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ABSTRACT 

Research in Laser Metal Deposition (LMD) has been done rigorously in the past. 

However, the main challenge that still exists is the production of complex part geometries 

having overhang features. Production of such features requires individual tracks with a 

high aspect ratio and wider bead angle. The use of destructible/ non-destructible support 

structures involves costly post production operations which increase production cost. 

Tilting or moving the deposition surface can be useful to create overhangs but are 

applicable only to special cases. Since such techniques have to be used by the 

manufacturing community, the techniques need to be simple in calculation and easy to 

understand. 

The paper presented in this thesis presents a novel technique of depositing a track 

having a wide welding angle. This novel method solves the above mentioned challenge 

by depositing tracks having the capability to build overhang features. The new approach 

that has been implemented in this paper involves using the energy balance to estimate the 

amount of superheat present in the melt pool and correlating it with the weld bead angle. 

Attention has been paid to make the model computationally less cumbersome. 

Furthermore, the technique has been applied to a produce a couple of tracks with 

predetermined welding angles successfully. 
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1.  INTRODUCTION 

1.1. OBJECTIVE  

The use of Laser Metal Deposition (LMD) for the production of part geometries 

by the manufacturing community has one major challenge, which is the incapability of 

the process to produce part geometries with overhangs. Typically, overhangs are features 

which require support structures for it to be built. The use of support structures increases 

the post processing operations and thus, increases the manufacturing cost. The basic idea 

in this research is to keep the model as simple as possible so as to present a technique that 

is viable to implement for real time processing. Thus, this research aims at solving the 

major challenge of producing tracks that has the capability of building overhanging 

structures. 

 

1.2. BACKGROUND AND PROPOSED TECHNIQUES  

LMD is an additive manufacturing process. The main applications of this process 

are in part repairs and generation of part geometries and prototypes. The starting material 

for LMD is in the form of powder of which the part geometry/prototype is to be 

produced. LMD uses layer-by-layer deposition technique. In this technique, the part 

geometry is produced by depositing each layer on top of a previously deposited layer 

based on the path planning strategy. Once powder has been melted by laser according to 

the part geometry, it is said to be deposited. The final part geometry needs further finish 

machining operations to have the customer specified surface finish. 
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Often the part geometries to be produced are made of overhanging features. A 

common practice has been to deposit the part geometry ignoring the overhang features. 

Once the geometry is produced the features are then machined out in the post production 

process along with the finishing operation. However by doing so, the entire concept of 

additive manufacturing may be lost. Since, this would involve the same amount of 

material wastage and same amount of machining as it would be required by conventional 

manufacturing techniques. A universal solution to the problem of depositing overhanging 

features lies in depositing tracks with a high welding angle and a suitable aspect ratio.   

Superheat is the additional amount of heat present in the material above its 

liquidus temperature. The method of using the superheat which is present in the melt 

pool; to manipulate the bead geometry has not been reported. This paper aims at using the 

above mentioned technique to produce tracks with previously decided welding angle.  

This research incorporates the various established techniques to predict the melt 

pool temperature which gives an estimate of the amount of superheat and adds to it the 

relation between superheat and the weld bead angle. This new approach has the main 

inclination towards simplicity in calculation which makes it a viable process design tool 

for the manufacturing engineer.  

 

1.3. CONTRIBUTIONS 

Listed below are the contributions of the paper. 

 A novel technique to deposit single track with a specific bead angle has been 

proposed. The model can modestly estimate the amount of superheat present 

in the melt pool.  
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 The approach presented in this paper is computationally less cumbersome and 

thus, aims in being a handy planning tool for the manufacturing engineer to 

select the process parameters for deposition. 

 A relationship between the weld bead angle and the superheat present in the 

melt pool has been developed and validated with examples. 



4 

 

PAPER 

A PLANNING TOOL TO PREDICT THE WELDING ANGLE IN LASER METAL 

DEPOSITION 

 

Sriram Prabhu
1
, Jianzhong Ruan

2
 and Frank Liou

3
 

1
Missouri University of Science and Technology, ssptpc@mst.edu 

2
Missouri University of Science and Technology, jzruan@gmail.com 

3
Missouri University of Science and Technology, liou@mst.edu 

 

Abstract 

Laser Metal Deposition (LMD) is one of the additive manufacturing processes used to 

produce fully functional metal parts. A deep understanding of the inter-relationship 

between process parameters is required to produce a high quality part. The geometry of 

the deposited track is largely controlled by the temperature of the melt pool. Thus the 

geometry plays an important role in determining both the quality and the morphology of 

the part. This paper presents an analytical model that predicts the mean melt pool 

temperature. This analytical model can also be used for a process design of a deposition 

tool path with a specified weld bead angle. This model was established to illustrate the 

effect of the superheat present in the melt pool on the weld bead geometry. The influence 

of the melt pool temperature on the weld bead angle, height, and width was then studied. 

The model was verified by helping successfully applied to produce a weld bead with a 

specified bead angle. 

