
Scholars' Mine Scholars' Mine 

Doctoral Dissertations Student Theses and Dissertations 

Spring 2015 

Microstructure and geotechnical properties of St. Peter Microstructure and geotechnical properties of St. Peter 

sandstone in Clayton, Iowa sandstone in Clayton, Iowa 

Amir Hossein Bagherieh 

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations 

 Part of the Geological Engineering Commons, Geology Commons, and the Mining Engineering 

Commons 

Department: Mining and Nuclear Engineering Department: Mining and Nuclear Engineering 

Recommended Citation Recommended Citation 
Bagherieh, Amir Hossein, "Microstructure and geotechnical properties of St. Peter sandstone in Clayton, 
Iowa" (2015). Doctoral Dissertations. 2714. 
https://scholarsmine.mst.edu/doctoral_dissertations/2714 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/doctoral_dissertations
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/doctoral_dissertations?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2714&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1400?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2714&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2714&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1090?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2714&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1090?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2714&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/doctoral_dissertations/2714?utm_source=scholarsmine.mst.edu%2Fdoctoral_dissertations%2F2714&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


  

 

 

 

 

 

MICROSTRUCTURE AND GEOTECHNICAL PROPERTIES OF ST. PETER 

SANDSTONE IN CLAYTON, IOWA  

 

by 

 

  

AMIR HOSSEIN BAGHERIEH 

 

 

A DISSERTATION 

 

Presented to the Faculty of the Graduate School of the 

 

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY 

 

In Partial Fulfillment of the Requirements for the Degree 

 

 

DOCTOR OF PHILOSOPHY 

in 

MINING ENGINEERING 

 

 

2015 

Approved by 

Maochen Ge, Advisor 

Samuel Frimpong 

Kwame Awuah-Offei 

Greg Galecki 

Wan Yang 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2015 

AMIR HOSSSEIN BAGHERIEH  

All Rights Reserve



iii 

 

  

ABSTRACT 

 

The St. Peter Sandstone is significantly different from the minerals and rocks which 

have been studied extensively in mining. It is brittle and characterized by an unusually high 

friction angle. On the other hand it is friable, and it is nearly cohesionless. The scarcity of the 

ground control techniques for this particular mining environment has created many 

difficulties for mine operators. This research aims to establish a fundamental understanding 

of the basic mechanical and strength properties of the St. Peter Sandstone for engineering 

design and scientific research. The specific objectives are 1) characterizing the strength of the 

St. Peter Sandstone, and 2) elucidating the strength mechanics by scientific evidences. The 

study is essential for developing safe and reliable ground control techniques for mining under 

this sandstone condition. In this study, extensive conventional rock mechanics testing, as well 

as a detailed particle structure including optical and scanning electron microscopies studies 

was carried out on St. Peter Sandstone. An appropriate sample preparation technique for St. 

Peter Sandstone is proposed. The optimum specimen size for characterizing St. Peter 

Sandstone was determined. The mechanical behavior of St. Peter Sandstone was investigated 

under triaxial compressive condition. The results indicated that confining pressure will 

significantly increase the strength and change the mechanical behavior of St. Peter Sandstone 

from brittle to ductile. The particle structure of St. Peter Sandstone was studied in terms of 

porosity, particle size distribution, and density. It was demonstrated that the mechanical and 

strength properties of the St. Peter Sandstone are fundamentally governed by its particle 

structure. The systematic presence of Hertzian fractures on the St. Peter Sandstone particle 

structures were obtained, identified and demonstrated. The finding provides direct evidence 

to resolve outstanding issues regarding the depositional environment of the St. Peter 

Sandstone. It was indicated that Hertzian fractures were not the product of eolian action. The 

contact surface of St. Peter‘s sand grains was investigated. It was found that the majority of 

contact surfaces are smooth. Hence, the high friction angle of St. Peter Sandstone cannot be 

attributed to “penetrative surfaces” as hypothesized by locked sand theory. 
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NOMENCLATURE 

 

Symbol Description         

       σ                     normal stress 

       c                     cohesion 

       φ                     the angle of internal friction 

        τ                      shear stress  

       UCS                 Uniaxial Compressive strenght   

          n                    porosity             

         Vv                   volume of voids  

         V                  total volume of the sample  

         Vs                 Volume of solids  

        RAS               the rate of increase of the axial stress at failure       

        σa                             the axial stress at the failure  

        σo                             Uniaxial Compressive Strength  

        σc                    confining pressure           

       Dn                              particular screen size that n% material can pass  

       Cu                              Uniformity coefficient  

       Wsat                         the Weight of saturated sample  

       Wdry                the Weight of dry sample  

       γfluid                          the density of fluid            

            γw                  the density of water 

 

 

 



 

  

1. INTRODUCTION 

 

1.1. BACKGROUND 

Hydraulic fracturing, also known as fracking, is a technique that uses pressurized 

fluid to fracture rocks. Vast reserves of shale and tight gas across the United States have 

become commercially viable because of the advancement of this technique as well as 

horizontal drilling in recent years. This trend is dramatically changing the US energy 

landscape (Figure 1.1). Net imports of natural gas will decrease 44% by 2035 if this energy 

source is properly developed (US Energy Information Administration (EIA), 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The fluid used for hydraulic fracturing is a mixture of water, proppants, and 

chemicals. A proppant is a solid material, which can be naturally occurring sand grains. They 

Figure 1.1. Natural gas production (trillion cubic feet) (EIA, 2013) 
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can also be created with man-made ceramic materials. Natural sands are utilized in most 

cases because they are more economical. Viable proppants, must be durable, round, and high-

purity in quartz. Thus, sands that can be used for fracking are limited. In the United States, 

St. Peter sand exhibits the best characteristics for this purpose making it a major resource of 

frac sand. 

The demand for frac sand has increased rapidly in recent years (Figure 1.2), 

increasing the demand for sand at a phenomenal rate.  The Pattison Sand Company, located 

in Clayton, Iowa is a product of this sand rush. This company produces frac sand from both 

surface and underground operations. The underground mine is shallow, with an overburden 

between 45 and 90 m. The room-and-pillar mining method is utilized in this mine. The 

extraction ratio is approximately 64%. The average pillar size is 17 x 17 m2. 

 

1.2. GROUND CONTROL PROBLEMS ENCOUNTERED AT THE PATTISON 

MINE 

The mechanical properties of the St. Peter Sandstone are unique. It is very different 

from that of the conventional geological materials in mining industry, such as coal, potash, 

limestone, and granite. It is very brittle, characterized by an unusually high friction angle, and 

steeply curved failure envelopes. In contrast, it is also friable, possessing extremely low and, 

in most cases, zero cohesion. As a result, these sandstones are capable of supporting a 

considerable amount of load when undisturbed. However, they are very weak when 

disturbed. 

Although significant research has been done on the ground control and pillar design 

for coal and hard rock mines, as demonstrated in the literature (Obert et al., 1946;  Krauland 

and Soder 1987; Sjoberg ,1992),  the ground control for St. Peter Sandstone conditions has 

not received the same attention. The scarcity of ground control techniques for this particular 
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mining environment has created many difficulties for the mine operators. It has also created 

serious challenges for the government regulatory agencies. The Pattison mine has three 

outstanding ground control problems: 

• pinch-out failures 

• rock reinforcement techniques for the St. Peter sandstone condition, and  

• pillar design methods for the St. Peter sandstone condition. 

The term “pinch-out failure” is used at the Pattison Mine to describe a failure 

occurring at the intersections of roofs and pillars (Figure 1.3). The Mine Safety and Health 

Administration (MSHA) attributed this problem to overly stressed pillars and suggested that 

the pillar’s size be increased by 150–250%. Increasing the pillar’s size within this scale 

would jeopardize the mine’s profitability, and eventually make mining economically 

unfeasible.  

Another important problem facing the Pattison mine involves reinforcing the St. Peter 

Sandstone. Rock bolting has been widely adopted in the mining industry for the rock 

reinforcement purposes. The effect of this method on the St. Peter Sandstone is, however, 

limited.  Rock bolts and steel strips used to stabilize a pillar are illustrated in Figure 1.4. 

Unfortunately, this expensive method which would likely work for other types of pillars does 

not work for St. Peter Sandstone. 
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Figure 1.2. Total fracking sand production in the U.S. between 2006 and 2011(USGS 

Minerals Yearbook for silica (2006-2011). 

 

 

 

 
Figure 1.3. A pinch- out failure in the Pattison Mine 
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The pillar design methods presently available to the mining industry were developed 

for coal, salt, and hard rock mine conditions.  None of these methods are adequate for the 

condition that is uniquely associated with St. Peter Sandstone. An urgent issue for the 

sandstone industry is, therefore, developing an efficient and reliable pillar design method. 

 

 

 

 
Figure 1.4. Reinforcing a sandstone pillar with rockbolts and steel strips. 

 

 

  

A wide range of issues need to be addressed before these problems can be resolved. 

The major obstacle, however, is the lack of basic mechanical properties related to St. Peter 

Sandstone. For example, characterizing the strength of the St. Peter Sandstone, and   

identifying the major factors that control the basic mechanical behavior of the St. Peter 

Sandstone are of importance.  
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1.3. RESEARCH OBJECTIVE 

This research was conducted in an attempt to establish a fundamental understanding 

of the basic mechanical and strength properties of the St. Peter Sandstone for both 

engineering design and scientific research. Two specific goals were set: 

• Characterize the basic strength properties of St. Peter Sandstone 

• Elucidate the strength mechanics of the St. Peter Sandstone by experimental 

evidences. 

1.3.1. Characterizing the Basic Strength Properties for the St. Peter 

Sandstone. Four important tasks needed to be completed before the basic strength properties 

of St. Peter sandstone could be characterized:  

• develop a sample preparation method for St. Peter Sandstone 

• determine the optimum sample size needed to characterize the strength of  

             St. Peter Sandstone 

• identify the critical factors that affect St. Peter sandstone’s strength 

• develop a comprehensive strength assessment method 

As discussed earlier, St. Peter Sandstone is cohesionless, which makes it extremely 

friable. Conventional sample preparation procedures, such as those recommended by the 

International Society of Rock Mechanics (ISRM) (ISRM, 1981), American Society for 

Testing and Materials (ASTM) (ASTM, D7012-14) are difficult to apply. The major problem 

for those conventional methods is the disturbances, such as vibration and water, accompanied 

with these methods, which are excessive for the St. Peter Sandstone; even if they are 

negligible for conventional geological materials. An example is sample coring, which is 

practically impossible for the St. Peter Sandstone. Therefore, a suitable sample preparation 

procedure for the St. Peter Sandstone needs to be established. Developing a sample 
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preparation  method for St. Peter Sandstone makes it possible to compare the strength of it on 

a reliable basis.   

The strength of a geological material is not an abstract concept. It is closely 

associated with the sample preparation procedure and method. One of the critical factors is 

the change of strength with the sample size. In the other words, the strength of a geological 

material usually refers the strength associated with a particular size, which is chosen based on 

a number of criteria, including, reliability, repeatability, and practicality. Sample’s size 

becomes a particularly important issue for the St. Peter Sandstone, because of the friable 

nature of the St. Peter Sandstone and the difficulty to prepare the samples. An important task 

in assessing the strength of the St. Peter Sandstone is therefore to determine the optimum 

sample size. 

The strength of a rock material can be defined by different parameters. The most 

common approach is the uniaxial compressive strength. Although the uniaxial compressive 

strength is also an important index for the St. Peter Sandstone, it could be misleading if this 

index is used alone. As the strength of the St. Peter Sandstone is largely controlled by its 

particle structure, basic knowledge of the particle structure, as well as the engineering 

behavior under the triaxial test is essential in order to study the strength of the St. Peter 

Sandstone. The final objective on the strength study is to develop a new approach to 

characterize the strength of the St. Peter Sandstone, which is comprehensive and easy to use. 

1.3.2. Elucidating the strength mechanics of the St. Peter Sandstone by 

Experimental Evidences.  The theoretical problem that is discussed most extensively for 

the St. Peter Sandstone is the mechanics of the extremely high friction angle associated with 

the St. Peter Sandstone. A dominant view is that this extremely high friction angle is caused 

by the penetrative surface of the St. Peter sand particles (Dusseault and Morgenstern, 1979). 
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The essence of the underlying problem is the origin of the strength of the St. Peter Sandstone, 

which is not only critical for the strength study, but also related to a number of classical 

geological problems, including deposition environment for the St. Peter Sandstone and the 

origin of Hertzian fractures observed on the St. Peter Sandstone.    

The research on the strength mechanics of the St. Peter Sandstone involves both in-

depth theoretical studies and extensive laboratory work. The main objectives of this research 

for this particular aim is to provide the solid experimental evidences in the following areas: 

1) particle structures of the St. Peter sandstone, 2) characteristics of particle contact surfaces 

and their effect on sandstone strength, 3) the stress condition associated with the particle 

structure, and 4)  cause of high friction angle.  

 

1.4. DISSERTATION OUTLINE 

This dissertation includes seven chapters. Chapter 2 is a literature review on the 

related studies. The main objective of this chapter is to provide readers the background 

information of this research, the major findings and lessons learned from the past research, 

and the outstanding issues resulted from the previous researches.  

Chapter 3 discusses the uniaxial compressive strength of St. Peter Sandstone based on 

an extensive laboratory tests carried out in this study as well as the available data from the 

previous researches. The chapter is an introduction of the basic strength characteristics of the 

St. Peter Sandstone. The specific issues addressed in this chapter include methods of the 

sample preparation, large variations of the test result, sample size effect, and initial 

assessment of the impact of sand particles.   

The focus of Chapter 4 is the triaxial test carried out by this research and its 

implications on our understanding of the basic mechanical properties of the St. Peter 

Sandstone. The result of the triaxial test performed by this research is very consistent, which 
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convincingly confirms the extremely high frication angle associated with the St. Peter 

Sandstone. It shows that the strength of the St. Peter Sandstone is much higher and much 

more consistency under the triaxial test condition. Most importantly, it reveals the critical 

role of the particle size distribution on the triaxial strength.  

Chapters 5 and 6 are devoted to exploring the particle structure and how this structure 

affects the basic mechanical behavior of the St. Peter Sandstone. Chapter 5 covers the 

conventional methods, including density, porosity, and particle size distribution. There are 

two main objectives for the studies carried out in this chapter. The first one is to collect the 

basic information which allows us to characterize the particle structure quantitatively. The 

second one is to determine whether a close correlation exists between density, porosity and 

particle size distribution, which can then be used for the strength assessment.  

Chapter 6 covers the advanced microstructural study of the St. Peter Sandstone, 

which makes use of two special techniques: thin section and scanning electron microscope. 

The aim of this study is to elucidate the strength characteristics of the St. Peter Sandstone by 

microstructural evidence. This study also resolves two classical problems faced by the 

researchers regarding the origin and deposition environment of the St. Peter Sandstone. These 

two problems are the nature of the contact surface and the cause of Hertzian fractures 

(Johnson et al, 1989).  

Chapter 7 is the last chapter, which concludes this research. There are three parts to 

this chapter. The first one is a summary of the methodology regarding how to assess the basic 

mechanical properties of the St. Peter Sandstone, a comprehensive analysis of the research 

results presented in Chapter 3 through Chapter 6. The second part is a brief discussion on 

how to use the knowledge gained from this research for resolving three ground control 
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problems faced by the sandstone industry outlined in section 1.2. The last part is the future 

research problems. 
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2. LITERATURE REVIEW 

 

Arenaceous is a term derived from the “arena”,  a Latin word for sand.  This term was 

adopted by geologists to describe a sand deposit irrespective of its composition (Pettijohn et 

al, 1978, De Freitas, 1993). St. Peter Sandstone is a unique type of areneceous material that is 

at the borderline between sand and sandstone. Though many have questioned how to classify 

it (e.g. either sand or sandstone), geologists refer to St. Peter Sandstone as sandstone.  

Geotechnical engineers may classify it as sand, because it is almost cohesionless. This group 

of geological material is more dense than normal sands. It also possesses a higher internal 

friction than other soils and rocks (e.g. loose and dense sands). Standard sampling and 

sample preparation methods conventionally used for rock and soils are not usually applicable 

to them because of this material’s peculiar properties. Thus, the materials in the transitional 

zone between sand and Sandstone have received less attention than material within arenceous 

spectrum (Barton, 1993; Creswell, 1999).  

The geology and strength properties of St. Peter Sandstone are discussed in  Sections 

2.1 & 2.2 respectively. It’s followed by Section 2.3 that covers high friction angle of St. Peter 

sandstone and the related theory for it. 

 

2.1. THE GEOLOGY OF ST. PETER SANDSTONE  

Sardeson (1891) reported the first observations about St. Peter Sandstone and the 

reason for calling it St. Peter sandstone. St Peter Sandstone was first described by Captain 

Carver in 1766-1768. Carver wrote about a cave in a soft material that could be cut with 

knife. Long (1817) described St. Peter Sandstone as whitish-yellowish material that could be 

called sand (Sardeson, 1891). Owen (1847) first described geologically the St. Peter 

Sandstone, calling it St. Peter sandstone because of its exposure below Fort Snelling at the St. 
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Peter’s River. Although the name of St. Peter river changed to the Minnesota River the name 

of St. Peter sandstone remained unchanged.  

Research on the geology of St. Peter Sandstone was undertaken in  1920s, and 1930s 

(Dake , 1921; Lamar, 1928; Gilies, 1930;  Thiel, 1935).   

St. Peter Sandstone is an arenaceous, ortho-quartzitic, sublittoral cratonic sheet sand 

of Middle Ordovician age.  It covers a large area (Figure 2.1), 576,000 km2, in North 

America that includes Minnesota, Wisconsin, Iowa, Missouri, and Arkansas.  

 

 

 

 
Figure 2.1. The brown  area shows the extent of St. Peter sandstone in  

US(http://mostlymaps.wordpress.com/ ) 
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The thickness of this formation is variable from a very thin layer in eastern Wisconsin 

to 500 ft at Joliet, Illinois. St Peter Sandstone is only exposed in the upper Mississippi River 

valley (Thiel, 1935).   

Thiel (1935) conducted a comprehensive study on the sedimentology of St. Peter 

Sandstone. His results indicated that St. Peter sandstone is extremely well sorted and its 

particle size  distributed in a narrow range. In many samples of St. Peter Sandstone, nearly  

ninety percent of particle size  fall between the range of 125 and 250 micron. 

Kamb (1932) ran porosity tests on St. Peter sandstone collected from Twin- cities, 

Minnesota. His results indicated that the porosity of St. Peter sandstone is in the range of 

24.6% to 31.1%, with the average of 28.3%. Dusseault and Morgenstern (1979) conducted 

porosity measurement test on St. Peter sandstone samples of Minnesota. Their results 

indicated that St.Peter Sandstone  possess 27.0% porosity as an average. 

Thiel (1935) conducted chemical analyses on St. Peter sandstone samples taken from 

different states.  His results indicated that St. Peter formation is a pure silica sand. 

Quartz constitutes approximately ninety nine percent of St. Peter sandstone. In other 

words, for all practical purposes the formation can be considered monomineralic (Payne, 

1967). 

The grains of St. Peter sandstone show different degrees of rounding. In general, the 

larger grains are more rounded than smaller grains. Very few of rounded grains are spherical. 

However, many grains are oval, egg-shaped, kidney-shaped, spindle-shaped and conical 

(Thiel, 1935).  

St. Peter Sandstone is uncemented in most parts. In this dissertation,  the name St. 

Peter Sandsone is used for uncemnted part, and cemented St. Peter Sandstone is used for 

Cemented part. 
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Due to the homogeneous character of St. Peter sandstone, bedding is conspicuous. 

However, upon close examination, the bedding planes may be observed (Payne, 1967). 

 

2.1.1. Depositional Environment of St. Peter Sandstone. An environment in 

which sediments are deposited is called depositional environment or sedimentary 

environment. Depositional environments are classified  as follows (Boggs, 2006) 

• Continental (Terrestial) environments ( e.g. fluvial, eolian (windblown 

sediments), lacustrine, glacial) 

• Marginal- Marine Environments ( e.g. deltaic, beach) 

• Marine Environments (e.g. shallow marine clastic, deep marine) 

Probably one of the most controversial subjects regarding St. Peter sandstone is its 

depositional environment.  There are two views about the depositional environment of St. 

Peter sandstone. Eolian and/or marine environment are considered as possible depositional 

environment by geologists.  

Winfree (1983) reported that Berkey (1906) is one who believed that St. Peter 

sandstone deposited under eolian environment. Twenhofel and Thwaites (1919) favored a 

non-marine depositional  environment for St. Peter sandstone.  Round grains, sorting and 

frosting of grains were used as evidence for eolian depositional environment (Winfree, 1983). 

Dake (1921), however, rejected eolian depositional environment for St. Peter sandstone.  He 

noted that the texture was probably inherited from the origin.  He also noted that St. Peter 

sandstone lacks large scale cross bedding that is typical for eolian sands.   He  favored a 

marine depositional environment for St. Peter sandstone based upon fossils and burrows.  

Dapple (1955) suggested shallow marine depositional environment for St. Peter sandstone 

based on regional stratigraphy of Wisconsin. Mazzullo and Ehrlich (1983) employed a 
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combination of Fourier grain-shape analysis and scanning electron microscopy to analyze St. 

Peter Sandstone in southeastern Minnesota. Their results indicated that there are two grain-

roundness types exist in various proportions in all the samples studied: one of them extremely 

smooth and well-rounded grains, whereas the second is a population of irregular, angular 

grains. Using Scanning electron microscope examination of quartz surface textures, they 

stated that the smooth and well rounded type was created during a stage of eolian transport 

and abrasion, they also stated that the second grain-roundness type is relatively unabraded 

and was probably transported in less abrasive fluvial environments. Amral and Pryor (1977) 

studied the environment of deposition for St. Peter Sandstone in southwestern Wisconsin. 

They concluded that grain-size parameters of the St. Peter Sandstone bear closer resemblance 

to modern shallow marine shelf sands than to either eolian or beach sediments. Winfree 

(1983) studied  the depositional environment of the St. Peter sandstone of upper Midwest.  

He used dish-shaped concavities on St. Peter grains and broken cleavage plates as evidences 

for supporting eolian depositional environment. However, quartz has no cleavage plane. 

Those “cleavage plates” could be formed  during sample preparation. Johnson et al (1989) 

used partial Hertzian cracks observed on St. Peter sandstone grains as evidence for  eolian 

depostional environment. However, their observation on Hertizan fractures on St. Peter 

sandstone grains are limited. Moreover, they did not observe the stress trajectory associated 

with St. Peter Sandstone grains. 

 

2.2. PREVIOUS STRENGTH STUDIES OF ST. PETER SANDSTONE 

Although extensive studies have been conducted on both ground control and 

geotechnical properties  of coal, hard rock (e.g. Obert et al., 1946; Krauland and Soder 1987; 

Sjoberg, 1992),  no research was conducted on St. Peter Sandstone from ground control point 

of view, to the knowledge of researcher.  
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For over a century, St. Peter sandstone in Twin City, Minnesota have been used in 

different civil engineering projects. The majority of bridges crossing the Mississippi 

River in Twin City area are in part supported by St. Peter Sandstone (Payne, 1967). Three 

dams are located on St. Peter sandstone. St. Peter Sandstone has been used as a 

foundation in different parts of Twin City. A number of sewer tunnels were excavated in 

St. Peter Sandstone. A few strength tests were performed in the course of the 

investigation for these projects. In the 1970’s, researchers from University of Minnesota 

conducted research on St. Peter Sandstone because of their interest of construction of 

underground parking facilities at the University of Minnesota. The results of these studies 

are discussed in Sections 2.2.1 and 2.2.2. 

2.2.1. Uniaxial Compressive Strength Tests. Payne (1967) compiled engineering 

studies conducted on St. Peter Sandstone prior to 1967.  

