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DNA microarrays, due to their highly parallel nature, are in principle well suited for rapid 

identification of known or related microbial species, but our ability to extract meaningful 

information from microarray images is still at a rudimentary level.  The use of DNA microarrays 

is currently hampered by a few key analytical and theoretical challenges [1-3].  In particular, the 

nucleic acid sequence space to be explored can be very large [4], the genetic sequences of many 

species are very similar, and the concentrations at which the different species are present is 

typically not known at the time of the sample collection [5], which can result in complex 

overlapping hybridization patterns.  There is much disagreement in the literature regarding the 

merits of different microarray data analysis approaches, as they have been tested on different 



experimental platforms with samples of varying complexity.  Experimental validation of analysis 

methods is limited, and not feasible as a general strategy [4].  Advances in microarray data 

analysis would accelerate the employment of the powerful DNA microarray technology, already 

integrated into “lab-on-a-chip” instruments [2, 4, 6-8], in routine clinical practice.  This 

dissertation proposes to improve the diagnostic accuracy of microarrays and characterize their 

detection limits with respect to distinguishing between closely related target sequences by 

utilizing computational microarray modeling as a tool for design and validation of microarray 

data analysis methods and experimental approaches.  Mass transport and binding kinetics of 

oligonucleotide targets in gel matrices was modeled based on current understanding of the 

thermodynamics of DNA stability, and the performance of gel matrix microarrays as an 

emerging platform was characterized.  Bi-phasic behavior was demonstrated in thermal 

dissociation curves in a multi-component system, showing promise for distinguishing between 

related sequences.  Finally, the utility of including mismatch probes on the array for 

distinguishing between related sequences was explored computationally.   
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Chapter 1: Background and Significance 

1.1 DNA microarray technology 

DNA microarray technology is widely used in a broad range of fields, from applied genomics 

and drug discovery to disease diagnostics to agricultural and food industries.  Practical 

applications of microarray technology range from measuring gene expression to detecting single 

nucleotide polymorphisms.  This subsection will review the basics of DNA microarray 

technology as it relates to this work. 

1.1.1 Basic principle of DNA microarrays 

Microarray platforms vary in terms of chemistries and detection methods employed, but there is 

one common theme: immobilization of nucleic acid probes.  A microarray platform consists of 

an array of short nucleic acid capture molecules (probes) immobilized either onto a surface 

(forming a planar array) or into a three-dimensional gel element (forming a three-dimensional 

gel array).  The array is brought into contact with nucleic acids (targets) in the sample solution, 

and complementary sequences are hybridized to form probe:target duplexes.  If the targets are 

fluorescently labeled, the duplexes can be detected via fluorescence microscopy on the array 

after a wash step, and the resulting image can be compared with a spatial map of probe 

chemistries on the array.  This process is illustrated in Figure 1. 
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Figure 1 – Basic steps in DNA microarray hybridization experiment.  Target DNA is fluorescently 
labeled, and then applied to a DNA chip where target sequences will find their complementary 
matches, if present.  After washing away unbound target, fluorescent signal is detected and linked 
back to the original design of the chip to determine potential target sequences.  Image modified 
from  http://www.canon.com/technology/future/images/07_1.gif 

The substrate onto which the probes are immobilized is dictated partly by the method of signal 

transduction employed [9]: for example, piezoelectric and electrochemical detection devices 

would have probes immobilized on the surface of gold electrodes, while devices relying on 

fluorescence detection would use silica or glass surfaces [9]. 

1.1.2 Microarrays as an emerging technology for organism identification 

Microarrays are particularly well suited for characterizing microbial communities, as hundreds to 

thousands of nucleic acid signatures can be probed for in a single hybridization assay to 

determine the identity and approximate abundance of different microbial species.  Microarrays 

have been successfully used to identify microbes in human clinical samples [10-12], and they 

hold great promise for characterizing human-associated microbial communities in clinical 

diagnostics as well as for a range of other applications such as monitoring food and water quality 

[6] and biothreat assessment [13].  One of the most useful markers for organism identification is 

16S ribosomal RNA (rRNA).  First, it is naturally abundant as a target, and second, as variation 

in rRNA sequence is related to phylogenetic relationships, probes can be designed to identify 

organisms at varying taxonomic (phylogenetic) resolution, e.g., from family to species [14, 15].  
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Several recent advances in microarray technology have brought microarrays close to being 

employed in rapid direct detection – in particular, the development of gel-based microarrays and 

integration of microarrays into automated microfluidic devices.   

1.1.3 Microarray chemistries 

While most commercially available microarrays are currently planar, gel-based microarrays may 

offer distinct advantages for organism identification [16, 17].  First, the probe concentration can 

be up to several orders of magnitude higher in gel-based arrays compared to planar microarrays 

leading to increased signal [18].  Moreover, steric hindrance to duplex formation may be reduced 

in gel-based arrays compared to planar arrays with surface-immobilized probes, which could 

further increase the signal [19, 20].  For example, Shchepinov et al. showed that adding spacers 

of at least 40 atoms in length could bring about as high as 150 fold increase in the yield of 

hybridization [20]  The overall greater sensitivity facilitates the detection of low-abundance 

species without the need for enzymatic amplification, which may introduce bias [21-23].  

