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Abstract 

Kinematic problems, a type of physics problem that involves object motion, pose a challenge for 

adults (Caramazza, McCloskey, & Green, 1981; Kozhevnikov, Motes, & Hegarty, 2007; 

McCloskey, 1983b; McCloskey, Washburn, & Felch, 1983). Adults often incorrectly predict the 

path of a moving object despite having prior experience with moving objects or formal physics 

education (Caramazza et al., 1981; Kaiser, Jonides, & Alexander, 1986). One way to improve 

kinematic problem solving may be through peer collaboration. Working together with a partner 

to solve a problem allows both people to help each other remember important parts of a complex 

problem and discuss different perspectives (Dimant & Bearison, 1991; Fawcett & Garton, 2005; 

Kozhevnikov & Thornton, 2006; Vygotsky, 1978). The current study investigated whether peer 

collaboration can improve kinematic problem solving by evaluating adults’ performance on near 

and far transfer tasks after completing kinematic practice problems. Of special interest was the 

use of spatially-oriented language. Participants were assigned to one of three practice conditions: 

Collaborative, Alone-Talk, or Alone-Quiet. Results showed that peer collaboration did not affect 

performance on practice problems or near and far transfer tasks. However, analysis of spatially-

oriented language revealed that specific types of language were positively correlated with 

accuracy on the near transfer task. 

Keywords: kinematic, peer collaboration, near transfer, far transfer 
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The Effect of Peer Collaboration on Kinematic Problem Solving 

Daily interactions with moving objects are kinematic problems, a type of physics 

problem involving predicting the path of a moving object (Kozhevnikov, Hegarty, & Mayer, 

2002; Kozhevnikov et al., 1999). Many daily kinematic tasks, like driving a car or walking 

through a crowded street, present novel situations related to tracking an object’s motion, 

anticipating changes in its direction or speed, and making predictions about its trajectory. 

Surprisingly, despite extensive everyday experience, we make erroneous predictions about 

moving objects. For example, when asked to draw the trajectory of a ball as it rolls down a ramp 

and off a cliff, adults provide a number of different answers including responses that defy 

physical laws (McCloskey et al., 1983). The most frequent error involves dismissing the 

horizontal movement of the ball and assuming the ball will fall straight down once it rolls over 

the cliff. Another incorrect response involves predicting that the ball will continue horizontally 

and then fall straight down, creating an inverse L-shaped path—like how Wile E. Coyote fell off 

cliffs in cartoons. Similar results have been found for other kinematic problems such as a ball 

being dropped from a plane or conveyor belt, or a hockey puck being kicked as it drifts across 

the ice (Caramazza, McCloskey, & Green, 1981; Champagne, Klopfer, & Anderson, 1980; 

Clement, 1982; Kozhevnikov, Motes, & Hegarty, 2007; McCloskey, Washburn, & Felch, 1983). 

Poor kinematic reasoning can have serious consequences. Luckily, there is evidence to 

suggest that kinematic reasoning may be improved by improvements in spatial visualization, the 

ability to mentally represent spatial relations (Kozhevnikov, Motes, & Hegarty, 2007). A key to 

improving spatial visualization is learning to use mental imagery to track movements while 

avoiding a concurrent increase in cognitive load (Isaak & Just, 1995). One way to achieve this 

feat may be through peer collaboration. There is evidence that suggests working with a peer 
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improves critical thinking when completing a spatial task (Phelps & Damon, 1989), perhaps 

through the internalization of new perspectives (Hogan & Tudge, 1999; Tudge, 1992; Vygotsky, 

1978; Vygotsky, 1978). These are skills that can improve the representation of spatial relations, 

and working with another person means each person can take charge of a component in a 

problem to reduce cognitive load. Therefore, the purpose of this thesis was to investigate the 

potential facilitative effects of peer collaboration on kinematic problem solving.  

Kinematic Problems and Common Errors  

In studies with kinematic problems, participants are typically presented with images such 

as a person dropping a ball while walking on flat ground or water flowing out a curved tube. The 

participants’ task is to extrapolate an object’s trajectory based on its current path and other 

relevant information (e.g., Caramazza, McCloskey, & Green, 1981; McCloskey, 1983a; 

McCloskey, Caramazza, & Green, 1980; McCloskey et al., 1983). Researchers have used 

kinematic problems because formal knowledge of physics is not required to solve these 

problems. Additionally, responses can be evaluated quantitatively and qualitatively from the 

direction and shape of the predicted path. 

A variety of kinematic problems are used to investigate kinematic reasoning and problem 

solving. The most straightforward problems are rectilinear problems that include one vector of 

motion (movement along a straight line) such as rolling a ball in a straight line or tossing a ball 

straight up in the air from a fixed point (Clement, 1982; Kozhevnikov & Hegarty, 2001). 

Rectilinear problems can reveal beliefs and reasoning about object motion and force but not path 

because most respondents can accurately predict the trajectory of an object with one vector of 

motion.  
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Instead, projectile motion problems (movement along a parabolic curve) are favored by 

researchers because they require reasoning about two vectors of motion, horizontal and vertical, 

to accurately predict the trajectory of an object. Participants are typically asked about a vehicle 

transporting an object in a specified direction then releasing that object at a given position such 

as a swinging pendulum made of a ball and string, a walking person holding a ball, a ball 

attached to a conveyor belt traveling over a canyon, and a ball rolling down a ramp positioned at 

the edge of a cliff (Caramazza et al., 1981; McCloskey et al., 1983). In each case, participants 

must consider the object’s existing horizontal motion and incorporate gravity to predict the 

object’s change in direction. Other problems depict a moving object experiencing an external 

force from another direction such as a sliding hockey puck being kicked or an orbiting rocket 

turning on its thrusters (Clement, 1982; Kozhevnikov et al., 2007). Although these types of 

problems are not technically projectile motion problems because another force besides gravity is 

acting on the object, they are grouped with projectile motion problems because they require 

participants to combine two vectors of motion to predict an object’s path. 

Projectile motion problems are challenging for many participants, whose answers tend to 

fall into one of several categories. For example, when asked to predict the path of a ball after it is 

released from a flying plane, 60% of participants provide incorrect responses including a straight 

diagonal line, a backwards trajectory, and a path straight down (McCloskey, 1983b). (The 

correct answer is a forward, parabolic curve because the object maintains its horizontal velocity 

after being released, while simultaneously accelerating downward from gravity.) Errors are both 

frequent and consistent: Participants provide similar patterns of incorrect responses for other 

projectile motion problems (Caramazza et al., 1981; Champagne, Klopfer, & Anderson, 1980; 

Kozhevnikov et al., 2007; McCloskey et al., 1983).  
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Similarly, curvilinear motion problems (movement along a circular path) are challenging 

for participants. Curvilinear motion problems involve an object traveling in a curved trajectory 

due to a moving vehicle then being released at a specified point along its trajectory such as a ball 

rolling out of a curved tube (McCloskey et al., 1980), a ball breaking from a string as it is twirled 

above a person’s head (McCloskey & Kohl, 1983) or water running out of a coiled garden hose 

(Kaiser et al., 1986). When presented with a curved tube problem, 33% of participants predict 

the ball would continue in a curved path once it exited a curved tube (McCloskey et al., 1980). 

(The correct answer is that the ball would continue moving in a straight path because once it 

exists the confines of the tube, the tube is no longer exerting a force on the ball and guiding its 

movement.) Again, errors are consistent: This incorrect prediction appears in 50% of responses 

for participants presented with a spiral tube problem, 30% of responses for participants presented 

with the twirling ball and string problem (McCloskey et al., 1980), and 37% of responses for 

participants presented with the garden hose problem (Kaiser et al., 1986). 