He noted that Schwartz (1939) was the first researcher to perform uniaxial 

compressive strength (UCS) tests on  the St. Peter Sandstone. He performed two UCS tests 

on wet samples, and one UCS test on a dry sample. Twin city Sanitary conducted one test 

during site investigation on Pigs Eye Lake site (Payne, 1967). Studies on mechanical 

properties of St. Peter Sandstone continued in  the 1970s because of  an interest in the design 

of an underground space in St. Peter Sandstone (Sterling, 1977; Petersen; 1978). Petersen 

(1978) reports that two sets of UCS tests were performed at the university of Minnesota. In 

the first set, a UCS test was performed on ten cubic samples, which were prepared using 

blocks taken from the Mississippi River channel outcrops near the university campus. The 

second set of tests, however, were performed in-situ during excavation of the underground 

test room (Table 3.4). Petersen (1978) conducted UCS tests on samples with dimentsion the 

range of 13 to 305 mm in lenght. He did not investigate the effect of specimens size on 
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uniaxial compressive strength of St. Peter sandstone. Dittes and Labuz (2002) conducted 

UCS tests on dry specimens with diameter 50-100 mm. They also performed in-situ 

pressuremeter tests; the result of which indicated slightly lower value for Young’s modulus. 

Previous research on mechanical properties of St. Peter sandstone were limited and 

they were not able to explain the variability in mechanical properties of St. Peter sandstone. 

In addition, the modes of failure of specimens after the tests were not studied. Furthermore, 

an appropriate sample preparation for St. Peter Sandstone was not developed. Moreover, 

previous studies  did not investigate the optimum sample size for characterizing the strength 

of St. Peter Sandstone. 

2.2.2. Triaxial Compressive Strength Tests. Triaxial compression tests were 

performed on St. Peter Sandstone. The aim of these tests was to determine the bearing 

capacity of St. Peter Sandstone for foundations. Watson (1938) conducted triaxial 

compression test on St. Peter Sandstone of Twin Cities, Minnesota for Corps of Engineer. 

His results indicated high friction angle and the lack of cohesion. Payne (1967) reported that 

Victor Gruen Associates (1961) also ran several triaxial compressive tests on intact St. Peter 

Sandstone. However, there is no information on the method which was used for their tests. 

Payne (1967) reported triaxial compression tests on three sets of test samples for site 

examination of the new Dayton‘s department store in St. Paul. The results of their test 

revealed high angles of friction ranging from 48O to 60O. However, Payne (1967) did not 

report with regard to degree of cementation for specimens tested. The specimens were more 

likely collected from cemented part of the St. Peter Sandstone. The triaxial tests on St. Peter 

Sandstone was also conducted by Labuz et al. (1998). Their results indicated high friction 

angle and lack of cohesion. Dittes and Labuz (2002) performed in-situ pressuremeter tests on 

wet St. Peter Sandstone. The friction angle obtained from in situ tests were within the range 
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measured in  the laboratory. These research did not investigate the cause of unique shear 

strength characteristics of St. Peter sandstone (e.g., high friction angle, being coheisonless).   

Although the results of previous studies provide useful information regarding the 

shear strength properties of St. Peter sandstone, they did not investigate the effect of 

confining stress on axial stress-axial strain behavior of this type of geological material. 

 

2.3. HIGH FRICTION ANGLE OF ST. PETER SANDSTONE AND FRICTION 

ANGLE 

As it was mentioned in Section 2.2, previous triaxial tests indicated that the St. Peter 

Sandstone is cohesionless and possess very high friction angle. Mohr- Coulomb  failure 

criterion is discussed in Section 2.3.1. Furthermore,  the existing theories for high friction 

angle of St. Peter Sandstone is discussed in Section 2.3.2. 

2.3.1. Mohr- Coulomb Failure Criterion. Mohr (1900) presented  a theory in which 

the failure of material is considered as combination of normal stress and shear stress.  The 

relation between normal stress and shear strength can be expressed as 

                                                                                                                         (2.1) 

Where  is shear strength 

  is noral stress 

The failure envelope defined by equation (2.1) is not necessarily linear.  However, in most 

cases, the shear stress on failure plane is considered as a linear function of normal stress 

(Coulomb,1776).  This function is written as follows 

 

Where c is cohesion  

  is the angle of internal friction  

 is normal stress 
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  is shear strength 

Eq 2.2 is knowns as Mohr- Coulomb failure criterion. 

Figure 2.2 reveals the shear stress versus normal stress based on Mohr- Coulomb 

failure criterion. The shear strength of geological material when no normal stress is applied is 

cohesion. The slope of Mohr- Coulomb failure envelope is the angle of internal friction.  

 

 

 

 

Figure 2.2. Mohr-Coulomb failure envelope 

 

 

 

Typical values of the angle of internal friction is given in appendix B. As mentioned 

in section 1.2, the friction angle for the St. Peter sandstone typically ranges from 57˚ to 63˚. 

which is 15˚ to 20˚ higher than the highest friction angle we know for geotechnical materials.  

This raises a fundamental question regarding the cause of this unique behavior in St. Peter 

Sandstone. 

2.3.2. Existing Theories For High Friction Angle of St. Peter Sandstone. In the 

1970s, the research was carried out on geotechnical properties of the oil rich sandstone 
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comprising Athabasca tar sands because of the growing interest in this giant energy resource 

(Miligan; 1976; Dusseault, 1977; Dusseault and Morgenstern, 1979). Dusseault and 

Morgenstern (1979) introduced the term “locked sands” for a group of geological material. 

Locked sands are cohesionless with high friction angle. 

Dusseault and Morgenstern (1979) suggested that “penetrative contact texture” of 

these material observed in optical microscopy is responsible for high friction angle of this 

group of geological material. Cresswell (1999) proposed a conceptualized model for 

locked sand. He hypothesized that grains of locked sands are locked together by 

interlocking asperities.  This model is not applicable to St. Peter Sandstone because the 

grains of St. Peter Sandstone are mostly rounded and those “asperites” are not significant 

enough to cause such a high friction angle. Furthermore, Dusseault and Morgenstern 

(1979) also mentioned that the interlocked texture of St. Peter Sandstone is subtle. Hence, 

“penetrative contact surface” is not significant for St. Peter Sandstone. Therefore, high 

friction angle of the St. Peter Sandstone is less likely caused by “penetrative contact 

surface”. This study reveals that the cause of the extremely high friction angle is 

primarily due to the particle structure of the St. Peter Sandstone.    
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3. UNIAXIAL COMPRESSIVE STRENGTH OF ST. PETER SANDSTONE 

 

3.1. INTRODUCTION 

The uniaxial compressive strength is a basic parameter for characterizing the strength 

of geological materials and used extensively for a variety of engineering design purposes in 

mining, civil, and geotechnical engineering. St. Peter Sandstone is a unique geological 

material that lies in a transition zone between soils and rocks. It resembles typical soils for its 

particle structure. Its behavior, however, is similar to rocks for its elastic property.  

The two most distinctive properties of the St. Peter Sandstone are the extremely high 

friction angle (within a range of 57˚ - 70˚), and the cohesionless particle structure. As a result 

of these unique properties, the strength characteristics of the St. Peter Sandstone differ 

significantly from other kinds of rocks extensively studied in mining, civil and geotechnical 

engineering.  

This chapter looks into key issues, which are particularly relevant to the St. Peter 

Sandstone. The first one is the sampling technique. A unique problem faced by  studies 

examining the St. Peter Sandstone is the severe impact of the disturbance caused by the 

standard sampling techniques. Therefore, minimizing the disturbance caused by sampling 

techniques and procedures is of particular importance for determining the strength of the St. 

Peter Sandstone. It is followed by analyzing the strength characteristics of the uniaxial 

compressive strength for St. Peter Sandstone. First, the failure mechanics will be discussed in 

terms of the laboratory test result, the field observations, and theoretical considerations. It is 

shown that the failure mechanics are fundamentally governed by the basic mechanical 

properties of the St. Peter Sandstone.  

A factor that has a profound impact on the test result of the uniaxial strength of the 

St. Peter Sandstone is the size of specimens. The uniaxial compressive strength is not an 
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abstract concept. It is defined with the associated test condition. Specimen size is one of 

them. In the course of this study, the size effect was studied extensively based on both our 

test results and the results from previous research. As a result of this study, the optimum 

specimen size was identified. Following the discussion of the size effect, the shape effect of 

test specimen will be briefly discussed. One of the most important achievements of this 

project is the demonstration that the strength of the St. Peter Sandstone is fundamentally 

governed by its particle structure. This study was begun with the uniaxial compressive test. 

However, since a comprehensive and in-depth discussion on this issue requires the 

knowledge of the triaxial test, the full discussion will be presented in the Chapter 4.  

The elastic properties, namely, Young’s modulus and Poisson’s ratio, will also be 

discussed in this chapter as these two important parameters are conventionally obtained from 

the uniaxial compressive tests. The discussion will be based on the results from this 

investigation, as well as those of the previous research. The last topic to be discussed in this 

chapter is the strength of the St. Peter Sandstone with cementation. 

 

3.2. SAMPLE PREPARATION 

A particular problem encountered in St. Peter Sandstone research is the difficulty to 

prepare cylindrical specimens. Cylindrical specimens are conventionally prepared by coring, 

using this technique. However, it is almost impossible for the St. Peter Sandstone. The only 

successful attempt was an on-site investigation where a NX diamond core barrel was used in 

conjunction with a moderately dense drilling mud (Payne, 1967). Early researchers also tried 

unconventional methods for cylindrical samples, such as split tube and Shelby tube samplers, 

and none of them were successful (Payne, 1967).  

The results of this study also show that coring uncemented St. Peter Sandstone is 

virtually impossible. At the Pattison mine site, Clayton, Iowa, where this research was 
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conducted, the cumulative drilling length in the St. Peter formation for the geological 

prospection is over 400 meters and no single core piece utilizable for the uniaxial test was 

obtained.   

Coring cylindrical samples from St. Peter sandstone blocks was also tried at the rock 

mechanics laboratory, Missouri University of Science and Technology, and it failed 

miserably. Figure 3.1 shows an example of the failed attempts.  

 

 

 

 
Figure 3.1. An unsuccessful coring operation for St. Peter sandstone 

 

 

 

In the picture the core barrel was just lifted from the cored sample. As it can be seen, 

the sample was badly damaged and by no means could be used for any testing purposes. The 

fragile nature of coring St. Peter sandstone is also evident from the reason that stopped this 

coring process: the sample block was broken into two pieces during the operation. One piece 
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of this broken block can be seen on the left side of the picture.  The best sample from our 

coring operation is a disk with the thickness less than 25 mm (Figure 3.2).   

 

 

 

 
Figure 3.2. The best sample obtained from the coring operation  

     (a disk with the thickness less than 25mm.) 

 

 

 
The difficulty encountered in obtaining cylindrical specimens is not just operational; 

it is much more fundamental. The underlying problem revealed by this difficulty is the 

incompatibility of the material property of the St. Peter Sandstone and the standard sample 

preparing practice that is recommended by ASTM (ASTM, D7012-14) and ISRM (1981), 

and closely followed by the engineering community.  

A practice adopted by St. Peter Sandstone researchers from early days (Schwartz, 

1939) is to use cubic or rectangular type of specimens. This practice is undoubtedly an 

important and necessary step for the St. Peter Sandstone research. It is, however, important to 

note that this step alone is not enough. In order to minimize the disturbance caused by the 



25 

 

conventional sampling techniques, a close attention must also be paid to cutting and grinding 

operations.   

Various handheld and small table saws were utilized for cutting operations in this 

investigation. Handheld saws, including both powered and non-powered, were used primarily 

for cutting sand blocks (Figure 3.3). There are two advantages to use handheld saws. First, 

the disturbance is significantly less than those caused by large blade saws that are 

conventionally used for this purpose. Secondly, handheld saws are flexible and easy to 

handle, which is particularly important when the sample block is irregular and the required 

cutting pattern is complex. 

Small table saws were also utilized in this investigation. Table saws can be either a 

blade saw or a chain saw. Table saws were mainly used for shaping the loading ends of 

specimens. For the uniaxial compressive test, the loading ends should be parallel and smooth, 

which are conventionally achieved by grinding operations. For the St. Peter Sandstone 

specimens, grinding is a much more challenging operation, which may not produce a 

consistent result. Because of this the cutting operation by table saws is critical, and the 

quality of the specimen ends prepared by this operation must be of a high quality. Figure 3.4 

shows a table saw operation. 

In addition to handheld and small table saws, water jet was also tested for trimming 

specimens from a sandstone block (Figure 3.5). A distinct advantage of the hydraulic cutter is 

that it causes almost no vibration, and as a result, the damage to the sample caused by cutting 

is minimum. The problems are the complicated operating procedure and the need for trained 

and skilled operators.   
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Figure 3.3. Processing a sandstone block by a hacksaw 

 

 

 

Grinding is a difficult operation for the St. Peter Sandstone. There are two particular 

problems. The first one is the stress concentration caused by the grabbing device that is 

conventionally used to hold specimens during the grinding operation. Our solution to this 

problem is to use several steel blocks to hold the specimen in place as shown in Figure 3.6. In 

the figure, the specimen was first confined by two L shaped steel blocks (white), and this 

arrangement was further reinforced in the longitudinal direction by two large steel blocks. 

The other problem is the surface chipping by grinding wheels, that is, the surface under 

grinding can be easily chipped by the grinding wheel even with a minimum feeding. Because 

of these problems, the function of grinding for the St. Peter Sandstone is severely limited. 
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Figure 3.4. Shaping specimen ends by a table saw. 

 

 

 

Serious disturbance to specimens may also occur prior to the laboratory work at the 

stage when sample blocks were formed and collected. For instance, sample blocks may 

contain fractures caused by blast vibrations during a blasting operation. Therefore, care has to 

be taken during the process of collecting sample blocks because of very friable condition of 

St. Peter Sandstone. Sample blocks taken from the field should be carefully inspected to 

ensure that they are free of major flaws and visible fractures.  

The other important factor that has to be considered during the sample collection and 

preparation stages is the size of specimens. An important finding made in this investigation is 

the optimum specimen size for the uniaxial compressive test for the St. Peter Sandstone, 

which is 51 mm. Hence, an important consideration during the sample block collection stage 

is whether the block under the inspection is suitable for producing 51 mm specimens.  
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Figure 3.5. Trimming sand blocks by hydraulic cutter. 

 

 

 

Particle structure is the other important factor in t of St. Peter Sandstone’s strength. 

St. Peter Sandstone ‘s strength is fundamentally governed by its particle structure. The 

particle structure of St. Peter sandstone can be characterized by either particle size 

distributions or porosity. For instance, the porosity for the St. Peter Sandstone varies from 

24% to 31%. The results of this study show that the specimens with these porosities will 

show very different strength characteristics. For this reason, it is important to group 

specimens and to document the origin of each group so that the strength data can be lined 

directly to the sandstone structure. This is important not only for a general understanding of 

the strength variation of the St. Peter Sandstone, but also for how to apply the strength data 

for specific engineering problems.  
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Figure 3.6. Grinding a St. Peter sandstone specimen 

 

 

 

In conclusion, the sampling process for the St. Peter Sandstone is governed by the 

special properties of the St. Peter Sandstone, which is significantly different from the 

standard methods recommended by (ASTM, D7012-14) and ISRM (1981). There are three 

outstanding issues for preparing and processing the St. Peter Sandstone specimens, which are 

minimizing the disturbance by the sampling technique, using the optimum specimen size, and 

data management for linking strength and particle structure data.  

First, it is extremely important to note that the St. Peter Sandstone is extremely 

sensitive to the vibrations generated by the mechanical processing techniques because of the 

cohesionless property of the St. Peter Sandstone. The first principle for preparing the St. 

Peter Sandstone specimen is therefore to minimize the disturbance caused by the processing 

techniques. Hence, coring should be excluded. Furthermore, cutting and grinding operations 

should be carried out with a great caution as discussed earlier. Severe disturbances may also 

occur at the stage when the sample blocks are formed and collected. Therefore, the sample 

blocks should be carefully inspected to avoid major flaws and visible fractures before they 
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are brought back to the laboratory.  

The second one is the specimen size.  The optimum size that will yield most stable 

and representative values for the St. Peter sandstone is 51 mm. Hence, 51 mm or similar size 

of specimens should be used if possible. ASTM specifies the optimum core diameter as 54 

mm. The results of this study show that the strength of the St. Peter Sandstone will be 

seriously underestimated if a size significantly smaller than 51mm is used.  

As discussed earlier, the strength of the St. Peter Sandstone is fundamentally 

governed by its particle structure. It is therefore important to link the strength data to the data 

on particle structures. This requires a special data management effort: specimens from the 

same location or even the same block should be grouped and documented so that the strength 

data for these specimens can be analyzed in terms of the associated particle structure. This 

information is critical for both theoretical studies and practical applications. 

 

3.3. TEST RESULT AND FAILURE MODE 

A total of 95 uniaxial compressive tests were carried out during this investigation. All 

samples were originally collected from the Pattison mine site, Clayton, Iowa, and prepared in 

the rock mechanics laboratory at Missouri S&T according to the method discussed in the 

previous section. Part of these specimens is shown in Figure 3.7. Detailed information of 

these test specimens is given in Appendix A.  

The tests for all 95 specimens were successful and the results are summarized in 

Table 3.1. There are six sample size groups, which are 12, 25, 38, 51, 76, and 102 mm. The 

adoption of these size groups is to facilitate the study of the sample size effect.  
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s  

Figure 3.7. Specimens ready for uniaxial compressive test 
 

 

 

Table 3.1. Laboratory Testing results for Uniaxial Compressive Strength 
Nominal 

Size(mm) 
Individual Results (MPa) Mean (MPa) 

Standard 

Deviation(MPa) 

12 

   0.10   0.17    0.23    0.24    0.31    0.43    0.50    0.81 

   0.81   0.87    0.95    1.03    1.12    1.22    1.29    1.30 

   1.43   1.45    2.03    2.06    2.12    5.38 

1.18 1.12 

25 

   0.24   0.55    0.71    0.72    0.82    1.22    1.31    1.33       

   1.78   1.83    1.95    2.23    2.31    2.90    3.79    4.22   

   4.98   5.04    6.06    6.36    7.27   11.78 

3.16 2.83 

38 

   0.82   0.82    0.93    2.02    2.43      2.48    2.76  2.81   

   2.91   3.33    3.74    4.37    4.60      4.61    4.95  5.38   

   6.59   7.22    8.13    8.93    9.18    15.02 

4.73 3.39 

51 

   1.80   2.13    2.20    3.00    3.25      3.43    3.50  3.60   

   3.66   3.81    3.81    4.14    4.21      4.37    5.32  7.00   

   8.69   8.95  10.63  12.85  21.99    24.55 

6.68 6.10 

76    1.53   1.84    2.83    5.25   17.67 5.82 6.78 

102    0.95   4.36     2.65 2.41 

 

 

 

There are two distinctive features that can be immediately observed from the test 

results. The first one is the large variation of the strength data. The uniaxial compressive 

strength varies from 0.1 to 24.55 MPa and the standard deviation for each size group is at the 

same order of the associated mean. The large variation is not a surprising feature for the St. 
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Peter Sandstone as it also characterizes the results from the previous studies (Payne, 1967; 

Petersen, 1978). 

The large variation is due to many reasons, and the major ones are the friable nature 

of the rock because of the cohesiveless property, sample size, sample shape, and sand particle 

structure. An important goal of this investigation is to establish a better understanding of the 

mechanics of these factors so that the uniaxial compressive strength can be determined more 

reliably. 

The other distinctive feature of the test result is the failure mode. The failure mode 

for the St. Peter Sandstone is very different from those exhibited by conventional geological 

materials. Six tested specimens are presented in Figure 3.8 for illustrating the main features 

of the failure mode that is commonly observed for the St. Peter Sandstone. 

There are two prominent failure formations for the St. Peter sandstone: vertical 

splitting and steeply dipped shearing. Figure 3.8a is a typical example of vertical splitting. 

Vertical splitting can also be observed in Figures 3.8c and 3.8d. In Figure 3.8c, vertical 

splitting was developed with steeply dipped shearing, showing a compound formation. In 

Figure 3.8c, vertical splitting is shown by the fact that the remaining pieces are all broken 

vertically. Vertical splitting is largely due to the cohesionless property of the St. Peter 

sandstone, which makes specimens extremely vulnerable when they have to expand 

horizontally due to the compression in the vertical direction. Although vertical splitting is 

also observed for other geological materials, it is not a dominant failure formation and is 

mostly caused by local anomalies.  

Steeply dipping shearing is the dominant failure formation for the St. Peter Sandstone 

observed from test results. Figures 3.8b, 3.8c, 3.8d, and 3.8e are the examples of this failure 

formation. As it can be seen from these examples, the shearing planes are very steep, ranging 
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from 70˚ to 80˚. These very steep failure planes are the confirmation of the unusually high 

friction angle, in the range of 57˚-63˚, reported for the St. Peter sandstone (Watson 1938; 

Corps of Engineers, 1958; Labuz et al., 1998; Dittes and Labuz, 2002). According to the 

Mohr-Column failure criterion, the angle of failure planes (measured from the horizontal 

plane) under the condition of the uniaxial compressive test is 45 + φ/2, where φ is a friction 

angle (Obert and Duvell, 1967). If we take an average friction angle of 60˚, the angle of these 

failure planes predicted by the Mohr-Column failure criterion is 75˚, which is exactly what 

was observed. It is very interesting to note that joints in the St. Peter Sandstone formation are 

also steeply oriented.   

The other important feature of the St. Peter Sandstone is its irregular pattern of failure 

locations. For most geological materials, there usually exists a pattern. As an example, some 

Indiana limestone specimens tested by students at the Missouri University of Science and 

Technology for their laboratory studies are shown in Figure 3.9. It is obvious from the figure 

that there is a clearly defined pattern: fractures start from the edge of one end and extend to 

the other end following the angle defined by the Mohr-Column criterion. 

For the St. Peter Sandstone, it appears that fractures can start at any location. In 

Figure 3.8a, vertical splitting occurred at a corner. In Figures 3.8b and 3.8c, a sharp wedge, 

formed by two steep shearing surfaces, developed in the middle of the specimen. Figures 

3.8d and 3.8e indicate failure planes developed across the specimens. Figure 3.8d reveals a 

complex combination of vertical splitting and steeply dipped shearing. Figure 3.8e shows 

steeply dipped shearing is a dominant failure formation. It was hypothesized that irregular 

pattern reflects the friable nature of the St. Peter Sandstone caused by its cohesionless 

property.   
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Figure 3.8. Failure modes observed from the uniaxial compressive  

tests of St. Peter Sandstone specimens 

 
a) b) 

c) d) 

f) e) 
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Figure 3.9. Failure mode associated with Indiana limestone 

 

 

 

Failures for the St. Peter Sandstone specimens are much more sensitive to local 

conditions. Therefore, failures are most likely to start at the locations with local anomalies or 

preexisted fractures. This is also an important reason responsible for the large variation of the 

uniaxial compressive strength. 

In summary, the characteristics of the failure mode are fundamentally governed by 

the basic properties of the St. Peter Sandstone. Vertical splitting is a result of the cohesionless 

property. However, steeply dipping shearing is caused by the high friction angle associated 

with the St. Peter Sandstone. Irregular failure pattern is a reflection of the high sensitivity to 

local weaknesses for the test condition.  

Failure characteristics provide direct evidence on the engineering behavior of the St. 

Peter Sandstone. Vertical splitting and irregular failure pattern explain in part the large 

strength variation associated with the St. Peter Sandstone; and steeply dipper shearing 
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confirms the high friction angle of the St. Peter Sandstone determined by other laboratory 

methods. 

 

3.4. SAMPLE SIZE EFFECT 

Size effect refers to the impact of the specimen size on the strength obtained from the 

test. This section discusses the size effect exhibited for the St. Peter Sandstone and the 

optimum specimen size for the uniaxial compressive test for the St. Peter Sandstone. 

3.4.1. Typical Specimen Size Effect for Geological Materials. A general trend for 

most rock materials is that the strength decreases with the increase of the specimen size. 

Figure 3.10 shows this effect for iron, diorite, and coal (Bieniawski, 1984). The underlying 

mechanics for this trend is that the potential for a larger rock block to contain defects or 

fractures, which may significantly reduce the strength, is much higher than a smaller block. 

In rock mechanics, this phenomenon is also known as the scaling effect.  