Second, the gel matrix consists mostly of water, and the hybridization and dissociation in gel 

elements follow predictable solution kinetics [16], which is important for probe:target duplex 

stability analysis as discussed below.  Lastly, gel-based microarrays are re-usable, which reduces 

cost and variability between arrays [16, 24].  For example, different types of gel microarrays 

have been reported to sustain 15-50 rounds of hybridization without a decrease in signal intensity 

[18, 25].  These are key features for identifying and enumerating microbial populations with high 

diagnostic accuracy in either clinical or environmental samples.  Sorokin et al. compared 

hybridization on gel-based and planar arrays, both made in-house with similar protocols [19].  

They found that the fluorescence signal and discrimination between perfect-match and mismatch 

appeared to be higher in gel-based arrays, and this advantage kept growing as the time of 
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hybridization progressed [19].  This could be the result of either different kinetic constants for 

gel pad array, or better probe immobilization in gel arrays [19].   

 

1.2 Microarrays in microfluidic devices 

Conventional microarray platforms often suffer from long hybridization times to reach 

thermodynamic equilibrium.  This can be due to either limiting kinetic processes or due to 

diffusion limitations, and this project investigated both.  Diffusion limitation has recently been 

mitigated by combining microarrays with microfluidic devices.   

1.2.1  Significance and potential of microfluidics 

Microfluidics is a technology for manipulating and exploiting tiny quantities of fluids, which 

holds the promise to accomplish biological assays on “lab-on-a-chip” microscale devices [26, 

27].  In these devices, small quantities of sample and reagents are guided through microscale 

channels, mixed, and can be analyzed with a variety of techniques, including traditional 

laboratory methods such as fluorescence detection [26, 27].  The employment of microfluidic 

technologies in biosensor applications is a very active research field, as microfluidics has the 

potential to offer several unique advantages: in particular, the reduction of assay time and 

smaller quantities of required reagent/sample, and the opportunity for assay automation and 

integration [26].  In microfluidics, the dominating forces are not necessarily the ones important 

in macroscale fluidic systems, and microfluidic devices cannot be viewed simply as shrunken 

counterparts of larger devices [27].  Important effects to consider in microscale are laminar flow, 

diffusion, fluidic resistance, surface area to volume ratio, and surface tension [27].   
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Conventional microarray technology features prolonged static incubation of the target solution 

on the array under a coverslip.  This process has several drawbacks that could be alleviated with 

the implementation of microarray technology on microfluidic platforms [28].  Most importantly, 

long incubation times are required to achieve optimal signal in conventional assays, as the target 

nucleic acid must diffuse across the relatively large array (diffusion distances on the order of a 

centimeter) to interrogate a relatively large high-density array to find its potential match.  Slow 

rate of hybridization reflects the depletion of target from the local environment surrounding the 

probe [28].  Not only does this prolong the duration of the detection process, but subjects probe 

linkage chemistry to potential solution-dependent cleavage, reducing the sensitivity and 

reproducibility of the hybridization [28].  In addition to mitigating the mass transport limitation 

of the hybridization reaction and lowering total reaction times for achieving optimal signal, 

microfluidic technologies can potentially offer reduction in sample and reagent volumes, 

automation of process flow, reduction of labor costs, and integration with upstream and 

downstream process that reduce the likelihood of sample contamination.   

1.2.2 Integration of microarrays into microfluidic devices 

Recent integration of microarrays into microfluidic devices has reduced the hybridization time – 

a significant step towards employing microarrays as a rapid detection technology.  Traditional 

microarray hybridizations typically take 14-16 hours to complete: some researchers argue that 

for some target compositions, equilibrium during hybridization is not reached until 24 or more 

hours, depending on the sample composition and target length [29, 30].  Long hybridization 

times are the result of slow diffusion of nucleic acids in microarrays, limiting the formation of 

probe:target duplexes.  Among the approaches proposed to overcome slow diffusion are mixing 

[31-33], surface acoustic wave microagitation [34], target recirculation [32, 35, 36], and the 
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application of electric fields [37] – so-called dynamic hybridizations.  The collaborating Stahl 

and Yager laboratories have demonstrated an improvement in the rate of increase of signal 

intensity during hybridization upon recirculating the target solution with a peristaltic pump [38].  

Furthermore, shorter hybridization times make it more practical to monitor the increase in signal 

intensity during hybridization and explore the utilization of hybridization kinetics for 

differentiating specific from non-specific binding [30, 39, 40].  These recent advances in 

microarray technology, coupled with integration into temperature-controlled imaging platforms, 

allow rapid collection of real-time hybridization data, previously not available.  However, the 

potential of these advances to improve the diagnostic accuracy of identification microarrays has 

not yet been explored in depth.   

