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Abstract 

Knowledge of cause and effect allows individuals to meaningfully interpret the events they 

perceive in the world, and the understanding of causality is thought to be grounded in the 

understanding of forces (Wolf, Ritter, & Holmes, 2014). Previous research has linked 

handedness with both the ability to exert force (e.g., Linkenauger et al., 2005) and causal 

learning (e.g., Goedert & Czarnowski, 2017). Historically, number lines have been used to assess 

causality, but because handedness has a strong spatial element, SNARC effects may influence 

judgments (Fias, 1996). The current experiment replicates previous work by Goedert and 

Czarnowski (2017) but changes the assessment measure used to capture causal judgments. Right-

handed participants underwent a trial-by-trial learning task where they were instructed to discern 

how effective various plant liquids were on plant blooming. Instead of using a number line, I 

created a color selector that reduces the impact of spatio-numeric biases by instructing 

participants to choose a color they feel accurately captures their causal judgment. Bayesian 

analyses found that individuals were able to use the color selector to appropriately discern 

between moderately contingent and non-contingent plant liquids. More importantly, no strong 

evidence for the presence of spatial biases was found.  
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Introduction 

Causal Inference. 

 

 Each day, we are faced with situations that rely on our understanding of causal 

relationships. To effectively navigate the world around us, individuals must be able to make 

inferences about causes and effects so that they can react appropriately to events and make 

informed judgments. For example, if someone was experiencing digestive trouble after eating 

certain foods, being able to make causal inferences may allow them to recognize the potential 

offender based on their recent meals.   

In some instances, causation can be directly observed. For example, if two billiard balls 

collide with one another, one can recognize that it is the momentum of one ball being transferred 

to the next that facilitates movement (Michotte, 1963). The contact between the two balls is the 

component from which belief in the causal nature of the event is derived. This contact, thus, 

serves as a causal mechanism, an element of the event that is thought to be necessary for a causal 

relationship to be present (Woo-kyoung, Kalish, Medin, & Gelman, 1995). If the two balls never 

made contact, but the cue ball stopped suddenly and the other ball began moving as if it was 

struck, the event would violate our knowledge of physics and seem non-causal. 

In other instances, causal mechanisms are not directly observable, such as when a switch 

is flipped and a light turns on, or when nausea is experienced after eating shell fish. While 

empirical and theoretical work has examined when and how people make causal inferences for 

both observable and non-observable causal events (e.g., White, 2007, 2012; Wolff & Shepard, 

2013), very little work has addressed how people acquire a conceptual understanding of 

causation, especially in situations for which the causal mechanism is not directly observed. Some 

researchers, however, have theorized that the understanding of causation may be grounded in the 

understanding of physical forces via the sensorimotor systems (e.g., Wolff & Shepard, 2013; 
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White, 2006). From this perspective, the inputs and outputs of the sensorimotor systems, as 

receivers and producers of forces, influence our understanding of causal events. As such, our 

understanding of causality may be grounded in our knowledge of forces, whether we are 

experiencing them from an external source, or if we are exerting them upon the world around us.  

Grounding Causation in Sensorimotor Experience 

 Historically, philosophers have suggested that causation is, perhaps, rooted in the ability 

to produce change. Aristotle thus offered a “force-based” account of causation which held that 

causation involves the transference of a “form” from an agent to a patient (Marmodoro, 2007). 

While a critique of the force-based approach was that forces could not be directly observed (i.e., 

Hume, 1748/1975), advocates argued that forces can be detected through the sensorimotor 

system (Reid, 1788).  

Force-based approaches of grounding causal inference take one of two forms, either that 

our causal understanding is grounded in our experience as patients receiving the forces, or that it 

is grounded in experience as agents executing forces. As agents of forces, our notions of force, 

power, and causation may be derived from our execution of physical actions. Additionally, the 

kinesthetic stimulations from our actions (i.e., muscle movements) provide input that further 

informs our concept of forces (Jammer, 1957). When we make voluntary movements, we are 

both producing effects on the world, as well as receiving feedback based on the actions we 

perform. We can thus combine these elements into a schema that explains a necessary pattern of 

force to appropriately execute a particular action (Piaget 1927, as cited in Hazlitt, 2012). 

Therefore, when we see a pattern of motion, the pre-formed schemas that match those patterns of 

force are activated (White, 1999). This may inform our understanding of causality because the 
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events we perceive visually are directly informed by the experience we have interacting with the 

world (White, 2012). 

 Throughout these experiences, however, we are not simply an agent that exerts its 

influence on the environment. Instead, we are also the recipient of forces. When we are the 

recipient of a force, we are the patient to it. Meaning, we are being acted upon by an external 

power (Fales, 2002). For example, you may be walking down the street when suddenly a gust of 

wind knocks you off balance. Here, you are receiving the force of the wind. Nevertheless, you 

resist being blown over. A combination of information from your vestibular system (balance) 

and tactile perceptions (strength of wind against the body) enable you to compensate for the 

force by activating your muscles in a way that allows you to regain your balance. Once again, 

this direct experience of force is what allows you to conclude that the wind caused you to lose 

your balance.  

 The most contemporary force-based theory of causal understanding claims that we 

understand causation from our role as patients of forces, and in particular, through the sensory 

experience of touch (Wolff & Shepard, 2013). By conceptualizing causation in terms of force, a 

force-based approach to causation would allow us to “make sense” of the phenomena that 

surround causal relationships (Wolff & Shepard, 2013). When we observe a causal event, Wolff 

& Shepard (2013) suggest that we simultaneously infer the forces needed to execute that event. 

For example, during a collision event, such as with billiard balls, we infer the transfer of 

momentum via contact. As such, this inferring of kinetic force at the point of contact lets us 

empathize with the patient object. We are aware of how it is affected because we are aware of 

the pattern of forces that are used to facilitate the collision event. Thus, we infer the relevant 
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forces when we observe the event take place, thereby grounding our knowledge of causation in 

terms we can understand – that of force. 

Evidence for Force-Based Approaches 

 Recent research provides evidence for both the patient and agent versions of the force-

based understanding of causation (Wolff, Ritter, & Holmes, 2014; Rakison & Krogh, 2012). 

