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ABSTRACT 

Depending on the required coverage, multiple cameras with different fields of 

view, positions and orientations can be employed to form a motion tracking system. 

Correctly and efficiently designing and setting up a multi-camera vision system presents 

a technical challenge. This thesis describes the development and application of a toolbox 

that can help the user to design a multi-camera vision system. Using the parameters of 

cameras, including their positions and orientations, the toolbox can calculate the volume 

covered by the system and generate its visualization for a given tracking area. The 

cameras can be repositioned and reoriented using toolbox to generate the visualization of 

the volume covered. Finally, this thesis describes how to practically implement and 

achieve a proper multi-camera setup.  

This thesis describes the integration of multiple cameras for vision system 

development based on Svoboda‟s and Horn‟s algorithms. Also, Dijkstra‟s algorithm is 

implemented to estimate the tracking error between the master vision system and any of 

the slave vision systems. The toolbox is evaluated by comparing the calculated and actual 

covered volumes of a multi-camera system. The toolbox also is evaluated for its error 

estimation. The multi-camera vision system design is implemented using the developed 

toolbox for a virtual fastening operation of an aircraft fuselage in a computer-automated 

virtual environment (CAVE). 
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1. INTRODUCTION 

The camera-based motion tracking system is an important aspect of human 

interaction with virtual reality (VR) applications. Different VR applications require 

different sizes of tracking areas, depending upon which the user employs different 

numbers of cameras to form a multi-camera vision system. The user places the cameras at 

various positions and with various orientations to attain the desired coverage area. 

Designing a multi-camera vision system setup is a challenging task. The system should 

be mathematically and scientifically correct and also practically efficient. The 

development and implementation of a novel software toolbox that will help users design 

multi-camera vision systems is described in this thesis, which is intended for user to 

design multi-camera vision systems. 

With this toolbox, the user will be able to design and mathematically evaluate the 

volume covered by the designed multi-camera vision system setup prior to the actual 

setup. The toolbox is designed to provide flexibility in the number of cameras used, with 

variable fields of view (FOVs) placed at random positions and orientations. The user can 

also change the positions and orientations of the cameras and re-evaluate the system‟s 

setup.  

Another aspect of designing the multi-camera vision system setup is calibrating 

the cameras together. Several calibration methods have been suggested and implemented 

in past research. A camera calibration toolbox is available in MATLAB, as referred to in 

[10]. Implementing this toolbox involves integrating calibration methods suggested by 

Zhang [7] and Svoboda [5]. The first part of the calibration method is the calibration of a 

stereo vision system for intrinsic parameters of cameras based on the algorithm suggested 
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by Zhang. The second part of the method is the calibration of cameras for extrinsic 

parameters using the algorithm suggested by Svoboda [5]. Based on intrinsic and 

extrinsic parameters, a transformation matrix is determined for the multi-camera vision 

system. One very important condition of this method of calibrating multiple cameras is 

that at least some common overlap between the FOVs of all cameras must be achieved. 

For larger tracking areas, more cameras are employed. It is not always feasible to achieve 

a common overlap between the FOVs of all cameras. The practical way to handle this 

issue is to group the cameras whose FOVs overlap. This results in the formation of more 

than one multi-camera vision system, each with a defined coordinate system for motion 

tracking. To define a homogeneous coordinate system for the entire tracking area, it is 

important to generate a mathematical relationship between several coordinate systems. 

This thesis explains the solution to this issue, i.e., integrating the vision systems using 

Horn‟s algorithm. 

This thesis contains a detailed description of the development of the toolbox, as 

well as the implementation of Horn‟s algorithm for integrating multi-camera vision 

systems. Section 2 contains a brief summary of the background of the research and VR 

applications, explaining the history of VR applications, the computer-automated virtual 

environment (CAVE), the software and hardware used in the CAVE, etc. The principles 

of the multi-camera vision system, its calibration using Svoboda‟s algorithm and its error 

estimation technique is described in Section 3. Section 4 discusses the development of the 

multi-camera vision system setup toolbox in detail. This discussion includes a description 

of the modules in the toolbox, the architecture of the toolbox, the principles used in the 

MATLAB module and the visualization pipeline of Visualization Toolkit (VTK). Section 
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5 includes a detailed explanation and implementation of Horn‟s algorithm for integrating 

the multi-camera vision systems and the error estimation of the vision systems. It also 

includes a description of the shortest path finding methodology using Dijkstra‟s 

algorithm. The results of the toolbox are evaluated by comparing the calculated 

dimensions of the total area covered with the actual volume covered by the multi-camera 

vision system. The toolbox‟s error estimation also is evaluated. The VR applications 

based on the motion tracking system and the CAVE are briefly explained in Section 6, 

which also explains the application of Wiimotes as the cameras and the simulation of the 

virtual fastening operation of the fuselage. 

 

1.1. REVIEW OF MULTI-CAMERA SETUP METHODS 

 Because multi-camera setup is a complex process, some background study is 

required before determining which methodology to use. Some recent research has 

discussed similar issues regarding achieving the correct multi-camera setup. 

 Cerfontaine et al. [1] described a multi-camera setup optimization method for 

optical tracking. The approach uses camera parameters, such as initial position and 

orientation and FOV, to find the correct camera placement. The method requires the 

dimensions of the given volume as input. Then, depending upon the camera parameters, 

the algorithm will determine the positions visible to any particular camera, and such 

positions will be collected together. Next, the positions that are visible to either of the 

two cameras are collected together. These points will define the volume within the given 

volume that can be used for tracking purposes.  
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 Svoboda et al. [5], while describing multi-camera self-calibration for virtual 

environments, explained the configuration of the multi-camera setup. The cameras were 

placed so as to achieve a common overlap between their FOVs. However, they did does 

not describe the setup of the cameras, i.e., their positioning and orientation. The basic 

issue is to determine the common overlap and to achieve the maximum tracking area.  

 Zürl [24] explained the multi-camera setup for A.R.Ttrack
®
, which is a 

professional tracking system. The methodology behind placing the cameras is mainly 

depends on the occlusion. The markers are placed at specific positions inside the given 

tracking area; the cameras are placed such that the markers are visible to the cameras. 

The number of cameras and initial positions and orientations are set manually and depend 

on the experience of the user. After setting up the multi-camera system, if sufficient 

volume is not covered, the cameras are moved and reoriented manually. This method is 

user specific and time consuming.  

 Another professional tracking system, widely used for motion tracking in VR 

applications, is VICON
® 

[27]. The method for arranging multiple cameras in VICON is 

to set them up in a semicircular manner such that the cameras point to the tracking area. 

In this method, the cameras are placed and oriented manually. The number of cameras, as 

well as their placements and orientations, depend on personal experience. The system 

does not come with a software tool that can calculate the volume covered by the system. 

In this method, a faulty multi-camera setup will take time to reposition and re-orient.  

 Considering that the cameras in a professional tracking system are placed and 

oriented manually, the necessity arises for a software tool that can evaluate the multi-

camera setup by calculating the volume covered by the cameras and comparing it with 
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the desired volume coverage. This thesis proposes and describes the development of a 

software toolbox that can serve this purpose. The toolbox also is designed to generate the 

visualization of given volume and covered volume so that the user can visualize the 

multi-camera system setup and evaluate it through the software toolkit. 

 

1.2. ERROR ESTIMATION TECHNIQUES 

 Error estimation of a multi-camera motion tracking system is important. Much 

research has been and continues to be conducted regarding this issue. Horn et al. [25] 

described an algorithm for a closed-form solution of absolute orientation using unit 

quaternions. The paper explains how to determine the relationship between two Cartesian 

coordinate systems. The inputs for this method are the coordinates of common points in 

two Cartesian coordinate systems. This method is particularly useful for a multi-camera 

setup in which all cameras cannot form one vision system. So, several vision systems are 

formed from the cameras, and then they are integrated using Horn‟s algorithm. As the 

calculations depend on the generated coordinates of the points, an error might be 

introduced while forming a closed-form solution. However, the paper does not explain 

how to handle this error.  

 Dijkstra developed an algorithm [23] to find the error between a master vision 

system and slave system. For a system in which several vision systems exist, the user 

defines one of the systems as a master system and the others as slave systems. The 

algorithm calculates the shortest path between any two vision systems depending on the 

input errors between the vision systems, which are manually calculated. The shortest path 
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indicates the least error between any two vision systems. Hence, it is very useful for 

applications in which several multi-camera vision systems exist.  

 Bellman and Ford [26] also developed an algorithm for shortest path generation 

between any two vision systems. The algorithm is similar to Dijkstra‟s algorithm, but the 

primary difference is that it only takes care of error between immediate vision systems. In 

general, the algorithm is employed when the errors between vision systems are negative. 

The algorithm takes more CPU time than Dijkstra‟s algorithm. 

Freeman et al. [17], in proved that calibration errors differ from system to system 

and also depend on the intrinsic and extrinsic parameters and scene geometry. The 

authors present an algorithm for predicting the statistics of marker tracking error in real-

time. The implemented method for finding the error is to calculate the average and 

standard deviations.  

 Pentenrieder et al. [18] described several ways to predict the errors for different 

calibration methods and professional tracking systems. Their paper describes a way of 

finding the error by comparing the actual distance between two markers and the distance 

calculated from the coordinates of two markers. These errors are determined at several 

positions inside the tracking area. Finally, the error of multi-camera vision systems is 

calculated either by finding the average or root mean square of these errors.  

 Considering investigations into finding the error of multi-camera vision systems, 

this thesis describes the methodology in which several vision systems are integrated by 

implementing Horn‟s algorithm. The error between two consecutive vision systems is 

measured manually using the method explained by Freeman et al. [17]. The system 

explained in this thesis consists of more than two multi-camera vision systems, in which 
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one is the master vision system and the others are slave vision systems. Hence, there is a 

need to find the shortest path. Amongst the algorithms described above, Dijkstra‟s 

algorithm is chosen because it is faster than the Bellman-Ford algorithm and because the 

errors are positive; hence, there is no need to use the Bellman-Ford algorithm. In this 

thesis, these algorithms are practically implemented and tested.  
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2. BACKGROUND 

 Author used the motion capture system based on multiple wiimote tracking 

systems for virtual reality applications. The placement and orientation of the Wiimotes 

was based on the area to be tracked. Author attempted to implement the previously-

developed wiimote vision system setup toolkit, which assumes that all Wiimotes are 

placed at equal distances from each other and have the same orientation. Also, the toolkit 

provides results when the Wiimotes are placed at a height of 7m from the ground. 

 The practical implementation of a multi-camera tracking system requires the 

flexibility of choosing random positions and orientations for each camera. The placement 

and orientation of Wiimotes is based on the personal experience of the user.Author 

required a technical and scientific reasoning behind specific placements and orientations 

of the cameras; for this purpose, author is proposing to develop a software toolbox using 

MATLAB and VTK. The user will choose the type of camera, provide dimensions of the 

area to be tracked and specify the position and orientation of the camera in three-

dimensional (3D) space. The calculations for the area covered by the tracking system will 

be carried out using MATLAB. This toolbox will be able to give a graphical 3D 

visualization of the tracking system camera setup and the area covered by the tracking 

system. A graphical interface will then be developed using VTK in order to provide a 3D 

visualization of the complete system to the user.  

 The toolbox will eliminate the need to have personal experience in order to 

position and orient the cameras of the tracking system. A module implementing 

Dijkstra‟s algorithm will be developed in MATLAB as part of the toolbox. If the user 

wants to use multiple vision systems for position tracking, this module will provide the 
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shortest path between the master vision system and each of the other vision systems 

depending on the distance measurement error between adjacent vision systems. 

Ultimately, the user will be able to implement the multi-camera tracking system for VR 

applications and then analyze the tracking results provided by the toolkit. 

 

2.1. VIRTUAL REALITY 

2.1.1. History of Virtual Reality. The term virtual reality sprouted in the 1960s. 

It was the time when new age cinematography and entertainment devices began to 

develop. The concept of virtual reality was stormy and sensational at that time. Due to 

new technologies in entertainment, people began imagining the concept of a human being 

present in a world that feels real but that actually is not. The idea of virtual reality has 

been around since 1965, when Ivan Sutherland expressed his ideas of creating virtual or 

imaginary worlds. The device by which total immersion was attempted for virtual reality 

was developed by Morton Heilig. Between 1960-1962, Heilig created a multi-sensory 

simulator called Sensorama. A prerecorded film in color and stereo was augmented by 

binaural sound, scent, wind and vibration experiences. This was the first approach to 

creating a virtual reality system, and though it had all the features of such an 

environment, it was not interactive [30]. Numerous definitions of virtual reality (VR) 

exist that depend on the context of its application. Virtual reality commonly is referred to 

as a computer-generated environment that offers the viewer a convincing illusion and an 

intense feeling of immersion in an artificial world that exists only in the computer. 