 

1.3 Microarray data analysis 

1.3.1  Challenges in identification microarray data analysis 

Despite the advances in microarray technology, one of the major obstacles for widespread use of 

diagnostic microarrays is data interpretation (see for example [3], for overview and references).  

A widely acknowledged issue in data interpretation is that the measured hybridization signal 

does not necessarily correlate with target concentrations [41, 42].  The signal intensity, measured 

at the probe can be broken into four different terms: specific binding (binding of targets with 

complementary sequence), non-specific binding (binding of targets with sequences that differ 

from the complementary one to various extents), background, and system noise [2].  While the 

probability of probe:target duplex formation decreases with decreasing sequence 

complementarity, the likelihood of targets with sequences containing one or more non-

complementary bases hybridizing on-to a probe is still relatively high.  This can seriously 
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confound the analysis of hybridization data, as will be discussed below.  Also, the concentration 

at which different targets are present (if at all) in identification microarrays is typically not 

known at the time of the experiment [5].  The added complication for diagnostic arrays applied 

to polymicrobial specimens stems from the less constrained sequence space and the fact that 

genetic material of many species may differ by only a few nucleotides [4].  This means that the 

requirements for distinguishing between different closely related hybridizations are more 

stringent than for other types of microarrays.  The persistent issues with data interpretation have 

led some authors to recently label the microarray technology as being at a crossroads: “The 

strategic question is whether there are any realistic ways to significantly improve the quality of 

microarray data or it will remain a preliminary screening tool soon to be replaced by next-

generation sequencing” [1].  The inadequacy of conventional end-point hybridization signal 

measurement has been shown by several different groups, as will be discussed below.   

1.3.2 Current analysis algorithms and experimental designs to increase the specificity of 

identification microarrays 

Several approaches have been proposed in the literature to compensate for the confounding 

effect of non-specific hybridizations: a few selected ones relevant to this work are summarized 

in Table 1.  The approaches can be roughly divided into two categories: those focusing on 

including probes that vary in sequence at selected positions, and those focusing on altering the 

experimental conditions during a microarray experiment to measure probe:target duplex 

stability.  The first set of approaches were pioneered by Affymetrix, who proposed the 

inclusion of so-called mismatch (MM) probes along with perfect-match (PM) probes in the 

array – the MM probe has a non-complementary base in the sequence [43].  The MM probe is 

expected to gauge the amount of non-specific binding to the PM probe, and the simplest 
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Table 1 - Published data analysis methods to improve discrimination between closely related 
hybridizations. 

Methods for analyzing signal intensities at the end of hybridization 

Name and reference Description 

Comparison of end-
point signal intensities 
on PM and MM probes 
[43] 

Comparison of the signal intensities from PM and MM probes at the end of 
hybridization, by looking at the 1) difference in intensity values; 2) ratio of signal 
intensities. 

Optimization 
algorithm for noise 
reduction [2] 

An analytical predictor of nonspecific probe:target interactions combined with an 
optimization algorithm that iteratively deconvolutes true probe:target signal from 
raw signal affected by spurious contributions (cross-hybridization, noise, 
background, and unequal specific hybridization response) 

Methods for thermal analysis 

Name and reference Description 

Td comparison [50-52] Comparison of the temperature at which the normalized signal intensity has 
dropped to 50% of its original value for PM and MM probes during a thermal 
dissociation. 

Functional ANOVA 
(Bugli et al., 
unpublished, [53] 

Comparison of the maximum differences and the temperatures at which they 
occur between thermal dissociation curves from PM and MM, by using a 
functional ANOVA calculator, adaptation of linear modeling to analyze curve 
data.  

Melt curve first 
derivative analysis 
[54-56]  

Analysis the first derivatives of the thermal dissociation curves by either 
comparing data from PM and MM probes, or taking into account PM data only, 
in terms of 1) the temperatures at which the derivative reaches its maximum 
value (peak); 2) the width of the peak.  

 

The second approach to estimating specificity of hybridization is to assess the relative stability of 

duplexes.  While in conventional hybridization assays, one would adjust the temperature, 

hybridization and washing conditions to ensure optimal conditions for the probe:target duplex 

formation, this is not feasible in DNA microarrays, as the optimal conditions differ across 

different probes [52, 57, 58].  The stability of the duplexes should therefore be studied under a 

proposed method to make use of this information is to subtract the MM signal intensity from 

that of the PM [43].  However, several studies have shown that under some circumstances, the 

intensity on the MM probe can exceed that of the PM probe [5, 44], and it has been concluded 

that using the information obtained through MM probes in a meaningful way is not trivial [45-

49].   
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range of different experimental conditions.  An example of this is conducting a “melt” at the end 

of the hybridization by changing the temperature on the array [50-52, 54-56, 59].  As the 

temperature in the hybridization chamber increases, the duplexes start to dissociate based on 

their relative stability, with the non-specific and MM pairs dissociating before the PM duplexes, 

as the latter are the most stable [50-52, 58].  The subsequent diffusion of the target away from 

the probe brings about a decrease in signal intensity as measured on the probe spot (Figure 1).  