Consistent with a patient-based account, in a series of experiments Wolff et al. (2014) 

demonstrated that observing causal events primed the detection of a mild force applied to the 

hands. In their research, they employed the use of a haptic controller; a mechanical arm that is 

capable of exerting a force on a participant. Across their work, they showed participants various 

animations of either causal or non-causal events. The causal events varied from physical 

causation to social causation. To elicit physical causation Wolff et al. (2014) used the Michotte 

Launch Task, which consists of a simple animation that contains two balls. The way these balls 

interact with one another varies, but a simple “launching” event is demonstrated by one of the 

balls moving towards, and making contact with, another ball, which subsequently causes the 

second ball to travel away from the first one (Michotte, 1963).  

At the conclusion of each animation, participants were to respond as quickly as possible 

upon detecting a stimulus: participants in the auditory condition heard a tone, participants in the 

visual condition saw a light flash above the final frame of the animation, and participants in the 

haptic condition felt the haptic controller exert a force on their hand. Seeing a causal event (i.e., 

collision event) should prime the participants to feel a force, which would present as shorter 

reaction times for the individuals in the haptic response condition. Wolff et al. (2014) found that 

participants responded faster to the haptic stimulus, but not the auditory or visual, after viewing 

the causal versus non-causal animations. This suggests that watching a causal event has a 

specific interaction with the detection of force.  
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While it might seem straight forward for a collision event to prime the detection of a 

force, critically, Wolff et al. (2014) demonstrated that the detection of a force was primed even 

when the causal mechanisms were not directly observable. For example, in one animation, 

participants observed social causation, where the causal mechanism was simply a person waving 

their hand to redirect another person’s walking path. Even here, in the absence of physical forces, 

participants were sensitized to the feeling of force by perceiving a causal event.  

In a final experiment, Wolff et al. (2014) demonstrated that haptic priming was present 

when making causal inferences from contingency information, but only when participants were 

provided with a causal mechanism for the contingency. In the experiment, participants saw 

animations consisting of two circles, one on the left and one on the right. Each trial consisted of 

one of three animations (e.g., the left circle turns solid followed by right circle turning solid). 

Participants in the mechanism condition were told that there was an underlying mechanism 

(causal narrative) that connected the two circles. In the non-mechanism condition, the 

participants were only told that they would see a series of animations. Participants in the 

mechanism condition were more likely to endorse the statement that the “cause” circle caused 

the “effect” circle to change. Additionally, participants responded faster to the haptic force in the 

mechanism condition versus the non-mechanism condition. This pattern of results suggests that 

when we conceptually represent causal mechanisms, regardless of how abstract, we may be 

recruiting a notion of force to help us ground our understanding. And, as their results suggest, 

this is not limited to perceiving instances of physical causation. Instead, it seems to apply to 

inferences of causation from covariation as well.  

Overall, the Wolff et al. (2014) work suggests that causal events, whether the 

mechanisms are observable or unobservable, prime an expectation of force. Meaning, when we 
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observe a causal event, we infer a force, which thus sensitizes us to feeling a force. Therefore, 

people may be perceiving forces from the visual stimuli and somehow “empathizing” with each 

patient object in the animations, which thus sensitizes their sense of touch, making them more 

susceptible to feeling forces.  

These results are consistent with Fales’ (1990) patient-oriented account of force 

perception, which suggests that when we perceive a force, we adopt the perspective of the patient 

object. Thus, we identify with the inactive entity and empathize, thereby “feeling” the force 

being acted upon it. Wolff et al.’s (2014) work suggests that there is a relationship between the 

perception of causation and the feeling of force. This work supports a patient-oriented view of 

causation. However, in our experiences, we do not only act as patients to forces. When exerting 

our influence on the world, we often assume the role of agents. Even though Wolff et al. (2013) 

did not find general reaction time improvements associated with causal versus non-causal events, 

Rakison and Krogh (2012) demonstrated that the ability to exert force upon the world is critical 

to the understanding of causal relationships.  

In this study, a group of 4½ -month old infants were able to interact with a set of balls by 

wearing Velcro mittens, while another group of infants were given no such action experience. 

The Velcro mittens facilitated the infants’ ability to pick up the balls and manipulate them, which 

would otherwise be impossible due to a lack of fine motor skills. After a designated action 

experience period, the two groups were exposed to Michotte launch task animations. The 

investigators used a habituation in looking-time paradigm and found that the infants who were 

given the Velcro mittens, that is, the infants who were able to exert force on the balls, better 

discriminated between the causal and non-causal animations in terms of visual fixation when 

compared to the group of infants that had no action experience. By being able to exert force on 
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the balls, the infants were better able to recognize the causal events. This result exemplifies the 

importance that the role of the agent plays in developing accurate representations of causality.  

Agent-Based Causal Grounding and Judgments of Causal Strength 

If our ability to understand causation relies at least in part on our ability to exert force, it 

is possible that a person may perceive causes to be of different strengths when using their 

dominant versus non-dominant hands. For example, right-handed individuals interact with the 

world more efficiently when using their dominant hand, and thus, they believe that their right 

arm is longer and better able to reach for objects than is their left (Linkenauger, Witt, Stefanucci, 

Bakdash, & Proffitt, 2009). Additionally, right-handed individuals are able to produce a 10% 

greater force with their dominant hand than they are their non-dominant (left) hand, while left-

handed individuals exhibit no such disparity (Petersen, Petrick, Connor, & Conklin, 1989). In 

these examples, actions like reaching and gripping are tied to the physical execution of 

movements where the dominant hand is the causal mechanism producing a change. If 

handedness is associated with the ability to act and produce force, and force informs our 

understanding of causation, handedness may be a relevant factor in our perception of causal 

strength. While these results suggest that handedness affects physical, observable acts (i.e., 

reaching, gripping), does it play a role in the formation of causal inferences when causal 

mechanisms are unobservable? Perhaps. If we extend the qualities of our dominant hands to the 

sides of space they reside in, we may interpret information that is presented in those respective 

sides of space in different ways. 

When causal mechanisms are unobservable, we can potentially use covariation 

information to make causal inferences (Cheng, 1997). For example, if we want to assess the 

effectiveness of a headache medication, we may attend to whether administration of the medicine 
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covaries with the presence of a headache. A scenario that employed covariation information was 

explored by Goedert & Czarnowski (2017) during a causal learning task. A trial-by-trial learning 

task posed participants with two bottles of plant-treatment liquids (fertilizers), which participants 

observed being applied in various combinations (one, neither, or both) to a plant. Here, each 

bottle represented a potential cause, one of which, the target, had a causal power of .49, and the 

other was non-effective, having a causal power of 0.1 During the trials, a centrally located plant 

was flanked on both sides by the bottles. Each trial presented a combination of the bottles being 

applied to the plant, after which the participants predicted whether the plant would bloom. 