Keywords: Weld Bead Angle, Superheat, Energy Balance, Laser Metal Deposition.  

mailto:ssptpc@mst.edu
mailto:jzruan@gmail.com
mailto:liou@mst.edu
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1. INTRODUCTION 

Rapid manufacturing technologies have been developed, though the production of 

functional parts needs further development. The Laser Metal Deposition (LMD) process 

is one of the rapid manufacturing technologies capable of producing fully functional 

metal components directly from a CAD model. LMD is an extension of the cladding 

process which has been successfully applied to cladding, coating, and repair.  

Rapid prototyping, the manufacturing of functionally graded materials and 

production of fully functional components are being carried out but with some difficulties 

in certain part geometries. Traditional manufacturing involves material removal to 

produce the desired part geometry. Material removed therein is both wasted and 

accounted for during the billing process. On the contrary, LMD builds the part geometry 

layer by layer thus utilizing the material efficiently. Figure 1 gives a glimpse of part 

production by LMD process. 

 

 

Fig. 1 A 316L stainless steel part deposition from initial to final stage. Here, Figure (a) 

shows the layer-by-layer part deposition. Figure (b) shows the part just after deposition and 

Figure (c) shows the final part after finishing operation. 

(a) (b) (c) 
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The deposition process is illustrated in Figure 2. The laser beam, which is coaxial 

with the nozzle, is focused to form a melt pool on the surface of the substrate. In the 

current experimental set-up, the nozzle used to emit the laser is also used to supply the 

powder to the melt pool. Deposition systems, however, also consist of set-up where the 

powder sprayed in the melt pool is not coaxial with the nozzle. A carrier gas transports 

the powder particles through the nozzle in the melt pool. The powder, while travelling 

through the nozzle, absorbs some heat from the laser. Thus, some of the powder is melted 

while travelling from the nozzle to the melt pool. As the nozzle moves ahead, both the 

laser beam and the substrate move relatively opposite to one another, the powder injected 

in the melt pool becomes quickly solidified generating a raised (deposited) track.  

 

 

 

Fig. 2 A schematic diagram of the LMD process. 
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As this process continues, a small, deposited track consisting of melted material is 

generated. The melt pool follows the laser beam which moves according to either the 

desired part geometry or the build direction. The LMD process involves a complex 

interrelationship between the process parameters (laser power, powder flow rate, and 

table speed) and the physical quantities (e.g., temperature of the melt pool, material in 

concern, weld bead angle, and aspect ratio) involved. Thus, understanding a quantitative 

influence of process parameters on the different physical quantities of interest is required. 
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2. LITERATURE REVIEW 

Many analytical and numerical models have explicitly highlighted the important 

phenomena such as heat conduction, thermo-capillary flow, laser power attenuation due 

to powder flow, and laser power absorption on process characteristics. Weeresinghe and 

Steen [1] developed a simple linear relationship between process parameters, such as 

both table speed and track width for single tracks and proposed three basic clad section 

profiles as shown in Figure 3 . 

 

 

Fig. 3 Cross-section of three different types of track profiles for single track deposition 

beads. 

 

Colaco et al. [2] developed one of the early models for single track geometry. 

This model, however was based only on powder flow. Kar and Mazumdar [3] studied 

both the composition of alloys and the cooling rate during the laser cladding process by 

developing a one-dimensional heat conduction equation. Jouvard et al. [4] proposed 

power thresholds for successful deposition of single-track beads by studying the 

interaction of the laser beam with both the powder and the substrate. Gedda et al. [5] used 

both experimental and theoretical methods to estimate the energy distribution during the 
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complete Direct Metal Deposition (DMD) process. They compared both Nd:YAG and 

CO2 laser sources, concluding that the latter was half as efficient as the former in terms of 

power source.  

Pinkerton and Li [6] created an energy balance to demonstrate the effect of the 

coupling efficiency on the DMD process. They considered the effect of the absorption 

capacity of the substrate for each of the three laser sources: e.g., CO2, Nd:YAG, and 

HPDL (High Power Diode Laser) sources. Pinkerton and Li [6] concentrated on the 

comparison of energy loss by conduction, convection, radiation and evaporation when 

using the above mentioned three laser sources. Their model, however, did not account for 

the effect of table speed.  

Toyserkani et al. [7] studied the effect of powder feed rate, process speed, and 

laser power on clad characteristics by developing a three-dimensional, finite element 

model. Liu and Lin [8] investigated the interaction between the laser and powder. They 

studied the powder heating process by considering each particle as a single spherical 

particle. The focus of previous research had concentrated heavily on type track profiles 

‘A’ and ‘B’, illustrated in Figure 3. These studies approximated the cross-section of the 

melt pool (in the horizontal X-Y plane) as an ellipse. Thus, the previous research was 

narrowed to focus on both type track profiles ‘A’ and B’.  

Porosity, poor surface finish, and quality are the primary reasons type track 

profile ‘C’ was excluded. The analysis, however, of multiple-layer, single track width 

geometries led to the conclusion that the constituent track does contain ‘C’ type profiles. 

Moreover, the inclusion of  type track profile ‘C’ does not produce any kind of non-
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conformity as they become re-melted during the deposition of the next layer [7]. Thus in 

this paper a fairly novel approach is established to investigate the wetting angle of the 

deposited track with respect to the temperature of the melt pool.  

