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ABSTRACT 

A plasma actuator was operated at altitudes from 0 to 18288 meters to determine 

the mechanisms leading to decreased force production at low pressures. The actuator was 

driven with a 5 kHz sine wave and a peak to peak voltage of 13.4 kV at pressures of 760, 

429, 321, 226, and 88 Torr. A passive measurement technique called the capacitive V-dot 

probe was adapted to the actuator in order to resolve the spatiotemporal evolution of the 

surface potential and electric field on the dielectric surface. At low pressures up to 20 

times more plasma is present than at atmospheric conditions. Average force production is 

calculated and shown to decrease at lower pressures due to the fact that up to 88% of the 

plasma is created in regions where the electric field is approximately zero. The calculated 

average body force shows a slight increase up to a pressure of 429 Torr before trending to 

zero at lower pressures. Performing a power analysis shows that as pressure is decreased 

more power is used creating plasma than accelerating it, leading to a decrease in 

efficiency. 
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NOMENCLATURE 

Symbol Description  

C1  capacitance between exposed electrode and dielectric surface      

C2  capacitance between the dielectric and the buried electrode     

C3  capacitance due to geometric arrangement of plasma actuator      

Cint  op-amp integrator capacitor value      

d  dielectric material thickness       

e  electric charge      

εr  dielectric constant 

εo  permittivity of free space  
  

      

E  electric field  
 

  
  

 ⃑   induced force     

I  current     

K1       calibration factor due to charging of bulk capacitance [
 

  
]    

K2   calibration factor due to charging of dielectric surface [
 

  
]  

K3   calibration factor due to polarization charging of dielectric surface 

ni   ion density [
              

   ] 

N   number of samples 

P   power     

V   plasma volume [
 

  ] 

Rint   op-amp integrator resistor value     
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σ  surface charge density [
 

  ] 

Vac  applied voltage      

Vprobe  V-dot probe signal     

Vsurf  surface potential due to charge deposition       

Vnet  total surface potential on dielectric surface      

VMax  potential due to capacitive voltage division and polarization       

 

 

 



 

 

1. INTRODUCTION 

This introductory section provides an overview of single dielectric barrier 

discharge (SDBD) plasma actuators, operating characteristics of the actuator, and recent 

research performed. 

 

1.1. DBD ACTUATOR INTRODUCTION 

Single dielectric barrier discharge plasma actuators have shown promise as 

reliable and easy to use active flow control devices [1-4] . The induced flow that the 

actuator produces has been shown to delay stall and separation over an airfoil, in turn 

maintaining lift at high angles of attack [2, 5-8]. SDBD plasma actuator parameters such 

as material thickness, type of dielectric material used, applied waveform shape and 

frequency, and actuator geometry have been shown to affect the discharge characteristics 

and therefore the effectiveness of the actuator [9-13].  

The SDBD plasma actuator consists of a dielectric material and two electrodes 

arranged in an asymmetrical geometry as shown in Figure 1.1. Copper tape is most 

commonly used for the electrodes, while glass, Kapton tape, Teflon, and Macor ceramic 

are commonly used as the dielectric material. One electrode is placed on the dielectric 

surface exposed to ambient air conditions, while the other electrode is grounded and 

covered by a dielectric material on the opposite side of the dielectric. These electrodes 

are referred to as the exposed and buried electrodes, respectively. To operate an actuator, 

a high frequency high voltage AC waveform (from a few kilovolts to tens of kilovolts; 

frequencies in the kHz range) is applied between the electrodes.  

file://minerfiles.mst.edu/dfs/research/mae/aplab/nonrestrictedaccess/nichols/Papers/Thesis%20Drafts/Draft%201.doc%23_ENREF_1
file://minerfiles.mst.edu/dfs/research/mae/aplab/nonrestrictedaccess/nichols/Papers/Thesis%20Drafts/Draft%201.doc%23_ENREF_2
file://minerfiles.mst.edu/dfs/research/mae/aplab/nonrestrictedaccess/nichols/Papers/Thesis%20Drafts/Draft%201.doc%23_ENREF_5
file://minerfiles.mst.edu/dfs/research/mae/aplab/nonrestrictedaccess/nichols/Papers/Thesis%20Drafts/Draft%201.doc%23_ENREF_9
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Figure 1.1: Schematic diagram of a DBD plasma actuator. The actuator controls the air 

flow by inducing a body force on the fluid. 

 

 

1.2. DBD ACTUATOR OPERATION 

During normal operation of the plasma actuator, the plasma ignites and 

extinguishes twice during the applied waveform period. The first half cycle, called the 

forward stroke, is when the voltage applied on the exposed electrode is negative going. 

During this half of the cycle electrons are transferred from the electrode to the dielectric 

surface. These electrons collide with neutral air particles creating ions and forming the 

plasma. The plasma then quenches and the voltage goes from being negative to positive. 

During the back stroke, or positive-going voltage, electrons are drawn back to the 

exposed electrode from the dielectric surface. They again collide with neutral air particles 

causing the second ignition of the plasma. The plasma quenches again when the voltage 

is no longer positive-going. As plasma ions are created they are simultaneously 

accelerated downstream by the electric field present between the electrodes. Ions transfer 

momentum to the surrounding neutral air molecules through collisions creating an 

induced flow tangential to the dielectric surface. This flow is the mechanism for 



 

 

3 

aerodynamic control by the actuator. Momentum transfer collisions occur close to the 

dielectric surface, usually in the sub-boundary layer region. Gregory et al. have shown 

that the body force produced by a plasma actuator is due to the acceleration of plasma 

ions through an applied electric field and the subsequent collisions with neutral particles 

[14]. This force is governed by ion density and the applied electric field, as shown in Eq. 

(1). 

 
  ⃑   ∫∫   ( ⃑  ) ⃑⃑( ⃑  )  ⃑   

(1) 

 

1.3. PREVIOUS RESEARCH ON DBD ACTUATORS AT HIGH ALTITUDE 

The amount of force produced by a SDBD plasma actuator depends heavily on a 

number of parameters mentioned previously. The environment in which the actuator 

operates is one of the most influential factors affecting overall performance. Operating a 

plasma actuator in a low pressure environment leads to an increase in power 

consumption, a larger plasma formation region, and an induced flow velocity that 

increases initially, but then decreases [14-21]. Gregory et al. found a linear relationship 

between force production and the ambient atmospheric conditions, with the force going 

to zero in vacuum conditions [14]. They also found a nonlinear relationship between 

electric field strength and pressure, attributing the decrease in field strength as pressure 

decreases to the variation of breakdown voltage as the neutral density changes. Similar 

results regarding the change in the average electric field were found by Litvinov et 

al.[15]. They also demonstrated that there is an increase in force production down to 

pressures of 200 Torr due to an increase in the volume of the plasma. This leads to an 

increase in the number of plasma ions available for momentum transfer. Following this 

file://minerfiles.mst.edu/dfs/research/mae/aplab/nonrestrictedaccess/nichols/Papers/Thesis%20Drafts/Draft%201.doc%23_ENREF_14
file://minerfiles.mst.edu/dfs/research/mae/aplab/nonrestrictedaccess/nichols/Papers/Thesis%20Drafts/Draft%201.doc%23_ENREF_14
file://minerfiles.mst.edu/dfs/research/mae/aplab/nonrestrictedaccess/nichols/Papers/Thesis%20Drafts/Draft%201.doc%23_ENREF_14
file://minerfiles.mst.edu/dfs/research/mae/aplab/nonrestrictedaccess/nichols/Papers/Thesis%20Drafts/Draft%201.doc%23_ENREF_15
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study, Benard et al. used pitot tube measurements to show that the induced velocity 

increases as the pressure drops from 760 Torr, where the velocity is 2.5 m/s, down to 456 

Torr, where the velocity is 3.5 m/s [16, 17]. Pressures below 456 Torr show the induced 

velocity decreasing. Another study performed by Benard et al. found an increase in 

electric wind velocity down to pressures of 350 Torr at which point the induced velocity 

began decreasing [16]. An increased mass flow rate can be achieved down to pressures of 

350 Torr by increasing the grounded electrode length, but at lower pressures this affect 

becomes greatly reduced.  A study performed by Wu et al. produced results that show a 

maximum induced velocity of approximately 1.5 m/s at 445 Torr, which is in good 

agreement with Benard et al. [17, 18]. They also showed that below 45 Torr the plasma 

formed on the dielectric surface switches from a filamentary dominated discharge to a 

glow dominated discharge. Abe et al. demonstrated the highly non-linear fashion in 

which ambient pressure affects the induced velocity and thrust generated [19]. Their 

work shows an increase in thrust as the pressure drops to approximately 600 Torr before 

trending to zero. Another study performed by Benard and Moreau also showed that a 

decrease in pressure results in increased power consumption as well as an increase in 

induced flow velocity from 3 m/s at 760 Torr to 5 m/s at 287 Torr.  