 

 

 

 
Figure 3.10. Variation of rock strength with specimen size (Bieniawski, 1984) 
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3.4.2. Size effect for St. Peter sandstone determined from this investigation. The 

uniaxial compressive strength of the St. Peter sandstone is also seriously affected by the 

specimen size despite the large variation (Table 3.1). Figure 3.11 further illustrates this 

effect. It is clear from the figure that the mean strength increases gradually with the sample 

size until it reaches its peak at the sample size of 51 mm. The strength then begin to decrease 

gradually.       

The size effect depicted in Figure 3.11 for the St. Peter Sandstone differs 

significantly from the size effect shown in Figure 3.10. The scaling effect that is 

responsible for the size effect shown in Figure 3.10 is undoubtedly an important factor 

that also affects the strength of the St. Peter Sandstone. The fact that the strength 

decreases for the large samples as observed in this study is most likely due to this reason. 

For the St. Peter Sandstone, however, this is not the only mechanics which causes the size 

effect. The other one, which is much more critical with regard to the St. Peter Sandstone, 

is the disturbance caused by the sample preparation process. 

 

 

 

 

Figure 3.11. Effect of specimen size on the UCS of St. Peter Sandstone 
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As discussed in section 3.1, one of the most important factors that can 

significantly alter the test result is the disturbance caused by the sampling techniques. 

The vibration caused by cutting and grinding operations is the primary source of the 

disturbance. As the St. Peter Sandstone is cohesionless, it is extremely vulnerable to any 

vibrations, especially for small specimens. This is why the strength for very small 

specimens, such as 13 and 25 mm specimens, is significantly lower. 

3.4.3. Size Effect for St. Peter Sandstone Observed from Previous Investigations. 

The size effect for the St. Peter Sandstone, as determined from this investigation, can also be 

observed from and confirmed by the previous studies. The studies carried out by Petersen 

(1978), Sterling (1978), and Yardley (1978) are particularly significant in this regard.  

Howere, they did not analyze their results in terms of size and shape effects. All these studies 

were related to the underground development in St. Peter formation in Minneapolis/St. Paul 

area.  

Yardley (1978) studied the uniaxial compressive strength for a set of 10 specimens. 

The size of these specimens were between 25 and 57 mm. 

 The  results are listed in Table 3.2. It is apparent from the table that the strength 

increases with the increase of the specimen size. This trend is consistent with the trend 

observed from our test result. 

The study carried out by Petersen (1978) was to determine the strength that could be used for 

the pillar design purpose. Petersen performed 33 tests with the sample’s size varying from 13 

to 305 mm. The result is summarized in Table 3.3.  

To demonstrate the size effect, Petersen’s test results are also plotted in Figure 12. 

It is evident from the figure that Petersen’s data shows a similar trend as observed in our 

tests with the strength peaked at the specimen size of 51m. 
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Table 3.2. Uniaxial compressive strength (Yardley, 1978) 

Size (mm.) Equivalent* 

Width(mm) 
UCS(MPa) 

Width Length 

25 25 25 2.14 

32 32 32 1.93 

51 38 44 2.34 

51 44 48 2.83   3.03 

64 38 48 3.31 

60 51 49 3.93 

64 51 55 3.86 

57 51 57 3.72 

64 51 54 3.52 

* Equivalent width is the square root of the product of 

                         specimen width and length. 
 

 

 

Table 3.3. Uniaxial Compressive Strength of St. Peter sandstone  

(Petersen, 1978) 

Nominal 

Size(mm) 

Specimen’s 

shape 
UCS (MPa) 

Mean 

(MPa) 

Standard 

Deviation 

(MPa) 

13 Cube  1.03  1.28  1.38  1.59  2.00  2.07  2.28 1.66 0.46 

25 Cube  1.45  1.59  1.59  1.79  2.38     1.76 0.37 

38 Cube  2.34  2.48  2.55  2.55  2.96  3.03 2.65 0.28 

51 Cube  3.38  4.21   4.76  4.96 4.33 0.71 

51 Cylinder 
2.86  3.14  3.48  3.69  3.96  4.07  4.31 5.69     

6.69 
4.21 0.52 

305 Cylinder  3.59  3.79 3.69 0.15 

 

 

 

In addition to the general trend, the study by Petersen (1978) was also unique for two 

specific features. The first one is that the 51 mm size for specimens includes both cubical and 

cylindrical shapes. It is very interesting to note that the mean strengths for these two group 

specimens are very close, which are 4.33 MPa for cubical specimens and 4.21 MPa for 

cylindrical specimens. The second feature is that two very large cylindrical specimens were 
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tested. The diameter for these two specimens is 305 mm, the largest specimen size that has 

been reported so far for the St. Peter sandstone. It is also interesting to note that the mean 

strength for these two specimens is 3.69 MPa, a value that is less than the strength for 51 mm 

specimens 

 

 

 

 
 

Figure 3.12. Effect of specimen size on UCS of the St. Peter sandstone  

(Petersen, 1978) 
 

 

 

The tests carried out by Sterling (1978) also have several very interesting features. 

The first one is the test condition. The tests were carried out in the field during the 

excavation of the underground test room (Sterling, 1978). The specimens were 

rectangular in shape and formed in-place with a chain saw. The axial load was provided 

by a hydraulic jack braced against the roof. The sample size was large, ranging from 190 

to 211 mm, because of in-situ test condtion. The uniaxial compressive strength obtained 

from this field test ranges from 1.43 to 6.83 MPa with an average of 3.80 MPa (Table 

3.4).  
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Table 3.4. Uniaxial compressive strength by Sterling (1978) 

Test No 
Size (mm) Equivalent 

width(mm) 

Height/Width 

ratio 
UCS (MPa) 

Width Depth Height 

1 292 152 279 211 1.32 4.56 

2 305 152 178 216 0.82 6.83 

3 216 203 229 209 1.09 2.31 

4 203 203 254 203 1.25 1.43 

5 203 229 203 216 0.94 3.19 

6 229 229 241 229 1.06 5.82 

7 203 203 165 203 0.81 3.10 

8 178 203 254 190 1.34 1.60 

9 191 203 178 197 0.90 3.22 

10 203 203 102 203 0.50 5.92 

 

 

 

In comparison with the result from Petersen (1978) (Table 3.3), the average 

strength determined from this field test is very close to the strength of the largest 

specimens used by Petersen (1978). It is interesting to note that the strength of 3.80 MPa, 

determined by the field test, is still somewhat lower than the strength for 51 mm 

specimens determined by Petersen (1978).   

The second very important feature that can be observed from Sterling’s data is the 

shape effect, which will be discussed in section 3.5.  

3.4.4. Optimum Specimen Size for the Uniaxial Compressive Test for St. Peter 

Sandstone. The studies carried out by Petersen (1978), Sterling (1978), and Yardley (1978), 

as reviewed in the previous section, are the confirmation of the specimen size effect 

determined by this investigation. A particular significance of this work is that it lays a 

foundation for determining the optimum specimen size for the St. Peter Sandstone.  

It is understood from the discussion of the specimen size effect that the uniaxial 

compressive strength is not an abstract concept; but rather it is intimately related to the 

specimen size. Thus, the strength obtained from the uniaxial compressive test must refer to 
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the size of the specimen.  

There are two commonly adopted standards: one by American Society for Testing 

and Materials (ASTM) and one by International Society for Rock Mechanics (ISRM). The 

specimens suggested by both institutions are right circular cylinders with very similar 

dimensions. For ASTM cylindrical specimens shall have a height to diameter ratio of 2.5-3.0 

and a diameter not less than 54 mm (ASTM D7012-14). For ISRM the suggested height to 

diameter ratio is 2.0 to 2.5 with a diameter that is not less than 47 mm (ISRM, 1981). These 

suggested specimen dimensions are based on both theoretical and practical considerations. 

For instance, both standards specify the lower limits of the specimen size, which are 47 and 

54 mm, respectively. An important consideration for this limit is the scaling effect as the 

strength for a small size specimen could be significantly higher, as illustrated in Figure 3.10.  

The optimum specimen size for the St. Peter Sandstone should be the one that would 

minimize the negative impact that is directly related to the specimen size while it is 

economically attainable. It is understood from the earlier discussion that the size effect 

exhibited by St. Peter Sandstone specimens is governed by two factors: the disturbance 

caused by sampling techniques and the scaling effect. Specimens of the St. Peter Sandstone 

are particularly vulnerable to the disturbance caused by sampling techniques, and this is 

especially true for smaller specimens. Thus, the strengths for smaller specimens are 

significantly lower for larger specimens. For specimens with any size larger than 50 mm, the 

strengths are significantly lower. This is caused by both scaling effect and the disturbance 

caused by sampling techniques. In addition to the theoretical advantages of 50 mm 

specimens, the results of this study has shown that specimens with this size are much easier 

to process.   
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3.5. SAMPLE SHAPE EFFECT 

The shape here is defined as the ratio of specimen height to specimen diameter 

(width), or height/width ratio. The shape of specimens can affect the test result significantly. 

If a specimen is too thin, it may lose its stability due to bending. If it is too short, the tested 

strength can be much higher due to the constraints exerted by the test system at the specimen 

ends. To minimize the bias caused by the shape of specimens, ASTM suggested a ratio range 

of 2.5-3.0 (ASTM D7012-14) and ISRM suggested a ratio range of 2.0-2.5 (ISRM, 1981).  

A unique feature that can be observed from the study carried out by Sterling (1978) is 

the shape effect of the St. Peter Sandstone (Figure 3.13).  

 

 

 

 

Figure 3.13. Shape effect for the UCS of St. Peter Sandstone (Sterling, 1978) 

Although the data is somewhat scattered, the trend is apparent: the strength decreases 
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with the increase of the height/width ratio. This result shows that the tested strength will be 

higher for the specimens with a low height/ width ratio. It is difficult to prepare specimens 

with a height/width ratio greater than 2, because St. Peter Sandstone is friable. Practically, 

cubic specimens are widely used. However, according to the shape effect demonstrated in 

Figure 3.13, specimens with the ratio less than 1 should be avoided if possible. 

 

3.6. ELASTIC PROPERTIES OF ST. PETER SANDSTONE  

3.6.1. Analysis of the Young’s Modulus and Poisson’s Ratio. The Young’s 

modulus and Poisson’s ratio were evaluated for the St. Peter Sandstone during this 

investigation. Six specimens were measured for the Young’s modulus and four of them were 

also measured for the Poisson’s ratio. The basic data of these specimens and the test results 

are summarized in Table 3.5. It is noticed that these six specimens originated from two 

sandstone blocks, 1S and 6AR. The main differences between these two sandstone blocks are 

that 1) 1S is lack of fine particles associated with 6AR, and 2) 1S is somewhat coarser than 

6AR. The details on the particle structure difference between these two sandstone blocks will 

be given in Chapters 5 and 6.  

 

 

 

Table 3.5. Elastic properties of the St. Peter Sandstone 
Sample ID Dimension (mm) UCS(MPa) Young’s modulus(GPa) Poisson’s ratio 

1S-2 52×49×81 3.50 2.76 0.02 

1S-4 52×49×92 3.81 2.29 0.03 

1S-3 51×51×79 3.43 2.50 0.07 

1S-6 50×49×85 2.20 1.79 0.05 

6AR-3 50×48×52 4.21 1.33 --- 

6AR-6 54×53×61 2.13 1.43 --- 

 

 

 

The stress-strain curves for the tests are presented in Figures 3.14 and 3.15.  There are 

three observations regarding the Young’s modulus. First, all stress-axial strain curves are 
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linear or near linear till they approach the failure stage, which is a typical stress-strain 

characteristic for brittle-elastic materials. Furthermore, the test results are quite consistent. 

The standard deviations for 6AR specimens and 1S specimens are only 0.07 and 0.41 GPa, 

respectively. Finally, it is noticed that the Young’s modulus for 1S specimens is significantly 

higher than that for 6AR specimens. The mean values of the Young’s modulus for these two 

groups are 2.33 and 1.38, respectively.    

The Poisson’s ratio is a function of both axial and lateral strains. In order to have a 

perspective view on this parameter, understanding the behavior of stress-lateral strain curves 

is essential. For the stress-lateral strain curves presented in Figure 3.15, the lateral strain 

appears to have a three-stage development process. At the initial stage, which may cover the 

first 40 – 40% loading range, the lateral strain is very small and the stress-lateral strain curve 

is almost a perfect straight line. For instance, if stress considered 1.50KPa in Figure 3.15b as 

the end point of this range. The lateral strain for the second stage is larger than that for the 

first stage, but still small. The stress-lateral strain curve for this stage may still be considered 

linear eventhough it begins to show the nonlinear behavior. This stage ends at a point with a 

sudden change of the stress-lateral strain curve, which signals the beginning of the third 

stage. For the stress-lateral strain curve Figure 3.15b, the stress level of 2.46 KPa can be 

considered this point. The rapid increase of the lateral strain during the third stage indicates 

that the specimen is heavily fractured, or in a failure stage. This conclusion can also be 

confirmed by the stress-axial strain curve at the corresponding stage, which is either ended 

interruptedly as shown in Part a or becomes highly nonlinear shown in Figure 3.15d.  

The elastic parameters were also measured by Petersen (1978), Sterling (1978), and 

Dittes and Labuz (2002). Their results are given in Table 3.6. For comparison purpose, the 

results from this investigation are also included in the table. The Young’s moduli determined 
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by all these investigators are in similar ranges.  
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Figure 3.14. Stress-strain curves for 6AR specimens 

a) Stress-strain curve for St Peter sandstone specimen ID: 6AR-3 

b) Stress-strain curve of St Peter sandstone specimen ID: 6AR-6 
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Figure 3.15. Stress-strain curves for 1S specimens  

 

 

 

Table 3.6. A comparison of the Elastic properties of the St. Peter Sandstone 

Source UCS (MPa) 
Young’s Modulus 

Range (GPa) 

Young ‘s modulus 

Mean (GPa) 
Poisson’s ratio  

Dittes and Labuz (2002) 0.60-2.00  0.40-2.00 1.10 0.20-0.33 

Petersen (1978) 2.34-6.69  0.90-1.54 1.16 --- 

Sterling (1978) 1.43-6.83  0.86-4.27 2.23 --- 

Missouri University of 

Science and Technology 
1.80-24.55 1.30-2.70 2.00 0.02-0.07 

 

 

 

The Poisson’s ratio, as determined by Dittes and Labuz (2002), is much higher than 

that observed from this investigation. Only by considering the linear portion, it seems that 

Poisson ratio should be much lower according to our data. It is noticed that their high range 

a) Stress strain curve Specimen  Id:1S2 b) Stress strain curve Specimen  Id:1S3 

b) Stress strain curve Specimen  Id:1S4 c) Stress strain curve Specimen  Id:1S6 
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of 0.33 is typically associated with a relatively “soft” material. The St. Peter Sandstone is 

recognized as a very brittle material.   

3.6.2. A General Discussion of the Elastic Properties of the St. Peter Sandstone.  

The St. Peter sandstone is a unique geotechnical material, which lies in a transition zone 

between soils and rocks. The elastic property makes it behave like rocks and the cohesionless 

character is of typical soils.  

In addition to the laboratory test, the elastic property of the St. Peter Sandstone can be 

observed from the field test. Corps of Engineers (1958) perfomed nine in-situ bearing 

capacity tests on St. Peter Sandstone at the St. Anthony Falls Lower Lock. Their results show 

that the displacements were recovered completely after removal of the load. It is also another 

indication of elastic behavior for St. Peter Sandstone  

The elastic behavior is the major difference between the St. Peter Sandstone and other 

cohesionless materials. Understanding the elastic behavior of St. Peter Sandstone is the key 

for resolving a number of significant problems such as the structure model, and the cause of 

the high friction for the St. Peter Sandstone. 

 

3.7. THE STRENGTH OF CEMENTED ST. PETER SANDSTONE 

The objective of this study is to investigate the basic mechanical and strength 

properties of the St. Peter Sandstone that is cohesionless, or uncemented. Although it is true 

that shallowly burried St. Peter Sandstone formation in Minnesota, Wisconsin and Iowa can 

be categorically considered cohesionless. However, some parts of St. Peter Sandstone 

formation are cemented. For instance, the upper contact zone of the St. Peter Sandstone 

formation with Glenwood Shale is cemented with varying degrees. The structure of a 

cemented St. Peter Sandstone is very different from uncemented one. Figure 3.16 is a 

comparison of the microstructures of the cemented and uncemented St. Peter sandstone 
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samples. Because of this structural difference, the strengths for cemented and uncommented 

St. Peter sandstones are very different.  

In order to study the basic mechanical properties of the cemented St. Peter sandstone, 

5 sandstone blocks with varying cementations were collected from the Pattison mine site, 

Clayton, Iowa. The images of these sandstone blocks are given in Figure 3.17. For the 

purpose of comparison, the image of an uncemented block is also included. All these 

sandstone blocks were tested for their uniaxial compressive strength and indirect tensile 

strength (Brazilian test). Part of the specimens used for the test is shown in Figure 3.18. 

 

 

 

 

Figure 3.16. Scanning electron microscope (SEM) images of the cemented  

and uncemented St. Peter Sandstone samples. 

 

 

 

The test results for the uniaxial compressive strength and the indirect tensile strength 

are given in Tables 3.7 and 3.8, respectively. The uniaxial compressive strength is very high 

for the cemented specimens, ranging from 14 to 124 MPa, which are 5 to 8 times higher than 

that for uncemented specimens with the compatible size.  

a)Uncemented St. Peter Sandstone b) Cemented St. Peter Sandstone 
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Figure 3.17. Images of cemented and and uncemented St. Peter Sandstone 

a) b) 

c) 

d) 

f) e) 



51 

 

 
Figure 3.18. Specimens of cemented St. Peter Sandstone 

 

 

 

Table 3.7. Uniaxial compressive strength for cemented St. Peter Sandstone 
Sample 

block ID 

# of 

specimens 

Mean 

(MPa) 

Standard  

Deviation (MPa) 

BK4 4 18.89  3.20 

  7AI-2 5 28.21  6.20 

BK5 4 42.09  6.99 

       En 6 59.89 13.88 

BK1 6 95.23 21.39 

 

 

 

Table 3.8. Indirect tensile strength for cemented St. Peter Sandstone 
Sample  

block ID 

# of  

specimens 

Mean 

(MPa) 

Standard  

Deviation(MPa) 

7AI-2 6 2.46 1.14 

      BK5 5 3.61 1.12 

      En 8 4.78 2.15 

      Bk1 7 6.94 1.92 

 

 

 
From the discussion provided in this section it can be understood that there exist 

significant differences between cemented and uncemented St. Peter Sandstones. Mixing the 

information from these two categories can cause major problems. 
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3.8. CONCLUSIONS 

In the course of this investigation a total of 95 uncemented specimens were prepared 

and tested for the uniaxial compressive strength for the St. Peter sandstone, the greatest 

research effort dedicated to this special topic. Another major research on the uniaxial 

compressive test was performed by Petersen (1978) and a total of 33 specimens were tested.  

A comprehensive and in-depth study was carried out on St. Peter Sandstone. The 

objective was to establish a scientific understanding of the uniaxial compressive strength 

associated with the St. Peter Sandstone for reliably determining and using this data.   

A particular problem encountered in the St. Peter Sandstone research is the 

incompatibility of the material property of the St. Peter Sandstone and the standard sample 

preparing practice that is recommended by ASTM (1972) and ISRM (1981). The sampling 

techniques recommended by ASTM (1972) and ISRM (1981) can easily disintegrate the 

specimen being processed. Therefore, the first principle for preparing St. Peter Sandstone 

specimens is to minimize the disturbance caused by the sampling techniques. The outcome of 

this study was a sample preparation method for minimizing the disturbance  

The failure mode is a record of the failure process and holds the critical information 

for understanding the strength property of a rock material. The contribution of this study is 

threefold. The mechanics of two dominant failure mode (vertical splitting and steeply dipping 

shearing) were investigated. It was reaveled the failure modes are linked to the basic 

mechanical properties of the St. Peter Sandstone: Vertical splitting is caused by cohessionless 

property of the St. Peter sandstone and steeply dipping shearing is the result of high friction 

angle of the St. Peter sandstone. Secondly, steeply dipping shearing is another independent 

evidence of the high friction angle and provides the quantitative information for the friction 

angle calculation. Third, the irregularity of failure locations observed from the sandstone 

specimens reflects the sensitivity of the failure process to local anomalies, which is also a 
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result of the cohesionless property of the St. Peter sandstone. The sensitivity to local 

anomalies as manifested by vertical splitting and irregularity of failure locations is one of the 

main reasons responsible for the large variance of the uniaxial compressive strength 

associated with the St. Peter Sandstone.  

The size effect of specimens for the St. Peter sandstone is very different from the one 

that is typically exhibited by most geological materials. The size effect for the St. Peter 

Sandstone is the result two factors: scaling and disturbance by sampling techniques. The 

factor of disturbance is unique for the St. Peter Sandstone and its impact can significantly 

overshadow that of scaling, especially for small specimens. This is why the strength of small 

St. Peter Sandstone specimens is significantly lower than the strength for other specimen 

sizes.  

The optimum size of 50 mm determined in this investigation is based on several 

factors. In addition to the theoretical considerations, scaling and disturbance, as illustrated by 

the laboratory results, the other two factors are the field investigation and practical 

considerations. A field investigation was conducted to back calculate the uniaxial 

compressive strength for existing pillars. It appears that the strength of 50 mm specimens 

matches well with the result from this field investigation. Practical considerations are also an 

important factors for determining the optimum size. Based on extensive sampling 

experiences of this study, 50 mm specimens are the size that can be economically attainable  

The shape effect for St. Peter Sandstone specimens has not been discussed in any 

previous research. Although the available data is limited and the discussion provided here is 

preliminary, it is an issue that cannot be ignored. A practical implication is that the 

height/width ratio should not be too low, at least not less than 1.  

The elastic properties of the St. Peter sandstone, namely Young’s modulus and 
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Poisson’s ratio were also studied during this investigation. The unique contribution of this 

research is a detailed study of the stress-strain curves. The results of this study show that the 

stress-strain curves can be roughly divided into three stages. The stress-strain curve behaviors 

almost perfectly linear for most test periods, about 60-70% of the failure stress. The stress-

strain curve at the second stage can still be regarded linear even though it begins to show the 

non-linear behavior. The second stage ends with a sudden change of the stress-strain curve, 

which signals the beginning of the third stage. For the stress-axial strain curve, it is an abrupt 

rupture. For the stress-lateral strain curve, it changes direction and extends almost 

horizontally. The characteristics of the stress-strain curves, as exhibited by the St. Peter 

Sandstone, are typical for a brittle-elastic material.  

Previous studies on strength properties of St. Peter Sandstone were reveiwed. The 

Young’s moduli determined by previous researches are very close to what was determined in 

this study. The Poisson’s ratio determined by Dittes and Labuz (2002), however, shows a 

large discrepancy, which ranges from 0.20 to 0.33. This range, especially the upper value, 

appears too high considering the very friable nature of the St. Peter Sandstone. The results of 

this study show that the lateral deformation before the failure is very small. This observation 

is consistent with the cohesionless property, which makes the St. Peter Sandstone extremely 

weak for its tensile strength. Vertical splitting, one of the dominant failure formations for the 

St. Peter Sandstone is primarily caused by this cohesionless property.  

The last problem in this chapter is the uniaxial strength of cemented St. Peter 

Sandstone. The need for this discussion is twofold. First, the basic mechanical property of the 

cemented St. Peter Sandstone is important in order to handle various ground control problems 

associated with the St. Peter Sandstone formation. It was noticed during this investigation 

that the strength data for cemented and uncemented St. Peter Sandstone were mixed 
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sometimes. However, the confusion between the strength data for these two groups could be 

avoided if the significant difference between these two sandstones are clearly understood.  

In the course of this investigation, an extensive test was carried out to determine the 

uniaxial compressive strength. The results show that the uniaxial compressive strength for the 

cemented sandstone can be 5 to 8 times higher than that for uncemented sandstone depending 

on the degree of cementation. Furthermore, the microstructures of two types of sandstones 

were compared, which demonstrate that the large strength difference is fundamentally rooted 

in the material properties.  