Multiple factors have been shown to be responsible for weld bead morphology. 

Much research has been done to investigate these factors. Most of this research 

concentrated on ‘A’ and ‘B’ type profiles. This paper presents both an analytical model 

and an experimental set-up to investigate the effect of process parameters: laser power, 

powder mass flow, scanning speed, and the melt pool thermal behavior. Analytical 

models were developed using mass, momentum and energy balances across the melt 

pool, both with and without the effects of phase change. This paper presents a simple 

analytical model that describes the weld bead geometry of a single-track deposition based 

on both energy and mass transfer during the metal deposition process. 

 

2.1. TEMPERATURE MEASUREMENT 

Generally, two techniques which  have been widely used to report the temperature 

measurement during metal deposition are: 

 Contact measurements such as thermocouples which provide efficient ways of 

measuring temperature. Thermocouples are inserted into a substrate on which the 

deposition is to be made [9, 10]. They are used extensively when the temperature 

history of either the substrate or the temperature near the melt pool is to be 

recorded. Depositing on the thermocouples to measure the temperature of the melt 
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pool has resulted in melting the thermocouple. Making it incapable of measuring 

temperature. 

 Non-contact measurement such as radiation pyrometer which consists of an 

optical system and detector. Any object at a temperature higher than absolute zero 

emits electromagnetic radiation. The optical system focuses the electromagnetic 

radiation emitted by an object onto the detector. The output of the detector is 

proportional to the amount of energy radiated by the object. This output can be 

used to infer the object’s temperature. The emittivity, or emittance, of the object is 

an important variable in converting the detector output into an accurate 

temperature signal.  

LMD is a rapid solidification process that occurs under non-equilibrium 

conditions. Solidification is completed in a fraction of a second. Figure 4 is a photo of a 

melt pool during the deposition process. 

 

Fig. 4 A photograph showing the rapid solidification of the melt pool during metal 

deposition process. 
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This particular photo represents the temperature variation at 1/5000
th 

of a second 

(shutter speed). Both the response time of the thermocouple and the temperature 

resolution do not make the thermocouple a suitable candidate for recording temperature 

in such a short time. Additionally, the thermocouple has been noted as inefficient in 

acquiring the temperature measurements of the melt pool. An infrared pyrometer 

provides a non-contact, reliable method for temperature measurement. Infrared 

pyrometers have been used previously to measure temperature information during 316L 

SS single track depositions [11] [12].   
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3. NOMENCLATURE 
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4. MODEL FORMULATION 

4.1. BASIC ASSUMPTIONS 

To establish a reasonable model for the metal deposition process, some 

assumptions and key features must be stated which are as follows:  

 The metal deposition process was assumed to be in a quasi-stationary state.  

 The laser was assumed to move at a constant speed both parallel to the y-axis and 

perpendicular to the substrate. In reality, the part moves with respect to the laser 

while the laser beam remains stationary. Thus, the process is stationary in a 

reference frame attached to the laser beam.  

 The radius of the powder particles in the flow was assumed to remain constant.  

 The shadowing effect by powder particles was assumed to be negligible. In 

addition, the laser radiation reflected from either the melt pool or the particles in 

the powder stream is not considered to add significantly to the input energy. Both 

of these assumptions were reasonable due to the typically low volumetric fraction 

of powder. 

 

4.2. ASSUMPTION OF VALUES 

 All thermo-physical properties were considered to be independent of the 

temperature.  

 The values of both B and     in the overall evaporative model of Choi et al.[13] 

is material dependant. The value of iron was taken as a good approximation to 

common ferrous materials[6]. 
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 Room temperature was assumed to be 300 K. 

 The powder particles were heated upto 333 K in the powder feeder before the 

powder particles enters the system. This temperature is dependent on the powder 

feeder system and can vary from system to system. 

 The substrate was measured to reach 500 K during deposition. 

 

4.3. EMPERIMENTAL ASSUMPTIONS 

 The melt pool created on the substrate was considered circular in the traverse 

plane. This slowly changes to ellipse as the laser beam began to move and the 

solidification front developed.  

 The model was valid for conditions where the energy input to the system is equal 

to the energy required to create a deposit after taking into account the amount of 

energy lost during the process. Thus a proper balance has to be established 

between the energy entering the system and the sums of energy required to create 

a melt pool and to melt the incoming powder. 

 The model could be applied to cases where the tracks have a consistent aspect 

ratio. 

 The profile of the laser beam in the experiment should be noted to have a top-hat 

intensity profile. 
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4.4. MASS BALANCE 

The mass balance equation represents the amount of mass both entering in and 

sustained by the system under consideration. This system is illustrated diagrammatically 

in Figure 5. 

 

 

 

 

The mass (of powder particles) flowing in the melt pool can be considered as the 

amount of mass entering the system which is given by 

 

            (1) 

 

Fig. 5 Representation of the mass both entering in and sustained by the system during 

deposition. 
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where the      is the efficiency of the powder flow and    is the mass flow rate (g/sec). 

Not all powder delivered by the nozzle comes in contact with the melt pool. Thus, a 

powder flow efficiency was used to compensate this amount denoted by     . Figure 6 is 

a photograph illustrating a typical powder flow process during deposition. 