Virtual reality thus often is referred to as immersion technology. 
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 Virtual reality (VR) and virtual environments (VE) are used interchangeably in 

the computer community. These terms are the most popular and most often used, but 

there are many others, including synthetic experience, virtual worlds, artificial worlds 

and artificial reality. Some definitions of VR include: 

1) “Real-time interactive graphics with three-dimensional models, combined with a 

display technology that gives the user the immersion in the model world and 

direct manipulation.” [30] 

2) “The illusion of participation in a synthetic environment rather than external 

observation of such an environment. VR relies on a three-dimensional, 

stereoscopic head-tracker display, hand/body tracking and binaural sound. VR is 

an immersive, multi-sensory experience.” [30] 

3) “Computer simulations that use 3D graphics and devices such as the DataGlove to 

allow the user to interact with the simulation.” [31] 

4) “Virtual reality refers to immersive, interactive, multi-sensory, viewer-centered, 

three dimensional computer generated environments and the combination of 

technologies required to build these environments.” [33] 

 Since the early 1960s, there have been many changes in the technologies used for 

immersion. The evolution of computers and electronics in the late 1980s boosted the 

experiments people conducted in an attempt to perfect virtual reality applications and 

technologies. The developments in electronics and sensors helped early researchers to 

develop means for interaction between humans and virtual environments [32].   
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 2.1.2. Interaction with Virtual Environments. Virtual reality systems are 

evaluated primarily based on the extent to which the user can be immersed in and interact 

with it. VR requires more resources than do standard desktop systems. VR requires 

additional input and output hardware devices and special drivers for enhanced user 

interaction. However, extra hardware alone will not create an immersive VR system. The 

most important parts of the human-computer-human interaction loop fundamental to 

every immersive system are the input and output devices. The user is equipped with a 

head-mounted display, tracker and an optional manipulation device (e.g., three-

dimensional mouse, data glove, etc.). As the human performs actions such as walking, 

rotating the head (i.e., changing the point of view), and describing data, his/her behavior 

is fed to the computer from the input devices. The computer processes the information in 

real-time and generates appropriate feedback that is passed back to the user by means of 

output displays. In later stages, many researches was conducted to develop low-cost 

interaction systems.  

One of the most important developments has been low-cost motion tracking 

systems. The development of systems sometimes is inspired by gaming technologies 

(Nintendo Wiimotes, Xbox Kinect, etc.). Basically, the input devices carry the 

information about the state of the user to the system in real-time. The output devices 

make changes in the virtual environment in accordance with the inputs to the system. 

These changes in the virtual environment cause immersion. Hence, correct choices of 

input and output devices facilitate the development of good virtual reality applications 

[32]. VR technologies can be applied to study processes in which: 

 the working environment is hazardous (chemical, nuclear reactors) 
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 the process setup is time consuming and complex (mechanical assemblies) 

 the setup is expensive (fuselage assemblies, medical operations) 

 delicate operations are performed (medical operations)  

Some of the most popular input devices are CyberGlove™, DataSuit, Motion 

Tracker, touch sensors, haptic devices (Phantom Device™) and Wands. The most 

familiar output devices are head-mounted display (HMD), cathode ray tube (CRT) 

projectors, and liquid crystal display (LCD) projectors. The schematic representation is 

shown in Figure 2.1. Some auxiliary devices that facilitate the immersion of humans are 

stereo glasses, either shutter glasses or polarized glasses. 3D visualization is the most 

important component of VR applications because it facilitates the real life visualization of 

objects in the scene.  

 

 

 

Figure 2.1. Interaction of Input and Output Devices with Computer System 
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2.2. AVAILABLE VIRTUAL REALITY SOFTWARE  

 Apart from the input and output devices, which are generally electronic and 

electrical equipment, one of the most important parts of virtual reality applications is the 

computer. Computers help in developing the desktop kind of virtual reality. These days, 

almost all virtual reality applications are developed on computers. As computers have 

continued to evolve since the 1990s in terms of processing speed, memory and graphics 

rendering capacities, more and more realistic applications have been developed. The 

basis of these computer applications is software, which facilitates application 

development.  

 Many types of software and software toolkits have been developed for creating 

virtual reality applications, some of which are commercially developed by commercial 

industries and some of which are open-source. Open-source software is most popular 

amongst researchers. Many early researchers developed their own open-source VR 

software. Some examples of VR software include: 

Commercial software: 

 3DVIA Virtools by Dassault Systems 

 Vizrd by WorldViz (www.worldviz.com) 

 Quest3D (http://www.vrealities.com/quest3d.html) 

 Syzygy by Illinois Simulation Lab 

 EON Technologies 

 CAVElib (http://www.mechdyne.com/cavelib.aspx) 

Open-source software: 

 VRJuggler by VRAC , Iowa State University 

http://www.worldviz.com/
http://www.vrealities.com/quest3d.html
http://www.mechdyne.com/cavelib.aspx
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 OpenGL 

 OpenSceneGraph (www.openscenegraph.org) 

 VRML – Virtual reality modeling language 

 VRPN – Virtual reality peripheral networks 

 This software is developed basically by coding, which is done in various 

languages. Among them, C++, C#, JAVA and Python are the most important computer 

development languages. For commercial software, the coding is done in specialized 

scripts developed for particular software programs. They have a specific structure of 

routines, classes and processes. The user must use these routines to create real-time 

interactive virtual environments. Sometimes, the routines of two different toolkits are 

combined in a code to exploit their peculiar advantages. One example is the combination 

of VRJuggler and OpenGL, which will be explained in detail in the applications section.  

 

2.3. COMPUTER-AUTOMATED VIRTUAL ENVIRONMENT (CAVE) 

 A CAVE is a virtual reality and scientific visualization system. Instead of using 

an HMD, it projects stereoscopic images on the walls of a room (user must wear LCD 

shutter glasses). A standard CAVE consists of four surfaces, which include three back-

projected walls and a front-projected floor. The projections on the walls of the CAVE are 

monitored by computers. The virtual environment is divided so as to project on separate 

walls. Each computer is connected to either a CRT or LCD projector. The scenes 

rendered on the walls, which depict the same virtual scene, are stereo images created at a 

high frame rate. The synchronization between the processing computers is very important 

in order to attain a realistic synchronization of projected images. Ideally, the computers 

http://www.openscenegraph.org/
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form a „cluster‟ in which one computer is the master system, and the others are slave 

systems. The main rendering pipeline in followed by the master system, and the 

interacting devices are also connected to this system. The most popular input devices 

used in a CAVE are wands, cyber gloves and marker-based motion tracking systems. A 

CAVE is basically used for the visualization of virtual environments, which consist 

primarily of CFD visualizations, automobile components, and ergonomic analyses 

[33][34]. 

CAVE CONFIGURATION: The CAVE available at Missouri University of Science and 

Technology (Missouri S&T) has the following configuration: 

Dimensions: 3m X 3m X 3m (Height X Width X Depth) 

Number of walls: 4 (Front, Left, Right and Floor) 

Number of computers in cluster: 4 

Computer system: Windows 7 ™ (64 bit)  

Display projectors: CRT projectors 

Number of projectors: 4 

Display resolution: 1600x900 

Stereo display type: Active stereo display 

Motion tracking system: Wiimote and Firefly camera tracking system 

Frequency of image flipping: 85 Hz 

 Figure 2.2 depicts a schematic representation of the CAVE at Missouri S&T. Four 

CAVE computers form a computer cluster, within which the master computer governs 

the display on the front wall. All the computers are connected to individual CRT displays. 

The projectors also are interconnected with each other in order to attain synchronization. 
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The images displayed on the walls are in stereo mode. The type of stereo is an active 

stereo, in which the images for the left and right eye are flipped one after another at a 

certain frequency. The shutter glasses are used, in which shutters for the left and right eye 

are opened and closed in sync with the frequency of the stereo, thus creating a 3D effect. 

 

 

 

Figure 2.2. Schematic Diagram of CAVE Setup 

 

 

2.3.1. CAVE Hardware.  Any virtual reality application consists of hardware and 

software devices working together. For the CAVE at Missouri S&T, various types of 

hardware are installed together. By classic definition, this hardware consists of the 
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structure of the CAVE, walls, computer systems, projectors and shutter glasses. The most 

important hardware devices in a CAVE are the display projectors, which, in CAVEs, 

always are CRT displays. CRT displays are based on conventional television technology 

and offer relatively good image quality with a high resolution (up to 1600x1280), sharp 

view and big contrast. Their disadvantages are their excessive weight and power 

consumption. They also generate strong, high-frequency, magnetic fields that may be 

hazardous to the user‟s eyes.  

 A 3D display functions on the basis of stereo vision. The emitters are also in sync 

with the projectors shown in Figure 2.3. As shown in Figure 2.4, system contains infrared 

emitter for corresponding frequency of image flipping, receptor on the shutter glasses. 

Frequency of image flipping (85Hz) synchronized with the shutter glasses. The opening 

and closing of the shutters of crystal shutter glasses shown in Figure 2.5 is synchronized 

with the frequency of the stereo display. The infrared emitter sends the synchronizing 

signal to the receptor of shutter glasses. 

 

 

 

Figure 2.3. CRT Projector for Stereo Image Projector 
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Figure 2.4. Schematic Diagram of Shutter Glasses  

 

 

  

Figure 2.5. Shutter Glasses and Infrared Emitter  

 

 

2.3.2. CAVE Software. Computers serve as the backbone of all kinds of new age 

VR applications. Whenever computers are considered, the first aspect that comes to mind 

is software. Apart from the hardware setup for the display and synchronization, 

everything is software based. As discussed previously, there exist various software 

programs for VR applications. To design the application in the CAVE,experimented with 

different software, such as OpenSceneGraph, Visualization Toolkit (VTK), OpenGL, 
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VRJuggler, finally settling on VRJuggler + OpenGL. In the following sections, these two 

software programs are explained, along with their advantages. 

 2.3.2.1 VRJuggler. VRJuggler is an object-oriented software system for the 

development and execution of virtual reality applications. To achieve hardware 

independence, the VRJuggler architecture is based on a microkernel, which uses a set of 

managers, each one dedicated to specific tasks. The microkernel‟s main responsibility is 

to serve as the mediator for the managers, which involves the following tasks: 

 Sustain the interactive performance of the system and the applications 

 Coordinate interactions among the managers and manage the communication 

between the managers and the applications 

 Maintain synchronization of the system components 

 Handle runtime reconfiguration of the VR system 

 Direct the execution of multiple applications 

 The programming for VR requires more than just knowledge of a given 

programming language. VRJuggler takes advantage of many programming design 

patterns and advanced concepts to maximize its power, flexibility, and extensibility. A 

good background in mathematics is helpful for performing the myriad transformations 

that must be applied to 3D geometry. The kernel-based structure helps in designing the 

middleware application for VR applications. VRJuggler is situated between the hardware 

and the renderer.  

The kernels in VRJuggler form routines to interact with the computer system on 

the hardware level. VRJuggler uses the rendering pipelines of OpenGL and also has 

routines to use the rendering of OpenSceneGraph, VTK, etc. VRJuggler applications do 
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not have a main() function, but further explanation is required. While it is true that user 

applications do not have a main() function because they are objects, there must still be a 

main() somewhere that starts the system because the operating system uses main() as the 

starting point for all applications. In typical VRJuggler applications, there is a main(), but 

it only starts the VRJuggler kernel and gives the kernel the application to run. It then 

waits for the kernel to shut down before exiting. The basic structure of the kernel model 

for the main() function is as follows [34][35]: 

  

 

 

 

 

 

 

 

 Another important aspect of VRJuggler after setting up the kernel for application 

is sending the display properties to the computer. The information about the display is 

stored in a configuration file (*.jconf). This file is written in an XML coding routine. The 

configuration file for a particular system is unique depending upon the frequency of 

image flipping of the stereo, size of projection, and input devices. In the configuration 

file,   define the origin of the virtual scene. To implement VRJuggler for the CAVE 

application,created four configuration files for four computers. Hence, a different 

configuration file exists for each wall of the CAVE.  

#include <vrj/Kernel/Kernel.h> 

#include <simpleApp.h>     

    int main(int argc, char* argv[]) 

  { 

       vrj::Kernel* kernel = vrj::Kernel::instance(); // Get the kernel        

       simpleApp* app      = new simpleApp();         // Create the app object 

       kernel->loadConfigFile(...);             // Configure the kernel        

       kernel->start();                         // Start the kernel thread     

       kernel->setApplication(app);             // Give application to kernel 

       kernel->waitForKernelStop();             // Block until kernel stops 

       return 0; 

 } 
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2.3.2.2 OpenGL. OpenGL is a software interface to graphics hardware. It is 

designed as a hardware-independent interface to be used for many different hardware 

platforms. OpenGL programs can also work across a network (client-server paradigm), 

even if the client and server are different kinds of computers. OpenGL is designed as a 

streamlined, hardware-independent interface to be implemented on many different 

hardware platforms. To achieve these qualities, no commands for performing windowing 

tasks or obtaining user input are included in OpenGL; instead, the user must work 

through whatever windowing system controls the particular hardware being used. 

Similarly, OpenGL does not provide high-level commands for describing models of 3D 

objects. Such commands might allow the user to specify relatively complicated shapes, 

such as automobiles, body parts, airplanes, or molecules. With OpenGL, the user must 

build the desired model from a small set of geometric primitives - points, lines, and 

polygons. OpenGL is a state machine, i.e., various states (or modes) remain in effect until 

the user changes them. OpenGL Pipeline contains a series of processing stages in order. 

Two sets of graphical information, vertex-based data and pixel-based data, are processed 

through the pipeline, combined together, and then written into the frame buffer. Figure 

2.6 shows the rendering pipeline of OpenGL [36]. 
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Figure 2.6. Architecture of Rendering Pipeline of OpenGL 

 

 

 Another important toolkit used along with OpenGL is the OpenGL Utility Toolkit 

(GLUT). This utility toolkit is developed to render basic geometric objects, such as 

curves, NURBS, and freeform surfaces. GLUT is very important to the texturing of the 

object. Texturing is analogous to wrapping a picture or an image on a surface. Another 

important use of OpenGL and GLUT is to transform the objects. OpenGL and GLUT use 

real-time transformations such as rotation, translation and scaling. The main() function of 

OpenGL is in an inherent loop. The tracking system is connected to the OpenGL part of 

the code for real-time simulations.  