Past experience does not necessarily bolster kinematic problem solving, attesting to the 

difficulty of kinematic reasoning for many adults. For example, participants with previous 

physics education at the high school, college, or graduate level still produce incorrect predictions 

despite having explicit knowledge about how objects interact with forces (Caramazza et al., 

1981; Kozhevnikov & Hegarty, 2001; McCloskey et al., 1980). Although formal physics 

education can lead to fewer errors, adults with high school or college level education in physics 

make the same type of errors as those with less education and produce 48% of incorrect 

responses (McCloskey, 1983b; McCloskey et al., 1980). Additionally, experience with a subset 

of kinematic problems, such as projectile motion, does not necessarily improve competency with 

other kinematic problems, such as curvilinear. Experience with daily kinematic problems does 
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not transfer to abstract, but equal, kinematic problems like those presented in physics courses. 

For example, 66% of participants correctly predict the flow of water out of a hose (familiar 

problem) while only 39% of participants correctly predict the path of a ball exiting the same hose 

(abstract problem) (Kaiser et al., 1986). When results from the participants who solved the water 

hose problem first were compared to results from the participants who solved the ball problem 

first, there was no significant difference. These findings suggest that it is difficult to generalize 

existing kinematic knowledge to abstract, novel problems (Kaiser et al., 1986) perhaps because 

adults are not identifying similar characteristics between different problems (Holyoak, Gentner, 

& Kokinov, 2001). 

Theories About Kinematic Knowledge Acquisition  

How do we acquire kinematic knowledge and what does it reveal about the frequency and 

the characteristics of kinematic errors? Three hypotheses—seeing-is-believing, impetus, and 

action-on-objects—attempt to answer this question. The hypotheses share a focus on how visual 

and haptic information lead to misinformation, but they differ on the explanations for object 

motion abstracted from the misinformation. 

The seeing-is-believing hypothesis posits that misconceptions about object motion 

develop because the perception of an object motion event does not reflect unbiased reality. In 

other words, we experience perceptual illusions that distort how we think objects move 

(McCloskey, 1983a, 1983b; McCloskey & Kaiser, 1984; McCloskey et al., 1983). Perceptual 

illusions are thought to be influenced by the viewer’s frame of reference during an object motion 

event (McCloskey & Kaiser, 1984). Consider a plane dropping a package and a viewer on the 

ground observing the event. If the viewer looks up and maintains the plane and package in their 

sight, the plane becomes the frame of reference for how the package is falling: The package 
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remains in line with the plane and appears to fall straight down. This illusion disappears if the 

frame of reference changes from the plane to the ground: If the viewer watches the event with 

the ground in his field of view, he can observe the package at the point of release and see its 

entire parabolic trajectory. Additionally, if the viewer switches between the two frames of 

reference, alternative perspectives emerge. For example, people predict the package moves 

horizontally for some time after it is released then falls straight down, moving in an inverse L-

shaped path. Another prediction indicates the package will fall forward and downward at the 

same rate, moving in a diagonally forward path. Switching between frames of reference enables 

a person to observe the package falling straight down relative to the plane and forward relative to 

the ground, creating an opportunity to combine the vectors of motion is different configurations 

to arrive at an answer. The seeing-is-believing hypothesis provides an explanation for some 

commonly made projectile motion errors, such as the straight down, diagonal, and inverse L-

shaped responses (McCloskey et al., 1983).  

However, the seeing-is-believing hypothesis cannot explain the backwards parabolic 

predictions for projectile motion and the incorrect predictions for curvilinear motion. Instead, 

such errors are better explained by the impetus theory, which proposes that observers develop a 

sophisticated set of motion beliefs based on witnessing kinematic events under various 

circumstances. Kozhevnikov and Hegarty (2001) summarize the features of the impetus theory in 

five beliefs: (1) objects acquire impetus (an internal force) when acted on by other objects, (2) 

objects that are simply dropped do not acquire an impetus because another object is not acting on 

it, (3) an impetus will gradually dissipate, (4) objects traveling through air will only be subjected 

to gravity once its impetus has dissipated and (5) there are different types of impetus (linear and 

curvilinear).  
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The impetus theory is based on interviews and think-aloud procedures using kinematic 

problems. For example, when asked to describe why a ball would follow the predicted path of 

motion, 85% of participants report that the ball would acquire a “force”, “momentum”, or 

“something” that would “keep it in motion”. Participants who indicate that a ball would continue 

in an inverse L-shaped path after rolling off a cliff explain that the ball would slow down after a 

period of time after rolling off the cliff ledge because it would “lose force” and “gravity would 

take over” (McCloskey, 1983b). Similar explanations were obtained in other studies (Cook & 

Breedin, 1994; McCloskey & Kohl, 1983), revealing a systematic—even if incorrect—set of 

rules to explain how an impetus accounts for an object’s motion under various conditions. 

The first two theories, seeing-is-believing and impetus, focus primarily on visual 

experiences. However, kinematic experiences are not exclusively visual; they are also composed 

of haptic interactions such as throwing a ball or driving a car. The actions-on-objects hypothesis 

states that our understanding of forces and causal events, such as object motion, are the result of 

daily physical interactions with objects and the development of a general heuristic about what 

properties moving objects can impart onto other objects (White, 2009, 2012, 2013). Before 

acting on an object, people create an internal representation of where an object will go and how 

much force is required to get it there. Once an object is physically acted on, like pushing a 

bowling ball, people gather force information from sensory receptors in their skin. After the 

action is executed, people compare their internal representations with the outcome and sensory 

information. The comparison process creates a feedback loop that updates existing internal 

representations of object motion and force. Imagine pushing a bowling ball and a golf ball across 

the ground. Moving the bowling ball requires more effort than moving the golf ball because the 

bowling ball is heavier. Even when the bowling ball starts moving, it does not travel as far as the 
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golf ball when equal effort is applied. From this experience, we gather that heavier objects 

require more effort to move and the force appears to lessen as the object moves further away. 

Additionally, we learn that certain properties of a force, like directionality, can be transferred to 

an object. 

Unfortunately, generalizing from previous experiences can lead to kinematic errors. For 

example, when told to imagine that a hockey puck is sliding from left to right on ice and we kick 

it from a perpendicular direction, 34% of adults believe it will follow the direction of the force 

(perpendicular) while only 44% of adults correctly predict it will move along a forward diagonal 

path (Kozhevnikov et al., 2007). When presented with a pendulum problem and asked to predict 

the path of the ball if detached from the string while swinging, 75% of participants incorrectly 

predict the ball will fall straight-down, parabolic backwards, or in an inverse L-shaped path 

(Caramazza et al., 1981), perhaps because they are referencing multiple previous experiences to 

solve the problem and ascribing the force to different parts of the scenario. If force is ascribed to 

the ball, the weight of the ball would be the primary influencer of its direction. A heavy ball 

would be predicted to fall straight down, or resist swinging forward and fall backwards. A lighter 

ball might follow its forward direction once it is released but then fall straight down due to 

gravity or fall along a forward path. Other adults who assign force to the swinging string may use 

its position to guide their judgement. Therefore, depending on where the string is positioned, 

their prediction changes (Caramazza et al., 1981). Misunderstanding force and object motion 

under different circumstances also explains the curved path responses for the curvilinear 

problems. Assigning the mechanism of force to the curved tube would lead adults to predict that 

the ball would follow the directionality of the tube and depending on the perceived weight of the 

ball, the angle of curvature would vary. The actions-on-objects hypothesis accounts for the 
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pattern of responses seen in projectile motion problems, explaining the backward response not 

accounted for in the previous hypotheses, as well as the pattern of curvilinear problem responses.  

