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ABSTRACT 

The primary objective of the study presented in this thesis was to analyze the 

effectiveness of aerodynamic plasma actuators as a means of active flow control over a 

low speed airfoil at multiple angles of attack each corresponding to two different flow 

separation mechanisms (i.e., laminar separation bubble and turbulent flow separation at 

stall conditions).  Detailed parametric studies based on steady and unsteady Navier-

Stokes simulations, modified to include the body force term created by the plasma 

actuator, were performed for a NACA 0012 airfoil at a chord Reynolds number of 10
5
. In 

particular, parametric studies were performed to investigate the influence of the number, 

the location, the imposed body force magnitude (power input) and steady vs. unsteady 

operation of plasma actuators on the flow control effectiveness.  First, the effectiveness 

of plasma actuators was studied when applied to the airfoil at a relatively low angle of 

attack, which involved the development of a laminar separation bubble (LSB).  Next, the 

effectiveness of plasma actuators was analyzed at a high angle of attack where the stall of 

the airfoil occurs with a fully turbulent flow assumption.  The results show that plasma 

actuators can provide significant improvement in aerodynamic performance for the flow 

conditions considered in this study.  For LSB control, as much as a 50% improvement in 

the lift to drag ratio was observed.  Results also show that the same improvement can be 

achieved using an unsteady or multiple actuators, which can require as much as 75% less 

power compared to a single, steady actuator.   For the stalled airfoil case, as much as a 

700% improvement in L/D was observed from a single, steady actuator.  Note that this 

was achieved using a power input eight times higher than what was used for LSB control.  

Also, unsteady and multiple actuator configurations do not provide the same 

enhancement as the single, steady actuators.  This was found to be due to the nature of 

the turbulent separation (trailing edge separation) at the stall condition that occurs for the 

selected airfoil and Reynolds number.  
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NOMENCLATURE 

Symbol            Description         

Cp  Pressure Coefficient 

St  Strouhal Number 

f  Actuator Frequency (Hz) 

c  Chord Length (m) 

Lsep  Length of the Separation Region (m) 

    Free-Stream Velocity (m/s) 

    Fundamental Actuation Period (seconds) 

V  Actuator Input Voltage (kV) 

L/D  Lift to Drag Ratio 

ρ  Density (kg/m
3
) 

 ̅   Velocity (m/s) 

P  Pressure (N/m
2
) 

μ  Dynamic Viscosity (kg/m-s) 

  ̅  Body Force Vector (N/m
3
) 

ρc  Charge Density (C/m
3
) 

 ̅   Electric Field (N/C) 

FB  Actuator Body Force (mN/m) 

LSB  Laminar Separation Bubble 

UDF  User Defined Function 

 

 

 

 



 

 

1. INTRODUCTION 

The following chapter outlines the subsequent research on the computational 

modeling and application of aerodynamic plasma actuators.  First, a description of the 

functionality and applications of plasma actuators are discussed.  Next, a literature review 

regarding previous computational research in the area of plasma actuators was performed.  

Then, the objectives of the study are explained in great detail followed by a description of 

the contributions to the area of computational analysis of plasma actuators from this 

study.  Lastly, an outline of the remainder of this thesis is provided. 

 

1.1. AERODYNAMIC PLASMA ACTUATORS 

In recent years, the area of active flow control techniques in aerodynamics has 

been a great topic of interest.  Among these techniques is the aerodynamic plasma 

actuator.  This device has been demonstrated to have great effectiveness in improving 

aerodynamic performance in flow scenarios involving flow separation and boundary 

layer control [1].  Examples of these scenarios include, but are not limited to, the flow 

separation that occurs at the stall angle of attack of an airfoil, separation around a 

cylinder, and the separation of the laminar boundary layer.  The single dielectric barrier 

discharge (SDBD) plasma actuator [2], shown in Figure 1.1, is a relatively simple device 

consisting of a pair of electrodes separated by a dielectric material, typically arranged in 

the asymmetric configuration shown in Figure 1.1.  In experiments conducted by Corke 

et al. ([3] and [4]) the electrodes were made of a copper foil tape, while the dielectric 

material was made of a kapton film.  Other dielectric materials can be used such as 

Macor, Teflon or even glass.  The differences between the materials are their breakdown 

voltages and ductility.  The ductility affects the integration of the actuator, as those 

dielectrics with low ductility such as Macor cannot be easily integrated on curved 

surfaces [3].  In typical aerodynamic applications, one of the electrodes is exposed to the 

air, while the other is embedded in some surface, such as the skin on an aircraft wing, 

completely covered by the dielectric material.   
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Figure 1.1: Single Dielectric Barrier Discharge Plasma Actuator 

 

 

When an AC voltage is applied across the electrodes, and the frequency is large 

enough, the air ionizes in the region with the largest electric potential.  As shown in 

Figure 1.1, this region is located above the embedded electrode, beginning near the edge 

of the exposed electrode.  The ionized air, or plasma, in the presence of an electric field 

gradient, produces a body force on the ambient air [3], directed away from the exposed 

electrode, parallel to the dielectric material. 

In order to ionize the air using the plasma actuator, it is required that a large, 

typically between 10 and 20 kV, AC voltage be applied across the electrodes, operating 

with an input frequency of 1-10 kHz [5]. Because of the large frequencies, plasma 

actuators can be regarded as “quasi-steady” devices, as these frequencies are typically 

well above the fluid response frequency [4].  Even with the large voltage demands, 

plasma actuators are relatively low power devices, operating around 2-40 Watts per foot 

of actuator span [3]. Enloe et al. [5] describe, in great detail, the electro-magnetic 

phenomenon governing plasma actuators. 

Plasma actuators have many advantages over other flow control devices.  First, 

plasma actuators can be used as an active flow control device.  This means that they can 

be used in a time of need, and not in constant, uncontrolled use as with, for example, 

passive vortex generators [6].  One of the greatest advantages is that, when properly 

integrated, plasma actuators have almost no effect on the flow when in the off position as 

the exposed electrode is typically less than 0.1 mm thick.  Also, from a mechanics stand 

Electrodes Plasma 

Dielectric Material 
Airfoil 

Body Force 
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point, plasma actuators have no moving parts, making them solid-state devices, which are 

much simpler than mechanical devices with moving parts. 

In contrast, there are disadvantages to plasma actuators.  One substantial 

disadvantage is that because of the large voltage requirements necessary to drive plasma 

actuators, large, heavy amplifiers are typically required for adequate voltage supply.  In 

the case of an unmanned aerial vehicle, a large amplifier may not be feasible, or the costs 

in weight and increased vehicle size outweigh the gain in aerodynamic performance. 

Further research may be required in the area of amplifier design and performance to 

eliminate this issue.  Also, significant research is still required in the techniques of proper 

integration of plasma actuators into aerospace vehicles such that they cause minimal 

adverse flow disturbance.  A large actuator profile above the surface of the airfoil may 

inadvertently trip the flow causing premature separation or an early transition to turbulent 

flow increasing the skin friction drag.  Either or both of these adverse effects could 

require more power to control, or even make the plasma actuator ineffective. 

 

1.2. LITERATURE REVIEW 

1.2.1. Numerical Modeling of Plasma Actuators.  Recently, an increasing 

amount of research has gone into the study of plasma actuators using numerical 

simulations. The biggest challenge with simulating plasma actuators remains to be 

modeling the actual behavior of the actuator, its effects on the surrounding flow field, and 

the distribution of the plasma region.  Many different numerical models have been 

developed as the ongoing research in the area of plasma actuators expands.  Suzen et al. 

[1] made use of a model based on Maxwell’s equations stating the body force produced 

by the plasma actuator is a function of the charge density and the strength of the electric 

field produced by the actuator.  In the same study, the plasma distribution over the 

embedded electrode was modeled using half of a Gaussian distribution, which was stated 

to represent previous experimental results.  This model is considered to be a high fidelity 

model that represents the performance of the actuator based on the physics.  On the other 

hand, Aholt and Finaish [8] incorporated a body force source term into the Navier-Stokes 

equations.  Even though this model was not based on the actual physical representation of 

the physics governing the actuator (i.e., the solution of Maxwell Equations), this simple, 
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but useful, model was successfully used to demonstrate the effectiveness of using plasma 

actuators as a means of active flow control. 

In terms of simulating the flow around plasma actuators, many different methods 

have, again, been implemented. Because flow separation is an unsteady phenomenon and 

related to turbulence transition, only Large-Eddy Simulations (LES) or Direct Numerical 

Simulations (DNS) can resolve the flow structure.  Visbal et al. [9] has shown that the use 

of implicit LES simulations perform well when simulating the effects of plasma actuators 

on flow fields with large separation regions, such as the stall of an airfoil.  However, LES 

and DNS methods are very computationally expensive.  If it is not desired to clarify the 

turbulence structure, but rather to study the basic effects of plasma actuators, Reynolds-

Averaged Navier-Stokes (RANS) simulations provide sufficient qualitative data [10].   

RANS simulations have been performed in several studies using a variety of 

turbulence models.  Corke et al. [2] performed an analysis of the effects of a plasma 

actuator on a NACA 0021 airfoil using the v
2
-f turbulence model.  In this study, a single, 

steady state actuator was placed very near the leading edge of the airfoil.  The analysis 

was performed around the peak of the lift curve, at multiple angles of attack. These 

results show a shift in the lift curve.  The actuator increases maximum lift coefficient 

about by about 15% and angle at the maximum lift coefficient increases approximately 4 

degrees. 

In another study by Aholt and Finaish [8], a parametric RANS simulation study 

was performed to determine the plausibility of using plasma actuators as a means of 

active flow control of laminar separation bubbles over an elliptical airfoil.  In this study, 

the one equation Spallart-Allmaras turbulence model was implemented to simulate the 

turbulent flow at a chord Reynolds number of 10
5
.  Results of this study indicated as 

much as a 60% improvement in L/D when using a single, steady state actuator. 

In another study by Tsubakino et al. [10], an analysis of a NACA 0012 airfoil was 

performed using the algebraic Baldwin and Lomax turbulence model.  Here the effect of 

plasma actuators was studies at 16 degrees angle of attack, which was two degrees past 

the peak of the lift curve.  The first part of the analysis was performed using a single, 

steady actuator placed at three locations along the upper surface of the airfoil at two force 

magnitude levels.  Results show that, in general, the actuator placed closest to the leading 
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edge has the most influence and can best control the flow at each power level.  An 

additional analysis was performed using two lower powered actuators.  The results 

indicate that the two actuator configuration at a low power level gave relatively the same 

effect as a single actuator operating at the same additive power as the two actuators.  This 

indicates that even though the improvement in aerodynamic performance is quite similar, 

it may be more efficient to use a multiple actuator configuration to control separation as 

the required input voltage for the actuators can be less than a single, high-powered 

actuator. 