 

2.4. THE VISUALIZATION TOOLKIT 

 The Visualization Toolkit (VTK) is an open-source, portable (Windows, 

WinTel/Unix), object-oriented software system for 3D computer graphics, visualization, 

and image processing. Implemented in C++, VTK also supports Tcl, Python, and Java 
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language bindings, permitting complex applications, rapid application prototyping, and 

simple scripts. Although VTK does not provide any user interface components, it can be 

integrated with existing widget sets, such as Tk or X/Motif [37]. 

VTK provides a variety of data representations, including unorganized point sets, 

polygonal data, images, volumes, and structured, rectilinear, and unstructured grids. VTK 

comes with readers/importers and writers/exporters to exchange data with other 

applications. Hundreds of data processing filters are available to operate on these data, 

ranging from image convolution to Delaunay triangulation. VTK‟s rendering model 

supports 2D, polygonal, volumetric, and texture-based approaches that can be used in any 

combination.  

 VTK consists of two major pieces: a compiled core (implemented in C++) and an 

automatically-generated interpreted layer.  

C++ core: Data structures, algorithms, and time-critical system functions are 

implemented in the C++ core. Common design patterns, such as object factories and 

virtual functions, ensure portability and extensibility. Because VTK is independent of any 

graphical user interface (GUI), it does not depend on the windowing system. Hooks into 

the window ID and event loop allow developers to plug VTK into their own applications. 

Interpreted layer: While the compiled core provides speed and efficiency, the interpreted 

layer offers flexibility and extensibility. GUI prototyping tools, such as Tcl/Tk, 

Python/Tk, and Java AWT, permit the rapid building of professional applications. These 

popular programming languages come with other packages, such as Python‟s numerical 

library, NumPy. The visualization pipeline of VTK can be depicted as Figure 2.7: 
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Figure 2.7. Visualization Pipeline of VTK   

 

 

The visualization pipeline of VTK: 

 Sources: Sources are quite simply the source of data flowing through the visualization 

pipeline. There exist two basic types of sources: readers, which read data out of files 

in a wide variety of formats, and independent sources, which generate a data flow 

based on input parameters (e.g., a cone source, which generates information 

describing a cone, given its radius and height). In general, any VTK component that 

does not receive a flow of data from some other VTK component can be considered a 

source. 
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 Filters: Filters are VTK components that receive data from other components, 

modify the data in some way, and then deliver the modified data as output to be 

used by other components. Filters may extract some portion of a large data set, 

subsample data sets to a coarser resolution, interpolate data sets to a finer 

resolution, merge multiple inputs into a combined output, split compound inputs 

into component parts, or produce a wide variety of other transformations. User-

written procedures also can function as filters. 

 Mappers: Mappers are VTK components that receive data from other components 

(usually filters, but sometimes directly from sources) and "map" the data to some 

sort of a physical manifestation that can be rendered by the rendering engine. 

 Actors: Actors are VTK components that allow the appearance properties of the 

physical manifestations of the data as rendered onto the screen to be adjusted and 

controlled. Some of the properties typically controlled via actors are transparency 

and color mapping. The term "actor" comes from analogy with the stage. The 

actor is a physical representation of the data "standing" on the "stage" (appearing 

in the rendering window), who‟s appearance can be modified through lighting, 

makeup, costumes, etc. 

 Renderers and Windows: Renderers and windows represent the end of the VTK 

pipeline, which users actually see on the screen. In practice, there generally is not 

much that the user must do with renderers and windows, with a few notable 

exceptions: 

o All actors must be added to a rendering window before they can appear on 

the screen. Therefore, the renderer usually is created immediately in a 
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VTK program, even though it comes at the end of the data flow pipeline. 

Then, each actor can be added to the renderer as that particular pipeline 

section is completed.  

o VTK components normally do not generate their output until requested to 

do so. Typically, this is accomplished by requesting that the rendering 

window render its results. This will cause the renderer to issue an update ( 

) request to all of its inputs, which will in turn issue update ( ) requests to 

all of their inputs, and so on back down the pipeline to the sources. If any 

parameters in the pipeline change (e.g., in response to user input through 

the user interface), then the rendering window must be asked to re-render 

before the effects of the parameter adjustment can be seen.  

o Interactors, which allow users to grab and rotate the rendered data, 

typically are added along with the renderers and windows.  

 User Interface and Controls: Actually, the user interface and controls are not part 

of the visualization pipeline. In spite of this, these two components play very 

important roles in the usability of VTK for rendering the real-time objects along 

with human interaction. All the commands for real-time interaction are placed 

within the rendering loop of VTK. VTK supports input from mouse, keyboard, 

etc. Some toolkits have been developed for VTK that provide support for other 

input devices, such as wands. 
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3. MOTION CAPTURE SYSTEMS FOR VIRTUAL REALITY 

 The tracking devices are the main components of the VR system they interact 

with the system‟s processing unit, which relays to the system the orientation of the user‟s 

point of view. In systems that allow users to roam around within a physical space, the 

user‟s location, as well as his direction and speed, can be detected with the help of motion 

trackers. Various types of motion tracking systems are utilized in VR systems, including 

the following: 

 Six degrees of freedom can be detected (6-DOF).   

 Orientation consists of an object‟s yaw, roll and pitch.  

 These are the objects‟ positions and orientations within the x-y-z coordinates of a 

space.  

 All tracking systems consist of a device that is capable of generating a signal, 

from the sensor. The device also has a control unit, which is involved in processing the 

signal and sending information to the CPU. Some systems ask the user to attach the 

sensor to the user or the user‟s equipment. In this case, the user must position the signal 

emitters at certain levels in the nearby environment. Differences can be noticed easily in 

some systems in which the emitters are worn by the users and covered by sensors, 

attached to the environment. The signals emitted from emitters to different sensors can 

take various shapes, including electromagnetic, optical, mechanical and acoustic signals.  

 The various types of tracking devices have the following various merits and 

demerits: 
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 Electromagnetic tracking systems: These calculate magnetic fields generated by 

bypassing an electric current simultaneously through three coiled wires. These 

wires are arranged perpendicularly to one another. These small structure acts as  

an electromagnet. The system‟s sensors calculate how its magnetic field creates 

an impact on the other coils. The measurement shows the orientation and 

direction of the emitter. Efficient electromagnetic tracking systems demonstrate 

excellent responsiveness and low latency levels. The drawback is that whatever 

can create a magnetic field also can come between the signals, which are sent to 

the sensors. 

 Acoustic tracking systems: These tracking systems sense and produce ultrasonic 

sound waves to identify the orientation and position of a target. They calculate the 

time taken for the ultrasonic sound to travel to a sensor. The sensors usually are 

kept stable in the environment. The user puts on ultrasonic emitters. However, 

calculating the target‟s orientation and position depends on the time required for 

sound to reach the sensors. Acoustic tracking systems contain many faults. Sound 

travels quite slowly, so the updating of a target's position is naturally slow. The 

system‟s efficiency can be affected by the environment as the sound‟s speed 

through air often changes depending on the humidity, temperature or barometric 

pressure found in the environment.  

 Optical tracking devices: These devices use light to calculate a target's orientation 

and position. The signal emitter typically includes a group of infrared LEDs. The 

sensors consist of only cameras, which can understand the infrared light that has 



29 
 
 

 
 

been emitted. The LEDs illuminate in a fashion known as sequential pulses. The 

pulsed signals are recorded by the camera, and then the information is sent to the 

system‟s processing unit, which can extrapolate data. This will estimate the 

target‟s position and orientation. The upload rate of optical systems is quite fast, 

which reduces the tenancy issue. The demerits of the system are that the line of 

sight between an LED and a camera can be obscured, which interferes with the 

tracking process. Infrared radiation and ambient light also can make the system 

useless.  

 Mechanical tracking systems: These tracking systems depend on a physical link 

between a fixed reference point and the target. One of the many examples of a 

mechanical tracking system is located in the VR field, called a BOOM display. A 

BOOM display, an HMD, is attached on the rear of a mechanical arm consisting 

of two points of articulation. Position and orientation detection is accomplished 

through the arm. The update rate is quite high in mechanical tracking systems, but 

the demerit is that they limit the user‟s range of motion.  

  

3.1. TWO-CAMERA VISION SYSTEM  

 Motion tracking is a prime aspect of camera-based vision systems. Many 

approaches and methods have been developed to calibrate cameras precisely, including 

methods developed by Zhang [7], Tsai [6], Svoboda et al. [5], Heikkila and Silven [8]. 

Previous research has shown that Zhang‟s method of stereo vision calibration is the most 

accurate for calibrating intrinsic parameters, while Svoboda‟s method is efficient for 
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calibrating extrinsic parameters [9]. In the calibration method described by Vader et al. 

[9], the best features of the two methods discussed above are combined to achieve 

maximum accuracy. Multi-camera vision systems are calibrated according to the same 

method. Svoboda‟s algorithm provides an efficient way to calibrate more than two 

cameras together under the condition that some common overlap of FOVs of all cameras 

exists [5].   

 Pinhole camera model: The basis of calibration is to determine the 3D coordinates 

of a point from the 2D coordinates obtained from the camera projection plane. To study 

the calibration process, it is very important to understand the structure of the camera. In a 

pinhole camera, as shown in Figure 3.1, points are projected on an image plane through 

perspective projection. 

 Figure 3.1 depicts a camera with the center of projection O and the principal axis 

parallel to the Z axis. The image plane is at focal point of the camera; hence, it is at a 

distance of the focal length „f‟, away from the center of projection O. A 3D point P = (X, 

Y, Z) is imaged on the camera‟s image plane at coordinate Pc = (u, v). 
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Figure 3.1. Principle of Perspective Projection of a Point on the Camera‟s Image Plane 

 

 

First, find the camera calibration matrix C, which maps P in the 3D space to Pc in 

the 2D image plane. Find Pc using similar triangles, as in: 
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which yields:  
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Using homogeneous coordinates for Pc, the equations above can be written as: 
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Equation (3) generates the coordinates of point Pc = (u, v, w) =  
  

 
  

  

 
   . 
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Now, if the coordinates of the image plane‟s origin do not coincide with the point 

at which the Z-axis intersects the image plane, Pc will need to be translated with respect 

to the desired origin. Let the translation be defined by (tu, tv), where tu lies along the u-

axis, and tv lies along the v-axis. Now, a new u and v for Pc is given as: 

u = 
  

 
  + tu 

                                                               v = 
  

 
  + tv                                                             (4) 

Substituting this new translation in Equation (4) to define the coordinates of point 

Pc yields a new transformation matrix. The coordinates of point Pc are defined using the 

following equation: 

                                                 
 
 
 
  =  

    
    
   

 *  
 
 
 
                                                    (5) 

Equation (5) defines the coordinates in some unit, such as millimeters, inches, etc. 

However, for cameras, the unit is the pixel. The camera‟s resolution defines the number 

of pixels covered in the image plane. The standard format for expressing resolution is 

pixels/inch. Let us assume rectangle pixels with a resolution of mu and mv pixels/inch in 

the u and v directions, respectively. Therefore, to measure Pc in pixels, its u and v 

coordinates should be multiplied by mu and mv, respectively. Thus: 

u = mu * 
  

 
  + mu *tu 

                                                        v = mv * 
  

 
  + mv *tv                                                  (6) 

Equations (6) can be expressed in matrix form as follows: 
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  * P = KP                         (7) 

Note that K depends only upon the camera‟s intrinsic parameters, such as its focal 

length and principal axis, and thus defines these parameters. Thus, K, a 3x3 matrix, is 

called the intrinsic parameters matrix.  

 Now, if the camera‟s center of projection is not at (0 0 0) and is oriented in an 

arbitrary fashion (not necessarily on the Z axis perpendicular to the image plane), then it 

must be rotated and translated to make the camera‟s coordinate system coincide with the 

configuration in Figure 3.1. Let the camera‟s translation to the origin of the XYZ 

coordinate be given by T (Tx, Ty, Tz). Let the rotation applied to make the principal axis 

coincide with the Z axis be given by a 3x3 rotation matrix R. Then, the matrix formed by 

applying first the translation and then the rotation is given by the 3x4 matrix E: 

                                E = (R | RT)                                                               (8) 

Matrix E is called the extrinsic parameter matrix. So, the complete camera 

transformation now can be represented as:  

             K(R | RT) = (KR | KRT) = KR (I | T)                                          (9) 

Hence, Pc, the projection of P, is given by: 

                               Pc = KR (I | T) P = CP                                                          (10) 

C is a 3x4 matrix usually called the complete camera calibration matrix. Note that 

because C is 3x4, P must be in 4D homogeneous coordinates, and Pc derived by CP will 

be in 3D homogeneous coordinates.  

 3.1.1. Principle of a Two-Camera Stereo Vision System. Tracking necessitates 

the shift from one camera to multiple cameras. The calibration procedure of a pinhole 



34 
 
 

 
 

camera must be modified when using more than one camera. The basic structure of a 

vision system is a stereo system, i.e., using two cameras at a known distance. Hence, the 

geometry of a stereo system must be defined. Figure 3.2 shows the geometry of a stereo 

vision system. 

 Two cameras with their image planes and geometry of base line and epipolar line 

are shown in Figure 3.2 The basic parameters are Ol, the left camera‟s center (i.e., the 

center of projection for the left camera), and Or, the right camera‟s center (i.e., the center 

of projection for the right camera). El is the left epipoint, and Er is right epipoint. Pl is the 

projection of point P on the left image plane, and Pr is the projection of point P on the 

right image plane. The line joining the points El - Pl and Er - Pr is called the epipolar line. 

The plane passing through the centers of projection and the point in the scene is called the 

epipolar plane. For the stereo vision system, the relationship between the two camera 

coordinate systems also must be calibrated. 