Therefore, throughout the trials, participants had to synthesize the presented covariation 

information to accurately discern how powerful each of the liquids was in plant blooming. After 

every 12 trials, participants rated how causal they believed each of the liquids to be using a 

number line that spanned from 0 (completely ineffective) to 100 (completely effective). 

 Participants consistently rated the target cause as being more causal when it was 

presented on the right versus the left side of the screen (Goedert & Czarnowski, 2017). One 

explanation for this pattern of results is that right-handers expected a stronger cause to be on the 

right side of space because they exert greater force with their dominant (right) hand. It’s also 

possible, however, that participants rated the cause as being more effective when it was on the 

right side of space because the number line that they used to make their judgments presented a 

spatial layout that was consistent with higher values on the right (100) and lower values on the 

left (0). The latter explanation may be a function of a cognitive transformation that occurs when 

a causal judgment is translated into a numerical estimate (i.e., on a number line). 

                                                           
1 Equation for generative causal power (Cheng, 1997) 𝐶𝑎𝑢𝑠𝑎𝑙 𝑃𝑜𝑤𝑒𝑟 =  

𝑃( 𝑒∣∣𝑖 )−𝑃(𝑒∣~𝑖)

1−𝑝(𝑒|~𝑖)
, where 𝑃( 𝑒 ∣ 𝑖 ) is the 

probability of the outcome in the presence of the cause and 𝑃(𝑒|~𝑖) is the probability of the outcome in the absence 

of the cause. 
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Spatial-Numeric Associations 

The mental number line is a form of cognitive architecture that serves as the basis for our 

accessing numeric information. Being a projection of the understanding of a left-right number 

system where values increase in the rightward direction and decrease in the leftward, the mental 

number line is mapped to the left-right nature of our external spatial field (Zebian, 2005). As a 

result, we are exposed to the biases that coincide with this representation; small numbers are 

routinely associated with the left side of space, and large numbers with the right (Wood, 

Willmes, Nuerk, & Fischer, 2008). These biases often manifest in the form of SNARC effects 

(Spatial-Numerical Association of Response Codes), which are influences that attribute spatial 

characteristics to numerical values (Dehaene, Bossini, & Giraux, 1993). For example, Fias 

(1996) showed how the left and right sides of our body are differentially sensitive to numerical 

values. In this experiment, participants were given a judgment task in which they had to 

determine whether two values were equal. Fias (1996) found that left-hand responses were faster 

with smaller values while right-hand responses were faster with higher values. This is consistent 

with our understanding of the number line, where values increase towards the right and decrease 

towards the left.  

Considering these SNARC effects and the existence of the mental number line, it’s 

possible that Goedert & Czarnowski’s (2017) findings are the result of response effects derived 

from the number lines that were employed in the study. That is, judgments of the target may 

have been artificially inflated or diminished based on the number line that was used to base 

judgments on. When the target cause was presented on the right side of the screen, SNARC 

effects may have seemingly inflated the target’s causal power, since it coincided with the side of 

space associated with greater values.  



 
 

10 
 

Additionally, when participants were using their right hands to respond, they may have 

been subject to the SNARC effect, and subsequently applying the bias to their responses, 

resulting in stronger causal judgments. If the SNARC effect is interfering with the production of 

a judgment that accurately captures a causal belief, perhaps numbers are not the most effective 

means of evaluating causal relations.  

Current Experiment 

 The current work seeks to circumvent these numeric-spatial associations. Goedert and 

Czarnowski’s (2017) work is replicated, save for one crucial change. Instead of producing value 

judgments based on a number line, participants were brought to a screen with a circle that 

contains a gradient-presentation of the color green, with pure green (0,255,0) on the perimeter 

gradually darkening to dark green (0,55,0) in the center. Participants responded by using a 

Logitech game controller that had the cursor mapped to one of two control sticks, either on the 

right or left of the controller. Prior to the trial-by-trial causal learning task, participants learned 

that a darker, more saturated color (i.e., those towards the center of the circle) indicated greater 

causal effectiveness. They were instructed to choose a color that best represents their belief in the 

causal power of the particular plant liquid in question. Once their color was selected, they 

clicked down on the control stick to record their choice. Additionally, the starting position of the 

cursor that participants used to select their color was placed on the upper left of the circle or the 

upper right of the circle to counterbalance potential spatial effects of the cursor starting location.  

  My reasoning for this change to the previous work lies in the way that we transform a 

causal attitude to a value judgment. When we use number lines, we are forced to convert an 

abstract attitude (causal belief) to a tangible form (numeric judgment). Unfortunately, when 

value judgments contain numbers, they are inherently subject to the spatial biases that coincide 
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with the mental number line (e.g., SNARC effect). As such, the saturation of a color’s hue is 

being used as an alternative to absolve the response process of spatial biases in the hopes of 

achieving more accurate causal judgments.  

 Participants’ color selections were assessed by the percent saturation of the chosen color. 

As such, the dependent variable was the participant’s causal judgments in the form of a percent 

saturation of green. Higher saturations (approaching black) represented stronger judgments 

(approaching 100% causal). The variables that were manipulated were similar to those of the 

previous work; the response hand used (right vs. left), the strength of the cause (moderately 

contingent vs. non-contingent) and the location of the target cause (right side of screen vs. left 

side of screen) (Goedert & Czarnowski, 2017). I hypothesized that participants would be 

sensitive to the strengths of the causes. In contrast to the previous Goedert and Czarnowski 

(2017) work, participants did not have direct access to the numeric information of their causal 

judgments. Therefore, they should not be mapping numeric information to the spatial properties 

of the color selector. By removing the influence of numbers and the number line, the current 

work seeks to explain how spatial information contributes to the formation of causal judgments. 

If no pattern of spatial effects arises, that would suggest that individuals are able to able to 

circumvent spatial biases (that are otherwise present when considering numbers) when 

evaluating the strength of causal agents. If spatial effects do arise, however, this would suggest 

that, even in the absence of numeric information, spatial elements are considered when forming 

causal judgments.  
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Methods 

Participants 

 One hundred-seven right-handed Seton Hall University undergraduate students 

participated in exchange for course credit. An a-priori power analysis yielded a sample size of 84 

for a mixed design ANOVA sensitive to a within-between interaction. Using the Goedert & 

Czarnowski (2017) data, I generated an effect size for a partial eta squared of .05. Using G-

Power 3, I calculated a sample size that would achieve .95 power with an expected correlation of 

0 among repeated measures (to be conservative).  