A Movement for Improvement  

All three hypotheses—seeing-is-believing, impetus, and action-on-objects— share an 

important characteristic: Adults create incorrect mental representations of spatial relations and 

use the representations to guide their predictions. The key to improving kinematic problem 

solving may lie in improving spatial visualization, a spatial ability strongly correlated with 

performance on projectile motion problems (Kozhevnikov et al., 2002). This relationship is not 

surprising: Kinematic problems in real life and in the laboratory often involve picturing—or the 

spatial visualization of—object movement. Indeed, high spatial visualizers (participants who 

score in the top 25% of a spatial ability score distribution) outperform low spatial visualizers 

(those in the bottom 25%) on several multiple-choice kinematic problems (Kozhevnikov et al., 

2007). The high spatial visualizers often accurately identify both the horizontal and vertical 

components of motion and integrate them correctly into their problem-solving strategies. In 

contrast, low spatial visualizers tend to focus on a single component of motion such as horizontal 

or vertical. 

Spatially-oriented language provides helpful hints about how people think and 

communicate about kinematic problems. When participants were asked to explain their reasoning 

for their responses to a kinematic problem set, 43% of errors were due to omitting an important 

component of the problem, such as the horizontal velocity, gravity, thrust, or acceleration (Cook 

& Breedin, 1994). Interview responses indicate that low spatial visualizers are more likely to 

focus on object characteristics such as weight, speed, and internal force, whereas high spatial 

visualizers are more likely to focus on how external forces would influence an object’s path 
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(Kozhevnikov et al., 2007). In other words, high spatial visualizers are more likely to focus on 

the spatial relations of an object (e.g., an object’s direction) compared to low spatial visualizers, 

who focus more on the object (e.g., an object’s weight). 

Additionally, improvements in spatial visualization have led to improvements in other 

spatial abilities and kinematic problem solving. Spatial training studies that provide participants 

with spatial visualization tasks, such as the paper folding task and the form board task, 

demonstrate improved performance on other spatial visualization tasks as well as mental rotation 

tasks, such as the Cube Comparison Test and the Shepard and Metzler Rotation Task (Uttal et 

al., 2013). Additionally, improvements in spatial visualization coincide with improvements in 

kinematic problem solving when using a computer-based learning program and assessing pretest-

to-posttest gain scores (Kozhevnikov & Garcia, 2011). Increased performance on spatial and 

kinematic tasks suggests that improvements in spatial visualization can improve performance on 

similar kinematic problems (near transfer tasks) and spatial problems that use the same spatial 

abilities (far transfer tasks). 

Spatial visualization utilizes visual-spatial working memory (Isaak & Just, 1995). 

Baddeley and Lieberman’s (1980) working memory model includes a visual-spatial subsystem 

equipped with a visual-spatial sketchpad where we can imagine and manipulate mental images, 

possibly through the use of a cognitive coordinate system (Just & Carpenter, 1985; McCloskey, 

Valtonen, & Cohen Sherman, 2006; Salthouse, Babcock, Mitchell, Palmon, & Skovronek, 1990). 

A coordinate system is one way to track an object’s position or internal object changes such as 

folding, and can change depending on the demands of the task (Just & Carpenter, 1985). With 

respect to kinematic problems, the most helpful way to represent object and spatial locations is to 

mentally superimpose a grid on the entire problem to track the transformations over time, as 
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evidenced by the time-related spatial language provided by high spatial visualizers 

(Kozhevnikov et al., 2007). 

Picturing spatial relations and tracking changes is challenging and people struggle with 

one or more steps of the process because the visual-spatial working memory system can become 

overloaded if required to hold and process too much information (Salthouse, Babcock, Mitchell, 

et al., 1990; Salthouse, Babcock, Skovronek, Mitchell, & Palmon, 1990; Salthouse, Mitchell, 

Skovronek, & Babcock, 1989). Therefore, deficits in kinematic reasoning could be the result of 

people defaulting to misconceptions about object motion created from perceptual 

misinformation, as discussed in each of the three hypotheses, because it is too difficult to picture 

the object motion event. Decreasing the visuo-spatial cognitive load would give adults an 

opportunity to mentally work through a problem, and we should observe improvements in adult’s 

kinematic reasoning.  

Peer Collaboration 

Working with a peer, or peer collaboration, can create an opportunity to decrease 

individual cognitive load. A partner can identify components of a problem not being considered 

or suggest an alternative perspective which can be incorporated into an existing perspective 

(Vygotsky, 1978). For example, when predicting where a ball will fall after rolling off a table, 

one person might predict it falling straight down next to the table leg. The other person might 

point out that the ball is rolling forward, not being dropped, and should continue moving 

forward. After discussing the possibilities, the peer collaborators might correctly conclude that 

the ball will land further away from the table because the horizontal movement of the ball is 

conserved.  
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The exchange of ideas between peers can lead to improved conceptual knowledge and 

reasoning skills, as evidenced by pretest-posttest gain scores for both children and adults who 

worked in dyads (Azmitia, 1988; Dimant & Bearison, 1991; Fawcett & Garton, 2005; 

Kozhevnikov & Thornton, 2006; Phelps & Damon, 1989). Conversation and the exchange of 

new perspectives is believed to facilitate the improvements after evaluating the performance of 

participants who either worked alone, worked alone and talked out loud, or worked with a peer 

(Fawcett & Garton, 2005; Teasley, 1995). More importantly, improvements in reasoning skills 

after working with a peer persists for spatial learning. For fourth-graders who worked in pairs for 

one year on either mathematics or spatial reasoning concepts, dyads in the spatial reasoning 

groups demonstrated significantly higher improvements between pre-test and post-test scores 

than the mathematics and control groups; improvements were still apparent one year later 

(Phelps & Damon, 1989). Five-year-old children tasked with reconstructing a LEGO building 

were more successful at copying the model when they worked with a peer than those who 

worked independently (Azmitia, 1988). Additionally, over the course of a semester, college 

students demonstrated increased spatial visualization ability and physics competency after given 

the opportunity to meet with a peer at the end of each class to discuss the lesson and solve 

computer-based physics problems (Kozhevnikov & Thornton, 2006). Overall, working with a 

peer and discussing ideas and problem-solving strategies appears improve spatial ability and 

deepen conceptual knowledge. 

However, there are limitations if certain criteria are not met. The composition of the 

dyads and quality of discussion appear to play a large role. There was no significant difference in 

performance on a Piagetian spatial task between mixed-gender dyads, same-gender dyads, and an 

individual condition, and is thought to be the result of unsubstantial conservation about the task 
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demands and alternative solutions (Golbeck & Sinagra, 2000). Drawing comparisons between 

this study and previous literature reveals that the quality of interaction, the length of time 

working together, and the type of task influence the positive effects of peer collaboration. 

Golbeck and Sinagra noted that the dialogue between peers lacked focus on the task and 

discussion about their individual approaches to the problem. Alternatively, the results could 

reflect the task being inappropriate for collaboration because it relies on an individual’s 

kinesthetic sense of horizontality rather than a mental representation (Golbeck & Sinagra, 2000) 

or requires less conceptual reasoning necessary to promote discussion (Phelps & Damon, 1989). 

Another explanation is that both partners did not have different perspectives on the problem and 

reinforced existing perspectives and reasoning. Additionally, previous studies took place over the 

course of several weeks or months while the study conducted by Golbeck and Sinagra (2000) 

took place in one session. Results suggest that the effect of peer collaboration takes longer to 

produce conceptual change and improved spatial ability. Additionally, it is possible that because 

the discussion lacked focus on task demands, limited use of spatial language and task-related 

discussion failed to prompt greater spatial reasoning in the participants. There was a significant 

difference in performance on a computer-based spatial task between fourth graders working 

alone, working alone but talking out loud, and working in dyads. However, the amount of 

discussion about the problem was a greater predictor of success on the task than the experimental 

condition (Teasley, 1995). Students in the alone talk and collaborative conditions generated more 

hypotheses and used more descriptive language than students in the alone condition. However, 

students in dyads spent more time discussing the computer-program and assessing outcomes, 

demonstrating a deeper level of evaluation than students in the alone conditions (Teasley, 1995). 