1.2.2. Applications of Plasma Actuators.  Plasma Actuators have been shown to 

be effective in a variety of applications other than airfoil separation control.  Huang et al. 

[11] demonstrated separation control over low pressure turbine blades used in gas turbine 

engines at low Reynolds numbers (50,000 to 100,000) typical for high altitude cruise.  

Using “PakB” turbine blades, an experimental analysis was performed comparing the 

performance of a steady actuator versus an unsteady actuator.  The results indicated that 

the unsteady actuator was more effective than the steady actuator in forcing the flow to 

reattach, and also required less power.   

Benard et al. [12] showed that plasma actuators could be used to improve free 

shear layer mixing at a nozzle exit. This experiment used a 22 degree diffuser with a pair 

of symmetrically placed DBD actuators placed on the lips of the diffuser.  Time-averaged 

results show significant enhancement of the jet spreading, jet core length reduction, and 

an increase in turbulent kinetic energy throughout the flow field.  Both steady and 

unsteady actuators were analyzed in this study.  The unsteady actuator performs 

particularly well in that the turbulence kinetic energy is greatly increased in the overall 

flow field due to the pulsing of the actuator. 

Plasma actuators have also been used as devices for noise reduction.  In a study 

performed by Thomas et al. [13], plasma actuators were used to study the plausibility of 

control flow separation over bluff bodies, in particular cylinders which are commonly 

found on aircraft landing gear.  The results showed that the plasma actuators could be 

used to create an effective “plasma fairing.”  This resulted in an impressive reduction of 

separation and associated unsteady vortex shedding.  In relation to the landing gear, 
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reducing flow separation could reduce the noise generated in the structure due to the 

separation. 

 

1.3. OBJECTIVES OF THE CURRENT STUDY 

In this study, flow separation control using plasma actuators over a NACA 0012 

airfoil at a chord Reynolds number of 100,000 is investigated.  Using Computational 

Fluid Dynamics, the global objective was to study and evaluate the effectiveness of 

separation control using plasma actuators at multiple angles of attack with flow regimes 

corresponding to two different flow separation mechanisms (i.e., laminar separation 

bubble and turbulent flow separation at stall conditions).  At the same Reynolds number, 

an examination of laminar separation bubbles at relatively low angles of attack (less than 

that of the stall angle), as well as fully turbulent, separated flows at the stall angle was 

necessary to fully characterize a range of performance and capabilities of aerodynamic 

plasma actuators.  Controlling both types of separation was explored using a single 

actuator and multiple actuator configurations, changing the location of the actuators, and 

observing the effects of operating the actuators in a steady state mode versus an unsteady, 

or pulsed, mode of operation.  It is important to note that the flow separations depicted 

and analyzed in this study are dependent on Reynolds number which influences the 

structure of the near-wall flow field and the separation.  A change in the Reynolds 

number may affect the separation location, size of the separation region, and even the 

angles of attack that both the laminar and stall separations occur.  The Reynolds number 

used in this study was chosen because this Reynolds number is typical for both manned 

and unmanned, high altitude flight vehicles and significant separation around the selected 

airfoil has been demonstrated [10].  

Another objective of this study is to approximate the required plasma actuator 

inputs, voltage and frequency, necessary to control different flow separation mechanisms.  

While models have previously been developed [2] to represent the physics and 

approximate the body force produced by the plasma actuator, these models tend to be 

computationally expensive and are only models.  In this study, an experimental 

correlation developed by Porter et al. [14] where the force per unit span generated by a 

plasma actuator is given in relation to voltage and frequency inputs.  The outcome of this 
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objective should provide a basis for determining the necessary voltage and frequency 

inputs used in plasma actuator system design and experimental analysis. 

1.3.1. Investigation of Laminar Separation Bubble (LSB) Control with 

Plasma Actuators.  At angles of attack less than that of the stall angle, it is possible for 

flow separation to occur, particularly at the low Reynolds number investigated in this 

study.  Shen et al. [15] performed direct numerical simulations around a NACA 0012 

airfoil at a chord Reynolds number of 100,000 illustrating the presence of flow separation 

due to the detachment of the laminar boundary layer from the airfoil surface.  This is 

caused by the presence of an adverse pressure gradient.  The separated shear layer, in 

some cases, may undergo a rapid transition to turbulent flow which could cause the shear 

layer to reattach to the surface, forming an attached turbulent boundary layer.  This yields 

the development of a laminar separation bubble.  It is important to note that the formation 

of this bubble may not occur at all angles of attack.  If the angle of attack is too low, the 

pressure gradient will not be large enough to induce laminar separation.  On the contrary, 

if the angle of attack is too high the pressure gradient may be large enough such that 

laminar separation will occur, but without reattachment.  The formation of this bubble, 

shown in Figure 1.2, can have an extremely detrimental effect on aerodynamic 

performance in that the separation bubble causes an increase in the pressure drag on the 

airfoil [8].   

 

 

 

Figure 1.2: Leading Edge Laminar Separation Bubble at 8 Degrees Angle of Attack 

(Pressure Coefficient Contour with Streamlines) 
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1.3.2. Investigation of Turbulent Separation and Stall Control with Plasma 

Actuators.  At the stall angle of attack, large scale separation occurs over nearly the 

entire upper surface of the selected NACA 0012 airfoil.  This region of separation 

dramatically influences the lift and drag characteristics of the airfoil in a negative 

manner.  For the given Reynolds number, it is assumed that the flow is fully turbulent at 

the stall angle, which was determined to be 15 degrees.  This means that there is no 

longer an imposed laminar to turbulent transition region as with the previously discussed 

scenario.  Physically, this represents a case in which the flow immediately transitions to 

turbulent flow upon reaching the airfoil, due to the large separation region.  Figure 1.3 

shows how the separation region forms with increasing angle of attack, as well as the 

magnitude of the developing separation region on the airfoil.  Prior to 15 degrees, only a 

region of trailing edge separation occurs after formation of the previously discussed 

laminar separation bubble is no longer possible. The trailing edge separation begins to 

develop at about 10 degrees angle of attack and increases through 15 degrees where the 

separation region grows past the maximum thickness location (30% chord for this airfoil) 

and engulfs the entire upper surface of the airfoil.  The objective of this portion of the 

study is to use aerodynamic plasma actuators to force the separation downstream such 

that separation region no longer covers the entire upper surface.  With the use of leading 

edge actuators, it will likely not be possible to fully eliminate separation over the entire 

airfoil without an unrealistic power input.  It is known that as the flow accelerates past 

the leading edge of the airfoil without separating, the flow will eventually reach an 

adverse pressure gradient near the point of the maximum velocity, causing a region of 

separation near the trailing edge [10].  Unless the flow is accelerated fast enough by the 

plasma actuator, flow separation will likely still occur downstream near the trailing edge.  

However, a separation region near the trailing edge has only a small influence on the 

aerodynamic characteristics of the airfoil. 

The goal is to demonstrate that plasma actuators could be used as an active means 

of stall control when the flow field and separation region are fully turbulent. Adequate 

control of this type of flow could allow airfoils to reach higher angles of attack without 

large scale separation, which greatly improves the capabilities of the airfoil in terms of 

aerodynamic performance.   
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          a) 10 Degrees Angle of Attack                       b) 12 Degrees Angle of Attack 

 

 
          c) 14 Degrees Angle of Attack                     d) 15 Degrees Angle of Attack 

 

Figure 1.3: Stall Separation Bubble Development from 10 to 15 Degrees Angle of Attack 

(Pressure Coefficient Contour with Streamlines) 

 

 

1.3.3. Investigation of the Effect of Plasma Actuator Location and Multiple 

Actuator Configurations on Flow Control Effectiveness.  In some cases, the use of a 

single plasma actuator as a means of flow separation control may not be possible.  In 

particular, flow separation at the stall angle of attack is strong and, after a perturbation, 

the fluid recovery time is extremely small.  Here, the use of one actuator may delay the 

separation of the boundary layer, but if this delay is not sufficient, substantial flow 
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separation may still ensue.  The application of multiple actuators could be used to further 

delay the separation point of the boundary layer by providing a longer distance over 

which momentum is added to the flow.  With this, it may also be possible to reduce the 

power consumed by each actuator in an array compared to a single, higher powered 

actuator.  One of the objectives of the current study is to investigate the plausibility of 

using an array of lower powered plasma actuators to control the two flow separation 

cases of interest in the study. 

1.3.4. Investigation of the Effect of Steady vs. Unsteady Actuator Operation 

on Flow Control Effectiveness.  As mentioned previously, plasma actuators can be 

regarded as a “quasi-steady” device.  This implies that if the actuator was operated 

continuously, the fluctuations due to the AC voltage powering the device are negligible.  

It has been shown that the use of a “pulsed” actuator can provide significantly greater 

aerodynamic performance enhancement, even beyond that of a steady state actuator for 

certain cases [9].  The pulsing effect of the unsteady actuator can generate large coherent 

vortices that could delay or even prevent separation.  These structures intermittently bring 

high momentum fluid to the surface, helping the flow withstand the adverse pressure 

gradient without separation [4].  One tremendous advantage to using a pulsed actuator is 

that the power requirement could be less than that of a steady actuator, and the gain in 

aerodynamic performance could be the same, if not better than a steady actuator [3], [4].  

The objective is to make a comparison between steady and unsteady actuator operation 

for both the laminar and turbulent separation cases discussed above, as well as the 

multiple actuator configurations.  In the cases of the multiple actuator configurations, the 

actuators were operated such that the actuators were offset by one actuation period.  For 

example, if actuator 1 is on from t=1.0 seconds to t=1.1 seconds, then actuator 2 was 

operated from t=1.1 seconds to t=1.2 seconds, and so on.  This would allow for the 

greatest time period in which momentum is being added to the flow by an actuator.  