To gain a better understanding of the fundamental operation of the plasma 

actuator it is necessary to study the correlation between operating parameters and the 

plasma actuator characteristics. In this study the actuator is operated in a simulated high             

altitude environment in order to understand the effects of low pressure on the overall 

charge deposition, dielectric surface potential, electric field strength, and fundamental 

force production mechanisms.  

file://minerfiles.mst.edu/dfs/research/mae/aplab/nonrestrictedaccess/nichols/Papers/Thesis%20Drafts/Draft%201.doc%23_ENREF_16
file://minerfiles.mst.edu/dfs/research/mae/aplab/nonrestrictedaccess/nichols/Papers/Thesis%20Drafts/Draft%201.doc%23_ENREF_17
file://minerfiles.mst.edu/dfs/research/mae/aplab/nonrestrictedaccess/nichols/Papers/Thesis%20Drafts/Draft%201.doc%23_ENREF_16
file://minerfiles.mst.edu/dfs/research/mae/aplab/nonrestrictedaccess/nichols/Papers/Thesis%20Drafts/Draft%201.doc%23_ENREF_17
file://minerfiles.mst.edu/dfs/research/mae/aplab/nonrestrictedaccess/nichols/Papers/Thesis%20Drafts/Draft%201.doc%23_ENREF_18
file://minerfiles.mst.edu/dfs/research/mae/aplab/nonrestrictedaccess/nichols/Papers/Thesis%20Drafts/Draft%201.doc%23_ENREF_19
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2. EXPERIMENTAL TECHNIQUES AND SETUP 

This section provides an overview of how the experiment is set up and carried out 

as well as the details for each piece of equipment used. Specifically, this section covers 

the operation of a V-dot probe and its calibration, plasma actuator construction, V-dot 

probe electronics, and the high altitude testing chamber.  

 

2.1. BASIC PLASMA ACTUATOR OPERATION 

Understanding the experimental procedure requires an understanding of how 

charge buildup on the dielectric surface leads to plasma formation. The discharge mode 

of the DBD exists as discrete microdischarges, not as one continuous discharge [4]. 

These microdischarges deposit charge onto the dielectric surface which reduces the 

applied electric field at that particular location. This limits the region of expansion of the 

plasma and is the cause for its self-limiting behavior. Furthermore, the structure of the 

plasma has been shown to be vastly different between the forward and backward strokes 

[22].  The electric potential at the exposed electrode is well-defined since it is equal to the 

applied potential. Likewise, the potential on the buried electrode is known (in this 

configuration it is the ground reference). The potential build-up on the surface of the 

dielectric, however, depends on two things: the capacitance division that is inherent in the 

actuator design and the surface-plasma interaction [23, 24]. Even when there is no 

breakdown and plasma does not form, the presence of some non-zero potential is present 

due to the polarization effect of the dielectric. In order to determine the potential on the 

dielectric surface as a function of space and time we use a series of capacitive V-dot 

probes (shown in Figure 2.1).  

file://minerfiles.mst.edu/dfs/research/mae/aplab/nonrestrictedaccess/nichols/Papers/Thesis%20Drafts/Draft%201.doc%23_ENREF_4
file://minerfiles.mst.edu/dfs/research/mae/aplab/nonrestrictedaccess/nichols/Papers/Thesis%20Drafts/Draft%201.doc%23_ENREF_22
file://minerfiles.mst.edu/dfs/research/mae/aplab/nonrestrictedaccess/nichols/Papers/Thesis%20Drafts/Draft%201.doc%23_ENREF_23
file://minerfiles.mst.edu/dfs/research/mae/aplab/nonrestrictedaccess/nichols/Papers/Thesis%20Drafts/Draft%201.doc%23_ENREF_24
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To determine the potential on the dielectric surface as a function of time and 

space, the buried electrode is broken into 14 electrically isolated segments (shown in 

Figure 2.1) which are grounded through an op-amp based active integrator circuit, as 

opposed to being grounded directly (shown in Figure 2.2) . An electrically isolated 

segment combined with an active integrator circuit make-up what is called a V-dot probe. 

Each V-dot probe is 2.5 mm x 5 cm with the entire array of 14 probes arranged in a 

staggered formation. Since the plasma extent grows as the ambient pressure decreases, 

the probe array is spaced such that the surface potential and electric field far from the 

exposed electrode edge can be calculated.  

The numbered probes in Figure 2.1 correspond respectively to downstream 

distances of  x =  1.00, 2.25, 3.50, 4.75, 7.50, 9.75, 12.50, 14.75, 20.00, 24.75, 30.00, 

34.75, 40.00, and 44.75 mm. To keep cross-talk between the individual probes at a 

minimum one V-dot probe is used at a time. This signal is passed through the vacuum 

chamber via a BNC-BNC pass through while the other 13 probes are shorted directly to 

ground. In this way the surface potential is stitched together from running the actuator at 

the same operating condition 14 different times. To ensure that the plasma discharge 

propagates downstream as it would with an un-segmented buried electrode, the copper 

surrounding the V-dot probes is also grounded.  

The integrator circuit sums the current that is due to the charging of the bulk 

capacitance as well as the current that charges the dielectric surface. The former of these 

effects does not contribute to the surface potential buildup on the dielectric which is why 

it is necessary to calibrate the circuit response for each of these effects separately. This is 

done through two different calibrations, described in the following sections.  
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Figure 2.1: The spacing of the V-dot probes is such that at low pressures the charge on 

the dielectric surface can be measured over the entire extent of the plasma, not just close 

to the exposed electrode. 

 

 

 

Figure 2.2: Each buried segmented electrode is connected to an op-amp based integrator 

circuit with a large resistor in parallel (50 MΩ in this experiment) with the integrating 

capacitor, Cint. 

 

 

2.2. ANALYSIS OF A CAPACITIVE V-DOT PROBE 

An analysis of any one of the signals from a particular op-amp integrator circuit is 

performed in the following steps. Using the first calibration factor, K1, the displacement 

current due to bulk charging is subtracted from the raw signal received from circuit. The 

remaining current is due to the physical charge deposition onto the dielectric surface. 

Dielectric 

Exposed Electrode (VAC)
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Using the second calibration factor, K2, it is possible to determine the surface potential 

due to this charge buildup. Letting Vprobe,i(t) be the signal from the ith probe, the surface 

potential at a probe location, Vsurf,i(t), due to charge accumulation on the dielectric 

surface with an applied waveform Vac(t) is given by Eq. 2. The total surface potential, 

Vnet,i(t), is then found by adding Vsurf,i(t) to the surface potential due to the capacitive 

voltage division/polarization effect of the dielectric material, VMax, as is shown in Eq. 3. 

The amount of charge that is physically deposited onto the surface of the dielectric is 

readily calculated using Eq. 4. 

It is important to note that the op-amp integrator signal is an integral over time 

with respect to an initial starting condition. Therefore, it is necessary to start each 

measurement from a known starting condition, that is, an uncharged dielectric surface. To 

achieve this, a solvent (in this experiment, acetone) is used to wipe the surface of the 

actuator to remove the long living DC charge [26] that exists between runs of the 

actuator.  