This suggests that the quality of discussion and use of spatial language or language directly 
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related to the task demands is an important element of working with a peer. Therefore, the 

quality of discussion, specifically, the type of words being used amongst partners, should be 

considered when assessing the effect of peer collaboration on kinematic problem solving to 

provide insight into the ideas being exchanged between partners.  

Current Study 

The goal of this study was to investigate whether peer collaboration is an effective tool 

for improving kinematic problem-solving skills. Participants in the key experimental condition 

practiced solving kinematic problems collaboratively while talking through the problems 

together. Additional participants solved the same problems alone while talking out loud (a 

condition that served as a control for the effects of collaborative learning) or alone without 

talking out loud (a condition that served as a control for both the effects of collaborative learning 

and time spent talking out loud). Afterwards, all participants completed transfer tasks to 

determine whether collaborative learning improved kinematic problem solving at all (near 

transfer task) and whether it had far-reaching consequences (far transfer task).  

The practice kinematic problems included the airplane problem, cliff problem, pendulum 

problem, ramp problem, and the conveyor belt problem (Caramazza et al., 1981; Kozhevnikov et 

al., 2007; McCloskey, 1983b). These problems are widely used in projectile motion research. 

Therefore, results were evaluated using criteria from previous studies. The near transfer problem 

set consisted of the walker problem, the hockey puck problem, and the rocket problem. These 

problems were comparable to the kinematic practice problem set because they involved utilizing 

the same components of motion (horizontal and vertical) but required the participants to organize 

the information in a different spatial context and integrate the components in a new 

configuration. The far transfer problem set consisted of paper folding and cube comparison 
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problems. These problems are widely used to assess spatial visualization ability and mental 

rotation ability (Ekstrom et al., 1976; Linn & Petersen, 1985; Uttal et al., 2013), abilities 

necessary for solving kinematic problems. Additionally, particular attention was paid to the 

amount and type of language participants used to communicate their ideas. Similarly, we 

examined the potential effects of other variables shown to influence kinematic skills and spatial 

problem solving (gender, duration of practice, physics education, spatial experience, and 

individual spatial ability).  

First, we predicted that participants who practiced with a peer would perform better on 

the kinematic practice problems compared to participants who practiced alone, possibly due to 

discussing task-related demands and exchanging alternative solutions. Second, we predicted that 

participants who practiced kinematic problems with a peer would perform better on near and far 

transfer tasks compared to participants who practiced alone. We expected that the quality of 

discussion, specifically discussion of spatial relations, during the practice portion would facilitate 

more accurate spatial visualization and enable participants in the Collaborative condition to 

perform better on transfer tasks compared to participants in the Alone conditions. Lastly, we 

predicted that participants who practice kinematic problems with a peer would use a greater 

amount of language, specifically, a greater amount of spatial language as a result of discussing 

task-related demands and solutions with a partner compared to participants who practiced alone. 
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Method 

Participants 

A power analysis using G*Power showed that for a repeated-measures ANOVA with 

three groups, two measurements, and a 0.05 level of significance, a sample size of 66 

participants would be necessary for a Cohen’s d = .02 and a power level = 0.80. Since the key 

experimental condition (Collaborative condition) requires two people per session, the final 

sample size needed to be equal to or greater than 88 participants: 22 individual participants per 

Alone condition and 22 dyads (44 individual participants) in the Collaborative condition. 

Ninety-nine college-age adults participated for partial credit toward a course research 

requirement. Participants were 28 men and 69 women, with one participant opting to not indicate 

their gender. Participants were between 18.27 and 23.14 years of age (M = 19.32). Nine 

participants (3 men, 6 women) were excluded from the final sample due to technical difficulties 

with the recording set up (n = 2) and failing to follow instructions (n = 7), leaving a final sample 

size of ninety participants. 

Design 

We used a repeated measures design with five covariates. The independent variables 

were practice condition and transfer task. Practice condition was defined by the number of 

people working on the practice problem set and whether they were instructed to talk during the 

practice portion. There were three levels: Alone-Quiet (one person quietly completing the 

practice problems), Alone – Talk (one person completing the practice problems while talking out 

loud through his or her problem solving), and Collaborative (two people working together to 

complete the practice problems). Transfer task was defined as a problem set that required 

participants to use similar spatial reasoning and abilities. There were three levels: kinematic near 
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transfer task (kinematic problems similar to the practice problems), paper-folding far transfer 

task (spatial task that requires spatial visualization ability), and cube comparison far transfer task 

(spatial task that requires mental rotation ability). Twenty two participants were assigned to each 

of the two control conditions (Alone-Quiet and Alone-Talk practice conditions) and 46 

participants (23 dyads) were assigned to the experimental condition (Collaborative practice 

condition). Participants were assigned randomly to one of the three practice conditions as they 

signed up for a session. Effort was made to counterbalance the number of women and men in 

each condition. All participants individually completed the transfer tasks.   

The dependent variable was accuracy on transfer task, defined as the proportion of 

correct responses to completed responses. The covariates were physics education (the number of 

physics courses completed), spatial experience (the frequency each individual participated in 

spatial activities), individual spatial ability (the proportion of correct responses to completed 

problems on the Spatial Ability Test), time (duration of time an individual or dyad spent working 

on the kinematic practice problem set), and gender (as indicated on the demographic 

questionnaire). Additionally, spatial language was explored separately for quantity (frequency of 

utterances) and quality (type of utterances). 

Materials 

All sessions were videotaped using a Canon Vixia HF R52 HD Camcorder. Datavyu 

open-source software (Version v1.4.1; Datavyu Team, 2014) was used to code video and audio 

data.  

A demographic questionnaire collected general participant information including 

birthdate, test date, and gender. Physics education was measured by asking participants to 

indicate their highest level of physics education and the number of physics courses they 
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completed. The physics education questionnaire was adapted from McCloskey and Kohl (1983). 

Spatial experience was measured using an 81 item Spatial Activity Questionnaire (Baenninger & 

Newcombe, 1989). Each item consisted of an activity (e.g., soccer) followed by a 6-point Likert 

scale (never participated, participated less than 4 times, participated 5-15 times, participated in 

about once a month, participated in about once a week, participated in more than once a week) to 

indicate the frequency of participation between 13 and 18 years of age. Spatial ability was 

assessed with a Spatial Ability Test consisting of 20 questions pulled from the Manual for Kit of 

Factor-Referenced Cognitive Tests that include the Card Rotations Test, Form Board Test, and 

Surface Development Test (Ekstrom et al., 1976). The Card Rotations Test present one figure 

followed by five similar figures. The similar figures could either be identical figures but rotated 

clockwise or counterclockwise or mirror images rotated clockwise or counterclockwise. 

Participants were instructed to only circle the identical images. The Form Board Test presented 

an original shape and two groups of different shapes. Participants were instructed to select the 

group of shapes that would create the original shape if assembled together. The Surface 

Development Test presented a folded cube with three visible faces each with a different letter, 

and four deconstructed cubes each with the same letters in different positions. Participants were 

instructed to select the deconstructed cube that matched the folded cube. The kinematic practice 

problem set consisted of five widely-used, paper-and-pencil projectile motion problems: the 

airplane problem, cliff problem, pendulum problem, conveyor belt problem, and ramp problem 

(Caramazza et al., 1981; McCloskey, 1983b). Each problem depicted a different scenario of a 

ball in motion. Participants were asked to indicate the path the ball would travel in each scenario 

by drawing the path with a pencil. The near transfer assessment consisted of three paper-and-

pencil kinematic problems: the hockey puck problem, walker problem, and rocket problem 
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(Caramazza et al., 1981; Kozhevnikov et al., 2007). Each problem depicted a different scenario 

of an object in motion (e.g., ball, hockey puck, rocket). Participants were asked to indicate the 

path each object would follow in each scenario. Far transfer was assessed using two spatial tasks: 

paper-folding and cube comparison (Ekstrom et al., 1976). The Paper-Folding task consisted of 

ten items with each item showing a successive drawing of three folds made to a square sheet of 

paper. The final drawing in the series was a folded paper with holes punched through it. 