Because of the success of using unsteady actuators to reduce the power consumed by 

single plasma actuators, an investigation of using lower powered unsteady, multiple 

actuators is performed compared to multiple, steady actuators. 
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1.4. CONTRIBUTIONS OF THE CURRENT STUDY 

This study makes three main contributions to the field of using plasma actuators 

as a means of active flow control around airfoils.  First and foremost is the demonstration 

of the use of plasma actuators across a range of angles of attack.  Very little 

computational research has been performed across a range of angles of attack using 

plasma actuators.  This is likely due to the fact the one single actuator, at one location 

may not have the capability to control the entire flow field from downstream laminar 

separation regions to the leading edge (or trailing edge) turbulent separation of a stalled 

airfoil as the separation location may be in a different location at each angle of attack.  In 

light of this, the second major contribution will be demonstrating the effectiveness of 

multiple plasma actuators.  A multiple actuator configuration could provide a means of 

active flow control in a dynamic environment, at least in the instance when realistic 

power needs are required.  

The last contribution will be relating the inputs of a numerical simulation to the 

inputs of an actual plasma actuator.  In many previous numerical analyses, inputs into 

numerical schemes have been electric field magnitudes and charge densities for complex 

models or simply momentum source term or body force magnitudes for simple models, 

each given with no relation to a physical application.  While a more simplified approach 

to modeling the actuator will be used in this study, the results will be given in terms of 

actuator voltage and frequency, as these are the main input parameters for plasma 

actuator operation. 

 

1.5. THESIS OUTLINE 

The following document is divided four chapters.  Section 2 focuses on 

computational method used to simulate the behavior and effect of plasma actuators.  This 

includes an explanation of the numerical flow solver, solution methodology, boundary 

conditions and turbulence modeling.  Furthermore, detail is given regarding the 

generation of the computational grid and determining the validity of the grid through a 

spatial or grid convergence study.  

Sections 3 and 4 outline the results of the wide variety of the actuator 

configurations analyzed in the study.  Section 3 deals with the control of low angle of 
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attack laminar separated flows, in particular, the scenario involving the formation of a 

laminar separation bubble.  Section 4 gives the results for the control of fully turbulent 

flow at stall conditions.  Each of the laminar and turbulent separation chapters are broken 

down into subsections to make comparisons between steady and unsteady actuators as 

well as a comparison between the use of a single actuator and multiple actuator 

configurations.  Both comparisons will not only show the difference in aerodynamic 

performance, but also the required power input to achieve the control demonstrated for 

each actuator configuration. 

In the last section, a conclusion is given to summarize the control of the flow 

around the selected airfoil across a range of angles of attack.  Because this research can 

be expanded to a various range of actuator configurations, flow scenarios, flight 

conditions, etc. a suggested outline of future work is given.  

The procedure used for setting up and running the numerical simulations used in 

this study is given in the appendix. 
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2. COMPUTATIONAL FLUID DYNAMICS MODEL 

This section outlines the numerical methodology used to achieve the goals 

outlined for this study.  First, a description of the computational method, flow solver and 

the developed computational grid are given along with the results of a conducted grid 

convergence study.  Lastly, details are given with regards to boundary conditions, 

turbulence modeling and computational modeling of the plasma actuator. 

 

2.1. SOLUTION METHODOLOGY AND FLOW SOLVER 

The computational fluid dynamics (CFD) code used in this study for the 

numerical solution of steady and unsteady RANS equations is the commercially available 

solver ANSYS FLUENT 12 [16].  Eq. (1) and (2) are the conservation equations for mass 

and momentum, respectively that are solved numerically by the flow solver. 

 

                                                         
  

  
      ̅                                                       (1) 

                                                               
  ̅

  
         ̅                                                        (2) 

 

Here,  ̅ is the velocity field, ρ is the fluid density, P is the pressure and μ is the 

dynamic viscosity.  Note here that 
 

  
 is the material or total derivative.  The selection of 

FLUENT was made due to the various solution capabilities, including the ease of 

incorporating a model to represent the plasma actuators through the use of a user defined 

function (UDF).  UDFs allow for additions and/or alterations to the flow solver and 

governing equations by compiling subroutines and linking them to FLUENT.  The 

solutions for this study were obtained using the pressure based, segregated solver.  

Second order spatial discretization was applied for pressure and momentum, as well as 

the selected turbulence model.  The absolute convergence requirement of all residuals 

was set to 10
-6

.  For pressure-velocity coupling, the SIMPLE method was implemented. 

To handle the transient flow discretization, a second-order implicit time marching scheme 

was implemented for time integration of the solution. The details on the set-up of Fluent 

CFD model are given in the Appendix. 
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The convergence of each case was achieved by ensuring that each of the 

governing equations (mass and momentum) and the turbulence model equation 

converged to the prescribed absolute convergence requirement.  For steady state cases, 

iterations were performed until the convergence requirement was met.  For transient 

cases, convergence was achieved for each time step where the time step size was 0.01 

seconds.  Lift and drag data was then extracted from the converged cases.  This is direct 

for steady flow cases as the lift and drag are a singular value.  However, for unsteady 

cases periodic behavior of the lift and drag coefficients are observed.  In order to 

determine the lift and drag for these cases, a mean of each is taken when the periodic 

motion is approximately centered about a single value with constant amplitude (i.e. after 

the flow has fully developed.) 

 

2.2. GEOMETRY AND COMPUTATIONAL GRID 

A symmetric NACA 0012 airfoil with a 1 meter chord length was the geometry of 

interest for this study.  The geometry and computational grid were both constructed using 

a hyperbolic C-type grid generator [17] developed for constructing grids around airfoils. 

The grid size was 20 chord lengths from the origin, located at the leading edge of the 

airfoil, in every direction while the wall spacing to the first grid point from the airfoil 

surface was 2.3x10
-5

 m.  This corresponds to a y+ value much less than one for the 

selected Reynolds number.  The objective is to completely resolve the boundary layer, 

including the viscous sub-layer, without the use of wall functions as these are only 

approximations of the behavior of the near-wall region.  The dimensions of the grid used 

in this study were 999x200 grid points, where the first number corresponds to the number 

grid lines in the streamwise direction and the second is the number of gridlines in the 

direction normal to the wall. The grid generator used a hyperbolic point distribution 

method parallel to the airfoil surface. The normal grid lines are, however, distributed 

evenly along the upper and lower surfaces.  Figure 2.1 depicts various aspects of the 

computational grid.  Figure 2.1a shows the full computational grid, Figure 2.1b shows the 

grid around the airfoil and Figure 2.1c shows the grid near the leading edge. 
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a) Full Grid View 

 

 
b) Airfoil View 

 

Figure 2.1: Computational Grid 
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c) Near-Wall View of the LE Region 

 

Figure 2.1: Computational Grid (cont.) 

 

 

In order to confirm the spatial convergence the grid developed for this study, a 

grid convergence study was performed using two additional coarsened grids. Each grid’s 

dimensions were determined by reducing the size by a factor of two at each level.  While 

the main grid had dimensions 999x200, the next grid level had dimensions 499x100, and 

the coarsest grid had dimensions 249x50.  To check the convergence of the 

computational grid, steady-state simulations were performed on each grid at angles of 

attack from 0 to 16 degrees.  The lift and drag distributions for the grids, as well as the 

drag polar are shown in Figures 2.2.  From these results, it can be seen that the 

convergence is achieved with the grid level to be used in this study.  Only small 

deviations at the stall angles of attack occur, but this is to be expected.  The use of a 

coarse grid in flows with large separation and circulation may have large residual error in 

the solution. 
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a) Cl vs. Angle of Attack 

 

 
b) Cd vs. Angle of Attack 

 

Figure 2.2: Gird Convergence Study Results for Cl vs. Angle of Attack, Cd vs. Angle of 

Attack and Cl vs. Cd 
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    c) Cl vs. Cd  

 

Figure 2.2: Gird Convergence Study Results for Cl vs. Angle of Attack, Cd vs. Angle of 

Attack and Cl vs. Cd (cont.) 

 

 

In addition to the lift and drag characteristics, the pressure distributions and skin 

friction distributions along the airfoil were also compared for the three grid levels.  The 

pressure and skin friction distributions were taken at three angles of attack, namely 2, 8 

and 16 degrees.  Pressure coefficient distributions are shown in Figures 2.3 for the three 

angles of attack, while Figures 2.4 show the skin friction coefficient distributions, again 

at the three angles of attacks.  These results, again, show the grid convergence has been 

achieved for the finest grid.  The pressure coefficient distribution plots match nearly 

exactly.  There is some deviation in the skin friction coefficient distribution plots, but this 

difference minute.  Confirming the grid convergence is achieved suggests that the 

residual error in the grid should be small which reaffirms the accuracy of the results 

forthcoming in this study and indicates that the solutions are independent of the 

computational grid. 
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a) 2 deg. Angle of Attack 

 

 
b) 8 deg. Angle of Attack 

 

 
c) 14 deg. Angle of Attack 

 

Figure 2.3: Grid Convergence Study Results for the Pressure Coefficient (Left) and Skin 

Friction Coefficient (Right) Distributions 
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2.3. BOUNDARY CONDITIONS 

There are three main boundaries for the computational grid, shown in Figure 2.4. 

Two of these are the farfield boundary. The left-hand side, top and bottom edges were 

modeled as velocity inlets while the right edge of the grid was set as an outflow 

boundary.  These boundary conditions are suitable for the low speed, incompressible flow 

analyzed in this study.  The other boundary is the airfoil surface, which was modeled as a 

no-slip wall boundary.  The inlet conditions were set such that free stream flow had a 

chord Reynolds number 100,000.  Sea level density (1.225 kg/m
3
) and dynamic viscosity 

(1.7894x10
-5

 kg/m-s) were used as the free-stream air properties.  This corresponds to a 

free-stream velocity of 1.46 m/s.  

 

 

 
Figure 2.4: Computational Grid Boundaries 

 

 

2.4. MODELING OF TURBULENCE AND TURBULENT FLOW TRANSITION 

FLUENT 12 has a wide variety of models readily available, with an array of 

settings and correction factors.  For this study, the one equation Spalart-Allmaras, Eddy-

Viscosity model was employed to simulate the turbulent flow.  Spalart and Allmaras [18]
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have shown that this model performs well in flows with adverse pressure gradients and 

exhibits numerical robustness in complex flow simulations.  Also, since this is a one 

equation model, it is computationally less expensive compared some other models, such 

as the four equation Transition SST model or the five equation Reynolds Stress model, 

both of which are available in FLUENT 12. 