Design 

 The design was a 2 (response hand: right or left) by 2 (location of target: right side of 

screen or left side of screen) by 2 (causal power of cause: .49 or 0) by 2 (starting location of 

cursor: right or left) by 3 (block: 1, 2, or 3) mixed design. Response hand was manipulated 

between-groups and location of target, strength of cause, and cursor starting location was 

manipulated within-groups so that each participant completed two conditions of the experiment 

(one with the target on the left side of the screen and one with it on the right). While the 

presentation of the stimuli was randomized within each block of trials, the ratio of the effect 

(plant blooming) in the presence and absence of the cause (fertilizer being used/not used, 

respectively) remained constant across blocks to preserve the strength of the target cause (causal 

power = .49). 

Materials  

 Cover Story. Participants were read a cover story upon beginning the experiment (See 

Appendix A for full text). Participants imagined that they had been recruited by their landlord to 

help her determine the strengths of the plant fertilizers she has in her garage. Amongst these 
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fertilizers, however, are bottles of colored water that have no effect on plant growth. None of the 

bottles are labeled, so she has tasked the participant with testing out the various bottles to 

determine their effects. To do so, the participants evaluated the strength of each treatment liquid 

as they are poured in various combinations onto the plants. 

Stimuli. In each trial, participants were presented with stimuli derived from Goedert and 

Czarnowski (2017). Figure 1 illustrates an example trial in which the red liquid is applied to the 

plant.  

 
Figure 1. Example prediction screen in trial-by-trial learning task. The red liquid is being applied 

to plant in this trial. The blue liquid is not. Adapted from Goedert and Czarnowski (2017). 

Figure 2 illustrates the potential outcomes of the trial: either this combination of liquids is 

followed by plant blooming or not. 

 
Figure 2. Potential feedback screens in trial-by-trial learning task. Picture on the left indicates 

that this combination of plant liquids made the plant bloom. The picture on the left indicates that 

this combination of plant liquids did not make the plant bloom. Adapted from Goedert and 

Czarnowski (2017). 
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 At the conclusion of each twelve-trial block, the color selector I created was presented to 

participants so they could make their causal judgments for each of the plant liquids (see Figure 

3). The choice of green as the color to be used on the selector was driven by the stimuli used in 

the trial-by-trial learning task. In each of the six conditions (e.g., Figure 1), colored bottles of 

plant liquid are depicted being applied to the plant. If the color on the color selector matched one 

of the colors used for the plant liquids, participants may form an association between the two 

concepts and return biased judgments. Therefore, green was chosen because none of the colored 

liquids used in the stimuli were green in nature. Each of the twelve bands on the color selector 

represent a discrete shade of green, and participants were free to choose their color anywhere on 

the selector. When presented, participants used the game controller to navigate the cursor to the 

color they felt accurately represented their causal judgment of either the target or the alternate 

cause and then confirm their selection using a button press.  

 
Figure 3. Color selector utilized as the assessment measure to capture causal judgments. Callouts 

indicate examples of strengths of judgments but were not present during the experiment.  

 Comprehension Check. Two practice trials preceded the beginning of the causal 

learning task. Participants were presented with the color selector and then trained on how to 

choose their judgments. They were then given practice by being instructed to select a color that 

represents a weak causal judgment and a color that represents a strong causal judgment.  

Weak Causal 

Judgment 
Strong Causal 

Judgment 
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Procedure 

The experimenter read the cover story to the participants. Prior to the beginning of the 

task, participants underwent a series of two practice trials to ensure that they accurately selected 

between the “yes” and “no” response buttons. In these trials, participants saw written prompts 

that instructed them to select either the “yes” or “no” response button on the controller, based on 

the hand they were assigned to use. The “yes” and “no” responses were mapped to either the 

right or left trigger buttons of the controller, depending on which condition they were assigned to 

(left response hand or right response hand). 

During each trial, participants saw two bottles of different colored liquids surrounding a 

potted plant and responded as to whether or not the plant would bloom. As seen in figure 1, if a 

bottle was in the air, it indicated that it was being used in that trial. Considering this, there were 

four combinations of how the liquids could be applied (left only, right only, both, or neither). 

After they made their selection, they were presented with a feedback screen for 2500ms that 

indicated if the plant bloomed during that trial. After twelve trials, the participants saw an 

assessment screen that prompted them to respond to how effective they thought each of the 

treatment liquids were on plant blooming. On each assessment screen, participants saw written 

instructions that reminded them how to use the color selector. Separate assessments were made 

for each liquid on sequentially-presented screens, and after they made their second assessment, 

the next block began. After the third block, the participants were informed that they were testing 

a new set of liquids (indicated by a different set of colored bottles), which was similarly 

completed across three blocks of twelve trials each. Each participant was thus exposed to 72 total 

trials across six blocks (three per condition). At the conclusion of the sixth block, participants 

were debriefed and then dismissed.  
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 Test for Color Blindness. At the conclusion of the causal learning task, participants 

completed the 14-plate Ishihara Color Test (1936) to check for color-blindness, as the dependent 

measure in this experiment required discriminating different saturations of the color green.  

Dependent Measures  

 Causal Judgments. Causal judgments were collected using the color-selector depicted in 

Figure 3. Participants selected their color by using the controller’s joystick to navigate to their 

selection and then using a button input to confirm their selection. The button press instructed the 

program to log both the on-screen coordinates of their selection and the hexadecimal code of the 

selected color. To translate the selected colors to numerical data, I converted the hexadecimal 

color codes that participants selected to “percent saturation” values. Considering the range of 

greens between 0,55,0 (dark green) and 0,255,0 (light green), the percent saturation (x) of the 

selected color was evaluated via the following equation, where y equals the selected color value. 

To create a 0-point, I subtracted 35 from all selected values. That way, if the participant chose 

235, then the equation evaluates out to 100% saturation. Conversely, if they chose 35, then the 

equation evaluates out to 0% saturation. 

𝑋 =  
100(𝑦−35)

220
                                                  (1) 

 Clicking Behavior. Clicking behavior was assessed by logging the coordinates of all on-

screen clicking events. Therefore, each color selection was associated with a percent saturation 

value and a set of (X,Y) coordinates that corresponded to where on-screen each selection was 

made. The color selector was then divided into two regions of interest: a left half and a right half. 