 

 

Fig. 6 Photograph of the powder flow process shot during the experiment. 

 

The amount of mass in the system of interest was calculated by 

 

                           (2) 

 

Powder reflecting 

from the melt pool  

Powder not coming in 

contact with the melt  pool  

Nozzle 
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The first term in Equation 2 represents the amount of mass present in the 

deposited track. Here,      represents the area of the cross-section of the deposited track 

(m
2
),    represents the table speed (m/s), and   is the density of the powder material 

(kg/m
3
). The cross-sectional area of the deposited track was considered a parabola for 

calculation purposes. The shape parameters for this parabola are the height of the 

deposited track (h) and the width of the deposited track (w). Thus, the area of the cross-

section of the deposited track can be given by  

 

      
 

 
   (3) 

 

Because the width of the deposited track varies by the energy input per unit 

length, this research has not assumed it to be equal to the diameter of the laser beam. The 

second term in Equation 2 represents the amount of powder delivered by the nozzle but 

which has failed to form a part of the melt pool. This term is effectively represented 

by   , the catchment efficiency, which represents the efficiency with which the powder 

that enters the melt pool becomes melted to form a part of the deposited track. Thus, the 

entire mass balance equation can be written as  

 

          (
 

 
  )                 (4) 

 

 

The first term on the right side of the Equation 4 gives the total mass present in 

the deposited track; the second term represents the amount of powder lost during 

Mass added to 

the system 

Mass in the 

solidified track 

Mass lost during 

the process 
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deposition. The left side of  Equation 4 represents the amount of powder flowing into the 

melt pool through the nozzle. Thus, the deposition height can be obtained by  

 

  
 

 

         

    
 (5) 

 

In summary, the amount of material being solidified is balanced by both the 

material added to the melt pool and the material that is lost. 

 

4.5. ENERGY BALANCE 

Figure 7 illustrates the system boundary considered for energy balance.  

 

 

Fig. 7 Energy balance of the deposition process. 
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The model was constructed in terms of energy flow both into and out of the 

system, as indicated in Figure 7. The system was assumed to be in a quasi-stationary 

state. According to Li et al. [14], energy enters the system in one of two methods. In the 

first method, the laser beam irradiates on the surface of the substrate at a specific energy 

level. Therefore, the laser energy absorbed by the substrate can be approximated as 

 

        (6) 

 

Here,    represents the laser power (J/s). α is the laser efficiency which takes into 

account the laser surface coupling efficiency and the transmission efficiency. Thus α 

depends on the absorptivity of the material and the conditions of the surface on which 

deposition is to be made. The value of α is taken as 0.45 for 316L both stainless steel and 

diode lasers [15], [16].  

The second method by which energy enters the system is through the pre-heated 

powder particles that fall into the melt pool. The powder is pre-heated in the powder 

feeder before it travels to the nozzle tip. These powder particles have been reported to 

become heated by the laser beam during their time of flight from the nozzle tip to the 

melt pool. This consideration leads to a cumbersome calculation. This calculation makes 

the model suitable for theoretical purposes only rather than for practical applications. 

Hence, the energy absorbed by the powder particles during their time of flight can be 

neglected. The total amount of energy entering the system Ein can be calculated as 

 

                     (7) 
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Here,    is the specific heat of the material in a solid state. This value is determined 

by the material which is to be deposited. The term     is the difference of the ambient 

temperature from temperature of the pre-heated powder particles. 

4.5.1. Formation of Melt Pool. As the laser beam strikes the substrate surface, it 

creates a circular melt pool on the surface of the substrate. In this melt pool, powder 

particles are injected and, as the laser beam moves, these particles both melt and solidify 

to form a deposited track. During this process, the circular melt pool gradually builds due 

to material addition and transforms to an ellipse as shown in the Figure 8.  

 

 
Fig. 8 The transition of the melt pool from circle to ellipse during the deposition process. 

 

Part of the ellipse is on the raised track where the material is both melted and 

deposited. The other part is formed on the horizontal surface to melt the substrate.  

Of the total energy supplied to the substrate through both the laser beam and the 

powder particles, represented by Equation 7, some amount of the energy is conducted to 

the substrate and the rest is used to melt the incoming powder particles. Thus the energy 

utilized to both create the melt pool and melt the incoming powder is approximated by 
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              {(                      }]   

             (     )                (8) 

 

where    area of the beam spot (m
2
),    is the table speed (m/s

2
),   is the density of the 

substrate material (kg/m
3
),    and    are the specific heats of the material in solid and 

liquid phase (J/KgK). The first part of Equation 8 represents the melting of the substrate 

to create a melt pool. Thus, the value of the specific heat should be taken for the substrate 

material. The second part of Equation 8 represents the energy required to both melt the 

incoming powder particles and create a deposition track. Here, Equation 8 contains the 

phase interaction term which accounts for the latent heat that is either absorbed or 

released during melting and solidification according to the amount of mass flowing in the 

system. 