Because of the use of the Reynolds Averaged Navier-Stokes (RANS) equations 

by the FLUENT solver, special arrangements had to be made in order to model the 

laminar separation bubble formed at low angles of attack.  Simple RANS modeling lacks 

the ability to accurately predict laminar to turbulent transitions.  It is typical that when 

using RANS modeling, the transition location is specified by the user.  In FLUENT, this 

was done by partitioning the computational grid into to two zones.  The location of the 

partition varies depending on the location of the laminar separation, which is analogous 

to the angle of attack to the airfoil.  The partition is placed at the location that causes the 

greatest aerodynamic performance loss while still forming the separation bubble for each 

selected angle of attack. 

Although the transition location is imposed and does not naturally occur, this 

method is consistent with the physics associated with the laminar separation bubble 

formation phenomenon.  This is also the procedure used by Aholt and Finaish [8] as part 

of their study of the control of laminar separation bubbles.  In order to relax this 

assumption, higher fidelity computation methods such as Large-Eddy Simulations (LES), 

Detached-Eddy Simulations (DES), Direct Numerical Simulations or more complex 

RANS models would be necessary.  However these methods are several times more 

computationally expensive than simple RANS modeling, especially when using a one-

equation turbulence model. 

 

2.5. PLASMA ACTUATOR MODEL 

It is well understood that plasma actuators impart a body force on the flow.  This 

is synonymous to simply adding momentum to the flow in a prescribed region.  This 

region is approximately where the plasma is created by the actuator.  To model a plasma 

actuator in FLUENT, a user-defined function (UDF) can be compiled into the solver, 
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adding a momentum source term to the governing equation for momentum [8] shown in 

Eq. (3). 

 

                                                   
  ̅

  
         ̅     ̅                                            (3) 

                                                             ̅   ̅     ̅                                                      (4) 

 

Here,  ̅ is the velocity field, ρ is the fluid density, P is the pressure, μ is the dynamic 

viscosity and   ,̅ shown in Eq. (4), is the body force per unit volume of plasma created 

by the plasma actuator [1], [2], [4].  (An example of the UDF used in this study can be 

seen in the appendix along with the procedure for linking the UDF to the flow solver.)  In 

this relation,    is the charge density and  ̅ is the electric field produced by the plasma 

actuator.  The momentum source magnitude is directly proportional to the power required 

by the actuator. 

This source term was restricted to the area designated as the location and size of 

the plasma region of the actuator.  Experiments ([3], [4]) have shown that the actuator 

electrodes can be comprised of thin foil tape and for electrodes in an asymmetric 

configuration, the size of the plasma region is approximately the same height or thickness 

as the exposed electrode.  However the length of the plasma is highly depended on the 

ambient conditions in that as the pressure decreases, the length of the plasma produced by 

the actuator increases in the chord wise direction.  This has been demonstrated through 

experimental by Nichols and Rovey [19].  For this analysis, the length of the plasma 

region was taken to be the same length as the embedded electrode.  These dimensions 

were chosen to be 10 mm long by 0.1 mm thick to represent the relative size of the foil 

tape used in previous experiments. 

To model the unsteady actuator, simple alterations to the UDF had to be made to 

account for the time dependent fluctuation of the plasma actuator.  The actuator time 

dependency, or rather the actuation period and frequency, were based on the physical 

frequency given by the Strouhal number, shown in Eq. (5) where      is the length of the 

separation region and    is the free-stream velocity. 
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                                                        (5) 

 

It has been shown that the optimum actuator frequency,  , occurs when the Strouhal 

number is near unity [3], [4], [7], [9].  After solving Eq. (5) for the frequency, a 

fundamental period can be determined using Eq (6). 

 

                                                                      
 

 
                                                             (6) 

 

This fundamental period can also be regarded as one actuation period.  The fraction of 

this period that the actuator is operating is known as the duty cycle.  For instance, if the 

duty cycle is equal to 1, this implies that there is no unsteady period during the operation 

of the actuator over one fundamental actuator period; or rather, this would be a steady 

actuator.  On the other hand, if the duty cycle was 0, there would be no actuation over the 

fundamental period; or rather, the actuator would be in the off position.  The relationship 

between the duty cycle, D, and fundamental period is shown in Eq. (7), where T denotes 

the period that the actuator is on during one fundamental period.  This is shown 

graphically in Figure 2.5. 

 

                                                                     
 

  
                                                            (7) 

 

The duty cycle can also be interpreted another way.  In terms of power, the duty cycle 

represents the power usage of an unsteady plasma actuator, compared to an actuator in 

steady operation.  For example, an actuator operating with a 10% duty cycle uses 90% 

less power than a steady actuator over the same time period.  For this study, a duty cycle 

of 50% was used for the unsteady actuator analysis as this has been shown to be adequate 

for aerodynamic control applications [9].   

For design purposes, it is necessary to determine the input voltage and frequency 

of the plasma actuators used in this study.  As the input into the UDF is a force per unit 

volume and the dimensions of the plasma region are specified, a relationship is needed to 

determine such information. 
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Figure 2.5: Unsteady Actuator Duty Cycle 

 

 

Porter et al. [14] performed an experiment to develop relationships between the 

force per unit length and the input frequency and voltage.  In this study, the results are 

presented in correspondence with a fixed input frequency of 5 kHz, and a linear 

relationship between the force per unit span of the actuator and the input voltage.  The 

force per unit span changes with the input voltage using Eq. (8).   

 

                                                                                                                       (8) 

 

Here, FB is in mN/m V is in kV.  This approximation should be sufficient for providing 

insight into the requirements for a physical system that utilizes plasma actuators in the 

manner demonstrated in this study.  Note that frequency of the unsteady operation of the 

actuator is much less than the operational frequency of the actuator.  In this study, the 

highest frequency analyzed was only 20 Hz, where the assumed operational frequency of 

the actuator is 5 kHz. 
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3. LAMINAR SEPARATION CONTROL 

In this portion of the study, two angles of attack, 8 and 10 degrees, were analyzed.  

The purpose for analyzing two angles of attack is to illustrate how performance of the 

plasma actuators used for 8 degrees changes at 10 degrees.  Increasing the angle of attack 

from 8 to 10 degrees moves the separation location closer to the leading edge of the 

airfoil.  Along with this, the magnitude of the adverse pressure gradient increases making 

the separation more pronounced and decreasing the fluid recovery time (i.e. the time it 

takes for the nominal flow to recover from a perturbation.)  At 10 degrees, the formation 

of a laminar separation bubble still occurs.  However, the separation bubble, in this case, 

is smaller in terms of physical dimensions due to the reduced length over which the 

detached laminar boundary layer has to grow before the transition to turbulent flow 

forces reattachment.   

Three plasma actuators located at 2, 4 and 6 percent of the chord length were 

analyzed with varying body force magnitude, or rather, voltage input.  (Recall that the 

input frequency is fixed at 5 kHz for the experimental relationship used.)  The minimum 

voltage used was 5.62 kV which corresponds to a force of 1 mN/m.  Porter et al. [14] 

noted that there is a threshold voltage where no plasma is generated.  The minimum 

voltage used in this portion of the study is just above the threshold of 5.31 kV.  Table 3.1, 

Table 3.2, Table 3.3 and Table 3.4 give the results for the lift to drag ratios (L/D) of the 

performed parametric study at 8 and 10 degrees angle of attack.  The parameters were the 

actuator configuration (single or multiple), operation mode (steady or unsteady) and the 

input voltage.   
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Table 3.1: Parametric L/D Results for Laminar Separation Bubble Control at 8 Degrees 

Angle of Attack with a Single Plasma Actuator 

 

8 Degrees Actuator Location (% chord) 

 V (kV), Duty Cycle 2 4 6 

No Actuator 21.91 21.91 21.91 

5.62, D=50% 30.31 22.72 21.81 

5.62, Steady 27.09 22.70 21.71 

5.93, D=50% 32.32 25.98 22.06 

5.93, Steady 29.33 24.96 21.92 

6.54, D=50% 32.65 32.57 23.38 

6.54, Steady 30.89 31.67 31.36 

 

 

Table 3.2: Parametric L/D Results for Laminar Separation Bubble Control at 8 Degrees 

Angle of Attack with Multiple Plasma Actuators 

 

8 Degrees Actuator Location (% chord) 

 V (kV), Duty Cycle 2 and 4 2 and 6 4 and 6 

No Actuator 21.91 21.91 21.91 

5.62, D=50% 31.16 30.85 22.79 

5.62, Steady 29.69 27.55 22.76 

5.93, D=50% 32.69 32.55 31.14 

5.93, Steady 31.11 31.28 31.4 

 

 

Table 3.3: Parametric L/D Results for Laminar Separation Bubble Control at 10 Degrees 

Angle of Attack with a Single Plasma Actuator 

 

10 Degrees Actuator Location (% chord) 

 V (kV), Duty Cycle 2 4 6 

No Actuator 19.40 19.40 19.40 

5.62, D=50% 20.89 20.51 19.86 

5.62, Steady 21.61 21.19 20.02 

5.93, D=50% 23.51 21.30 20.19 

5.93, Steady 27.26 22.37 20.62 

6.54, D=50% 30.45 22.52 20.90 

6.54, Steady 30.99 24.51 21.78 

7.77, D=50% 32.65 24.62 22.17 

7.77, Steady 31.12 27.99 23.72 
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Table 3.4: Parametric L/D Results for Laminar Separation Bubble Control at 10 Degrees 

Angle of Attack with Multiple Plasma Actuators. 

 

10 Degrees Actuator Location (% chord) 

 V (kV), Duty Cycle 2 and 4 2 and 6 4 and 6 

No Actuator 19.40 19.40 19.40 

5.62, D=50% 21.67 21.02 20.76 

5.62, Steady 23.67 22.28 21.55 

5.93, D=50% 24.24 23.04 21.67 

5.93, Steady 29.61 28.36 23.03 

6.54, D=50% 30.97 30.18 23.24 

6.54, Steady 30.34 30.10 25.42 

 

 

3.1. INVESTIGATION OF FLOW CONTROL WITH A SINGLE, STEADY 

ACTUATOR 

The first scenario analyzed involved the use of a single, steady-state actuator.  

The three actuators were operated at two different input voltage levels to illustrate the 

effect of the strength of the body force on LSB control.  Pressure coefficient contours 

with stream traces on the upper surface in the vicinity of leading edge are shown in 

Figure 3.1. 

