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ABSTRACT

At certain threshold, nuclear radiation (like x-rays and gamma-rays) may adversely

impact the health of living tissues. The exposure to these radiations in nuclear facilities

is measured by devices called dosimeters. The devices are generally worn on the torso

and are monitored by health physics division to report the radiation dose received by the

personnel. However, this approach is not proactive—since the dosimeters reflect the dose

that has already been absorbed in the body of the wearer.

This work presents a scheme to proactively avoid large dose acquisition at radiation-

prone facilities. The work was divided into three major segments: (i) identify and character-

ize radioactive source(s), (ii) determine the impact of localized source(s), and (iii) estimate

the integrated doses in traversing/evacuating the facility. The scope of this work does not

extend to the development of “proactive” dosimeter. However, the approaches developed in

these segments will be integrated into a dose monitoring system that would prevent or mit-

igate large dose acquisition. This work also has applications in nuclear facilities, hospitals,

homeland security, and border protection.
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1. INTRODUCTION

The exposure to nuclear radiations (like x-rays and gamma-rays) in radiation-prone

facilities is monitored with devices called dosimeters. Since the ionizing radiations lie in

the high-energy region of the electromagnetic spectrum, the personnel may inadvertently

be exposed to these radiations. Therefore, dosimeters play an integral role in radiation

protection by ensuring that the dose levels are below the permissible limits. These devices

are generally worn on the outside of the clothing and around the torso. This approach of

dose monitoring, however, is not proactive since the dose information is available after the

fact; the dosimeters reflect the dose that has already been acquired by the wearer. Moreover,

it is always desired to keep the dose levels low in accordance with the ALARA* principle.

Hence, any proactive planning and development of proactive strategies could help in dose

minimization; in favor of the ALARA principle. This section presents the current strategy

employed in personal dose monitoring and the proposed concepts and schemes to prevent

and mitigate large dose acquisitions in radiation-prone facilities.

1.1. CURRENT STRATEGY EMPLOYED IN PERSONAL DOSE MONITORING

The current strategy employed in dose monitoring primarily consists of following

four steps.

1. The personnel is provided a dosimeter by the facility staff. This device is worn on

the torso.

2. The device is returned to the staff before personnel leaves the facility.

3. The device is sent to the health physics division.

4. The health physics division then reports the dose acquired by the personnel during

the time of exposure.

*ALARA is the acronym for As Low As Reasonably Achievable radiological safety principle.
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It could even take few months to get the dose acquisition report; hence, this ap-

proach is not proactive. Further, the personnel has already been exposed to the radiation

and has no control over the acquired dose.

1.2. PROPOSED APPROACH FOR PERSONAL DOSE MONITORING

The focus of present work is to improve the current strategy of dose monitoring and

reduction. The idea is to replace the dosimeter with more smart (electronic) device, which

provides information of source terms (e.g., location, strength, and dose-map of radioactive

sources) in the facility. This information will be available to each personnel in near real-

time—to avoid radiation-prone areas. To achieve this goal, the work was divided into three

segments (see Figure 1.1). The approaches developed in these segments will eventually be

integrated into a monitoring system to prevent and mitigate large dose acquisitions.

Segment I. Identify, localize, and characterize the radioactive source(s) in the facility.

Segment II. Predict the impact of the localized source(s) (i.e., the dose-map).

Segment III. Calculate the integrated doses and determine the safest path—with least

dose acquisition—for each personnel using the dose-map.

Once the final information is available (i.e., the decision made at point A of Figure

1.1), there exists no technological gap for its dissemination in near real-time. For example,

the personnel can be alerted through a text message on their cell phones or through any

radio frequency (RF) device.

Paper I of this dissertation presents an algorithm to achieve the first objective. The

algorithm utilizes the responses (counts) at various known detector positions for three-

dimensional localization of gamma-ray sources in real-time. The algorithm was verified

using Monte Carlo N-Particle (MCNP) radiation transport code [1] and was validated

through experiment. The simulation and experimental results were also compared with

well-established least squares method [2]. Since the algorithm was validated with weak
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laboratory source (137Cs source of strength 5.1 µCi), it had considerably lower doses in

its vicinity. A radiation-prone facility, however, should have a stronger source of ionizing

radiations. Since the algorithm successfully localized the weak source, it is believed that it

will detect and characterize the stronger radioactive sources in real-time.

For impact prediction in Segment II, a more realistic case of higher activity

source—a neutron generator emitting stronger ionizing radiations—was considered. The

accelerator-type neutron generator, at Missouri University of Science and Technology, uti-

lizes D-D fusion reactions to produce neutrons of approximate energy 2.5 MeV. The gener-

ator, its shielding, and its room of operation were modeled using MCNP for impact (dose-

rate) prediction (Paper II). Since the Monte Carlo simulation was computationally expen-

sive, it was later accelerated using automated variance reduction sequence (MAVRIC) of

the SCALE package [3]. This work (presented in Paper III of this dissertation) was cardinal

for near real-time implementation of the final scheme.

The decision making approach primarily comprises of determination of safest

route—with least dose acquisition—for each personnel of the facility. To achieve this ob-

jective, the neutron generator model was further extended to cover the entire floor of the

building. The idea was to determine the dose rates in the hallways of the building, which

would be used to test the decision making (dose reduction) approach (see Figure 1.2). This

Source identification

Localization Characterization

Impact prediction Decision making for 
personnel or state

Communicate decision 
to personnel or state

Segment I Segment II Segment III

A

reasonable time
(near real-time)

Figure 1.1 Segments of the proposed research.
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approach, discussed in Paper IV, calculates the integrated dose acquired in traversing the

facility to distinguish the safest path to exit the building.

As discussed previously, the approaches presented in Papers I-IV of this disserta-

tion will be integrated to prevent and mitigate large dose acquisitions. Beyond dose mini-

mization, this work has applications in nuclear facilities, hospitals, homeland security, and

border protection.

Impact prediction 

(from Segment II)

Decision making (integrated 

dose calculation, Segment III)

Safest path to exit 

(Segment III)

Figure 1.2 Decision making and determination of safest path (Segment III).
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I. THREE-DIMENSIONAL LOCALIZATION OF LOW ACTIVITY
GAMMA-RAY SOURCES IN REAL-TIME SCENARIOS

Manish K. Sharma, Ayodeji B. Alajo, Hyoung K. Lee

Missouri University of Science & Technology,

Nuclear Engineering, Rolla, MO, USA

ABSTRACT†

Radioactive source localization plays an important role in tracking radiation threats

in homeland security tasks. Its real-time application requires computationally efficient and

reasonably accurate algorithms even with limited data to support detection with minimum

uncertainty. This paper describes a statistic-based grid-refinement method for backtracing

the position of a gamma-ray source in a three-dimensional domain in real-time. The devel-

oped algorithm used measurements from various known detector positions to localize the

source. This algorithm is based on an inverse-square relationship between source intensity

at a detector and the distance from the source to the detector. The domain discretization was

developed and implemented in MATLAB. The algorithm was tested and verified from sim-

ulation results of an ideal case of a point source in non-attenuating medium. Subsequently,

an experimental validation of the algorithm was performed to determine the suitability of

deploying this scheme in real-time scenarios. Using the measurements from five known

†Published in Nuclear Instruments and Methods in Physics Research Section A (2016).
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detector positions and for a measurement time of 3 minutes, the source position was es-

timated with an accuracy of approximately 53 cm. The accuracy improved and stabilized

to approximately 25 cm for higher measurement times. It was concluded that the error in

source localization was primarily due to detection uncertainties. In verification and exper-

imental validation of the algorithm, the distance between 137Cs source and any detector

position was between 0.84 m and 1.77 m. The results were also compared with the least

squares method. Since the discretization algorithm was validated with a weak source, it is

expected that it can localize the source of higher activity in real-time. It is believed that

for the same physical placement of source and detectors, a source of approximate activity

0.61-0.92 mCi can be localized in real-time with 1 second of measurement time and same

accuracy. The accuracy and computational efficiency of the developed scheme make this

algorithm a suitable candidate for its deployment in real-time localization of radioactive

sources.

Keywords: Radiation source localization, Nuclear nonproliferation, Domain dis-

cretization, Border protection, Radiation detection, Scintillation detector
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1. INTRODUCTION

The detection and identification of radioactive material is an important aspect of

both nuclear safeguard and material protection. One of the key aspects in nuclear material

surveillance is the identification and localization of the radioactive sources in real-time.

Computational schemes are continually developed to facilitate such surveillance. The al-

gorithm used to track the radiation source should be computationally efficient to facilitate

early detection in near real-time, without sacrificing accuracy.

In previous studies, the geometric difference triangulation method was used to lo-

cate radiation sources [1]. The measurements collected from three sensors were used to

estimate the source location and its strength. Howse et al. [2] discussed recursive and the

moving horizon non-linear least squares estimation algorithms for the real-time estimation

of a moving source. This work incorporated the use of four gamma-ray detectors located

at four different positions of the monitoring area. The algorithm developed was used to

track the location of the moving source within that region. The results were presented for

a 137Cs source moving along a predetermined path. For efficient collection of data, the

approximate measurement time was 3 minutes at each point the source was stopped.

RadTrack, developed at Argonne National Laboratory, uses a combination of a set

of radiation detectors and a video camera to track a radioactive source [3]. It utilizes a map

of probability density function to localize the radiation source. The results were presented

for both a 1 mCi 60Co source and a relatively weak (100 µCi) 137Cs source. For the

100 µCi source, the method of temporal linking reduced the mean error in estimation to

approximately 0.9 m.

Chin et al. [4] have addressed the problem in localization of low-level radioactive

sources under realistic noise and measurement errors. For the performance evaluation of

their iterative pruning (ITP) fusion algorithm, the results were reported for a 137Cs source

of extremely low activity of 0.911 µCi. The simulation results compare the localization
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error for different source strengths and sensor densities. For a 400 µCi source and sensor

density of approximately 1 per 1100 m2 area, the algorithm localized the source within

32.5 m. Circles of Apollonius could also be used in source localization [5]. This study

discussed a key problem—i.e., ambiguity (non-uniqueness)—in the position estimates and

how an additional detector distinguishes the actual source position. The analysis considered

an ideal scenario with no statistical fluctuations.

A particle filter algorithm was proposed by Rao et al. [6] to detect radioactive

sources. The outputs of this algorithm demonstrates the benefits of networked configuration

over the non-networked and pair configurations of the counters. In this work, results were

presented for a notional border monitoring scenario with twelve 2 in. × 2 in. NaI detectors.

Another class of localization algorithms that has been explored extensively in the literature

utilizes Difference of Time-of-Arrival (DTOA) method [7–9]. Linear algebraic approach

for localization using DTOA method is addressed in [9, 10]. Some other works that are

relevant to the work presented in this paper are discussed in [11–13].

This paper introduces a new, simpler, and faster approach to predict the source

position in a three-dimensional domain. The algorithm is also proposed for use in real-

time backtracing applications. The suitability of this algorithm for real-time applications

required it to be fast and accurate even with limited data.
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2. SOURCE POSITION PREDICTION METHODOLOGY

Radiation intensity I(xi,yi,zi) at a particular position (xi,yi,zi), due to a localized

radiation source, in a non-attenuating medium, is inversely proportional to the square of its

distance from the source:

I(xi,yi,zi) ∝
S(x,y,z)

r2
i

(1)

where ri is the distance from the ith position to a radiation source of strength S at position

(x,y,z).

The generalization of Eq. (1) for various detector positions is

I1r2
1 = I2r2

2 = . . .= Iir2
i = S∗K (2)

where K is a constant of proportionality, Ii is the intensity at the ith position and ri is the

distance from this position to the source (see Figure 2.1).