4.5.2. Energy Loss from the System. The laser beam conducts energy to the 

substrate when it strikes the surface. Some portion of this energy is used to melt both the 

substrate and powder which is the useful energy as represented by Equation 8. The 

remaining energy is absorbed by the substrate through lattice vibration and is considered 

excess energy. Thus, by applying Fourier’s law, the energy lost due to conduction can be 

written as 

 

                                 (9) 

 

where   is the effective thermal conductivity of the material (W/m
2-

K) which is taken 

into account by considering the thickness of the substrate and the mean conduction length 
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through the deposited track,       is the substrate temperature during deposition (K). 

Here, the second term represents the energy conducted to the deposited track by the melt 

pool. The areas taken in both the first and second term differ according to the description 

previously given. Energy loss due to convection is negligible when compared with 

energy loss due to conduction, radiation, and the total energy absorbed by the workpiece 

[17]. The melt pool is always shielded by a constant flow of argon gas. This gas acts as a 

carrier gas for the powder particles. Thus, the effect of the forced convection on the melt 

pool can be approximated as 

 

                    (10) 

 

Here, the value of hc, the convective coefficient of the argon gas, is taken from the 

experimental results of Giacobbe [18]. The temperature of the melt pool (K) is 

represented by T. The ambient temperature (K) is represented by   . Energy loss through 

radiation can be approximated by the Stefan-Boltzman’s rule, given as 

 

                   
   (11) 

 

where   is the emissivity of the melt surface, and   is the Stefan Boltzmann’s constant 

(W/m
2
-K). Both the evaporative and boiling losses have been shown to contribute to the 

energy loss from the melt pool. But experimental results, however, have concluded that 

the losses due to evaporation were more significant as compared to the convective losses 

[19]. For LMD process, the boiling losses can be ignored as they are insignificant as 



24 

 

compared to evaporation losses. Thus, the evaporation loss according to the overall 

evaporation model of Choi et al. [13] is given as 

 

               
{         (

     

 
)        }

 (12) 

 

Here, the value of B is dependent on both the material property and the latent heat 

of vaporization    , as  stated in [13]. Finally, of the total powder that comes in contact 

with the melt pool, some are reflected and some are lost. These powder particles, 

however, absorb partial energy from the melt pool and/or laser beam. Thus, energy lost 

through powder that comes in contact with the melt pool (but fails to become part of the 

melt pool) is given as 

 

                               (13) 

 

where    is the catchment efficiency, and    is the temperature of the pre-heated powder 

particles(K). Quasi-stationary state conditions must be established for energy to remain 

balanced. Most thermodynamic models assume a quasi-stationary although the complex 

travel path of the deposition nozzle gives transient heat flow. This state is established 

very quickly. Thus,  

 

                                  (14) 

 

where     is the energy entering the system,    is the energy required to melt the 

material,       is the energy lost due to conduction,       is the energy lost due to 
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forced convection,      is the energy lost due to radiation,       is the energy lost due to 

evaporation, and    is the energy absorbed by the powder particles which have failed to 

form a part of the deposited track. The model is now complete. Both the verification of 

the model and application are stated in the following sections.
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5. MODEL VERIFICATION AND DISCUSSION 

5.1. EXPERIMENTAL PROCEDURE 

The proposed model was verified by conducting several experimental runs. Figure 

9 displays the experimental set-up used for both deposition and local temperature 

measurement.  

 

 

 

This experiment was performed with a laser metal deposition system. This system 

contained of a laser system, a powder feeder unit, a 5-axis CNC machine, and a 

monitoring system. The laser system used in the experiment was ISl-1000M Laser Diode 

System manufactured by Nuvonyx Inc. It was able to produce a single wavelength fiber 

couple diode laser of upto 1kW, operating in continuous wave mode (800nm). Stainless 

Fig. 9 Diagrammatic representation of the experimental set up. 
Substrate 

Nozzle 
Laser Beam 

Temperature 

Sensor 
Deposited Track 

Powder 

Feeder 

Real Time 

Controller 

Computer 
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steel (316L) was used as a deposition material on a mild steel substrate. The thermo-

physical properties of both materials tested are listed in Table 1.  

 

Table 1 Thermo-physical properties of the materials used during the experiment.[6, 20] 

Property 316L Stainless Steel Mild Steel 

Solid Specific Heat (J/Kg K) 490 481 

Liquid Specific Heat (J/Kg K) 510 502 

Thermal Conductivity (W/m K) 21.5 22 

Density (kg/m
3
) 8000 7200 

Latent Heat of Fusion ( J/Kg) 2.5 x 10
5
 2.47 x 10

5 

Solidus Temperature (K) 1600 1750 

Liquidus Temperature (K) 1710 1800 

Latent Heat of Vaporization (J/Kg) 6.2595 x 10
6
 7.34 x 10

6 

Ambient Temperature (K) 300 

Stefan-Boltzman’s constant 5.67 x 10
-8

 

 

The value of the laser surface efficiency, the catchment efficiency, and the 

powder flow efficiency were selected at 0.45, 0.9, and 0.85 respectively, for calculation 

purposes [6, 21]. These values were highly dependent on the system. Single path 

deposition tracks were conducted to validate the model. The size of the substrates used 

measureds 0.5 inch wide, 0.25 inch thick, and 2 inch in length. The experimental 
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parameters are given in Table 2. The stand-off distance between the coaxial nozzle and 

the deposition surface was kept at 8 mm to keep the focal plane coinciding with the 

deposition surface at all times. The melt pool temperature was measured with a dual-

wavelength non-contact temperature sensor (MI-GA 5-LO).  This sensor was capable of 

effectively decreasing disturbance from both powder and dusts. The response time of the 

sensor was 2 ms. Thus, the sensor returned a graph of the melt pool temperature, with 

respect to time through a computer. From this, the maximum temperature was considered 

at the melt pool temperature for every particular set of process parameters.  