 

 

 

Figure 3.2. Principle of a Stereo Vision System 
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 For a point P in 3D space, its two coordinates, PL and PR, in the left and right 

camera coordinate systems, have the following relationship where, Rs is the rotation 

matrix, and Ts is the translation vector between the two coordinate frames of the stereo 

system. 

                  PR = Rs * PL + Ts                                                                   (11) 

 3.1.2. Coverage of the Stereo Vision System.  Calculating the coverage area is 

very important in motion tracking systems. Studying the coverage of the stereo system is 

imperative because the total available area for motion tracking depends on the total 

common coverage area. The basic common coverage of a stereo system can be calculated 

using the camera‟s pyramidal FOV. The basic parameters of pyramidal FOV are known 

to the users. Consider two cameras in a stereo system at a distance b from each other, 

with half major angle (a) and half minor angle (b) of the pyramid and a pyramid height 

h as shown in Figure 3.3.  

 

 

 

Figure 3.3. Coverage Area of the Stereo System 
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Now knowing the parameters of pyramidal FOV shown in Figure 3.3, the 

mathematical expressions for the coverage of stereo systems can be defined, i.e., express 

L and W in terms of those parameters, as: 

L = 2h*tan (a) – b 

And 

                              sW = 2h*tan (b)                                                        (12) 

The values of L and W are generated considering the wiimote as the camera. For 

the wiimote, a = 20.5
o
, b = 15

o
, h = 7m and b = 10cm (0.1m), then yielding L = 5.1m 

and W = 3.75m. So, this particular stereo system‟s area of coverage is 5.1m X 3.75m. 

Using the same equations (12), the coverage of any stereo system can be determined. In 

the toolbox, a set of visible points is used to determine the coverage area because the 

cameras are not oriented in same direction. However, this method is very important for 

standard coverage calculations for stereo vision systems. 

 

3.2. MULTI-CAMERA VISION SYSTEM 

 For wide-area motion tracking purposes, it is necessary to shift from a stereo 

system to a multi-camera vision system. Some theories have been developed to calibrate 

multi-camera vision systems [5][6][10]. Previous research in this area has shown that the 

calibration method suggested by Svoboda is the most effective for the cameras used in 

the experiments [9] [5]. The method offers a way to calibrate more than two cameras 

simultaneously, forming a single vision system for motion tracking. It is evident that 

more cameras provide a larger coverage area. Hence, while considering the development 
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of a new technique for wide-area motion tracking system implementation, it is important 

to use this algorithm for defining and calibrating multiple vision systems. The only 

necessary condition for implementing this algorithm is for the cameras‟ FOVs to overlap 

during calibration. Then, for motion tracking a point must be visible to at least two 

cameras simultaneously at any given moment, for comparatively accurate position 

tracking [9] [1].  

Principle of Multi-Camera Vision System Implementing Svoboda‟s Algorithm 

The multi-camera vision system is based on the multi-camera self-calibration technique 

suggested by Svoboda [5]. The algorithm is briefly described below 

Consider m cameras and n object points; it is assumed that the pinhole camera 

model is valid. The points Xj are projected to the image points uij: 

                                      Xj = [Xj,  Yj, Zj, 1]
T 
,  j = 1, …. , n                                              (13) 

lij  

   

   

 
  = lij uij = Pi Xj ,   lij v R

+
 , i = 1, …, m                                 (14) 

For m points, this equation can be expressed as following where each Pi is a 3x4 

matrix for i
th

 camera that contains 11 camera parameters.   

                

 
 
 
 
 
 
 
   
   

  
 

  
 

 

        
   

  
 

  
 

 

 

  

   
   

  
 

  
 

 

       
   

  
 

  
 

 

 

    

 
 
 
 
 
 
 

   = [P1 ….. Pm]
T

3mx4 *                     (15) 

These parameters depend on the six DOF that describe the camera‟s position and 

orientation and on the five intrinsic parameters. The uij are the observed pixel 

coordinates. The goal of the calibration is to estimate the scales lij and the camera 
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projection matrices Pi shown as Figure 3.4. The wrong collected calibration points can be 

detected by the calibration analysis specified in the calibration process described in 

RANSAC [10]. Hence, the coordinates of these wrongly collected points can be 

estimated by the method described by Svoboda et al. [5]. All the outputs (Pi Xj) from the 

equation can be put into one matrix, Ws, as: 

                                     Ws =                                                                   (16) 

where Ws is called a scaled measurement matrix. 

 

 

 

Figure 3.4. Schematic Structure of 4-Camera Setup Implementing Svoboda‟s Algorithm 

 

 

 Integration of multi-camera vision systems: Setting up a multi-camera vision 

system for a wide area is a classical issue. Extensive work has been done in this area, but 
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mainly for surveillance purposes [19][20][21][22]. A key method used in previous 

research was to apply position and motion tracking systems for tracking people based on 

blob detection using image processing techniques through regular surveillance cameras 

[22]. The basics of calibrating the cameras are the same, i.e., based on the pinhole camera 

model and calibration processes [5][6][7]. Wide-area position tracking is implemented by 

calibrating the cameras separately or calibrating a specific camera vision system for a 

specific area. For this purpose, researchers primarily have used Zhang‟s and Svoboda‟s 

algorithms, whose implementations have been discussed. The surveillance camera 

tracking system primarily is an image-based tracking system. The main consideration for 

this kind of tracking systems is that the background objects remain in the same position. 

Hence, the tracking is implemented depending upon the movement of objects detected 

with a fixed background. Movement is detected using image processing applications. The 

main objective of detecting these blobs is not to position the objects in some world 

coordinate system but to form a topography of persons or objects [21][22]. In past 

research, the need had arisen to find an inexpensive method of position and motion 

tracking. Therefore, author has implemented Wiimotes as cameras for tracking purposes, 

which is inexpensive compared to professional tracking systems.  

Based on the objective of wide-area tracking by surveillance cameras,define the 

main difference between optical sensor position tracking systems and wide-area 

surveillance tracking as that the former system is deployed for absolute position tracking 

in a world coordinate system. The primary advantage of an optical tracking system is that 

it can determine the absolute position of an object in a world coordinate system even with 

changing backgrounds. This objective is very helpful as it allows this tracking system to 
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be implemented at any place and for any process. Hence, if a method can be defined for 

integrating and calibrating a large number of cameras for position tracking, an optical 

tracking system for wide-area position tracking can be used.  

For the purpose of forming a vision system, implementing Svoboda‟s algorithm 

for calibration provides an efficient way to calibrate multiple camera vision systems. The 

most important aspect of this calibration method is that there should be some common 

overlap between the FOVs of all the cameras [5] [1].  Using an optical tracking system 

for position tracking requires either a common overlap between FOVs or some way of 

integrating several vision systems to form a single vision system. Here, author has 

proposed and implemented a method for integrating multiple vision systems that involves 

applying Horn‟s algorithm for finding closed-form solutions for absolute orientations 

based on quaternions, as stated in [9] [25].  

 Implementing Horn‟s algorithm: To integrate multi-camera vision systems, a 

method of finding the absolute orientation between Cartesian coordinate systems defined 

for particular vision systems is implemented. The primary condition for implementing 

Horn‟s algorithm is that the Cartesian coordinate systems are to be defined for all the 

vision systems. The previous section in which the implementation of Svoboda‟s 

algorithm was explained also contained an explanation of how a coordinate system is 

defined for a vision system. For the condition in which no common overlap exists 

between the cameras‟ FOVs,   try to form some kind of mathematical relationship 

between the Cartesian coordinate systems of vision systems. For the transformation 

matrices generated, the transformation matrix must be found in order to transform the 

coordinates of a point in one Cartesian coordinate system to the other Cartesian 
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coordinate systems. This transformation matrix again is a combination of a rotation 

matrix and a translation matrix. A method for generating this transformation matrix from 

the coordinates of three or more points in two different coordinate systems of two 

different vision systems is described by Horn [25]. In this paper, a closed-form solution 

for absolute orientation is generated using quaternions. Implementing this solution 

requires coordinates of at least three points in two Cartesian coordinate systems. Hence, 

the absolute orientation gives a rotation matrix to align one Cartesian coordinate system 

to other Cartesian coordinate systems. This method solves the equations iteratively. The 

aim of this method is to minimize the transformation‟s residual error [25]. The 

transformation between two Cartesian coordinate systems can be thought of as the result 

of a rigid-body motion and thus can be decomposed into a rotation and a translation. 

There are three degrees of freedom for translation, and the rotation and scaling factors 

each add one degree of freedom. Hence, there are seven degrees of freedom in all. Three 

points each have X, Y and Z coordinates in both Cartesian coordinate systems. Therefore, 

there are nine equations and seven parameters to determine from these equations.  

Figure 3.5 explains the basis of this algorithm‟s implementation. Two Cartesian 

coordinate systems, „Left‟ and „Right,‟ have been defined. The axes of these systems are 

Xl, Yl, Zl and Xr, Yr, Zr, respectively. There are four points visible to both the coordinate 

systems. Let the coordinates of the points be defined as Pl, 1, Pl, 2, Pl, 3 , …, Pl, m in the Left 

Cartesian coordinate system and Pr, 1, Pr, 2, Pr, 3, …, Pr, m in the Right Cartesian coordinate 

system for „m‟ points.  
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Figure 3.5. The Coordinates of a Number of Points is Measured in Two Different 

Coordinate Systems   

 

 

Consider: 

                         xl = rl, 2 – rl, 1                                                       (17) 

Then:  

                               l = xl /|| xl ||                                                    (18) 

Equation (18) defines the unit vector in the direction of the new X axis in the Left 

coordinate system. Now, let: 

                            yl = (Pl, 3 – Pl, 1) – [(Pl, 3 – Pl, 1).   l]   l                           (19) 

Here, three points define a triad in the Left coordinate system. Similarly, a second 

triad can be constructed in the Right coordinate system. The required coordinate 

transformation can be estimated by finding the transformation that maps one triad onto 

the other as shown in Figure 3.6. 
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Figure 3.6. Three Points Define a Triad 

 

 

The unit vector along the new y axis can be defined as: 

                              l = yl /|| yl ||                                                     (20) 

For the Left coordinate system, the third unit vector along the new z axis can be 

defined as: 

                                  l =   l X   l                                                   (21) 

In the same way, the unit vectors for the Right coordinate system can be defined 

as   r,   r,   r. Using these column vectors, Ml and Mr can be defined as:  

                            Ml = |   l    l   l| and Mr = |  r   r   r |                                (22) 

                                                     M
 
 
rl                                                                (23)                

Multiplication by Mr then maps these into the right-hand coordinate system yields 

the components of the vector rl along the axes of the constructed triad. 

                                                rr = Mr M
 
 
 rl                                                       (24)     

                                                   R = Mr M
 
 
                                                       (25)             
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 Hence, the total rotation matrix, i.e., the sought after rotation, is given by. The 

result is orthonormal because Mr and Ml are orthonormal by construction. Equations (25) 

constitute a closed-form solution for finding the rotation, given three points. Now, the 

translation must be found. For n points, the coordinates in the Left and Right coordinate 

systems are { Pl, i } and { Pr, 3 }, where i ranges from 1 to n. The transformation of the 

coordinates from the Left to the Right coordinate system takes the form in which s is the 

scale factor and r0 is the translational offset: 

                                           Pr = sR(Pl) + r0                                              (26) 

Here, the rotation is linear, and length is preserved so that where, ||P||
2
 = P. P is 

the square of the length of vector P. 

                                           ||R(Pl)||
2
 = ||Pl||

2
                                             (27)     

Here, because the data is erroneous, it will not be possible to find a scale factor, a 

translation, and a rotation that satisfy the transformation equation above for each point. 