Gunatilaka et al. [12] explained a general case for estimation of a source position in

a two-dimensional domain. In a real-world situation where the source may be placed above

the ground, i.e. where the discrimination in z-direction becomes important, backtracing in

three-dimensional space will give a better insight of the source positioning. The localiza-

tion of radioactive source becomes more rigorous in this scenario. The equation of any

sphere centered at a detector position (x1,y1,z1) and passing through the source position

(x,y,z) is given by

(x− x1)
2 +(y− y1)

2 +(z− z1)
2 = r2

1 (3)
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where r1 is the radius of the sphere. In general, the equation of any sphere with radius ri

centered at the detector position (xi,yi,zi) and passing through the source position (x,y,z)

is

(x− xi)
2 +(y− yi)

2 +(z− zi)
2 = r2

i , for all i = 1,2,3,4 . . . (4)

If it is assumed that there is no attenuating medium in the line of sight of the detec-

tor, and the intensity at a position perfectly follows the inverse-square relationship, then

r2
i =

(
I1

Ii

)
r2

1 ≡ k1ir2
1, where k1i =

(
I1

Ii

)
(5)

Combining Eq. (4) and Eq. (5), creates

(x− xi)
2 +(y− yi)

2 +(z− zi)
2 = k1ir2

1, for all i = 1,2,3,4 . . . (6)

Four unknowns (x,y,z, and r1) are represented by Eq. (6). Thus, a minimum of four

detector positions are required to determine these unknowns. Note that k1i is evaluated by

the intensities at the first and the ith detector positions. The set of four equations represented

by Eq. (6) (for i = 1,2,3,4) are non-linear and can be solved for four unknowns if all the

detector positions (xi,yi,zi) and the constants k1i are known. The quadratic nature of the

problem forces it to have two solutions—one of which is the real source position. This

ambiguity is similar to one presented in [5] and can be avoided by incorporating one more

detector position. The solution that best satisfies the fifth detector equation (for i = 5 in

Eq. (6)) is deemed the predicted source position. Therefore, information of intensities

at no fewer than five different detector positions is essential for localization through the

proposed algorithm.
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The approach to localization utilizes a domain discretization scheme. This scheme

works by adaptively meshing the source domain into a finite number of discrete cells (see

Figures 2.1 and 2.2) and utilizing statistic-based successive refinements for convergence.

For the convergence criterion, the standard deviation σ of the Iir2
i values is minimized.

Theoretically—with no statistical variation and detection uncertainties—centroids of cells

near the actual source position should better satisfy the inverse-square relationship. At the

actual source position, Iir2
i is constant which implies the variance σ2 and standard deviation

σ of the Iir2
i quantities would theoretically be zero.

σ = Std(I1r2
1, I2r2

2, . . . , Inr2
n) (7)

In real-time detection, Iir2
i is not necessarily constant since Ii is subject to statistical

fluctuations together with finite dead-time of the detection system, and the attenuation and

scattering of photons by the intervening medium. In this case, σ is expected to approach

zero; hence its minimization.

Figure 2.1 A representation of the domain in which the source is backtraced (n = 5).
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Figure 2.2 Domain discretization: The centroid of the discrete cell is represented by c
(N = 3).

2.1. RADIATION SOURCE LOCALIZATION IN A REAL-TIME SCENARIO

Consider that the source domain has dimensions l×w×h such that it encompasses

both the source and n different detector positions. The domain is discretized into N×N×N

cells (see Figures 2.1 and 2.2). Assume the origin to be at a corner of the domain, the

centroid of the mth cell, (xcm,ycm,zcm), can be determined—since l,w,h, and N are all

known. The distance between the centroid and the ith detector position (xi,yi,zi), rmi, can

be calculated using Eq. (4):

(xcm− xi)
2 +(ycm− yi)

2 +(zcm− zi)
2 = r2

mi (8)

The radiation intensity (Ii) represents the counts at ith detector position, for a par-

ticular measurement time. The standard deviation (m,0) at the onset of iteration for the mth

cell is

σm,0 = Std(I1r2
m1, I2r2

m2, . . . , Inr2
mn) (9)
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Therefore, each of the N3 cells will have its respective σ(m,0) value. Twenty cells

with the smallest values of σ(m,0) are selected from these N3 cells. Both the xcm,ycm,zcm

coordinates of the centroids and the σ(m,0) values of the selected cells are stored in a 20× 4

matrix L0, where the fourth column stores their respective σ(m,0) values. Each of these

twenty cells is further discretized into smaller N×N×N cells, and twenty cells with the

smallest σ(m,1) values are selected for each cell. This process results in a total of 202 cells

from which twenty cells with the smallest values of σ(m,1) are selected in the first iteration.

A matrix LLL111 containing these selected cells is created as LLL000 was created. The discretization

and evaluation processes are repeated until the kth iteration, which satisfies:

LLL(:,4)kth−LLL(:,4)(k−1)th = 000 (10)

The process flow is provided in Figure 2.3. The twenty positions defined in the LLLkth

matrix are the positions that best satisfy the inverse-square law. Thus they should be the

best candidates for the actual source position. This scheme was successfully developed and

implemented in MATLAB.

2.2. COMPUTATIONAL EFFICIENCY AND CONVERGENCE OF THE
METHOD

Statistic-based grid-refinement method is the basis of algorithm described in the

preceding section. Grid based methods are known to be computationally expensive (see

Figure 2.4(a) for grid number basis vs. computational time). By choosing low value of N,

implementation of the successive grid refinement eliminates large portions of the domain

quickly, resulting in relatively fast computational time. Statistic-based refinement methods

may provide convergence issues. A rudimentary test of convergence was performed by

testing the method on 341 source positions in the domain. The domain was divided in to

5× 5× 5 cubes; MCNP simulation was performed for 125 centroids and 216 corners of
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Figure 2.3 Statistic-based grid-refinement method process flow (N = 3).
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Figure 2.4 Results for the MCNP simulation presented in the Section 3. Variation of error
with N for (a) domain discretization algorithm and (b) least squares method [13]. Respec-
tive computation times for domain discretization algorithm is also shown in (a). Error is
defined as the distance between estimated and the actual source position.
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the cubes and the algorithm was applied to backtrace the source and it converged in each

case. Thus the statistic-based grid-refinement method appeared to overcome computational

efficiency and convergence limitations.
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3. VERIFICATION OF BACKTRACING SCHEME

The motive behind simulation studies was to ensure that the error imposed by the

algorithm in source localization was negligible. For this reason, an MCNP model of ideal

case of a point source in non-attenuating medium was developed. This case is similar to

an absolutely efficient detection system with no dead-time and statistical fluctuations such

that the inverse-square law is perfectly satisfied. An MCNP simulation was performed by

assuming a 137Cs source at the position (238.8, 75.3, 74.6) cm. The obtained point-detector

fluxes, at different detector positions, are given in Table 3.1. The statistical uncertainties

in all of these fluxes were 0.12%. The distance between any detector pair was between

0.17 m and 1.15 m. These fluxes and the detector positions were used to predict the source

position through the developed algorithm.

The algorithm used a domain discretization scheme, with l = w = h = 500 cm

and N = 3, to localize the source (as described in subsection 2.1). Using the first five

detector positions, the algorithm estimated the source position with an accuracy of 5 µm.

This distance indicated that the error introduced by the backtracing scheme was negligible.

The computation time of the MATLAB program was 2.85 seconds on a computer with a

2.20 GHz Intel Core2 Duo processor and a 2.0 GB installed RAM. Additional tests were

performed for various values of N3 cells. The computational time increased as N increased

with no appreciable improvement in error (see Table 3.2 and Figure 2.4(a)). Thus, the

computational efficiency of 3×3×3 domain discretization was the motivation of choosing

N = 3 for experimental validation.

3.1. COMPARISON WITH LEAST SQUARES METHOD

The results from MCNP simulation were also compared with the least squares

method for different values of N. The approach presented in [13] (also discussed in [12])

was implemented using MATLAB and the same domain (with l = w = h = 500 cm) was

discretized into N×N×N cells. The centroid of the cell that minimized the sum of squared
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errors was deemed the estimated source position. As stated in [12, 13], this method is com-

putationally expensive particularly for higher values of N. In contrast, a higher value of N

is desired for better source approximation. Thus, the least squares method was executed

through quad-core parallel computing using MATLAB on a 2.67 GHz Core2 Quad CPU

with 8.0 GB installed RAM. The error in source prediction from domain discretization

algorithm and least squares method are compared in Figure 2.4(b). The error from least

squares method dropped to approximately 10 cm at N = 50 and it did not significantly

vary thereafter. Hence, N = 50 was chosen for experimental results using the least squares

method. It is worth noting that the domain discretization scheme provided a considerably

better accuracy of 5 µm for any value of N (see Figure 2.4(b)).
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Figure 3.1 Expanded view of different detector positions and source placement: (a) 3D
view and (b) XY view. Detector positions are indicated by green squares and the source
position is indicated by the red star.
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Table 3.1 Actual source and detector position coordinates and point-fluxes at different detector positions.

x (cm) y (cm) z (cm) Distance between source Simulation: Point
and detector position (cm) flux (*111000−7)

S 238.8 75.3 74.6 − −
D1 95.6 106.0 102.2 149.0 8.95
D2 157.0 94.9 80.6 84.3 27.97
D3 67.0 34.6 88.3 177.0 6.34
D4 131.1 59.4 90.2 109.9 16.46
D5 159.4 10.8 104.8 106.6 17.49
D6 125.7 75.2 92.1 114.4 15.20
D7 109.9 86.4 96.5 131.2 11.55

Table 3.2 Variation in computation time as N increased.

N NNN3 Computation time (sec) Error (µµµm)

3 27 2.85 5
5 125 6.91 5
7 343 14.46 5
9 729 28.83 5
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4. VALIDATION BY EXPERIMENT

An experimental validation was performed subsequent to the verification of the

backtracing scheme. The experimental setup mirrored the MCNP simulation but with

real limitation like statistical fluctuations, background effect, and the impact of detec-

tor/detector conditions. A 137Cs source of approximate activity 5.1 µCi was placed table-

top at the same position as that in the simulation studies. Canberra’s NaI(Tl) scintillation

detectors (Model: 802-2×2, [14, 15]) with a photomultiplier tube base preamplifier [16]

were used to record counts at the detector positions given in Table 3.1. At each position,

one measurement was taken in the presence of source at successive intervals of one sec-

ond. The background counts—taken one time for the same intervals in the absence of the

source—were subtracted from these counts to obtain the net counts. A single measurement

was important so that the influence of limited statistics—which is generally the case in

real-time situations—could not be avoided. The experiment used 2048 channels of Lynx

multi-channel analyzer (MCA) for spectrum analysis [17]. Averaged net counts collected

at each detector position, obtained for the 137Cs peak in the energy spectrum, were used in

validation of the localization algorithm. Both the radiation source and the detectors were

static during the experiment.

Figure 4.1 shows the plot of error—i.e. the distance between the estimated and the

actual source position—with measurement time. The behavior of error was significantly

erratic for T < 2 minutes. This observation seems reasonable since the weak nature of the

source degrades the signal-to-noise ratio (SNR) leading to poor estimates at short measure-

ment times. As an example, for initial periods of time, the contribution of the background

counts at detector position D1 was greater than 60% of the total counts in the energy range

of interest. As the time increased, however, the error dropped to approximately 40 cm (at

T = 4 minutes). After T = 7.3 minutes, the error further dropped down and attained a fairly

constant value of approximately 25 cm. Ideally, the error should decrease monotonically
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as the measurement time increases. However, it showed an erratic behavior at various in-

stances (see Figure 4.1). This observation was attributed to detection uncertainties. Also,

the counts were taken for one single measurement.

To observe the impact of incorporating additional detector positions on source esti-

mation, two more known detector positions—D6 and D7—were utilized. The variation of

error for six and seven detector positions provided no significant improvement (see Figures

4.1(b)-(c). The general trend of the error with time was also maintained for these cases.

Figure 4.1 also compares these results with the least squares method. The (erratic) behavior

of the error from domain discretization algorithm is comparable to the least squares method

using the same set of measurement data.

Figure 4.2(a) illustrates the variation of error in each direction (x,y, and z) with

the measurement time, for five, six, and seven detector positions. The error in each direc-

tion is defined as the absolute difference between the estimated coordinate and the actual

coordinate in that direction. For example, in x direction, Ex = |xestimated− xactual|. Estima-

tions of x and y coordinates were relatively closer to the actual x and y coordinates of the

source position. The error behavior in x and y directions was significantly erratic for T <

2 minutes. The error in these directions dropped after 3 minutes of measurement time and

tended to approach zero as the measurement time increased. This was true for all cases

(Figure 4.2). The main contribution to the (total) error was from the estimated position’s

z-component. Therefore, the trend of the total error mimicked the error in the z-direction.

Relatively poor estimates in the z-direction were attributed to the fact that there was no

significant variation in the z-coordinates of different detector positions (see Table 3.1). The

detector positions covered approximately 92 cm and 95 cm variation in the x and y direc-

tions, respectively. However, the positions covered just 24 cm in the z-direction. The error

in z direction would likely be reduced as the additional detector positions, having signifi-

cant variation in z-direction, are incorporated in the algorithm. The dependence of source



21

0

20

40

60

80

100

120

140

0 500 1000 1500 2000

E
rr

o
r 

(c
m

)

Measurement Time (sec)

Domain Discretization

Algorithm (N=3)
Least Squares Method

(N=50)

(a)

0

20

40

60

80

100

120

140

0 500 1000 1500 2000

E
rr

o
r 

(c
m

)

Measurement Time (sec)

Domain Discretization

Algorithm (N=3)
Least Squares Method

(N=50)

(b)

0

20

40

60

80

100

120

140

0 500 1000 1500 2000

E
rr

o
r 

(c
m

)

Measurement Time (sec)

Domain Discretization

Algorithm (N=3)
Least Squares Method

(N=50)

Measurement Time (sec)

(c)

Figure 4.1 Experimental results: error comparison with least squares method [12, 13] for
(a) five, (b) six, and (c) seven detector positions.

localization on detector position is being considered as a topic for additional work in this

area.