       ( )  
        ( )       ( )

  
 

(2) 

 

       ( )         ( )       (3) 

 

    (
    

 
)        

(4) 

 

2.2.1. Charging of the Bulk Capacitance – 1
st
 Calibration. Production of the 

SDBD body force that allows for flow control comes from the creation and acceleration 

of ions. The acceleration of the ions occurs due to an electric field that originates at the 

file://minerfiles.mst.edu/dfs/research/mae/aplab/nonrestrictedaccess/nichols/Papers/Thesis%20Drafts/Draft%201.doc%23_ENREF_26
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exposed electrode and terminates on the buried electrode. Due to the geometry of the 

plasma actuator, it is necessary to include the capacitance C3 (shown in both Figure 2.2 

and Figure 2.3). This is because some electric field lines pass through the dielectric 

material and terminate on the buried electrode, directly connecting the two electrodes and 

providing a parallel path for additional displacement current to flow. It should be noted 

that although this current is always present in the circuit, it does not affect the overall 

plasma discharge. This capacitance does not contribute to the surface charging of the 

dielectric surface. Since the integrator circuit produces a signal that is due to the 

displacement current through all three of the capacitances shown in Figure 2.3, the 

portion of the signal from the integrator circuit that is due to the charging of C3 must be 

subtracted off. This value (referred to as the “bulk capacitance”) requires running the 

actuator at a low voltage (less than the required voltage needed to generate plasma.) 

Doing this for each V-dot probe comprises the 1st calibration and gives the calibration 

factor, K1, for each probe. The response of a given probe to an applied waveform is linear 

to within ± 0.3%, shown in Figure 2.4. For a pressure of 760 Torr we find that K1 varies 

from K1 = 0.348 V/kV for the probe nearest the exposed electrode to K1 = 0.007 V/kV at 

the probe farthest from the exposed electrode, as shown in Figure 2.5. Since the actuator 

geometry and operating parameters remain constant, it is expected that the same value for 

K1, regardless of the ambient pressure, will be observed. This is indeed what we find with 

the largest deviation being ± 0.18% for the probe nearest the exposed electrode. 
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Figure 2.3: Lumped circuit model of the DBD plasma actuator (from Enloe et al. [1]). 

 

 

 

Figure 2.4: The response of the V-dot probe to the charging of the “bulk capacitance” is 

linear.  
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Figure 2.5: The 1
st
 calibration factor ranges from K1 = 0.348 V/kV at the closest probe to 

0.007 V/kV at the farthest probe. 

 

 

2.2.2. Surface Charging – 2
nd

 Calibration. Whereas the first calibration takes 

into account the displacement current that goes into charging the bulk capacitance, the 

second calibration is used to determine the amount of charge physically deposited on the 

dielectric surface by the plasma. In Figure 2.3, C1 is the capacitance between the exposed 

electrode and the dielectric surface. The capacitance C2 is located between the dielectric 

surface, which serves as a virtual electrode, and the buried physical electrode. Since the 

plasma extent in the downstream direction changes during operation, the capacitances C1 

and C2 will as well; this is why they are represented as variable elements in Figure 2.3. At 

breakdown (i.e. when plasma is present), a resistive path (R) becomes present from the 

exposed electrode to the dielectric surface. This current cannot penetrate the dielectric 

material (unlike the current in the first calibration). In keeping with the current literature 

[24] this volume is broken into two different capacitances, labeled C1 and C2 in Figure 

file://minerfiles.mst.edu/dfs/research/mae/aplab/nonrestrictedaccess/nichols/Papers/Thesis%20Drafts/Draft%201.doc%23_ENREF_24
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2.3. With plasma present current flows through R charging C1 which creates another 

displacement current that the integrator circuit will measure. It is possible to determine 

the V-dot probe response to this displacement current by running the actuator at low 

voltages with a temporary extension of the exposed electrode over the dielectric surface. 

The extended electrode serves to mimic the effect of surface potential due to charge 

buildup on the surface. This extension of the exposed electrode is realized by covering 

the surface of the dielectric with copper tape. This calibration factor relates the V-dot 

probe output voltage to the charge accumulation on the dielectric surface. Since each 

probe in this experiment has identical dimensions the second calibration factor should be 

the same for each V-dot probe. This is what we find with K2 at atmospheric conditions 

being K2 = 0.257 V/kV where the percent difference between all probes is ± 9.7%. 

2.2.3. Charge Due to Capacitive Voltage Division and Polarization of 

Dielectric Material. Using the first and second calibrations and Equation 2 it is possible 

to determine the amount of charge being deposited on the dielectric surface. The total 

potential on the dielectric surface, however, is due not only to the deposited surface 

charge, but also to the polarization created by the dielectric surface. Additionally, the 

applied potential on the exposed electrode is capacitively divided by C1 and C2 even 

when plasma is not present. Accounting for this is straight forward and is calculated by 

solving Laplace’s equation with the appropriate boundary conditions. The program 

Ansoft Maxwell is used to perform these calculations and provides the unit-less third 

calibration factor, K3. The value of K3 ranges from K3 = 1 right at the exposed electrode 

edge to K3 = 0.00205 at the last V-dot probe. By adding the contributions to the potential 

from the polarization effect and deposited charge on the dielectric surface, the total 
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potential on the dielectric surface at 14 different spatial locations can be determined (Eq. 

3). Using these data it is then possible to determine the electric field downstream from the 

exposed electrode. 

 

2.3. PLASMA ACTUATOR 

The plasma actuator used in this study has a standard asymmetrical geometry 

between the exposed and encapsulated electrode with a 1.6 x 305 x 305 mm piece of 

Macor (εr = 6) between them. The dimensions of the exposed electrode are 0.2 x 138 x 

17.3 mm. The buried electrode has a total downstream length of 52 mm with 14 

electrically isolated V-dot probes that have dimensions of 2.5 mm x 5 cm. By using the 

spacing shown in Figure 2.1 it is possible to measure the potential on the dielectric 

surface up to 44.75 mm downstream from the exposed electrode. Additionally, by using a 

Tektronix P6015 high voltage probe to measure the potential on the exposed electrode a 

fifteenth data point in the potential distribution across the dielectric surface can be 

determined. A picture of the actuator used in this experiment is shown in Figure 2.6.  

 A simple block diagram showing the components of the actuator electrical system 

is shown in Figure 2.7. Operation of the plasma actuator uses a Rigol DG 1022 function 

generator which is connected to a Crown CE 2000 amplifier. The signal from the 

amplifier is stepped up to kilovolt level with a CMI-5525 high frequency transformer. 

This transformer has a turn ratio of 1/357, a frequency range of 900 Hz – 5 kHz, and is 

capable of outputting up to 25 kV at 0.2 Arms.  

A Pearson 4100 current monitor, placed around the common ground wire, is used 

to measure the total actuator current. It has a 10 ns rise time which, for this application, is 

accurate enough to measure the displacement current as well as to capture the 
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microdischarge current spikes produced by the actuator that are indicative of plasma 

formation. 

 

 

 

Figure 2.6: The large Macor dielectric provides enough surface area to prevent arcing at 

low pressures. 

 

 

Function 

Generator
Amplifier Transformer Actuator Rint

-

+

Cint

Oscilliscope

Figure 2.7: A 5 kHz sine wave is generated with the function generator and then stepped 

up through an amplifier and step-up transformer to kV levels. The integrator circuit 

output is fed to an oscilloscope. 
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2.4. V-DOT PROBE ELECTRONICS 

The op-amp integrator circuit has a LF-411 op amp with Cint = 11 nF. A large 

resistor (in this experiment 50 MΩ) is placed in parallel with Cint such that the capacitor 

is completely bled off in between runs. This is important because the integrator must start 

from some known (i.e. uncharged) state. The RC time constant for this circuit is 550 ms, 

which is much slower than the 0.2 ms applied waveform period. With this time constant 

and a known starting condition all aspects of the integrator circuit are valid, including the 

DC offset that occurs during the first period of the applied AC waveform.  

Each V-dot probe is connected to ground (or the integrator circuit if being tested) 

with standard RG-58 coaxial cable and terminated with a 50 Ω BNC connector. The 

grounded shield of the cable is used to eliminate cross talk between the V-dot probes as 

well as decrease noise. The probes that are shorted directly to ground are connected to a 

conducting box and grounded to the vacuum chamber (discussed below), which serves as 

the common ground for the entire experiment. Standard coaxial cable is again used to 

establish the ground connection between the grounding box and the common ground due 

to its low impedance characteristics. 