A very important issue that is critical for understanding the strength characteristics of 

the St. Peter Sandstone, but not discussed in this chapter, is the sand particle structure. The 

reason is that it would require the advanced knowledge from the triaxial test carried out in 

this investigation. This issue will be discussed in next chapter:  
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4. STRENGTH OF ST. PETER SANDSTONE UNDER TRIAXIAL TEST 

CONDITIONS 

 

4.1. INTRODUCTION 

This chapter is dealing with the strength of the St. Peter Sandstone under triaxial test 

conditions. This will allow one to study the strength of St. Peter Sandstone from a very 

different perspective than the uniaxial compression test conditions studied in Chapter 3. 

Although the experimental arrangement for a triaxial test is much more complicated, the 

concept, as illustrated in Figure 4.1, is very simple: the test specimen is subjected to a 

confining pressure while under compression in the axial direction. 

 

 

 

 

Figure 4.1. Elements of a conventional triaxial testing apparatus (Brady and Brown, 1993) 

 

 

 

The study of strength under triaxial test conditions offers a number of important 

advantages. First it allows us to examine the strength as a function of confining pressures. 

The strength characters here refer not only to the magnitude of the strength, but also the 
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mechanical behavior of the material. This concept is illustrated in Figure 4.2. 

  

 

 

 

Figure 4.2. Complete axial stress-axial strain curves under  triaxial compression 

    tests on Tennessee marble (Wawersik and Fairhurst, 1970). 

 

 

 

This figure shows that the strength of the Tennessee Marble increases with an 

increase in confining pressure and the rate of the strength increase is much faster than the rate 

of increase for the confining pressure. The ratio is about 3 for Tennessee Marble. In addition 

to the strength increase, the behavior of the tested material also changed. For the uniaxial 

compression test, the specimen fails abruptly, showing a typical brittle-elastic behavior. This 

behavior, however, changes rapidly with the increase of the confining pressure. Most of the 

curves in the figure are of a typical ductile-elastic behavior. 

The other distinctive advantage of the triaxial test is that it allows one to 

quantitatively evaluate failure conditions in terms of axial stress and confining pressure. A 

piece of very important information that can be drawn from this work for any rock mechanics 

study is the friction angle. This concept is explained with the help Figure 4.3. 
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Figure 4.3. Concept of Mohr’s failure envelope 

 

 

 

Figure 4.3 shows that a failure envelope also known as Mohr failure envelope, will be 

formed if there are sufficient data (Mohr circles) from the triaxial test. The significance of 

this failure envelope is two-fold. First, it allows one to predict the chance of failure for a 

specific stress condition. It will be safe if the resulting Mohr circle is within the envelope. 

Otherwise, failure may occur. Secondly it provides information about the friction angle, 

which is illustrated in the figure as φ, the angle that is between the tangent line and the 

horizontal line. 

In this chapter, three important observations from past studies will be reviewed, 

which are high friction angles for St. Peter Sandstone observed from the triaxial test, 

comparison studies on the friction angles for St. Peter sands, and large dilations associated 

with direct shear test. 

Next the mechanics of the sand particle structure will be discussed in terms of the 

information obtained from the triaxial test. This is an important issue because the basic 

mechanical and strength properties of St. Peter Sandstone are fundamentally governed by the 
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particle structure of the sandstone. Hence, understanding the particle structure holds the key 

for St. Peter sandstone research. A particular advantage of utilizing the triaxial test technique 

for this investigation is that the test result is significantly less affected by local anomalies, 

which makes it possible to compare the mechanical responses of different structures 

quantitatively. This is one of the most important aspects of this investigation.  

The study discussed in this chapter is not only significant from a theoretical point of 

view, but also of a great practical importance. The final part of this chapter is a brief 

discussion on how the theories developed in this study may be used for resolving a number of 

critical rock mechanics and ground control problems.  

 

4.2. MAJOR FINDINGS AND OBSERVATIONS FROM PREVIOUS STUDIES 

The first triaxial study of St. Peter Sandstone was carried out by Watson (1938). The 

test included eight hand-trimmed cylindrical specimens. These specimens are large (165 mm 

long with a diameter of 70 mm).   

4.2.1. Unusually High Friction Angle Observed from the Triaxial Test Result. 

The test results are shown in Figure 4.4. The friction angles which are measured individually 

from each Mohr circle range from 59˚ to 69˚ with an average value of approximately 63˚.  

This friction angle is unusually high, approximately 15˚ higher than the high range of 

friction angles known by the geotechnical community. 

The triaxial tests for uncemented St. Peter Sandstone were also conducted by 

Dusseault and Morgenstern (1979), and Labuz et al. (1998). The result of Labuz et al. (1998) 

is shown in Figure 4.5, which is very similar to the result by Watson (1938). 
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Figure 4.4. Mohr envelope of St. Peter Sandstone (Watson, 1938) 

 

 

 

 

Figure 4.5. Mohr envelope of St. Peter Sandstone (Labuz et al., 1998) 
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4.2.2. Unusually High Friction Angle observed from the Triaxial Test Result. 

Another important contribution made by Watson (1938) is his comparative study on friction 

angles for both densely and loosely packed St. Peter sands. The triaxial test results for these 

two conditions are shown in Figures 4.6 and 4.7. The friction angles determined under these 

two conditions are 42˚ and 33˚, respectively, which are much lower than that for the original 

St. Peter Sandstone. 

 

 

  

 

Figure 4.6. Mohr envelope for densely packed St. Peter sands (Watson, 1938) 

 

 

 
The significance of this comparison study is that the high friction angle is a 

manifestation of the unique properties of St. Peter sandstone, which are very difficult to 

duplicate under laboratory conditions. One such property for St. Peter sandstone is an 

extremely low porosity, which varies within a very narrow range of approximately 24-30% 

(Thiel, 1935). If we assume an equal size particle structure model, a material with this 

porosity range is virtually incompressible (Graton and Fraser, 1935).  

The friction angles for both densely and loosely compacted sands, are well within the 
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ranges of friction angles for other sands as shown in Appendix B (Holtz and Kovacs, 1981). 

However, the friction angle for St. Peter Sandstone is exteremely higher than recompacted 

sands. 

 

 

 

 

Figure 4.7. Mohr envelope for loosely packed St. Peter sands (Watson, 1938) 
 

 

 

4.2.3. High Dilation rate associated with Direct Shear Tests. The friction angle of 

a rock material can be also determined by direct shear test. The concept of direct shear test is 

illustrated in Figure 4.8.  
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Figure 4.8. Direct shear test (Hoek and Bray, 1978) 

 

 

 

The direct shear method was utilized by a number researchers to study the friction 

angle of St. Peter Sandstone (Dusseault and Morgenstern, 1978; and Dittes and Labuz, 2002).  

The test results by Dittes and Labuz (2002) for St. Peter Sandstone and recompacted sands 

are given in Figure 4.9. This figure shows that the friction angle obtained by the direct shear 

method for St. Peter Sandstone is 57˚, which is 6˚ lower than they determined using the 

triaxial test (Labuz et al., 1998). The friction angles for dense and loosely compacted sands 

are almost identical to those determined by Watson (1938). Dittes and Labuz (2002) 

investigated the volume change of St. Peter sandstone as well as recompacted (densely and 

loosely packed) St. Peter sands (Figure 4.10).They found a dilatancy behavior for St. Peter 

Sandstone. The rate of dilation for intact samples was considerably higher than dense 

recompacted samples. 
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Figure 4.9. Failure envelops of St. Peer sandstone and sand in direct shear  

(Dittes and Labuz, 2002) 
 

 

 

 

Figure 4.10. Dilation of intact St. Peter sandstone over range of normal stresses  

(Dittes and Labuz, 2002). 
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4.3. TEST APPARATUS 

One of the major difficulties for the triaxial test of St. Peter Sandstone is that the 

triaxial test equipment is primarily designed for cylindrical specimens. However, the 

specimens used for St. Peter Sandstone are mostly cubic or rectangular. As discussed in 

Chapter 3, it is not a recommended practice to use cylindrical specimens for St. Peter 

Sandstone. In addition to the fact that they have to be hand trimmed and the hand trimming is 

a very difficult process, the main problem is that this process will inevitably create more 

disturbances to specimens and make the test results less reliable.  

4.3.1 Utilizing a State-of-the-Art True Triaxial Test Apparatus. In order to solve 

this problem, it was decided to use a state-of-the-art, servo-hydraulic testing apparatus at 

Pennsylvania State University (Figures 4.11 & 4.12). The vertical load frame of the apparatus 

has a maximum force of 1MN and the horizontal frame can produce forces up to 800kN.  

Each load frame may be operated in displacement- or load-feedback servo control. 

Displacement control resolution is 0.1 micron for each axis and load resolution is <0.1kN.  

The apparatus is powered by a 20 GPM, 50 hp hydraulic power supply.  Servo-controlled 

load point displacement rates of 0.01 micron/s to 2 cm/s are possible. Machine stiffness is 

roughly 4 MN/cm and therefore ideal for friction and fracture studies. 

4.3.2. Loading Platens. To accommodate the specimens with the square cross 

section for the test, two loading platens. 

Loading platens, which allow the test to be carried out under drained conditions were 

specially designed and manufactured (Figure 4.13). The square part of the platen that 

contacts the specimen has a dimension of 50 x 50mm and the circular loading end has a 

diameter of 44 mm. 
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4.3.3. Sealing Specimen Assembly. Figure 4.14 shows how the loading platens are 

attached to a specimen. Before the triaxial test, each of these assemblies has to be tightly 

sealed, a critical step for a successful triaxial test. Figure 4.15 is an illustration of how a test 

specimen is sealed with the loading platens before the test 

 

 

 

 
Figure 4.11. The triaxial test apparatus utilized for this investigation 

 

 

 

4.4. TEST DESIGN CONSIDERATIONS 

4.4.1. Field Observations. An important observation at the Pattison mine is that 

failures are often associated with the areas of St. Peter Sandstone containing coarse grains. A 

typical example is pinch-out failures (Figure 4.16). The pinch-out failure is a term used by 

mine workers to describe fractures that initiate at the intersection of the cap rock roof and 

sandstone pillars. If the problem is not properly handled, it could develop into a very serious 

problem resulting in significant pillar damage. Figure 4.17 is a close look at initial pinch-out 

formation.  
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Figure 4.12. (a) Three-dimensional illustration of true-triaxial pressure vessel and biaxial 

load frame b) two-dimensional illustration of true-triaxial pressure vessel and biaxial load 

frame c) the cross section of  pressure vessel 

 

 

 

4.4.2. Porosity and Structure of St. Peter Sandstone. The significance of pinch out 

failure observation is that it raised a fundamental question for St. Peter sandstone research: 

a) b) 

c) 
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what is the role of sand particle structure on the strength of St. Peter Sandstone? 

The structure of St. Peter Sandstone can be characterized using different parameters. 

A basic and well established approach is the porosity associated with St. Peter sandstone at 

the time when this research started. 

In the field of geotechnical engineering, the porosity is defined by the following 

equation: 

                                                                                                                  (4.1)      

 Where n is porosity, Vv is the volume of void, which includes voids 

occupied by both air and liquid, and V is the total volume. The volume for solid material is 

usually expressed by Vs, and the total volume is the summation of the volume of void and 

volume of solid, that is 

 

vs VVV +=                                                                                                                     (4.2)                    

The porosity for St. Peter sandstone falls into a narrow range of approximately 24.5-

30.5% (Thiel, 1935), which, according to our study, also fairly characterizes the porosity of 

St. Peter sandstone at the mine site in Clayton, Iowa. 

 

V

V
n v=
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Figure 4.13. Two loading platens, which allow the drained condition test, were specially 

designed and manufactured for this research. 

 

 

 

 
                            Figure 4.14. Loading platens with an attached specimen 
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Figure 4.15. Sealing a specimen assembly for the triaxial test 

 

 

 

 
Figure 4.16. Pinch-out failure, severe fractures developed between pillars and cap rock roof. 

 

 

 

4.4.3. Structure Characteristics of 6AR and 1S Samples. In order to study the role 

of the sand particle structures, two sample blocks with the distinctive difference in porosity 

were identified, which are block 6AR and block 1S. The porosities for these two groups are 

24.4% and 30.1%, respectively, which are very close to the lower and upper limits of the 

porosity range identified by Thiel (1935). 

a) Specimen assembly in latex jacket b) Seals along loading platens 
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The thin section images for the samples from these two groups are presented in 

Figure 4.18. It is clear from these images that the particle structures for these two group 

samples are very different. There are two major differences. The first one is the particle size. 

The sand particles for 1S are significantly larger than those in the 6AR sample. The second 

difference is the size distribution. The 1S sample lacks fine sand particles while 6AR sample 

has a range of particle sizes. 

 

 

 

 
Figure 4.17. A close look of at initial pinch-out failure formation 

 

 

 

The grain size distribution curves for these two group samples in Figure 19 provide 

further quantitative information for the structural features observed from the thin section 

images. First, there is a relatively large distance between the two curves, which signals a 

distinctive difference in particle size. If the median is used to characterize the particle size, 

they are 2 and 3 mm for 6AR and 1S groups, respectively.  

The difference is 50%. A comparison of these two curves also show that 1S sample 
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group contains almost no particles finer than 0.1 mm while the 6AR group has a long tail 

which reaches beyond 0.02 mm.   

 

 

 

 
Figure 4.18. Thin section images of the 6AR and the 1S samples. 

a) A thin section image of a 6AR sample  

b) A thin section image of a 1S sample 
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Figure 4.19. The grain size distributions for the 6AR and the 1S samples. 

 

 

 

In addition to the structural characteristics, the other important consideration in 

utilizing 6AR and 1S sample blocks for this comparison study is that both blocks are 

sufficiently large to allow the preparation of multiple 50 mm size specimens.  

A total of 14 such specimens were prepared from the 1S block and 11 were prepared 

from the 6AR block. This consideration is critical for obtaining a meaningful result since the 

St. Peter Sandstone‘s properties vary from location to location, as well as vertically at the 

same location. Utilizing the specimens from the same sample block assures identical 

properties for these specimens. 

4.4.4. The Uniaxial Compressive Strength for 6AR and 1S Specimens. Among the 

specimens prepared from 6AR and 1S blocks, 8 from each group were utilized for the 

uniaxial compressive test. The result is summarized in Table 4.1. The average strength for 

6AR specimens is about 32% higher than the strength for the 1S specimens.  

4.4.5. Specimens Prepared for Triaxial Test. The remaining 50 mm specimens 

prepared from these two sample blocks were used for the triaxial test, including 5 1S 
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specimens and 3 6AR specimens. The specimens used for the triaxial test are shown in Figure 

20. In addition to 6AR and 1S specimens, two 12AR specimens were included. The 

dimensions of these specimens are given in Table 4.2. 

 

 

 

Table 4.1. The uniaxial compression test result for 6AR and 1S specimens 

Group ID Individual results (MPa) Mean (MPa) Std. (MPa) 

6AR 1.80  2.13  3.60  3.82  4.14  4.21  7.00 10.63 4.67 2.88 

1S 2.20  3.00  3.25  3.43  3.50  3.66  3.81   5.32   3.52 0.88 

 

 

 

Table 4.2. Dimensions of the specimens utilized for the triaxial test 

Sample ID 
Dimension (mm) Height to 

width Ratio 
Width  Depth  Height 

 1S-2 51 51 70 1.38 

 1S-1 51 51 81 1.60 

 1S-3 51 51 67 1.33 

 1S-4 47 48 50 1.05 

 1S-5 47 46 67 1.44 

 6AR-1 51 51 57 1.13 

 6AR-3 51 51 54 1.06 

 6AR-2 51 51 48 0.95 

 12AR-2 48 51 65 1.36 

 12AR-1 50 50 74 1.48 

 

 

 

The triaxial test is a critical part of this research because of its unique test condition 

and the information that it can provide under this test condition. In particular, there are three 

specific purposes in utilizing this technique. The first one is to explore the effect of the 

particle structure on the basic mechanical and strength properties of St. Peter Sandstone. This 

will be done by comparing the mechanical responses of 6AR and 1S specimens during the 

triaxial test. The mechanical response here refers material strength, stress-strain relations, 

failure characteristics, and friction angles. Next, the uniaxial compressive strength for 6AR 



75 

 

and 1S specimens will be further studied in light of the triaxial result. There are two specific 

reasons for this study: first the stress conditions under the triaxial test are much closer to in-

situ situations, and second, the result from the triaxial test is much more stable. Finally, the 

engineering implications of the differences in mechanical responses between St. Peter 

Sandstone and the conventional will be studied. 

 

4.5. ANALYSIS OF THE TEST RESULT 

  The results of the triaxial test in terms of the confining pressures and the 

corresponding axial stresses at failure are presented in Table 4.3. There were four confining 

pressure levels utilized for the triaxial test, which are 0.66, 2.06, 3.44 and 6.87. Among the 

10 tests conducted, one failed due to a jacket leaking problem. 

  4.5.1. Effect of Confining Pressure on St. Peter Sandstone Strength. For 

convenience in comparing the effects of the confining pressure, the confining stresses and 

axial stresses at failure, 1S and 6AR specimens were regrouped Table 4.4. The average 

uniaxial compressive strengths for 1S and 6AR specimens were added to the table as the 

reference level.  Figure 4.21 is a graphical expression of the data presented in Table 4.4 Two 

features can be captured immediately from Figure 4.21. First, the strengths increase very fast 

at the initial stage, shown by steeply raised curves at this stage.  

 

 

 



76 

 

 
Figure 4.20. Specimens utilized for the triaxial test 

  

a) 1S specimens for triaxial test 

b) 6AR specimens for triaxial test 

C) 12AR specimens for triaxial test 
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Table 4.3. Confining stresses and axial stresses at failure 

Sample ID 
Dimension 

(mm) 

Confining  

Stress (MPa) 

Axial Stress 

at failure 

(MPa) 

 1S-2 51×51×70 0.66 20.23 

 1S-1 51×51×81 2.06 25.76 

 1S-3 51×51×67 3.44 31.75 

 1S-4 47×48×50 6.87 41.50 

 1S-5 47×46×67 6.87 42.10 

 6AR-1 51×51×57 0.69 25.74 

 6AR-3 51×51×54 3.45 46.23 

 6AR-2 51×51×48 6.87 88.73 

 12AR-2 48×51×65 0.70 14.37 

 12AR-1* 50×50×74 6.88 ------ 

                   *A jacket leak occurred in this experiment 

 

 

 

In order to measure the effect of the confining pressure on the axial stress at failure, 

the rate increase of the axial stress at failure was defined as 

 

c

aRAS
σ

σσ 0−=                                                                                                 (4.3) 

where RAS stands for rate increase of axial stress, σa is the axial stress at failure, σ0 is 

the uniaxial compressive strength, and σc is the confining pressure 

 

 

 

Table 4.4. A comparison of the axial stress at failure for 6AR and 1S specimens 

Confining 

stress 

(MPa) 

Axial stress at failure 

(MPa) 

1S Group 6AR Group 

0.0   3.52   4.67 

0.66 20.23 25.74 

2.06 25.76 ------ 

3.44 31.75 46.23 

6.88 41.80 88.73 
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The rate of increase for 1S and 6AR specimens can be calculated based on the data 

presented in Table 4. For the confining pressure of 0.66 MPa, they are 25 and 32 for 1S and 

6AR specimens, respectively. The rate increase in this range is very significant. To appreciate 

this effect, just calculate the strength increase for a 6AR block by adding just 10 psi 

confining pressure. The strength increase is 320 psi.   
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Figure 4.21. Axial stresses at failure vs. confining pressures  

for 6AR and the 1S specimens 

 

 

 
The other important feature is that the strength increase for 6AR specimens are much 

quicker than that for 1S specimens. The strength of 6AR specimen at the confining pressure 

of 6.9 MPa is 88.7 MPa, more than twice the strength for 1S specimens. It is interesting to 

note that there are two 1S specimens tested with the same confining pressure of 6.9 MPa and 
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the axial stresses at failure for these two specimens are almost identical, which are 41.5 and 

42.1 MPa.  

4.5.2. Effect of Confining Pressure on Sandstone Behavior. The significant 

strength increase is fundamentally due to the change of material behaviors under the triaxial 

test condition. As discussed in section 4.1, the triaxial test has two major effects:  it increases 

the strength and changes the material behavior from brittle to ductile. This is also true for St. 

Peter Sandstone as shown in Figure 4.22. 

 

 

 

 

Figure 4.22. Change of material behavior of St. Peter Sandstone under 

 triaxial test condition 
 

 

 

There are three curves in the figure: a stress-strain curve resulting from the uniaxial 

compression indicated in the figure by 0 confining pressure and two curves obtained from the 

triaxial tests. These two curves cover the complete test circle, that is they also include the 
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post-failure behavior of the specimens being tested. The confining pressures for these two 

tests are 0.66 and 6.87 MPa, respectively.   

The stress-strain curve for the uniaxial compression test is steep and short, which 

indicates that the tested specimen is brittle and the strength is low. The mechanical response 

changes drastically once the confining pressure is added. In addition to a rapid increase of the 

strength as discussed in Section 5.1, the shapes of these two curves are also different. The 

two curves start to increase nonlinearly, however, they attain approximately linear behavior 

until yild point is reached. It can also be seen the rate of increase in the linear portion of the 

curves is much steeper in comparison with non-linear section. The slopes for the increasing 

section, however, are still much gentler than that for the uniaxial compression test.  

The most valuable part of these two curves is the post failure section. It shows the 

residual strength associated with St. Peter sandstone. It can be seen from the curves that the 

specimens after the initial failure (passing the peak strength) can still “hang” there with the 

support of the residual stress before a complete failure. The difference between these two 

curves is that the residual stress is much lower for the specimen with the lower confining 

pressure. The level of the residual stress for the specimens with the higher confining pressure 

is much higher and can stay there much longer.  

The stress-strain curves for 6AR specimens at 4 confining pressure levels, 0.00, 0.66, 

3.44, and 6.88 MPa, are shown Figure 4.23. All curves with non-zero confining pressures 

have very similar shapes, including the post failure sections. This characteristic shows that 

the failure is no longer significantly affected by local anomalies. Rather, it is governed by its 

own structure, which is further proof of the reliability of the strength data obtained from the 

triaxial test.  
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The stress-strain curves for 1S specimens at 5 confining pressure levels, 0.00, 0.66, 

2.66, 3.44, 6.88 MPa, are given in Figure 4.24. There are two notes about these curves. First, 

there are two tests for the confining pressure of 6.87 MPa. The result in this figure is one of 

them, and the other one was given in Figure 4.22 earlier. A comparison of these two curves is 

given in Figure 4.25.  The axial stresses at failure and the residual stresses for these two 

curves are almost identical.  

  

 

 

 
Figure 4.23. Axial stress-strain curves for 6AR specimens under  

different confining stresses 
 

 

 

The second note is the similar pattern of these curves. Although the stress-strain 

curves in Figure 4.24 do not follow an almost identical pattern as those for 6AR specimens, 

they are actually very similar if compared individually by pairs. To illustrate this effect, four 

pairs are presented in Figure 4.26 
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4.5.3. Failure Mode Observed from the Triaxial Test. In Chapter 3 the failure 

mode associated with the uniaxial compression test was discussed. The main characteristics 

for the failure mode associated with the uniaxial compression test are summarized as follows: 

•There are two main failure formations: vertical splitting and steeply dipping shearing 

(Figure 3.8). Vertical splitting is a result of cohesionless property, local anomalies, and the 

test conditions. Steeply dipping shearing is caused by the high friction angle. Random failure 

locations, which can be either locally or crossing the entire specimen body. Random failure 

pattern is a manifestation of the important role of local anomalies. Vertical splitting and 

random failure patterns are important factors responsible for the large variations of the 

uniaxial compressive strength. 

4.5.3.1. Volumetric dilation. A phenomenon that can be observed after each triaxial 

test is the increase of the specimen volume or volumetric dilation. Such an example is given 

in Figure 4.27, where specimen 1S-5 is shown before and after the triaxial test.  

It is seen from the figure that the specimen is confined within the platen before the 

test. As discussed earlier, the dimensions of the platen is 50 x 50 mm and the cross section 

for the specimen is 46 x 47 mm. However, the cross section of the specimen after the test is 

expanded beyond the boundary of the platen.  