 

 
a) No Actuator 

 

Figure 3.1: Pressure Coefficient Contours with Streamlines of One Steady State Actuator 

at 8 Degrees Angle of Attack. V = 5.93 kV Left, V = 6.54 kV Right (V = Input Voltage 

with 5 kHz Input Frequency) 
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b) 2% Chord Actuator 

 

 
c) 4% Chord Actuator 

 

 
d) 6% Chord Actuator 

 

Figure 3.1: Pressure Coefficient Contours with Streamlines of One Steady State Actuator 

at 8 Degrees Angle of Attack. V = 5.93 kV Left, V = 6.54 kV Right (V = Input Voltage 

with 5 kHz Input Frequency) (cont.) 
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For the case with no actuator at 8 degrees angle of attack, from Table 3.1, the lift 

to drag ratio (L/D) was about 21.91.  By inspection of Figure 3.1, it can be seen that the 

plasma actuator has the ability to drastically reduce the size of the separation region.  

Evaluation of the L/D results in Table 1 shows that there is as much as a 45% 

improvement in L/D when using a single, steady actuator.  This is a significant 

improvement in aerodynamic performance.  The reduction in the size of the separation 

region allows for a decrease in pressure drag as well as in improvement in the pressure 

distribution with an increase in the suction near the leading edge.   

The images above also illustrate the importance of the location of the actuator.  

Because of the large magnitude of the source, the 6.54 kV cases appear to be independent 

of the actuator location.  However, at the lower force level, it can be seen that as the 

actuator moves downstream, its effectiveness decreases. In fact, at the 6% chord location, 

the flow behaves as if there was no flow control device present at all.  These results help 

to illustrate, physically, how the plasma actuator modifies the near-wall flow field.  

Because of the body force near the wall, the flow is being accelerated near the wall, 

preventing separation from occurring.  If the actuator is placed just before the point at 

which the separation of the boundary layer is anticipated, then the separation can be 

delayed, or even prevented.  On the contrary, if the actuator is placed downstream of the 

separation point, the flow entrainment may not be substantial enough to reattach the flow.  

This will be an important concept later when attempting to control the flow separation at 

stall conditions.  For the 8 degree angle of attack case, it can be seen that the actuator 

located at 2% of the chord length provides the most improvement in aerodynamic 

performance for the lower, 5.93 kV, input.  However, notice that the separation bubble is 

smaller for the 6.54 kV input when the actuator is located at 4% of the chord.  At the 

higher force magnitude, the flow is being entrained near the wall, ahead of the actuator.  

This is preventing the separation from actually occurring until downstream of the 

actuator.  By this time, the boundary layer only has a small time period before the 

transition to turbulent flow forces reattachment.  

Figure 3.2 illustrates the magnitude of the pressure recovery achieved with a 

plasma actuator.  This plot compares the surface pressure distribution of the airfoil 

without a plasma actuator to the case where there is one actuator located at 4% of the 
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chord with an input voltage of 6.54 kV.  Because of the added momentum near the 

leading edge of the airfoil, the suction on the upper surface spikes dramatically with over 

a 25% increase in the pressure coefficient on the upper surface.  It can be seen that for 

this case the actuator does not entirely eliminate the separation bubble.  However, the 

addition of the momentum near the wall delays the separation of the boundary enough 

such that there is very little time for the detachment distance of the boundary layer to 

increase before transitioning to turbulent flow and reattaching.  Overall, there is about an 

8% increase in lift and a 25% decrease in drag.  Actually, the decrease in drag is quite 

interesting.  The plasma actuator causes a 50% decrease in pressure drag.  This can be 

explained by the reduction in the size of the separation bubble.  The interesting part is the 

skin friction drag, which actually increases over 80%.  While the skin friction component 

of the drag is small for the uncontrolled case, when the actuator is on, the two drag 

components are nearly the same, as the contribution of each is about 50% of the total 

drag.  Note that these results are only for this specific case.  In the cases when the 

actuator does not significantly decrease the bubble size, the skin friction drag will be 

much less than the pressure drag component.  Note that the sharp spike in Figure 3.2, on 

the actuator curve, is caused by the actuator. 

 

 

 

Figure 3.2: Surface Pressure Coefficient Distribution with and without a Single Plasma 

Actuator 8 Degrees Angle of Attack 
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 Upon increasing the angle of attack from 8 degrees to 10 degrees, the location of 

the separation of the laminar boundary moves forward a distance of about 1% of the 

chord.  The pressure contours with stream traces for the three actuators at the same two 

voltage levels are shown in Figure 3.3. 

 

 

 
a) No Actuator 

 

 
b) 2% Chord Actuator 

 

Figure 3.3: Pressure Coefficient Contours with Streamlines of One Steady State Actuator 

at 10 Degrees Angle of Attack. V = 5.93 kV, Left. V = 6.54 kV, Right 
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c) 4% Chord Actuator 

 

 
d) 6% Chord Actuator 

 

Figure 3.3: Pressure Coefficient Contours with Streamlines of One Steady State Actuator 

at 10 Degrees Angle of Attack. V = 5.93 kV, Left. V = 6.54 kV, Right (cont.) 

 

Comparing the results from the two angles of attack, it can be seen that the now 

instead of only the 6% actuator having very little influence on the separation bubble, the 

4% actuator has greatly lost its effectiveness.  This is expected as the separation bubble 

has propagated upstream and the 4% actuator can no longer entrain the flow enough to 

prevent the boundary layer from separating prior to the actuator at the same voltage 

levels.  Note that it may still be possible to control the separation bubble with a 4% or 

even a 6% actuator, however this would be extremely costly in terms required voltage 

and, in turn, power making this an inefficient approach. 
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3.2. INVESTIGATION OF FLOW CONTROL WITH A SINGLE, UNSTEADY 

ACTUATOR 

In an effort to reduce the power consumed by the actuators, another mode of 

operation was considered.  As mentioned earlier, it has been shown that the use of an 

unsteady or pulsed actuator can improve aerodynamic characteristics as much as or even 

more than that achieved from a steady state actuator.  Figure 3.4 shows a time sequence 

of the effect of the unsteady actuator.  Here, a periodic vortex shedding process is 

occurring.  As the laminar separation bubble is forming, it is quickly forced to separate 

from the surface before developing into a large bubble.  This can be seen as a kind of 

bursting effect.  Due to the similarity between the scenarios involving unsteady actuators, 

only one example is given. As long as the vortex shedding is present, all that changes 

between different actuator configurations and strengths is the size of the vortex that is 

shed. This means that a larger vortex will result in a greater loss in aerodynamic 

performance, but still may be better than a scenario where no control is present.  This is 

evident in Figure 3.5.  Because the drag is not as low for the 4% chord actuator compared 

to the 2% chord actuator, this suggests that the vortex being shed is larger than in the 2% 

chord actuator.  Note that in some cases, the actuator may have little or no effect on the 

separation region, as with the 6% chord actuator in Figure 3.5.  Similar to the steady 

actuators, this is due to the actuator placement with respect to the separation location.  In 

fact, the unsteady actuators are actually more dependent upon the placement as pulsing 

the actuator reduces the upstream influence of the actuator that was seen for the steady 

operation.  This indicates that the placement of the plasma actuator is crucial, in that is 

must be located just upstream of the point of separation for the most efficient and 

effective flow control.  
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                       Flow Time = 8 sec.                                   Flow Time = 10 sec.                

 
 

                       Flow Time = 12 sec.                                  Flow Time = 14 sec. 

 
 

                       Flow Time = 16 sec.                                  Flow Time = 18 sec. 

 
 

Figure 3.4: Pressure Coefficient Contours with Streamlines at 8 Degrees Angle of Attack 

with One Unsteady Actuator at 4% c. V = 6.54 kV kV, D = 50% 
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Figure 3.5: Drag Coefficient vs. Flow Time for Single Unsteady Actuators at 10 Degrees 

Angle of Attack. V = 7.77 kV, D = 50% 

 

 

3.3. INVESTIGATION OF FLOW CONTROL WITH MULTIPLE, STEADY 

ACTUATORS 

Multiple actuators may offer a substantial gain in efficiency and control potential 

over a single actuator.  It has already been shown that as the angle of attack increases, the 

separation location propagates upstream.  From the single actuator results, it has been 

shown that an actuator downstream of the separation location may have little to no 

control over the separation region.  Figure 3.6 shows the results of using two steady state 

actuators at 8 degrees angle of attack.  Here, the actuators were being operated at lower 

input voltages than that of the single actuator cases, as this is one of the goals of using 

multiple actuator systems.  Note that the same three actuators are still in use (2, 4 and 6% 

chord), and all possible combinations have been considered.   
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a) No Actuator 

 

 
b) 2 and 4% Chord Actuators 

 

 
c) 2 and 6% Chord Actuators 

 

Figure 3.6: Pressure Coefficient Contours with Streamlines of Two Steady State 

Actuators at 8 Degrees Angle of Attack. V = 5.62 kV each, Left. V = 5.93 kV each, Right 
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d) 4 and 6% Actuators 

 

Figure 3.6: Pressure Coefficient Contours with Streamlines of Two Steady State 

Actuators at 8 Degrees Angle of Attack. V = 5.62 kV each, Left. V = 5.93 kV each, Right 

(cont.) 

 

As with the single actuator, the effects of the surface body force can be observed 

from the stream traces above. The separation point is pushed downstream, reducing the 

size of the separation bubble. With the multiple steady actuators, the total body force acts 

as if it were an additive resultant from the two actuators. In general, if the actuators are 

close together, as in these cases, this statement will likely hold true.  It may actually be 

difficult to discern between using one actuator or two, especially in the case when the 

fluid recovery time is large enough that no separation occurs between the actuators.  

Figure 3.7 shows the results for two steady state actuators at 10 degrees angle of 

attack.  The results are quite different from 8 degrees.  The separation region carries more 

energy at the 10 degrees.  In turn, at the lower voltage level the pair of actuators have 

relatively no influence.  Also recall that at 10 degrees angle of attack the fluid recovery 

time is significantly less compared to 8 degrees.  This allows for the flow separate only a 

short distance past the actuator.  When there is an actuator at 2% c, the separation is 

slightly delayed; however the flow rapidly detaches and grows rendering the second 

actuator effectively useless.  At the higher 5.93 kV input voltage, the 2% actuator is able 

to greatly reduce the separation bubble size, but the second actuator still plays little part 

in controlling the separation region.  This is because the fluid recovery time is simply too 

short.  In the case of actuators at 2% and 4% c at 5.93 kV, it can be seen that a small 
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separation region actually exists between the two actuators.  Moving the actuators closer 

together may help to improve the capabilities of multiple actuators when the effect of the 

actuator is quickly dissipated. 

