 16, 

and 64 µg/g, plus a control were used in each bioassay. Bioassays were conducted in the 128-cell 

trays (Bio-Ba-128, C-D International, Pitman, NJ). To achieve the desired concentrations for 

bioassay, lyophilized Cry1Ab toxin was dissolved in distilled water. The appropriate Cry1Ab 

concentration was added into diet just prior to dispensing into the cells. Diet treated with distilled 

water only was used for the control treatment. In the bioassay, approximately 0.7 ml of treated 

diet was poured into each cell using 10 or 20-ml syringes (Becton, Dickinson and Company, 

Franklin Lakes, NJ). One neonate (< 24-h old) was manually infested onto the surface of each 

cell. There were four replications for each combination of insect population and Cry1Ab 

concentration with 32 neonates for each replication. After insect infestation, the bioassay trays 

were held in an environmental chamber maintained at 28 oC, 50% RH, and a photoperiod of 16:8 

(L:D) h. The number of dead larvae or survivors that did not gain significant weight (< 0.1 mg 

per larva and still in first instar) was recorded on the 7th d after inoculation.  

Larval Mortality on Bt Corn Leaf Tissue. A conventional non-Bt corn hybrid, DK 697 

(Monsanto, St. Louis, MO), and a Bt corn hybrid, DKC69-70 (Monsanto, St. Louis, MO), were 

planted in a greenhouse at the Louisiana State University in Baton Rouge, LA, with the similar 

methods as described in Wu et al. (2007). DKC69-70 contains the Cry1Ab gene and is 

genetically similar to DK 697 hybrid. At the V6-V8 plant stage, fully-expanded leaves were 
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removed from corn plants and dissected into 7-cm in length small pieces. Larval survival of the 

D. saccharalis genotype populations was assayed on corn leaf tissue in the 8-well C-D 

international tray (Bio-Smart-8, C-D International, Pitman, NJ) using a similar method described 

in Huang et al. (2006). In the bioassays, six to eight pieces of corn leaf tissues were placed in 

each well of the 8-well trays containing approximately 10 ml of 2% solidified agar solution for 

maintaining a relatively high moisture level. Twenty-five neonates from each of the 10 genotype 

populations were placed in each well of the 8-well trays. There were four replications for each 

combination of insect population and corn hybrid. After insect infestation, bioassay trays were 

placed in an environmental chamber maintained at 28oC, 50% RH, and a photoperiod of 16:8 (L: 

D) h. Larval mortality was recorded on the 7th d after inoculation. 

Larval Mortality on Intact Bt Corn Plants. Larval mortalities of the Cry1Ab-SS, 

Cry1Ab-RR, and a heterozygous (Cry1Ab-RS) population of D. saccharalis were evaluated in 

the greenhouse on seven commercial transgenic corn hybrids expressing the Cry1Ab protein and 

five conventional non-Bt corn hybrids. Detailed information on the corn hybrids, planting, insect 

infestation, and experimental design were described in Wu et al. (2007). For each test, 20 

neonates of the three insect populations were manually infested on each plant at the vegetative 

(V7-V10) and reproductive (R1-R3) plant stages, respectively. Larval mortality was recorded at 

21 d after insect infestation. For each plant stage, there were three replications for each 

combination of insect population and corn hybrid with three pots (or 6 to 9 plants) per replication. 

The experiment was repeated two times during 2005-2006. D. saccharalis survival among corn 

hybrids and plant stages was previously reported in Wu et al. (2007). In this paper, larval 

mortality data were pooled across all Bt corn hybrids and all non-Bt corn hybrids, respectively. 

The pooled mortality data were used to determine the dominance levels of the Cry1Ab resistance 

in D. saccharalis on intact Bt corn plants.  
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Data Analysis. A measurement of ‘practical mortality’ described in Huang et al. (2006) was 

used for analyzing the data obtained from the dose-response bioassays. Larval mortality at a 

specified Cry1Ab concentration was calculated based on the number of dead larvae plus the 

number of survivors that did not gain significant weight after 7 d for a total number of Bt 

affected larvae. This total of affected larvae was then divided by the total larvae assayed. Larval 

mortality was then corrected for control mortality on non-treated diet using the methods of 

Abbott (1925), followed by Probit Analysis (SAS Institute 2008) to calculate the lethal 

concentration that caused 50% mortality and the corresponding 95% confidence intervals (CI).  