After the deposition, all samples were initially sectioned to obtain a flat cross 

section. These cross sectioned samples were then cold mounted in a mounting resin. This 

was followed by etching with a 2% Nital to reveal the grain boundaries. After etching, all 

samples were examined with a Hi-Rox Optical Microscope to capture the images. ImageJ 

software was used to measure the required bead dimensions after proper calibration. The 

bead dimensions were measured as shown in the Figure 10. Gauge R&R was also 

performed to assess the variation associated with the measurement system. The precision-

to-total ratio was calculated to be 0.001163. This calculation can be considered adequate 

as it is less than .10. Additionally, the Capability Ratio (CR) of the measurement system 

was measured to be 0.000962. (A measurement system is considered to be adequate if the 

CR value is less than .10). 
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Fig. 10 Measurement of bead geometry. 

 

5.2. MELT POOL TEMPERATURE PREDICTION 

Both experimental and model results of the melt pool temperature during the laser 

deposition process are presented in Figure 11. The results show both the temperature 

measured by the IR pyrometer during each run and the temperature predicted by the 

model. The model is successful in predicting the melt pool temperature with an error of 

 20%. This error can be attributed to both the number of assumptions as well as the 

Process Parameters Values 

Laser Power 500, 750, 1000 W 

Table Speed 125, 225, 325 mm/min 

Powder Flow Rate 16, 24, 32 g/min 

α 

Table 2 Process parameters used for the experiment. 
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inconsistency of the process. A small (>20%) amount of error being can be considered a 

good trade-off when compared to the simplicity of the model.  

The temperature range fell between 1800-2500K. This range is within the same 

range predicted by previous models [6] [22]. The model, primarily, over predicts the 

actual temperature. The estimation however, is good. The modeled results are also 

consistent within the entire range of the experimental values. 

Thus, the modeled temperature can be used during the process design stage by the 

manufacturing engineer. Hence, model is in good agreement with the experimental work.  

 

 

Fig. 11 Comparison of the modeled and the experimental results of the temperature in the 

melt pool. 

 

Table 3 displays the results of ANOVA performed between the experimentally 

measured and modeled temperature. No statistical difference exists between the 
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experimentally measured and modeled temperature because the P-value is greater than 

0.74 [23]. 

 

Table 3 Results of ANOVA performed between the experimentally measured and 

modeled melt pool temperatures. 

ANOVA 

Source of 

Variation 
SS df MS F P-value Fcrit 

Between Groups 3990.62 1 3990.62 0.105 0.74 4.25 

Within Groups 911903.44 24 37995.97 

 
Total 915894.07 25 

 

 

5.3. HEIGHT PREDICTION 

Both the temperature of the melt pool and the height of the track are the two most 

important parameters during the manufacturing of the part geometry by the metal 

deposition process. Figure 12 illustrates the macroscopic images of the cross sections of 

the weld beads.  
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Fig. 12 Macrographs of the bead geometries deposited during the experiments. 

 

Figure 13 presents the comparison between the measured and the predicted value 

of the height. Some degree of error appears between the predicted and the measured 

value.  

 
Fig. 13 Comparison of the predicted and measured heights of the deposited tracks  

without the error function. 
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The amount of useful energy (given by the amount of laser power) supplied to the 

substrate affects the catchment efficiency. A simple correction factor can be introduced 

comparing both the measured and the predicted heights with the amount of useful energy 

supplied during the process as shown in Equation 15. Figure 14 shows the comparison of 

the modeled and measured height after introducing the error function. 

 

  
 

 

         

     
 (15) 

 

 
Fig. 14 Comparison of the modeled and the  measured height after the use of error 

function. 

 

Table 4 gives the results of ANOVA performed between the experimentally 

measured and the modeled height after using the correction factor. No statistical 

difference exists between the modeled and the experimentally measured heights as the P-

value is greater than 0.05 [23]. If the rate of energy per unit area was less than 200 
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J/sec/mm
2
, then the value of was 0.105. This indicates that, as the useful energy 

decreases, the efficiency of the system is also reduced. 

 

Table 4 Results of ANOVA performed between the experimentally measured and 

modeled weld bead height. 

ANOVA 

Source of 

Variation 
SS df MS F P-value F crit 

Between 

Groups 
0.067 1 0.067 0.359 0.554 4.259 

Within Groups 4.539 24 0.189 

 
Total 4.607 25 

 
 

 

The weaker melt pool does not have sufficient energy to sustain all of the powder 

fed to it. Similarly, if the rate of energy per unit area is more than 200 J/sec/mm
2
, then the 

value of ф is 0.6. This also indicates a variation in the catchment efficiency with respect 

to the useful energy supplied to the substrate. The term ф depends on the type of laser 

beam source, the laser intensity profile, the energy supplied to the substrate, and the 

diameter of the laser beam.  