There will be some difference in terms of the actual calculation; this difference is called 

residual error ei: 

                                          ei = Pr - sR(Pl) - r0                                          (28) 

The algorithm tries to minimize this residual error:  

                                                    
   || ei ||

2
                                              (29) 

The centroids of the coordinate systems are defined as: 

                        l = 
 

 
     

   l,i    and       r  = 
 

 
     

   r,i                                                  (30) 

                               P‟l,i = Pl,i -   l and P‟r,i = Pr,i -   r                                                        (31) 

                                    
   l,i = 0 and    

   r,i = 0                                                          (32) 

The error in terms of new coordinates is written as: 
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                                   e‟i = P‟r - sR(P‟l) – r‟0                                                                   (33) 

                                   r‟0 = r0 -   r + sR(  l)                                                                      (34) 

The sum of squares of errors becomes: 

                                        
   || P‟r - sR(P‟l) – r‟0 ||

2
                                                         (35) 

In Equation (35), the middle term becomes zero, as explained earlier in Equation 

(32). This error is minimized when r‟0 = 0. The equation then reduces to: 

                                            r0 =    r – sR(  l)                                                                    (36) 

The main inference drawn from this equation is that the translation is just the 

difference between the right centroid and the scaled and rotated left centroid. Because r‟0 

= 0, the total error in Equation (36) is minimized to:  

                                          
   || P‟r,i - sR(P‟l,i) ||

2
                                                            (37) 

The next step is to estimate the scale factor s. Expanding the total error in 

Equation (37) yields: 

                
   || P‟r,i||

2
 – 2s   

   P‟r,i . R(P‟l,i) + s
2   

   ||P‟l,I ||
2
                           (38) 

Equation (38) is of the form: 

                                            Sr – 2sD + s
2
Sl                                                         (39) 

where Sr and Sl are the sums of the squares of the measurement vectors (relative to their 

centroids),  D is the sum of the dot products of corresponding coordinates in the right 

system with the rotated coordinates in the left system. Completing the squares in terms of 

s yields: 

                                      (s  l – D/  l )
2
 + (SrSl – D

2
)/Sl                                    (40) 
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Using this equation, the error can be minimized with regard to the scale factor s 

when the first term of Equation (40) is zero, i.e., s = D/Sl, and then the expression for 

scale factor s is found as: 

                                    s =     
   r, i . R(r‟r,i) /       

   r, i ||
2
                                 (41) 

 

3.3. ACCURACY MEASUREMENT OF MOTION CAPTURE SYSTEMS 

 Another important aspect of vision systems is the accuracy of their motion 

tracking. The traditional method of determining the system‟s accuracy is to compare the 

distance between two markers, e.g., two LEDs at a known fixed point. This method is 

explained and demonstrated in various papers [17] [18]. Basically, accuracy is measured 

as the difference between the calculated distance and the known distance. Let D1 be the 

known fixed distance between two IR LEDs and D2 be the calculated distance between 

two points generated from the motion tracking system. The calculated error d can be 

plotted in MS Excel, and the average error of the particular multi-camera vision system 

can be determined. There are two methods of representing the error, either by finding the 

average davg or by finding the root mean square (RMS) value drms: 

                         D2 =                                               (42) 

In which davg = average (D2 – D1) mm, where d is the calculated error in mm: 

                                    drms = 
     

 
 , N = Number of observations                                (43) 

In some cases, researchers find the percentage deviation of the calculated distance 

to the actual distance. 
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4. MULTI-CAMERA VISION SYSTEM SETUP TOOLBOX  

The aim of the multi-camera setup is to track a moving object within a certain 

volume without any data loss. For this purpose, the position of an object must be 

determined by first determining the position of an infrared LED. The method described in 

[10] is used to calibrate the vision system. This means that all positions within this 

volume must be visible by at least two cameras at all times. To achieve this objective, it 

is essential to place the cameras at correct positions and with correct orientations. The 

problem is how to evaluate the positions and orientations of these cameras such that the 

total coverage is attained. One method by which to determine the area covered by a 

multi-camera vision system is to manually find all the points visible to the tracking 

system to determine the total area out of a given volume to be tracked. This method is 

time consuming, extensively inaccurate and very difficult to validate. This thesis suggests 

a mathematical method to determine all points inside a given volume that are visible to at 

least two cameras simultaneously at any given time. This is a mandatory condition for 

accurate position tracking [5]. 

 

4.1. TOOLBOX ARCHITECTURE 

 The system designed for multi-camera setup can accept any random position and 

orientation of a camera. Research conducted in the past had some constraints. The first of 

which was that all cameras in the simulation have fixed orientations. Those systems could 

not select the orientation and position of the cameras. The second constraint involved 

choice in selecting the camera. A previous system was built for Wiimotes only [9]. It was 

essential to design a system that could incorporate any type of camera. The key points of 
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the proposed system are that it has the ability to accommodate the input of a random 

number of any types of cameras with random positions and orientations. 

 4.1.1. Modules in the Toolbox. The multi-camera vision system setup toolbox 

has two modules: 1) the MATLAB module, and 2) The Visualization Toolkit (VTK) 

module. The MATLAB module specifically performs the mathematical functions of the 

system, and the VTK module performs the visualization functions of the system. A 

Figure 4.1 briefly describes the flowchart of the whole toolbox.  

 

 

 

Figure 4.1. Flowchart for Multi-Camera Vision System Setup Toolbox   
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4.1.2. Flowchart for Data Flow and Output for MATLAB. The MATLAB 

module contains the functions and codes for calculating the visibility of the points based 

on the pre-set parameters of cameras. The output of the MATLAB module is the set of 

points visible to the  multi-camera vision system. The total visible points are written in a 

data file (.dat) along with the initial parameters of cameras, i.e., positions, orientations 

and angles of FOVs. Figure 4.2 shows the flowchart for data flow in the MATLAB 

module. 

 

 

 

Figure 4.2. Flowchart for Data Flow and Output for MATLAB 
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 4.1.3. Flowchart for Data Flow and Output for VTK. The main function of the 

VTK module of the toolbox is to visualize the whole system. The input is provided to the 

VTK code through a data file in which the visible points are saved as shown in Figure 

4.3. Based on the FOV parameters and the initial positions and orientations of the 

cameras, the entire system is visualized in a window. 

 

 

 

Figure 4.3. Flowchart for Data Flow and Output for VTK 
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4.2. MATLAB MODULE 

 4.2.1. Matlab Module Inputs. The user must provide specific inputs to the 

toolbox in order to use it. These inputs are basic, simple and can be determined easily. 

The toolbox is designed for ease of use. The units used are mm for distance and degrees 

for angles. The basic inputs for the toolbox are as follows: 

 Type of camera: The type of camera is defined by its FOV, which is pyramidal. 

Hence, the inputs are: 

o Half angles of the pyramidal FOV 

o Height of the pyramidal FOV 

 Dimensions of the area to be tracked: The user must input the dimensions of the 

area to be tracked, i.e., the total available area. The dimensions along the X, Y 

and Z directions (length x height x width) are provided in mm. 

 Position of cameras in the XYZ coordinate system: The XYZ coordinates of each 

camera are provided by the user as the input for the toolkit. XYZ coordinates are 

provided in mm. 

 Orientation of cameras as the direction vector: The toolkit is designed for any 

number of cameras placed anywhere and with any orientation. The center axis of 

the pyramidal FOV is aligned with this direction vector.  

4.2.2. Visibility Calculations in MATLAB. This thesis has explained how the 

visibility check is applied for the points inside the given volume. Previous research has 

revealed that the FOV of a camera is always considered pyramidal. Hence, it becomes 

very important to understand the geometry of pyramid in detail. In an earlier section, the 

geometry of a pyramid was explained in terms of vector geometry as well as classical 
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geometry. The next step is to check the visibility. Finding the points visible inside a 

pyramid is a classic problem. Although a pyramid can be defined mathematically, the 

rectangular base of the pyramid makes this a difficult task. Various researchers and 

mathematicians have explained different methods by which to find the visibility of a 

point inside a given geometry [13][14]. Author has attempted to use the method of 

defining a cross-sectional plane on the center axis of the pyramid at a distance from the 

apex of the pyramid equal to the absolute distance between the point to be checked and 

the apex. Then, using the algorithm described by Burke [13], author has designed a code 

to determine if the point lies inside the given pyramid. The first step in this method is to 

describe the FOV of the particular camera, which is pyramidal with a rectangular base. 

Only three parameters are needed to describe a pyramid, the pyramid‟s half major angle 

(a), half minor angle (b) and height (h) as shown in Figure 4.4. Depending upon the 

defined coordinate system, the FOV of the camera can be determined.  

 

 

 

Figure 4.4. Basic Geometry and Parameters of the Pyramidal FOV of the Camera 
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 Based on this information, the pyramidal FOV can be defined in parametric form. 

For this purpose,begin with the basic definition of a line in parametric form. For a line 

segment defined by two points, A and B, in a 3D coordinate system, the unit vector u that 

defines the direction of the line and a scalar parameter t that ranges from 0 to 1 starting 

from point A (t = 0) to B (t = 1) can be determined. The parametric representation of the 

line helps in determining any point C between A and B as shown in Figure 4.5, if the 

value of parameter t is known.  

 

 

 

Figure 4.5. Parametric Representation of a Line 

 

 

                C = A + t1*u   -> Parametric equation of the line                                          (44) 

 Information regarding the angles, the height of the pyramid and the parametric 

representation of a line will be used to define a pyramid and its rectangular base. The 

coordinate system is defined by the user, and the height of a pyramid is the maximum 



54 
 
 

 
 

length of the camera‟s visibility (e.g., the height for a wiimote is 7m). The user-defined 

coordinate system is defined by X, Y and Z. The new coordinate system defined after 

random orientation is Xn, Yn and Zn. The pyramid‟s base is rectangular, as is the cross 

section of a pyramid by a plane parallel to the base. This rectangular, cross-sectional 

pyramid is defined by four points, P1, P2, P3 and P4. The apex of the pyramid is O, and 

center point of the pyramid‟s base is P. Initially, the pyramid is placed in such a way that 

its center axis aligns with the Y axis, and O is at its origin. The unit vector on which the 

center of the rectangular base lies is [0 1 0]‟. Depending on the unit direction vector, the 

rotation matrix R(3x3) is formed. After rotation, the center of the rectangular base is 

transformed to point P. The newly transformed center axis is defined by vector OP. 

Using this vector, the unit vector along OP can be defined, thus allowing the detection of 

any point on the center axis using the parametric representation of the line, as in Equation 

(44). While defining the placement of the camera, the axis of the pyramidal FOV is 

aligned to the direction vector, which is used to form a rotation matrix R. Then, using the 

coordinates of the camera, the translation matrix T (3x1) can be defined. Combining the 

rotation and translation matrices allows the transformation matrix TR (3x3) for a given 

camera to be defined. This transformation matrix will be used to define the placement of 

a camera and hence a description of the pyramidal FOV. By applying this transformation 

on the pyramidal FOV of the camera along with the parameters of FOV, i.e., half major 

angle and half minor angles, the position and geometry of the FOV are precisely defined. 

Figure 4.6 shows an oriented FOV along with its parameters. The rectangle at the bottom 

of the FOV shows a cross section of the pyramidal FOV by a plane parallel to its base. 



55 
 
 

 
 

 

Figure 4.6. Oriented FOV and Cross-Section Plane 

 

 

 Visibility of a point: The effectiveness of a camera-based tracking system has a 

direct relationship with the visibility of a point for cameras. According to calibration 

methods defined by Svoboda [5], a point in a given volume should be visible to two 

cameras at any given time for efficient position tracking. To define a mathematical 

method for the issue of visibility, author has defined several points in the given volume. 

Points are defined on the X, Y and Z axes at specific distances. The dimensions of the 

given volume are dimX, dimY and dimZ. The points inside this given volume are defined 

using the nested loops in MATLAB. 

After performing these loops, each point Pt inside the given volume is defined. 

Now, after defining the points, their visibility must be checked for each camera. In other 

words, the visibility of a point is checked by determining whether that point lies inside 

the pyramidal FOV of the camera. Here, use the description of the pyramidal FOV. Based 

O 
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on the description in Figure 4.7, a rectangular cross sectional area is defined using points 

P1, P2, P3 and P4.  

 

 

 

Figure 4.7. Points Inside a Given Volume in X, Y and Z Axis Direction  

 

 

The next step is to determine if a point lies inside the camera‟s FOV. It is possible 

to define the points P1, P2, P3 and P4 using the center of the rectangular cross section P 

and the half major angle and half minor angle. Referring to Figure 4.6, the new 

coordinate system using transformation is defined:  

                     Xn = TR*X ,  Yn = TR*Y and Zn = TR*Z                                      (45) 

To determine the parallel distance of any given point Pt in the given volume from 

the pyramid‟s apex O, a 3D line from point Pt perpendicular to line OP must first be 

for i = 0 : d : dimX  -> along X axis 

     for j = 0 : d : dimY -> along Y axis 

          for k = 0 : d : dimZ -> along Z axis 

          Point Pt = [i j k];   

          end; 

     end; 

end; 
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drawn. The basic mathematics behind drawing this line are inspired from the method of 

finding the perpendicular distance between a point and a line [11]. For this purpose, a 

perpendicular line is drawn from any point Pt to line OP, as shown in Figure 4.8. The 

point of intersection is point P. This new coordinate system has point P as its origin. 

Then, points Pa and Pb along the +Xn and -Xn axis, respectively, are defined, and these 

points lie on the edges of the rectangular cross section. 

 

 

 

Figure 4.8. Cross-Section Plane Generated at Point of Intersection P 

 

 

Using parametric representation, points Pa and Pb are defined as where m = the 

unit vector along vector OP. 

 t = dot(OP,OPt)./norm(AB)        ->   determine scalar t to locate P on line OP          (46) 

 P = O + t.*m      -> locate P on line OP                                             (47)      
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 To define the vertices of the rectangular cross section, the two points Pa and Pb 

must first be defined, as discussed earlier and shown in Figure 4.6. These points will be 

helpful in defining the vertices of the rectangle. To define these two points along the Xn 

and Zn axes, respectively, the scalar parameters t1 and t2 along Xn and Zn first will need 

to be determined. Given half major angle and half minor angle b of the pyramidal FOV: 

t1 = t.*tan((a).*pi./180) 

 

t2 = t.*tan((b).*pi./180) 

 

Pa = P + t1*Xn 

 

Pb = P -  t1*Xn                                                                                         (48)                                            

                                                                               

where Xn and Zn are unit vectors defining the new coordinate system. At this point, some 

very useful information has been obtained about the coordinates of points Pa and Pb and 

the unit vectors Xn, Yn and Zn defining the coordinate system of the pyramidal FOV. The 

coordinates of vertices P1 and P2 can be determined using Pa as the base point and t2 as 

the scalar parameter, locating P1 along the +Zn and P2 along the –Zn axis. Similarly, the 

coordinates of points P3 and P4 along +Zn and –Zn can be determined using point Pb as the 

base point. The following MATLAB process demonstrates the procedures for defining 

the vertices of a rectangular cross section: 

 

 

 

P1 = Pa + t1.*Zn  

P2 = Pa – t1.*Zn  

P3 = Pb – t1.*Zn  

                                                P4 = Pb + t1.*Zn                                                  (49) 

Here, the coordinates of the vertices in P1, P2, P3 and P4 are stored. 
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 This process is performed for each point Pt in the given volume to determine if it 

lies inside this rectangular area. Simply put, a cross section at the point of intersection of 

the center line of the pyramid and the perpendicular line drawn from any random point Pt 

is defined. The plane of the cross section is perpendicular to the center line. Hence, the 

point Pt and the cross-section plane lie in the same infinite plane. Therefore, whether that 

point lies inside that rectangular cross section can be determined mathematically. 