The maternal effect of Bt resistance in D. saccharalis was assessed by comparing the dose 

response curves (e.g. LC50s, slopes) of the two F1 populations from the reciprocal crosses. 

Significant differences in LC50s between the two F1 populations were determined using a lethal 

dose ratio test (Robertson and Preisler 1992). A similar dose response curve between the two F1 

populations would suggest non-sex linkage and an autosomal inheritance, while a significant 

difference indicates the resistance is sex-related. 

 Dominance levels of Bt resistance in D. saccharalis were estimated using two methods. 

The first method is the Stone’s dominance “D” value, which was calculated using the following 

formula described in Stone (1968).  

                                            (1) 

Where, LCRS, LCSS and LCRR are the LC50 values of the F1 (heterozygous), Cry1Ab-SS and 

Cry1Ab-RR populations, respectively. LC50 values used to compute the D value were obtained 

from the dose-response bioassays.  The D value ranges from -1 to 1, a value of -1 indicating 

resistance is completely recessive; a value of 0 suggesting resistance is addictive; and a value of 

1 implying resistance is completely dominant. The LC50 values of the two F1 populations from 



the reciprocal crosses between Cry1Ab-SS and Cry1Ab-RR populations did not differ 

significantly. Therefore, the LC50 calculated based on the pooled bioassay data of the two F1 

populations was used to determine the dominance D value. 

The second method is a single concentration method and is teamed “effective dominance”, 

DML (Roush and McKenzie 1987, Bourguet et al. 2000), which can be calculated using the 

following formula:  

 
                                                        (2) 

Where, MLRS, MLSS and MLRR refer to the mortality levels of heterozygous, susceptible and 

resistant insects, respectively. DML ranges between 0 and 1. DML = 0 refers to a completely 

recessive resistance and DML = 1 means the resistance is completely dominant. In this study, DML 

was estimated using mortality measured for three procedures, (1) mortality at each of the seven 

Cry1Ab concentrations in the dose-response bioassays, (2) mortality observed on Bt corn leaf 

tissue, and (3) mortality on intact Bt plants. 

Chi-square (χ2) tests were used to determine if the observed mortality in the F2 and 

backcross populations on Cry1Ab treated diet and on Bt corn leaf tissue fitted the single gene 

Mendelian model, respectively (Lande 1981, Tabashnik 1991).  

                                                             (3) 

Where O is the observed number of dead larvae of the F2 or backcross populations at a certain 

Cry1Ab concentration or Bt corn leaf tissue, E is the expected number of dead larvae, n is the 

number of total larvae tested and p is the expected mortality. The test statistic, χ2, was compared 

with a χ2-distribution with 1 degree of freedom. The null hypothesis will be rejected if the test 

83 
 



84 
 

shows that P < 0.05 (Tabashnik 1991). Larval mortality of the pooled F2 and pooled backcross 

populations observed at three Cry1Ab concentrations, 1, 4, and 16µg/g, were used to fit the 

Mendelian monogenic model. At these concentrations, the three genotypes (Cry1Ab-SS, 

Cry1Ab-RR, Cry1Ab-RS) were best discriminated based on the dose response bioassays. In 

addition, the observed larval mortality of these pooled populations on Bt corn leaf tissue also 

were used to fit the monogenic model.       

Results 

Overall Response of Different Genotype Populations of D. saccharalis to Cry1Ab in 

Diet. The dose-mortality data of the 10 genotype populations of D. saccharalis, generally, fitted 

the probit models well (P >0.05) (Table 5.1, Fig. 5.2). The LC50 values of the Cry1Ab-SS and 

Cry1Ab-RR populations were 0.18 μg/g with a 95% CI of 0.15-0.21 μg/g and 7.81 μg/g with a 

95% of 6.53-9.33 μg/g, respectively. The difference in the LC50s of two parental populations was 

43.4 - fold, which was significant (P < 0.05) based on the lethal dose ratio test (Robertson and 

Preisler 1992). The LC50 values of the two F1 populations ranged from 0.39 to 0.51 μg/g, which 

was 1.7 to 2.8-fold greater (P < 0.05) than that of the Cry1Ab-SS population, but it was 

considerably smaller (≈ 17-fold, P < 0.05) than that of the Cry1Ab-RR population. The LC50s of 

the two F2 populations were not significantly different based on the lethal dose ratio test 

(Robertson and Preisler 1992), with a pooled LC50 of 1.09 μg/g and a 95% CI of 0.92-1.31 μg/g. 