The average computation time taken by the MATLAB on a 2.20 GHz Intel Core2

Duo processor with 2.0 GB installed RAM, for different cases is given in Table 4.1. The

algorithm was computationally efficient even with additional detector positions. The com-

putational efficiency of the discretization scheme, implemented using MATLAB, justified

the deployment of this algorithm in real-time scenarios. The computational time for least

squares method, however, was considerably larger and it increased with additional detector

positions.
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Figure 4.2 Experimental results using domain discretization algorithm: error in x,y, and z
directions with measurement time. Error based on first (a) five, (b) six, and (c) detector
positions with its zoomed plot on the right.

It is believed that the measurement time needed to localize the sources should de-

crease with stronger sources (as used in [3, 12, 18]). The experiment showed that the counts

registered in approximately 2-3 minutes of measurement time were sufficient to localize the

source with reasonable accuracy (< 60 cm). The equivalent activity that will register same
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counts in 1 second of measurement time will therefore be 0.61-0.92 mCi. Therefore, for the

same physical placement of source and detectors, it is expected that a source of approxi-

mate activity 0.61-0.92 mCi will be localized in approximately one second of measurement

time.

Table 4.1 Average number of iterations and computational time for different detector posi-
tions.

Detector Domain discretization algorithm Least squares method
Positions [12, 13]

Average number of Average computational Average computational
iterations time for NNN === 333 (s)* time for NNN === 555000 (s)†

D1-D5 35.8 2.70 5.43
D1-D6 35.2 2.72 6.02
D1-D7 35.3 2.76 6.63

*On a 2.20 GHz Intel Core2 Duo processor with 2.0 GB installed RAM.
†When using quad-core parallel computing in MATLAB on a 2.67 GHz Core2 Quad CPU with 8.0 GB

installed RAM.
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5. CONCLUSION

This work describes an approach that can be used to localize the source in a three-

dimensional domain. An algorithm was developed and implemented using MATLAB and

uses a domain discretization scheme to predict the source position using measurements

from different detector positions.

Results of simulation and experimental studies are presented for a 137Cs source.

The simulation results indicate that a 100% efficient detection system with zero dead-time

introduced a near zero error in localization. In experimental validation with a weak 137Cs

source of strength 5.1 µCi and five detector positions, a reasonable accuracy of approxi-

mately 53 cm was achieved. The prediction improved and stabilized to approximately 25

cm for higher measurement times. The additional detector positions, however, provided no

significant improvement in the source prediction. The difference in between the predicted

source position and ground truth was primarily due to error in the prediction of the source’s

elevation. The results are also compared with the least squares method. The (erratic) be-

havior of the error from domain discretization scheme is comparable to the least squares

method. An excellent prediction in simulation results, combined with a reasonably accurate

prediction in experimental results, indicated that errors in source localization were primar-

ily due to detection uncertainties. For a typical detection system, the line of sight between

the source and the detector, detector efficiency, and system dead-time play a significant role

in quantifying the source intensity at the detection position. These system parameters must

be known in order to properly quantify the intensity (Ii). The impact was evident in the ex-

periment results such that the errors obtained were exclusively due to detection parameters:

measurement time, efficiency, dead-time, and line of sight. The better the sensitivity of a

detection system, the better consistency in Iir2
i values at all detector positions is expected.

Hence, a better estimation of the source position could be achieved. The computation time

on a 2.20 GHz Intel Core2 Duo processor with 2.0 GB RAM was within the range of 2.7
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and 2.85 seconds even when additional detector positions were used. The viability of de-

ploying this scheme in real-time applications is predicated by its computational efficiency.

It is expected that a radioactive source of approximate activity 0.61-0.92 mCi can be local-

ized in real-time with a measurement time of approximately 1 second, for same physical

placement of source and detectors. Moreover, the localization of multiple sources with dif-

ferent energy signatures is possible when a detection system, coupled with a multi-channel

analyzer, is used.
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ABSTRACT‡

The shielding of a neutron generator producing fast neutrons should be sufficient to limit

the dose rates to the prescribed values. A deuterium-deuterium neutron generator has been

installed in the Nuclear Engineering Department at Missouri University of Science and

Technology (Missouri S&T). The generator produces fast neutrons with an approximate

energy of 2.5 MeV. The generator is currently shielded with different materials like lead,

high-density polyethylene, and borated polyethylene. An MCNP transport simulation has

been performed to estimate the dose rates at various places in and around the facility. The

simulations incorporated the geometric and composition information of these shielding ma-

terials to determine neutron and photon dose rates at three central planes passing through

the neutron source. Neutron and photon dose rate contour plots at these planes were pro-

vided using a MATLAB program. Furthermore, the maximum dose rates in the vicinity of

‡Published in Nuclear Instruments and Methods in Physics Research Section A (2014).
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the facility were used to estimate the annual limit for the generator’s hours of operation.

A successful operation of this generator will provide a convenient neutron source for basic

and applied research at the Nuclear Engineering Department of Missouri S&T.

Keywords: Neutron generator shielding, D-D neutron generator, MCNP, Dose
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1. INTRODUCTION

Recently, a deuterium-deuterium (D-D) neutron generator (model DD-109), man-

ufactured by Adelphi Technology, was installed in the Nuclear Engineering (NE) Depart-

ment at Missouri University of Science and Technology (Missouri S&T). The generator

utilizes D-D fusion reactions to produce fast neutrons. The positively charged deuterium

ions, generated from the plasma ion source, are accelerated and bombarded on the target

by using a high electric field. The target is negatively biased to “attract” these positively

charged deuterium ions. A beam current of about 5 mA-15 mA, with an accelerating po-

tential in the range of 80 kV and 120 kV, is maintained to establish this high electric field.

The accelerated D+ ions strike a static 1.02 cm thick V-shaped copper target with a tita-

nium coating of approximate thickness of 0.102 mm. During the initial period of time, the

impinging D+ ions form titanium hydride on the surface of the target. Subsequent bom-

bardment of D+ ions results in the production of fast neutrons with an approximate energy

of 2.5 MeV through 2H + 2H→ 3He + n fusion reactions [1–3]. Figure 1.1 shows the DD-

109 generator head, the high-density polyethylene (HDPE) blocks used in its shielding, and

the V-shaped target where the fast neutrons are produced. In the DD-109 neutron generator

installed at Missouri S&T, the target is oriented such that the open side of a V-shaped target

faces up where the samples will be placed (see Figure 1.1(b)).

Bombardment of D+ ions also results in deposition of heat at the target. The target,

therefore, has channels with fluorinert running through them. The fluorinert is specifically

needed to cool the high voltage part (target) of the generator. However, the microwave

plasma section (including the magnetron power supply in the rack) is cooled with water.

The detailed working mechanism of the neutron generators, utilizing deuterium-deuterium

and deuterium-tritium fusion reactions and their applications, has been thoroughly dis-

cussed in the literature [1–5].
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(a) (b)

Figure 1.1 (a) DD-109 generator and HDPE blocks used in shielding and (b) cutaway of
neutron generator and surrounding HDPE shielding. V-shaped target of the generator (top
view) is also shown (Image courtesy of Adelphi Technology, Inc.).

The operation of this DD-109 neutron generator at Missouri S&T will provide fac-

ulties and students a convenient neutron source that can be used for various basic and ap-

plied research efforts, such as neutron activation, radiography, and material irradiation, etc.

Since the neutron generator is installed in a room in a campus building (see Figure 1.2), it

is imperative that appropriate radiation shielding be provided to protect the public and op-

erators of the generator from radiation exposure. It is very well known that the shielding of

neutrons is a complicated problem due to the fact that both neutron and photon interactions

with matter should be considered. Therefore, for sufficient reduction in neutron and pho-

ton dose rates, the generator has been shielded with high-density polyethylene, lead, and

borated polyethylene (BPE). In addition, some walls of the generator room were lead-lined

to limit the dose rates to the operator and the public.

In the past, various studies have been performed to design shielding for different

neutron sources and generators. The MCNP [6] modeling of a deuterium-tritium (D-T)

neutron generator was well studied by J. Katalenich et al. [7]. The yield of uncollided

14.1 MeV neutrons from the D-T neutron reactions, and the neutron fluxes for different
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beam port diameters, were estimated in this work. J.C. Liu et al. [8] discussed the opti-

mal shielding design for a 14 MeV D-T neutron generator using the MCNP4B radiation

transport code. The effectiveness of various materials and geometries in shielding the D-T

generator were examined in this study. A thorough analysis of the shield design of a D-T

neutron generator was also performed by D.L. Chichester et al. [9]. In their work, Monte

Carlo simulations were performed to determine the effectiveness of the concrete shield in

reducing the dose rates due to D-T neutron generators. The independent neutron and pho-

ton dose rates, due to 14.1 MeV neutron source terms at three different locations, were

determined at various positions around the facility. The results from the MCNP5 radiation

transport code and SCALE5 code were compared and discussed. The analytical calcu-

lations and Monte Carlo simulations for the design of shield walls for different neutron

sources were performed by D.L. Chichester et al. [10]. The spatial profile of dose rates,

due to the 252Cf spontaneous fission neutron source and neutrons from D-T fusion neutron

generators, were obtained at horizontal and vertical planes. The MCNP5 radiation trans-

port code was utilized in simulating the neutron and photon radiation fields in the facility.

The effectiveness of different shielding materials in reducing the neutron and photon dose

rates has been discussed in [11]. The MCNP simulations were performed by assuming a

point-like isotropic source emitting 1 x 108 neutrons/s of energy 14.1 MeV.

In this work, attempts were made to model the current radiation shielding of the D-

D neutron generator and the installation room using MCNP. The ultimate goal of this study

was to estimate the approximate dose rates in and around the facility where the generator

will be operated, and to determine the maximum operation time of the generator so that

the annual radiation doses to the operator and the public would be within the prescribed

limits. Furthermore, an additional MCNP transport simulation, without the lead-lining of

different walls and floor, was performed. The purpose of this simulation was to estimate

the shielding effectiveness of lead-lining in reducing the neutron and photon dose rates.
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Figure 1.2 Layout of second floor of the Fulton building where the generator is located.
Also shown is a zoomed image of the room (217A) where the generator is installed.
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2. FACILITY LAYOUT AND ANALYTICAL CALCULATIONS

It was discussed in the previous section that, for successful operation of the neutron

generator, sufficient shielding should be provided to minimize exposures to the operating

personnel and public within the prescribed limits. This section describes the layout of the

facility and the details of different materials used in shielding the neutron generator. Some

analytical calculations were also performed to theoretically estimate the exposure rates due

to the neutron source.

Figure 1.2 shows the layout of the second floor of the Fulton building on the Mis-

souri S&T campus where the DD-109 generator is currently installed. The generator is

located in room 217A on this floor and can be controlled through a computer system lo-

cated in the adjoining room (room 217 in Figure 1.2).

The operation of the neutron generator will produce high energy fast neutrons with

an approximate energy of 2.5 MeV. For efficient thermalization of these fast neutrons, pro-

duced through D-D fusion reactions at the target, the generator head was first surrounded by

high-density polyethylene (see Figure 1.1(b)). Elastic scattering of neutrons by hydrogen

atoms in HDPE made it a suitable material for this purpose [12]. Thereafter, inclusion of

material with a high atomic number was preferred for attenuating the secondary gamma

photons produced. This strategic placement of low and high atomic number materials

eventually helped to reduce the exposure due to gamma photons. Therefore, the HDPE

that surrounded the neutron generator head was covered with a 0.64 cm (0.25 in.) thick

lead box (see Figures 2.1 and 2.2). It is believed that the majority of gamma photons were

produced by the neutron capture reaction 2H(n,γ)2H, which released a 2.22 MeV gamma

ray. One of the purposes of this study was to determine if the amount of lead, together with

the walls of the generator room, were adequate for attenuating the gamma rays.

Additionally, this whole configuration was covered with 5.08 cm (2 in.) thick 5%

wt. borated polyethylene to absorb the thermalized neutrons (see Figures 2.1 and 2.2). It
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(a) (b)

Figure 2.1 The DD-109 neutron generator with (a) current shielding and (b) the inside of
the top borated shielding. The place where samples will be irradiated is also shown.

should be noted that the shielding for the neutron generator was provided by the manu-

facturer of the generator (Adelphi Technology). The shape of the shielding was chosen to

“form fit” the generator while utilizing the rectangular pieces of polyethylene (see Figure

2.2). This design will also provide more open space for accessing the place where the sam-

ples will be irradiated (see Figure 2.1(b)). Therefore, in this study, attempts were made to

determine the effectiveness of the shielding (provided by the manufacturer) and to estimate

the limit on the annual hours of operation of the generator if it was operated with the current

shielding.