Based on the original dimension of the specimen and its appearance after the test, the 

expansion in each cross section direction is estimated between 4 –7 mm. 

The volumetric dilatation is a basic phenomenon associated with specimens under the 

triaxial test. It is caused by fracture growth inside the specimens after the axial stress reaches 

a certain level during the triaxial test. Figure 4.28 is an illustration of this process for oolitic 

limestone (Elliott, 1982). 
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Figure 4.24. Axial stress-strain curves for 1S specimens under different confining stresses 

 

 

 

 

Figure 4.25. A comparison of the axial stress-strain curves for specimens 1S-4 and 1S-5    

which  were tested with the same confining pressure of 6.78MPa. 
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Figure 4.26. Comparing the axial stress-strain curves of 1S specimens by pairs 
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Figure 4.27. Specimen 1S-5 before and after the triaxial test 

 

 

 

 

Figure 4.28..Results of triaxial compression tests on an oolitic limestone with volumetric 

strain measurement (after Elliott, 1982) 

 

 

a) Before test b) After test 
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Volumetric dilation was observed for all specimens after the triaxial test. Three 

additional examples are shown in Figure 4.29. The original cross sections for these three 

specimens are 51 x 51 mm for both 6AR-1 and 6AR-2, and 48 x 51 mm for 12AR. It is clear 

that all these specimens expanded horizontally. For instance, the new cross section for 6AR-1 

is 53 x 53 mm. If we consider a compression of 2.5% in the vertical direction (axial strain) as 

indicated in Figure 4.23, the volumetric increase for this specimen is 5.3%.  

4.5.3.2. A Uniform failure formation featured with pyramid cones. This 

significant volumetric dilation is an indication of heavy fracturing processes that took place 

within St. Peter Sandstone specimens. Figure 4.29 shows volumetric dilation for several 

specimens.  

 

 

 

 
Figure 4.29. Specimens after the triaxial test. 

 

 

 
There are three parts in the Figure 4.30. The middle one is the main body of the 

specimen, which was wrapped by scotch tape immediately after the test to maintain the 

broken parts in place. The pyramid shaped sandstone piece on the right is the cone from the 
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upper end of the specimen with the present view. This end was actually the bottom of the 

specimen during the test. The “pyramid” was found when the specimen was lifted. The loose 

sands in the plastic were originally part of the main body and they came loose when the 

specimen was removed. The small piece on the other side is the core from the other end.  

Figure 4.31 is a close look at the pyramid. The failure formation as observed from 

specimen 12AR is not a rare phenomenon. In fact, it is the formation observed from all test 

specimens. Figure 4.32 is the test result for specimen 6AR-1 and Figure 4.33 is for specimen 

1S- 

 

 

 

 
Figure 4.30. Failure formation associated with specimen 12AR -2. 

 

 

 
A distinctive difference between the failure modes resulting from the uniaxial 

compression test and the triaxial test is that the severe impact caused by the uncertainties 

created by local anomalies for the uniaxial compression test is essentially not a problem for 

the triaxial test. The uncertainties caused by the cohesionless property is significantly 
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diminished under triaxial test condtions. In this sense, the axial stress at failure determined by 

the triaxial test is a much more stable and reliable indication of the strength of St. Peter 

Sandstone. Therefore, the triaxial test should be conducted if possible. 

 

 

 

 
      Figure 4.31. A close look of the pyramid core at specimen 12AR-2 

 

 

 

4.5.3.3. Steep failure angle. Figures 4.30 through 4.33 show that all failure surfaces 

are defined by a very steep angle, which can be evaluated by either the shape of the pyramids 

or the shape of the inside walls of the specimens. The estimated angle is in the range of 75˚-

80˚ based on the height/width ratio of 4-5 for the slopes measured in this study. This angle is 

very close to the one observed from the uniaxial test, which yields a theoretical friction angle 

of 60˚-70˚.   
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Figure 4.32. Failure formation associated with specimen 6AR -1. 

 

 

 

   

 
Figure 4.33. Failure formation associated with specimen 1S-1. 
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4.5.3.4. Ductile behavior of specimens after the triaxial test. The change of the 

material behavior from brittle to ductile under the triaxial test can be observed not only from 

the change of stress-strain curves, but also from the change of the appearance of the test 

specimens. For the uniaxial compression test, if we carefully examine those broken pieces 

individually, the integrity for many of them still remains at a very good level similar to those 

of the large pieces in Figure 4.35.  For the specimens under the triaxial test, the situation is 

very different. There are significant amounts of loose sands. The crushed pieces are smaller 

and also much rounder. For those remaining large pieces, they are actually very fragile and 

are easily disaggregated by any disturbance. Figure 4.36 shows the appearances of specimen 

1S-5 immediately after the test and after it was moved to the storage disk. Even though extra 

attention was paid during the moving process, the specimen disintegrated into small pieces. 

This led to the procedure of wrapping all samples in scotch tape to prevent their 

disintegration.  

4.5.4. Analysis of Friction Angle associated with St. Peter Sandstone. A 

particular advantage of the triaxial test for St. Peter sandstone study is that it allows the 

friction angle to be determined quantitatively under a well-controlled laboratory condition.  

4.5.4.1. Friction Angles for St. Peter Sandstone determined by this 

Investigation. The Mohr circles and the failure envelopes for 6AR and 1S specimens are 

shown in Figures 4.36 and 4.37. It is evident that the friction angle for 6AR specimens is 

much higher, shown by the much steeper slopes for its failure envelope.  

For a non-linear Mohr envelope, the friction angle changes with the location. The 

average friction angle for a range of the failure envelope can be defined in many ways. In this 

research, the average friction angle for a specific range is defined as the angle of the secant 

line for that range. There are several advantages for adopting this definition: it is simple, easy 
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to use, and has no ambiguity. 

 

 

 

 
Figure 4.34. A typical specimen appearance after the uniaxial compression test 

 

 

 

 
Figure 4.35. specimens after triaxial test and after removing the specimen 

 

 

 

Based on this approach, the upper range friction angle is defined as the angle of the 

secant which intersects the Mohr envelope at the shear stress level of 5 MPa. The friction 

angles which are determined in Figures 4.36 and 4.37 are therefore the upper range friction 

angles for 6AR and 1S specimens, which are 73˚ and 69˚, respectively. Similarly, the lower 

a) Immediately after the test            b) after removing the specimen  
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range friction angle is defined as the angle of the secant which intersects the Mohr envelope 

at the shear stress level of 10 MPa. The lower range friction angels for 6AR and 1S 

specimens are shown in Figures 38 and 39, which 68˚ and 56˚, respectively. The average 

friction angles for 6AR and 1S specimens are 71˚ and 63˚, respectively. 

 

 

 

 

Figure 4.36. Internal frication angle measured at shear stress of 5 MPa for 

6ARspecimens 
 

 

 

 

Figure 4.37. Internal frication angle measured at shear stress of 5 MPa for 1S 

specimens 
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Figure 4.38. Internal frication angle measured at shear stress of 10 MPa for 6AR 

specimens 

 

 

 

 

Figure 4.39. Internal frication angle measured at shear stress of 10 MPa for 1S 

specimens 
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4.5.4.2. A summary of friction angles for St. Peter sandstone determined by 

major studies. The friction angles determined by the Mohr’s envelope method from this and 

previous studies are summarized in Table 4.5, which range from 56˚ to 73˚. It is noticed that 

56˚ is the low end friction angle for specimens with the highest porosity, while 73˚ is the high 

end friction angle for specimens with the lowest porosity. The average friction angle 

determined by Watson (1938) and Labuz et al. (1998) is 63˚, which is the same for 1S 

specimens tested in this research. With the consideration that the average 71˚ is associated 

with specimens that have the lowest porosity for St. Peter Sandstone, it appears that 63˚ is a 

representative figure for St. Peter Sandstone while it may fall on the conservative side with 

given our test results.  

 

 

 

Table 4.5. Friction angle determined by Mohr’s envelope method 

Specimen source 

Friction angle (degree) 

Reference 
Low end 

High 

end 
Average 

6AR, Clayton, IA 68 73 71  

1S, Clayton, IA 56 69 63  

Twin cities, MN 59 69 63 Watson, 1938 

Twin cities, MN   63 Labuz et al., 1998 

 

 

 

Finally, it is important to recognize that the high friction angle in the 60˚s is an 

inherent property of St. Peter Sandstone that can be determined by different means and that 

the Mohr envelope is just one of them. The direct shear, as discussed earlier, can also reveal 

this property. The most direct means to observe this property is to look at the tested 

specimens. As it is demonstrated in the previous chapter and this chapter, the steeply dipping 

failure formations which are observed from both the uniaxial compression and triaxial 

compression tests are the best evidences for the high fiction angle for St. Peter Sandstone.  
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4.6. PRACTICAL IMPLICATIONS OF TRIAXIAL TEST CONDITIONs 

The triaxial test on St. Peter Sandstone specimens has shown that the axial stress at 

failure increases rapidly with the increase of confining pressures. A question that has not 

been answered so far is the implication of this phenomenon for ground control and 

engineering problems in rock mechanics. 

4.6.1. The Effect of Confining Pressures on General Geological Materials. In 

order to answer this question, the results of several classical studies on the triaxial test are 

presented in Figures 4.40-4.43. Figures 4.40 and 4.41 are the mechanical responses of 

sandstone and norite under the triaxial compression test. These studies were carried out by 

Bieniawski (1972) and were used by Goodman (1989) for illustrating the effects of confining 

pressure. The study in Figure 4.42 shows the results of triaxial compression tests on 

Tennessee Marble which was performed by Wawersik and Fairhurst (1970) and was utilized 

by Brady and Brown (1993) for demonstrating the behavior of isotropic rock material in 

multiaxial compression. The study in Figure 4.43 displays results for the triaxial test for 

Carrara marble, which was conducted by Karman (1911) and was used by Jaeger and Cook 

(1979). 

 

 

 

Table 4.6. A comparison of RAS for St. Peter sandstone and  

conventional geological materials 

Rock type σ0 

(MPa) 

σc 

(MPa) 

σa 

(MPa) 

RAS Reference 

Sandstone   69.18   6.29 110.00   6.5 Bieniawski , 1972 

Norite 251.57   6.29 327.04 12.0 Bieniawski , 1972 

Tennessee marble 130.00 20.70 195.00   3.1 
Wawersik and 

Fairhurst, 1970 

Carrara marble  137.00 21.38 207.55   3.3 von Karman, 1911 

St. Peter sandstone, 1S 

specimens 
    3.52   0.66   20.23 25.3  

St. Peter sandstone, 6AR 

specimens 
    4.67   0.66   25.74 31.9  
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Figure 4.40. Stress difference versus axial strain curves as a function of confining pressure in 

triaxial compression experiments on sandstone (Bieniawski , 1972) 

 

 

 

To compare the effect of the confining stress on the axial stress at failure for the rock 

materials illustrated in Figures 4.40-4.43 with the effect exhibited by St. Peter sandstone, the 

RAS, the rate increase of axial stress as defined by Eq. 4.3 was calculated for these materials 

and compared with the RASs for St. Peter Sandstone in Table 4. 6.  

 

 

 

 
Figure 4.41. Stress difference versus axial strain curves as a function of confining pressure in 

triaxial compression experiments on norite (Bieniawski,1972) 
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Figure 4.42. Complete axial stress-axial strain curves obtained in triaxial compression 

tests on Tennessee Marble at the confining pressures indicated by the numbers on the 

curves (Wawersik and Fairhurst, 1970). 
 

 

 

 
Figure 4.43. The results of triaxial tests on Carrara marble (von Karman, 1911). 
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It is clear from the table that the rate increase (RAS) for St. Peter Sandstone is much 

higher than that for four conventional geological materials in Table 4.6. The rate increase for 

St. Peter sandstone ranges from 25.3 to 31.9. In contrast, it is much lower for conventional 

geological materials. For Tennessee marble and Carrara marble, they are only 3.1 and 3.3, 

respectively. It is interesting to note that the rate increases for these two marbles are very 

similar. The rate increase for sandstone is somewhat higher, which is 6.5. The rate increase 

for Norite is 12, which is the highest for the conventional geological materials, but is still 

significantly lower than that for St. Peter Sandstone. 

The rate increase range of 25-32 for St. Peter Sandstone implies that, for every unit 

increase of confining pressure, the strength measured by the axial pressure will increase by 

30 units. The extremely high rate increase for St. Peter sandstone suggests that the most 

efficient means to improve the strength of St. Peter sandstone is to apply the necessary 

confining pressure. 

4.6.2. The Implication of Triaxial Test Conditions for Ground Control 

Problems. The effect of confining pressures is of fundamental importance for ground control 

practices in St. Peter sandstone mines. In particular it concerns two outstanding issues: rock 

reinforcement and pillar design. 

At Pattison mine, the most significant ground control problem is pinch-out failures 

and pillar damages caused by pinch-out failures. Conventionally these problems were treated 

by rockbolts. Rockbolting is the basic technique for stabilizing underground openings. The 

operational principle of the technique is to increase the integrity of the rockmass by locking 

the rock blocks weakened by discontinuities together. An important precondition assumed by 

using this technique is that those rock blocks, or seams to be locked by rockbolts, are strong 

enough to stand the locking force. St. Peter Sandstone, as discussed, is cohesionless and is, 
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therefore, extremely vulnerable to local stress concentration. Because of this, rockbolting, 

which is a very efficient ground control technique for almost all conventional mines may not 

be the best choice for these specific sandstone problem. As an example, Figure 4.44 shows 

that the rockbolts and steel strips were used to reinforce a pillar, attempting to stop a 

progressive failure of the pillar originally caused by the pinch-out problem. The method, 

however, did not work. 

 

 

 

 
Figure 4.44. An attempt to stop a progressive pillar failure  

by rockbolting and steel stripping. 
 

 

 

In addition to rock reinforcement, the other potential important application of the 

confining pressure effect is pillar design. The rate increase index, RAS, may provide the 

designer useful information for assessing pillar strength.  Figure 4.44 shows the application 

of shotcrete for increasing pillar strength. 
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Figure 4.45. Stopping initial failures by applying a thin layer of shotcrete. 

 

 

 

4.7. CONCLUSIONS    

The triaxial compression test provides additional information for a further 

understanding of the basic mechanical and strength properties of St. Peter Sandstone, which 

in many ways is much more fundamental and important than uniaxial compressive tests.  

The study carried out by this investigation on the triaxial test for St. Peter Sandstone 

is pioneering in several fronts and has revealed much important information for 

understanding the basic mechanical and strength properties of St. Peter sandstone. 

4.7.1. Axial Stress-axial Strain Curves for St. Peter Sandstone. This is the first 

report of axial stress-axial strain curves for St. Peter Sandstone under the triaxial test 

conditions. The axial stress-axial strain curves obtained from triaxial tests are the record of 

the failure process, the basic information that allows one to analyze rock properties. In this 

regard, this study fills an important gap for the study of St. Peter Sandstone. 

The axial stress-axial strain curves obtained from our study clearly shows the effect 

of confining pressure: the rapid increase of the axial stress at failure is correlated with an 

increase of confining pressure. It also clearly shows the change of the material behavior from 

brittle to ductile because of the increase of confining pressures. The most interesting feature 

of the axial stress-strain curves obtained from our study is the remarkable similarity for the 
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same group specimens, which is an illustration that these specimens experience a very similar 

failure process.  

The similarity is also a strong indication of the stability of the test result. The 

following example is a further demonstration of the stability associated with  the triaxial test. 

For the 1S group, two specimens, 1S-4 and 1S-5, were tested under the same confining 

pressure of 6.88 MPa and the axial stresses at failure obtained for these two specimens are 

41.5 and 42.1 MPa, respectively. The difference is only 0.6 MPa, 1.4% of their average 

strength. From the similarity of their stress-strain curves in Figure 4.24, it is known that this 

small difference is by no means an accidental match. 

4.7.2. Failure Formations Observed from Test Specimens. Another important 

contribution of this research is revealing and analyzing the failure formation of specimens 

after failure, which is the first effort on this front for St. Peter Sandstone. The failure 

formation observed from the triaxial test is the result of the failure process recorded by the 

axial stress-axial strain and preserves the physical evidence for further exploring the failure 

process. 

The failure pattern for the triaxial compression test is very different from that 

exhibited for the uniaxial compression test. For the uniaxial compression test, there are two 

dominant failure formations, vertical splitting and steeply dipping shearing. However, the 

pattern of failure is totally random, which is largely controlled by local anomalies. Failures 

can occur either locally or crossing specimens with unpredictable combinations of two failure 

formations. The failure pattern for the triaxial is almost identical: a pyramid shape cone is 

formed at each end of the specimen as shown in Figure 4.27. This uniform appearance 

indicates that the failure process under the triaxial test conditions is no longer heavily 

affected by local anomalies. Rather, it is primarily governed by its inherent mechanical 
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properties. In this regard, the strength assessed from the triaxial test is a much more reliable 

indication of the strength of St. Peter Sandstone than the strength data obtained from the 

uniaxial compression test.  

A very important feature of the failure pattern observed from the triaxial test is the 

steep failure angles in the range of 70˚-80˚ degrees, which is a further confirmation of the 

extremely high friction angles associated with St. Peter Sandstone. The other important 

feature which can be observed from the specimens after the triaxial test is the change of the 

material behavior. For the uniaxial compression test, the failure is brittle which is shown not 

only by a very quick failure process, but also by the fact that the “debris” from the fractured 

specimens is often still quite strong. For the specimens after the triaxial test, the situation is 

very different. The debris has no strength at all. Most of them are small and round. The large 

pieces, such as the core, are in fact very fragile and are easily broken into small pieces once it 

is disturbed. Specimen 1S-5 discussed earlier is a good example in this regard. The specimen 

remained as one piece immediately after the test and before the test platens were removed 

(Figure 4.36 a). However, it disintegrated into very small pieces after the platens were 

removed (Figure 4.36 b). 

4.7.3. Effect of Particle Structure of St. Peter Sandstone. One of the most 

important contributions of this investigation is the demonstration that the strength of St. Peter 

Sandstone is primarily governed by its particle structure. This is done by comparing the 

mechanical response of specimens from two sample groups, 6AR and 1S. The porosities for 

these two sample groups are 24.5% and 30.5%, which define the porosity range for St. Peter 

Sandstone.  

The study shows that the strength for 6AR group, the group with the low porosity, is 

much higher than that for 1S group, the group with the high porosity. At the confining 
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pressure of 6.87 MPa, the strength for 6AR group is 89 MPa which is more than twice of the 

strength for 1S group, which is 42 MPa, at this confining pressure. The friction angle is also 

much higher for 6AR group, which ranges from 68˚ to 73˚ with an average of 71˚ while it 

ranges from 56˚ to 69˚ with an average of 63˚ for 1S group.  

The mechanical responses in terms of the axial stress-axial strain curves for these two 

groups are also very different. For the 1S group, the residual stress decreases much faster at 

the low confining pressures and is quite steady at the high confining pressures. The behavior 

for the 6AR group is almost opposite. Its residual stress is steady at low confining pressure, 

but decreases much faster at high confining pressure. Despite the fact that the residual stress 

for the 6AR group has a significant drop at the high confining pressure, it is still higher than 

the peak strength for the 1S group.  

Because of the critical influence of the particle structure on the strength of St. Peter 

sandstone, it is important to identify the specimen structure before the test so that the strength 

data can be analyzed in context.   

4.7.4. Effects of Confining Pressure.  In order to measure the effect of confining 

pressures on the stress at failure for different materials, an index of rate increase of the axial 

stress at failure, RAS, was defined. RAS provides a quantitative measurement of the increase 

of the axial stress at failure for each confining pressure unit. A study of RAS for both St. 

Peter Sandstone and conventional geological materials shows that the RAS for St. Peter 

Sandstone is much higher than that for conventional geological materials. This study 

provides a theoretical base for rock reinforcement and pillar design under St. Peter Sandstone 

condition. 
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5. PARTICLE STUCTURE OF ST. PETER SANDSTONE 

 

5.1.  INTRODUCTION 

A primary research objective set for this investigation is to determine the role of the 

particle structure on the basic mechanical and strength properties of St. Peter Sandstone. This 

research was first promoted by field observations that failures often started from the locations 

where sand particles are coarse and poorly graded (uniform gradation).  

During the uniaxial and triaxial compression test, the role of the particle structure for 

St. Peter sandstone was investigated by comparing two groups of specimens, 6AR and 1S, 

which exhibit distinctive difference in porosity. The porosities for these two groups 6AR are 

24.5% and 30.5%, respectively, which represent two extremes of the porosity associated with 

St. Peter sandstone. The test results show that 6AR specimens are much stranger than 1S 

specimens. The friction angle for 6AR specimens is also considerably higher.  

In this chapter, the mineralogical structure of St. Peter Sandstone will be studied in 

terms of mineral composition, density, porosity and particle size distribution. 

It is important to note that the mineralogical study carried out in this chapter is 

significantly different from the conventional approach. First the samples utilized for study are 

not randomly selected. Rather they are from two groups with distinctive structures. As such, 

all mineralogical features for these two group specimens can be compared objectively. 

Furthermore, a focus for this study is to identify the relations between the mineralogical 

properties so that one may be able to interpret these properties from one to another. Finally, a 

goal of this study is to establish a physical model for the particle structure of St. Peter 

sandstone, which can be used to explain and to explore the basic mechanical and strength 

properties of St. Peter sandstone. 
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5.2. MINERALOGICAL COMPOSITION 

St. Peter formation is a pure silica sand and this is especially true for the northern part 

of states (Thiel, 1935). The chemical characters of St. Peter sands from different areas are 

presented in Table 5.1.  

 

 

 

Table 5.1. Comparison of the chemical characters of St. Peter sandstone  

from different areas (Thiel, 1935) 

State 
No. of 

analyses 
SiO2 Al2O3 Fe2O3 CaO MgO 

Loss on 

ignition 
Total 

         
Minnesota 3 98.79 0.64 0.21 0.15 …… 0.09 99.88 

Wisconsin 3 98.01 0.55 0.66 0.43 0.10 …… 99.75 

Illinois 5 99.72 0.11 0.05 0.56 0.04 …… 99.95 
Missouri 22 98.87 0.35 0.19 0.13 0.08 0.34 99.96 

Arkansas 18 99.02 0.27 0.17 0.07 0.002 0.25 99.77 

Oklahoma 1 99.22 0.32 0.14 0.18 trace 0.003 99.86 
         

 

 

 

During this investigation, three samples were sent to Advanced Materials 

Characterization Laboratory (AMCL), Missouri University of Science and Technology, for 

the mineralogical composition analysis. The equipment that was utilized for the test is Philips 

MPD X-Ray Diffraction. Mortar and pestle were used to crush each sample. Coning and 

quartering were used to obtain representative samples. The test result shows that the silica 

content for all three samples are greater than 99% (Table 5.2). The detailed test result is given 

in Appendix C. 

 

 

 

Table 5.2. Silica content for St. Peter sandstone samples from Clayton, Iowa 

Sample ID SiO2 

1S >> 99% 

6AR >> 99% 

3AS >> 99% 
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The main purpose of the mineralogical composition test is to determine the degree of 

sand purity in terms of its silica content. This study served two purposes for this 

investigation. First, we can directly use the density of silica for various volume-weight 

related calculations if the sand can be considered pure silica. Secondly, there will be no 

scientific base for sand particles being interpenetrative each other when the sand has such a 

high degree of purity. penetrative surface fabric is a dominant theory used for explaining the 

phenomenon of high friction angles associated with St. Peter sandstone.  

 

5.3. DENSITY  

The density of St. Peter Sandstone was studied in this investigation. The objective of 

this study was to determine the correlation between porosity and density. The focus for this 

study, again, was 6AR and 1S samples.  

The density for each specimen was determined by measuring its weight and bulk 

volume. Digital calipers were utilized for the volume measurement. An important reason to 

use this measurement method is to minimize the disturbance to the specimens as they were to 

be used for other tests. Two measures were taken in order to minimize errors associated with 

this measurement method. First the size of the specimens used for the test is relatively large. 