The LC50s of the four backcross populations ranged from 1.26 to 4.19 μg/g. The LC50 calculated 

based on the pooled data of the four backcross populations was 2.12 μg/g with a 95% CI of 1.81-

2.50 μg/g. Based on the non-overlapping within one standard error, the slopes of the dose-

mortality relationships of the two parental populations were significantly greater than these of 

the other eight populations. Slopes of the two F1 populations appeared to be somewhat greater 

than those of the F2 and backcross populations.   
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Figure 5.2.  Dose-response of various genotype populations of D. saccharalis to Cry1Ab in diet. 
Cry1Ab-SS = parental Cry1Ab-susceptible strain, Cry1Ab-RR = parental Cry1Ab-resistant strain, 
F1 = pooled response of the two parental reciprocal crosses between Cry1Ab-SS and Cry1Ab-RR 
strains, F2 = pooled response of the sib-mating within each of the two F1 genotypes, BCR = 
pooled responses of the four backcrosses between F1 and Cry1Ab-RR populations.  
 

Sex Linkage and Maternal Effects of Cry1Ab Resistance in D. saccharalis. The dose-

mortality relationship curves were similar between the two F1 populations (Table 5.1). The LC50 

values of the two F1 populations were not different significantly (P > 0.05) based on the lethal 

dose ratio test (Robertson and Preisler 1992). The slopes of dose-response curves for the two F1 

populations also did not differ significantly based on the overlapping of the two slopes within 

their standard errors. Therefore, maternal effects and sex linkage of Cry1Ab resistance were not 

evident in this study. The results suggest that Cry1Ab resistance in D. saccharalis was 

autosomally inherited.  
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Table 5.1.  Response of different genotype populations of D. saccharalis larvae to Cry1Ab 
toxin in diet. 

Insect 
population* n  Slope ± SE  

LC
50

 (95%CI)  

(μg/g) 

P-Value  

χ2 test 
Resistance 

factor # 

Cry1Ab-SS 592 1.99 ± 0.14 0.18 (0.15 – 0.21) 0.1162 1.0 

Cry1Ab-RR 506 1.80 ± 0.13 7.81 (6.53 – 9.33) 0.3292 43.4 

F1a 583 1.21 ± 0.09 0.51 (0.40 - 0.64) 0.6735 2.8 

F1b 532 1.40 ± 0.14 0.30 (0.22 - 0.40) 0.0962 1.7 

Pooled F1 1115 1.33 ± 0.07 0.38 (0.33 - 0.45) 0.1232 2.1 

F2a 760 1.03 ± 0.06 1.09 (0.86 – 1.40) 0.2234 6.1 

F2b 675 1.05 ± 0.07 1.07 (0.83 - 1.39) 0.6284 5.9 

Pooled F2 1435 1.07 ± 0.05 1.09 (0.92 - 1.31) 0.5403 6.1 

Backcross A 562 1.16 ± 0.08 1.26 (0.98 - 1.61) 0.1046 7.0 

Backcross B 539 1.02 ± 0.09 1.82 (1.40 - 2.39) 0.4258 10.1 

Backcross C 765 1.24 ± 0.08 2.27 (1.84 – 2.86) 0.3080 12.6 

Backcross D 634 1.50 ± 0.11 4.29 (3.50 - 5.35) 0.5829 23.8 

Pooled backcross 2500 1.13 ± 0.05 2.12 (1.81 - 2.50) 0.0001 11.8 

* F1a = F1 progeny of Cry1Ab-RR male and Cry1Ab-SS female; F1b = F1 progeny of Cry1Ab-
RR female and Cry1Ab-SS male; F2a = progeny of sib-mating within F1a; F2b = progeny of sib-
mating within F1b; Backcross A = progeny of F1a male × Cry1Ab-RR female; Backcross B = 
progeny of F1a female × Cry1Ab-RR male; Backcross C = progeny of F1a male × Cry1Ab-RR 
female; and Backcross D = progeny of F1a female × Cry1Ab-RR male. 
# Resistance ratio was calculated using the LC50 value of the tested population divided by the 
LC50 of the Cry1Ab-SS strain. 
 