To further reduce the dose rates, the walls of the generator room were provided

with additional shielding materials. The east and the south walls are both made of brick

10.16 cm (4 in.) thick. To reduce the photon dose rate in the adjoining rooms (room 217

and 218 in Figure 1.2), the east and south walls were both lined with 0.32 cm (0.125 in.)

thick lead on the inner side of the generator room (see Figures 2.1(a) and 3.2). The floor

is made of 32.39 cm (12.75 in.) thick concrete and also has a 0.64 cm (0.25 in.) thick lead

lining. This strategic lining of lead in the floor is to minimize the photon dose that would

be received by persons working on the first floor of the building. The west and north walls

of the generator room are made of 43.18 cm (17 in.) and 32.39 cm (12.75 in.) thick brick,
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Figure 2.2 Scaled diagram of current shielding of neutron generator (central plane, xy
view). The neutron source shown by a red star is assumed to be a point source at origin.
Reference position A that was used in analytical calculations is also shown.

respectively (see Figures 1.2 and 3.1). The roof of the generator room has a 2.54 cm (1

in.) thick wood covering. Although, the roof is constructed of a composite single material

after the wood covering, the simulations were performed by assuming attenuation from

the wood covering only. This conservative assumption was made so that the reported dose

rates would be an overestimation of the actual values. The definitions and compositions

of different materials used in shielding the generator and the walls of the generator room

are provided in Table2.1. As will be discussed in section 3, the geometric and composition

details of the shielding and the walls of the generator room were used in developing the

MCNP model for dose estimation at different planes.

2.1. ANALYTICAL CALCULATIONS

Analytical calculations were performed to theoretically estimate the neutron dose

rate for a reference position (1 m away from the source). The idea was to understand the ef-

fectiveness of the shield and to compare the calculated dose rate (at a reference point) with



38

the dose rate obtained from MCNP simulations. NCRP Report No. 144 provided guidance

for calculation of neutron dose rates for different thicknesses of concrete shielding [13].

This report also recommends the “removal cross-section” method for dose rate determina-

tion when neutrons of energy less than 30 MeV are shielded with hydrogenous materials.

However, this method requires the information of buildup factor (which accounts for dose

contribution due to scattered neutrons). Moreover, the buildup factor varies with the thick-

ness of the shield [2]. Therefore, an alternative approach, recommended in [2], was used

to approximate the dose rate at the reference position 1 m away from the source in the east

direction (see position A in Figure 2.2):

DET = DE0 ∗C ∗ e−T/λ (1)

where DET and DE0 are the dose equivalent values at a particular position with and without

a shield of thickness T , λ is the relaxation length, and C is a constant which incorporates the

scattering factor for correction. At position A in the east direction (−x direction in Figure

2.2), the neutrons will encounter approximately 14.3 cm of HDPE and approximately 5.08

cm of BPE. Since lead is not a very effective material in reducing neutron dose rates [11],

the attenuation offered by 0.64 cm (0.25 in.) thick lead box was ignored in our calculations.

Moreover, the densities and the neutron removal cross sections of HDPE, BPE, and paraffin

were approximately the same [12, 14]; therefore the relaxation length of paraffin provided

in [2] was used for dose rate estimation at reference position A.

The unshielded dose rate at any point (DE0 distant R cm away from a neutron source

of strength S neutrons per second is given by

DE0 =
Sq

4πR2 (2)

where q is the dose-equivalent rate per unit neutron fluence rate (in Svh−1 per neutron cm−2

s−1, provided in [12]). For a neutron source emitting 2.5 MeV neutrons with a rate of 2
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× 109 neutrons/s, the unshielded and shielded neutron dose rate, at reference position A,

were calculated to be 22.25 mSv/h and 0.99 mSv/h, respectively. The shielding of the gen-

erator therefore reduced the neutron dose rate by an approximate factor of 22 (in the east

direction). This observation highlighted the importance of incorporation of hydrogenated

shielding materials for effective reduction of neutron dose rates. The analytical estimate of

the neutron dose rate at the reference position (with shielding) was also found to be rea-

sonably close to the dose rate value obtained for that position from the MCNP simulations:

1.11 mSv/h. Details of the MCNP model and simulations performed using the MCNP5

radiation transport code are given in section 3.
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Table 2.1 Composition of different materials used in MCNP modeling of the generator head, its shielding, and the facility [15, 16].

Element Material (weight fraction)

HDPE BPE Lead Brick Concrete Wood Air Stainless Steel Aluminum
(common silica) (regular) (304) (alloy 6061-O)

Al 0.005 0.034 0.972
Ar 0.0128
B 0.0469
C 0.8563 0.7232 0.497 0.0001 0.0004
Ca 0.014 0.044 0.002
Cr 0.19 0.002
Cu 0.0028
Fe 0.007 0.014 0.7017 0.0041
H 0.1437 0.127 0.01 0.0596
K 0.002
Mg 0.002 0.01
Mn 0.01 0.0009
N 0.005 0.7553
Na 0.029
Ni 0.0925
O 0.1029 0.525 0.532 0.4274 0.2318
P 0.0002
Pb 1
S 0.005 0.0002
Si 0.449 0.337 0.005 0.006
Ti 0.0009
Zn 0.0015
Density (g/cm3) 0.93 0.937 11.35 1.8 2.3 0.64 0.0012 8 2.7
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3. MCNP MODELING

As discussed in section 1, the target in the generator head has V-shape (see Figure

1.1). This target shape provided a larger surface area for the striking of D+ ions while still

providing a relatively “small” source of neutrons. Therefore, in the MCNP modeling, an

isotropic neutron point source of energy 2.5 MeV was assumed to be at the origin. This

assumption was a conservative estimate because the attenuation offered by the target (and

the fluorinert channels) was not accounted for in the model. The target was surrounded

by an aluminum shroud that was approximately 0.15 cm (0.06 in.) thick and 12.7 cm

(5 in.) in diameter. The shroud was surrounded by an outer wall which was made of

304 stainless steel of an approximate thickness of 0.28 cm (0.11 in.) and 20.32 cm (8

in.) in diameter. These geometric details of the generator head were provided by the

manufacturer of the DD-109 neutron generator, Adelphi Technology Inc. It can be seen

from the information provided by the manufacturer (see Figure 1.1) that it was reasonable

to assume that the generator head was cylindrical in shape. This assumption was, therefore,

used in the modeling of the generator head (see Figures 2.2 and 3.1).

The composition and properties of the materials in the generator head, shielding,

and the walls of the generator room were either supplied by the manufacturer or taken from

a compendium of material composition data. These are provided in Table 2.1 [15, 16]. The

dimensional measurements, compositions, and densities of the generator head, shielding

materials, and the facility (as discussed in section 2) were then incorporated in the final

model. The xy and 3D views of the final model, as seen on the MCNPX visual plotter, are

shown in Figure 3.1.

After the final model was developed, simulations were performed by assuming a

maximum neutron yield of 2×109 n/s for the DD-109 generator and for a particle history

of 1× 109. The flux values, due to the isotropic point neutron source of 2.5 MeV energy

at origin, were estimated for three planes passing through the source in each of the three
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(a) (b)

Figure 3.1 Different views of the generator and its shielding, as seen on the MCNPX visual
plotter (a) central plane, xy view (b) 3D view (roof of the room is not shown).

directions: x, y, and z (see Figure 3.2). These fluxes were obtained by creating a FMESH

tally of 10 cm × 10 cm × 10 cm bins along these three central planes. The dose rates for

three central planes, passing through the neutron source at origin, were then determined

by using fluence-to-dose conversion factors for neutrons and photons based on ICRP pub-

lication 116 [17]. The neutron and photon dose rate contour plots (and their associated

statistical uncertainties) for these central planes were generated using a developed MAT-

LAB program. These dose rate contour plots were used to determine the maximum dose

rates in the vicinity (six sides) of the generator room. The objective was to make a conser-

vative estimate of the annual limit for operation time of this generator to keep the annual

dose exposures within the prescribed values.

After estimation of the limit on annual operating hours of the neutron generator

(with the current shielding), an additional simulation was performed to analyze the shield-

ing effectiveness of lead-lining of east and south walls, and the concrete floor. The neutron

and photon dose rates were simulated in the absence of lead-lining for same particle his-

tory of 1× 109 (everything else was kept same in the MCNP model). The neutron and

photon dose rates without the lead-lining were compared with the respective shielded dose
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rate values at the same points just in the vicinity of each wall. The results are shown and

discussed in the next section.

(a)

(b) (c)

Figure 3.2 Central planes of the MCNP model where the dose rate contour plots were
obtained. Figures were obtained using a MCNPX visual plotter for (a) xy view, (b) yz view,
(c) xz view.
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4. RESULTS AND DISCUSSION

As discussed in section 2 of this paper, the DD-109 generator head, its shielding,

and the generator room were modeled using the MCNP5 radiation transport code. Simula-

tions were then performed to determine the neutron and photon dose rates for three central

planes as already explained in the previous section.

The dose rate contour plots (µSv/h) for three central planes, obtained using a de-

veloped MATLAB program, are shown in Figure 4.1. The respective statistical uncertainty

associated with each dose rate is shown in Figure 4.2. These figures also illustrate the outer

boundaries of generator shielding and of the facility to show the role of different materials

in reducing the neutron and photon dose rates. For a better understanding of the distribution

of dose rates in the facility, one can compare Figures 3.2 and 4.1.

From the contour plots in Figure 4.1, one can see that the dose rate decreased as

the distance from the neutron source increased. This was true for all cases of neutron (left)

and photon (right) dose rate distribution. This observation was expected because the dose

rate should have decreased as the distance from the source term increased. Moreover, in

all cases, the generator shielding and walls of the room played an important role in the

reduction of the dose rates.

Also evident in Figures 4.1(a) and (c) is that the neutron dose rate was relatively

higher outside the east wall (in the −x direction) of the facility. The relative “spread” of

neutron dose rates after the east wall, as compared to other directions, is clearly distin-

guishable in these figures. This is because the east wall was made of (lead-lined) brick;

however, the west wall was made of 43.18 cm (17 in.) brick wall which provided an ef-

fective shielding for shielding the neutrons (see Figures 3.2(a), 4.1(a) and (c)). Materials

with higher atomic numbers, like lead, were not a viable option for reducing neutron dose

rates [11]. However, the vital role played by lead-lining in reducing photon dose rates is
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Figure 4.1 Neutron (left) and photon (right) dose rate contour plots (µSv/h), corresponding
to central planes shown in Figure 3.2. (a) xy plane, (b) yz plane, (c) xz plane. Z represents
the elevation difference from the source at origin. Outer boundaries of generator shielding
and room walls are also shown for comparison.
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clearly seen when one compares only the photon dose rates in the vicinity of the east wall

(see Figures 4.1(a) and (c)).

The dose rates outside the south wall (+y direction, see Figures 4.1(a)-(b)) were

relatively less, even though the south wall had the same composition as the east wall. This

was because the south wall was located at roughly twice the distance of the east wall from

the neutron source, indicating that dose rates should be less at longer distances from the

source term. Table 4.1 gives the maximum total dose rates outside each wall of the facility.

It is also evident from Table 4.1 that the maximum total dose rate outside the south wall

was less than the maximum value of the dose rate in the east direction.

As expected, the neutron and photon dose rates were relatively higher and more

distributed above the roof of the generator room (in +z direction, see Figures 4.1(b) and

(c)). This was primarily because, for the MCNP model, it was assumed that the roof of the

room was made of 2.54 cm (1 in.) thick wood. As already stated in section 2, this was a

conservative estimate because, in a real situation, the room had a composite single material

after the wood roof. Therefore, the neutron and photon dose rates were relatively higher in

the regions above the facility.

Examining the neutron and photon dose contour plots in Figures 4.1(b)-(c), it is

clear that the (lead-lined) concrete floor adequately served its purpose by reducing the

neutron dose rates to the first floor of the building. However, a slight “bulge” in photon

dose rates, just below the concrete floor (in −z direction), can be seen in these plots. From

Table ]4.1 can be seen that the dose rate (in −z direction) contributed by photons was

approximately twice that of the dose rate contributed by the neutrons. This was primarily

because the concrete was ideally suited for reducing the neutron dose rates. In our case,

the neutron source lay at an elevation of about 36 cm from the floor. Therefore, it is

expected that the photon dose rates to the first floor would be reduced if the height of

the generator above the floor is increased, or additional lead will be inserted between the

neutron generator and the floor.