No specimens with a size less than 50 mm were used. Secondly, six specimens were tested 

for two main groups (6AR, 1S) so that the quality of the measurement can be judged 

statistically. Table 5.3 is a summary of the specimens used for the test as well as the test 

results.  Table 5.4 is a density comparison for specimens from three sample groups. It is 

noted that the density for the 6AR group is almost 8% higher than the density for the 1S 

group. 
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Table 5.3. Densities of St. Peter Sandstone from Clayton, Iowa 

Sample ID 
Dimension (mm) 

(L×W×H) 
Volume(Kmm3) Weight(g) Density(g/cm3) 

Waterjet 91×90×94 769.86 1513.00 1.967 

6AR-1 77×74×85 484.33 1003.28 2.040 

6AR -2 53×51×63 170.29 339.04 1.954 

6AR- 3 52×50×48 124.80 255.44 2.068 

6AR -4 56×53×57 169.18 349.36 2.092 

6AR -5 51×51×52 135.25 263.70 1.946 

6AR- 6 54×53×60 171.72 332.83 1.922 

1S- 1 52×50×70 182.00 338.84 1.857 

1S -2 52×49×82 208.94 402.79 1.936 

1S- 3 51×51×81 210.68 388.82 1.827 

1S- 4 52×50×94 244.40 446.38 1.815 

1S -5 52×52×48 129.79 244.88 1.876 

1S -6 50×52×87 226.20 413.58 1.833 

 

 

 

Table 5.4. A comparison of densities for different sample groups 
Sample ID Density for individual specimens (g/cm3) Mean (g/cm3) Stand. Dev. 

6AR 2.040  1.954  2.068  2.092  1.946  1.922 2.004 0.072 

1S 1.857  1.936  1.827  1.815  1.876  1.833 1.857 0.044 

Waterjet 1.967 1.967 --- 

 

 

 

5.4. PARTICLE SIZE DISTRIBUTION FOR ST. PETER SANDSTONE 

The knowledge of the particle size distribution for St. Peter Sandstone is important in 

different ways. First it is the property that has a dominant effect on other basic properties, 

such as density porosity, permeability. A thorough understanding of these properties is of 

fundamental importance for St. Peter Sandstone research. Secondly, it is also critical for 

characterizing the particle structure of St. Peter Sandstone and for further exploring the 

structure related phenomena, such as high friction angle associated with St. Peter Sandstone. 

Finally, it is also of great practical importance. As discussed earlier, failures in the field often 

start from the locations where sand particles are coarse and uniformly distributed. The 

research on particle size distribution will provide the useful information to explain the 
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problem and shed light on how to deal with the problem.   

5.4.1. A General Discussion of Particle Size Distribution for St. Peter Sandstone.  

According to Thiel (1935), St. Peter sands have a very uniform distribution. About 90% of 

the sands fall within the range of 1/8 – 1/2 mm. The finer and coarse grades are in very small 

amounts. As an example, Figure 5.1 shows the grade size distribution of a series of channel 

samples taken at vertical intervals of ten feet, from an outcrop of the St. Peter near Blue 

Mound, Wisconsin (Thiel, 1935). There are two distinctive characters which can be observed 

from this figure. First the particles that are smaller than 1/16 mm are less or significantly less, 

in most cases, than 0.3% except the last interval. Second, the amount of coarse sands, which 

is greater than 1/2 mm, is about or less than 5%. However, the top two intervals are not 

following this rule.  

5.4.2. Particle Size Distribution for Samples from Clayton, Iowa. In this 

investigation, the particle size distribution was analyzed for both 6AR and 1S samples.  A 

Microtrac S3500 size analyzer from the Department of Material Science and Engineering, 

Missouri University of Science and Engineering, was utilized for this study. Samples were 

carefully disaggregated from 6AR and 1S blocks. Conning and quartering were used to 

prepare representative sample. A total of ten 6AR samples and ten 1S samples were prepared 

and analyzed for their particle size distributions. The test results for 6AR and 1S samples are 

presented in Figure 5.2 and Figure 5.3, respectively.  
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Figure 5.1. Textural analysis in percent by weight of samples of St. Peter sandstone from an 

exposure near Blue Mound, Wisconsin (Thiel, 1935) 
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Figure 5.2. Particle size distribution for 6AR samples 

Sample ID: 6AR-1-1 

Sample ID: 6AR-2-2 

Sample ID: 6AR-4 

Sample ID: 6AR-6 
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Figure 5.2. (cont.) Particle size distribution for 6AR samples 

Sample ID: 6AR-6 Sample ID: 6AR-7-1 

Sample ID: 6AR-7-1-1 Sample ID: 6AR-8-1 

Sample ID: 6AR-10-1 
Sample ID: 6AR-9-1 
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Figure 5.3. Particle size distributions for 1S samples 

 

Sample ID: 1S-1(5-4-2012) Sample ID: 1S-2-(5-3-2012) 

Sample ID: 1S-2-3(5-3-2012) Sample ID: 1S-3-(5-3-2012) 

Sample ID: 1S-4-(5-3-2012) Sample ID: 1S-5-(5-3-2012) 
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Figure 5.3 (cont.) Particle size distribution for 1S samples 

 

 

 

A quick examination of these figures shows that the particle size distribution curves 

for each sample group are very similar. To facilitate the discussion, the indexes that 

characterize these distribution curves are summarized for 6AR and 1S samples in Tables 5.5 

and 5.6, respectively. 

Before a further discussion of the characteristics of the particle size distribution 

curves associated with 6AR and 1S samples, it is necessary to have a brief discussion on the 

parameters which are conventionally used for characterizing these distribution curves.  

In the field of geotechnical engineering, a symbol, Dn, often denotes particular screen 

Sample ID: 1S-1-(10-8-2012) Sample ID: 1S-1-(9-12-2012)  

Sample ID: 1S-7-(9-12-2012) 
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size that n% materials can pass. For instance, D10 refers to a screen size that 10% of materials 

can pass by weight. Physically it is an indication of the size that (1-n)% materials will be 

larger. 

 

 

 

Table 5.5. Grain size parameters for 6AR samples 
Sample ID D10 (mm) D50(mm) D60 (mm) Cu Min(mm) Max(mm) 

6AR-1-1 0.101 0.200 0.210 2.08 0.016 0.348 

6AR-2-2 0.105 0.200 0.210 2.00 0.020 0.352 

6AR-3 0.087 0.200 0.210 2.41 0.010 0.419 

6AR-4 0.100 0.200 0.210 2.10 0.017 0.419 

6AR-6 0.100 0.200 0.210 2.10 0.017 0.384 

6AR-7-1 0.100 0.200 0.210 2.10 0.017 0.352 

6AR-7-1-1 0.100 0.200 0.210 2.10 0.017 0.352 

6AR-8-1 0.090 0.200 0.210 2.33 0.012 0.419 

6AR-9-1 0.090 0.200 0.210 2.33 0.014 0.419 

6AR-10-1 0.093 0.200 0.210 2.26 0.014 0.419 

Median  0.100 0.200 0.210 2.10 0.017 0.402 

 

 

 

D10 is also called effective size. In geotechnical engineering, it is a quick indication 

how coarse the material is and is used directly as a measurement of permeability. If we 

compare this index for 6AR and 1S samples, it can be understood that 1S samples are much 

coarser than 6AR samples. The medians of this parameter for 6AR and 1S are 0.1 and 0.2 

mm, respectively.  

For this research, a much more important application of this parameter is whether 

there is a significant presence of fine sand particles. As it has been discussed earlier about 

90% of St. Peter sands fall within 0.125 and 0.500 mm. When D10 is only 0.1 mm for 6AR 

samples, it is immediately known that there are a significant amount of fine sand particles, 

and this can be clearly seen in Figure 5.4.  

Figure 5.4 is a combination of two typical particle distribution curves, one for 6AR 

and one for 1S samples. The arrangement in Figure 5.4 allows a direct comparison of the size 
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distribution for these two groups of samples. For 1S sample, D10 is at 0.2 mm and the 

smallest particles are about 0.1 mm. For 6AR sample, D10 is at 0.1 mm and it has a long tail, 

ending at 0.02 mm. The importance of this structure feature will be discussed in later 

sections.  

 

 

 

Table 5.6. Grain size parameters for 1S samples 

Sample ID D10 (mm) D50(mm) D60(mm) Cu Min(mm) Max(mm) 

1S-1(5-4-2012) 0.190 0.280 0.310 1.63 0.081 0.419 

1S-2-(5-3-2012) 0.200 0.300 0.310 1.55 0.081 0.419 

1S-2-3(5-3-2012) 0.200 0.300 0.320 1.60 0.096 0.419 

1S-3-(5-3-2012) 0.200 0.310 0.330 1.65 0.040 0.419 

1S-4-(5-3-2012) 0.200 0.310 0.329 1.55 0.114 0.419 

1S-5-(5-3-2012) 0.200 0.310 0.320 1.60 0.096 0.419 

1S-1-(10-8-2012) 0.190 0.280 0.300 1.58 0.096 0.837 

1S-1-(9-12-2012) 0.180 0.280 0.310 1.72 0.114 1.408 

1S-7-(9-12-2012) 0.180 0.280 0.310 1.72 0.068 0.704 

Median 0.200 0.300 0.310 1.60 0.096 0.419 

 

 

 

 
Figure 5.4. A comparison of particle size distributions for 6AR and 1S samples 
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The other important parameter used in Tables 5.5 and 6 is D50. From the definition of 

this notation explained earlier, it is immediately known that this parameter represents the 

median of sand particle, an indication of a representative or an average size. The difference is 

very significant for 6AR and 1S samples. For 6AR samples, it is 0.2 mm and for 1S samples, 

it is 0.3 mm, which is 50 larger than that for 6AR samples, a quantitative confirmation of the 

size difference observed from thin section images (Figure 5.5). It is also interesting to note 

from the thin section images that it lacks fine particles for 6AR sample, a confirmation of the 

particle size analysis.    

 

 

 

 

Figure 5.5. Thin section images of the 6AR and the 1S samples. 

 

 

 

The uniformity coefficient is defined as a ratio of D60/D10,. It represents the 

uniformity of the particle size distribution. A small value means that particles are narrowly 

distributed. For 6AR and 1S samples, they are 2.1 and 1.6. For general geological materials, 

even for sand materials, the values of 1.6 and 2.1 are considered extremely low, that is, the 

sand particles for both 6AR and 1S samples are confined within a very narrow range.  

a) Thin section image of 6AR 

sample 

 b) Thin section image of 1S sample 
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5.4.3. A General Discussion of Particle Size Distribution for St. Peter Sandstone. 

The study of the characteristics of the particle size distributions associated with 6AR and 1S 

specimens also provides valuable information on how to reliably characterize the particle size 

distribution of  St. Peter Sandstone. For the sake of discussion, it is interesting to compare the 

distribution parameters obtained in this research (Table 5.7) and those obtained from the 

earlier work (Tables 5.8 and 5.9) . 

   

 

   

Table 5.7. A comparison of grain size parameters for 6AR and 1S sample 

Sample ID 

Effective 

size, D10 

(mm) 

Median 

Diameter 

D50 (mm) 

D60 (mm) 

Uniformity 

Coefficient 

Cu 

Minimum 

Diameter 

(mm) 

Maximum 

Diameter 

(mm) 

6AR 0.100 0.200 0.210 2.10 0.016 0.419 

IS 0.200 0.300 0.310 1.60 0.088 0.419 

 

 

 

In Tables 5.8 and5. 9 there are two parameters, coefficient of sorting and coefficient 

of skewness, which have not been discussed. Although these parameters are not the subjects 

for any further discussion, their meanings are briefly explained here for a completion of the 

discussions related to these two tables. Coefficient of sorting is defined as Squr(D75/D25), 

The function of this parameter is very similar to that of uniformity coefficient, which 

measures the  uniformity around median. Coefficient of skewness measures skewness of the 

density function of grain sizes.  

The medians for 6AR and 1S samples are 2.00 and 3.00 mm. In Tables 5.8 and 5. 9, 

if we ignore the special cases, such as 0.463 mm at Illinois, 0.161 mm at Missouri, and 0.114 

mm at Willow River, the medians for 6AR and 1S define the range for St. Peter Sandstone.  

The uniformity coefficients for 6AR and 1S samples are 2.10 and 1.60. The 

uniformity coefficients for 6AR and 1S samples are in the range of the uniformity 
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coefficients listed in these two tables. The uniformity coefficient of  1S, 1.60, is the lowest 

among the listed values. There are several values, which are larger than 2.10. This should not 

be considered unusual. In fact, four out of ten 6AR samples have the uniformity coefficients 

higher than 2.10, which are 2.26, 2.30, 2.30, and 2.40.   

 

 

 

Table 5.8. Summary of the textural characteristics of St. Peter s of the Upper Mississippi 

Valley. Based on computed averages from 96 samples (after Thiel, 1935) 

Geographic 

Location 

Median 

diameter 

Coefficent 

of 

sorting(SO) 

Coefficient 

of 

skewness 

(SK) 

Effective 

 size in 

millimeters 

Uniformit

y 

coefficient 

Gadelonia 0.241 1.39 1.02 0.165 2.12 

Castle Rock 0.192 1.31 1.17 0.106 1.64 

Chatfield 0.239 1.42 1.01 0.124 2.39 

Chimney Rock  0.309 1.45 1.26 0.107 2.24 

Decorah, Iowa                      0.233 1.45 0.99 0.117 2.34 

Mendota 0.235 1.41 1.09 0.142 1.99 

N. Minneaoopolis 0.235 1.48 0.96 0.107 2.65 

St. Paul Park 0.178 1.32 1.20 0.119 2.28 

Zumbrota 0.201 1.32 1.06 0.114 2.00 

Pretson 0.225 1.47 0.97 0.119 2.23 

S. Minneaoopolis 0.219 1.55 0.94 0.089 3.02 

Rochester 0.207 1.38 1.12 0.121 2.00 

Mound Park 0.197 1.37 1.07 0.121 1.92 

Washington Co 0.281 1.27 1.11 0.175 3.66 

Blue Mound, WI 0.235 1.33 1.04 0.125 2.38 

Ripon, WI 0.236 1.32 1.09 0.139 1.93 

South Geen Co, WI 0.221 1.33 1.14 0.133 1.90 

Willow River, WI 0.281 1.25 0.97 0.175 1.71 

Average 0.222 1.39 1.07 0.122 2.25 

 

 

 

 

The effective sizes for 6AR and 1S are 0.100 and 0.200. The effective sizes for 6AR 

and 1S are in the margins of the values showed in Tables 5.8 and 5.9 if the value associated 

with Illinois is ignored. There are several numbers that are slightly less than 0.10 mm. For 

6AR samples, there are three samples having the effective sizes lower than 0.100 mm. The 

lowest one is 0.087 mm. 
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Table 5.9. Summary of the textural characteristics of St. Peter sandstone from its northern                         

margin in Minnesota and Wisconsin to south-central Arkansas (after Thiel, 1935) 

Geographic 

Location 

Number 

of samples 

Median 

diameter in 
millimeters 

Coefficient 

of sorting 
(SO) 

Coefficient of 

skewness 
(SK) 

Effective 

 size in 
millimeters 

Uniformity 

coefficient 

       

Minnesota 72 0.216 1.42 1.03 .114 2.34 
Wisconsin 24 0.223 1.33 1.06 .124 2.31 

Illinois 11 0.463 1.34 0.93 .279 1.74 

Missouri 8 0.161 1.25 1.11 .151 1.59 
Arkansas 11 0.241 1.28 1.10 .149 1.75 

       

 

 

 

The characteristics of the size distributions associated with 6AR and 1S provide two 

base lines for comparison purposes. For instance, it is known from Table 5.9 that St. Peter 

Sandstones in Minnesota and Wisconsin are similar to 6AR samples from Clayton, Iowa, 

which the particle size close to the lower range of St. Peter Sandstone. 

These two base lines can also be utilized to check the reliability of the previous 

research. For instance,. the effective size and the median 0.175 mm are of 0.281 mm for 

respectively for samples from Washington Co. In other words, the size characteristics of  

samples from Washington Co are very similar to 1S. If D50/D10 is used, the uniformity 

coefficient approximated 1.606. However, the uniformity coefficient was reported 3.66 

(Table 5.8). This is a contradictory result since the sorting coefficient is 1.27, which is an 

extremely low value for St. Peter Sandstone. It is an indication that the size distribution curve 

is very steep for its central part. According to the above analysis, this value should be 1.66, 

instead of 3.66. 

 

5.5. POROSITY MEASUREMENT FOR ST. PETER SANDSTONE, CLAYTON, 

IOWA 

Porosity is a basic parameter for characterizing the particle structure of St. Peter 

Sandstone. In this research a special effort was made to accurately measure porosity because 
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of the fundamental importance of this parameter for this research. In addition to the buoyancy 

technique, a conventional method used for this purpose, the porosities were also studied in 

terms of petrographic images and density-volume relations. 

5.5.1. Porosities of St. Peter Sandstone for St. Paul-Minneapolis Area. It is 

beneficial to review previous research on this topic briefly. The study of porosity, however, 

appears to be very limited in the past. The only systematic study we could find is the one 

carried out by Kamb (1932) and the result of this study is presented in Table 5.10.  

 

 

 

Table 5.10. Porosities of St. Peter Sandstone (after Thiel, 1935) 
 

Sample No 

Stratragraphic position 

(in feet) 

Geographic location Percentage of 

Porosity (%) 

1 5 from top of formation Gov’t Dam, Minneapolis 27.2 

2 15 from top of formation Gov’t Dam, Minneapolis 27.2 

3 20 from top of formation Gov’t Dam, Minneapolis 24.6 

4 50 from top of formation Gov’t Dam, Minneapolis 26.8 

5 65 from top of formation Gov’t Dam, Minneapolis 30.1 

6 100 from top of formation Gov’t Dam, Minneapolis 29.5 

7 40 from top of formation Battle Greek Park, St. Paul 29.6 

8 20 from top of formation Newport, Minnesota  28.8 

9 15 from top of formation St. Paul Park, Minnesota  28.1 

10 30 from top of formation North Minneapolis  31.1 

                                                                            Average 28.3 

 

 

 

The porosities in the table were determined by a volumetric method suggested by 

Russell (1926). The tests were performed on St. Peter sandstone. Acetylene tetrachloride  was 

used as the immersion liquid.The data in the table are all from St. Paul-Minneapolis area and 

are listed according to the depth locations of these samples. The minimum porosity is 24.6% 

and the maximum is 31.1%. It appears that the porosities for shallow locations are smaller 

than those for deeper locations, except sample No. 10, which is quite shallow (30 ft below 

top), but has the highest porosity of 31.1%.  
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5.5.2. Porosity Measurement by Liquid Saturation Technique. The liquid 

saturation technique is used to measure the effective porosity for rock samples (Torsæter & 

Abtahi, 2000). With this technique, samples are first vacuumed inside a dessicator by a 

vacuum pump and then saturated by fluid immersion in a vacuum for a period of at least 1 

hour (Figure 5.6). The saturated samples are then weighed. In this study a 2 % potassium 

chloride (KCL) solution was used to saturate the samples. Figure 5.6 shows the saturation 

process for the samples used in this investigation.   

Before the vacuuming process, samples were dried in an oven at approximately 105˚ 

Celsius for no less than 24 hours.  

The bulk volume of each sample was also measured. The volume of voids is 

determined by the following equation 

 

fluid

drysat

V

WW
V

γ
−

=                                                                                     (5.1) 

Where Vv is the volume of voids, Wsat is the weight of saturated samples, Wdry is 

the weight of dry samples, and γfluid is the density of the fluid. 

 

The porosity can then be calculated by the following equation, 

V

V
n V=                                                                                                         (5.2) 

Where n is porosity and V is the sample volume.  
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Figure 5.6. Samples are saturated by fluid immersion in a vacuum  

using liquid saturation method. 

 

 

 

In this research three samples were measured for their porosities using the liquid 

saturation technique, including two 6AR samples and one 1S sample, and the results are 

given in Table 11. A comparison of the porosities for 6AR and 1S samples is given in Table 

5.12. 

 

 

 

Table 5.11. Porosity of St. Peter Sandstone, Clayton, Iowa,  

using liquid saturation technique method 

Sample 

ID 

Dimension 

(mm) 

Volume 

 (cm3) 

Weight 

-dry (g) 

 Weight 

-Sat. (g) 

Void 

(cm3) 

Porosity 

(%) 

6AR-3 51×51×50 129.98 249.302 280.462 30.81 23.7   

6AR-6 50×51×51 130.11 253.194 285.652 32.14 24.7 

1S-3 48×50×38   92.29 172.485 200.549 27.78 30.1 
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5.5.3. Porosity Measurement based on Petrographic Images. In this research, thin 

section images, as those presented in Figure 5.5, were utilized for porosity measurement.   

A thin section is a thin layer of a rock sample that is ground to a thickness of 30 

microns. The cross area dimension for a thin section is typically 26 mm × 46 mm.   

There are mixed opinions about the efficiency of method for estimating volumetric 

pore content. For instance, it was stated in ISRM suggested methods (ISRM, 1981) that 

“Microscopic techniques used to determine volumetric content of mineral 

grains, do not provide a sufficiently accurate estimate of volumetric pore 

content and experimental techniques are required.”  
 

 

 

Table 5.12. Porosities determined by liquid saturation method for St. Peter Sandstone 
Sample ID Porosity (%) Mean (%) 

6AR    23.7  24.7 24.2 

1S     30.1 30.1 

 

 

 

A mathematical verification for this method was provided first. Assume that a sample 

has a cross section area of A with a thickness of D. The sample consists of m number of thin 

sections with a thickness of Δd for each thin section such that D = Δd x m. Let Avi denote the 

void area for the ith thin section, where i = 1, 2, 3, ……, n. The porosity for this sample is 

 

mdA

dA

V

V
n

m

i viV

×∆
∆

== ∑ =1                                                                                          (5.3) 

Where n is the porosity, V is the sample volume, and VV is the void volume. Assume 

that the image size is significantly larger than the grain size and grain particles are randomly 

distributed in the volume.  As such, the void for each thin section should be statistically 

identical, that is, 
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dAdAdAdA vmvvv ∆==∆=∆=∆ ......21                                                                (5.4) 

Where Av is the void area for each thin section. Considering Eq. 4, Eq. 3 can be 

rewriting as  
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Eq. 5.5 simply states that porosity can be expressed by the ratio of void area to total 

area measured from microscopic images.   

In this investigation four thin section samples, two for 6AR and two for 1S, were 

utilized to study their porosities. Each thin section sample was divided into 15 image areas to 

assure the image resolution. Such an example is given in Figure 5.7 which contains 15 thin 

section images for a 6AR thin section sample.   

The porosity for each thin section image is determined by the following procedure:  

• The image is loaded on the computer screen,  

• Each sand particle was traced with the help of Element, a Nikon developed 

imaging software package,  

• The traced area is calculated by Element and the result is imported to a 

spreadsheet,  

• The total particle areas were calculated after all sand particles in the thin 

section image were traced and the corresponding areas were determined by NIS Element 

software developed by Nikon, and 

• The void area in each petrographic image was calculated by subtracting the 

total grain areas from the total image area. 

As an example, the porosities determined by this method for 15 thin section images in 

Figure 5.7 are listed in Table 5.13  
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Table 5.13. Porosities determined for 6AR samples by using thin section images 

Image ID Porosity (%) 

6AR-1 24.0 

6AR-2 24.9 

6AR-3 22.7 

6AR-4 23.5 

6AR-5 25.5 

6AR-6 22.2 

6AR-7 23.4 

6AR-8 20.5 

6AR-9 21.2 

6AR-10 20.1 

6AR-11 24.3 

6AR-12 24.3 

6AR-13 24.8 

6AR-14 27.4 

6AR-15 22.8 

Average 23.4 

Standard 

deviation 
1.9 

 

 

 

The final measurement results for four thin section samples are summarized in Table 

14. The average porosities for 6AR and 1S samples are 24.30 and 30.49, respectively, which 

are very close to results determined by the Buoyancy method. The porosities for 6AR and 1S 

samples determined by the liquid saturation method method are 24.2% and 30.1%, 

respectively.  
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Figure 5.7. Thin sections that are used for porosity measurement in this research 
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5.5.4. Porosity Estimation based on Dry Density of Samples. As discussed in 

section 5.1, St. Peter Sandstone can be considered as pure quartz.  Because of this, porosities 

for St. Peter Sandstone samples can be estimated in terms of the specific gravity of quartz 

and the densities of these samples. Mathematically, this relation can be expressed by the 

following equation, 

ws

dws

G

G
n

γ
γγ −=                                                                                                     (5.6) 

Where Gs is the specific gravity, which is 2.65 for quartz, γw is the density of water, 

which is 1, and γd is the dry density. The densities for 6AR, 1S and waterjet were discussed 

in section 5.2 and were given in Table 5.3. The average densities for these sample groups and 

the corresponding porosities are listed in Table 5.15.  