 

 

2.5. HIGH ALTITUDE TESTING SETUP 

The entire experimental setup is shown in Figure 2.8. The high voltage wire from 

the step-up transformer connects to a high voltage pass through into the bell jar vacuum 

chamber. The ambient pressure is measured with a Lesker KJL275800 convection 

pressure gauge which has a range of 1000 - 10
-4

 Torr.  The signal from a single V-dot 

probe is connected to a BNC pass through and connected to an integrator circuit. A 
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Tektronix DPO 2024 oscilloscope is used to measure and record all waveform data. A 

Tektronix P6015 high voltage probe, with a 1000:1 step down for the given experiment 

impedance, is used to measure the voltage being applied to the exposed electrode. This 

also serves as a 15
th

 data point in our knowledge of the spatiotemporal potential 

deposition on the dielectric surface. A faraday cage houses the step-up transformer as 

well as the high voltage probe. 

 

 

 

Figure 2.8: 1. Vacuum Chamber; 2. BNC-BNC Passthrough; 3. Lesker Pressure Gauge; 

4. Tektronix DPO 2024 Oscilliscope; 5. Op-Amp Integrator Circuit; 6. Rigol Function 

Generator; 7. Faraday Cage; 8. Crown Amplifier. 
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3. RESULTS 

Results from studies on the effect of pressure on plasma extension, power 

consumption, surface potential, longitudinal electric field, and plasma density are 

presented here. Surface potential and longitudinal electric field calculations from V-dot 

probe data are shown. The time-averaged light intensity measurements of the plasma are 

also presented. A power analysis is also performed on the actuator at each operating 

pressure. 

 

 

3.1. PLASMA EXTENSION AND POWER CONSUMPTION 

Power dissipation by the actuator at different pressures was determined by 

operating the actuator with the same input parameters (13.4 kVpk-pk, 5kHz frequency) and 

varying the pressure. Using Eq. (5) and the current and voltage waveforms shown in 

Figure 3.1 we calculate the time averaged (over four periods of the applied waveform) 

power dissipation. The results are shown in Figure 3.2, where the power per unit length is 

based on the width of the buried electrode. With three different sets of data we determine 

that the average power varies, at most, by 20% for a given operating pressure. This is 

indicated by the error bars in Figure 3.2. At 760 Torr the power consumed by the actuator 

is approximately 0.2 W/cm whereas at the lowest tested pressure of 88 Torr, the actuator 

draws 1.1W /cm.  The non-linear increase in power as pressure decreases matches the 

trends seen by Benard et al. [16, 17]. 

 
  

 

 
∑    

 

   

 
(5) 
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Figure 3.1: Applied waveform (black) and corresponding current plot (red) with four 

distinct time intervals labeled. 

 

 

 

Figure 3.2: Decreasing the pressure increases power consumption and also causes plasma 

to form farther downstream. 
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In order to determine the effect that pressure has on the extent of the plasma 

formation region, qualitative photographs, such as those shown in Figure 3.3, are used. 

The exposure time for each picture was set at 1/3 s providing a time averaged photograph 

of the distribution of plasma on the surface of the dielectric. These results are shown in 

Figure 3.2 and indicate a non-linear growth in the plasma extension as pressure 

decreases. These results agree well with those presented by Benard et al.[16, 17]. It is 

also worth noting that as the pressure decreases more plasma is also formed on the 

upstream side of the exposed electrode. In other words, plasma is formed where there is 

no grounded electrode. Even at 760 Torr, plasma is formed on the corners of the exposed 

electrode in the upstream direction due to the strong electric fields that are present at the 

points of the electrode edge. Finally, the extent of the plasma has surpassed the length of 

the buried electrode (52 mm) at 88 Torr. 

 

 

 

Figure 3.3: Pictures taken with 1/3s exposure time show the time averaged plasma 

distribution on the dielectric surface. 

file://minerfiles.mst.edu/dfs/research/mae/aplab/nonrestrictedaccess/nichols/Papers/Thesis%20Drafts/Draft%201.doc%23_ENREF_16
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3.2. SURFACE POTENTIAL AND ELECTRIC FIELD MEASUREMENTS 

Results in this section were obtained by applying Eq. (2) and (3) with the 

previously discussed calibrations to the raw V-dot probe measurements.  All data were 

obtained for the first few cycles of the applied waveform with a clean actuator (surface 

wiped with acetone between shots). To reiterate, wiping the surface of the dielectric 

ensures that the displacement current being integrated by the integrator circuit is due 

solely to the plasma discharge and not to residual charge left from previous plasma shots. 

In Figure 3.4-Figure 3.9, the surface potential is plotted as a function of time and 

downstream distance. These plots provide an overview of the surface potential 

distribution and behavior. At 760 Torr the surface potential is highest closest to the 

exposed electrode. As pressure decreases the surface potential begins to spread out across 

the dielectric surface. This is indicative of more plasma being formed in the downstream 

location. Further evidence of this is the fact that in the peak surface potential decreases 

near the exposed electrode while downstream locations that had a surface potential of 

approximately zero (at 760 Torr) increase as pressure is lowered. This suggests that the 

electrons emitted from the exposed electrode (in the forward stroke; from the dielectric 

surface on the backward stroke) can travel greater distances before having collisions with 

neutral air or being deposited on the dielectric surface (as the mean free path increases 

with decreasing pressure). 
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Figure 3.4: 3D plot of surface potential as a function of downstream position and time at 

760 Torr. 

 

 

 

Figure 3.5: 3D plot of surface potential as a function of downstream position and time at 

429 Torr. 
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Figure 3.6: 3D plot of surface potential as a function of downstream position and time at 

321 Torr. 

 

 

 

Figure 3.7: 3D plot of surface potential as a function of downstream position and time at 

226 Torr. 
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Figure 3.8: 3D plot of surface potential as a function of downstream position and time at 

171 Torr. 

 

 

 

Figure 3.9: 3D plot of surface potential as a function of downstream position and time at 

88 Torr. 

 

 



 

 

24 

While looking at the three-dimensional plots provides a good overview of the 

surface potential, it is more beneficial to examine the surface potential distribution in 

discrete slices of time. These plots can be seen in Figure 3.10- Figure 3.57, where the 

surface potential and corresponding longitudinal electric field are plotted for each 

operating pressure. The time intervals shown in these figures correspond to the times 

labeled in Figure 3.1. Time t1 corresponds to when the plasma is quenched and the 

change in applied potential is negative. As the applied waveform progresses the plasma 

ignites in the forward stroke at approximately time t2 (50 µs after t1). The plasma 

quenches again at time t3 (100 µs after t1), before it enters the backward stroke and ignites 

for the second time at t4 (150 µs after t1).  By looking at the surface potential at the four 

described time intervals it is possible to see how charge is deposited on the dielectric 

surface as the actuator progresses through each of the four distinct phases of operation. 

The results of operating the actuator at atmospheric conditions are shown in 

Figure 3.10 - Figure 3.17. In Figure 3.10 the plasma is quenched at the peak amplitude of 

the applied waveform (t1). During this time, the surface potential at all downstream 

locations is positive. The potential between 2 and 5 mm is unchanged until the potential 

trends to zero far away from the exposed electrode edge. The change in surface potential 

close to the exposed electrode is due to the capacitive voltage division and polarization 

charge on the dielectric surface. The longitudinal electric field derived from the data 

shown in Figure 3.10 is shown in Figure 3.11. Worth noting is the large span of dielectric 

surface (from 5 to 14 mm) where the electric field is roughly constant at E ≈ 0.2 kV/mm. 