47

Figure 4.2 gives an insight into the statistical uncertainties reported by the MCNP5

radiation transport code for the simulated neutron and photon dose rates for the three cen-

tral planes. The statistical uncertainties in the neutron and photon dose rates, inside the

shielding of the neutron generator, were less than 2.1% and 0.2%, respectively. Statistical

uncertainties inside the generator room were less than 4.3% and 0.8% for neutron and pho-

ton dose rates, respectively. MCNP5 user’s manual [18] specifies that the results provided

by a tally with uncertainties of less than 10% can be considered as “generally reliable.” It

can be seen in Figures 4.2(b)-(c) that the statistical uncertainties were relatively higher for

some directions. This can be explained by the fact that fewer neutrons were transmitted in

those directions.

To provide an insight of the effectiveness of different materials in reducing the total

dose rate, a plot of variation of dose rates at different distances was obtained. The variation

in the total dose rate (along the central line) in −x direction from the source towards the

east wall (see Figures 3.1(a), 3.2(a) and (c)) is shown in Figure 4.3 . A combination of

HDPE surrounded with lead, just in the immediate vicinity of the generator head, reduced

the total dose rate by a factor of 16. This represented the importance of a combination of

hydrogenated and higher atomic number materials in reducing the dose exposures. There-

after, an HDPE block and 5% BPE reduced the total dose rate by a factor of about 4. The

lead-lined brick wall also considerably reduced the dose rate by an approximate factor of

2.

To determine the maximum annual operating hours of the generator to keep the total

dose rate within prescribed limits, the maximum total dose rates just outside the facility

(walls, floor, and the roof) were utilized. These maximum total dose rates in the vicinity

of the facility, as provided in Table 2.1, were used to predict the limited number of hours

for operation of the generator annually. The limits imposed by the Nuclear Regulatory

Commission on the dose received by individual members of the public (5 mSv) and an

occupational annual exposure limit of 50 mSv were used to achieve this objective. As a
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Figure 4.2 Statistical uncertainty associated with the neutron (left) and photon (right) dose
rates, corresponding to central planes shown in Figure 3.2. (a) xy plane, (b) yz plane, (c) xz
plane. Z represents the elevation difference from the source at origin. Outer boundaries of
generator shielding and room walls are also shown for comparison.
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conservative estimate, the maximum dose rate of 134.8 µSv/h at the east wall (see Table

4.1) was used to determine the annual limit of operating hours of the generator. Therefore,

the maximum allowable operating hours of the generator, to keep the doses within the

prescribed limits, were approximately 37.1 hours for the public and 371 hours for operators.
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Figure 4.3 Variation in total dose rate from the source at origin toward the east wall of the
neutron generator room. The effectiveness of different materials in reducing the dose rates
can be observed.

It is worth noting that the room on the other side of the east wall (room 217 in Figure

1.2) is the room where the operation of the neutron generator will be controlled through a

computer system. Therefore, it is possible to make this room a controlled area with access

allowed for the authorized persons only. In this case, the annual limit of operating hours for

the operator will be 371 hours (corresponding to a total dose rate of 134.8 µSv/h for occu-

pational exposure limit of 50 mSv). However, the area is not currently isolated from public

and, therefore, it is reasonable to say that existing shielding is enough to keep exposure to
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Table 4.1 Maximum total dose rate for the vicinity of the facility (room 217A) where the
neutron generator is installed. Neutron and photon dose rate contributions are also given.

Location Direction Maximum total Dose rate (µSv/h) Uncertainty (%)

dose rate (µSv/h) Neutron Photon Neutron Photon

East wall −x 134.8 113.1 1.5 1.5 0.5
West wall +x 16.6 12.9 4.1 4.1 1.2
North wall −y 23.1 13.6 3.9 3.9 0.8
South wall +y 21.9 13.5 4.0 4.0 0.8

Roof +z 112.2 64.7 1.9 1.9 0.3
Floor −z 47.5 16.1 3.6 3.6 0.4

the public within limits if the generator is operated for less than about 37.1 hours each year

(corresponding to a total dose rate of 134.8 µSv/h for a 5 mSv exposure limit for individual

members of public). If the operation of the generator beyond that time is desired, incorpo-

ration of more shielding in the east direction is suggested to minimize doses to the public

working in the east side of the facility. Since about 84% of the maximum total dose rate

in the east direction is contributed by neutrons, inclusion of additional hydrogenated and

borated materials (like HDPE and BPE) in this direction is highly recommended (see Table

4.1). If required, movable or modular concrete blocks (as used and discussed in literature

[10, 12, 13]) may serve as a suitable option for reducing the neutron dose rate in the east

direction.

To determine the effectiveness of lead-lining of different walls and the floor in re-

ducing the neutron and photon dose rates, an additional MCNP simulation was performed.

As discussed in the previous section, everything else in the MCNP model was kept un-

changed. The dose rates, without the lead-lining, were determined just in the vicinity of

the respective (lead-lined) walls and the floor. It is important to note that these dose rates

were determined at the same locations used to obtain the maximum total dose rate given in

Table 4.1. The estimated neutron and photon dose rates, with and without the lead-lining,

are given and compared in Table 4.2.
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Table 4.2 Neutron and photon dose rates (µSv/h) with and without the lead-lining.

Location Direction Neutron dose rate (µSv/h) Photon dose rate (µSv/h)

With lead Without lead With lead Without lead

East wall −x 113.1 114.9 21.7 25.4
South wall +y 13.5 13.6 8.4 9.9

Floor −z 16.1 17.3 31.4 41.4

The presence of lead reduced the neutron dose rates in the range of 0.9%–7.4%. As

might be expected, the lead-lining does not play a significant role in reducing the dose rate

contribution from neutrons. However, the reduction in photon dose rates, due to the lead-

lining, is relatively more significant. The lead-lining reduces the photon dose rates in the

range of 14.5%–24.1%. Therefore, the selection of shielding material is primarily depen-

dent on the type of radiation to be shielded. The materials with higher atomic numbers are

often a viable option for reducing the dose rate contribution from photons. However, these

materials are relatively ineffective in shielding the neutrons [11]. The statistical uncertain-

ties in the neutron and photon dose rates given in Table 4.2 lies in the range of 1.5%–4.0%

and 0.4%–0.8%, respectively.

It is clear from Table 4.2 that the total dose rate is maximum in the east (−x) direc-

tion. Therefore, to observe the impact of lead-lining on annual limit of operating hours of

the generator, the dose rates (with and without the lead-lining) were compared at the loca-

tion in the vicinity of the east wall. The absence of lead-lining increased the total dose rate

from 134.8 µSv/h to 140.2 µSv/h. In this (east) direction, the decrease in the contribution

of photon dose rate, due to the lead-lining, is relatively more considerable (∼14.5%) than

the decrease in neutron dose rate (∼1.6%). Moreover, the total dose rate is not significantly

reduced (from 134.8 µSv/h to 140.2 µSv/h). This is because about 82% of the total dose

rate is contributed by neutrons in this direction. Therefore, in the absence of lead-lining

(with a total dose rate of 140.2 µSv/h), the annual operating hours of the neutron gener-

ator for public is approximately 35.7 hours (corresponding to a 5 mSv exposure limit for
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individual members of public). In other words, the limit on annual hours of operation of

the generator improves by approximately 3.9% (from 35.7 hours to 37.1 hours) with the

introduction of lead-lining on the east wall. Although, the presence of lead-lining does not

play a momentous role in improving the annual operating hours, its presence is important in

reducing the doses, in accordance with the goal of maintaining doses as low as reasonably

achievable (ALARA). The lead-lining, therefore, plays a reasonable role in achieving this

objective and in improvement of the annual operating limit of the neutron generator.
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5. CONCLUSIONS

In this article, the current shielding of the DD-109 generator installed in the Nu-

clear Engineering Department of Missouri S&T was modeled using the MCNP5 radiation

transport simulation. The geometric and composition details of the generator room were

also incorporated in the model to better approximate the dose rates outside the facility. The

objective was to determine the exposure to the public and the operator if the generator is

to be operated. The maximum total dose rates (contributed by neutrons and photons) in

the vicinity of the facility (at each of the six sides) were also determined. These maximum

total dose rates were utilized to make a conservative estimate of the annual limit of opera-

tional hours of the generator to correlate with the prescribed limits imposed by the Nuclear

Regulatory Commission. It was shown that, if the generator is to be operated with the cur-

rent shielding, the annual limit on operation of the generator would be approximately 37.1

hours (corresponding to a total dose rate of 134.8 µSv/h). Any operation of the generator

for less than this time is, therefore, deemed to be safe as far as prescribed dose limits are

concerned. If operation beyond this time is desired, it is suggested that more materials

(suitable for shielding of neutrons) be employed on the east side of the generator room. An

additional MCNP simulation was also performed to predict the effectiveness of lead-lining

of east and south walls, and the floor. It was concluded that incorporation of lead-lining on

the east wall improved the annual operating hours of generation by approximately 3.9%. To

keep the dose rates to minimum, in accordance with the ALARA radiation safety principle,

the lead-lining therefore plays a reasonable role in minimizing the total dose rate around

the facility. In this study, the shielding effects of the titanium coated copper assembly that

holds this target and the convective flowing cooling fluid system were not incorporated.

The estimated dose rates and limit on annual hours of operation are, therefore, believed to

be an overestimation to ensure safety from potential radiation exposure.
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ABSTRACT§

A deuterium-deuterium accelerator-type neutron generator was installed in the Nu-

clear Engineering Department at Missouri University of Science and Technology (Missouri

S&T). This generator is shielded by different hydrogenated and non-hydrogenated mate-

rials to reduce the dose rates in the vicinity of the facility. In the work presented in this

paper, both SCALE6 and MCNP5 radiation transport codes were used to conduct two in-

dependent simulations. The new shielding analysis tool of SCALE6—MAVRIC, with the

automatic variance reduction technique of SCALE6, was utilized to estimate and compare

the dose rates from the unbiased MCNP simulation. The ultimate goal of this study was to

compare the computational effectiveness offered by employing the MAVRIC sequence in

the modeling of the neutron generator facility at Missouri S&T.

Keywords: Neutron generator shielding, D-D neutron generator, Monte Carlo,

Variance, Dose
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1. INTRODUCTION

Monte Carlo simulations are considered the most accurate method for solving dose

rates in a radiation field. However, the computation time required for many practical

problems involving deep-penetration is prohibitive. Over the past several decades, var-

ious techniques have been developed to reduce the variance in dose rates and acceler-

ate the Monte Carlo simulations [1–10]. Among these developments, the hybrid Monte

Carlo/Deterministic methods are the favored techniques for radiation shielding problems

[8–10]. The Oak Ridge National Laboratory recently developed a new shielding analy-

sis tool in the SCALE6 code system [11]. This new tool, known as MAVRIC (Monaco

with Automated Variance Reduction using Importance Calculations), employs a hybrid

deterministic-stochastic method to automatically generate variance reduction parameters

for Monte Carlo simulations. MAVRIC is based on the Consistent Adjoint Driven Impor-

tance Sampling (CADIS) and Forward CADIS (FW-CADIS) methodologies, which use

the concept of an importance map and biased source distribution to accelerate Monte Carlo

simulations (a more detailed description can be found in [8–11]). In the past, it has been

shown that this hybrid technique serves as an appropriate method for the shielding analysis

of nuclear reactors [12–15].

In this work, this new shielding analysis tool (MAVRIC), with the automatic vari-

ance reduction technique of SCALE6 radiation transport code, was utilized to estimate the

dose rates in and around the neutron generator facility at Missouri University of Science

and Technology (Missouri S&T).

A deuterium-deuterium (D-D) accelerator-type neutron generator (model: DD-109,

manufactured by Adelphi Technology) was recently installed in the Nuclear Engineering

Department at Missouri S&T. The operation of this generator will produce fast neutrons

of approximate energy 2.5 MeV through D-D fusion reactions (2H + 2H→ 3He + n). The

detailed working mechanism and the applications of neutron generators that produce fast
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neutrons through deuterium-deuterium and deuterium-tritium fusion reactions have been

discussed extensively in the literature [16–20]. The operation of the generator at Missouri

S&T will increase radiation exposure around the facility. Therefore, to reduce the dose

rates in and around the facility, due to the neutrons and secondary photons, the generator

has been shielded with different materials. Shielding of neutrons is a challenging problem

because of the fact that dose contributions from both the neutrons and the photons should

be considered. Therefore, the generator was shielded with different materials (e.g., high-

density polyethylene, lead, and 5 wt.% borated polyethylene). Moreover, some walls of the

generator room were also lead-lined to further reduce the dose rates around the facility.