 



Dominance Levels of Cry1Ab Resistance in D. saccharalis Estimated Using LC50 

Values of Dose-Response Bioassays. The LC50 of the pooled F1 population was significantly (P 

< 0.05) lower than that of the Cry1Ab-RR strain but it was significantly (P < 0.05) greater than 

that of the Cry1Ab-SS strain based on the lethal dose ratio test (Robertson and Preisler 1992). 

The results suggest that the resistance was neither completely dominant nor completely recessive. 

The calculated dominance D value based on Stone’s method (equation 1) (Stone 1968) was -0.60, 

suggesting that the Cry1Ab resistance in D. saccharalis was incompletely recessive.   

Effective Dominance (DML) of Cry1Ab Resistance in D. saccharalis at Single Cry1Ab 

Concentrations. The effective dominance, DML, calculated based on the mortality observed from 

single Cry1Ab concentrations of the dose-response bioassays using the equation 2 was 

concentration-depended (Table 5.2).  DML values decreased as Cry1Ab concentration increased. 

For example, DML was 0.84 at 0.016μg/g, indicating a nearly completely dominant inheritance at 

this low concentration, while it was 0.03 at 16 μg/g and became zero when Cry1Ab 

concentration increased to 64 μg/g, suggesting the resistance was completely or nearly 

completely recessive at these two higher concentrations. DML ranged from 0.38 to 0.10 when 

Cry1Ab concentrations increased from 0.062 to 4 μg/g, indicating that resistance was 

incompletely recessive between the two concentrations.     

Effective Dominance (DML) of Cry1Ab Resistance in D. saccharalis Estimated on Bt 

Corn Leaf Tissue and Intact Bt Corn Plants. Effective dominance, DML, calculated based on 

larval mortality of Cry1Ab-SS, Cry1Ab-RR, and the pooled F1 populations on Bt corn leaf tissue 

was 0.26, suggesting that Cry1Ab resistance was incompletely recessive (Table 5.2). DML 

measured based on larval mortality on intact Bt plants was 0.24 at the vegetative plant stages and 

0.26 at the reproductive plant stages for the 2006 trial, also suggesting an incompletely recessive 
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resistance. The resistance appeared to be more recessive according to the data observed from the 

2005 trial with a DML value of 0.10 at the vegetative plant stage and 0.08 at the reproductive 

plant stage.  

Testing for Fitting the Mendelian Monogenic Model.  χ2 tests showed that the observed 

mortality at the three Cry1Ab concentrations (1, 4, and 16 µg/g)  fitted well for both the 

backcross and F2 populations (Table 5.3). The observed mortality of the two populations at each 

of the three Cry1Ab concentrations was not significantly different (P > 0.05), compared to the 

expected values calculated based on the Mendelian single gene model. These results suggest that 

the Cry1Ab resistance in the D. saccharalis population was controlled by a single gene. In 

addition, the observed mortality on Cry1Ab corn leaf tissue also fitted the Mendelian monogenic 

model well for both the F2 and backcrossed populations (P > 0.05) (Table 5.3). The results 

observed from Bt corn leaf tissue confirmed that one gene (or a few linked genes) influenced 

Cry1Ab resistance in this D. saccharalis strain.  

Discussion 

Larval mortality of the Cry1Ab-SS, Cry1Ab-RR, and populations from various crosses on 

Cry1Ab diet, Bt corn leaf tissue, and on Bt corn plants showed that Cry1Ab resistance in D. 

saccharalis was controlled by a single autosomal gene. The dominance levels of the resistance 

were dose-depended. On Cry1Ab-treated diet, resistance, in most causes, was incompletely 

recessive. However, at low Cry1Ab concentrations (e.g. 0.062 μg/g), resistance was nearly 

completely dominant, while it was completely recessive at high concentrations (e.g. 64 μg/g). In 

testing using Bt corn leaf tissue or intact Bt corn plants, the Cry1Ab resistance was found to be 

incompletely or nearly completely recessive. 



Table 5.2.  Effective dominance (DML), of Cry1Ab resistance in D. saccharalis in three test procedures.  