 

 

 

Table 5.14. Porosities of St. Peter sandstone determined based on petrographic images 
Block name Individual Results (%) Average Porosity (%) 

6AR 23.4, 25.2 24.30 

1S 30.0, 30.98 30.49 

 

 

 

Table 5.15. Porosities determined based on sample densities 
Sample group Density (g/cm3) Porosity (%) 

6AR 2.004 24.41 

1S 1.857 29.89 

Waterjet 1.967 25.77 

 

 

 

5.5.5. A Summary of the Porosity Measurement Results. The porosity of St. Peter 

Sandstone was measured by three different approaches: liquid saturation technique, 

petrographic images, and dry density of samples. The results, as displayed in Table 5.15, are 

remarkably similar. The standard deviation for 6AR samples is only 0.1% and for 1S samples 
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is only 0.3%. 

The results presented in Table 5.16 are significant for three particular reasons. First it 

demonstrates extremely high reliability of the porosities determined from this research as the 

results given by three independent methods with different measurement mechanisms are most 

identical. 

 

 

 

Table 5.16. A comparison of porosities determined by three approaches 

Sample 

group 

Porosity (%) 

Liquid 

Saturation 
Petrographic Density Average Std. 

6AR 24.2 24.3 24.4 24.3 0.10 

1S 30.1 30.5 29.9 30.2 0.31 

 

 

 

Secondly, it demonstrates that the porosity for St. Peter Sandstone can be reliably 

determined by any of the three methods. The importance of this finding is that it provides 

flexibility for determining this important parameter. It is important to emphasize that the 

highly consistent results obtained from this research is also due to attention to details. For 

instance, only large samples were used for the volume measurements in order to reduce the 

impact of measurement errors. Breaking the thin section sample into 15 image areas to assure 

high image resolutions is another example of such attention to detail.  

Finally, the consistent result is a validation of the quality of all related work, 

including volume measurements, density determination, test procedures with the liquid 

saturation technique, and working procedures with petrographic images. 

 

5.6. RHOMBOHEDRAL PACKING – A PARTICLE STRUCTURE MODEL FOR ST. 

PETER SANDSTONE   

In order to study the structural effect of St. Peter Sandstone, rhombohedral packing 
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was selected to model the particle structure of St. Peter Sandstone.  The expermintal results 

of this research was used. Figure 5.8 is a three dimensional view of this model which consists 

of even size spheres packed with the rhombohedral pattern.  

 

 

 

   

Figure 5.8. Rhombohedral packing. 

 

 

 

Rhombohedral packing was originally discussed by Graton and Fraser (1935). The 

selection of the rhombohedral packing as the structure model for the St. Peter sandstone is 

based on three considerations. First the rhombohedral packing offers the closest porosity for 

the St. Peter sandstone. The porosity for the St. Peter sandstone is in a range of 24 – 31%. 

The porosity for the rhombohedral packing is in the middle of the porosities typically 

associated with the St. Peter sandstone, 25.95%. Secondly, the rhombohedral packing has the 

most stable structure among all even-sphere models. It is incompressible because it reaches 
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the minimum porosity that can be achieved by even-sphere models. This characteristic is 

representative for the St. Peter sandstone. The third consideration is that the rhombohedral 

packing is the basic model for densely packed soils. In comparison with soil samples, the St. 

Peter sand is much more closely resembled by the model if we consider the roundness and 

narrowly distributed size of these sand particles.  

Graton and Fraser (1935) conducted a detailed model study on the porosity and 

permeability of rocks (Graton and Fraser, 1935). The model consists of the geometrically 

systematic arrangement of uniform spheres. With this model, not only the porosity for the 

assumed grain structure can be studied, but also the stability of the associated structure can be 

evaluated. Six typical cases were identified in this study, which are Case 1 – cubic packing, 

Case 2 – orthorhombic packing, Case 3 – rhombohedral packing, Case 4 orthorhombic 

packing, Case 5 –tetragonal-spheroidal packing, and Case 6 – rhombohedral packing (Figure 

9). Among these six cases, two pairs of cases have identical internal arrangements. The first 

pair is Case 2 and Case 4 and the second pair is Case 3 and Case 6. As a result, only four 

cases are independent. The porosities for these four independent cases are listed in Table 

5.17. 

It is known from the table that cubic packing is the loosest packing and rhombohedral 

packing is the tightest. Among these four independent cases, rhombohedral packing offers the 

most stable structure 
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Figure 5.9. Six typical packing patterns of uniform spheres (after Graton and Fraser, 1935). 

 

 

 

Table 5.17. Porosities for six typical packing patterns of uniform spheres  

(Graton and Fraser, 1935). 

Case # Packing case Porosity (%) 

Case 1 cubic packing 47.64 

Cases 2 & 4 orthorhombic packing 39.54 

Case 5 tetragonal-spheroidal packing 30.19 

Cases 3 & 6 rhombohedra packing  25.95 

 

 

 

The even-sphere models have been used extensively in soil mechanics due to the fact 

that the porosity range of 26.0% - 47.6%, predicted by this modeling approach fits very well 

for soils.  The question arises as to why a highly simplified modeling approach is well suited 

for soils which are known for varying particle shapes and particle size distributions. The 

answer lies in the balancing of two opposite effects: high uniformity in size distribution and 

varying particle shape. Generally speaking, the size of soil particles spreads over a wide 

range, which tends to decrease the porosity. The irregular shape of soil particles, on the other 

hand, increases the porosity. These two totally opposite effects are apparently neutralized in 

terms of their impacts on the porosity.  

The proposed model provides a quantitative means to estimate the porosity in terms 
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of the grain size distribution for the St. Peter Sandstone. The model provides a theoretical 

explanation of the porosity range typically associated with the St. Peter sandstone, which is 

24.5 – 30.5% (Ge et al.; 2014a). This was verified by the St. Peter Sandstone data from 

Clayton, Iowa. Based on the proposed model, as well as the typical grain size distribution, it 

was hypothesized that the porosity for the shallowly buried St. Peter Sandstone is not a 

random phenomenon. Rather, it was suggested that it is significantly affected by the smaller 

grains fraction. 

 

5.7. CONUCLUSIONS 

Both field observations and the laboratory studies discussed in Chapters 3 and 4 have 

suggested an important role played by the particle structure of St. Peter Sandstone and a need 

of an in-depth understanding of this particle structure. The study discussed in this chapter 

was the first step to explore this particle structure and its effect. The significance of this study 

is discussed as follows. 

5.7.1. Porosity Measurement for ST. Peter Sandstone  

• The porosities for 6AR and 1S sample groups were determined by three 

different methods, which are liquid saturation technique, petrographic image 

and density approach.  

• The measurement results can be used as a calibration data base for related 

studies, because of the accuracy of the measurement and the special status of 

the porosities associated with these two sample groups. 

• It was demonstrated that the porosity of St. Peter sandstone can be determined 

accurately by three methods with different measurement mechanisms.  

• It was mathematically verified that an accurate porosity measurement can be 

achieved by using two dimensional petrographic images.  
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• The demonstration of the reliability of these three methods provides 

researchers much more flexibility to study the porosity of St. Peter sandstone.     

 

5.7.2. Particle Size Distribution 

• The the particle size distributions was determined for for 6AR and 1S groups. 

• Study of the particle size distributions for 6AR and 1S samples reveals the 

physical cause of the porosity difference between two sample groups: the 

existence of fine particles. 6AR samples have a significant amount of fine 

particles that can fill large gaps while 1S samples are completely devoid of 

fine particles.  

• The measurement results can be used as a calibration data base for related 

studies, bcause of the accuracy of the measurements and the special status of 

the porosities associated with these two sample groups. In fact, it becomes 

one of  the key parameters to examine the consistency and reliability of 

previous research result. For instance, as it was discussed in section 5.3, it 

was found that the uniformity coefficient for the sandstone from Washington 

Co. in Table 5.8 should be around 1.66 instead of 3.66 showed in the table.  

5.7.3. Rhombohedral Packing.  A particle structure model for St. Peter Sandstone  

A particle structure model, rhombohedral packing, was proposed for St. Peter 

sandstone. The model in this research was utilized to examine several important structure 

related effects, including 

• The porosity variance (24% - 31%) for St. Peter sandstone,  

• High friction angle associated with St. Peter sandstone, and 

• Hertzian fractures observed from St. Peter sandstone. 
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5.7.4. Size distribution – Porosity – Density Relation. One of the most 

important contributions resulting from this study is the demonstration of the close 

correlations among size distribution, and porosity and density. The significance of this 

work can be summarized as follows:  

• It provides an inside view of the particle structure: samples dominated by 

coarser particles lack of fines and samples dominated by smaller particles 

have a fair amount of fines. It is this difference that causes the differences in 

porosity and density. This explains why there exist close correlations among 

size distribution, porosity, and density.  

• The close correlations demonstrated in this research provide a powerful tool, 

which allows one to cross check the research results on these basic 

mechanical properties of the St. Peter Sandstone. For instance, St. Peter 

Sandstones from Minnesota should have a very similar property to 6AR based 

on the size distribution characteristics in Table 5.9. However, it looks like 1S 

samples based on the porosities in Table 5.10. Clearly, the data from these 

two tables are inconsistent.  

• The close correlations demonstrated in this research allow one to interpret the 

other parameters from the one he has the confident.  

Based on the close correlation between the strength and porosity, the size 

distribution-porosity-density relation can be extended to the size distribution-porosity-

density-strength relation, which will be extremely useful information for ground control.   
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6. ADVANCED STUDY ON MICROSTRUCTURE OF ST. PETER SANDSTONE 

 

6.1. INTRODUCTION 

An important part of this research is to utilize thin section and Scanning Electron 

Microscopy (SEM) techniques to study the microstructure of St. Peter Sandstone.  

The most significant result of this study is the discovery of the systematical presence 

of Hertzian fractures on St. Peter Sandtone. This discovery provides not only critical 

information for understanding the microstructure of St. Peter Sandstone, but also important 

information for resolving a number of outstanding scientific issues. In this chapter, the 

concept of herzian fractures is discussed in section 6.2 in brief.  The observation of hertzian 

fractures on St. Peter Sandstone’s grains are given in this chapter.  

 

6.2. CONCEPT OF HERTZIAN FRACTURES 

When a hard spherical indenter is pressed against the flat surface of a brittle material, 

they are initially in contact only at a single point. As the load increases, the contact point 

becomes a contact circle. When the vertical stress at the contact area is sufficiently high, ring 

shaped fractures will initiate, near the edge of the contact area, and extends down a small 

distance before widening into a fully developed cone (Zeng et al., 1992). 

Although extensive research has been conducted on the theory of Hertzian fractures, 

the complete profile of naturally formed Hertzian fractures on geological materials in general 

and St. Peter sandstone in particular has not been observed. 
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Figure 6.1. a schematic view of Hertzian fractures (Zeng et al., 1992) 

 

 

 

6.3. HERTZIAN FRACTURES OBSERVED FROM ST. PETER SANDSTONE 

6.3.1. Basic Features of Hertzian Fractures associated with St. Peter Sandstone. 

A phenomenon discovered in this research is the systematical presence of Hertzian factures 

on St. Peter sands (Figure 6.2). The following is a brief discussion of such an example.  

As discussed in section 6.2, Hertzian fractures are the mechanical response of brittle 

materials, shown as the cracks generated immediately outside of contact locations. In Figure 

2, the dark lines that radiate away from the particle contact locations and along the particle 

surface are Hertzian fractures. It is noticed from Figure 6.2 that the presence of Hertzian 

fractures are systematic. Hertzian fractures were developed symmetrically at the both sides of 

every contact locations, regardless the sized of sand particles.   

Hertzian fractures are the sign of the high stresses developed at the contact locations. 

This is evident not only by the fact of fractures, but also by the continuity of highly stressed 
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areas shown by those bright locations. By following the location of these bright spots one 

will immediately know how stresses are transmitted within the structure. It is noted that there 

are two typical locations for bright spots: the interior area of the particle and the particle 

contact locations. This is because these locations are confined three dimensionally and, 

therefore, can carry out most stresses.  

 

 

 

 
Figure 6.2. Hertzian fractures observed on a thin section image of St. Peter Sandstone 

from Clayton, Iowa. 

 

 

 
A very important conclusion which can be drawn from pattern of Hertzian fractures is 

that all sand grains are highly stressed regardless of their sizes. For instance, if all sand 

particles, which are in direct contact with the largest sand particle located in the center of 

Figure 6.2 are examined, it can be observed that every grain is highly stressed regardless how 

large or small it is. The other important observation is that all contact locations are smooth. 

There are no signs of any forms of penetration at these contact locations.  
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6.3.2. Stress Trajectories. Figure 6.3 is another example of Hertzian fractures 

observed from St. Peter sandstone, where well-developed stress trajectories in both horizontal 

and vertical directions can be observed. With regard to horizontal stress trajectories, one can 

observe this trajectory either through the contact locations for the grains in the upper line 

(Grains denoted by A, B, C), or the grains in the middle line or the bottom line. For the 

vertical stress trajectory, the contact location of grains in the middle, marked by C, D, and E, 

is the clearest one. The vertical stress trajectories can be traced also from the sand grains on 

both sides of this thin section image.  

6.3.3. Stress Trajectories and Highly Stressed Small Sand Grains. Stress 

trajectories can be also observed in Figure 6.4. There are different ways to look at the stress 

trajectories associated with the sand grains on this thin section image. One can start from the 

large pink grain located on the right where one can trace the flows of the stress trajectories 

from the right tip of this grain, or from the bottom of the grain or from the top of the grain. 

The other one is to start from the large blue sand grain which is on the top of this pink one. A 

clear stress trajectory can be seen, which begins from this blue sand and points to the left-

lower corner direction. The end of this stress trajectory on the image is two blue color grains. 

It is interesting to note that there is a very small grain at the bottom tip of the last blue grain. 

From the pattern of the Hertzian fractures on the large grain, it is known that the stress is high 

at this contact location.   
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            Figure 6.3. Stress trajectories manifested by Hertzian fractures. 

 

 

 
There are many ways to look at the stress trajectories associated with the sand grains 

on Figure 6.5. One may start from the large pink grain located at the bottom of the image and 

trace two stress trajectories upward starting from the contacts with two blue grains. It is 

interesting to note that there is a very small grain (light brown color) between these two 

trajectories. From the pattern of the Hertzian fractures on two much larger sand grains which 

sandwiched this small sand particle, it is known that this small sand grain is highly stressed.  

There are many ways to look at the stress trajectories associated with the sand grains 

on Figure 6.6. First one may examine the contacts with the large blue grain located on the 

right and see how the stress trajectories radiate to other directions through these contacting 

grains. The most interesting phenomenon that can be observed in this image, however, is that 

small grains, are also highly stressed. For example, one can consider the grain located 

immediately above the big blue sand. Each of these two is in contact with three grains. From 

A 
B 

C 

D 

E 
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the fracture pattern observed on the surrounding grains, it is known that these two small sand 

grains are highly stressed.   

 

 

 

 
Figure 6.4. Stress trajectories and a highly stressed sand grain 

 

 

 
The main phenomenon observed in Figure 6.7 is that small grains are also highly 

stressed. Consider the small sand grain under a pink sand in the middle. It is noticed that this 

small grain is surrounded by four larger ones. From the pattern of Hertzian fractures on these 

grains, it is known that this small grain is highly stressed. It is also interesting to note that the 

small blue grain on the left side, is also highly stressed based on the pattern of the Hertzian 

fractures on the two adjacent larger grains. 
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Figure 6.5. Stress trajectories and a highly stressed small sand grain. 

 

 

 

 
Figure 6.6. Stress trajectories and highly stressed small grains. 

 

 

 



142 

 

  
         Figure 6.7. Stress trajectories and a highly stressed small grain. 

 

 

 

6.4 .CAUSE OF HIGH FRICTION ANGLE 

A property that is unique of the St. Peter Sandstone is its extremely high friction 

angle, in the range of 60˚- 70˚, which is 15˚ - 20˚ higher than the upper limit of the friction 

angle for general geological materials, which is about 45˚ - 50˚.  

6.4.1 Theory of Penetrative Surface Fabric (Locked Sand Theory). 

Understanding the mechanics of the high friction angle associated with St. Peter sandstone is 

significant from both a scientific and an engineering points of view. A dominant theory on 

the mechanics of the high friction angle is “locked sand”, which was originally proposed by 

Dusseault and Morgenstern (1979). According to the theory, the high friction angle is the 

result that sand particles are locked each other due to interpenetrative surface fabric. Figure 

6.8 is an example used by Dusseault and Morgenstern (1979).    

The theoretical background for the interpenetrative surface fabric is intergranular 

fabric classification that is used by geologists. The one given in Figure 6.9 was developed by 

Taylor (1950), which is the first classification scheme for grain contacts. This classification 
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scheme was based on observations on the thin section images of five sandstones from two 

deep wells in Wyoming. Grain contacts were classified as floating, tangential, long contact, 

concavo-convex, and sutured (Figure 6.9). Grains that have no contacts are considered as 

floating grains. Sutured contacts are featured with wavy to jagged lines.  

In this classification, floating and tangential grain contacts are attributed to original 

packing of grains. Long contacts are considered as the result of original packing with 

pressure or cement. Sutured contacts are considered as a result of pressure. In other words, 

this classification is based on progressive change from original packing to increased pressure, 

which is an indication of an increasing degree of consolidation.  

6.4.2. Contact Surfaces Observed from Thin Section and SEM Images. It is 

clear from both the development process and the intended applications that caution has to be 

taken on the the usage of this classification system.  

First the system was developed for general sandstone formations which, in general, 

have multiple and complex compositions. Therefore, the response of the material changes 

progressively from tangential to sutured contacts. St. Peter Sandstone, however, is 

fundamentally different from the conventional sandstone in that it is pure quartz. Hence, the 

stress response for St. Peter Sandstone will be very different. For instance, there is no 

mechanics for developing sutured contacts as the materials on both sides of all contacts have 

the identical property.  

Furthermore, it is important to emphasize that the intergranular fabric classification is 

primarily used for assessing the stress condition. Tangential to sutured contacts are merely 

the reflection of the associated stress condition. For St. Peter sandstone, as illustrated in 
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Figures 6.2 – 6.7, most of contacts are tangential. It is clear that it would be a major mistake 

if one conisders these grains were not subjected to any pressure.  

If all contacts in Figures 6.2-6.7 are carefully considered, it is not difficult to draw a 

conclusion: all contacts are smooth and most of them are flat. There are no any signs of 

interpenetrative contacts. The SEM images of St. Peter sandstone in Figure 6.10 provide the 

further evident in this regard.   

St. Peter grains have a predominantly frosted surface. The texture of frosted surfaces 

can be seen clearly in Figure 6.10c. The texture of contact surfaces is very different from that 

of frosted surfaces, and Figure 6.10d is a typical example. In addition to the fact that the 

contact surface is very smooth, its boundary is also smooth and clear. The smooth surface 

and boundary for contact surfaces are the results of high contact stress existed during long 

geological years.  

With these two features in mind, it is not difficult to find many contact locations in 

Figure 10b. One may also notice in Figure 6.10b , that there are a number of spots appeared 

to be impacted by external forces. Both the surfaces and boundaries of these spots are not 

smooth. Clearly these are not contact surfaces even though the surfaces are not frosted. 
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Figure 6.8. Penetrative fabric of St. Peter sandstone (Dusseault and Morgenstern, 1979) 

 

 

 

6.4.3. A Hypothesis on High Friction Angle for St. Peter Sandstone. Both thin 

section and SEM images have shown that contact surfaces of St. Peter sands are smooth and 

cannot be characterized by interpenetrative. Therefore, the locked sand theory is not 

applicable to St. Peter Sandstone. Instead, the pattern of the Hertzian fractures, and especially 

stress trajectories manifested by Hertzian fractures, seem to suggest that St. Peter sands are 

locked structurally. A structure induced friction model was proposed by Ge et al. (2014b) to 

explain the cause of the high friction angle for St. Peter sandstone. The concept of this model 

is illustrated in Figure 6.11.   
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Figure 6.9. Taylor’s intergranular fabric classification Taylor (1950) 
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Figure 6.10. SEM images of St.Peter sandstone 

 

 

 

c) 
d) 

a) 

b) 
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Figure 6.11. 2D illustration of the particle movement during shear test 

 

 

 
According to this model, the average climbing slope for a 2D model is 15˚, and for a 

3D model is about 17˚, which are very close to what we have actually observed for St. Peter 

sandstone.  

 

6.5. DEPOSITIONAL ENVIRONMENT FOR ST. PETER SANDSTONE 

The depositional environment of the St. Peter Sandstone is a problem which has 

puzzled geologists since the discovery of the St. Peter Sandstone over 150 years ago. There 

are two campuses on the origin of St. Peter sandstone: marine and eolian. Two evidences 

used by eolian campus to support its theory are Hertzian fractures and cleavage plates 

(Winfree,1983; Johnson et al., 1989).  
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Johnson et al. (1989) stated that “Hertzian cracks are commonly formed upon sand 

grains by gain-to-gain impacts during transport”. The image in Figure 6.12, according to 

them, is “full-circle Hertzian cracks formed on a quartz sand grain under experimental 

eolian conditions in a NASA wind tunnel. Scale bar equals 10 microns”.  Assuming that the 

interpretation of the image in Figure 6.12 by Johnson et al. (1989) is correct, these are, 

nevertheless, not naturally formed Hertzian cracks. The Hertzian fractures observed in thin 

sections were formed naturally and the pattern of these Hertzian fractures is undeniable 

evidence that these Hertzian fractures were not the product of eolian related depositional 

environment.  

The other evidence used for supporting eolian depositional environment is broken 

cleavages observed from St. Peter sands. Such an example is shown in Figure 6.13. As 

earlier, St. Peter sands are featured with frosted surfaces. For the areas that are not frosted, 

they are either contact surfaces or newly created by sampling. From the texture of the broken 

cleavages shown in Figure 6.13, these broken cleavages were most likely created during the 

sample collection process. Notice small and freshly broken chips on and around broken 

surfaces. 
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Figure 6.12. Full-circle Hertzian cracks formed on a quartz sand grain under experimental 

eolian conditions in a NASA wind tunnel. Scale bar equals 10 microns 

 (Johnson et al., 1989). 

 

 

 

 
 

Figure 6.13. Broken cleavage plates on St. Peter sandstone ( Winfree,1983) 
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6.6. CONCLUSIONS 

The Hertzian fractures discussed in this research provide important information on 

particle structures of St. Peter Sandstone.  

6.6.1. St. Peter Sandstone were Highly Stressed Regardless of their Sizes. First all 

St. Peter grains, regardless of their sizes, were highly stressed, which was demonstrated by 

systematically developed Hertzian fractures and networks of stress trajectories.The stress 

condition, manifested by Hertzian fractures, provides the answer/further information for a 

number of structure related effects:  

• why the porosity of St. Peter Sandstone is near the lowest level indicated 

by rohmbohedral model,  

• why St. Peter sandstone, a typical particle structure, behaves elastically,  

and 

• why St. Peter sandstone shows a large dilation under a low normal stress 

during direct shear tests. 

6.6.2. Contact Surface. The observations of thin sections and SEM images have 

shown that contact surfaces for St. Peter sands are smooth and are flat in most cases. The 

assumption of the penetrative surface fabric fundamentally contradicts the basic material 

property of St. Peter sandstone (pure quartz), as well as the stress condition indicated by 

Hertzian fractures. If the contact surface were penetrative, Hertzian fractures would be 

developed inside the contact areas. This is clearly not the case. All Hertzian fractures were 

developed outside of the contact areas.  