As the plasma ignites at time t2 (Figure 3.12), the effects of negative charges being 

carried downstream by the plasma can be seen. As in Figure 3.10, there is a large region 
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of net positive surface potential from approximately 3 mm and on with a corresponding 

region of positive electric field (Figure 3.13) at 7 mm. During this part of the discharge 

cycle, the strongest electric field is limited close to the exposed electrode edge (≈ 2 mm 

and closer). At t3 (Figure 3.14 and Figure 3.15) the plasma is again quenched and we can 

see similarities between the t1 interval and the t3 interval. A region of positive surface 

potential is again established at 5 mm and remains positive as the surface potential trends 

to zero far from the exposed electrode. The electric field varies the most at 7 mm and 

closer, but remains unperturbed farther downstream where there is no discharge. The 

plasma reignites in the final phase of the discharge cycle (t4) and is shown in Figure 3.16 

and Figure 3.17. The maximum electric field shown in Figure 3.17 is larger than that 

shown in Figure 3.13 (1.25 kV/mm and 1.8 kV/mm, respectively) due to the fact that 

although the applied waveform is symmetric, the surface charge density is not. 

In Figure 3.18-Figure 3.25, the results for 429 Torr are presented. During time t1 

the surface potential shown in Figure 3.18 follows similar trends to those found in Figure 

3.10.The surface potential follows that of the applied voltage for distances approximately 

2 mm and closer to the exposed electrode. The surface potential trends to zero outside the 

region of constant surface potential between 2 and 5 mm. The longitudinal electric field 

(Figure 3.19) does not appear to be constant between 2 mm and 14 mm as is the case in 

Figure 3.11. This same region, however, exhibits a local maximum of E ≈ 0.5 kV/mm 

before trending to zero. When the plasma ignites at t2 the effects of decreased pressure 

can immediately be seen (Figure 3.20 and Figure 3.21). When compared with Figure 

3.12, the magnitude of the surface potential at each distinct time step is similar, however 

the distance downstream that experiences an always net positive surface potential now 
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begins at 5 mm, whereas before the region of positive surface potential began at 3mm. 

This is evidence that as the plasma sweeps out farther downstream from the exposed 

electrode at lower pressures the deposited charge is also swept farther downstream. The 

electric field (Figure 3.21) shows a similar shift with a positive electric field being 

generated from 9 mm before trending to zero. The magnitude of the electric field is 

approximately the same when compared with the results from 760 Torr. As the plasma is 

quenched at t3 (Figure 3.22and Figure 3.23) the similarities to time t1 can again be seen. 

A region of positive surface potential is established from 5 mm before trending to zero 

far from the exposed electrode. The electric field becomes positive at 10 mm, much like 

during the t2 interval, before trending to zero. When compared with Figure 3.15the 

magnitude of the electric field remains approximately the same. During the t4 interval, 

shown in Figure 3.24and Figure 3.25, the plasma ignites for the second time and again 

the effect of the decrease in pressure can be seen. The region of positive surface potential 

is established 5 mm, just as in t2. The electric field remains constant from 11 mm and 

farther, before trending to zero far away from the exposed electrode. The magnitude of 

the electric field is smaller during t4 than in t2 for the same reasons discussed previously. 

The results shown in Figure 3.26- Figure 3.33 are obtained by operating the 

actuator at a pressure of 321 Torr. Unlike the 760 Torr case, during the t1 time interval 

the surface potential does not follow the applied potential close to the exposed electrode, 

but instead remains constant or shows a slight increase up to 4 mm (Figure 3.26). The 

electric field (Figure 3.27) remains constant at E ≈ 0.2 kV/mm between 5 and 44.75 mm. 

When the plasma ignites at t2, the plasma now (visually) sweeps out to approximately 14 

mm (as shown in Figure 3.3). This can be seen in the surface potential shown in Figure 
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3.28. Like the 760 Torr case, there is a region in which the dielectric surface acquires an 

always net positive surface potential starting at 7.5 mm and continuing over the entire 

dielectric surface. The electric field during this time interval (Figure 3.29) becomes 

positive at 20 mm and is relatively constant at E ≈ 0.1 kV/mm. When the plasma again 

quenches, similar trends emerge that were seen during t1. The surface potential (Figure 

3.30) becomes positive at 13 mm and reaches a maximum value of 3.5 kV before 

trending to zero. The electric field (Figure 3.31) during this time interval remains 

constant over all time slices after 20 mm. At positions closer to the exposed electrode (x 

< 5 mm) the electric field increases at first (up to 2.5 mm) before entering a region of 

negative electric field between 5 and 22.5 mm. When the plasma ignites for the second 

time (Figure 3.32 and Figure 3.33) there is a positive, non-zero surface potential between 

12.5 and 40 mm, similar to that of t2. The electric field during this time interval oscillates 

from zero and 0.05 kV/mm between 20 and 44.75 mm. Note that the overall electric field 

strength is weaker at this pressure when compared to the 760 Torr case discussed 

previously. 
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Figure 3.10: Potential on the surface of the dielectric between t1 and t2 at 760 Torr. 

 

 

 

Figure 3.11: Electric field near the dielectric surface between t1 and t2 at 760 Torr. 
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Figure 3.12: Potential on the surface of the dielectric between t2 and t3 at 760 Torr. 

 

 

 

Figure 3.13: Electric field near the dielectric surface between t2 and t3 at 760 Torr. 
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Figure 3.14: Potential on the surface of the dielectric between t3 and t4 at 760 Torr. 

 

 

 

Figure 3.15: Electric field near the dielectric surface between t3 and t4 at 760 Torr. 
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Figure 3.16: Potential on the surface of the dielectric after t4 at 760 Torr. 

 

 

 

Figure 3.17: Electric field near the dielectric surface after t4 at 760 Torr. 

 

 

 

 



 

 

32 

 

Figure 3.18: Potential on the surface of the dielectric between t1 and t2 at 429 Torr. 

 

 

 

Figure 3.19: Electric field near the dielectric surface between t1 and t2 at 429 Torr. 
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Figure 3.20: Potential on the surface of the dielectric between t2 and t3 at 429 Torr. 

 

 

 

Figure 3.21: Electric field near the dielectric surface between t2 and t3 at 429 Torr. 
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Figure 3.22: Potential on the surface of the dielectric between t3 and t4 at 429 Torr. 

 

 

 

 

Figure 3.23: Electric field near the dielectric surface between t3 and t4 at 429 Torr. 
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Figure 3.24: Potential on the surface of the dielectric after t4 at 429 Torr. 

 

 

 

Figure 3.25: Electric field near the dielectric surface after t4 at 429Torr. 
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Figure 3.26: Potential on the surface of the dielectric between t1 and t2 at 321 Torr. 

 

 

 

Figure 3.27: Electric field near the dielectric surface between t1 and t2 at 321 Torr. 
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Figure 3.28: Potential on the surface of the dielectric between t2 and t3 at 321 Torr. 

 

 

 

Figure 3.29: Electric field near the dielectric surface between t2 and t3 at 321 Torr. 
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Figure 3.30: Potential on the surface of the dielectric between t3 and t4 at 321 Torr. 

 

 

 

Figure 3.31: Electric field near the dielectric surface between t3 and t4 at 321 Torr. 
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Figure 3.32: Potential on the surface of the dielectric after t4 at 321 Torr. 

 

 

 

Figure 3.33: Electric field near the dielectric surface after t4 at 321 Torr. 

 

 

Plotted in Figure 3.34- Figure 3.41 are the results of operating the actuator at a 

pressure of 226 Torr. During t1 the surface potential exhibits all of the previously 

discussed trends and, like the results at 321 Torr, increases up to a distance of 10 mm. At 
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this pressure, however, the surface potential never goes to zero and always has a value of 

2 kV or greater. The electric field (Figure 3.35) is uniform over the entire dielectric 

surface (except at 7 mm or less) at a magnitude of E ≈ 0.1 kV/mm before going to zero at 

40 mm. When the plasma ignites at t2 (Figure 3.36) the spread of surface potential 

between time slices is larger than the previously discussed pressures. The potential 

increases up to a value of 6 kV and after 15 mm is always positive and non-zero. The 

corresponding electric field is approximately constant after 10 mm, varying slightly 

between zero and 0.10 kV/mm. During time t3 similar trends discussed for t1 are seen in 

the surface potential. The region of positive potential is established after 27.5 mm 

whereas at 321 Torr the region of positive surface potential was established at a distance 

of 15 mm. The electric field at this time shows similar trends to those discussed for 

Figure 3.35. Here, however, the electric field is constant from 7 mm to 30 mm with E ≈ -

0.3 kV/mm. The electric field never returns to a positive value before going to zero at 

44.75 mm. This is the first time that the electric field is largely negative over the entirety 

of the dielectric surface. When the plasma ignites for the second time, a region of 

constant positive surface potential is established at 27.5 mm. The surface potential never 

goes to zero far away from the exposed electrode edge, maintaining a value of 2 kV at 

44.75 mm while the electric field is largely negative between 10 mm and 35 mm. 