Furthermore, notice that in the cases with the 4% and 6% actuator the actuators 

have little effect.  There is some distortion in the bubble structure due the added 

momentum, however the bubble simply passes over the actuators as, again, their 

influence does not reach very far downstream for the selected input voltage levels.  This 

is not to say these actuators are ineffective, as with a high enough input voltage, this 

particular configuration could effectively control the flow, just not efficiently.  The 

ineffectiveness of these actuators also reaffirms the importance of actuator placement for 

effective and efficient control of separated flows. 

 

 

 
a) No Actuator 

 

Figure 3.7: Pressure Coefficient Contours with Streamlines of Two Steady State 

Actuators at 10 Degrees Angle of Attack. V = 5.62 kV each, Left. V = 5.93 kV each, 

Right 
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b) 2 and 4% Chord Actuators 

 

 
c) 2 and 6% Chord Actuators 

 

 
d) 4 and 6% Actuators 

 

Figure 3.7: Pressure Coefficient Contours with Streamlines of Two Steady State 

Actuators at 10 Degrees Angle of Attack. V = 5.62 kV each, Left. V = 5.93 kV each, 

Right (cont.) 
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3.4. INVESTIGATION OF FLOW CONTROL WITH MULTIPLE, UNSTEADY 

ACTUATORS 

Using the same actuator configurations as in the steady state multiple actuator 

cases, the actuators could be operated in an unsteady mode.  Because the success of the 

single unsteady actuator, it was expected that similar improvement would be seen for 

multiple unsteady actuators.  Recall that in the case of multiple unsteady actuators, they 

are operated just out of phase.  Because of the 50% duty cycle used in this study, there 

will always be one actuator operating at a given time.  For the 8 degree angle of attack 

case, multiple, unsteady actuators provide nearly the same aerodynamic improvement as 

the cases with a single, unsteady actuator with the same power consumption over the 

same period of time.  Because the actuators are so close together, the fluid behaves as if 

there is one steady actuator present on the surface of the airfoil.  With a single, more 

powerful actuator, the influence of the actuator reaches nearly the same distance 

downstream as the two unsteady actuators at a lower power level and gives the 

impression of steady actuation.  This holds true because there is no separation occurring 

between the actuators.  However this is only true at this angle of attack in which the fluid 

recovery time is quite long relative to 10 degrees angle of attack. 

At 10 degrees, the same trend is not observed.  At the same force levels as at 8 

degrees, the multiple unsteady actuator configurations are not nearly as effective as a 

single, unsteady actuator.  This is because the flow recovers too quickly after the first 

“push” from the upstream actuator and begins to separate before reaching the 

downstream actuator making the downstream actuator relatively ineffective.  However, 

note that this is only the case when the force level is the same as in the 8 degree cases.  

Increasing the force magnitude (a higher input voltage) would allow the upstream 

actuator to give enough of a “push” such that the flow stays attached through both 

actuators, without separation between. 

Note that for cases involving multiple, unsteady actuator configurations the same 

vortex shedding phenomenon is in place as seen in the cases with a single, unsteady 

actuator.  Figure 3.8 shows an example of this at 8 degrees angle of attack as compared to 

having no actuator and a single, steady actuator of with the same time averaged body 

force magnitude.  Notice that the 4 and 6% actuator chord array has a significantly higher 
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drag.  As with the single, unsteady actuator cases, this is because the size of the vortex 

being shed is much larger than the other two configurations.  Similar to all of the other 

actuator configurations discussed, this is related to the placement of the actuators with 

respect to the separation region.  The 4 and 6% actuators lie inside the separation region 

and, with an input voltage of 5.62 kV each, the flow is not being entrained enough to 

prevent separation from occurring upstream of the 4% actuator.  Due to the unsteadiness 

caused by the pulsing actuators, the described vortex shedding process is in place.   

However, in this case, only a portion of the separation bubble is being shed.  The initial 

separation upstream of the 4% actuator is not being prevented or even suppressed.  

 

 

 

Figure 3.8: Drag Coefficient vs. Flow Time for Multiple Unsteady Actuators at 8 Degrees 

Angle of Attack. V = 5.62 kV each, D = 50% 

 

 

3.5. SUMMARY OF THE RESULTS 

3.5.1. Plasma Actuator Location.  Several conclusions can be drawn from these 

results.  The first is related to the importance of the actuator location. For the lower 

powered steady state actuators and all of the unsteady actuator arrangements, actuator 



 

 

 

42 

placement dominates the effectiveness of the actuator(s).   The actuator must be located 

just upstream of the separation location in order to have a substantial influence on the 

separation bubble.  This is true for both angles of attack.  Here in lies that advantage/need 

of using multiple actuator systems.  In this study, only two angles of attack are examined, 

however if the angle of attack was reduced to five or six degrees, the separation location 

would be downstream enough that the 2% chord actuator may now be ineffective, and the 

6% chord or even a further downstream actuator would be ideal.   

3.5.2. Steady vs. Unsteady Plasma Actuators.  A second conclusion that can be 

made is with regards to the use of unsteady actuators.  Because the critical factor in 

implementing plasma actuators as a feasible, active flow device will likely be the power 

usage, it is critical to reduce power consumption in any way possible.  This is where the 

use of unsteady actuators show significant promise.  From Table 3.1 notice that for a 6.54 

kV, steady actuator at the 2% chord location, L/D = 30.98 whereas with a 5.93 kV, 

unsteady actuator (D = 50%) at the 2% chord location, L/D = 32.32.  This is an 

improvement over the steady actuator at 25% of the body force magnitude, which is 

synonymous to 25% of the power required.  It can be seen from both Tables 3.1 and 

Table 3.3 that, in general, unsteady actuators always outperform steady actuators at the 

same time averaged body force magnitude, but not always at the same force input.  For 

example, from Table 3.3, notice that for a 6.54 kV input, the steady actuator has an L/D = 

30.99, but the unsteady actuator with the same input has an L/D = 30.45.  However, the 

unsteady actuator is using exactly half of the power as the steady actuator.  The same 

power as this unsteady actuator is also used by the 5.93 kV steady actuator.  Notice that 

the unsteady actuator out performs the steady actuator at the same time averaged body 

force or power input.   

3.5.3. Effect of Multiple Plasma Actuators.  Lastly, the use of multiple actuators 

can yield significant improvements over single actuators at a much lower power 

requirement in some cases, but not all.  The primary advantage of the multiple actuators 

is that, because of the dependence on the placement of the actuator, multiple actuators 

can give a wider range of control.  It can be shown that as the angle of attack increases, 

the separation point advances forward.  If an aircraft is designed with only one actuator at 

the 4% chord location, this actuator, in all likelihood, will not be able to effectively 
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control the separation region with reasonable power inputs. In the other direction, if the 

angle of attack were to decrease, the separation point may move downstream, and if the 

aircraft only has a 2% chord actuator onboard, it again may be ineffective as the added 

momentum from the actuator only has a short downstream influence before the added 

momentum is dissipated.  Using multiple actuators will allow for control over a range of 

angles of attacks.  In terms of power usage, the multiple actuators do not provide much 

advantage.  Nearly the same aerodynamic performance enhancement can be achieved 

using a single actuator at the same time averaged force magnitude and operational model 

(steady or unsteady.)  This is because of the spacing of the actuators.  The actuators used 

here are close together, which is necessary because of the size of the studied separation 

region.  Multiple actuators would likely prove to be beneficial in cases when separation 

needs to be continuously delayed over a long region.  In this case, a single actuator 

upstream of some initial separation point may require a significantly large power input 

(i.e., beyond the practical limits) to maintain attached flow over some length whereas 

using multiple, much low powered actuators may provide a much more efficient 

alternative.  Regardless, the same trend still holds true that, as with the single actuators, 

unsteady operation outperforms steady operation given the same time average body force 

magnitude.  
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4. CONTROL OF TURBULENT FLOW SEPARATION AT STALL 

CONDITIONS 

In this portion of the study, 15 degrees angle of attack was the angle of interest.  

At the selected Reynolds number (100,000) used in this study, 14 degrees was the highest 

achievable angle of attack after which substantial separation and stall conditions were 

observed.  At this angle, only a small region of trailing edge separation exists, which has 

little effect on the aerodynamic performance of the airfoil.  At 15 degrees, the separation 

proceeds to cover nearly the entire upper surface of the airfoil which severely 

compromises its lift and drag characteristics. 

It is important note the type of separation observed for the NACA 0012 airfoil and 

flow conditions used in this study.  It has been determined, by observation of the transient 

data associated with the uncontrolled case at 15 degrees angle of attack, that the flow 

separation originates in the trailing edge region.  It will be shown that even after pushing 

the trailing edge separation back downstream with plasma actuation, this small leading 

edge separation bubble still remains, which appears to be stable in time.  

Control of trailing edge separation may be different than what has been studied in 

previous literature as most of those cases focus on the control of leading edge separation 

with actuators placed in the leading edge region. The primary objective of the turbulent 

separation control investigated in this study is to force the separation region downstream 

as far as possible (i.e., to reduce the extent of the size of the separation region).  Just 

moving the separation back past the maximum thickness of the airfoil will greatly 

improve the suction on the upper surface of the airfoil which enhances the lift.  An 

improvement in the drag will come from forcing the separation region as far downstream 

as possible.  Reduction of the separation zone size greatly improves the pressure drag on 

the airfoil, but increasing the body force magnitude to reduce the separation zone size 

also increases the skin friction drag.  However, at the stall condition, the pressure drag 

component is significantly larger than the skin friction drag component making the 

increase in skin friction drag due to the addition of momentum near the wall negligible. 

Table 4.1 and Table 4.2 give the results of the performed parametric study.  Note 

that the parameters were the same as in the previous chapter.  Also, the same 2, 4 and 6% 
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chord actuators used in the previous chapter are used in this portion of the study with all 

of the same actuator configurations.  However, the minimum voltage analyzed is higher 

than in the LSB control study.  In this chapter, a minimum voltage of 7.77 kV was used 

as this is the voltage where flow control with either a single steady or unsteady actuator 

was not possible.  This is shown in Table 4.1.  At the lowest voltage, the single, unsteady 

actuator cannot suppress the separation region. 