In addition to determining whether there was a bias in the causal judgment, which was not 

mapped to a particular spatial location, I assessed for spatial biases in where on the screen 

participants clicked. For example, a weak causal judgment could be indicated by clicking on 
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either the extreme right or extreme left of the color circle, but perhaps participants still exhibited 

a spatial bias by preferentially clicking on the right side of the color circle.  
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Results 

Fourteen participants were excluded from analyses due to experimenter error (N = 6), technical 

difficulties (N = 3), or participant non-cooperation (N = 5), leaving N = 93 for analyses. No 

color-blind participants participated in the experiment. Hypotheses were tested using Bayes 

Factor Hypothesis testing, which reports a Bayes Factor for inclusion (BF) to compare how well 

the data supports the null versus alternative hypotheses (Wagenmakers et al., 2018). For a 

detailed description of Bayesian Hypothesis Testing, see appendix B. Throughout, Bayes Factors 

for inclusion greater than 3.2 are interpreted as evidence for the alternative hypothesis and those 

less than 0.313 as evidence for the null hypothesis. All Bayesian results reported here were 

qualitatively consistent with the frequentist analyses, which are reported in Appendix B.  

Derived Causal Judgments 

A preliminary Bayesian dependent samples t-test of the derived causal judgments 

revealed that participants were sensitive to the contingency information and able to use the color 

scale to discriminate between the target and the alternative causes. As expected, participants 

judged the target cause (M = 62.21, SD = 29.83) as more causal than the alternative (M = 25.68, 

SD = 28.91;   d = 1.24, BF10 = 5.51e +81). This Bayes Factor suggests decisive evidence in favor 

of the alternative hypothesis (see Appendix Table B1 for interpretation of Bayes Factors) and the 

size of the effect is large given Cohen’s (1988) conventions.  

 Target Cause (Causal Power = .49) Previous research using a numeric scale that 

increased from left to right found that participants rated the target more causal when it appeared 

on the right than left side of space, particularly when using their right hand (i.e., a side by hand 

interaction; Goedert & Czarnowski, 2017). I hypothesized that with the spatially non-linear color 

hue indicator of causal strength there would be no effects of target side nor of the hand used.  

The results are partially consistent with this prediction. Average derived causal judgments for the 
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target cause appear in Figure 4. Inspection of the figure suggests that neither the hand that 

participants used, nor of the side of the screen on which the target appeared, influenced their 

estimates of its causal strength.  

 
    Figure 4. Mean causal judgments of target cause. Error bars are 1 SE.  

 

These impressions were mostly supported by a 2 (hand used: left, right) X 2 (target side: 

left, right) X 2 (cursor start: left, right) x 3 (Block: 1, 2, 3) Bayesian repeated measures ANOVA. 

Table 1 presents the Bayes Factors for inclusion from this analysis. As can be seen in Table 1, 

the Bayesian analysis yielded clear evidence for an absence of an effect for most of the factors in 

this analysis. The one exception is the target side by hand used interaction, for which the 

Bayesian analysis did not yield clear evidence, neither for an effect, nor for an absence of an 

effect. Thus, there were clearly not main effects of the target side, nor of the hand used, as 

observed in previous studies (Goedert & Czarnowski, 2017).  
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Table 1 

Bayesian Analysis of Effects on Target Only 

Model BFinclusion Interpretation 

Block .052 Strong Evidence for Null 

Target Side .096 Strong Evidence for Null 

Hand Used .166 Some Evidence for Null 

Block x Target Side  .040 Strong Evidence for Null 

Block x Hand Used .050 Strong Evidence for Null 

Target Side x Hand Used .506 Inconclusive Evidence 

Block x Target Side x Hand Used .157 Some Evidence for Null 

Note. Interpretations derived from Kass & Rafferty (1995) and Lepink et al. (2017).  

Furthermore, the lack of clear evidence for the null on the target side by hand used 

interaction does not suggest that the effects observed in previous studies (i.e., Goedert & 

Czarnowski, 2017) are likely present here. As can be seen in Figure 4, the “inconclusive” 

interaction actually runs in the opposite direction of that previously observed, with participants 

rating the target as more causal when it appeared on the left side of the screen when they were 

using their right hand.  

Previous research has suggested that right-handed participants are predisposed to a body-

based expectation for a strong cause to occur in their right side of space (i.e., Goedert & 

Czarnowski, 2017). The current results suggest that this effect may have been exacerbated by, or 

even dependent on, how these causal judgments were previously assessed (i.e., number line 

activating spatial biases). In the current analysis of the target cause, no substantial evidence for 

hand used or target side arose. This suggests that even when assessing the relatively “strong” 

cause appearing on the right side, this body-based expectation did not influence judgments when 

using the color selector scale. 
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Alternative Cause (Causal Power = 0). Previous research has found that the body-based 

spatial-numeric association did not arise for non-causal events (Goedert & Czarnowski, 2017). 

When using a scale that doesn’t activate spatio-numeric biases, I would further expect no spatial 

effects on causal judgments of the alternative cause. Once again, results are somewhat consistent 

with this prediction. 

 
Figure 5. Mean causal judgments of alternative cause. Error bars are 1 SE.  

 

Figure 5 depicts mean derived causal judgments of the alternative cause. Examination of figure 5 

suggests that estimates of causal strength were not influenced by hand used nor the side of space 

the alternative cause appeared.  

A 2 (hand used: left, right) X 2 (target side: left, right) X 2 (cursor start: left, right) x 3 

(block: 1, 2, 3) Bayesian repeated measures ANOVA supported this impression. Table 2 presents 

the Bayes Factors for inclusion from this analysis. As can be seen in Table 2, the Bayesian 

analysis yielded some evidence for the absence of effects for most of the factors in this analysis. 

Two interactions yielded strong evidence for the null, block by hand used and block by target 
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side by hand used. One factor, block, yielded very strong evidence for the null. Taken together, 

the analysis of effects in Table 2 suggests that no main effects of hand used or side of space 

arose, once again deviating from previous findings (i.e., Goedert & Czarnowski, 2017). 