Participants were instructed to select one drawing from five drawings that showed how the 

punched sheet of paper would look when fully opened. The Cube Comparison task consisted of 

21 items with each item consisting of a drawing of two cubes with letters printed on each side. 

Participants judged whether the two cubes were of the same cube or different cubes.  

Procedure 

At the start of the session, an experimenter explained the purpose of the study and guided 

participants through the informed consent process. Next, the experimenter turned on the video 

camera and began recording the session. All participants completed the following questionnaires 

individually, one at a time, and in the following order: demographics (untimed), physics 

education (untimed), Spatial Activity Questionnaire (untimed), and Spatial Ability Test (10-

minute limit). 

The practice phase (untimed) began immediately following the questionnaires. The 

experimenter provided participants with a booklet of practice problems. The participants in the 

Alone-Quiet condition received the following verbal instructions from the experimenter: “Please 

complete the following five problems in order. Indicate your answer by drawing your answer on 

the paper. Please mark your answers clearly with a pencil and completely erase any extra lines. 

You may take as long as you need to complete these problems. When you are finished with all 
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five problems, please notify me.” The participants in the Alone-Talk condition received the 

following verbal instructions from the experimenter: “Please complete the following five 

problems in order. Indicate your answer by drawing your answer on the paper. As you complete 

the problem, explain your reasoning out loud and how you arrived at your answer as if 

explaining the problem to a classmate. That is, please talk through your thinking and reasoning 

out loud. Say what you’re thinking. Please mark your answers clearly with a pencil and 

completely erase any extra lines. You may take as long as you need to complete these problems. 

When you are finished, please notify me.” The dyads in the Collaborative condition received the 

following instructions from the experimenter: “Please complete the following five problems in 

order by working together. Indicate your answer by drawing your answer on the paper. As you 

work through the problems, please explain your reasoning and how you arrived at your answer to 

your partner. That is, talk to each other about your reasoning. You can only provide one answer 

per problem. If you do not agree on an answer, please discuss the problem until you come to an 

agreement. Please mark your answers clearly with a pencil and completely erase any extra lines. 

You may take as long as you need to complete these problems. When you are finished, please 

notify me.” 

After the practice phase, each participant completed the assessment phase independently. 

Participants received the near transfer kinematic assessment first (untimed). Then, participants 

received the Paper-Folding far transfer assessment (3-minute limit). Next, participants received 

the Cube Comparison far transfer assessment (3-minute limit). Finally, the experimenter 

debriefed each participant to conclude the session and turned off the video camera.  

Scoring and Coding 
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Near and Far Transfer Assessments. Responses to the near transfer kinematic problem 

set were assessed for accuracy using the criteria from previous studies (i.e., Caramazza, 

McCloskey & Green, 1981; McCloskey, 1983; McCloskey, Washburn & Felch, 1983; 

Kozhevnikov, Motes & Hegarty, 2007). Each participant received a score based on the number 

of correct responses and this score was converted into a proportion using the number of correct 

responses divided by the total number of problems. Responses to the far transfer assessment 

were assessed for correctness and each participant received an individual score for the paper-

folding task and the cube comparison task. Considering the total number of problems for each 

task is different, we standardized the scores by using a proportion, the number of correct 

responses divided by the number of completed problems, for each far transfer assessment. To 

make sure participants’ effort was valid, we calculated the average number of correct responses 

for the paper-folding task (M = 4.54, SD = 1.94) and the cube comparison task (M = 14.92, SD = 

4.15) and the average number of completed problems for the paper-folding task (M = 6.86, SD = 

1.85) and the cube comparison task (M = 17.16, SD = 4.06). The distributions were similar to 

previous studies that used these tasks (Kozhevnikov et al., 2002; Kozhevnikov et al., 2007), 

therefore, using a proportion was determined to be a valid measurement of accuracy. 

Language. Using Datavyu software, each data session was reviewed by both primary and 

secondary coders to mark the beginning and end of each task (e.g., questionnaires, practice 

problem set, transfer assessments). Individual trials were delineated for the kinematic practice 

problem set, as this was the task of interest for spatially-oriented language use. For each task or 

trial, a primary coder marked the start of each utterance using the typical rule based on pause and 

content (Dancu, Gutwill, & Sindorf, 2009; Levine, Ratliff, Huttenlocher, & Cannon, 2012; 

Pruden, Levine, & Huttenlocher, 2011; Teasley, 1995). An utterance was defined as a word or 
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phrase separated by a 2-3 second pause from another verbalization, or a word or phrase 

communicating the same topic (Cannon, Levine, & Huttenlocher, 2007). Each utterance was 

coded as one of 11 language categories, which are described in detail in Table 1. The categories 

were modeled after previous language coding manuals on spatial language and coding schemes 

for spatial problem solving (Cannon, Levine, & Huttenlocher, 2007; Teasley, 1995; Winsler, 

Fernyhough, McClaren, & Way, 2005).  
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Table 1 

Language Coding Categories 

Utterance Description Examples Reliability (r) 

References to other problems in the problem 

set: indicates that the current problem is similar 

or different to a previous problem in the 

experiment  

 

“This is like the airplane 

problem.” 

.92 

Personal experience: refers to a personal 

experience that is related to the problem  

 

“I remember a problem like this 

from high school.” 

NA 

External example: provides an example of an 

event that is similar and/or different from the 

current problem that serves as a way to 

understand the current problem better  

 

“It’s like going down a slide.” .68 

Visualization prompt: words or phrases that 

help the participant mentally represent the 

problem, mentally viewing the problem from a 

specific perspective, or picture themselves 

enacting the task  

 

“Imagine”, “If you look at it 

from the side”, “If you think 

about it...”, “If I were dropping 

the ball, I think I would drop it 

earlier...” 

NA 

Scientific/physics related concepts: words or 

phrases used to convey scientific or physics 

concepts  

 

momentum, gravity, force, 

speed, velocity 

.77 

Direction of motion: where the object is 

moving  

 

forward, backward, straight-

down, up, down, left, right 

.76 

Manner of motion: how the object is moving  

 

spinning, rolling, falling, gliding, 

curving, arc 

.50 

Location in space: where the object is in space 

or relative to another object in the problem  

 

above, on top, below -.09 

Object description: words that describe how 

an object looks, feels, or functions  

big, round, metal, steep, “The 

conveyor belt holds this…” 

 

.40 

General movement: conveys motion but not a 

specific direction or use of a specific verb  

 

this way, going, “go like that”, 

“it will hit the ground” 

.71 

Unintelligible/other: utterances that are 

inaudible, uninterpretable, or did not fit any 

other category 

“Yea”, “Okay” .86 

 

Total number of utterances 

 

.90 
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 A second coder coded 20% of the kinematic practice problem trials and 33% of the 

transfer assessment trials for inter-rater reliability. Because the language coding and analyses 

were largely exploratory, we used a conservative method to calculate inter-rater reliability, using 

only the trials that received at least one language code, either from the primary or secondary 

coder. Trials where the primary and secondary coder agreed no language occurred were excluded 

from the reliability calculation, even though these instances were technically in agreement. The 

two coders had high reliability on the type of task/trials and whether language occurred at all on 

those tasks/trials (r = .99) and total number of utterances (r = .90). Reliability ranged from low to 

high on the number of utterances for each category (r = -.09 - .921). It was not possible to 

calculate reliability for two of the language categories, visualization prompts and personal 

experiences, due to the low number of occurrences in these categories.  

  

 
1 Some of the lower reliability rates were due to the low number of trials in which the participants used this 

category. For example, the location category only contained 12 data points (r = -.09). 
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Results 

The primary goal of this study was to examine whether practicing kinematic problems 

with a peer improved kinematic problem solving and, by extension, related spatial abilities. 