Several approaches have been proposed for comparing the respective thermal dissociation 

curves, obtained from a graph of signal intensity versus temperature [17, 50-56, 58]: for 

example, Td comparison, functional ANOVA, melt curve first derivative comparison (see Table 

1 for details).   

 

Given the time- and labor-intensiveness and 

relatively high cost of microarray experiments, 

different analysis methods are usually validated 

only under a limited set of experimental 

conditions and for a particular sample of interest, 

and the performance of an algorithm cannot be 

subsequently easily extrapolated to a different 

experimental system.  This work aims to 

demonstrate the power of a computational model 

to guide the development and evaluation of microarray data analysis methods, especially 

important in the light of the emerging kinetic microarray data. 

 

 

Figure 1 – Normalized signal intensity as a 
function of temperature during a thermal 
dissociation, from Smoot et al. [60].  
Universal1390-g13c is a MM probe to 
Universal1390, present in two replicas on 
the array (diamond and square markers on 
the graph). 
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1.4 Thermodynamics of DNA hybridization: development of the Nearest-Neighbor 

model 

One of the aims of this work is to develop a physicochemical model of a microarray platform, 

rooted in an understanding of the thermodynamics of oligonucleotide binding.  The latter is a 

very active research field: active experimental investigation in the thermodynamics of DNA 

binding and developing of the nearest-neighbor model of DNA stability has been partly 

motivated by the emergence of applications such as PCR [61], sequencing by hybridization [62], 

and Southern blotting.  However, the majority of the studies have been conducted in solution.  In 

the following subsections, we will review the experimental and theoretical work on DNA 

hybridization and dissociation relevant to this work.   

1.4.1 Unified view of DNA nearest-neighbor thermodynamics 

There is a common theme in the numerous publications discussing physical properties of DNA 

or RNA: an attempt to relate these physical properties to the structure and sequence of 

polynucleotide and later oligonucleotide subunits with the ultimate goal of predicting physical 

properties from them.  While some physical properties depend only on the gross polynucleotide 

structure and molecular weight, like light-scattering properties, numerous physical properties 

depend on the base composition and/or the different interactions by the neighboring bases [63].   

 

In a general sense, these dependencies can be divided into “zeroth-neighbor”, “first-neighbor”, or 

“Nth-neighbor” dependencies [63].  In the case of “zeroth”-neighbor” dependency, the property 

is only a linear function of base composition, i.e. the relative frequency of each of the bases.  A 

“first-neighbor” property depends linearly on the dinucleotide frequency: a base and its neighbor 

in case of a single-stranded DNA, and a basepair and its neighboring pair in case of double-
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stranded DNA.  “N-th neighbor” property depends respectively on sequences containing N+1 

bases (or basepairs) [63].  Gray and Tinoco proposed an approach to studying sequence-

dependent properties of polynucleotides based on this idea: “/A/a sequence-dependent property 

of any long polynucleotide can be related to the properties of a limited number of other 

polynucleotides” [63].  They argued that only the properties of a set of linearly independent 

sequence combinations need be known in order to predict the properties of polynucleotides.  

Gray and Tinoco further calculated the number of linearly independent sequences for single- and 

double-stranded sequences for which the properties would need to be determined [63].   

 

The development of theories around DNA stability, rooted in nearest-neighbor dynamics, dates 

back to the beginning of 1960s.  Authors of one of the first papers in this area, DeVoe and 

Tinoco [64] used a theoretical approach to calculate the relative contributions of the bases of 

DNA to the free energies of two possible configurations, the two-stranded DNA helix, and 

single-stranded random coil.  They took into account the contributions of non-paired bases 

adjacent to base-pairs, and calculated the interaction energies for 10 possible combinations of 

adjacent base-pairs [64].  They also showed that the inclusion of more than just nearest-neighbor 

interactions did not significantly influence their calculations [64].   

 

A seminal paper was published by Tinoco and co-workers, studying the thermodynamic 

parameters, extracted from melting curves, of RNA 6-11 base oligonucleotide sequences [65].  

Their data confirmed the very strong sequence-dependence of the thermodynamic parameters.  

Borer et al. proposed that the simplest interpretation of the results is to assume that the 

contribution of each base pair to the stability of the helix only depends on its nearest neighbors: 
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i.e., the stability of, for example, a G∙C pair depends on whether it is next to another G∙C pair or 

A∙U pair [65].  The authors treated dimer thermodynamic parameters as unknown in the 19 linear 

equations corresponding to 19 different oligonucleotide thermodynamic parameters they had 

measured, and obtained best least-squares values for them [65].  Although Borer et al. had 

reduced the number of nearest-neighbor parameters from 10 to 6, they did not consider end 

effects, and used a limited experimental set to derive the parameters, the obtained parameter set 

gave realistic predictions for melting temperatures of duplexes not used in the original set [65].   