Table 2 

Bayesian Analysis of Effects on Alternative Only 

Model BFinclusion Interpretation 

Block .026 Very Strong Evidence for Null 

Target Side .177 Some Evidence for Null 

Hand Used .199 Some Evidence for Null 

Block x Target Side .250 Some Evidence for Null 

Block x Hand Used  .039 Strong Evidence for Null 

Target Side x Hand Used .216 Some Evidence for Null 

Block x Target Side x Hand Used .058 Strong Evidence for Null 

Note. Interpretations derived from Kass & Rafferty (1995) and Lepink et al. (2017) 

 As can be seen in figure 5, participants using their left hand exhibited practically no 

differences in mean derived causal judgments of the alternative, regardless of the side of the 

screen it appeared on. Interestingly, when using their right hands, the interaction between target 

side and hand used seems to be consistent with what we would have expected for causal 

judgments of the target cause. Participants made weaker judgments when the alternative was 

presented on the left side and stronger judgments when the alternative was presented on the right 

side, but there is large variability around the observed means and the Bayesian analysis suggests 

some evidence for the null on the target side by hand used interaction.  

Clicking Behavior  

 No effects were found for the variables of hand used and target side on causal judgments. 

Does this mean that participants were completely unbiased in their responses? Not necessarily. 

Because participants could use either the left or the right sides of the color selector for high and 
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low causal judgments, it is possible that biases arose in participants’ clicking behavior, as they 

were free to make their selections anywhere on the figure. Additionally, participants’ cursor was 

randomly placed on the left or right side of the screen prior to viewing the color selector. It is 

possible that participants’ whose cursors began on the left side of the screen favor the left side of 

the color selector and vice versa (Garza, Eslinger, & Barrett, 2008).   

Figure 6 once again depicts the color selector I created for the task, with the addition of a 

vertical line that represents the middle of the color selector, x-coordinate 227. To assess clicking 

behavior, the coordinates of color selections were captured when participants made their causal 

judgments. If an x-coordinate less than 227 is selected, that means that selection was made on the 

left half of the color selector. If an x-coordinate greater than 227 is selected, that means that 

selection was made on the right half of the color selector.   

 

Figure 6. Color selector used when making causal judgments. The vertical line bisects the selector into 

left and right halves (X-Coordinate = 227). 

Figure 7 depicts the mean x-coordinates chosen by participants across all conditions 

when making judgments. Horizontal lines indicate the cutoff point (x-coordinate = 227) that 

divides the color selector into left and right halves. Examination of Figure 7 suggests that when 

when the cursor began on the right side of the screen, on average, participants made their 
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selection on the right side of the color selector. Similarly, when the cursor began on the left side 

of the screen, on average, participants tended to make their selection on the left side of the 

screen, or just beyond the midway point of the color selector. People who responded with their 

left hands, whose cursor began on the left side of the screen, however, seemed to exhibit a 

stronger leftward bias when making their causal judgments for the alternative cause when it was 

presented on the left side of the screen. 

 

 
Figure 7. Mean x-coordinates across spatial conditions. This graph presents participants’ mean x-

coordinate selections by the variables of hand used, target, target side, and starting cursor location. 

Horizontal lines indicate the center of the color selector (x-Coordinate = 227). Error bars are 1 SE. 

 

In order to determine whether or not a clicking bias was present, single-sample Bayesian 

t-tests were run against the midpoint coordinate of the color selector, 227. When the cursor 

began on the left side of the screen, selected x-coordinates were tested to see if the mean chosen 

coordinate was less than 227, implying that these selections favored the left half of the color 

target cause alternative cause 
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selector. The average chosen x-coordinate (M = 215.6, SD = 89.52; d = -.13, BF10 = 10.65) 

exhibits moderate evidence in favor of the alternative hypothesis, that when the cursor began on 

the left side of the screen, participants’ color selections were biased towards the left side of the 

screen.  

When the cursor began on the right side of the screen, selected x-coordinates were tested 

to see if the mean chosen coordinate was greater than 227, implying that these selections favored 

the right half of the color selector. The average chosen x-coordinate (M = 273.9 SD = 91.06; d = 

.52, BF10 = 7.695e + 25) exhibits decisive evidence in favor of the alternative hypothesis, that 

when the cursor began on the right side of the screen, participants’ color selections were biased 

towards the right side of the screen.  

Taken together, these results suggest that clicking behavior was influenced by where on-

screen the cursor began prior to making color selections. When comparing the effect sizes of 

chosen x-coordinates between left (d = -.13) and right (d = .52) on-screen cursor starting 

locations, there does appear to be a slight rightward bias in clicking behavior. As previously 

mentioned, however, one select group of respondents seemed to exhibit a stronger than average 

leftward bias in their clicking behavior. When participant’s cursor began on the left side of the 

screen and they were using their left hand to respond to the alternative cause when it was 

presented on the left side of the screen, the average selected coordinate (M = 183.1 SD = 99.99; 

d = -.44, BF10 = 92.05) exhibits very strong evidence in favor of the alternative hypothesis; that 

this specific group exhibited a leftward bias in their clicking behavior. In contrast to the previous 

result, this leftward shift could be the product of an overwhelming amount of non-right 

information supplementing the non-causal nature of the alternative cause, thus overriding the 
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aforementioned rightward preference. Because it is the weaker of the two causes, it is more 

strongly associated with the weaker of their two hands and its respective side of space – the left. 
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Discussion 

 In this experiment, I created an alternate assessment measure (color selector) of causal 

effectiveness judgments to explore how spatio-numeric biases influence causal judgments in 

trial-by-trial learning tasks. Decisive evidence was found that supports participants’ use of the 

scale as an alternative to a traditional numeric measure (e.g., number line). More importantly, no 

main effects on causal judgments for the variables of hand used, target side, and cursor starting 

location were found, which suggests that the color selector measure mitigated spatio-numeric 

effects that would have otherwise arisen when using a number line (e.g., Goedert & Czarnowski, 

2017). In fact, the only robust spatial influence found was in participants’ clicking behavior, only 

suggesting their preferences for where on the color selector they made their selections while 

leaving their actual judgments unaffected. Thus, using color as a means of assessing causal 

strength serves as a viable alternative when attempting to make spatial biases less salient in trial-

by-trial causal learning tasks. 