 

 

Table 4.1: Parametric L/D Results for Turbulent Stall Separation Control at 15 Degrees 

Angle of Attack with a Single Plasma Actuator 

 

15 Degrees Actuator Location (% chord) 

 V (kV), Duty Cycle 2 4 6 

No Actuator 3.18 3.18 3.18 

7.77, D=50% 3.95 3.23 3.20 

7.77, Steady 15.73 12.30 11.30 

10.22, D=50% 14.47 12.24 11.61 

10.22, Steady 20.92 16.52 15.17 

15.13, D=50% 18.76 15.90 15.56 

15.13, Steady 25.85 20.84 19.24 

 

 

Table 4.2: Parametric L/D Results for Turbulent Stall Separation Control at 15 Degrees 

Angle of Attack with Multiple Plasma Actuators 

 

15 Degrees Actuator Location (% chord) 

 V (kV), Duty Cycle 2 and 4 2 and 6 4 and 6 

No Actuator 3.18 3.18 3.18 

7.77, D=50% 14.83 14.30 12.09 

7.77, Steady 18.59 18.43 15.09 

10.22, D=50% 20.03 19.23 15.83 

10.22, Steady 22.30 22.64 18.30 
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4.1. INVESTIGATION OF FLOW CONTROL WITH A SINGLE, STEADY 

ACTUATOR 

Figure 4.1 shows the pressure coefficient contours with streamlines for the cases 

with a single plasma actuator. It is important to note that the input voltage for these cases 

is as much as 4 times higher than what was used as the highest voltage for the laminar 

separation bubble cases.  This is expected and the separation at this angle of attack is 

larger, stronger, and much more stable making it more resistant to perturbations.  From 

the images in Figure 4.1, the effect of the actuator on the separation region can clearly be 

seen.  The momentum added to the flow from the actuator forces the separation region 

downstream towards the trailing edge, reducing its size.  For the case with no actuator, 

L/D = 3.18, as given is Table 4.1.  From Table 4.1, even the worst case below (6% chord 

actuator with V = 7.77 kV) gives great improvement to the aerodynamic performance of 

the airfoil with an L/D = 11.61.  This is over a 250% improvement.  By forcing the 

separation region downstream past the maximum thickness, the suction on the leading 

edge increases significantly, such that the lift increases by almost 70%.  The 2% chord 

with an input of 15.13 kV provides an L/D = 25.85 which is achieved by the massive 

increase in suction on the leading edge and the addition of near wall momentum that 

travels downstream fast enough to force the separation bubble almost completely to the 

tip of the airfoil. 

Notice that in the cases with the input of 15.13 kV the size of the separation 

bubble is relatively the same between all three cases.  The separation region for the 4 and 

6% actuators is slightly larger, but not substantially.  This might suggest that the L/D 

ratio is approximately the same.  However, they are not as the difference between the L/D 

ratio of the 2% actuator is actually 35% higher than the ratio for the 6% actuator.  Figure 

4.2 illustrates why this is so. From this figure, notice the suction increase on the upper 

surface. The pressure is about 12% lower.  This provides about a 6% increase in left.  The 

remainder of the difference in the two L/D ratios then must come from the difference in 

drag.  From the same figure, it can be seen that there is very little difference between the 

two cases at the trailing edge.  The major difference is near the leading edge.  Observing 

the 6% chord line, there is a hint of separation at the leading edge as the sharp increase in 

the pressure due the actuator is much more significant compared to the 2% chord actuator 
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case.  This is because the 2% chord actuator is upstream of this small leading edge 

separation.  The 2% actuator completely prevents this separation from occurring.  This 

accounts of the nearly 22% decrease in drag from the 6% chord actuator case.  The 4% 

chord actuator cases are all between the 2% and 6% chord actuator results.  The 4% 

actuator is not quite upstream of the separation region and is not as effective at the 2% 

chord actuator. 

 

 

 
a) No Actuator 

 

 
b) 2% Chord Actuator 

 

Figure 4.1: Pressure Coefficient Contours with Streamlines of One Steady State Actuator 

at 15 Degrees Angle of Attack. V = 7.77 kV, Left. V = 15.13 kV, Right 



 

 

 

48 

 

 
c) 4% Chord Actuators 

 

 

 
d) 6% Chord Actuator 

 

Figure 4.1: Pressure Coefficient Contours with Streamlines of One Steady State Actuator 

at 15 Degrees Angle of Attack. V = 7.77 kV, Left. V = 15.13 kV, Right (cont.) 
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Figure 4.2: Surface Pressure Coefficient Distribution with and without a Single Plasma 

Actuator at 15 Degrees Angle of Attack 

 

 

4.2. INVESTIGATION OF FLOW CONTROL WITH A SINGLE, UNSTEADY 

ACTUATOR  

For a single unsteady actuator, the results are quite different when compared to 

the laminar separation bubble cases.  Previously, the unsteady actuators induced a 

periodic vortex shedding process preventing the separation from growing to a stable, full 

size separation bubble.  However, for the turbulent separation at stall conditions, this 

same phenomenon is not observed.  Figure 4.3 shows a time sequence for a single, 

unsteady actuator.   

Notice that the separation region never detaches from the surface of the airfoil.  

What is seen is the separation generated by the trailing edge swelling, then deflating with 

a periodic motion.  Figure 4.4 shows a plot of the drag coefficient versus the flow time 

for this case, which confirms the behavior of the separation region.  In light of this, 

single, unsteady actuators do not perform as well as single steady actuator.  For a 2% 

chord unsteady actuator with a 15.13 kV input, L/D is about 12% less than a steady 

actuator at the same location with the same time averaged body force magnitude (V = 

10.22 kV.)  For all studied cases, the unsteady actuators do not perform as well as steady 

actuators, which is not similar to the trend observed for the control of laminar separation 

bubbles.  This is because there is always a region of separation attached to the airfoil 
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surface which reduces the aerodynamic performance of the airfoil.  Note, however, that 

there is still significant aerodynamic improvement when compared to the uncontrolled 

case.  From Table 4.1, the greatest improvement in L/D for the cases with a single 

unsteady actuator was nearly 500%. 

 

 

                       Flow Time = 25 sec.                                    Flow Time = 26 sec. 

 
 

                       Flow Time = 27 sec.                                    Flow Time = 28 sec. 

 
 

                       Flow Time = 29 sec.                                    Flow Time = 30 sec. 

 

Figure 4.3: Pressure Coefficient Contours with Streamlines at 15 Degrees Angle of 

Attack with One Unsteady Actuator at 2% c. V = 15.13 kV kV, D = 50% 
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Figure 4.3: Pressure Coefficient Contours with Streamlines at 15 Degrees Angle of 

Attack with One Unsteady Actuator at 2% c. V = 15.13 kV kV, D = 50% (cont.) 

 

 

 

Figure 4.4: Drag Coefficient vs. Flow Time for a Single Unsteady Actuator at 15 Degrees 

Angle of Attack. V = 15.13 kV, D = 50% 
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4.3. INVESTIGATION OF FLOW CONTROL WITH MULTIPLE, STEADY 

ACTUATORS 

The results for the cases with multiple, steady actuators are quite similar to the 

cases involving a single, steady actuator in terms of decreasing the size of the separation 

region.  This is due to the fact the effect of multiple actuators is additive with regards to 

the total body force.  Actuators with 10.22 kV input produce a force of about 16 mN/m.  

With two actuators, this implies that there is a total of 32 mN/m produced by the pair.  

This corresponds to an input voltage of 15.13 kV for a single actuator which was the 

highest voltage analyzed for a single actuator.  Figure 4.5 gives the pressure contours 

with stream traces.   

 

 

 
a) No Actuator 

 

Figure 4.5: Pressure Coefficient Contours with Streamlines of Two Steady State 

Actuators at 10 Degrees Angle of Attack. V = 7.77 kV each, Left. V = 10.22 kV each, 

Right 
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b) 2 and 4% Chord Actuators 

 

 
c) 2 and 6% Chord Actuators 

 

 
d) 4 and 6% Chord Actuators 

 

Figure 4.5: Pressure Coefficient Contours with Streamlines of Two Steady State 

Actuators at 10 Degrees Angle of Attack. V = 7.77 kV each, Left. V = 10.22 kV each, 

Right (cont.) 
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The best cases (highest L/D) shown in the case with actuators at 2% and 4% of 

the chord each with a 10.22 kV input.  Comparing this case to the single 2% chord 

actuator case a 15.13 kV input shows that there are some slight differences.  The L/D 

ratio is about 16% higher for the single actuator case.  With regards to the lift, the suction 

near the leading edge is not as substantial with the lower powered actuators and therefore 

the lift is not as high when compared to the single actuator case.  However, there is only 

about a 3% difference in the lift.  The big deficit comes from the drag.  This is because 

the separation region reaches about 13% further upstream for the multiple actuator case.  

This increases the drag by nearly 11%.  

 

4.4. INVESTIGATION OF FLOW CONTROL WITH MULTIPLE, UNSTEADY 

ACTUATORS 

Similar observations made for the single unsteady actuator cases can also be made 

for the multiple unsteady actuator cases.  The unsteady actuators do not provide 

significant improvement compared to steady actuators.  The pulsing effect does not 

induce a vortex shedding process as a region of separation remains attached to the trailing 

edge.  Like with the single, unsteady actuators, multiple, unsteady actuators are able to 

keep the separation confined to the trailing edge which does provide significant 

enhancement in aerodynamic performance (L/D), though the same improvement as single 

for steady actuator cases is not seen.  L/D values for each to the analyzed configurations 

are given in Table 4.2.  Figure 4.6 shows periodic behavior for a multiple actuator 

configuration compared to a single, steady actuator of the same time averaged body 

force. 
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Figure 4.6: Drag Coefficient vs. Flow Time for Multiple, Unsteady Actuators at 15 

Degrees Angle of Attack. V = 10.22 kV each, D = 50% 

 

 

4.5. SUMMARY OF THE RESULTS 

4.5.1. Plasma Actuator Location.  Overall, similar trends are observed as with 

the laminar separation cases, most importantly with regards to actuator placement.  Even 

though all of the actuator configurations are capable of providing significant 

improvement to the aerodynamic performance of the airfoil, the most efficient and 

effective approach is to ensure that the actuator is located upstream of any separation that 

may be present in the flow.  The results in Table 4.1, as well as the figures throughout 

this chapter suggest that it is possible to the control separated flow coming from the 

trailing edge using leading edge actuators.  As long as the added momentum from the 

plasma actuator is sufficient enough to keep the separation region from moving forward 

over the maximum thickness of the airfoil, then the significant loss in aerodynamic 

performance associated stall conditions (substantially decreased lift and increased drag.)  