Testing material 
Cry1Ab concentration (μg/g)  

or corn stage 
Effective dominance (DML) Result 

Purified Cry1Ab 

toxin in diet 

0.016 0.84 Near a completely dominant 

0.062 0.38 Incompletely recessive 

0.25 0.17 Incompletely recessive 

1.0 0.29 Incompletely recessive 

4.0 0.10 Nearly completely recessive 

16.0 0.03 Nearly completely recessive 

64.0 0 completely recessive 

Bt corn leaf tissue Vegetative plant stages 0.26 Incompletely recessive 

Intact Bt corn 

plants * 

Vegetative, 2005 0.10 Nearly completely recessive 

Reproductive, 2005 0.08 Nearly completely recessive 

Vegetative, 2006 0.24 Incompletely recessive 

Reproductive, 2006 0.26 Incompletely recessive 

* For the trial in 2005, neonates of D. saccharalis were infested at the V7-V8 (vegetative) and R1 (reproductive) plant stages, 
respectively, while for the trial in 2006, insects were infested at the V9-V10 (vegetative) and R1-R3 (reproductive) plant stages, 
respectively.  
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Table 5.3.  Testing for fitting the Mendelian monogenic model for Cry1Ab resistance in D. saccharalis * 

Test 

Cry1Ab 

concentration  

(μg/g) 

Pooled F2 

 

Pooled backcross 

n 
No. dead larvae 

 
χ2 test 

n 
No. dead larvae 

 
χ2 test 

Expected Observed χ2 P-value Expected Observed χ2 P-value

Purified 
Cry1Ab in 

diet 

1 230 104.5 115.6  2.18 0.1398 

 

503 194.7 186.3 

 

0.59 0.4424 

4 244 145.0 158.0  2.89 0.0891 508 289.3 275.9 1.44 0.2301 

16 243 210.8 218.7  2.22 0.1362 505 431.3 435.3 0.26 0.6101 

Bt corn leaf 
tissue 

n/a 200 153.1 164.7  3.75 0.0528 400 250.4 261.5 1.30 0.2542 

* Observed larval mortality was corrected for control mortality on non-Bt diet or non-Bt corn leaf tissue.  

 

 

 

 



Inheritance of Bt resistance in insects has been assessed in many agriculturally important 

insect pests including several target pest species of transgenic Bt cotton and Bt corn. In most 

cases, a high level of resistance was controlled by a single (or a few) autosomal gene (Heckel 

1994, Tabashnik et al. 1997, Bourguet et al. 2000, Ferré and Van Rie 2002, Alves et al. 2006, 

Tabashnik and Carrière 2007). However, the predicted dominance levels of resistance are often 

dependent on assay methods, testing materials, and toxin concentrations (Liu and Tabashnik 

1997, Bourguet et al. 2000, Liu et al. 2001, Tabashnik and Carrière 2007). For example, 

resistance of the pink bollworm, Pectinophora gossypiella (Saunders), a key target pest of Bt 

cotton in the southwestern United States and some areas of China and India, to Cry1Ac was 

controlled by a single or a few autosomal genes (Liu et al. 2001, Tabashnik et al. 2002). The 

dominance level of Cry1Ac resistance in P. gossypiella was toxin concentration dependent. 

Similar results were also found in the tobacco budworm, Heliothis virescens (F.), the primary 

target of Bt cotton in the United States (Gould et al. 1992, 1995) and in the cotton bollworm, 

Helicoverpa armigera (Hübner), the primary target pest of Bt cotton in Australia, China, and 

India (Kranthi et al. 2005, Liang et al. 2008). The results of the current study with D. saccharalis 

resistance to Cry1Ab toxin appear to agree with the results of these previous studies. However, 

Bt resistance in O. nubilalis, the primary target of Bt corn in the United States, appears to have a 

different genetic basis. Two laboratory selected strains of O. nubilalis with >1000-fold resistance 

to Cry1Ab were inherited polygenically (Alves et al. 2006). A Dipel®-resistant strain of O. 

nubilalis exhibited inheritance as an incompletely dominant gene when it was measured using 

Stone’s method (Huang et al. 1999). None of the O. nubilalis Bt resistant strains have survived 

on commercial Cry1Ab corn plants (Huang et al. 2002, Bourguet 2004).  
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Results of this study provide additional information that should be considered when 

developing new Bt corn technologies and improving IRM plans for managing D. saccharalis in 

the mid-southern region. D. saccharalis is naturally more tolerant to Cry1Ab proteins compared 

to other corn stalk borer pests (Huang et al. 2006). The relatively lower sensitivity coupled with 

the incompletely recessive resistance trait to Bt proteins in D. saccharalis might enhance the 

ability of resistant heterozygotes to survive on some plant tissues with lower levels of Bt 

expression, especially for those plants expressing only a marginal dose to kill this corn borer 

species (Castro et al. 2004, McAllister et al. 2004, Wu et al. 2007). The varied dominance levels 

of Cry1Ab resistance in D. saccharalis on Bt plants suggest that Bt corn hybrids must express a 

high enough dose of Bt proteins to make the resistance functionally recessive. Resistant 

heterozygotes should be killed by the high-dose expressed in plants for the success of the 