Additionally, we were interested in how language facilitated spatial reasoning. The practice 

problems and transfer tasks were analyzed separately to explore what happened during initial 

learning and whether it may have influenced transfer.  

Kinematic Practice Problems 

Of the five practice problems, participants across the three conditions averaged 1.49 

correct responses (SD = 1.04, mean proportion = .30), attesting to their difficulty with kinematic 

problems. This finding is consistent with results from past studies (e.g., Caramazza, McCloskey 

& Green, 1981; McCloskey, 1983; McCloskey, Washburn & Felch, 1983; Kozhevnikov, Motes 

& Hegarty, 2007). Refer to Figure 1 for the following results. Contrary to our prediction, 

participants who practiced with a peer did not perform better on the kinematic practice problems 

compared to participants who practiced alone. A one-way ANCOVA on the practice conditions 

(Alone-Quiet, Alone-Talk, Collaborative) with five covariates (gender, duration of practice, 

physics education, spatial experience, and spatial ability, described further in Table 2) showed no 

effect of practice condition, F(2, 81) = 0.90, p = .41, ηp
2 = .02.  

Table 2 

Descriptive Statistics for Continuous Covariates (N = 90) 

Covariate Minimum Maximum Mean SD 

Duration of practice (seconds) 72.37 279.20 134.20 41.94 

Physics education (number of classes) 0 5 0.88 0.68 

Spatial experience score (proportion) 0.22 0.42 0.29 0.05 

Spatial ability score (proportion) 0.05 0.95 0.55 0.22 
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Dyads in the Collaborative condition (M = 0.32, SD = 0.17) did not perform better—or 

worse—compared to individuals in the Alone-Quiet (M = 0.25, SD = 0.26, p = .77, d = 0.32) and 

Alone-Talk (M = 0.29, SD = 0.24, p = .84, d = 0.14) conditions. Duration of practice, physics 

education, spatial experience, and individual spatial ability were not significant predictors of 

accuracy on the kinematic practice problem set (ps > .18). However, gender was significant (p = 

.01, ηp
2 = .08). (See Table 3 for descriptive statistics for gender.) Follow up t-tests using 

Bonferroni correction were conducted within each condition with gender as the independent 

variable and proportion of correct responses on the kinematic practice problem set as the 

dependent variable. With the Bonferroni correction, there was no significant difference in 

performance between men and women in the Alone-Quiet, t(20) = 2.18, p = .04, d = 0.87, Alone-

Talk, t(19) = 2.81, p = .35, d = .39, or Collaborative condition, t(44) = 1.84, p = .07, d = .39. 

Figure 1. Accuracy on the kinematic practice problem set for each practice condition. Error bars 

indicate mean standard error. 
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Taken together, these results suggest that practicing with a peer did not influence kinematic 

problem solving. 

Table 3 

 

Table 4 

Descriptive Statistics for Language 

 Total Language Content Language 

Practice Condition n Mean SD Min. Max. n Mean SD Min. Max. 

Alone – Quiet  22 2.82 3.69 0 13 22 0.09 0.43 0 2 

Alone – Talk 22 21.18 10.84 8 46 22 11.18 5.85 3 26 

Collaborative (dyads) 23 64.74 48.05 24 237 23 26.83 18.26 5 83 

 

 Although practice condition did not affect performance, we continued to explore spatial 

language use in case it influenced transfer task performance. Table 4 presents the descriptive 

information for language within each practice condition. A one-way ANCOVA was conducted 

using the total number of utterances as the dependent variable and practice condition as the 

independent variable, whiling controlling for duration of practice (see Figure 2a). As expected, 

condition had a significant effect on the amount of language used, F(2, 63) = 46.39, p < .001, ηp
2 

= .60, and duration of practice was a significant covariate (p < .001, np
2 = .26).  

Practice Problem Scores for Men and Women  

 Gender 

 Men Women 

Practice Condition  n Mean SD Min. Max. n Mean SD Min. Max. 

Alone – Quiet  6 .43 .34 0 1 16 .19 .19 0 .60 

Alone – Talk  8 .35 .30 0 .80 13 .25 .20 0 .60 

Collaborative 11 .40 .18 0 .80 35 .30 .16 0 .80 
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Figure 1. (a) Mean number of utterances (including the “unintelligible/other” category) per 

session for each practice condition. (b) Mean number of utterances (excluding the 

“unintelligible/other” category) per session for each practice condition. Error bars indicate mean 

standard error. 

However, Levene’s test for equality of variances was significant (p = .002), indicating that the 

variance within each practice condition was not equal. Therefore, a Kruskal-Wallis non-

parametric test was used to confirm the results of the ANCOVA. The Kruskal-Wallis H test 

confirmed condition-related differences in the amount of utterances, χ2(2) = 53.62, p < .001. 

Dunn’s post hoc tests with a Bonferroni correction indicated the Collaborative condition used 

significantly more language than the Alone – Talk (p < .001, d = 1.25) and the Alone – Quiet 

conditions (p < .001, d = 1.82), and the Alone – Talk condition used significantly more language 

than the Alone – Quiet condition (p < .001, d = 2.27). As depicted in Figure 2b, when irrelevant 

content (utterances coded as “unintelligible/other”) was removed from analysis, practice 

condition continued to exert a significant effect on language usage, F(2, 63) = 44.53, p < .001, 

ηp
2 = .59, and duration of practice remained a significant covariate (p < .001, ηp

2 = .17). 

a b 



36 

However, Levene’s test for equality of variances was significant (p < .001). A Kruskal-Wallis 

non-parametric test was used to confirm the results of the ANCOVA. The Kruskal-Wallis H test 

confirmed condition-related differences in the amount of content utterances, χ2(2) = 52.04, p < 

.001. Dunn’s post hoc tests with a Bonferroni correction indicated the Collaborative condition 

used significantly more content language than the Alone – Talk (p = .013, d = 1.15) and the 

Alone – Quiet conditions (p < .001, d = 2.07), and the Alone – Talk condition used significantly 

more language than the Alone – Quiet condition (p < .001, d = 2.67). Thus, even though 

participants showed similar accuracy on the practice problems, there were condition-related 

differences in how much participants talked and how much they used relevant language. 

However, this difference, in part, can be attributed to the Collaborative condition spending more 

time on the practice problem set.  

 

Figure 2. Frequency of utterances for each language category (excluding the 

"unintelligible/other” category) in each practice condition. 

To further explore the content of spatial language, a MANOVA was conducted to 

examine condition-related differences on the frequency with which each of the ten language 
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categories (“unintelligible/other” category was removed from analysis) were uttered (see Figure 

3). The MANOVA showed that practice condition influenced the number of utterances in each 

category, Wilk’s Lambda = 3.01, F(22,108) = 8.14, p < .01, ηp
2 = .63. However, Levene’s test of 

equality of error variances was significant for all the language categories (ps = .00 - .02), 

indicating that the variance within each language category was not equal. Therefore, Kruskal-

Wallis non-parametric tests were used to confirm the results of the MANOVA. As shown in 

Table 5, the Kruskal-Wallis H tests confirmed condition-related differences for ten out of the 

eleven language categories. 