 

Following the groundwork laid by Borer et al. [65], a number of groups worked on validating the 

nearest-neighbor approach to understanding DNA stability, and on refining the parameter sets of 

dimer stabilities, which has led to the widespread acceptance of the so-called nearest-neighbor 

model in describing DNA and RNA duplex stability.  As already outlined in the previous 

paragraph, the nearest-neighbor model for nucleic acid assumes that the stability of a given 

basepair is dependent on the neighboring base pairs.  Calculating the stability of an 

oligonucleotide duplex then means summing over the standard free energy changes of basepairs, 

as well as an initiation parameter of duplex formation (the parameter has two different values, 

depending on whether the initiation occurs with terminal G·C or A∙T basepair) and an additional 

entropic penalty if the duplex is self-complementary [66].  The total free energy of a duplex can 

then be written down in the following manner: 
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where ∆G(i) are the standard free-energy changes for the 10 possible Watson-Crick nearest-

neighbor parameters, ni is the number of occurrences for each of the nearest-neighbor pairs, and 

∆G
0
(sym) equals +0.43 kcal/mol if the duplex is self-complementary, and 0 if it is not [66].  The 

calculation of standard free energy change of an oligonucleotide duplex based on nearest-

neighbor parameters is illustrated in Figure 2, taken from SantaLucia’s paper [66].   

 

Figure 2 – Calculating standard free energy change of an oligonucleotide duplex 
CGTTGA∙TCAACG, using nearest-neighbor parameters.  The arrows point to the middle of each of 
the nearest-neighbor dimers.  As the duplex is not self-complementary, ∆G

0
(sym) is zero.  Figure 

taken from SantaLucia [66]. 

Parameters ∆H
0 

and ∆S
0
, the change in enthalpy and entropy of the reaction, respectively, can be 

calculated similarly from nearest-neighbor parameters, or by making use of the following 

relationship: 

   
            

The melting temperature, Tm, at which half of the strands are in the duplex and half are in the 

random coil state, can also be calculated using the predictions for ∆H
0 

and ∆S
0 

and 

oligonucleotide strand concentrations.  The equation for Tm for non-self complementary 

oligonucleotides with equal concentration of both strands is as follows: 
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where R is the universal gas constant and CT the total oligonucleotide strand concentration [66].  

If the strands are not present in equal concentration, CT/4 must be replaced by (CA-CB)/2, where 

CA and CB are the concentrations of the more concentrated and less concentrated oligonucleotide, 

respectively [66].  If the oligonucleotides are self-complementary, CT/4 should be replaced by CT 

[66].  The reader can consult Appendix section A.1 for the derivation of the Tm equation.  

Appendix section A.2 outlines the methods to derive thermodynamic parameters from melt data.   

 

A seminal paper regarding DNA nearest-neighbor thermodynamics was published in 1998 by 

SantaLucia [66], setting out to unify thermodynamic parameters that had been published by 

different laboratories on data acquired using different salt concentrations, different data analysis 

methods, and different formats to present the data.  He compared the nearest-neighbor 

parameters from seven different studies that had presented data from natural polymers, synthetic 

polymers, oligonucleotide dumbbells, and oligonucleotide duplexes, with the “unified” 

oligonucleotide parameters his group had published earlier [67].  SantaLucia found that the 

parameter sets across the different studies were actually in good agreement with one another, and 

presented a single set of nearest-neighbor thermodynamic parameters, applicable for DNA 

hybridization at 1M NaCl concentration, describing both polymer and oligomer thermodynamics 

[66].  This parameter set is the current gold standard for predicting oligonucleotide stabilities (as 

of this writing, SantaLucia’s paper has been cited over 1,000 times).  The parameters are 

summarized in Appendix section A.3.     
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While the unified parameter set is valid for Watson-Crick complementary pairs, there are eight 

possible mismatch pairs in duplexes.  Figure 3 shows the 3D structure of DNA, and the Watson-

Crick and mismatch pairings between bases.  Allawi and SantaLucia hypothesized that the 

nearest-neighbor model can also be applied to duplexes with internal mismatches, and published 

nearest-neighbor parameters for internal G∙T mismatches along with showing the validity of the 

approach [67].  SantaLucia and coworkers later published nearest-neighbor parameters for all 

other seven possible internal mismatches, forming a complete set, along with the unified 

parameters for Watson-Crick complementary pairs, to describe DNA thermodynamics with or 

without internal mismatches [68-71].  As the previous datasets had been obtained from perfectly 

overlapping duplexes, the work was followed up by characterization of the contributions of all 

possible 32 single-nucleotide dangling ends to duplex stability [72].   
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Figure 3 – DNA 3D structure (modified from http://www.molecularstation.com/molecular-biology-
images), and pairings between Watson-Crick and mismatch bases (taken from [73]). 