“high/dose refuge” IRM strategy for Bt corn.  
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CHAPTER 6 

SUMMARY AND CONCLUSIONS  

Transgenic Bacillus thuringiensis (Bt) corn is the primary tool for managing corn stalk 

borers across the United States including Louisiana. The rapid adoption of Bt corn necessitates 

implementation of an effective insecticide resistance management (IRM) plan to ensure the long-

term success of Bt corn for suppressing corn borer populations. The currently adopted “high 

dose/refuge” IRM strategy for Bt corn was developed primarily based on the information 

generated from the European corn borer, Ostrinia nubilalis (Hübner), and the southwestern corn 

borer, Diatraea grandiosella Dyar. These two species are the most economically important corn 

borer pests in the North Central and Midwestern US Corn Belts.  Recent studies have shown that 

management of resistance of the sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: 

Crambidae), to Bt corn in Louisiana and other areas of the mid-southern region of the United 

States is more important than that proposed for O. nubilalis and D. grandiosella. A recent survey 

of Louisiana corn stalk borer species found that D. saccharalis has been the dominant corn borer 

species in the state and the central gulf costal areas of Texas. Major resistance alleles to Bt corn 

have been found in three D. saccharalis populations collected from northeast and central 

Louisiana. This resistant D. saccharalis strain can survive and complete larval development on 

intact Bt corn plants. Previous studies on Bt resistance management generally have been focused 

on O. nubilalis and D. grandiosella. Research on Bt resistance in D. saccharalis has been limited.  

Information is needed for validating or improving the current Bt corn resistance management 

plan for D. saccharalis. In this study, four objectives were accomplished, which will provide 

essential information for addressing the concern of Bt resistance management in D. saccharalis.   
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Performance of transgenic Bt corn hybrids against Cry1Ab-susceptible and -resistant D. 

saccharalis was evaluated in the greenhouse to determine if Bt corn varieties commonly planted 

in Louisiana  qualify as high dose as required for the current “high dose/refuge” IRM strategy for 

Bt corn. Larval survival of Cry1Ab-resistant, -susceptible, and -heterozygous genotypes of D. 

saccharalis was examined on vegetative and reproductive stages of five non-Bt and seven Bt 

field corn hybrids. Larval survival was recorded 21days after infestation of neonates on plants. 

During the vegetative stages, all seven Bt corn hybrids were highly effective against Cry1Ab-

susceptible and -heterozygous genotypes of D. saccharalis, while 8 -18% of the heterozygous 

genotype survived on reproductive stage plants for four Bt corn hybrids. This study demonstrated 

that the Cry1Ab- resistant strain of D. saccharalis can survive on commercial Bt corn hybrids 

recommended in Louisiana. The results suggest that a ‘high dose” Bt corn for O. nubilalis and D. 

grandiosella may not qualify as “high dose” for D. saccharalis. Furthermore, a “high dose” 

expressed by a Bt corn hybrid during vegetative plant stages may not produce a “high dose” 

during reproductive stages. Variability in performance of different Bt corn hybrids and in 

different plant growth stages within the same Bt corn hybrid also suggests a requirement to 

validate “high dose” qualification against D. saccharalis for each Bt corn hybrid, at different 

plant stages, and even perhaps in different environments.  

 Susceptibility of Cry1Ab-resistant and -susceptible D. saccharalis to four individual Bt 

toxins was assayed in the laboratory to assess the cross-resistance pattern and generate 

information needed for developing new Bt corn for managing D. saccharalis. Larval growth and 

mortality of Cry1Ab-susceptible and -resistant strains were evaluated on meridic diet containing 

one of the four selected Bt proteins: Cry1Aa, Cry1Ac, Cry1A.105, and Cry2Ab2. Cry1Aa was 

the most toxic protein against both insect strains, followed in decreasing potency by Cry1A.105, 
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Cry1Ac, and Cry2Ab2. Using practical mortality (larvae either died or no significant weight gain 