Accuracy of Judgments 

 While participants were able to successfully use the color selector to discriminate 

between the alternative cause (causal power = 0) and the target cause (causal power = .49), they 

were not able to do so with great accuracy. This was to be expected, however, as participants 

were not using an exact number system (i.e., number line), nor were they instructed to think in 

terms of numbers, when making their responses. The color selector forced participants to 

transform their causal judgments into non-numerical approximations. Therefore, even though the 

alternative cause (Causal Power = 0) was never present during instances of plant blooming, 

participants still gave it a mean rating of 25.68 in terms of its effectiveness in making the plant 
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bloom. Similarly, while the target cause (Causal Power = .49) only made the plant bloom in 

about half of its total applications, participants’ mean judgment of the target was still 62.21.  

Limitations 

 Handedness. One major limitation of the current experiment is that it used an entirely 

right-handed sample. Previous research has found that right-handed and left-handed individuals 

experience different physiological and behavioral biases. For example, Petersen et. al (1989) 

found that, on average, right-handed individuals experience a 10% greater grip strength when 

using their right hand when compared to their left. Left-handed individuals, however, experience 

no such difference. Right-handed individuals also overestimate their reaching ability when 

using their right arm when compared to their left (Linkenauger et al., 2009). Do left -handed 

individuals experience an analogous bias? Additionally, Bareham et al. (2014) found that 

right-handed individuals experience a rightward shift in their spatial attention when drowsy. 

Left-handed individuals, however, do not experience a comparable drowsiness-induced 

leftward shift in their spatial attention (Bareham, Bekinschtein, Scott, & Manly 2015). 

Considering the presence of these differences, it is possible that some unknown bias inherent to 

left-handed individuals would yield different results in such a trial-by-trial learning task. 

 Stimuli. While the color selector used in the study did not overtly evoke spatio-

numeric concepts, it is possible that participants were able to superimpose a number system 

on the color selector and use that to inform their judgments. Examination of the color selector 

reveals twelve distinct color areas presented as a bullseye. Participants may have therefore 

defaulted to counting the colored bands and then using a spontaneous 1-12 scale to ground 

their judgment, simply picking the representative colored band. Were this to be the case, 

however, it would provide interesting insight in that, even when using a manufactured number 
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system, participants’ judgments were not influenced by the spatial factors upon which the 

number system was derived. Meaning, even after counting through and assigning values from 

1-12 to each of the bands, spatial factors such as response hand, cursor starting location, and 

side of screen did not affect their proxy numerical judgment.   

Implications and Future Directions 

 These findings suggest that individuals can use a color-based assessment to measure 

causal attitudes. The importance of this finding is twofold. First, it suggests that we do not 

necessarily rely on a number-based system in order to make tangible our understanding of causal 

strength. Instead, we may form a more abstract causal concept that is only transformed into a 

concrete output (e.g., number, color) when an assessment measure provokes a specific response. 

Second, it suggests that a color-based measure is able to mitigate the spatio-numeric 

biases that are inherent to using number-based measures. This is important because SNARC 

effects can have a marked influence on participant responses (Dehaene, Bossini, & Giraux, 

1993). As is the case with the current experiment, where concepts of left and right are very 

salient, using a number line as an assessment measure for causal judgments exacerbates the 

mapping of lower values to the left and higher values to the right, ultimately leading to 

artificially inflated or deflated causal judgments (Fias, 1996). Goedert and Czarnowski’s (2017) 

results may have been subject to this, as the number lines used therein directly mapped numerical 

values to sides of space. In the current experiment, use of the color selector may have produced 

more accurate judgments because there was no overt mapping of numerical values to the 

measure’s spatial characteristics. 

 While there were no effects for these spatio-numeric biases, that does not mean that 

spatial concepts were not activated. The spatial concepts of left and right were perhaps made 
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salient through cursor movement. Because participants used a cursor to make selections on the 

color selector, they were free to move the cursor around the space until they found a color that 

accurately captured their causal judgment. Due to the nature of the measure, this means they 

could select both low and high judgments using the left and right halves of the color selector. 

With the left and right sides of the color selector being functionally identical, some form of 

rightward bias must have been driving participants’ clicking behavior. Because right-handed 

individuals associate the right side of space with their dominant hand, and thus better act within 

it (e.g., Linkenauger et al., 2005), perhaps the right half of the color selector was more conducive 

to “selecting” their causal judgment, as selecting a color required a physical action (navigating 

cursor and button press). 

The only time this pattern did not hold was when participants were evaluating the 

alternative cause presented on the left side of the plant, using their left hand, when their cursor 

started on the left side of the screen. Considering how wholly “non-right” this specific scenario 

is, participants may have recognized that their conceptualization of “right” (i.e., being causal; 

Linkenauger et al., 2005; Petersen et al., 1989) was not made salient by the information in this 

scenario, and thus they could not meaningfully use the right side of the color selector to make 

their judgments. Figure 7 shows that under almost identical conditions, save for response hand 

(right instead of left), clicking behavior for judgments of the alternative was practically at the 

mid-point of the color selector. Considering this disparity, response hand must have played an 

important role in how salient the concepts of left and right were to the participants. This would 

be expected, given the relationship between force and our understanding of causality (e.g., 

Wolff, Ritter, & Holmes, 2014; Rakison & Krogh, 2012).  
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 The current study provides evidence that a non-numeric assessment for causal judgments 

serves as a viable alternative to number-based assessments. However, this experiment was 

conducted in the context of a task that only explored generative causes (those that produce 

effects). What if some of the stimuli in the task had a preventative effect on making plants bloom 

(e.g., growth inhibitors; Goedert & Czarnowski, 2017)? In cases such as this, SNARC effects 

may serve different roles. For example, a growth inhibitor presented on the left side of space may 

be reported to have exacerbated preventative strength. If there is a cognitive congruency between 

the preventative stimulus and the semantic idea of left being “less” or “reduced”, participants 

may report that it has more potential to cause less growth (i.e., artificially inflated preventative 

power). Therefore, future work should attempt to adapt the use of a color selector so that it can 

capture both preventative and generative causal judgments in order to further tease apart these 

spatial influences. 
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Appendix A 

 Imagine the following. In this part of the experiment you are going to learn about the 

effects of different liquids on Calendula flower blooming. Calendula flowers are medicinal and 

can be used as a topical treatment for cuts and burns. Imagine that while looking though the 

garage of the house you have just rented, you find some very interesting-looking containers of 

liquid. Your landlady tells you that some of them are very expensive plant-treatment liquids and 

some of them are just colored water. Of the plant treatment liquids, she remembers that some of 

them are flower-growth stimulators (fertilizers) and that the liquids came in various strengths -- 

but she does not remember which liquid is which.  She also thinks some liquids might just be 

colored water. She does want you to find out, however, and is willing to reduce your rent if you 

can figure it out. You decide to test whether these different liquids will affect the blooming of 