 

1.4.2 Applicability of nearest-neighbor parameters to microarray hybridization 

The nearest-neighbor model parameters have been measured in solution, as opposed to in a 

microarray platform where one of the two hybridizing strands is immobilized. The applicability 

of solution-based models and their parameters to microarrays has been a matter of debate, 

especially for mismatch duplexes, with only a few published studies carrying out a direct 

comparison.  For example, Fotin et al. compared the thermodynamic parameters (hybridization 

free energy change) of very short oligonucleotides either forming a perfect-match or containing a 

terminal mismatch in solution and immobilized in three-dimensional gel pads and found that a 
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good correlation between ∆Gchip and ∆Gsolution: ∆Gchip=a∆Gsolution+b, where a and b are constants 

[74].  The findings of Fotin et al. are shown in Figure 4.  

 

Figure 4 – Correlation between binding free energy change of short duplex formation (left) and 
melting temperatures (right) in solution and in gel-based microarray.  The solution experiments 
were conducted with 8-base duplexes, while microchip experiments involved the hybridization of 
13-base targets onto 8-base immobilized probes.  Different numbered points correspond to 
different perfect-match duplexes (1-10) and one-base terminal mismatch duplexes (11-12).  Figure 
taken from Fotin et al. [74], data from solution-based measurements in this figure was taken from 
Doktycz et al. [75] by Fotin et al. and combined with microchip data. 

Pozhitkov et al. on the other hand found poor statistical correlation between measured signal 

intensities and nearest-neighbor based binding free energies [76].  Weckx et al. compared the 

end-of hybridization signal intensities on CodeLink three-dimensional arrays to intensities 

computed using a Langmuir model (see section 1.9.2 for a mathematical description of Langmuir 

models) with ∆G values calculated from solution-based nearest-neighbor parameters [77]. They 

tested oligonucleotides presenting either a perfect-match to probe sequences or 1-3 mismatches 

and found good agreement between the computed values and experimental measurements [77].  

Fish et al. investigated the effect of duplex length, number of mismatches and mismatch position 

on stability of the duplexes in solution and on the measured signal intensities in planar 

microarrays [78].  Unlike other studies, the authors measured the thermodynamic parameters in 

the solution themselves, instead of relying on published nearest-neighbor parameters, making 

this the first published direct comparison [78].  Fish et al. obtained good agreement between 
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solution free energy and measured signal intensities for perfect-match and most mismatch 

duplexes, and found that nearest-neighbor model parameters tend to underestimate the stability 

of mismatch duplexes [78].  On the other hand, Hooyberghs et al. found a good correlation 

between nearest-neighbor based solution binding free energy and microarray free energy, 

computed from a Langmuir model.  However, that finding was limited to lower hybridization 

intensities only.  At higher intensities, the data deviated from Langmuir model for all of the three 

target concentrations (50-5000 pM) explored  [79].   

 

1.5 Effect of buffer composition on DNA thermodynamics 

The nearest-neighbor parameters discussed in the previous subsection are typically given for 1M 

NaCl.  As DNA is a charged polymer, altering the salt concentration or adding denaturing agents 

in the buffer such as formamide can significantly change the relative stability of the duplexes.  

As the present work is aiming to build a predictive tool to study duplex hybridization and 

dissociation in microarrays, understanding the influence of buffer composition is important.  The 

effects of salt and formamide concentration on duplex stabilities and how these effects are 

currently incorporated into theoretical predictions of duplex stabilities in the literature are 

discussed below.   

1.5.1 Effects of salt concentration on DNA stability 

Salt is known to affect the structure of both single-stranded DNA and DNA double helix.  It also 

increases the melting point of DNA duplex as it stabilizes the DNA helix by suppressing the 

electrostatic repulsion between the negatively charged phosphate groups in the complementary 

strands [80].  Analyzing the thermodynamic data published in literature for oligonucleotide 
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duplexes in various salt concentrations and comparing it to nearest-neighbor based prediction for 

1M NaCl, SantaLucia proposed the following correction for the oligonucleotide standard free 

energy change: 

                                         

where ∆G
0
([Na

+
]) is the free energy change for an oligonucleotide duplex dissolved in a given 

sodium concentration, ∆G
0
(1M NaCl) is the free energy change predicted from the unified 

nearest-neighbor parameters for 1M NaCl, and N is the total number of phosphates in the duplex 

divided by 2, e.g., for a 10 basepair duplex without terminal phosphates, N=9 [66].  Assuming 

that ∆H
0
 is independent of salt-concentration – as shown by previous experimental studies by 

other groups [81-83], SantaLucia proposed the salt correction for entropy as follows: 

                                         

where again ∆S
0
([Na

+
]) is the entropy change for an oligonucleotide duplex dissolved in a given 

sodium concentration, ∆S
0
(1M NaCl) is the entropy change predicted from the unified nearest-

neighbor parameters for 1M NaCl, and N is the total number of phosphates in the duplex divided 

by 2 [66].   