A Monte Carlo N-Particle (MCNP) radiation transport code [21, 22] was recently

used to develop a model of the neutron generator and its facility. An MCNP simulation

was then performed to estimate the generator’s annual hours of operation in order to keep

the dose rates within the prescribed limits. This problem is a typical example of a deep-

penetration shielding problem where the attenuation of the beam is considerably higher.

Thus, it was difficult to obtain good statistics (i.e., low relative uncertainty) in the regions

of interest without sacrificing computation time. Therefore, in the work presented in this

paper, attempts were made to speed up the simulations by utilizing the automated vari-

ance reduction technique of the MAVRIC tool. The ultimate goal was to compare the dose

rates and statistical uncertainties from a SCALE simulation with those from a Monte Carlo

simulation and thereby evaluate the relative computation efficiency of the SCALE simu-

lation. The concept of Figure-of-Merit was utilized to determine the relative computation

efficiency and speedup of the SCALE simulation.
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2. FACILITY LAYOUT AND ANALYTICAL CALCULATIONS

The physical placement of the DD-109 accelerator-type neutron generator at Mis-

souri S&T is illustrated in Figure 2.1. The generator, which is installed in room 217A on

the second floor of the Fulton Hall building, will be operated from an adjacent room (no.

217), as shown in Figure 2.1. For spatial clarity, a zoomed image of room 217A is also

shown. As already discussed in the previous section, this type of generator utilizes D-D

fusion reactions to produce fast neutrons with an approximate energy of 2.5 MeV. The V-

shaped copper target (where the D+ ions strike) is approximately 1.02 cm thick and has

a titanium coating that is approximately 0.102 mm thick. The initial bombardment of D+

ions results in the formation of titanium hydride on the target’s surface. The subsequent

bombardment of D+ ions at the target initiates the D-D fusion reactions that produce fast

neutrons. For a sufficient reduction of dose rates (due to generated neutrons and secondary

photons) in and around the facility, it is imperative that sufficient shielding be provided

around the generator and the facility. Various materials (e.g., high-density polyethylene,

borated polyethylene, and lead) have been used to achieve this objective. The V-shaped

target and the current shielding of the generator are depicted in Figure 2.2(b). The genera-

tor was first surrounded by high-density polyethylene (HDPE) to efficiently thermalize the

fast neutrons. Hydrogenated materials (such as HDPE) are always a preferred option for

this purpose. The (n,γ) capture reactions in the HDPE also results in dose rate contribution

from photons. Due to its high atomic number, lead is the preferred choice for attenuating

photons. Therefore, the HDPE has been surrounded by a 0.64 cm (0.25 in.) thick lead box

to reduce the dose rate contribution from photons (see Figure 2.3).

This entire configuration has been surrounded by 5.08 cm (2 in.) thick 5 wt.%

borated polyethylene (BPE) to absorb the thermalized neutrons. The shielding’s shape was

chosen to effectively cover the generator by utilizing rectangular pieces of polyethylene.
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Figure 2.1 Layout of second floor of the Fulton building where the generator is located.
Also shown is a zoomed image of the room (217A) where the generator is installed.

(a) (b)

Figure 2.2 (a) DD-109 neutron generator head and HDPE blocks used for shielding of
generator. (b) Cutaway of a neutron generator and the surrounding HDPE blocks. The V-
shaped target, where the neutrons are produced, is also shown (Image courtesy of Adelphi
Technology, Inc.).

This design also offers the advantage of obtaining a more “open” space where the samples

can be placed and irradiated (see Figure 2.3(b)).
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Figure 2.3 (a) DD-109 generator shielding. (b) Different materials used in the shielding.
(The top BPE cover is removed for a better perspective.) The place where samples will be
irradiated is also shown.

It is worth noting that the walls, roof, and floor of the generator room also provide

shielding to the neutrons and secondary photons. The composition and the thickness of

each wall are listed in Table 2.1.

Some of the walls of the generator room have also been lead-lined to reduce the

dose contribution from the photons. The eastern and southern walls each have a lining of

0.32 cm thick lead to reduce the dose rates in the adjoining rooms (rooms 217 and 218

in Figure 2.1). Since the generator is elevated approximately 36 cm from the floor, the

concrete floor has also been lined with 0.64 cm thick lead to reduce the exposure (due to

secondary photons) to the persons working on the building’s first floor. The effectiveness of

lead-lining in reducing the neutron and photon dose rates is discussed in [21]. The room’s

roof in the developed SCALE model was assumed to be made of a 2.54 cm (1 in.) thick

wood covering only. In reality, the roof is made of a composite material located above the

wood. This assumption was made so that the simulated dose rates were an overestimation

of the actual values. Moreover, the MCNP simulation that was recently performed[21] was

also based on the same assumption. Therefore, maintaining the same assumptions for both

models was crucial for a justified comparison between these dose rates (obtained from the

MCNP) and those obtained from the SCALE.
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Table 2.1 Composition and dimensions of different walls of the generator room.

Location Composition Thickness (cm)

East wall Brick 10.16
West wall Brick 43.18
North wall Brick 32.39
South wall Brick 10.16

Roof Wood 2.54
Floor Concrete 32.39

2.1. ANALYTICAL CALCULATIONS

An analytical estimate of the neutron dose rate was made at the reference point. The

objective was to see how close the neutron dose rate from SCALE simulation was to this

estimate. The NCRP Report No. 144 recommends the “removal cross-section” method

for the estimation of dose rate from neutrons of energy less than 30 MeV [23] shielded

with hydrogenous materials. This approach, however, requires information of the buildup

factor—which accounts for the dose contribution from scattered neutrons. Therefore, an

alternative approach (given in [17]) was used to theoretically estimate the dose rate. The

neutron dose rate at a reference position 1 m away from the neutron source in the east

direction (position A in Figure 2.4) is given by

DEt = DE0 ∗C ∗ e−t/λ (1)

where DEt and DE0 are the dose equivalent values at a particular position with and without

a shield of thickness t, λ is the relaxation length, and C is a constant that incorporates the

scattering factor for the correction. The neutrons, when traveling to reference position A,

will encounter approximately 14.3 cm of HDPE and approximately 5.08 cm of BPE. Since

lead is practically ineffective in attenuating the neutrons [21, 24], the attenuation from the

0.64 cm lead encountered in this direction was ignored. Furthermore, the HDPE, BPE, and
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paraffin had very similar densities and neutron removal cross-sections [25, 26]. Therefore,

the relaxation length of paraffin provided in [17] was used in the calculation using Eq. ((1)).

Figure 2.4 Cutaway diagram of the generator’s shielding (central plane, xy view). The
neutron source (indicated by a red star) is assumed to be a point source at the origin. Also
shown is the reference position (A) where the analytical calculation was performed. (For
interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

The unshielded dose rate (DE0) at a distance of R cm away from a neutron source

of strength S neutrons per second is given by

DE0 =
Sq

4πR2 (2)

where q is the dose-equivalent rate per unit neutron fluence rate (in Sv h−1 per neutron

cm−2 s−1, provided in [26]). For a neutron source emitting 2.5 MeV neutrons with a

rate of 2 × 109 neutrons/s, the unshielded and shielded neutron dose rates (at reference
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position A) were calculated to be 22.25 mSv/h and 0.99 mSv/h, respectively. Thus, the

generator’s shielding reduced the neutron dose rate by an approximate factor of 22 (in the

east direction). This observation highlights the importance of incorporating hydrogenated

shielding materials for effective reduction of neutron dose rates. The analytical estimate

at the reference position (with shielding) was also found to be reasonably close to the

dose rate value obtained for that position from the SCALE simulation: 1.06 mSv/h, with

a relative uncertainty of approximately 0.8%. Details of the developed SCALE model and

the simulation performed are given in the following section.
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3. SCALE MODELING AND METHODOLOGY

The details of composition and dimensions of the generator head, shielding, and the

facility were used to develop a SCALE model. To simplify the analysis, a point neutron

source of energy 2.5 MeV and strength of 2 × 109 neutrons/s was assumed to be at the

origin. This assumption was a conservative estimate because the attenuation from the V-

shaped titanium-coated copper target was neither considered nor incorporated in the model.

The neutron source (i.e., the target) was surrounded by an aluminum shroud approximately

0.15 cm (0.06 in.) thick and 12.7 cm (5 in.) in diameter. This shroud was further surrounded

by a stainless steel outer wall that was approximately 0.28 cm (0.11 in.) thick with a 20.32

cm (8 in.) diameter. Adelphi Technology provided the generator head’s dimensions and

compositions. The generator head was assumed to be cylindrical in shape, which is a

reasonable assumption with regard to its original shape (see Figure 2.2). The compendium

of material composition data [27] was used to obtain details on the composition of different

materials, information that is necessary for SCALE modeling. The composition and density

information of the different materials used to model the generator head, its shielding, and

the facility are listed in Table 3.1. Details of the generator head, the target, and the cooling

mechanism are discussed in [21]. A final SCALE model of the generator head, shielding,

and facility was then developed. The 3D views of this model, obtained using the KENO3D

visualization tool [28], are illustrated in Figure 3.1.
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Table 3.1 Composition of different materials used in MCNP modeling of the generator head, its shielding, and the facility [27, 29].

Element Material (weight fraction)

HDPE BPE Lead Brick Concrete Wood Air Stainless Steel Aluminum
(common silica) (regular) (304) (alloy 6061-O)

Al 0.005 0.034 0.972
Ar 0.0128
B 0.0469
C 0.8563 0.7232 0.497 0.0001 0.0004
Ca 0.014 0.044 0.002
Cr 0.19 0.002
Cu 0.0028
Fe 0.007 0.014 0.7017 0.0041
H 0.1437 0.127 0.01 0.0596
K 0.002
Mg 0.002 0.01
Mn 0.01 0.0009
N 0.005 0.7553
Na 0.029
Ni 0.0925
O 0.1029 0.525 0.532 0.4274 0.2318
P 0.0002
Pb 1
S 0.005 0.0002
Si 0.449 0.337 0.005 0.006
Ti 0.0009
Zn 0.0015
Density (g/cm3) 0.93 0.937 11.35 1.8 2.3 0.64 0.0012 8 2.7
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After the geometric SCALE model was developed, it was important to establish

the tally and the automatic variance reduction parameters. Since the total dose rate is con-

tributed by both the neutrons and the (secondary) photons, respective neutron and photon

mesh tallies to cover the entire facility (approximately 500 cm × 600 cm × 350 cm in

dimension) were created. The FW-CADIS methodology was then adopted to optimize

the Monte Carlo simulations so that various tallies have more uniform relative uncertain-

ties. The FW-CADIS approach first performed a quick discrete ordinates calculation, using

the SN method, to estimate the expected tally results. The SN method is a deterministic

methodology for numerically solving the Boltzmann transport equation and its related ad-

joint equation [30]. Then, an adjoint SN calculation was performed to construct the adjoint

source. Thereafter, the adjoint source, corresponding to each tally, was weighted inversely

by those forward tally estimates obtained in the first SN calculation. Finally, the weighted

adjoint flux was used to create the importance map.

Figure 3.1 3D views of the generator facility and its shielding. (The facility’s roof is not
shown.)
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The mesh tallies for neutron and photon dose rates were constructed uniformly

along three central planes passing through the neutron source: xy, yz, and xz. A total of

111,996 (51 × 61 × 36) bins were created, with each bin of size 10 cm × 10 cm × 10

cm. To perform a deterministic SN calculation, a grid geometry overlaying the physical

geometry was created. This grid mesh size was made relatively large to improve the com-

putational efficiency. Therefore, a grid mesh of 41 × 53 × 30 cells was created. Since the

grid mesh size was not uniform, additional grid cells were constructed in the peripherals

of the facility. The SN calculations used the default S8 quadrature and P3 Legendre order.

These calculations used 27 neutron energy groups and 19 photon energy groups. In the final

dose rate calculations, however, 200 neutron energy groups and 47 photon energy groups

were used. In both cases, the energy groups were taken from the ENDF/B-VII library. The

simulated neutron and photon dose rate contour plots at three central planes, obtained from

the SCALE simulation, are illustrated and discussed in the following section.

As already discussed, the recently developed MCNP model [21] was computation-

ally expensive when obtaining reasonable uncertainties for the dose rates. The computation

time of MCNP simulation for a particle history of 1 × 109 on different computer systems

is given in Table 3.2.

Table 3.2 Computation time on different computer systems for a previously performed
MCNP simulation [21].