Finally, we examined the relationship between spatial language and accuracy on the 

kinematic practice problem set. Pearson’s correlations indicated no significant relationships 

between practice problem scores and the total number of utterances (including the 

unintelligible/unrelated category: r = .15, p = .23, excluding the unintelligible/unrelated 

category: r = .15, p = .22) or the number of utterances in any of the 11 categories (rs ranging 

from .05 to .21, ps ranging from .08 to .67).  
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Table 5 

Kruskal-Wallis H Tests for Language Categories 

Utterance Category χ2 df Asymp. Sig. Condition Mean Rank 

references to other problems in 

the problem set 

17.66 2 .000* Alone – Quiet 

Alone – Talk 

Collaborative 

26.00 

31.75 

43.80 

personal experience 2.70 2 .260 Alone – Quiet 

Alone – Talk 

Collaborative 

30.64 

34.93 

36.33 

external example 14.67 2 .001* Alone – Quiet 

Alone – Talk 

Collaborative 

30.50 

30.50 

40.70 

visualization prompt 12.39 2 .002* Alone – Quiet 

Alone – Talk 

Collaborative 

31.00 

31.00 

39.74 

scientific/physics related 

concepts 

30.48 2 .000* Alone – Quiet 

Alone – Talk 

Collaborative 

16.50 

44.82 

40.39 

direction of motion 50.41 2 .000* Alone – Quiet 

Alone – Talk 

Collaborative 

11.50 

38.55 

51.17 

manner of motion 32.68 2 .000* Alone – Quiet 

Alone – Talk 

Collaborative 

18.00 

34.66 

48.67 

location in space 14.76 2 .001* Alone – Quiet 

Alone – Talk 

Collaborative 

26.00 

32.64 

42.48 

object description 14.57 2 .001* Alone – Quiet 

Alone – Talk 

Collaborative 

26.05 

32.64 

42.48 

general movement 47.70 2 .000* Alone – Quiet 

Alone – Talk 

Collaborative 

18.00 

29.00 

54.09 

unintelligible/other 46.25 2 .000* Alone – Quiet 

Alone – Talk 

Collaborative 

14.64 

32.45 

54.00 

*p < .01. 
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Near and Far Transfer Assessments 

Of the three near transfer problems, participants averaged 0.50 correct responses (SD = 

.62, mean proportion = .17), which is similar to findings from past studies comparing familiar 

and abstract problem performance (e.g., Kaiser, Jonides, & Alexander, 1986). Of the 10 paper-

folding far transfer problems, participants averaged 4.5 correct responses (SD = 1.94, mean 

proportion = .45) and of the 21 cube comparison far transfer problems, participants averaged 

14.90 correct responses (SD = 4.15, mean proportion = .71). Due to better performance on the 

cube comparison task, the two transfer tasks were kept separate during subsequent analyses.  

Again, contrary to our hypothesis, participants who practiced with a peer did not perform 

better on transfer tasks compared to participants who practiced alone (see Figure 4). Considering 

each transfer task had a different number of problems, we standardized the accuracy score for 

each task by dividing the number of correct responses by the number of completed responses. 

Using the proportion of correct responses to completed responses as the dependent variable, we 

conducted a 3 X 3 ANCOVA to assess the effect of condition (Alone-Quiet, Alone-Talk, 

Collaborative) and transfer task (kinematic, paper-folding, cube comparison). The covariates 

were gender, duration of practice, physics education, spatial experience, and spatial ability. Due 

to a violation of assumption of sphericity, χ2(2) = 10.87, p < .01, a Huynh-Feldt correction was 

used (ε = 0.99). There was no main effect of practice condition, F(2, 81) = 2.94, p = .06, ηp
2 = 

.07, or an interaction between condition and transfer task, F(3.97, 160.91) = 2.22, p = .07, ηp
2 = 

.05. There was only a main effect of transfer task, F(1.99, 160.91) = 9.12, p < .000, ηp
2 = .10, due 

to different performances between all three tasks. The mean score was highest for the far transfer 

cube comparison task (M = 0.87, SD = 0.14), followed by the far transfer paper-folding task (M = 

0.69, SD = 0.26), then by the near transfer kinematic task (M = 0.17, SD = 0.21). As seen in 
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Table 6, post hoc tests using Bonferroni correction indicated that performance on transfer tasks 

was significantly different between all tasks (ps < .01, d > .90).  

Table 6 

Bonferroni Pairwise Comparisons for Transfer Task of Accuracy 

 95% CI 

Comparisons 

Mean 

Accuracy 

Difference 

Std. Error 
Lower 

Bound 
Upper Bound 

Kinematic Near Transfer vs. Paper-

folding Far Transfer 

-0.51* 0.03 -0.59 -0.43 

Kinematic Near Transfer vs. Cube 

Comparison Far Transfer  

-0.71* 0.03 -0.77 -0.65 

Paper-folding Far Transfer vs. Cube 

Comparison Far Transfer 

-0.20* 0.03 -0.27 -0.13 

*p < 0.01 

Lastly, although gender (p = .24, ηp
2 = .02), duration of practice (p = .57, ηp

2 = .00) 

physics education (p = .25, ηp
2 = .02) and spatial experience (p = .93, ηp

2 = .00) were not 

significant predictors, individual spatial ability was a significant predictor of accuracy on transfer 

tasks (p = .00, ηp
2 = .13). The relationship between individual spatial ability and transfer task 

accuracy was assessed using a Pearson’s correlation (see Figure 5 and 6). Higher individual 

spatial ability was positively correlated with accuracy on both the far transfer paper-folding task 

(r = .43, p < .01) and the far transfer cube comparison task (r = .28, p < .01). 
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Figure 4. Accuracy on transfer tasks for each practice condition. Error bars indicate mean 

standard error. 

 

Figure 5. A Pearson’s correlation between individual spatial ability test scores and accuracy on 

the far transfer paper-folding task. Individual spatial ability test scores are the proportion of 

correct responses to completed problems. 
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Figure 6. A Pearson’s correlation between individual spatial ability test scores and accuracy on 

the far transfer paper-folding task. Individual spatial ability test scores are the proportion of 

correct responses to completed problems. 

We wondered whether participants in the Collaborative condition would perform better 

as a result of more task-related discussion, which may facilitate greater spatial reasoning. A 

Pearson’s correlation revealed a positive relationship between the total number of utterances by 

an individual and the proportion of correct responses on the near transfer kinematic assessment (r 

= .23, p = .03), but no significant relationship between the utterances and accuracy on the paper-

folding task (r = .15, p = .15) or cube comparison task (r = -.03, p = .76). When we removed 

unintelligible/unrelated language, the correlation between the total amount of utterances 

remained significant for the near transfer kinematic problems (r = .23, p = .03) and remained not 

significant for the paper-folding task (r = .09, p = .40) and cube comparison task (r = -.05, p = 

.63). More specifically, the use of visualization prompts (r = .21, p < .05), location 
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words/phrases (r = .24, p = .02), and object descriptions (r = .21, p < .05) were related to higher 

scores on the near transfer kinematic assessment. 

Overall, peer collaboration did not affect accuracy on related kinematic and spatial tasks. 

However, results indicate that specific types of language were positively correlated with success 

on kinematic tasks, and individual spatial ability was positively correlated with spatial tasks. 
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Discussion 

The goal of this study was to examine whether practicing kinematic motion problems 

with a peer could improve kinematic problem solving and facilitate greater spatial reasoning. We 

reasoned that working with a partner would lessen the cognitive load related to mentally 

envisioning an object motion event while simultaneously enabling an individual to receive 

feedback about his or her ideas. To our surprise, we found that participants in the Collaborative 

condition did not perform any better on the practice problems, near transfer problems, or far 

transfer problems compared to participants in the Alone conditions. Additionally, we did not find 

duration of practice, physics education, or spatial experience to be significant predictors of 

accuracy on the problem sets, even though previous studies have found these variables to 

positively influence kinematic problem solving. One explanation for why the covariates were not 

significant is the low variability within the variables. However, we did expect to find a positive 

relationship between spatial ability and performance on far transfer tasks, considering the paper-

folding and cube comparison problems required a large amount of mental transformation. But, 

the lack of relationship between spatial ability and near transfer kinematic problems was 

unexpected, suggesting that even though kinematic problems require a spatial ability, spatial 

ability alone may not be enough to facilitate kinematic problem solving.  