When the plasma is quenched during t1 at a pressure of 171 Torr (Figure 3.42 and 

Figure 3.43) the surface potential remains constant at 6 kV out to a distance of 20 mm 

before beginning to decrease. The electric field is approximately zero from 5 mm until 

the end of the buried electrode. A local maximum of E = 0.2 kV/mm at a downstream 

distance of 25 mm is seen, but this is an artifact of the fitting routine used on the data. 
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Once the plasma ignites the effect the plasma has on sweeping the charge across the 

dielectric surface is readily seen (Figure 3.44). A region of always positive surface 

potential is established at 30 mm. The electric field (Figure 3.45) remains mostly constant 

throughout this time interval, oscillating between 0.5 kV/mm and -0.5 kV/mm. At t3 there 

is never a region on the dielectric surface where the surface potential (Figure 3.46) is 

always positive. The electric field exhibits a local maximum at 2.5 mm downstream, but 

then trends to zero. The electric field between 6 and 17 mm is approximately zero before 

going negative between 17 and 44.75 mm (see Figure 3.47). Between all of the time 

intervals the surface potential, as well as the electric field, does not vary much. In Figure 

3.48 and Figure 3.49 the effect the plasma has on the distribution of the surface potential 

is seen again. During each time step between 10 and 30 mm, the surface potential 

remains constant. The electric field decreases from 1.5 kV/mm to zero by 5 mm and 

remains approximately zero over the entirety of the dielectric surface. 

At a pressure of 88 Torr, the same trends when the actuator is operating at a 

pressure of 171 Torr are seen during each of the time intervals. During t1 (Figure 3.50 and 

Figure 3.51) there is a region between 5 and 25 mm that has a constant surface potential 

of 6 kV. The electric field during this time interval is zero after 5 mm. Similar trends to 

that shown at 171 Torr are seen again as the plasma ignites at t2 (Figure 3.52 and Figure 

3.53).When the plasma quenches again at t3 (Figure 3.54 and Figure 3.55) the surface 

potential is constant at -6 kV over nearly all of the dielectric surface, only beginning to 

increase at a downstream location of 35 mm. Just like in the case of 171 Torr, there is no 

region of positive surface potential that is established on the dielectric surface. Again, the 

electric field has a non-zero value only close to the exposed electrode edge before going 
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to zero at 10 mm. Once the plasma forms for the second time (Figure 3.56 and Figure 

3.57) the plasma sweeps the charge across the dielectric, remaining constant for each 

time interval between 5 and 45 mm. At t4 + 10 µs the surface potential remains positive 

across the dielectric surface, with an approximately constant value of 1.75 kV. The 

electric field exhibits similar behavior as that shown in the time interval of t2. 

Polarization effects are seen close to the exposed electrode edge, but the majority of the 

dielectric surface experiences an electric field of zero. The electric field does take on a 

small negative magnitude at 35 mm, however the overall trend cannot be captured due to 

the lack of V-dot probes after 44.75 mm. 
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Figure 3.34: Potential on the surface of the dielectric between t1 and t2 at 226 Torr. 

 

 

 

Figure 3.35: Electric field near the dielectric surface between t1 and t2 at 226 Torr. 
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Figure 3.36: Potential on the surface of the dielectric between t2 and t3 at 226 Torr. 

 

 

 

Figure 3.37: Electric field near the dielectric surface between t2 and t3 at 226 Torr. 
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Figure 3.38: Potential on the surface of the dielectric between t3 and t4 at 226 Torr. 

 

 

 

Figure 3.39: Electric field near the dielectric surface between t3 and t4 at 226 Torr. 
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Figure 3.40: Potential on the surface of the dielectric after t4 at 226 Torr. 

 

 

 

Figure 3.41: Electric field near the dielectric surface after t4 at 226 Torr. 
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Figure 3.42: Potential on the surface of the dielectric between t1 and t2 at 171 Torr. 

 

 

 

Figure 3.43: Electric field near the dielectric surface between t1 and t2 at 171 Torr. 
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Figure 3.44: Potential on the surface of the dielectric between t2 and t3 at 171 Torr. 

 

 

 

Figure 3.45: Electric field near the dielectric surface between t2 and t3 at 171 Torr. 
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Figure 3.46: Potential on the surface of the dielectric between t3 and t4 at 171 Torr. 

 

 

 

Figure 3.47: Electric field near the dielectric surface between t3 and t4 at 171 Torr. 
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Figure 3.48: Potential on the surface of the dielectric after t4 at 171 Torr. 

 

 

 

Figure 3.49: Electric field near the dielectric surface after t4 at 171 Torr. 
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Figure 3.50: Potential on the surface of the dielectric between t1 and t2 at 88 Torr. 

 

 

 

Figure 3.51: Electric field near the dielectric surface between t1 and t2 at 88 Torr. 
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Figure 3.52: Potential on the surface of the dielectric between t2 and t3 at 88 Torr. 

 

 

 

Figure 3.53: Electric field near the dielectric surface between t2 and t3 at 88 Torr. 
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Figure 3.54: Potential on the surface of the dielectric between t3 and t4 at 88 Torr. 

 

 

 

Figure 3.55: Electric field near the dielectric surface between t3 and t4 at 88 Torr. 
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Figure 3.56: Potential on the surface of the dielectric after t4 at 88 Torr. 

 

 

 

Figure 3.57: Electric field near the dielectric surface after t4 at 88 Torr. 
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3.3. AVERAGE SURFACE POTENTIAL AND CHARGE TRANSFERRED 

To better understand how the surface potential is distributed across the dielectric 

surface the average surface potential at each V-dot probe location was calculated. This is 

done by taking the average over a set number of applied AC signals (in this experiment, 4 

periods) after equilibrium has been established. The results of this analysis are shown in 

Figure 3.58 - Figure 3.63 with error bars where appropriate. Similar conditions to those 

found in [24] are used in this work as the same material (Macor) was used as the 

dielectric material, as well as similar high voltage signals (13.4 kVpk-pk 5 kHz sine wave 

in [24] ). Figure 3.58 shows that at 760 Torr the surface potential reaches a maximum 

value of 2.5 kV at a downstream location of 6.00 mm. Enloe et al. found that for similar 

conditions the largest surface potential is 1.67 kV at approximately 7.5 mm downstream 

[24]. At pressures of 429, 321, and 226 Torr the maximum average surface potential 

reaches a value of 3.0 kV at positions of x = 15, 20, and 40 mm, respectively. This shows 

that as the pressure decreases the region of largest surface potential moves farther 

downstream from the exposed electrode. During this same span of pressure drops, the 

width of the average surface potential also grows. At 760 Torr, there is a region of net 

positive potential from the exposed electrode edge 20.00 mm downstream. This region 

extends to 35 mm at 429 Torr until reaching the end of the V-dot probe array at 44.75 

mm by 321 Torr. The entire dielectric surface maintains the net positive average surface 

potential at pressures of 171 Torr and 88 Torr.  

Looking at Figure 3.62 and Figure 3.63, there is no peak surface potential 

downstream, indicating that the location of the peak surface potential has moved so far 

downstream that our V-dot probes are no longer able to capture it. Interestingly though, 

these plots do exhibit the smaller peak close to the exposed electrodes edge that begins to 
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appear at 321 Torr. This local maximum is always located at approximately 2.5 mm 

downstream, regardless of the ambient pressure conditions. The amplitude of the 

maximum, however, is varied having a range of values of 0.75 kV, 0.45 kV, 0.6 kV, and 

1.75 kV corresponding to the pressures from 321 Torr down to 88 Torr, respectively. 