 A different algorithm is implemented to determine if the point lies inside the 

given rectangular area. To proceed further, the right-hand rule of the cross product must 

be recalled [12]. Considering the two vectors U and V in a plane, the order of vectors in 

the cross product determines the direction of the cross product vector W, as shown in 

Figure 4.9.  

 

 

 

Figure 4.9. Directions of Cross Product Vector W for Different Orders of U & V 

 

 

The next step is to solve the problem of determining if a point lies in the interior 

of a polygon. Many approaches have been used to solve this problem, such as ray-

casting, convex hull and determining on which side of a given line the point lies [13][14]. 
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Amongst these methods described by Foley [13] and Burke [14], this study employs the 

latter. A rectangular cross section is a convex polygon. The methods described in [13] 

and [14] work with 2D coordinate systems, but no methods are described for 3D systems. 

In this study, the logic behind the algorithm is extended, and a new algorithm a for 3D 

coordinate system is developed. This new algorithm combines vector mathematics and 

cross-product rules. 

 Algorithm statement: If the polygon is convex, then one can consider the polygon 

as a "path" from the first vertex. A point lies in the interior of these polygons if it is 

always on the same side of all the line segments making up the path. See Figure 4.10. 

 

 

 

Figure 4.10. Points Lying Inside a Convex Polygon Depending on Clockwise & 

Counterclockwise Order 
 

 

 

 Execution in 2D: Given a line segment between P0 (x0,y0) and P1 (x1,y1), another 

point P (x,y) has the following relationship to the line segment:  
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Compute: 

               CProduct = (y - y0) (x1 - x0) - (x - x0) (y1 - y0)                                     (50) 

CProduct is nothing but the cross product of PP0 and PP1  

                               CProduct = PP0 x PP1                                                           (51)                               

If the value of cross product CProduct is less than 0, then P lies to the right of the 

line segment. If Cproduct is greater than 0, then P lies to the left. If CProduct is equal to 

0, then P lies on the line segment.  

Consider a coordinate system such that one axis lies towards the right-hand side 

of the screen and one axis lies towards the upper side of the screen. Depending upon the 

order of vectors in the cross product, the direction of the output vector is either toward 

the viewer or away from the viewer. Consider a line of reference defined by the points A1 

and A2 and B1 and B2 on either side of the line, as shown in Figure 4.11.  

 

 

 

Figure 4.11. Points Lying on Left and Right Side of the Line Depending on the Direction 

of Vector A1A2 
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Draw vectors joining points B1 and B2 and A1 and A2. The next step is to find the 

cross product between vectors B1A1 and B1A2 and between vectors B2A1 and B2A2. 

Considering the right-hand rule of the cross product, the direction of the product vector is 

either towards or away from the viewer. If the direction of the product vector is towards 

the viewer, the point lies on the left side of the line, and if the direction of the product 

vector is away from the viewer, then the point lies on the right side of the line. Using this 

information, it is determined that point B1 lies on the left side and B2 lies on right side of 

line A1A2 [13]. Earlier, the vertices of the rectangular cross section were determined. The 

counterclockwise (CCW) order of vertices P1 -> P4 -> P3 -> P2 is considered to define the 

directions of the lines drawn joining these vertices in CCW order. The lines defined in 

this order are:  

 

 

 

 

 

 

 

 

 

The Pseudo Code: 

If  

point Pt lies on left side of line P1P4 

and 

point Pt lies on left side of line P4P3 

and 

point Pt lies on left side of line P3P2 

and  

point Pt lies on left side of line P2P1 

Then, point Pt lies inside rectangular cross section defined by P1 -> P4 -> P3 -> P2.  
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P1P4, P4P3, P3P2 and P2P1: In a 3D space, if the given point Pt lies on the left side 

of each line, looking in the direction of the vector, then that point lies inside the 

rectangular cross section on the same plane. Figure 4.12 shows two cases of the location 

of point Pt, one inside and one outside of the rectangular cross section.  

 

 

        

Figure 4.12. Point Lying Inside and Outside a Given Rectangular Cross Section Where 

Vectors are Considered in Counterclockwise Order 

 

 

 To find the visibility of any point inside the given pyramidal FOV of a camera, 

the same process was followed for each point for all cameras. All such points visible to 

cameras in a matrix Cam (mx3), where m is the number of points, were collected. The 

points inside the FOV of a particular camera are shown in Figure 4.13. 
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Figure 4.13. Points Visible to a Single Camera Inside the Given Volume 

 

 

 Mathematically, if the points visible to one camera can be found, all the points in 

the given volume visible to all the individual cameras can be found. The user is capable 

of defining the random number of cameras to be used. Hence, the system is designed to 

accommodate a random number of cameras. Figure 4.14 shows the points visible to three 

cameras.  
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Figure 4.14. Points Visible to Multi-Camera Setup 

 

 

 Figure 4.14 shows that some areas covered by points are visible to any two 

cameras. The next objective is to collect all the points visible to two cameras at any given 

moment. Having this matrix Cam computed allows a scoring or evaluation function to be 

specified taking the matrix as input [1]. The matrix Cam contains all the points covered 

by all the cameras. Hence, if any point is visible to two cameras, it will be stored twice, 

and so on. Therefore, the number of appearances of a point in the matrix Cam will reveal 
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the number of cameras to which that point is visible. The most efficient method is to find 

all the points that appear two or more times in the input matrix Cam, k ≥ 2, where k is the 

number of appearances, also called a score. According to the method of calibration 

implemented, i.e., Svoboda‟s algorithm [5], the position of a point can be tracked if that 

point is visible to two cameras.  

A setup achieving an increased number of traceable positions for this evaluation 

method offers better coverage of the specified volume of interest. However, if heavy 

occlusion problems are encountered during the tracking process, it is desirable to increase 

the number k of cameras required for a position to be classified as: traceable [1]. 

     

 

 

 

 

The matrix CommonTwoCam contains all the points visible to two or more cameras. The 

points saved in matrix CommonTwoCam provide a clearer picture of the total area visible 

to the vision system for position tracking. Figure 4.15 shows the points visible to two 

cameras in the system, represented by black-colored points. The total points visible to all 

the cameras are represented by different colors. 

Pseudo code:    

 for i = 1 : m -> loop to consider each point in the matrix 

    k = 1 -> initial counter 

for j = i : m 

if  

i
th 

point is equal to j
th 

point of matrix Cam 

k = k + 1 

Add point to matrix CommonTwoCam 

end 

 end 

     end 
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Figure 4.15. Points Visible to Any Two Cameras Simultaneously Shown in Black  

 

 

 In a similar manner, author has designed the function CommonThreeCam.m, 

which will identify all the points visible to three cameras at any given moment inside the 

given volume. These points are directed towards the input for the VTK module of the 

toolbox through a data file (.dat).  

 4.2.3 MATLAB Module Output. Previous sections have included an explanation 

of how to find the points visible to two or more cameras at any given time. The output of 

the MATLAB module consists of the following (which is also the data passed to the VTK 

module): 

1) Type of cameras (parameters of the FOV of the cameras) 
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2) Number of cameras 

3) Position of cameras 

4) Orientation of cameras 

5) Coordinates of the points visible to two or more cameras 

 

4.3. SYSTEM SETUP VISUALIZATION IN THE VTK MODULE 

The sole purpose of the VTK module is to create a visualization of the system‟s 

setup along with the area covered by the multi-camera vision system. 

 4.3.1. VTK Module Inputs. As explained in the toolbox flowchart, the output of 

the MATLAB module is directed to the VTK module. Hence, the inputs for the VTK 

module are the same as the outputs of the MATLAB module, which are: 

1) Type of cameras (parameters of the FOV of the cameras) 

2) Number of cameras 

3) Position of cameras 

4) Orientation of cameras 

5) Coordinates of the points visible to two or more cameras 

The coordinates of the points are read from a data file. The cameras are shown by 

their FOVs, i.e., pyramids and gray boxes at their positions along with their numbers. The 

total available area to be tracked is indicated by the red lines forming a wireframe, and 

the volume covered by the multiple tracking system is shown by a solid white color. A 

sample visualization of the system is shown in Figure 4.16. To reduce ambiguity and 
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clarify the visualization, the camera models in the visualization are given numbers so that 

the user will be able to identify the camera. 

 

 

 

Figure 4.16.  Visualization of the Area Covered by the Multi-Camera Vision System 

Shown in Gray and the Given Volume Enclosed by Red Lines 
 

 

 4.3.2 Reorientation of the Cameras. The ability to reorient cameras is an 

exclusive feature of the multi-camera vision system setup toolbox. The toolbox is 

designed for anyone who wants to use a multi-camera vision system. Hence, it is 

probable that the setup of cameras will be incorrect in terms of the area covered. The 

toolbox serves its purpose by reducing the time required for practical setup and again 

changing the orientation. Each change in camera orientation requires another calibration. 

Multi-camera 
setup 

Camera FOV 

Given Volume 

Covered Volume 
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The toolbox aims to reduce this time by using pure mathematical and computer graphics 

methods.  

 Consider a scenario in which the user wants to change the orientation of the 

cameras. The user designed multi-camera setup has three cameras initially. The user will 

need to check the area covered shown by solid white color in the visualization by the 

vision system with the initially oriented cameras. The VTK visualization is shown by 

Figure 4.17. 

 

 

 

Figure 4.17.  Visualization of the Area Covered by the Multi-Camera Vision System 

consisting of Three Cameras along with their Numbers 

 

 

Now suppose the volume covered by the multi-camera setup is not enough, the 

user will have to reorient the cameras. The user also adds another camera to the multi-

camera setup design as shown in Figure 4.18. Hence, the user will have to go through the 
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same procedure in the MATLAB module again until the system is visualized in VTK. 

This process is demonstrated in the flow chart for the data flow of the toolbox in Figure 

4.18.  

 

 

 

Figure 4.18.  Visualization of the Area Covered by the Reoriented Multi-Camera Vision 

System consisting of Four Cameras along with their Numbers 

 

 

As shown in the Figure 4.18 that the multi-camera setup consisting of four 

cameras, the cameras are reoriented and larger volume is covered. Finally after observing 

the visualization the user will confirm the multi-camera setup design depending on the 

volume covered.  
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5. ESTIMATION OF POSITION MEASUREMENT ERROR FOR MULTI-

CAMERA VISION SYSTEMS 

 

5.1. IMPLEMENTATION OF MULTIPLE VISION SYSTEMS FOR TRACKING 

 As discussed previously, author has implemented two algorithms, Svoboda‟s 

algorithm for calibrating the cameras in a multi-camera vision system with some common 

overlap between all the FOVs of the cameras and Horn‟s algorithm for integrating multi-

camera vision systems when no common overlap between the FOVs of all the cameras 

exists. 

 5.1.1. Implementation of Svoboda’s Algorithm. The cameras used to implement 

Svoboda‟s calibration are Wiimotes and firefly cameras. The calibration points are 

collected using infrared (IR) LEDs mounted on a board. To clarify the multi-camera 

calibration process, this section explains the method for calibrating multiple Wiimotes 

together to form a separate vision system. This calibration utilizes the MATLAB toolbox 

[10]. The final output of this calibration is a matrix P defined in Equation (a). Using the 

code developed in C#, the (u, v) coordinates for all positions for all cameras for multiple 

points (approximately 1500) were collected for accurate results [9]. For this setup, the 

Wiimotes were placed in the CAVE, as shown in Figure 5.1.  
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Figure 5.1. The Multi-Camera Vision System Setup for Svoboda‟s Algorithm 

Implementation and the Collection of Calibration Points inside the CAVE 

 

 

 The points collected in the entire vision system are shown in Figure 5.1. The 

calibration generates a transformation matrix, i.e., calibration P matrix (3m X 4), where 

m is the number of cameras. After generating the P matrix, the vision system is ready for 

position tracking. The sample P matrix for four cameras is:  

-488.73205 1323.41760 -435.21397 1185.53350

-526.40715 -488.82855 -1245.01160 -93.40065

0.64987 0.36752 -0.66528 1.17224

-992.48446 967.30407 -482.19519 1714.78630

-383.32724 -808.56491 -1122.23490 21.61061

0.40030 0.47282 -0.78498 0.79788

-1151.31010 -879.13303 -429.73457 1138.95770

698.38082 -519.75748 -1163.99980 -808.85998

-0.52349 0.43104 -0.73496 1.78634

368.32671 -1428.02520 -282.01197 1237.97110

777.78668 329.28422 -1215.46320 -907.34692

-0.63062 -0.27065 -0.72736 1.91762  

3 X 4 transformation 

matrix for camera4 

3 X 4 transformation 

matrix for camera3 

3 X 4 transformation 

matrix for camera2 

3 X 4 transformation 

matrix for camera1 



74 
 
 

 
 

An important factor in setting up and calibrating a vision system is defining the 

coordinate system for the vision system. The tracking system program developed in C# 

[9] provides a way of accomplishing this task. For this purpose, a T-shaped marker plate 

on which four IR LEDs are placed forming a T shape is used as shown in Figure 5.2.  