Calendula flowers. To figure it out, you are going to investigate the effects of two different sets 

of liquids as they are poured in various combinations onto different Calendula plants (Goedert & 

Czarnowski, 2017). 
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Appendix B 

Bayesian Statistics 

In order to predict the absence of an effect, I had to test a null hypothesis; that participants will 

not be sensitive to effects that arise as a result of spatial variables (hand used, target side, and 

cursor location). Frequentist statistical methods are not comparative in nature, and thus cannot 

test for evidence against versus evidence in favor of a null hypothesis (Jarosz & Wiley, 2014). In 

order to test my hypothesis, I employed Bayesian statistical methods, which examine how well 

the data fits both the null and alternative hypotheses. Bayesian statistics centers around the 

construction of models that best explain data, and then testing those models against competing 

hypotheses (Wagenmakers et al., 2018). The test statistic, the Bayes Factor, represents the ratio 

of how much more likely the data is to occur under the null versus the alternative hypothesis 

(Jarosz & Wiley, 2014). The calculation of the Bayes Factor, therefore, considers these 

likelihoods: 

𝐵𝐹10 =  
Likelihood of data under 𝐻1 

Likelihood of data under 𝐻0
 

Considering this equation, a Bayes Factor of 1 would mean that the data is equally likely to occur 

given either the null or alternative hypothesis (Kass & Raftery, 1995). A Bayes Factor of less 

than 1 would indicate that the data is more likely to occur under the null hypothesis than it is 

under the alternative hypothesis. A Bayes Factor of greater than 1 indicates that the data is more 

likely to occur under the alternative hypothesis than it is under the null hypothesis. 

Interpretations of Bayes Factors are as follows: 
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Table 1B 

 

Interpretation of Bayes Factors 
                         Bayes Factor (BF10)                                                  Evidential Strength 

>100 Decisive evidence for alternative 

32-100 Very Strong evidence for alternative 

10-32 Strong evidence for alternative 

3.2-10 Some evidence for alternative 

0.312 – 3.2 Inconclusive evidence for alternative or null 

0.100 – 0.313 Some evidence for null 

0.031 – 0.100 Strong evidence for null 

0.010 – 0.031 Very Strong Evidence for null 

< 0.010 Decisive evidence for null 

Note. Derived from Kass & Raftery (1995) and Leppink, O’sullivan, and Winston (2017) 

Using the Bayes Factor, comparisons can be drawn that contrast the likelihood of an effect’s 

presence versus its absence in a given data set.  

 The primary analysis employed here was a 2 (Hand used) X 2 (Target Side) X 2 (Causal 

Power) X 2 (Cursor Start) Bayesian repeated measures ANOVA was run, which produced an 

excess of 150 models. In order to analyze only relevant models, specific predictors, or effects, 

need to be examined in isolation. This is accomplished by evaluating the Bayes Factor of 

inclusion (BFinclusion). This statistic represents the support for each model that contains the 

predictor/effect of interest compared to models that exclude the predictor/effect of interest. 

Conceptually, this statistic explains the extent to which the data (across all models) are supported 

by the presence of the predictor/effect. On the other hand, the inverse of the BFinclusion (1/ 

BFinclusion), represents the support for the null hypothesis based on the influence of the factor of 

interest. A low BFinclusion for a particular factor would thus mean that the data are relatively 

unchanged when you consider the specific influence of that factor (Kass & Raftery, 1995). A 
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high BFinclusion, on the other hand, suggests that the data strongly support the influence of that 

factor when it is present.  
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Appendix C 

Frequentist Statistics 

Table 1C 

Repeated Measures ANOVA on Derived Causal Judgments 

 SS DF MS F P 

Block 356.637 2 178.318 0.638 0.53 

Block ✻ Hand Used 116.692 2 58.346 0.209 0.812 

 

Target 
372661.95 1 372661.95 127.054 < .001 

Target ✻ Hand Used 0.005 1 0.005 1.559e -6 0.999 

 

Side of Screen 
150.784 1 150.784 0.299 0.586 

Side of Screen ✻ Hand Used 160.602 1 160.602 0.319 0.574 

 

Block ✻ Target 
1261.271 2 630.635 0.842 0.432 

Block ✻ Target ✻ Hand Used 290.504 2 145.252 0.194 0.824 

 

Block ✻ Side of Screen 
845.517 2 422.758 1.378 0.255 

Block ✻ Side of Screen ✻ Hand Used 452.37 2 226.185 0.737 0.48 

 

Target ✻ Side of Screen 
642.097 1 642.097 0.59 0.445 

Target ✻ Side of Screen ✻ Hand Used 2162.039 1 2162.039 1.985 0.162 

 

Block ✻ Target ✻ Side of Screen 
1201.83 2 600.915 0.771 0.464 

Block ✻ Target ✻ Side of Screen ✻ Hand Used 729.152 2 364.576 0.468 0.627 

Note.  Type III Sum of Squares 

 

Table 2C 

Repeated Measures ANOVA on Derived Causal Judgments for Target Only 

 

  SS DF MS F P 

Block 1325.38 2 662.69 1.082 0.341 

Block ✻ Hand Used 383.1 2 191.55 0.313 0.732 

 

Target Side 
85.28 1 85.285 0.108 0.743 

Target Side ✻ Hand Used 1750.58 1 1750.581 2.211 0.14 

 

Block ✻ Target Side 
16.35 2 8.173 0.013 0.987 

Block ✻ Target Side ✻ Hand Used 1156.99 2 578.495 0.927 0.398 

Note.  Type III Sum of Squares 
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Table 3C 

Repeated Measures ANOVA on Causal Judgments for Alternate Only 
 SS DF MS F P 

Block 292.53 2 146.26 0.352 0.704 

Block ✻ Hand Used 24.1 2 12.05 0.029 0.971 

 

Target Side 
707.6 1 707.6 0.883 0.35 

Target Side ✻ Hand Used 572.06 1 572.06 0.714 0.4 

 

Block ✻ Target Side 
2031 2 1015.5 2.199 0.114 

Block ✻ Target Side ✻ Hand Used 24.53 2 12.27 0.027 0.974 

Note.  Type III Sum of Squares 
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