Computer system configuration Computation time (days)

Intel Core2Duo 2.2 GHz processor (2 GB RAM) 12.4
Intel Core2Quad 2.66 GHz processor (8 GB RAM) 9.5

Intel Xenon 3.33 GHz processor (48 GB RAM) 6.4
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The computational expensiveness of this Monte Carlo simulation was, therefore,

prohibitive. Thus, in this study an attempt was made to accelerate the Monte Carlo sim-

ulation by generating the variance reduction parameter using the MAVRIC sequence. To

gain an insight into the computational effectiveness of the variance reduction technique,

results from the SCALE simulation and an analogy (unbiased) MCNP simulation were

compared. The concept of Figure-of-Merit (FOM) was utilized to achieve this objective.

It was defined as

FOM =
1

RE2×T
(3)

where RE is the relative uncertainty in the dose rate and T is the total computation time

taken for the simulation [31]. As indicated by its definition above, the value of FOM

includes consideration of both the resultant relative error of the sample mean and the com-

puter time necessary to achieve this relative error. A comparison of FOM values for two

different and independent simulations (Monte Carlo and SCALE) is made in next section.
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4. RESULTS AND DISCUSSION

The model discussed in the previous section was used to perform a SCALE sim-

ulation for a computation time of 800 minutes. The neutron dose rate contour plots (in

Sv/h) for three central planes, obtained from the SCALE simulation, are shown in Figure

4.1. The statistical uncertainty corresponding to the dose rate at each position is depicted

in Figure 4.2. Similarly, the photon dose rate contour plots (in Sv/h) and their respective

statistical uncertainties are given in Figures 4.3 and 4.4, respectively. For a better under-

standing of the distribution of dose rates in and around the facility, the outer boundaries of

the generator shielding and the facility are also shown.

The vital role played by the generator’s shielding and the facility’s walls in reducing

the dose rates is shown in Figures 4.1 and 4.3. As expected, the neutron and photon dose

rate decreased as the distance from the source increased. This finding is supported by the

fact that the neutron and photon dose rate decreased approximately by the order of 108

and 105. The dose rates were relatively higher just outside the east wall, as observed in

previously obtained results [21]. The effectiveness of a lead-lined concrete floor can also

be seen in Figures 4.1(b) and 4.1(c). These dose contours also considerably matches to

those obtained from a previous MCNP simulation.

The estimated dose rates had reasonably good statistics (i.e., low uncertainty) in

regions located inside the facility (see Figures 4.2 and 4.4). Inside the shielding, the sta-

tistical uncertainties in the neutron and photon dose rates were less than 4.1% and 1%,

respectively. These respective uncertainties were less than 6.8% and 4.6% inside the gener-

ator facility. The regions, that were primarily near the facility’s walls, had relatively higher

uncertainties. This observation was based on the fact that fewer particles were registered in

those regions.

The primary focus of this work was to compare the computational effectiveness of

employing a variance reduction technique in the modeling of a generator facility. Thus,
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(a)

(b) (c)

Figure 4.1 Neutron dose rate contour plots along the three central planes passing through
the neutron source at origin. Outer boundaries of the generator’s shielding and the facility’s
walls are also shown for comparison.

the computational efficiencies of two independent SCALE6 and MCNP5 simulations were

compared to one another. For this purpose, we compared the Figure-of-Merit of dose rates

at six positions near the facility (where the maximum total dose rates had been earlier

reported [21]). The two simulations were performed on the same computer system, for

the same computation time, to create a reliable comparison. The SCALE simulation was

performed using the developed model and the automatic variance reduction technique of
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(a)

(b) (c)

Figure 4.2 Contour plots showing the relative uncertainty in the neutron dose rate along the
three central planes passing through the neutron source at origin.

the MAVRIC sequence, as already discussed in the previous section. The MCNP model

developed previously was used for the Monte Carlo simulation [21].

Both of these simulations were performed for time duration of 800 minutes on a

computer system with an Intel Xenon 3.33 GHz processor and a 48 GB RAM. The ob-

jective was to compare the neutron and photon dose rates at six positions near the facility

where the total dose rates were maximum. These dose rates are given in Tables 4.1 and 4.2,

respectively. The FOM values are also reported for each of the dose rates. The importance
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(a)

(b) (c)

Figure 4.3 Photon dose rate contour plots along the three central planes passing through the
neutron source at origin.

of utilizing the variance reduction technique to obtain dose rates with less uncertainty for

the same computer time can be seen in Table 4.1. The speedup represents the ratio of FOM

values from the SCALE and MCNP simulations. The average computational speedup of

11.3 demonstrates the momentous role played by variance reduction technique in improv-

ing the computational efficiency.

Improvement in the photon dose rate uncertainties from the SCALE simulation

was not very significant, as evidenced in Table 4.2. It was even worse in most of the

locations (see Table 4.2). This finding is justified because the goal of the FW-CADIS
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(a)

(b) (c)

Figure 4.4 Contour plots showing the relative uncertainty in the photon dose rate along the
three central planes passing through the neutron source at origin.

method is to converge neutron and photon dose tallies to similar relative uncertainties.

The adjoint source (i.e., importance) corresponding to the neutron and photon dose tallies

needs to be weighted inversely by the neutron and photon fluence value in the FW-CADIS

approach. This leads to much reduced relative uncertainty for the neutron dose tally and

slightly increased relative uncertainty for the photon dose tally. Additionally, the dose

rate contribution from neutrons was approximately 85% of the total dose rate in the east

direction. Therefore, the speedup in the neutron dose rate simulation was more important.
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Table 4.1 The neutron dose rate contribution near the facility (where maximum total dose
rates were earlier reported [21]). Dose rates from the SCALE and unbiased MCNP simu-
lations were compared for T = 800 min.

Neutron dose Neutron relative Neutron dose
Location Direction rate (µSv/h) uncertainty (%) rate FOM (min−1) Speedup

MCNP SCALE MCNP SCALE MCNP SCALE

East wall −x 113.8 114.6 5.0 1.6 0.500 4.883 9.8
West wall +x 12.9 13.8 14.1 2.5 0.063 2.0 31.7
North wall −y 12.1 14.7 14.5 4.2 0.059 0.709 12.0
South wall +y 13.4 13.1 13.6 6.9 0.068 0.263 3.9

Roof +z 63.8 68.1 6.4 3.3 0.305 1.148 3.8
Floor −z 17.4 18.1 11.8 4.6 0.090 0.591 6.6

Table 4.2 Photon dose rate contribution near the facility (where maximum total dose rates
were earlier reported [21]). Dose rates from the SCALE and unbiased MCNP simulations
were compared for T = 800 min.

Photon dose rate Photon relative Photon dose rate
Location Direction (µSv/h) uncertainty (%) FOM (min−1) Speedup

MCNP SCALE MCNP SCALE MCNP SCALE

East wall −x 20.4 23.4 1.7 2.1 4.325 2.834 0.7
West wall +x 3.8 3.6 4.2 3.7 0.709 0.913 1.3
North wall −y 9.3 10.6 2.6 3.2 1.849 1.221 0.7
South wall +y 8.2 8.7 2.7 3.7 1.715 0.913 0.5

Roof +z 46.5 44.4 1.2 2.4 8.681 2.17 0.2
Floor −z 30.7 32.5 1.4 2.7 6.378 1.715 0.3

Better insight into the uncertainty distribution can be observed in the relative uncer-

tainty histograms illustrated in Figure 4.5. Figures 4.5(a)-(b) show the fraction of voxels

that has relative uncertainty that is less than a particular amount. Relative low and uniform

uncertainties, throughout the entire mesh tally of neutron or photon dose rates, indicate

that the FW-CADIS technique is better than the analog Monte Carlo simulation. The dis-

tribution of uncertainties is given for the two independent MCNP and SCALE simulations

performed for a duration of 800 minutes. A histogram of uncertainties from the MCNP
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simulation performed previously [21] for a particle history of 1 × 109 (T = 6.4 days) is

also shown for comparison. It can be seen in Figure 4.5(a) that the relative uncertainty in the

neutron dose rates considerably improved when the computation time increased from 800

minutes to 6.4 days, using the analog MCNP simulation. More importantly, the SCALE

simulation for a computer time of 800 minutes proved to be the most efficient approach

among these three cases. Here, approximately 99.7% of the voxels had a relative uncer-

tainty that was less than 10%. For photon dose rates, the SCALE provided considerably

good statistical uncertainties, considering the fact that the contribution of photon dose rates

to the total dose rates was not very significant in almost all of the six directions (see Tables

4.1 and 4.2).
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Figure 4.5 Histograms showing relative uncertainty in dose rates contributed from (a) neu-
trons and (b) photons.
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5. CONCLUSION

A new shielding analysis tool of SCALE6—MAVRIC—with the automatic vari-

ance reduction technique of SCALE6, was used to model and simulate the current shielding

of the neutron generator installed in the Nuclear Engineering Department of Missouri S&T.

The automated variance reduction capability of the MAVRIC yielded an average computa-

tional speedup of 11.3 for neutron dose rates with respect to an unbiased MCNP simulation.

The neutron and photon dose rates (and their respective uncertainties) at various positions

near the facility are discussed and compared.
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ABSTRACT¶

Any source of ionizing radiations could lead to considerable dose acquisition to in-

dividuals in a nuclear facility. Evacuation may be required when elevated levels of radiation

is detected within a facility. In this situation, individuals are more likely to take the closest

exit. This may not be the most expedient decision as it may lead to higher dose acquisition.

The strategy followed in preventing large dose acquisitions should be predicated on the path

that offers least dose acquisition. In this work, the neutron generator facility at Missouri

University of Science and Technology was analyzed. The Monte Carlo N-Particle (MCNP)

radiation transport code was used to model the entire floor of the generator’s building. The

simulated dose rates in the hallways were used to estimate the integrated doses for different

paths leading to exits. It was shown that shortest path did not always lead to minimum dose

acquisition and the approach was successful in predicting the expedient path as opposed to

the approach of taking the nearest exit.

Keywords: Integrated doses, Dosimetry, Radiation exposure, Neutron generator,

Emergency planning
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1. INTRODUCTION

Any extraneous radioactive source exposed intentionally or accidentally may repre-

sent high dose rates in a nuclear facility. Likewise, any accidental operation of equipment

producing ionizing radiations (e.g., a neutron generator) may lead to large dose acquisition

to personnel in the facility. In an event that requires evacuation, individuals are more likely

to take the nearest exit. In a facility with more than one exit pathway, it is possible that the

nearest exit may not offer the pathway to the least radiation exposure. The approach and

prediction should be decided based on the route that leads to minimum dose acquisition.

There are existing publications and tools for predicting dose acquisitions. A set of

computational tools to estimate the integrated doses associated with maintenance activities

at National Ignition Facility (NIF) is discussed in [1]. The Automated ALARA-MCNP In-

terface (AAMI) and NIF Exposure Estimation Tool (NEET) are used for work planning and

estimating the integrated doses. The AAMI code creates dose rate maps through a series

of calculations. NEET is a web application that can perform radiation exposure calcula-

tions to compute the dose rate maps—which is valuable for planning purposes. Additional

information about maintenance activities at NIF, and NEET is available in [2]. The inter-

vention doses for the CNGS (CERN Neutrinos to Gran Sasso) facility are estimated in [3].

These calculations are integral in cases where a human, instead of a robot, intervention is

obligatory. Fabry et al. [4, 5] discusses the issue of minimizing integrated dose acquired

during maintenance operations. They present a software program to plan and optimize the

maintenance interventions in a facility with ionizing radiation. The software automatically

computes the expected dose acquisition by the maintenance workers.

Estimation of integrated doses in the areas of intervention is vital to establish the

radioprotection measures for the personnel in accordance with the As Low as Reasonably

Achievable (ALARA) radiation safety principle. Any proactive planning, optimization, and

estimation of integrated doses is key in prevention of large dose acquisitions, especially in
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evacuation scenarios of facility with well-understood characteristics [6]. In this work, the

integrated doses in a neutron generator facility at Missouri University of Science and Tech-

nology (Missouri S&T) were computed. A previously developed model of the generator

and its shielding was extended to cover the entire floor of the building using the Monte

Carlo N-Particle (MCNP) radiation transport code [7]. The simulated dose rates were used

to estimate the integrated doses for different cases using MATLAB. Unlike the tools and

methods described in [1, 3], which are developed to calculate in-situ doses over a period of

residence, the approach herein is focused on evacuation scenarios and is similar to [4, 5].