 

 

 

Figure 5.2. T-Shaped Marker Plate with IR LEDs Mounted  

 

 

The markers define the coordinate axes. The tracking system program finds the 

coordinates of the four points T1, T2, T3, and T4. The coordinates of points T1-T2-T3 

define one axis, and the line joining the points T2-T4 defines the second axis. Using the 
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unit vectors of these axes, the third axis is defined using the cross product. Therefore, the 

coordinate system is defined with the three axes X, Y and Z, along with the point T2 as 

the origin of the coordinate system. Defining the coordinate system and the origin 

provides the rotation matrix Rvision, the translation matrix Tvision and the scaling factor 

svision for all the points visible to the vision system. Hence,   define the coordinates of 

points as: 

                                       Pvision = svision*Rvision*P + Tvision                                               (52) 

 5.1.2. Implementation of Horn’s Algorithm. According to the algorithm 

explained by Horn [25], the coordinates of at least three points are collected in two 

Cartesian coordinate systems. The rotation matrix, translation matrix and scale factor are 

calculated using an iterative method of solving the equations, as explained in [29]. Hence, 

more equations will lead to a more accurate result. In implementing Horn‟s algorithm for 

integrating vision systems, as many data points as possible have been collected. These 

points are the ones visible in both vision systems simultaneously. This will ensure the 

collection of the coordinates of these points in both of the Cartesian coordinate systems.  

 For practical implementation, consider two vision systems as shown in Figure 5.3. 

The Left and Right vision systems have two different Cartesian coordinate systems. In the 

following practical implementation, a total of 450 points have been collected. Data points 

are saved in two matrices, LeftPoints (3m X 3) and RightPoints (3m X 3), where m is the 

number of points. These two matrices are inputs for the integration function in 

MATLAB. 
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Figure 5.3. System Setup for Integration of Two Multi-Camera Vision Systems Using 

Horn‟s Algorithm and Collection of Data Points Visible to both Vision Systems 

 

 

 Two vision systems are calibrated using a combination of Zhang‟s and Svoboda‟s 

algorithms [9]. The calibration method discussed earlier enables the Cartesian coordinate 

system of each vision system to be defined. Hence, the rotation matrix RotL and RotR 

and the translation matrix TrL and TrR of the Left and Right vision systems, respectively, 

are defined.For the current setup: 

RotL =  

 

 

TrL = 

-223.5761353 -315.2733301 769.7844046 

0.6353 -0.76923 -0.06799 

-0.27627 -0.14418 -0.950201 

0.7211 0.622482 -0.304126 
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RotR= 

-0.94821 0.317633 -0.0027 

-0.05 -0.15766 -0.98623 

-0.31368 -0.93501 0.165377 

TrR =  

-258.912 -264.754 669.8854 

 

 In the MATLAB module of the toolbox, a function is designed for finding the 

absolute orientation of a Cartesian coordinate system. Using this function rotation matrix, 

a translation matrix is generated for determining the absolute orientation between two 

Cartesian coordinate systems. In this calculation, the Left Cartesian coordinate system is 

the source coordinate system, and the Right Cartesian coordinate system is the target 

coordinate system. Hence, a transformation to transform the coordinates of the Right 

Cartesian coordinate system to the Left coordinate system is found. This transformation is 

given as shown in Figure 5.4: 

                                      PLeft = sHorn.RotHorn(PRight) + THorn                                             (53) 

 

 

 

Figure 5.4. Transformation of the Coordinates of the Points from the Right Cartesian 

Coordinate System to the Left Cartesian Coordinate System 
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where PLeft (3mx3) and PRight (3mx3) are coordinates of the points in the Left and Right 

Cartesian coordinate systems, respectively, and m is the number of points. RotHorn (3x3) 

is the rotation matrix, THorn(1x3) is the translation matrix and sHorn is the scale factor.  

sHorn = 1 

RotHorn =  

-0.93442 0.204515 -0.29162 

0.111229 0.945329 0.306563 

0.338373 0.254021 -0.90608 

 

THorn =   

39.1057 112.641 62.75604 

 

5.2. ERROR ESTIMATION OF THE TRACKING SYSTEM 

 The key factor that decides the usability of any position tracking system is its 

accuracy. Some research has been conducted on the same topic [17][18]. Author has 

presented the mathematical equations and methods used to estimate the maximum 

position measurement error of the multi-camera vision system. To clarify the evaluation 

of the implementations of these algorithms, author has reffered to several papers, research 

notes and technical reports. 

 5.2.1. Error Estimation for Svoboda’s Algorithm. The errors are calculated for 

a particular setup of the multi-camera vision system shown in Figure 5.1. The important 

aspect of error estimation is careful calibration of the vision system. The cameras in the 

vision system are calibrated exactly according to the procedure described in previous 

research [9][5]. While implementing the C# tracking code, it is essential for the user to 
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collect the right set of points. For two IR LEDs, the program shows blobs of two different 

colors. It is critical that, while collecting the data, the colors of these blobs are the same 

for all the cameras. Only then will the data be accurate. If the colors of the blobs are 

different for different cameras, then the program might generate random coordinates. In 

general, the user must diligently address the order of the IR LEDs for all the cameras. 

Previous research [17][18] does not mention a particular least number of observations for 

estimating the error of a vision system. Error is calculated for a total of 327 positions. 

The error in position tracking is calculated as shown in Equations (42) and (43). The 

observations are plotted in MS Excel.  

 The average error calculated for this particular vision system equals 3.01mm, and 

the RMS error equals 2.78mm shown by plot in Figure 5.5. 

 

 

 

Figure 5.5. Maximum Position Measurement Error Evaluation Plot for Multi-Camera 

Vision System Calibrated Using Svoboda‟s Algorithm 
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 5.2.2. Error Estimation for Horn’s Algorithm. The error estimation 

methodology used for Horn‟s algorithm is similar to that used for Svoboda‟s algorithm. 

The main difference between the two procedures is that Horn‟s algorithm deals with two 

integrated vision systems. Hence, while using two IR LEDs placed at a known distance 

from each other, care must be taken that only one LED is visible to only one vision 

system. Again, for estimating the error for the implemention of Horn‟s algorithm, the 

order of LEDs shown by the color of the blobs must be heeded. To achieve accurate 

measurements, author has used the method described by Freeman [17], Pentenrieder [18], 

and Vader [9]. In this method, the user measures the absolute distance. In the study 

described in this thesis, the coordinates of points at 540 positions were collected. Only 

one IR LED is visible to one vision system during the collection of these coordinates. 

Hence, at any given position, two sets of coordinates are collected (one for the Left and 

one for the Right vision system). Using the scale factor sHorn, RotHorn, THorn, the 

coordinates of the points collected for the Right vision system, i.e., the target coordinate 

system, are transformed to the Left vision system, i.e., the source coordinate system, as 

shown in Equation (53). Now, all the coordinates are in only one Cartesian coordinate 

system (the Left Cartesian coordinate system). Using the formulae for finding the 

absolute distance, Equation (42), and the RMS value, Equation (43), the error in the 

collected data points is found. This error is the error in the multi-camera vision system‟s 

integration. The results are plotted in MS Excel, as shown in Figure 5.6. 
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Figure 5.6. Maximum Position Measurement Error Evaluation Plot for Integration of 

Multi-Camera Vision System Using Horn‟s Algorithm 

 

 

5.3. IMPLEMENTATION OF DIJKSTRA’S ALGORITHM 

 Horn‟s algorithm is suggested for integrating the vision systems for position 

tracking in wider areas. This integration also experiences some position-tracking errors 

between vision systems. Integrating multiple vision systems is necessary for wide-area 

position tracking. According to the implementation of Horn‟s algorithm, one of the multi-

camera vision systems (the Cartesian coordinate system) is considered the source, and the 

rest are target vision systems. Considering that author is integrating multiple vision 

systems, only one of the vision systems will be the source system. This vision system is 

called the master system, and all the target systems are slave systems. Now, the task is to 

transform the coordinates of the points visible to any vision system into the Cartesian 

coordinate system of the master system. The slave systems may share some common 

overlapping area. Hence, these vision systems cannot be integrated directly with the 
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master vision system. The scope of the implementation of Horn‟s algorithm must be 

expanded. The slave systems must be integrated by integrating those that share a common 

overlap. Hence, all the vision systems must be integrated with their adjacent vision 

systems. This kind of integration will form a grid-like structure of vision systems. The 

maximum position errors of the integration of these vision systems must be calculated. 

Figure 5.7 shows the grid of the typical multiple vision system integrations implemented 

inside the CAVE. 

 

 

 

Figure 5.7. Multiple Vision System Setup inside the CAVE and the Adjacent Pairs of     

Vision Systems Are Integrated using Horn‟s Algorithm Implementation  
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The Dijkstra‟s algorithm uses the greedy approach to solve the single-source 

shortest path problem. From the unselected vertices, it repeatedly selects the vertex that is 

nearest to source s, vertex v, and declares the distance between the two to be the actual 

shortest distance from s to v. The edges of v, followed by the relevant outgoing edges, are 

then checked to see if their destination can be reached by v (refer to the diagraph in 

Figure 5.8). 

 

 

 

Figure 5.8.  Schematic Representation of Multiple Vision System Setup (Top View of 

CAVE)  

 

 

 Consider the grid along with the maximum position errors as shown in Figure 5.8.  

 

The transformation of the coordinates from System2 to Master or from System3 to  

 

Master will require only the transformation matrices generated using Horn‟s algorithm. 

 

However, the question of the shortest path arises when considering transforming the  

 

coordinates of the points from System4 to Master. Two solutions exist for transforming  

 

the coordinates from System4 to Master: Master -> System3 -> System4 Or Master - 

 

>System2 -> System4  
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The correct path, the one that generates the least error, must be chosen from 

amongst these two possible paths. Based on the maximum position error between all the 

adjacent vision systems, the algorithm generating the shortest path, described by Dijkstra, 

is implemented. Dijkstra's algorithm is called the single-source shortest path, as well as 

the single-source shortest path problem. It computes the length of the shortest path from 

the source to each of the remaining vertices in the graph. The single-source shortest path 

problem can be described as follows: Let G = {V, E} be a directed weighted graph with 

V having a set of vertices. In the special vertex s in V, where s is the source, let 

EdgeCost(e) be the length of any edge e in E. All the weights in the graph should be non-

negative. A directed graph can be defined as an ordered pair: G = (V,E), where V is a set 

whose elements are called vertices or nodes, and E is a set of ordered pairs of vertices, 

called directed edges, arcs, or arrows. Directed graphs also are known as digraphs. 

Dijkstra‟s algorithm works by solving the subproblem k, which computes the shortest 

path from the source to vertices among the k closest vertices to the source. For Dijkstra‟s 

algorithm to work, it should be a directed-weighted graph, and the edges should be non-

negative. The actual shortest path cannot be obtained if the edges are negative. At the kth 

round, there will be a set called Frontier of k vertices that will consist of the vertices 

closest to the source. The vertices that lie outside Frontier are computed and put into New 

Frontier. The shortest distance obtained is maintained in sDist[w], which holds the 

estimate of the distance from s to w. Dijkstra‟s algorithm finds the next closest vertex by 

maintaining the New Frontier vertices in a priority-min queue. The algorithm works by 

keeping the shortest distance of vertex v from the source in an array sDist. The shortest 

distance of the source to itself is zero. sDist for all other vertices is set to infinity to 
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indicate that those vertices are not yet processed. After the algorithm finishes processing 

the vertices, sDist will have the shortest distance of vertex w to s. The two sets, Frontier 

and New Frontier, are maintained, which facilitates the processing of the algorithm. 

Frontier has k vertices that are closest to the source and will have already computed the 

shortest distances to these vertices for the paths restricted up to k vertices. The vertices 

residing outside of Frontier are put in New Frontier. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pseudo code: 

Procedure  Dijkstra (V: set of vertices 1... n {Vertex 1 is the source} 

Adj[1…n] of adjacency lists; 

EdgeCost(u, w): edge – cost functions;) 

Var:   sDist[1…n] of path costs from source (vertex 1); {sDist[j] will be 

equal to the length of the shortest path to j} 

Begin: 

Initialize 

{Create a virtual set Frontier to store i where sDist[i] is already fully solved} 

Create empty Priority Queue New Frontier; 

sDist[1]←0; {The distance to the source is zero} 

forall vertices w in V – {1} do {no edges have been explored yet} 

sDist[w]←∞ 

end for; 

Fill New Frontier with vertices w in V organized by priorities sDist[w]; 

endInitialize; 
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A practical implementation of Dijkstra‟s algorithm in MATLAB is provided in 

the toolbox; it will allow the user to find the shortest path for the multiple vision systems. 

The current setup inside the CAVE is: 

As Table 5.1 indicates, differences exist between the maximum position 

measurement errors of pairs of multi-camera vision systems integrated using Horn‟s 

algorithm. Several reasonable possibilities exist for this difference, one being that errors 

occurring during calibration and integration contribute to larger errors. However, in this 

study, this reason can be discarded safely because all of the pairs use the same method of 

calibration and integration.  

 

 

repeat 

v←DeleteMin{New Frontier}; {v is the new closest; sDist[v] is already correct} 

forall of the neighbors w in Adj[v] do 

if sDist[w]>sDist[v] +EdgeCost(v,w) then 

sDist[w]←sDist[v] +EdgeCost(v,w) 

update w in New Frontier {with new priority sDist[w]} 

endif 

endfor 

until New Frontier is empty 

endDijkstra; 
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Table 5.1. Pairs of Multi-Camera Vision Systems Integrated Together Using Horn‟s 

Algorithm and Their Maximum Position Measurement Errors 

Pair of vision systems Average error (mm) 

Master -> System2 6.00 

Master-> System3 6.45 

System2-> System4 10.18 

System3-> System4 9.25 

 

 

 

Hence, the shortest path is Master -> System3 -> System4. The maximum 

position error for the shortest path is 6.45mm + 9.25mm = 15.7mm.  