7 days after infestation), the median lethal concentration (LC50) of the Cry1Ab-resistant strain 

was estimated to be >80- , 45-, 4.1-, and -0.5-fold greater than that of the susceptible strain to 

Cry1Aa, Cry1Ac, Cry1A.105 and Cry2Ab2 proteins, respectively. The results showed that a 

Cry1Ab-resistant strain of D. saccharalis was also resistant to Cry1Aa and Cry1Ac, whereas it 

demonstrated relatively low cross-resistance to the Cry1A.105 protein and no cross-resistance to 

Cry2Ab2. Genes encoding for Bt Cry1A.105 and Cry2Ab2 proteins have been transferred into 

corn hybrids with a novel method called Vector-Stack transformation, resulting in the MON 

89034 event. This event includes both proteins expressed at high levels. The results from this 

study provide some evidence that Bt corn with the stacked genes of Cry1A.105 and Cry2Ab2 

may provide a means to delay resistance development in D. saccharalis. In addition, the high 

effectiveness of Cry1Aa against both the Cry1Ab-SS and Cry1Ab-RR strains indicates that the 

Cry1Aa protein may be a good candidate for use in Bt corn to manage D. saccharalis.  

Relative fitness of Cry1Ab-susceptible and -resistant D. saccharalis on a meridic diet and 

conventional corn plants was examined in the laboratory and greenhouse to determine if fitness 

costs are associated with Cry1Ab resistance in D. saccharalis. Relative fitness on non-toxic diet, 

diet treated with three low concentrations (0.01, 0.05, and 0.1 µg/g) of Cry1Ab toxin, and on 

conventional corn plants was compared for five genotypes of D. saccharalis including a 

Cry1Ab-susceptible strain, a Cry1Ab-resistant strain, a backcross-reselected resistant strain, and 

two F1 progeny of the susceptible and backcross-reselected strains.  Biological parameters 

measured included neonate-to-pupa development time and pupation rate, larval survival, larval 

and pupal weight, and sex ratio. Larvae of the Cry1Ab-susceptible and backcross-reselected 

strains on non-toxic diet and non-Bt corn plants grew normally and not significantly different 
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between the two strains in all measured parameters, suggesting a lack-of-fitness cost of Cry1Ab 

resistance in D. saccharalis. Larval growth and larval survival of Cry1Ab-susceptible strain were 

significantly affected on diet treated with Cry1Ab toxin at 0.05 and 0.1 µg/g, while the effect of 

Cry1Ab resistant larvae was less significant. The lack-of-fitness costs of Bt resistance in D. 

saccharalis imply a greater challenge in managing Bt resistance for this corn borer species.   

Inheritance of Cry1Ab resistance in D. saccharalis was characterized using various genetic 

crosses to verify if Bt resistance is controlled by a recessive gene as defined in the “high 

dose/refuge” IRM strategy for Bt corn. These genetic crosses included reciprocal parental 

crosses between Cry1Ab-susceptible and -resistant strains, F1 by F1 crosses, and backcrosses of 

F1 with the Cry1Ab resistant population. Larval mortality of the parental and cross-populations 

was determined on Cry1Ab diet, Bt corn leaf tissue, and intact Bt corn plants. Maternal effects 

and sex linkage were examined by comparing the larval mortality between the two F1 

populations. Dominance levels of resistance were measured by comparing the larval mortality of 

the Cry1Ab-resistant, -susceptible, and -heterozygous populations. Number of genes associated 

with the resistance was determined by fitting the observed mortality of backcross and F2 

populations with Mendelian monogenic inheritance model. Cry1Ab resistance in D. saccharalis 

was inherited as a single autosomal gene. The resistance was incompletely or nearly completely 

recessive on Bt corn leaf tissue and intact Bt corn plants, while the dominance increased as 

Cry1Ab concentrations decreased using on diet treated with Cry1Ab toxin. The varied 

dominance levels of Cry1Ab resistance in D. saccharalis suggest that Bt corn hybrids must 

express a sufficient dose of Bt proteins to make the resistance functionally recessive. Thus, 

resistant heterozygous individuals will be killed as required in the “high dose/ refuge” resistance 

management strategy for Bt corn.  
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Results from this study will provide valuable information in understanding Bt resistance 

mechanisms and development of effective strategies for managing D. saccharalis resistance to 

Bt corn.  
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