 

5.4. THE WELD BEAD ANGLE, ASPECT RATIO AND THE SUPERHEAT 

Figure 15 displays the trend in both the weld bead angle and the aspect ratio 

(W/H) over the range of superheat measured in the weld bead. The weld bead angle 
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increases with the amount of superheat but becomes stable after approximately 300K of 

superheat.  

 

 
Fig. 15 Comparison of the amount of superheat with the weld bead angle and the aspect 

ratio of the beads. 

 

The additional superheat may increase the weld bead angle. The chances of failed 

deposit, however, also increase significantly. This failed deposit means the metal tends to 

flow more than what is required to create a bead shape resulting in a non-conforming 

surface. Thus, the optimum level of superheat to be given in the bead for a specific bead 

angle must be decided. This is due to the fact that the surface tension gradient varies with 

the temperature in the melt pool [24]. If a change in the temperature coefficient of the 

surface tension is positive, 
  

  
  , then the direction of the fluid flow, shown in Figure 

16 (b) results in ‘B’ and ‘C’ type of bead profiles. Similarly, a low superheat results in a 
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negative temperature coefficient of surface tension, 
  

  
  , which results  in ‘A’ type 

profiles shown in Figure 16 (a).  

 

 

 

 

Thus, optimizing the temperature coefficient of surface tension would lead to 

producing bead with the desired profiles. Figure 15 displays the variation of the aspect 

ratio with the amount of superheat. The bead becomes both wider and flatter as the aspect 

ratio becomes higher, which shapes the bead as ‘A’ type profiles. Similarly, an aspect 

ratio nearer to 1 represents a narrow, taller bead profile. This profile can be represented 

Fig. 16 Effect of the positive and negative value of 𝝏𝝈 𝝏𝑻 in the weld bead. 
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by both ‘B’ and ‘C’ type profiles. A positive value of the temperature coefficient of 

surface tension can be represented by beads whose aspect ratios are low and weld bead 

angles are high. Similarly, an aspect ratio close to the weld bead angle on the graph 

represents a negative value of temperature coefficient of surface tension.  

 

5.5. VARIATION IN THE WIDTH OF THE WELD BEAD 

Figure 17 displays the variation of the width of the weld bead with the amount of 

useful energy. The amount of useful energy is calculated by subtracting the energy lost 

due to various losses from the total energy supplied to the melt pool. The width of the 

weld bead varies considerably and is not equal to the radius of the laser beam (2.5 mm in 

the experimental set-up). Thus, considerable power attenuation exists, justifying, the 

assumption that the radius of the melt pool is not equal to the radius of the laser beam. 

Ideally, the diameter of the laser beam should be equal to the width of the weld bead. 

This can be attributed to the interaction time of the laser beam interacting with the 

substrate surface where the melt pool is formed. The interaction time is the duration 

during which laser energy is focused on the substrate to create a melt pool. Interaction 

time depends on both the table speed and the length of the deposit. A longer interaction 

time means more energy is supplied to the substrate when both the laser power and the 

mass flow rate are constant.  
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Fig. 17 Comparison of the width of the weld bead with the energy utilized during the 

process. 

 

Figure 18 illustrates the variation in the width of the bead, at different table 

speeds, with both a constant laser power and a constant mass flow rate. At the same laser 

power and mass flow rate, the width of the bead is inversely proportional to the table 

speed. At lower table speeds, the interaction time is more. Hence, more energy is 

transferred to the substrate. Additionally, at the same laser power and table speeds, the 

increase in mass flow rate increases the bead width. 

This means that the melt pool still has the capacity to form a bead with a  higher 

aspect ratio. The low variation in the bead width at both 1000W laser power and 32 g/min 

mass flow rate indicates that, at both levels of table speed, the melt pool had sufficient 

energy to melt the incoming powder. This variation in width can be attributed to the 

blocking effect. 

Diameter of the Laser Beam 

Average width of the bead 
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Fig. 18 Variation of the bead with interaction time for different laser power and mass 

flow rates. 

 

As explained previously, during the deposition process, as the laser moves with a 

specified table speed, the melt pool transforms from a circle to an ellipse. As the laser 

moves ahead and the deposition process begins, this ellipse acts like a moving melt pool. 

(Note that, in the Figure 8, part of this ellipse is on the substrate) During a long 

interaction time, the ellipse moves ahead slowly thus allowing the substrate to melt. This 

melted substrate forms a bead with a width equal to that of the diameter of the laser 

beam. Thus the melt pool blocks the heat from flowing to the substrate. In summary, both 

the interaction time and the blocking effects play an important role in determining the 

width of the weld bead.  

 

5.6. ENERGY DISTRIBUTION 

Figure 19 presents energy distribution during the laser deposition process, 

obtained from the proposed model. The individual energy pathways have been averaged 



40 

 

for all runs in consideration; they are used here to represent the pathways 

diagrammatically. 