This conclusion explains why a significant increase in L/D (Table 4.1) is observed of 

nearly every case investigated.  Each configuration has the ability to suppress the 

separation region given a high enough voltage input.  
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4.5.2. Steady vs. Unsteady Plasma Actuators.  In general, the steady state 

actuators outperform unsteady actuators both in terms of effectiveness and efficiency as 

even unsteady actuators with the same time averaged force magnitude as a single actuator 

cannot provide the same level of aerodynamic improvement.  This is quite the opposite 

that was observed for the control of laminar separated flows, where the unsteady actuator 

was, in every case, more effective and efficient in improving the aerodynamic 

performance compared to a steady actuator at the same time averaged force magnitude.  

Also, note that the most improvement was achieved from using the actuator nearest to the 

leading edge.  Not only does this provide the most improvement in the suction on the 

leading edge, but, after the trailing edge separation is forced downstream, a small region 

of separation stands near the leading edge which only the farthest forward actuator was 

the ability to prevent. 

4.5.3. Effect of Multiple Plasma Actuators.  Overall, there is not a substantial 

gain to using multiple actuator configurations for this particular case.  For multiple, 

steady actuators the reduction in the separation region size is similar for a single, steady 

actuator with the same total, additive, body force.  However, the improvement in the 

suction is not as substantial as the as half of the added momentum is further away from 

the leading edge.  The same effects are seen for multiple, unsteady actuators compared to 

a single, unsteady actuator where the disturbances generated by the pulsing effect do 

suppress the separation region from covering the entire upper surface, however, the 

aerodynamic improvement is not as significant compared to a single, steady actuator at 

the same power consumption. 
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5. CONCLUSIONS AND FUTURE WORK 

5.1. CONCLUSIONS 

The primary objective of this study was to investigate and demonstrate the 

effectiveness of aerodynamic plasma actuators as a means of active flow control over 

airfoils over a range of angles of attack.  This included analyzing two flow scenarios that 

are detrimental to aerodynamic performance: laminar separation bubbles at a low angle of 

attack and turbulent separation at stall conditions.  Results were obtained for actuators 

operating in both steady and unsteady modes, as well as multiple actuator configurations. 

For the laminar separation bubble cases, successful reduction in separation size 

was achieved resulting in as much as a 45% recovery of the lift to drag ratio, depending 

on the angle of attack.  Results also indicate that with the use of a single, unsteady 

actuator the same, if not slightly more improvement can be achieved with as little as 25% 

of the body force magnitude of a single, steady actuator.  In all cases, unsteady actuators 

provide as much as a 12% improvement over a single actuator at the same time averaged 

body force magnitude.   This reduction in the body force magnitude is synonymous to a 

reduction in the power required to drive the plasma actuator.  These results are 

comparable to the results found by Aholt [20] where as much as a 60% improvement in 

the lift to drag ratio was achieved over an elliptical airfoil.  Aholt also observed that 

unsteady actuators provide as much as a 19% improvement over equivalently powered 

steady actuators.  The improvement with the unsteady actuators is due to an induced, 

periodic vortex shedding process which prevents large scale separation from occurring.  

Similar trends are seen for the multiple actuator configurations (both steady and 

unsteady.)  Nearly the same aerodynamic improvement is achieved for multiple actuator 

configurations as with steady actuator configurations at the time averaged body force 

magnitude, with the same mode of operation. 

Another important conclusion drawn from these results was the dependence on 

actuator location relative to the separation region.  It was found that if the actuator was 

located inside the separation region, it may not be effective at all.  If separation control 

can be achieved, it comes at a great cost in terms of required power.  The optimum 

location for an actuator would be just upstream of the separation location.  This is where 
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the usefulness of multiple actuator systems becomes clear.  In a dynamic environment, 

the separation location maybe changing, especially in laminar separated flows where the 

separation location propagates upstream with increasing angle of attack.  In this case, a 

single actuator maybe not be able to control the flow separation across the range of 

angles of attack, both effectively and efficiently.  Multiple actuator systems may also be 

useful in scenarios where a single actuator can only by prevent separation for a short 

distance downstream.  An array of actuators would allow for continuous propagation of 

the separation location.  This suggests that the use of multiple actuator configurations 

may be the most practical design for aerospace applications that operate in this flow 

regime. 

For turbulent separated flow at stall conditions, similar trends were observed for 

single, steady actuators.  For the cases studied, as much as a 700% improvement in L/D 

was achieved.  This is primarily due to the suppression of the separation region towards 

the trailing edge as well as the increased suction on the leading edge.  Multiple, steady 

actuators have a similar effect when compared to a single, steady actuator of same 

additive body force.  While the reduction in the separation region size may be the same 

between the two, the L/D enhancement is not as great for multiple, steady actuators as the 

suction on the leading edge is not as substantial. 

 However, the same improvement could not be achieved with unsteady actuation, 

whether with a single actuator or multiple actuators.  While there is significant 

improvement compared to the uncontrolled case, that improvement is not as much as is 

achieved from steady actuators.  This is because of the nature of the separation region, 

which originates in the trailing edge region rather than the leading edge.  The same 

periodic vortex shedding seen with the laminar separated flows is not observed in this 

case.  The unsteady actuator creates a periodic swelling and deflating effect on the 

trailing edge separation, however never causing detachment.  In a case where the 

separation was coming from the leading edge (at a lower Reynolds number or with a 

different geometry) and the separation location was only being pushed slightly 

downstream by a single actuator, multiple actuators may prove to be an effective 

alternative to continuously move the separation location downstream as far as required to 

maintain attached flow.   
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5.2. FUTURE WORK 

The future work may include performing the analysis with a high-fidelity CFD 

model beyond RANS simulations such as Large-Eddy simulations (LES), RANS/LES 

hybrid methods, or even direct numerical simulations.  The advantage of the ladder 

would be better quantification of the turbulent flow structure, as this is not really possible 

with simple RANS modeling.  However, the effect of the plasma actuator should remain 

relatively the same. 

A second potential work would be to use a more sophisticated and physically, 

more representative model for the plasma actuator.  The plasma actuator can be 

represented using the Maxwell equations for electromagnetism.  Developing a model that 

represents the physics of the plasma actuator using these equations could then be coupled 

to the equations that govern fluid flow, which would result in a much higher fidelity 

representation of the behavior and effects of plasma actuators. 

Also, an import step would be to develop an experimental setup to determine the 

validity of, not only results found in this study, but any higher order simulations that are 

developed.  The use of plasma actuators has already been performed in several previously 

discussed experiments. However a comparison with numerical analyses has not been 

widely done.  An experimental analysis would help to determine if the simple model used 

in this study is sufficient enough or if a higher order model is necessary to better 

represent the effects of plasma actuators. 

The potential uses and configurations of plasma actuators are diverse.  Much 

analysis needs to go into determine the geometric effects on the effectiveness of plasma 

actuators, especially with regards to airfoil shape.  In this study many different actuator 

configurations were examined, but there may be other possibilities.  For example, future 

work may investigate the use a mixture of steady and unsteady actuators, or actuators on 

both the leading and the trailing edge.  It is hoped that this study will provide a great 

foundation for future work, which may further investigate and characterize the 

capabilities and applications of plasma actuators for aerodynamic flow control. 
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APPENDIX A. 

CFD SETUP PROCEDURE 
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The purpose of this appendix is to give a step by step procedure for setting up the 

cases in ANSYS FLUENT 12 used in this study.  Snapshots of each step are given to aide 

in the explanation of each step. 

 

Step 1: Read in the computational grid (File > Mesh). 

 

 

Step 2: Check Mesh. Select Pressure-Bases solver and the solver time.  If the case is for 

unsteady actuation, select “Transient.” 
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Step 3: Under Models select Viscous and choose the Spalart-Allmaras (1 eqn) model.  

The default setting were sufficient for this study. 

 

 

Step 4: (Optional for Laminar-Turbulent boundary imposition). Under Cell Zone 

Conditions select the upstream zone (previously partitioned in grid generation software) 

and then select laminar zone. 
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Step 5: Under Boundary Conditions select the inlet boundary and set the free-stream 

velocity and Turbulence level. Note that the default air properties are sea level quantities. 

Also set the reference values from the inlet. 

 

 

Step 6: Set the Spatial Discretization for of the governing equations.  Also set the 

Pressure-Velocity Coupling to SIMPLE. 
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Step 7: Under Monitors, set the convergence requirement for the residuals. 

 

 

Step 8: Compile the UDF (Define > User-Defined > Functions > Complied). Add the 

source file and select build. After successful compilation select load.  
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Step 9: Link the UDF. Under Cell Zone, select the zone where the source is located. 

Check Source, and then under the source tab selected the compiled UDF. 

 

 

Step 10: Initialize the solution from the inlet.  Then under Run Calculation set the number 

of iterations and select solve.  Note for unsteady cases the time step size, number of time 

steps and number of iterations per time step must be set.  
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APPENDIX B. 

PLASMA ACTUATOR UDF 
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The purpose of this appendix it to give an example of the UDF used to 

incorporate the momentum source term that represents the body force produced by the 

plasma actuator. UDF are written in C and compiled by FLUENT. This example is for a 

2% chord steady actuator.  For unsteady actuators the only difference is that the 

activation of the source term is restricted by the flow time. Extra IF statements (IF 

flow_time > some_time) around the source term allow for time dependent actuation.  

 

#include "udf.h" 

DEFINE_SOURCE(plasma_source,c,t,dS,eqn) 

{ 

/* Declare Variables */ 

   real xc[ND_ND]; 

   real source, x, y; 

   real m1, m2; 

   real b_bottom, b_left, b_top, b_right; 

   real check_bottom, check_left, check_top, check_right; 

/* Call x and y data from FLUENT */ 

   C_CENTROID(xc,c,t); 

   x=xc[0]; 

   y=xc[1]; 

/* Define plasma region. Four inequalities are used to define the rectangular plasma 

region. */ 

   m1=0.4859; 

   m2=-2.0581; 

   b_bottom=0.0139; 

   b_left=0.0648; 

   b_top=0.0140; 

   b_right=0.0876; 

   check_bottom=m1*x+b_bottom; 

   check_left=m2*x+b_left; 

   check_top=m1*x+b_top; 
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   check_right=m2*x+b_right; 

/* Apply source term to region inside the four inequalities */ 

   if ((y>=check_bottom)&&(y>=check_left)&&(y<=check_top)&&(y<=check_right)) 

   { 

      source = 1000.0; 

      dS[eqn] = 0; 

   } 

   else 

   { 

      source = 0; 

      dS[eqn] = 0; 

   } 

   C_UDMI(c,t,0)=source; 

   return source; 

} 
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