 In this way, the user can determine the shortest path between any two vision 

systems. Dijkstra‟s algorithm can be used for any number of vision systems. Before 

implementing this algorithm, the user must possess the data regarding the average 

maximum position errors between all of the adjacent multi-camera vision systems.  

 Differences in errors also can be caused by fluctuations that occur while the 

camera is collecting data. In this study, Wiimotes are used as cameras. The Wiimotes are 

very sensitive to the intensity of the IR LEDs. It is logical that this intensity decreases 

when an IR LED is moved away from the camera. Hence,investigated the possible 

existence of a relationship between the maximum position error and the distance between 

IR LED markers and the multi-camera vision system. This relationship can be established 

by plotting the frequency graph of the range of distances vs. the number of data points 

collected within the given range of distances of the data points from the multi-camera 
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vision system as shown in Figure 5.9. The data is collected for 540 data points i.e. 540 

different positions. 

 

 

 

Figure 5.9.  The Frequency Plot of the Range of Distances Between the Multi-Camera 

Vision System and IR LED Marker vs. the Total Number of Data Points Collected 

Within the Respective Range 

 

 

The Table 5.2 clearly indicates that for the pair Master->System2, 91.1% of the 

total points were collected within the range of 2m to 3m from the multi-camera vision 

system. For the pair Master-> System3, 67% of the total points were collected within the 

range of 2m to 3m from the multi-camera vision system. However, for the pairs System2-
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> System4 and System3-> System4, 81.3% and 85.9% of the total points were collected 

within the range of 3m to 4.5m from the multi-camera vision systems, respectively. 

Hence, the statistics support the theory that fluctuations in data collection increase as a 

marker is moved away from the cameras, causing larger errors in the calibration and 

integration of the multi-camera vision systems.  

 

 

Table 5.2.  The Range of Distances Between the Multi-Camera Vision System and IR 

LED Marker vs. the Total Number of Data Points Collected Within the Respective Range 

     Range of distances 

(m) 

     

System pairs 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 

Master -> 

System2 

0 0 0 5 100 216 176 31 9 1 2 0 0 

Master-> 

System3 

0 0 0 0 0 21 341 136 23 4 10 4 0 

System2-> 

System4 

0 0 0 0 11 81 175 165 75 24 5 1 2 

System3-> 

System4 

0 0 0 0 1 46 125 174 134 31 22 3 1 
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6. TOOLBOX EVALUATION 

 Author has attempted to evaluate the toolbox based on the results of error 

estimation obtained by implementing different algorithms for calibrating multi-camera 

vision systems (Svoboda‟s algorithm) and integrating multiple vision systems (Horn‟s 

algorithm).  

 

6.1. ACCURACY MEASUREMENT 

 As mentioned previously, Svoboda‟s algorithm was implemented for calibrating 

the multi-camera vision systems. The error estimation for all four multi-camera vision 

systems is plotted, as in Figure 6.1 and shown in Table 6.1. To clarify the estimation and 

the plot of the data, each vision system has 325 observations. The IR LEDs were placed 

165mm from each other. The error is calculated as per Equation (42) and measured in 

mm. The data points are collected within 1.5 to 3.5 m away from the cameras. 

 

 

 

Figure 6.1. Maximum Position Measurement Errors of Four Vision Systems, Each 

Calibrated Using Svoboda‟s Algorithm 
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Table 6.1. Maximum Position Measurement Errors of Individual Multi-Camera Vision 

Systems and Data Points Collected for Each Observation 

Name of the system No. of observations Average error (mm) 

Master 325 3.01 

System2 325 2.05 

System3 325 3.56 

System4 325 4.1 

 

 

 

The average error of the four vision systems is 3.18mm. 

 The error estimation for four integrated multi-camera vision systems can be 

summarized by plotting absolute errors and finding their average. For this error 

estimation, the same number of observations for each pair of multi-camera vision systems 

has been collected. There are 540 observations for each pair. The IR LEDs were placed 

890mm from each other. The data points are collected within 1.5 to 3.5 m away from 

cameras as shown in Table 6.2. The average error using Horn‟s algorithm is 7.97mm. 

 

 

Table 6.2. Maximum Position Measurement Errors of Pairs of Multi-Camera Vision 

Systems and Data Points Collected for Each Observation 

Pair of systems No. of observations Average error (mm) 

Master -> System2 540 6.00 

Master-> System3 540 6.45 

System2-> System4 540 10.18 

System3-> System4 540 9.25 
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In Figure 6.2, the plots show the maximum position measurement errors of the 

four pairs of multi-camera vision systems. Sharp red points in the plot can be explained 

as a result of the instability of the Wiimotes.  

 

 

 

Figure 6.2. Maximum Position Measurement Errors of Four Pairs of Vision Systems, 

Each Integrated Using Horn‟s Algorithm  
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6.2. COMPARISON BETWEEN THE TOOLBOX AND THE ACTUAL 

IMPLEMENTATION RESULTS  

 The toolbox is evaluated by comparing the output of the toolbox, i.e. the 

visualization of the volume covered by the conceptual design of the multi-camera vision 

system, and the actual volume covered by the practical setup of the multi-camera vision 

system. For this toolbox evaluation, a stereo camera vision system is placed at a known 

distance from the origin of the volume to be tracked as shown in Figure 6.3 and 6.4. As 

mentioned previously, the inputs for the toolbox are: 

Type of camera: Wiimote 

Minor half angle of FOV: 15° Major half angle of FOV: 20.5° 

Maximum visible range (maximum distance from the camera until a marker is visible to 

the camera): 7000mm 

Total number of cameras: 2 

Position of the cameras in mm with regard to origin O of the given volume (X, Y, Z): 

Camera1 (450, 1300, 4900) and Camera2 (550, 1300, 4900) 

Volume to be tracked: For this demonstration, a portion of a cubicle is taken as the 

volume to be tracked. 

Total dimensions of this volume: 1000mm X 1750mm X 1800 mm (width X height X 

depth) 
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 Figure 6.3. The Scenario of the Given Volume, i.e., a Portion of a Cubicle, and the 

Definition of the Coordinate System and Origin O 

 

 

      

Figure 6.4. Positioning the Stereo Camera System for Tracking 
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 The next step is to input the initial positions and orientations of the cameras. By 

clicking a few simple and self-explanatory buttons, as shown in Figure 6.5, the user can 

generate the final output. 

 

 

 

Figure 6.5. The Graphical User Interface (GUI) of the Toolbox  

 

 

 The output of the toolbox includes the dimensions of the volume covered and the 

visualization of the system shown in Figure 6.6. 
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Figure 6.6. Console Output of VTK Indicating Dimensions of the Volume Covered by 

the Multi-Camera Vision System 

 

 

 According to the output of the toolbox, the system will cover the volume as the 

dimensions shown in the output are 1000mm X 1750mm X 1800 mm (width X height X 

depth). The visualization of the VTK module of the toolbox is shown in Figure 6.7. 
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Figure 6.7. VTK Module Output Showing Two Cameras and the Volume Covered by the 

Two-Camera Vision System 

 

 

The original volume to be covered is represented by the red wireframe. The white 

portion shows the volume that will be covered according to the toolbox. Two cameras are 

shown in the gray color, and their FOVs are shown in the translucent blue color. 

 The next step is to compare these results with the actual scenario, which is 

accomplished by checking whether or not an IR LED marker placed in the given volume 

is visible to the multi-camera vision system as shown in Figure 6.8, 6.9 and 6.10. The 

visibility of the markers is checked by the wiimote tracking software developed in C#. 

The visible IR LED marker is represented by a colored blob on the screen. The IR LEDs 

are placed at the corners of the volume and then at some places within the given volume. 

The visibility of these IR LEDs will reveal whether the given volume is covered by the 

multi-camera vision system.  

Camera1 Camera2 

Covered volume 



98 
 
 

 
 

          

Figure 6.8. Comparison Between the Detection of the IR LEDs and the Actual Setup for 

LEDs Positioned at the Front Side Corners of the Volume 

 

 

    

Figure 6.9. Comparison Between the Detection of the IR LEDs and the Actual Setup for 

LEDs Positioned at the Back Side Corners of the Volume 
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Figure 6.10. Comparison Between the Detection of the IR LEDs and the Actual Setup for 

LEDs Positioned at Random Places of the Volume 

 

 

 From Figures 6.8, 6.9 and 6.10,   conclude that the given volume is actually 

covered by the vision system. Hence,   conclude that the toolbox produces high-quality 

results in a practical implementation. 
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7. APPLICATIONS 

7.1. MULTI-CAMERA VISION SYSTEM SETUP IN THE CAVE 

 The implementation of the multi-camera vision system utilizing Wiimotes as 

cameras began with the aim of designing an interactive virtual environment. The multi-

camera position tracking system was incorporated through a data file. The basic 

application of the CAVE is visualization. The starting point for any kind of interactive 

virtual environment is navigation. The application contains a scenario with simple objects 

created in OpenGL, such as polygons, cubic blocks, etc.  

 The navigation process is guided by the camera routine of OpenGL, which has the 

syntax: 

gluLookAt(posx, posy, posz, atx, aty, atz, upx, upy, upz);  

where,  

(posx, posy, posz) -> position of the camera in X Y and Z 

(atx, aty, atz) -> position where camera is aimed 

(upx, upy, upz) -> ‘up’ vector 

 The position data obtained from the position tracking system is directed to (posx, 

posy, posz). With this data, navigation is achieved using the multi-camera position 

tracking system with Wiimotes as cameras explained in Figure 7.1. 
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Figure 7.1. Actual Pictures of Navigation Application Inside the CAVE  

 

 

7.2. VIRTUAL FUSELAGE FASTENING OPERATION  

 The next step in applying the multi-camera vision systems in the CAVE was to 

design an application that would simulate a real-life scenario. For this purpose,decided to 

simulate the fastening operation for a fuselage. The real motivation behind this 

application was the idea of using the real-time position tracking system for ergonomic 

analysis of the movement of the worker performing the fastening operation. 

 The application involves designing the fuselage in the CAD software. The CAD 

model is rendered using OpenGL and VRJuggler. OpenGL cannot directly render the 

CAD model, so certain changes must be made to the format in which the model is saved. 

As mentioned previously, OpenGL can only draw primitive objects, such as lines, 

rectangular and triangular planes, cubes, spheres, etc. A better option for rendering the 

CAD model in OpenGL is to use the triangular representation of the CAD model. The 

vertices of the triangles are obtained by converting the CAD model from the *.STL file 
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format to the *.RAW file format. The RAW file contains only the vertices of the triangles 

explained in Figure 7.2.  

 

 

                                          

 

 

 

 

 

Figure 7.2. Tree Diagram Showing the Steps in Developing the Virtual Fastening 

Operation Application Inside the CAVE 

Render the CAD model 

STL to RAW 

OpenGL rendering syntax  

glBegin (GL_TRIANGLES);  

glVertex3f (v1x, v1y, v1z); 

glVertex3f (v2x, v2y, v2z); 

glVertex3f (v3x, v3y, v3z); 

glEnd ();   

Multiple-

camera vision 

system 

Position data 
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The main difference in this application is the movement of an actual object or 

marker. The marker moves in accordance with the position of the fastening tool. The 

advantage of this application is that the operator/worker will get the exact location of the 

fuselage where the fastening operation is being performed. Figure 7.3 shows the 

rendering of the fuselage and the interaction of the application with the position tracking 

system. Figure 7.4 shows real images from the virtual fuselage fastening operation inside 

the CAVE. 

 

 

 

   Figure 7.3. Picture of the Actual Virtual Fastening Operation of the Fuselage Inside the 

CAVE 1  
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Figure 7.4. Picture of the Actual Virtual Fastening Operation of the Fuselage Inside the 

CAVE 2 
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8. CONCLUSIONS 

A multi-camera vision system setup toolbox has been developed. The toolbox 

proves to be very useful for a user to design the setup of a multi-camera vision system. 

The toolbox comes with a user manual, making it simple to implement. It reduces the 

time spent placing cameras using the trial and error method. In addition, it serves as a tool 

to evaluate the design of a multi-camera system setup. 

The toolbox was developed using open-source VTK and MATLAB. The basic 

idea behind this combination is that MATLAB is very efficient and fast with 

mathematical calculations, while VTK is a versatile toolkit for voxel-based visualization. 

The developed toolbox provides a GUI to make it easier to use. The toolbox is designed 

such that the user will be able to generate the visualization with the fewest button clicks. 

The visualization contains the given volume to be covered, cameras placed at given 

positions and orientations and the actual volume covered by the multi-camera system. 

The toolbox allows the user to input any type and number of cameras, which can be 

placed at any random position and orientation. The user also can input any dimensions of 

the volume to be covered. The toolbox comes with VTK APIs. With a single click, the 

toolbox can automatically generate the visualization of the whole vision system along 

with the volume covered.  

The integration of multiple vision systems using Horn's algorithm is also 

developed and implemented, making it easier to integrate several vision systems for 

position and motion tracking in a large area. Dijkstra‟s algorithm is implemented to 

estimate the error in integrating any two multi-camera vision systems. The 

implementation of this algorithm is also developed in MATLAB. 
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It is demonstrated through practical implementation that the toolbox can design a 

multi-camera system setup in a CAVE. The toolbox output is used to calculate the 

volume covered by the multi-camera system. In this implementation, the multiple vision 

systems are practically integrated using Horn‟s algorithm, and the error is calculated 

using Dijkstra‟s algorithm. The setup is employed successfully in the virtual fastening of 

a simulated aircraft fuselage in a CAVE.  
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