6.6.3. High Friction Angle. Based on the analysis of contact surfaces for St. Peter 

Sandstone, it is known that the theory of locked sand is not applicable to St.Peter Sandstone. 
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Penetrative surface fabric assumption for St. Peter Sandstone is flawed. The high friction 

angle is due to the structure of St. Peter sands (Ge, et al., 2014). 

6.6.4. Origin of Hertzian Fracture. The pattern of these Hertzian fractures is 

undeniable evidence that the Hertzian fractures were the product of a marine deposition 

process and had nothing to do with eolian related actions. 

6.6.5. Origin of Broken Cleavage Plates. Based on the analysis of the surface for St. 

Peter sandstone, especially the characteristics of contact surfaces, it is known that these 

broken cleavages were most likely created during the sample collection process. It is not an 

evidence of eolian depositional environment.  
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7. CONCLUSIONS AND RECOMMENDATION 

 

7.1. THE SUMMARY OF ACHIEVEMENTS OF THIS STUDY  

As discussed earlier in this dissertation, fundamental understanding of the basic 

mechanical and strength properties of the St. Peter Sandstone is needed for solving the 

ground control problems that St. Peter Sandstone underground mines are facing. The 

objective of this work were: (i) characterizing the basic strength properties of St. Peter 

Sandstone; and (ii) elucidating the strength mechanics of St. Peter Sandstone by experimental 

evidences. 

In order to characterize the strength of St. Peter Sandstone. Four particular issues 

needs to be addressed. Those were (i) developing a sample preparation method for St. Peter 

Sandstone; (ii) determining the optimum size sample needed to characterize the strength of 

St. Peter Sandstone; (iii)identifying the critical parameters that affect St. Peter Sandstone’s 

strength; and (iv) developing a comprehensive assessment method for St. Peter Sandstone. 

The second objective of this study was elucidating the strength mechanics of St. Peter 

Sandstone by experimental evidences. As discussed earlier, St. Peter Sandstone possesses 

extremely high friction angle. The high frication angle was attributed to surface contacts by 

pervious researchers (Dusseault and Morgenstern, 1979).  Another important underlying 

problem for St. Peter Sandstone is its origin of the strength. This problem is not only critical 

from rock mechanics standpoint, but also related to a number of geological problems such as 

depositional environment of St. Peter Sandstone and the origin of Hertzian cracks observed 

on St. Peter  sandstone‘s grain.  

To accomplish the above mentioned objectives, extensive laboratory and theoretical 

studies were carried out.  
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Uniaxial Compressive testing: The uniaxial compressive strength is a basic parameter 

for characterizing the strength of geological materials and used extensively for a variety of 

engineering design purposes in mining, civil, and geotechnical engineering. A comprehensive 

study was carried out for uniaxial compressive testing of St. Peter Sandstone. In this study, 

the results of this study, and the results from previous studies were analyzed. This part of 

study includes proposing a sampling technique for St. Peter Sandstone, investigating the 

effects of size and shape of sample on uniaxial compressive strength of St. Peter Sandstone, 

studying the elastic properties of St. Peter sandstone, and comparing the uniaxial compressive 

strength of cemented and uncemented specimens.  

• It is not practical to use conventional sample preparation techniques that is 

used for rock mechanics studies. Therefore, based on this this study’s 

experince, the first principle in preparing sample for St. Peter Sandstone, is 

minimizing distribunce during sample preparation.  

• The failure modes of St. Peter Sandstone after uniaxial compressive testing 

were investigated. The study of failure modes of St. Peter Sandstone provides 

important information with regard to the strength properties of St. Peter 

Sandstone. The contribution of this part of our study is three-fold. The 

mechanics of two dominant failure modes namely vertical splitting, and 

steeply dipped shearing were studied. It was concluded that failure modes are 

linked to the basic mechanical properties of St. Peter Sandstone. Vertical 

splitting is caused by cohesionless property of St. Peter Sandstone, however, 

steeply dipped shearing is the result of high frication angle of St. Peter 

Sandstone. Secondly, steeply dipped shearing is another evidence of high 

friction angle of St. Peter Sandstone and it provides the quantitative 
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information regarding the friction angle calculation. Thirdly, the irregularities 

of failure locations of St. Peter Sandstone specimens indicates the sensitivity 

of failure location to anomalies, which is also the result of cohesionless 

property. The sensitivity to local anomalies as manifested by vertical splitting 

and irregularities of failure locations is one of the main reasons for high 

variance of uniaxial compressive strength.  

• The size effect of specimens on uniaxial compressive strength of uncemented 

St. Peter sandstone was investigated in this research. The results of 95 tests of 

this study, as well as the results from previous studies were analyzed in this 

regard. The results indicate that the size effect for St. Peter Sandstone is 

different from what is observed for most geological materials.  The size effect 

for St. Peter sandstone is the result of two factors: scaling and disturbance by 

sampling procedure. The effect of disturbance for smaller specimens is more 

pronounced. Thus, the smaller specimens are more prone to be disturbed 

during sample preparation procedure.  

• The optimum size of 50 mm was determined based on different factors. 

Practical consideration, laboratory results, field investigation, and scaling and 

disturbance during sample preparation were taken into consideration.  

• The shape effect for St. Peter Sandstone was not discussed by previous 

workers. Although the available data from previous studies that can be used 

in this regard is very limited, this is very important for characterizing the 

strength of St. Peter Sandstone. A practical implication is that height/width 

ratio of specimens should not be less than 1.  
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• The elastic proerties of St. Peter (Young’s moduls, and Possion ‘s ratio) were 

also investigated in the course of this research. The contribuation of this study 

is the detailed study of stress-strain curves. The results of this study indiacte 

Stress- strain behavior of St. Peter Sandstone can be devided into three stages. 

The stress-strain behavior of St. Peter Sandstone is almost perfectly linear for 

the most test period. The stress-strain behavior of St. Peter Sandstone in the 

second stage also can be regarded linear. The third part of stress-strain curve 

is rupture.  

• The results for the elastic properties of St. Peter Sandstone by previous 

studies were reviewed. The Young’s modulus determined by previous studies 

are close to the results of this study.  

• The uniaxial compressive strength of cemented St. Peter Sandstone was also 

investgated in this study. The uniaxial compressive strength of cemented St. 

Peter Sandstone is 5 to 8 times higher  than uncemented St. Peter Sandstone.  

The triaxial compressive tests were conducted on St. Peter Sandstone specimens of 

Iowa. The main contributions of this part of research are as follows: 

• Axial stress- axial strain curves for St. Peter sandstone. It is the first time 

that axial stress-axial strain behavior of St. Peter Sandstone was investigated 

under different confining pressure. The results of axial-stress, stress-axail 

strain curves of this study indicate the effect of confining pressure on the 

mechanical behavior of St. Peter Sandstone. Confining pressure increases the 

axial stress at failure. It also changes the mechanical behavior from brittle to 

ductile. There exists remarkable similarity among axial-stress, axial-strain 

curves from the same group of specimens. This indicates specimens from 
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same group experience similar failure process. The results of triaxial 

compressive tests for St. Peter Sandstone indicate specimens from same 

group exhibit very similar mechanical response under same confining 

pressure. This is a further indication of stability of triaxial test results for St. 

Peter Sandstone. 

• Failure patterns.  It is the first time that failure mode for St. Peter Sandstone 

after triaxial tests were investigated. The failure patterns of triaxial test are 

different from what observed for uniaxial tests. The pattern for triaxial test is 

almost identical for all specimens. A pyramid shape cone formed at each end 

of specimen. It indicates that failure mode of triaxial test is not controlled by 

anomalies, rather it is governed by its inherent mechanical properties. 

Another important finding of failure pattern of triaxial test is steep failure 

angle which is a further confirmation of high friction angle for St. Peter 

Sandstone.  

• Effect of particle structure on strength of St. Peter sandstone. One of the 

most important contributions of this investigation is the demonstration that 

the strength of St. Peter Sandstone is primarily governed by its particle 

structure. This is done by comparing the mechanical response of specimens 

from two sample groups, 6AR and 1S. The porosities for these two sample 

groups are 24.5% and 30.5%, which define the porosity range for St. Peter 

Sandstone.  

The study shows that the strength for 6AR group, the group with the low 

porosity, is much higher than that for 1S group, the group with the high 

porosity. The friction angle is also much higher for 6AR group. The 
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mechanical responses in terms of the axial stress-axial strain curves for these 

two groups are also very different. Because of the critical influence of the 

particle structure on the strength of St. Peter sandstone, it is important to 

measure the specimen‘s particle structural parameters such as porosity before 

the test. 

• Effects of confining pressure.  In order to measure the effect of confining 

pressures on the stress at failure for different materials, an index of rate 

increase of the axial stress at failure, RAS, was defined. RAS provides a 

quantitative measurement of the increase of the axial stress at failure for each 

confining pressure unit. A study of RAS for both St. Peter Sandstone and 

other geological materials shows that the RAS for St. Peter sandstone is much 

higher than that for conventional geological materials.  

  

The particle structure of St. Peter sandstone was studied in terms of porosity, density, particle 

size distribution. The summary of findings of this research is as follows 

• The porosity of St. Peter Sandstone were measured using three different 

methods which are liquid saturation technique, petrographic images and dry 

density approach. The results indicated that the porosity of St. Peter sandstone 

can be determined by these three methods. It was mathematically proved that 

porosity can be measured by two dimensional petrographic images.   

• The particle size distribution of 6AR, and 1S groups were investigated in this 

research. The results of particle size distribution indicated the reason for 

porosity of two sample groups. The existence of fine particles in 6AR 

samples that filled the gaps between larger particles is the reseaon for 
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porosity difference. 

• Rhomhedral packing was used to conceptualize the effect of finer grains on 

the porosity of St. Peter sandstone.  

• One of most important contribution of this research was the demonstration of 

close correlation between particle size distribution, porosity and density.  The 

samples dominated by coarse particle lacking fine materials are less densely 

packed in comparison with samples dominated by smaller particles having a 

fair amount of fines. This explains the correlation between size distribution, 

porosity and density. This correlation allows one to cross check the results of 

basic mechanic properties of St. Peter Sandstone.  

 

Optical and Scanning Electron Microscopy were conducted on St. Peter Sandstone.  The 

contact surfaces of St. Peter Sandstone grains were investigated in this study.  Hertzian 

fractures observed on thin section images of St. Peter Sandstone. The principal conclusions 

drawn from these observations are as follows: 

• All grains are stressed, this was demonstrated by systemic network of Hertzian 

fractures and stress trajectories. The can be helpful in understanding of porosity range 

for St. Peter sandstone and also high rate of dilation of St. Peter Sandstone under low 

confining pressure.  

• Both optical microscopy and scanning electron microscopy images indicated that 

contact surfaces of St. Peter Sandstone are smooth in most cases. The assumption of 

penetrative surface fundamentally contradicts the basic material property of quartz, as 

well as stress condition indicated by Hertzain fractures. Therefore, penetrative surface 

fabric cannot be the reason for high friction angle of St. Peter Sandstone.  
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• The pattern of Hertzian fractures indicates that it cannot be the product of eolian 

depositional environment. Broken cleavage plates were most likely created during 

sample preparation. In other words, they cannot be evidence of eolian dispositional 

environment. 

7.2. PRACTICAL GROUND CONTROL APPLICATION OF THIS RESEARCH 

FINDINGS  

• Rock reinforcement. As it was mentioned earlier rock bolting has been the 

dominant way to reinforce conventional geological material such as coal, hard 

rock. However, this method is not useful for St. Peter Sandstone because of 

anchorage problems associated with the friable nature of it. The results of this 

study indicate that St. Peter Sandstone possesses very high friction angle. The 

confining pressure will significantly increase the strength of St. Peter 

Sandstone. Therefore, confining pillars with shotcrete is an effective way to 

reinforce the pillars. 

• The role of particle structure on the strength of St. Peter Sandstone. As it was 

mentioned, one of the major finding of this research is that that the strength of 

St. Peter Sandstone is fundamentally governed by its particle structure. This 

was further manifested by direct relation between the strength, porosity, 

particle size distribution. This can provide useful information for ground 

control. 

 

7.3. RECOMMENDATION FOR FUTURE WORK  

The following recommendations are made for future research in terms of 

geotechnical properties of St. Peter Sandstone. 

• The role of particle structure on the strength of similar friable sandstone s 
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such as Jordan sandstone can be investigated.  

• The shape effect for St. Peter Sandstone specimens has not been investigated 

by previous studies. Although preliminary discussion provided by analyzing 

the data from previous studies. St. Peter Sandstone specimens can be prepared 

to study the effect of shape of specimens on the uniaxial strength of St. Peter 

Sandstone. 

• Moisture content of rocks can significantly influence the strength of rocks. 

Experiments can be performed to investigate the effects of moisture on the 

strength of St. Peter Sandstone.   

• The effect of Herzlian fracture on fracture mechanics of St. Peter Sandstone 

can be investigated. 

 

 

 

 

  

 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

APPENDIX A: THE DETAILS OF UCS TESTS CONDUCTED ON ST. PETER 

SANDSTONE SAMPLES TAKEN FROM CLAYTON, IOWA 
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Table A1. The details of ucs tests conducted on St. Peter Sandstone samples taken from 

Clayton, Iowa 

Test 

Number 

Sample  

ID 

 

Size(mm) 

 
Equivalent 

Width(mm)  

Height to 

width ratio 

UCS 

(Mpa) 
Test Date 

Length Width Height 

1 6AR S1 16.51 16.00 16.26 16.26 1.00 0.50 5/12/2012 

2 6AR S2 16.26 15.75 16.00 16.00 1.00 1.43 5/12/2012 

3 6AR S3 16.00 15.75 15.49 15.75 0.98 0.81 5/12/2012 

4 6AR S4 14.48 14.48 14.22 14.48 0.98 0.95 5/12/2012 

5 1S S1 16.26 15.75 16.00 16.00 1.00 2.12 5/12/2012 

6 1S S2 15.75 15.75 15.24 15.75 0.97 2.06 5/12/2012 

7 BD*C1 13.27 14.13 14.64 13.69 1.07 1.30 6/8/2014 

8 BD*C2 14.44 12.72 14.79 13.55 1.09 1.45 6/8/2014 

9 BD*C3 12.38 13.25 13.04 12.80 1.02 0.81 6/8/2014 

10 BD*C4 13.14 13.55 13.87 13.35 1.04 0.87 6/8/2014 

11 BD*C5 13.62 12.66 13.68 13.13 1.04 1.03 6/8/2014 

12 BD*C6 11.81 13.00 13.91 12.39 1.12 0.43 6/8/2014 

13 BD*C7 12.92 12.75 14.25 12.83 1.11 1.22 6/8/2014 

14 BD*C8 13.47 14.67 14.79 14.06 1.05 2.03 6/8/2014 

15 BD*C9 13.39 14.32 14.80 13.84 1.07 0.23 6/8/2014 

16 BD*C10 14.33 13.49 13.77 13.90 0.99 0.17 6/8/2014 

17 BD*C11 13.20 12.40 13.44 12.79 1.05 1.29 6/8/2014 

18 BD*C12 14.54 14.70 14.87 14.62 1.02 0.10 6/8/2014 

19 BD*C13 14.26 13.08 14.51 13.66 1.06 0.24 6/8/2014 

20 BD*C14 12.11 14.77 14.78 13.37 1.11 1.12 6/8/2014 

21 BD*C15 12.11 14.77 14.78 13.37 1.11 0.31 6/8/2014 

22 BD*C16 13.14 14.17 14.69 13.65 1.08 5.38 6/8/2014 

23 6ARC-1 23.11 21.08 23.88 22.10 1.08 0.55 5/12/2012 

24 6ARC-3 25.15 23.88 23.88 24.38 0.98 0.72 5/12/2012 

25 6ARC-4 24.13 23.37 23.88 23.62 1.01 0.71 5/12/2012 

26 6ARC-6 25.40 23.88 23.88 24.64 0.97 0.24 5/12/2012 

27 6AR 1-1 25.15 24.38 35.81 24.64 1.45 6.06 5/12/2012 

28 6AR 1-2 24.89 24.38 36.07 24.64 1.46 7.27 5/12/2012 

29 6AR 1-3 25.40 24.89 35.81 25.15 1.42 11.78 5/12/2012 

30 6AR 1-4 24.89 24.64 36.32 24.64 1.47 6.36 5/12/2012 

31 1S C-1 25.65 24.89 21.84 25.15 0.87 1.95 5/12/2012 

32 1S C-2 25.91 25.40 21.84 25.65 0.85 1.22 5/12/2012 

33 1S C-3 26.16 25.65 21.84 25.91 0.84 1.31 5/12/2012 
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Test 

Number 

Sample  

ID 

 

Size(mm) 

 
Equivalent 

Width(mm)  

Height to 

width ratio 

UCS 

(Mpa) 
Test Date 

Length Width Height 

34 1S C-4 24.64 23.62 22.10 24.13 0.92 0.82 5/12/2012 

35 1S 1-2 25.40 24.38 39.37 24.89 1.58 1.78 5/12/2012 

36 1S 1-6 25.15 23.88 34.04 24.38 1.40 1.33 5/12/2012 

37 1S 1-7 25.15 24.13 34.29 24.64 1.39 2.31 5/12/2012 

38 BD*B1 28.37 25.72 25.77 27.01 0.95 1.83 6/8/2014 

39 BD*B2 28.18 26.16 28.70 27.15 1.06 4.22 6/8/2014 

40 BD*B3 26.74 25.21 26.83 25.97 1.03 4.98 6/8/2014 

41 BD*B4 26.20 27.27 27.76 26.73 1.04 5.04 6/8/2014 

42 BD*B5 25.01 26.75 27.94 25.86 1.08 3.79 6/8/2014 

43 BD*B6 26.56 26.03 26.90 26.29 1.02 2.90 6/8/2014 

44 BD*B7 26.63 26.19 25.84 26.41 0.98 2.23 6/8/2014 

45 6AR + 38.86 35.05 33.27 36.83 0.90 0.82 5/12/2012 

46 1S 2-1 39.62 37.85 37.34 38.61 0.97 2.43 5/12/2012 

47 BD*A1 39.52 39.23 39.62 39.38 1.01 4.95 6/8/2014 

48 BD*A2 39.18 39.89 39.57 39.53 1.00 8.13 6/8/2014 

49 BD*A3 40.01 39.81 40.21 39.91 1.01 2.81 6/8/2014 

50 BD*A4 39.12 37.57 37.41 38.34 0.98 4.62 6/8/2014 

51 BD*A5 38.19 38.12 38.04 38.16 1.00 9.18 6/8/2014 

52 BD*A6 40.31 40.83 39.42 40.57 0.97 2.76 6/8/2014 

53 BD*A7 38.59 40.21 40.69 39.39 1.03 0.82 6/8/2014 

54 BD*A8 38.13 39.22 39.66 38.67 1.03 3.33 6/8/2014 

55 BD*A9 38.11 39.48 39.90 38.79 1.03 4.60 6/8/2014 

56 BD*A10 39.94 38.76 40.75 39.34 1.04 3.74 6/8/2014 

57 BD*A11 38.29 38.59 39.99 38.44 1.04 4.37 6/8/2014 

58 BD*A12 38.93 40.23 39.72 39.58 1.00 15.02 6/8/2014 

59 BD*A13 39.56 39.09 39.60 39.32 1.01 2.91 6/8/2014 

60 BD*A14 39.74 39.89 40.94 39.81 1.03 6.59 6/8/2014 

61 BD*A15 39.83 40.08 40.18 39.95 1.01 2.02 6/8/2014 

62 BD*A16 37.40 39.49 39.40 38.43 1.03 5.38 6/8/2014 

63 BD*A17 40.02 38.06 36.67 39.03 0.94 2.48 6/8/2014 

64 BD*A18 39.35 39.34 38.86 39.35 0.99 0.93 6/8/2014 

65 BD*A19 39.88 38.79 38.54 39.33 0.98 8.93 6/8/2014 

66 BD*A20 40.09 40.24 35.60 40.17 0.89 7.22 6/8/2014 

67 6AR ② 53.59 51.05 63.25 52.32 1.21 3.82 5/12/2012 

68 6AR ③ 51.82 48.01 50.04 49.78 1.01 4.21 8/12/2012 
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Test 

Number 

Sample  

ID 

 

Size(mm) 

 
Equivalent 

Width(mm)  

Height to 

width ratio 

UCS 

(Mpa) 
Test Date 

Length Width Height 

69 
6AR ④ 52.07 50.29 43.94 51.05 0.86 1.80 5/12/2012 

70 6AR ⑤ 52.07 50.80 51.05 51.31 1.00 10.63 5/12/2012 

71 6AR ⑥ 53.85 53.09 60.45 53.34 1.13 2.13 8/12/2012 

72 6AR  ⑦ 46.99 43.69 49.78 45.21 1.10 3.60 5/12/2012 

73 6AR *1 55.88 54.36 51.56 55.12 0.94 7.00 5/12/2012 

74 6AR *2 53.34 52.83 51.56 53.09 0.97 4.14 5/12/2012 

75 1S ① 52.32 50.04 68.33 51.05 1.34 5.32 5/12/2012 

76 1S ② 52.07 50.04 81.28 51.05 1.59 3.50 8/12/2012 

77 1S ③ 51.31 51.31 79.76 51.31 1.55 3.43 8/12/2012 

78 1S ④ 52.07 49.53 92.46 50.80 1.82 3.81 8/12/2012 

79 1S ⑤ 52.07 51.82 45.72 51.82 0.88 3.00 5/12/2012 

80 1S ⑥ 50.29 50.04 85.34 50.04 1.71 2.20 8/12/2012 

81 1S⑦ 50.55 50.29 45.97 50.29 0.91 3.25 5/12/2012 

82 1S⑩ 52.07 48.51 48.26 50.29 0.96 3.66 5/12/2012 

83 W. J. 48.51 53.59 53.85 51.05 1.05 24.55 6/4/2011 

84 2x 2x2 47.24 51.56 60.71 49.28 1.23 8.95 6/4/2011 

85 W.J.2 50.80 45.72 70.10 48.26 1.45 21.99 5/12/2012 

86 2x2x3 51.82 52.83 76.45 52.32 1.46 8.69 6/4/2011 

87 12 AR 2 49.68 48.20 54.98 48.93 1.12 4.37 6/8/2014 

88 Bd*-1 48.19 53.87 54.90 50.95 1.08 12.85 6/8/2014 

89 3x3x3 76.71 76.45 86.87 76.45 1.14 17.67 5/12/2012 

90 6AR ① 77.47 74.68 84.33 75.95 1.11 5.25 5/12/2012 

91 W.J.-Big 91.19 90.17 93.73 90.68 1.03 1.53 5/12/2012 

92 Un-1 74.51 71.76 105.98 73.12 1.45 2.83 6/8/2014 

93 Un-2 76.42 80.63 82.74 78.49 1.05 1.84 6/8/2014 

94 E1 110.21 110.88 113.30 110.54 1.02 0.95 6/8/2014 

95 E2 116.92 109.04 124.34 112.91 1.10 4.36 6/8/2014 

 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

APPENDIX B : FRICTION ANGLE FOR DIFFERENT TYPES OF SAND (Holtz and 

Kovacs ,1981) 
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APPENDIX C: MINERALOGY OF ST. PETER SANDSTONE BASED ON X-RAY 

DIFFRACTION 
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FigureC1. X-Ray diffraction result for St. Peter sandstone (sample ID: 1S) 

 

Figure C2. X-Ray diffraction result for St. Peter sandstone (sample ID: 6AR) 

 

 
 

Figure C3. X-Ray diffraction result for St. Peter sandstone (sample ID: 3AS) 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX D: POROSITY STUDY BASED ON PETROGRAPHIC IMAGES 

 

 



171 

 

  

 

Figure D1 1S images from Texas  
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Figure D2 6AR images from Texas. 
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Figure D3 1S images from Washington. 
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Figure D4 6AR images from Washington
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