 

The effect of salt concentration on DNA hybridization in microarrays has only been considered 

in a small handful of studies, although it is not clear whether the effect of salt concentration on 

hybridization would be similar to that observed in solution.  The electrostatic penalty in 

microarray hybridization could depend on the fraction of hybridized probes since the surface 

charge is increasing as soon as target molecules start hybridizing [84, 85].  Peterlink et al. 

measured the hybridization onto surface-tethered DNA in various NaCl concentrations, and 

compared the measured Tm with Tm values predicted for solution: the measured Tm, although 
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lower across all NaCl concentrations, followed a similar logarithmic dependence on NaCl 

concentration [86].  Fuchs et al. also measured equilibrium melting curves from a planar 

microarray as a function of salt concentration, and proposed a modified Langmuir isotherm that 

includes electrostatic interactions to explain the data [84].   

1.5.2 Effects of formamide on DNA stability 

Effect of formamide on hybridization and Tm 

Early studies of renaturation of DNA and hybridization of RNA with DNA were conducted at 

elevated temperatures, as it had been shown that the maximum rate of reaction occurs roughly 

around 25
o 
C below the Tm [87].  However, as the degradation due to prolonged exposure of 

nucleic acids to high temperatures is not desirable, adding high concentrations of certain salts or 

various organic solvents was explored to reduce the stability of double-stranded DNA.  

Formamide was found to be a particularly useful organic solvent towards this end in several 

studies [88, 89].  The chemical structure of formamide, an amide derived from formic acid, is 

shown in Figure 5.  Formamide is able to form four hydrogen bonds like water, and is a strong 

donor and stronger acceptor than water (as reviewed in [90].  It is believed that at least some of 

the destabilizing effect of formamide on DNA is due to formamide forming hydrogen bonds with 

DNA or DNA hydrate [90, 91], especially as formamide-water bonds have been calculated to be 

around 20% stronger than water-water hydrogen bonds (reviewed in [90]).   

 

Figure 5 - Chemical structure of formamide, CH3NO. 
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However, the utility of adding formamide was soon shown to be not only in lowering the melting 

temperature and reducing the exposure time of nucleic acids to elevated temperatures [92, 93], 

but in increasing specificity by reducing non-specific hybridization [94, 95].  One of the first 

papers to explore the relationship between the rate and specificity of reaction, temperature, and 

salt and formamide concentration was that of [96].  They first demonstrated that for their 

polynucleotides, Tm decreased on the average by 0.7
 o

C per percent formamide [96].  When 

comparing the extent of hybridization between B. subtilis DNA and either filter-bound 

homologous B. subtilis or filter-bound heterologous rabbit DNA, they found a similar percent 

reaction at room temperature and 0% formamide, but adding formamide increased both the 

extent as well as specificity of binding as demonstrated by the binding onto homologous and 

heterologous DNA filters [96].  Increasing salt concentration in formamide solutions increased 

the rate of initial reaction as well as extent of reaction completed in long incubations [96].  

Increasing the temperature in a 30% formamide solution revealed that the largest extent of 

reaction completed was achieved at about 20-25
 o

C below the Tm [96].  Experiments comparing 

the thermal stabilities of DNA-DNA duplexes formed when mouse DNA was incubated with 

filters containing either mouse or hamster DNA revealed higher thermal stability (implying 

higher specificity) in hybridization solutions containing higher formamide concentrations 

(formamide was washed away from the solution before conducting thermal melts to assess 

stability) [96].  The authors also outlined guidelines for optimizing incubation mixture 

conditions.  For example, for an incubation temperature of ~25
 o
C, optimal reaction rates will be 

obtained for Tms around 45-50
 o
C [96].  Knowing the Tm for a given salt concentration with no 

formamide in the incubation mixture, one can then calculate the required formamide 

concentration needed to lower Tm, using the established linear relationship between Tm and 
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formamide concentration.  Several later studies confirmed that Tm decreases approximately by 

0.60-0.65
 o
C per % formamide (volume fraction × 100) [97, 98].  Hutton used single-stranded 

DNA ranging from 1,600 nucleotides to 20,000 nucleotides to study the effect of formamide on 

DNA stability in salt solutions of different concentration and found the dependency of Tm on 

formamide concentration to be slightly stronger in high salt solutions [98].  Specifically, while 

Tm decreased by 0.6 
o
C per percent formamide for NaCl concentrations ranging from 0.035 to 

0.88 M, it decreased by 0.65 
o
C per percent formamide at 1.12 M NaCl [98]. Furthermore, he 

showed that the salt concentration at which the salt dependence of Tm levels off decreases with 

increasing concentrations of formamide.  The NaCl concentration for a particular formamide 

concentration, above which the Tm no longer increased with the addition of NaCl, could be 

calculated with the following experimentally based formula:  

 

NaCl molarity = -0.0096 × percent formamide + 1.06 [98]. 