A possible explanation for this (null) finding is that the practice session only occurred 

once and for a few minutes. In previous studies, successful findings were related to practice 

sessions taking place over the course of a semester or academic year (Azmitia, 1988; Dimant & 

Bearison, 1991; Fawcett & Garton, 2005; Kozhevnikov & Thornton, 2006; Phelps & Damon, 

1989). Practice sessions that occurred only once tended to have lower rates of success (Golbeck 

& Sinagra, 2000). Increasing the number of practice sessions may allow individuals more time to 
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contemplate the materials and think of new ideas to share at a later session as well as enable 

individuals to build a relationship with their partner in order to feel comfortable sharing their 

ideas and offering feedback.  

By extension, increasing the number of practice sessions may serve to improve the 

quality of discussion between partners. We found duration of practice to be a significant 

predictor for the amonut of language and amount of spatial language used during the practice 

portion, suggesting that if participant had more time they would generate more task-related and 

spatial language. Although, it is important to recognize that even though participants in the 

Collaborative condition spoke more frequently and used more spatial and task-related language 

on average (e.g., direction of motion, manner of motion, references to other problems in the 

problem set) than participants in the Alone conditions, collaborators were often only parroting 

what their partner said or mimiking the language in the directions. Indeed, 59% of all utterances 

in the collaborative condition were codeed as “unintellible/other.” Additionally, participants 

sometimes appear to lack deep conceptual understanding and did not follow their ideas up with 

explanations. For example, participants would read the directions, offer a prediction (e.g., “[the 

ball] will go straight down”), and then support their prediction by using a word or idea from the 

directions (e.g., “because there is no air resistance”) without explaining what that means. 

Similarly, participants often used a science-related word (e.g., gravity, velicity) to support their 

prediction but did not offer further explanation about how gravity or velicity worked to influence 

the object’s motion. Therefore, it would be beneficial to divide our language categories further, 

parsing apart mentions of concepts and explanations using conceptual words, and to 

systematically vary the duration of time participants spend working on the practice problems. 
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Another explanation for the nonsignificant results is that paper-and-pencil tasks are not 

conducive for learning kinematic concepts and generating conversation between partners. When 

a task relies on an internal representation, it is difficult to present that representation to another 

person and identify its strenghts and weaknesses. For example, the Piagian Water Level task 

relied on individuals’ kinesthetic sense of horizontality and made it difficult for collaborators to 

discuss the task. Therefore, partners resorted to confirming their partner’s ideas rather than 

critiquing them (Golbeck & Sinagra, 2000). Perhaps using 3-D models or having collaborators 

act out object motion events would facilitate better discussion. In studies with younger children, 

spatial tasks often involve physical toys (e.g., Legos), making it easier to demonstrate what they 

think will happen or see how one object influences another (Azmitia, 1988; Fawcett & Garton, 

2005). Having objects to manipulate and an additional person to observe the object motion event 

might be the key to dispelling misinformation gathered from sensory input, as suggested by the 

actions-on-objects hypothesis, or from perceptual illusions, as suggested by the seeing-is-

believing hypothesis, once partners compare perspectives of how the object moved. 

The use of 3-D models or toys may also enable participates to generate more spatial 

language on their own. Using objects when asking participants to predict where and how an 

object will move would eliminate the need for detailed directions with descriptive language 

regarding the object, how it is positioned, and how it is initally moving because the participants 

would be able to see and feel the object, and witness how the object is positioned and moving by 

either directly manipulating the object or watching an experimenter manipulate the object. Also, 

we would expect that using manipulables would encourage participants to interact with the 

object as opposed to strictly relying on the description in the directions. Having an object to 

directly interact with might lessen the cognitive load asociated with holding a mental 
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representation of the object’s movement, and allow participants to consider why the object is 

moving in a specific way and offer more substantial explanations.  

We did find a positive correlation between the number of utterances by an individual and 

proportion of correct responses on the near transfer kinematic problem set. More specifically, the 

use of visualization prompts, location words/phrases, and object descriptions were directly 

correlated with higher scores on the near transfer kinematic assessment. This could suggest that 

using words or phrases related to these categories is promoting greater spatial reasoning because 

the participant is considering where the object is relative to other objects (i.e., establishing a 

frame of reference with which to compare the object’s movement, as suggested by the see-is-

believing hypothesis), how the object feels and looks (i.e., thinking about the allowances of its 

shape and size, as suggested by the actions-on-object hypothesis), and either prompting their 

partner or themselves to imagine some aspect of the problem (i.e., discussing a mental 

representation of the event). Although, it is also possible that participants who are using these 

types of language are better spatial reasoners and, therefore, have an easier time generating 

spatially rich language. However, we have to be cautious when interpreting these findings 

because the interrater reliability rates for these categories are either less than .50 or were unable 

to be calculated because there were too few cases.  

Previous studies have shown that the use of spatial language is important to promote 

spatial reasoning (e.g., Pruden, Levine, & Huttenlocher, 2011). We developed a new coding 

scheme based on previous coding manuals for spatial tasks (Cannon, Levine & Huttenlocher, 

2007; Teasley, 1995; Winsler, Fernyhough, McClaren & Way, 2005). We focused on categories 

that related to specific words or phrases that conveyed a spatial concept or an idea related to the 

assessments. However, measuring the use of spatial language might not be the most effective 
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way to measure the quality of discussion between partners. When individuals are collaborating, 

there is more to just the content of what they are communicating. The language they use has a 

function, such as asking a question for clarification or making a prediction. The coding scheme 

we used for this study did not indicate the function of the language. Therefore, a question using 

the word “straight-down” was coded the same way as a prediction using the word “straight-

down”. This coding scheme failed to capture the complete picture behind the content being used. 

Therefore, a coding scheme that focuses on content and function (i.e., the purpose of an 

utterance) might be a more accurate way to assess the quality of discussion. Additionally, the 

coding scheme did not capture the nuances of the discussion, such as how often one partner was 

confirming the ideas of the other partner versus critiquing their ideas. Golbeck & Sinagra (2000) 

noted that women often used more confirmatory language when working with a peer compared 

to men, and women used more confirmatory language when working with a male partner as 

opposed to a female partner. This type of dyadic interaction may limit the effectiveness of 

working with a partner if one of the partners does not contribute equally. Therefore, in addition 

to an improved coding scheme, another method to assess quality of discussion could be 

adminstering follow-up questionnaires to ask participants whether they think the discussion with 

their partner was constructive and if they agreed with all the given answers. Receiving feedback 

from the participants could help uncover which aspects of talking with a peer faciliate problem 

solving. Overall, our coding scheme did not account for all the possible ways to assess quality of 

discussion. Therefore, our results should be interpretted with caution because they focus on a 

specific element of the dyadic interactions.  

Additionally, we utilized a novel coding software that allowed us to develop our own 

coding procedure based on the purpose of the study. Since we were interested in the frequency 
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and content of the utterance, but not the duration, we did not account for temporal specificity 

when marking the occurrence of language, meaning coders were asked to indicate when an 

utterance occurred but not whether to mark it at the beginning, middle, or end of the utterance. 

This discrepancy between coders could have contributed to the low inter-rater reliability rates 

reported for some of the language categories. Additionally, we coded the video recording in real-

time and did not transcribe the audio prior to coding for language. Therefore, coders may have 

misheard or did not hear portions of the video, contributing to the low inter-rater reliability rates.  

Overall, the findings of this study are important to consider and have educational 

implications. We found that practicing with a partner was not an effective way to improve 

kinematic problem solving or related spatial abilities. However, we should consider the 

limitations of the task modality, the duration of practice, and the quality of discussion between 

partners when evaluating the effectiveness of peer collaboration. Future studies should consider 

incorporating: interactive models (to provide important visual and haptic feedback as well as 

enable peers to easily discuss specific task components and solutions), recurring practice 

sessions (to enable peers multiple opportunities to work together and build a rapport), and 

multidimensional language categories (to capture the content, context, and purpose of the 

utterances). Lastly, future studies should aim to evaluate the efficacy of peer collaboration and its 

effect on kinematic problem solving.  
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