While the work presented in [4, 5] is centered on trajectory optimization during mainte-

nance interventions, the proposed work is motivated by the need of expedient decisions in

responding to emergency and evacuation scenarios. The results of this work are crucial to

prevent and mitigate large dose acquisitions in accidental-operation scenarios at Missouri

S&T generator facility.
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2. FACILITY LAYOUT AND MCNP MODELING

The layout of second floor of Fulton Hall building is shown in Figure 2.1. The

numbers represent the different rooms and laboratories of Nuclear Engineering depart-

ment at Missouri S&T. A DD-109 accelerator-type neutron generator is located in room

217A (shown in red star). The generator utilizes deuterium-deuterium fusion reactions

(2H + 2H→ 3He + n) to produce neutrons of approximate energy 2.5 MeV. The working

of neutron generator and its applications can be found in [8, 9]. The generator is surrounded

with different materials to reduce the dose rates in the vicinity of the room. The details and

the developed models of neutron generator and its shielding are extensively discussed in

[7, 10]. The MCNP model of neutron generator, its shielding and room was extended to

cover the entire floor. For simplification, the peripheral rooms of the floor (e.g., rooms

222A, 223-227, etc. in Figure 2.1) were not included in the final model. This was a fair

assumption since the goal was to determine the dose rates in the hallways (shaded with gray

color in Figure 2.1). Any contribution in dose rates from structures that do not fall within

the direct line-of-sight of the generator (to the hallways) was ignored. However, walls phys-

ically present along the boundary of exclusion were modeled to account for albedo effects.

The dimensional and compositional details of walls, floor, and the roof [7, 10–12] were

then used to create a geometric model. A two-dimensional (xy) and a three-dimensional

view of the model, obtained using MCNPX visual plotter [13], are shown in Figures 2.2

and 2.3, respectively.

2.1 MCNP SIMULATION OF FULTON HALL’S SECOND FLOOR MODEL

A point source of neutron generation was assumed to be emitting 2.5 MeV neutrons

isotropically with an intensity 2 × 109 neutrons/s and an MCNP transport simulation was

performed for 8 × 109 particle histories. Several FMESH tallies with different bin sizes

were created in the hallways to see the impact of bin size on relative uncertainties in dose

rates. Bins of sizes 5 cm× 5 cm, 10 cm× 10 cm, 12.5 cm× 12.5 cm, 25 cm× 25 cm, and
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(a) (b)

Figure 2.1 Fulton Hall’s second floor where the neutron generator is located. (a) Shown
in red star is the generator (with its shielding). The three exits of the floor—A, B, and
C—are shown and hallways leading to these exits are shaded. (b) Hallways with major
nodes indicated.

Figure 2.2 MCNP model of Fulton Hall’s second floor. Hallways leading to different exits
are shaded in gray.



88

50 cm × 50 cm were created in the x× y directions. The size of each tally was kept 10 cm

in the z direction. Further, the tallies were created along the central plane passing through

the neutron source—where the dose rates were expected to be the highest. The simulations

utilized the appropriate fluence-to-dose conversion factors for neutrons and photons based

on ICRP publication 116 [14]. The computation time of each simulation was approximately

8 days on a computer system with an Intel Core-i7 3.70 GHz processor and a 32 GB RAM

with eight threads. The total dose rate (i.e., the sum of neutron and photon dose rates) at

various nodes in the hallways is represented and discussed in section 4.

Figure 2.3 Three-dimensional view of the MCNP model obtained using MCNPX visual
plotter [13]. Roof and floor are not shown for spatial clarity.
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3. APPROACH FOR INTEGRATED DOSE CALCULATION

The integrated dose calculation is performed using the simulated dose rates. The

integrated dose acquired in any path is a summation of contributions from the different

nodes traversed. The approach is similar to the mathematical model presented by Fabry et

al. [4, 5]. The integrated dose between any two nodes, x1 and xn, is given by

D1n = Ḋ12 ∗
∆x
|v|

+ Ḋ23 ∗
∆x
|v|

+ . . .+ Ḋ(n−1)n ∗
∆x
|v|

(4)

where x1,x2, . . . ,xn are different but equidistant nodes encountered in any particular path,

∆x is the distance between any two consecutive nodes, and v is the velocity of the person

(see Figure 3.1). D(i−1)i for i = 2,3, . . . ,n, represents the average of dose rates at the

consecutive nodes (i−1) and i.

Figure 3.1 Different nodes traversed in a particular path. A person at position P was as-
sumed moving with velocity v.

Equation (4) implicitly assumes that the person is constantly moving at a fixed speed

along the nodal line (in this work, v = 2 ms−1 was assumed). Equation (4) calculates the

integrated dose for each possible path and person (or clusters of persons) in different re-

gions of the floor. These values are finally compared to distinguish the route with least dose

acquisition. This approach is implemented using MATLAB (see Figure 3.2). The neutron

and photon uncertainties in dose rates at each node are also known and error propagation

[15] is used to determine the propagated uncertainty in the integrated doses. It is important

to note that the integrated dose is inversely proportional to the speed of travel. As long as an
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individual maintains a particular speed in the facility, the safest path will remain the same

for the individual. A speed factor, f(v, j), for an individual is defined as the scale-up factor

for the speed in order to match the minimum dose possible if the nearest exit is taken.

fv, j =
Dnearestexit, j

Dmin, j
(5)

where D(nearestexit, j) is the dose acquired if the nearest exit is taken from starting location

Pj and D(min, j) is the minimum dose acquired through any exit from Pj.

MCNP simulated dose 

rates at nodes

Integrated dose calculation 

(MATLAB)

Possible paths to exit & 

respective integrated doses 

acquired

Figure 3.2 Integrated dose calculation using the simulated dose rates at various nodes in
the hallways.
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4. RESULTS AND DISCUSSION

Figure 4.1 shows histograms of relative uncertainties in neutron and photon dose

rates for different tally-bin sizes. As expected, a larger bin size offered better statistical

uncertainties—since more particles were registered in that bin. For the 50 cm bin size,

approximately 99% of the voxels had neutron dose rate uncertainties less than 20% (see

Figure 4.1(a)). It was previously concluded that the neutrons’ contribution in total dose

rates was significantly higher than the photons’ contribution [7, 10]. Hence the dose rates

for 50 cm tally size were chosen for integrated dose calculation—the total dose rate at

different nodes are shown in Figure 4.2. Note that the coordinate system was centered at

the point where neutrons were created in the generator and the nodes closer to the source

had relatively higher dose rates. The approach, implemented in MATLAB, used these

values to list the different possible paths and corresponding integrated doses to exit. Three

different cases, of persons at three different locations (PI, PII, and PIII), were analyzed (see

Figure 4.3) and the results are given in Table 4.1.
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Figure 4.1 Histograms of relative uncertainties in (a) neutron and (b) photon dose rates.
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Figure 4.2 Total dose rate at various nodes. Each node is 50 cm apart from its consecutive
node. Neutron source at origin is shown by red star.

Figure 4.3 Three different cases of persons at three different locations: PI, PII, and PIII. The
position PI overlaps the node l. However, it is shown separately for spatial clarity. Major
nodes are indicated in diamonds.



93

The shortest path to the exit did not always lead to least dose acquisition (see Table

4.1). For example, in case I (of a person at position PI), the approach to take exit A through

path A3 (primarily because path A3 was the shortest) led to higher dose acquisition. How-

ever, the integrated dose significantly dropped when the decision was based on integrated

doses—i.e., path A1. The dose acquisition reduced to approximately 43% of one obtained

with the path A3 (202/471 = 0.43). The distance traversed, however, was approximately

1.7 times which was immaterial—since the objective was to minimize the dose acquisition

in accordance with the ALARA principle. If the shortest route is taken, a speed factor of

2.3 is needed to match the acquired dose to the minimum value. A speed of 4.6 ms−1 is

practically achievable if the shortest route is taken by an evacuee in order to limit dose

acquisition to the minimum achievable at a speed of 2 ms−1. The integrated doses to exit B

were relatively higher compared to exit A, primarily because the person spent more time in

the regions with higher dose rates. The integrated doses to exit C were the highest among

the three exits. This was due to its proximity to the neutron generator and the person effec-

tively moved into a radiation-prone area. Therefore, the safest route in case I was to take

exit A through the path A1 in the west direction.

In case II, B1 led to least dose acquisition although this path was approximately 1.4

times longer than the shortest path, C1 (20.6/14.9 = 1.4). However, the dose acquired in

path B1 was approximately 14 times lower (9590/662 = 14.5) since the person continuously

moved out of the radiation zone. Therefore, in this case, path B1 to exit B was deemed

safest. The speed factor in this case was 14.5 and a speed of 29 ms−1, which is impractical

to achieve without the aid of a transportation device. Similarly, path B1 through nodes c and

d led to least dose acquisition for case III. It is worth noting that exit B was coincidentally

at the shortest distance from the person; hence the speed factor was unity. The average time

taken by MATLAB for these three cases was in between 0.02-0.04 seconds on a computer

system with 2.20 GHz Intel Core2 Duo processor and 2.0 GB installed RAM.
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Table 4.1 Integrated dose and distance for each path. The speed factor for each case is also
given.

Case Exit Path to exit Distance
to exit (m)

Integrated
dose (pSv) fff vvv,,, jjj

Path name Major nodes traversed

I A A1 l-m-j-k 22 202±1 2.3
(Person A2 l-m-i-h-g-k-A 48 311±1
at PI) A3 l-g-k-A 13 471±1

B B1 l-m-j-b-c-d-B 51.5 1449±3
B2 l-m-i-h-g-b-c-d-B 67.5 1469±3
B3 l-g-b-c-d-B 32.5 1629±3

C C1 l-m-j-b-e-f-C 51.5 11276±9
C2 l-m-i-h-g-b-e-f-C 67.5 11297±9
B3 l-g-b-e-f-C 38 11457±9

II A A1 b-a-g-k-A 20.1 1494±3 14.5
(Person A2 b-a-g-l-m-j-k-A 45.1 2079±4
at PII) A3 b-a-g-h-i-j-k-A 45.1 1550±3

B B1 b-c-d-B 20.6 662±2

C C1 e-f-C 14.9 9590±8

III A A1 b-a-g-k-A 20.9 1217±3 1.0
(Person A2 b-a-g-l-m-j-k-A 45.9 1802±3
at PIII) A3 b-a-g-h-i-j-k-A 45.9 1272±3

B B1 c-d-B 8.6 30±1

C C1 b-e-f-C 26.9 10213±9

In all of the three cases, it was observed that the shortest route did not always lead to

least dose acquisition. The decision to exit or evacuate the facility was solely based on the

path that was deemed safest by the scheme. It is possible that the same exit is suggested to

several persons in the facility. In these circumstances, a better decision should be made to

re-route some of these persons to avoid any unnecessary traffic (hence, dose acquisition) at
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any exit. It is also worth noting that the safest route for each case did not change even when

dose rates from other tallies (of different bin sizes) were used in integrated dose calculation.

The integrated doses for other tallies were within 9.6% of the ones given in Table 4.1.
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5. CONCLUSION

In this paper, an MCNP model of a neutron generator and its shielding was extended

to cover the entire floor of the building at Missouri University of Science and Technology.

The simulated dose rates in the hallways were used to estimate the integrated dose for

different paths and cases. The approach successfully distinguished the safest path—with

least dose acquisition—for different cases of persons at different locations of floor.

Some of the considerations that have not been the focus of this work are the follow-

ing:

? communicating the safest route with the evacuees

? overloading a particular exit

? variation in exit speed of individuals and between individuals

? situation leading to stalling of evacuee’s egression

These considerations are important for actualization of strategy discussed in this paper.
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SECTION

2. CONCLUSION

The dissertation presents concepts and schemes that could be integrated to prevent

and mitigate large dose acquisitions in radiation-prone facilities. Primarily, the work was

divided into three segments: (i) localize the gamma-ray radioactive source, (ii) predict the

impact over a region of interest, and (iii) distinguish the safest path to exit the facility.

Following are the important conclusions of this work.

? The localization algorithm, developed using statistic-based grid-refinement method-

ology, was verified with the MCNP radiation transport simulation. The accuracy in

this case was 5 µm. In the experimental validation of the algorithm with five detector

positions, a weak 137Cs source (of activity 5.1 µCi) was predicted with an accuracy

of 53 cm for a measurement time of 3 min. The accuracy improved and stabilized to

approximately 25 cm for higher measurement times. Since the algorithm localized

the weak source in 3 min, it is believed that it can localize higher activity sources

(commonly encountered in nuclear facilities) in real-time—assuming the same phys-

ical placement of source and detectors.

? The accelerator-type neutron generator was modeled using MCNP and SCALE

codes. The dose rates obtained from these two independent simulations, and from

the analytical calculation, were in agreement. The speedup of accelerated Monte

Carlo simulation (using MAVRIC sequence in SCALE package) is cardinal in near

real-time impact prediction (dose-mapping) in the facility.

? The generator model was further extended to cover the entire floor of Fulton Hall’s

building. The goal was to estimate the dose rates in the hallways and test the dose

reduction approach. The approach calculated the integrated doses for different paths
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and distinguished the safest path to exit the building. The approach, therefore, was

successful in predicting the expedient path as opposed to the approach of taking the

nearest exit.
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