The results shown in Figure 3.64- Figure 3.69 depict how the average physical 

charge is deposited downstream as the ambient pressure is changed. Much like the 

average surface potential, the maximum charge transferred moves downstream as 

pressure decreases. In fact, the location for the peak charge transferred corresponds 

directly to the location of the peak average surface potential at a given pressure. This is to 

be expected as the contributions from the capacitive voltage division/polarization effects 

diminish far from the electrodes edge, meaning the only meaningful mechanism for 

building up surface potential is through physical charge deposition. 

 

 

3.4. ION DENSITY 

Assuming a linear relationship between light intensity and ion density, we use 

time-averaged photographs of the plasma to obtain a qualitative measurement of the ion 

density variation with pressure and downstream distance. A Canon PowerShot SX200IS 

with a shutter speed of 1/3 s and an ISO setting of 800 allows for time averaged 

photographs to be taken (such as those previously shown in Figure 3.3). These photos are 

converted to a gray scale value and normalized such that they can be compared directly to 

one another. In this way a value for light intensity, and subsequently ion density, can be 

obtained at all downstream locations. The results of this analysis can be seen in Figure 

3.70. The highest density plasma is made at the exposed electrode edge at a pressure of 
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88 Torr. In fact, the densest region of plasma formation for a given pressure is always 

within 0.4 mm of the exposed electrode edge. The large spike next to the exposed 

electrode represents a region of intense microdischarges [14]. 

 

 

 

Figure 3.58: Average surface potential at 760 Torr. 
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Figure 3.59: Average surface potential at 429 Torr. 

 

 

 

Figure 3.60: Average surface potential at 321 Torr. 
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Figure 3.61: Average surface potential at 226 Torr. 

 

 

 

Figure 3.62: Average surface potential at 171 Torr. 
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Figure 3.63: Average surface potential at 88 Torr. 

 

 

 

Figure 3.64: Average charge transferred at 760 Torr. 
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Figure 3.65: Average charge transferred at 429 Torr. 

 

 

 

Figure 3.66: Average charge transferred at 321 Torr. 

 

 



 

 

62 

 

Figure 3.67: Average charge transferred at 226 Torr. 

 

 

 

Figure 3.68: Average charge transferred at 171 Torr. 
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Figure 3.69: Average charge transferred at 88 Torr. 

 

 

 

Figure 3.70: Calculating the normalized light intensity allows for the determination of a 

qualitative measurement for the ion density at any downstream location. 



 

 

64 

4. DISCUSSION 

The overall trends and effects that ambient pressure has on the surface potential of 

the dielectric, generated electric field, and average force production of the plasma 

actuator are discussed here. 

 

4.1. SURFACE POTENTIAL AND CHARGE BUILD-UP 

As shown in Figure 4.1, the maximum charge transferred moves downstream as 

pressure decreases in similar fashion to the average surface potential. Only those 

pressures down to 226 Torr are plotted due to the fact that at lower pressures the 

maximum average surface potential has moved past our farthest V-dot probe. The 

polarization effect that contributes to the overall surface potential is mainly seen at 

downstream distances of 2.5 mm or less, where the electric field is the strongest. This 

means that the dominant mechanism for building surface potential at downstream 

distances that are far from the leading edge of the exposed electrode is physical charge 

deposition. Finally, the maximum average surface potential and charge transferred are 

inversely proportional to the pressure. 

 

 

4.2. LOCATION OF PLASMA PRODUCTION 

Body force produced by a plasma actuator is directly proportional to the number 

of plasma ions present and the strength of the electric field where those ions are produced 

(Eq. (1)). By integrating each curve in Figure 3.70, it is possible to qualitatively 

determine the quantity of plasma present for a given operating pressure. The normalized 
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results are shown in Figure 4.2.  As is shown, there is 20 times more plasma produced at 

88 Torr than at 760 Torr. This increase is inversely proportional to the ambient pressure. 

It is also interesting to examine the electric field in the region where the plasma is 

created. By combining the plasma extent measurements (Figure 3.3) with the electric 

field data presented in Figure 3.10-Figure 3.57, it is possible to determine the fraction of 

the plasma extent with no electric field. The results of this analysis are also shown in 

Figure 4.2. 

 

 

 

Figure 4.1: The location of the maximum average surface potential and charge transferred 

moves downstream as pressure decreases in a similar non-linear fashion as Figure 3.2. 

 

 

From 760 to 321 Torr all plasma is created in a region where the electric field has 

some non-zero magnitude. As pressure is decreased further this trend changes 
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significantly. For the tested pressures of 226, 171, and 88 Torr, 38, 74, and 88 percent of 

the plasma is created in regions of approximately zero electric field, respectively. While 

there is 20 times more plasma present at 88 Torr than at 760 Torr, 88 percent of the 

plasma is in a region where there is no electric field present to accelerate it. 

 

 

 

Figure 4.2: As pressure decreases a larger percentage of plasma is formed where the 

electric field is approximately zero. 

 

 

4.3. QUALITATIVE FORCE TRENDS 

With the data presented in this paper it is possible to calculate the qualitative 

average body force that the plasma actuator produces. In order to calculate the force 

produced by our plasma actuator the electric field results are averaged with respect to 

time. A spatial average of the combined electric field and ion density is performed to 
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obtained the qualitative time-average force. This is done in order to multiply the spatial 

electric field data with the qualitative spatial ion density measurements. These 

calculations are compared with measurements presented in [19] and recreated in Figure 

4.3. This work is used for comparison due to similar operating parameters (shape, 

frequency, and amplitude of the sine wave) and the number of pressures that were tested. 

A direct comparison cannot be made between this work and [19] due to differences in 

how force is calculated/measured, however, a similar qualitative trend is still evident 

between the two experiments. Looking at Figure 4.3 it is evident that there is a local 

maximum force produced around 600 Torr for an exposed electrode thickness of 0.2 mm. 

While this work cannot conclusively confirm this, it is possible to say that the force does 

increase between 760 and 429 Torr before beginning to decrease. Overall, the two 

separate works show good agreement as the pressure is decreased, with an initial increase 

in force before decreasing and trending to zero. 

It is worthwhile to now compare the calculated force for the current plasma 

actuator and the power consumption. Looking again at Figure 3.2 and comparing with the 

force production shown in Figure 4.3 it is possible to make some comments about how 

the power consumed is being used by the plasma actuator. Looking at the region of 

pressures between 226 and 88 Torr and the corresponding power consumption at those 

pressures we see that although the power consumption is increasing, the force production 

is decreasing. This is further evidence that as pressure is decreased, more power is being 

used in processes not related to force production. Since the mechanism for force 

production comes from the momentum coupling that occurs due to the acceleration of the 

plasma and since the electric field (the accelerating source of the ions) has been measured 
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and calculated to be zero far from the exposed electrode edge where large amounts of 

plasma are formed, it is now possible to say that the increased power consumption is for 

generating plasma and not accelerating it. 

 

 

 

Figure 4.3: The space and time average force for this work shows similar trends to that of 

the force measured by Abe et al. [19]. 
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5. CONCLUSION 

In this paper measurements done with an array of capacitive V-dot probes of the 

potential on the dielectric surface have been presented. While the surface potential is 

spread out across the dielectric surface as pressure decreases, the electric field only 

exhibits a slight decrease in magnitude close to the exposed electrode edge. As pressure 

is decreased from 760 to 88 Torr up to 20 times more plasma becomes available for 

acceleration, and thus force production. At lower pressures, however, up to 88 percent of 

the plasma is created in a region where there is an effective electric field strength of zero. 

Because the acceleration of the plasma ions is the means for force production it follows 

that this is why force production trends to zero as pressure is decreased. The average 

force calculations further show this trend with an initial increase in force production 

before trending to zero. This suggests that there is an optimum amount of plasma, and 

thus an optimum pressure, to operate the plasma actuator at in order to produce the 

maximum amount of force. These trends are in good agreement with those presented in 

the literature [19]. By looking at the plasma extent, power consumption, and force 

production at a given pressure it is possible to conclude that at low pressures (226 Torr 

and below) more power is going into creating plasma than accelerating it. 

Future work on SDBD plasma actuators operating at high altitude should focus on 

resolving the spatiotemporal evolution of the force produced. Using a high speed camera 

with an appropriate sensor would do well to temporally resolve the ion density which 

could then be multiplied with the temporally resolved electric field calculated in this 

paper.  
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APPENDIX A. 