 

 
Fig. 19 Average distribution of modeled energy lost from the system. 

 

The efficiency with which the laser power is supplied to the melt pool is just 45% 

for a diode laser. More than half of the energy input to the system is lost. Of the total 

energy that reaches the substrate, conduction losses account for the majority from the 

melt pool at all power levels. Thus, much energy is conducted to the substrate, becoming 

a part of the non-useful energy.  

Not all energy conducted to the substrate can be termed as a part of the energy 

lost due to conduction. Some amount of the same energy is required to both create a melt 

pool and make the fusion possible. Both radiation and evaporation losses come next in 
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terms of energy lost, accounting for nearly 6% of the total losses. The energy lost due to 

forced convection can be considered as negligible and is in agreement with the 

experimental results of Vasinota et al. [25]. Thus, both natural and forced convection 

losses can be ignored as they are negligible when compared to losses due to both 

conduction and radiation. The results of the modeled energy distribution due to various 

losses are in agreement with the results of Pinkerton and Li [6]. 
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6. MODEL APPLICATION 

The section is aimed at shedding some light on the proper application this model. 

This section provides a method for applying this model generated in section 4. A 

relationship between the weld bead angle and the superheat is generated, which can be 

used in conjunction with this model. 

A realistic input to the model can be considered a ‘weld bead angle.’ Figure 15 

has, therefore, been plotted again by switching the ordinate abscissa in Figure 20 to 

calculate the required superheat.  

 

 
Fig. 20 Variation of the weld bead angle with the amount of superheat. 

 

An approximation to the data can be  cubic, which is given by the equation in the 

graph. Thus, both a proper bead angle was selected and the amount of superheat required 

was calculated from Figure 20. The expected temperature across the melt pool was 
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estimated according to the amount of superheat needed. This temperature was used as the 

input value to the energy balance Equation 14. Two cases arise as follows: 

Case 1: User specifies the bead height: In such a case, because the system of 

equations does not have any physical constraints, both the mass flow rate and the 

table speed may be negative. Therefore, iterations should be performed on the 

specified height to obtain realistic results. 

Case 2: Specifying the bead height from the co-relationship in Figure 15: In 

such a case, a better approximation of bead height can be achieved using the curve 

fit data. Hence, the number of iterations to obtain realistic results will be reduced. In 

case the user needs a height other than one obtained from Figure 15, this value can 

be considered as a good initial point. Additionally, further iterations can be 

performed. 

Thus, a linear set of two non-linear equations with three unknowns (laser power, 

table speed, and mass flow rate) are obtained. At this stage, the mass flow rate is fixed. 

This is done to ensure the energy input to the system is sufficient to create a melt pool. A 

number of iterations must be performed to obtain a suitable value for both the mass flow 

rates and the table speed. Figure 21 is a flowchart of the step-by-step application for the 

proposed planning tool.  

Depositions were carried out based on these values. The macrographs of the beads 

are given in Figure 22. These values do not indicate any type of defect, such as either 

porosity or lack of fusion. Table 5 displays the geometrical results of the beads produced 

on the basis  
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of the proposed model. Both the expected and the measured values of the bead geometry 

are in good agreement.  

 

Fig. 21 Schematic diagram of the flowchart of the proposed model.

 Mass Flow Rate 

Laser Power 



 

 

 

 

 

 

 

 

Fig. 22  Macrographs of the deposited track with a pre-determined bead angle at 100X magnification.  

 

Table 5 Properties for the track deposited using the model. 

Property (a) (b) (c) (d) (e) 

Weld Bead 

Angle 

Expected Measured Expected Measured Expected Measured Expected Measured Expected Measured 

60 72 75 92 30 39 45 57 35 47 

Aspect Ratio 2.01 2.45 2.09 2.35 2.16 

Superheat 

(K) 
325 400 722 221 522 

Laser Power 

(W) 
1000 750 750 500 500 

Mass Flow 

Rate (g/min) 
30 16 18 16 12 

Table Speed 

(mm/min) 
225 85 250 225 245 

(a) (b) (c) (d) (e) 

Aspect Ratio 

4
5
 



 

 

 

7. CONCLUSION 

A model was created to predict the temperature of the melt pool during the laser 

deposition process. This model is based on the energy flow, both in and out, of the melt 

pool. The model considers the effect of the material heating, powder heating, wastage of 

powder, and various losses during the process. Temperature averaging across the melt 

pool was predicted effectively by establishing both the mass and the energy balance at the 

melt pool boundaries. The height of the deposited tracks has also been predicted 

effectively using the proposed constants.  

This model was experimentally verified and the results are in good agreement 

with the prediction. A novel idea of using the superheat present in the melt pool was both 

proposed and applied in this research. The amount of superheat present in the melt pool 

was found to be directly proportional to the weld bead angle. Increasing the amount of 

superheat can also result in non-conforming bead shapes. Thus, a narrow band of useful 

superheat exists within which the operation must be carried out. Additionally, the model 

has been applied to produce beads of both the desired weld bead angle and the aspect 

ratio using different substrate materials and sizes. In the future, this design tool can be 

developed for multi-layered deposition to examine the validity of this idea for multi-

layered tracks. 
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