MISCELLANEOUS PLOTS 
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Figure A.1: Average surface potential for each individual trial ran at 760 Torr. 

 

 

 

Figure A.2: Average surface potential for each individual trial ran at 429 Torr. 
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Figure A.3: Average surface potential for each individual trial ran at 321 Torr. 

 

Figure A.4: Average surface potential for each individual trial ran at 226 Torr. 
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Figure A.5: Average surface potential for each individual trial ran at 171 Torr. 

 

Figure A.6: Average surface potential for each individual trial ran at 88 Torr. 
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Figure A.7: Plot of the normalized number of ions 

 

Figure A.8: Current density for probes 2-5 at 760 Torr. 
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Figure A.9: Current density for probes 6-9 at 760 Torr. 

 

Figure A.10: Current density for probes 10-14 at 760 Torr. 
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Figure A.11: Current density for probes 2-5 at 429 Torr. 

 

Figure A.12: Current density for probes 6-9 at 429 Torr. 
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Figure A.13: Current density for probes 2-5 at 321 Torr. 

 

Figure A.14: Current density for probes 6-9 at 321 Torr. 
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Figure A.15: Current density for probes 10-14 at 321 Torr. 

 

Figure A.16: Current density for probes 2-5 at 226 Torr. 
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Figure A.17: Current density for probes 6-9 at 226 Torr. 

 

Figure A.18: Current density for probes 10-14 at 226 Torr. 
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Figure A.19: Current density for probes 2-5 at 171 Torr. 

 

Figure A.20: Current density for probes 6-9 at 171 Torr. 
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Figure A.21: Current density for probes 10-14 at 171 Torr. 

 

Figure A.22: Current density for probes 10-14 at 88 Torr. 
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Figure A.23: Current density for probes 6-9 at 88 Torr. 

 

Figure A.24: Current density for probes 10-14 at 88 Torr. 

 

 



 

 

83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B. 

DETAILED TROUBLESHOOTING OF EXPERIMENTAL SETUP  
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 In this appendix a detailed guide to troubleshooting and setting up the high 

altitude plasma actuator experiment is given. 

B.1. HIGH VOLTAGE PASSTHROUGH AND HIGH VOLTAGE WIRE 

The high voltage pass-through and high voltage wire shown in Figure B.1 are 

used in this experiment for a number of reasons. The first reason is due to arcing. At 

standard atmospheric pressure a lower gauge, less insulated wire can be used, however, 

when operating at lower pressures it is recommended a wire such as the E76475 from 

Thermal Wire and Cable Corp. be used. This wire is rated to 40 kV DC and helps to 

reduce the chance of arcing at low pressures. If a thinner, lower voltage rating wire is 

used plasma can form within the wire itself.  

The high voltage pass-through used on the bell jar is a lab made pass-through. 

Commercial pass-throughs are available, however, they do not provide for enough 

insulation against arcing between the pass-through itself and the vacuum chamber. 

Because of this the high voltage wire is run through the pass through and connected to the 

plasma actuator in one continuous piece. This allows for the insulation on the high 

voltage wire to remain intact from the high voltage transformer all the way to the plasma 

actuator. The pass through itself is made to fit the vacuum chamber from some scrap 

acrylic. Once the bolt hole pattern is drilled into the material a center hole is made such 

that the high voltage wire can fit through. A middle section of the insulation is cut away 

such that the bare wire sits inside of the center drilled hole. This is to allow separation 

between the inside of the chamber and out so that good vacuum can be sealed. This is 

also to help keep plasma from forming within the wire as well. The final step in 
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construction is to use some JB Weld to seal the hole. This grey substance can be seen in 

Figure B. 1. 

 

 

 

Figure B.1: The custom made high voltage pass-through used for high altitude 

testing. 

 

Within the vacuum chamber it is necessary to take care of where the high voltage 

wire lays. As shown in Figure B.2 a suspension system of Kapton tape is used to keep the 

high voltage wire a sufficient distance from the vacuum chamber. If the wire is touching 

or in close proximity to the chamber walls arcing will occur creating undesired plasma 

formation. Also note in Figure B.2 the amount of Kapton tape used on the high voltage 

wire near the pass through area in the back of the chamber. Again, this is to prevent 

plasma formation between the wire and walls as this is the closest point to the chamber 

walls that the wire will be. 
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Figure B.2: Special care must be taken to insure that arcing does not occur 

between the high voltage wire and the vacuum chamber walls. 

 

 

B.2. HIGH VOLTAGE TRANSFORMER CONSIDERATIONS 

 In order to prevent undesired operation of the plasma actuator a faraday cage must 

be built around the high voltage transformer used for this experiment. This is shown in 

Figure B.3 . The large leads on the transformer are capable of picking up ambient noise in 

the lab causing plasma to form on the actuator without the function generator operating. 

The faraday cage is able to shield out this noise which is approximately 16 kHz and most 

likely comes from the overhead lights. The high voltage probe is also placed inside of this 

faraday cage housing. Special care must be taken when running the high voltage wire out 

of the faraday cage to the vacuum chamber. This is due to the fact that the faraday cage 

must be grounded in order to function properly. If the high voltage wire is located too 

close to the grounded copper mesh arcing will occur. Kapton tapes as well as standoffs 

are used to further insulate and position the wire away from the grounded cage. 

 



 

 

87 

 

Figure B.3: The faraday cage is used to keep the high voltage transformer from picking 

up ambient noise. 

 

 

B.3. GROUNDING SCHEMES AND BURIED ELECTRODE ATTACHEMENT 

 In this experiment it is especially important to keep track of all common grounds 

in order to prevent ground loops and unwanted electrical noise in the op-amp integrator 

circuit. The vacuum chamber itself is used as a low impedance grounding reference by 

attaching the ground wire from a three plug chord and plugging that chord into a wall 

socket. The faraday cage, op-amp circuit, and all V-dot probes are then connected to the 

chamber.  

 In order to keep the ground reference on both the plasma actuator and the op-amp 

integrator circuit with as low of an impedance as possible, standard coaxial cable is used 

to connect the ground. For the actuator in particular, coaxial cable connects all V-dot 

probes to a grounding box (shown in Figure B.4). Inside this grounding box all cables are 

connected together where a final coaxial cable then is connected to the chamber. The 

coaxial cable also serves the purpose of shielding out noise produced by adjacent V-dot 

probes. Without a shielded cable the signal that is read by the op-integrator circuit is 
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noisier as well as larger in magnitude, both are adverse to the measurements trying to be 

made. 

 

 

 

Figure B.4: Coaxial cable is used to ground each V-dot probe to a common point in a 

grounding box. 

 

 As an additional rule of thumb it is always good practice in this experiment to 

plug all electronics into the same power strip. In this case that would mean that the 

function generator, audio amplifier, and oscilloscope all need to be plugged into the same 

place. This helps to eliminate another possible ground loop. 

 In Figure B.4 it is also worthwhile to note the way the buried electrode is attached 

to the back of the Macor sheet. The V-dot probe array is laid flat against the Macor such 

that no air gap exists between it and the Macor. If there is an air gap not only can plasma 

form in this region, but the measurements of the surface potential from the V-dot probes 

will be inaccurate as well due to the fact that there is now a second dielectric to account 

for. Kapton tape is used to keep the buried electrode in the proper place.  
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B.4. ADDITIONAL OP-AMP INTEGRATOR COMMENTS 

 Shown in Figure B.5 is the actual op-amp integrator circuit used for this 

experiment. The op-amp is run off of four, nine volt batteries(two batteries wired together 

per side). Across the power inputs filter capacitors are used (small blue capacitors in 

Figure B.5) in order to keep noise from leaking into the high frequency signal that is 

being measured. To measure the output on the oscilloscope a simple Tektronix P2221 

voltage probe is used in 1X mode. As a precaution against picking up the same 16 kHz 

noise that the transformer can pick up, a faraday cage was built around the circuit. This, 

however, improved the signal an immeasurable amount and is thus unnecessary.  

 

 

Figure B.5: The op-amp integrator circuit used in this experiment. 
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