 

Casey and Davidson [97] showed using synthetic polynucleotides that the base composition of 

polynucleotide duplex influences the extent to which adding formamide can decrease duplex 

stability: for example, the Tm of dA:dT duplex decreased by 0.75 
o
C per percent formamide, 

while the Tm of dG:dC duplex decreased only by 0.5 
o
C per percent formamide [97].  The Tm of 

most synthetic RNA:DNA duplexes decreased linearly with increasing formamide concentration, 

except the Tm of  rG:dC duplex, which decreased nonlinearly, similarly to RNA:DNA hybrids.  

RNA:DNA hybrids were also shown to be more stable at higher formamide concentrations than 

DNA:DNA duplexes [97].   
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Blake and Delcourt [90] carried out a systematic characterization of the effects of different 

concentrations of formamide on DNAs of different (G+C) content.  They found that the effect of 

formamide on the melting temperature depends on the (G+C) content of sequences, helix 

conformation, and the state of hydration.  Their results showed that formamide did not influence 

the inherent cooperativity of melting, or the strong dependence of the conformational state of the 

base pairs on those of their neighbors due to hydrogen bonding and stacking forces, and that 

formamide both destabilizes the helical state and stabilizes the coiled state of DNA [90].  

Quantitatively, Blake and Delcourt showed that the dTm/dCF for plasmid DNA domains is a 

function of (G+C) content in the following manner: 

   
   

                   

The authors attributed deviations from this relationship to “sequence-dependent variations in the 

energy of hydration at selected sites” and showed that the deviations are greater for synthetic 

polynucleotide duplexes [90].  Calculated transition enthalpy drops steeply as a function of 

formamide concentration between 0-1.0 M formamide, roughly -0.8 kcal/mol-bp per 1M 

formamide/l, arguably corresponding to “a small enthalpic loss associated with the exchange of 

formamide for bound water and possibly counterion to the helical state” [90].  The authors 

argued that the subsequent gradual drop (0.05 kcal/mol-bp) in transition enthalpy above 1M 

formamide is probably due to a small reduction in residual single-strand stacking enthalpy with 

increasing Tm.   

 

Effect of formamide on non-equilibrium dissociation in microarrays 

While the majority of work detailing the effect of formamide on DNA hybridization and melting 

has been conducted with long polynucleotide sequences, equally important from the viewpoint of 
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practical applications of hybridization chemistry is to understand the influence of formamide the 

context of a microarray platform.  Urawaka and colleagues were first to publish a study assessing 

the effect of formamide on DNA duplex formation in the context of a microarray platform [17].  

In particular, they used a polyacrylamide gel-based three-dimensional microarray platform, using 

39-base long DNA oligonucleotide targets hybridizing onto 19-base oligonucleotide probes, 

immobilized in gel elements [17].  The hybridization buffer the authors used contained 40% 

formamide, and the melt buffer contained 0-40% formamide in 10% increments.  The 

hybridization was carried out at room temperature for 12 h.  They characterized the effect on 

melt curves in terms of the effect on Td: a non-equilibrium parameter referring to the temperature 

at which the initial signal had decreased by 50% (or the temperature calculated as the mean of 

two Tds: one based on maximum signal intensity, and one on the initial intensity) [17].  The non-

equilibrium melts were conducted over the range of 52 
o
C at a rate 1 

o
C/min.  The study 

compared the change in Td as a function of formamide concentration for melt curves from two 

different probes and their one-base mismatches in five different positions.  The average decrease 

in Td was -0.56 
o
C/%FA when averaging over all probe-target duplexes, including mismatches 

[17].  Analysis of sensitivity of Td to individual inputs revealed that over 75% of the variation in 

Td was due to changes in formamide concentration, around 19% due to different mismatch 

positions, and less than 6% due to the type of mismatch [17].  While the authors provided a table, 

listing the Td values as a function of mismatch position and type and formamide concentration, 

they did not present an analysis of the sequence-dependent effects of formamide beyond 

commenting that formamide appeared to decrease the Td of G or C mismatches slightly stronger 

than A or T mismatches [17].   
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Only in 2010 was the first work published that investigated the influence of formamide on DNA 

hybridization in planar microarrays [99], where the hybridization is affected by proximity of the 

surface, and interactions between different probes, targets, and the surface.  Furthermore, they 

were interested in elucidating whether the effect of formamide is different on perfect-match 

versus mismatch duplexes in a microarray, and whether the effect depends on the surface 

chemistry of probe immobilization [99].  For the study, Fuchs et al. used probes with a 

hybridizing sequence of 15-16 bases, and targets of 15 or 20 bases, with mismatches in the 

middle of the sequences.  The hybridization was carried out at 25 
o
C for 10 min., while 

hybridization buffer was constantly flowing through the device.  They conducted flow-through 

non-equilibrium melting with a temperature scan rate of 2
o
C/min on an SPR system, from 25 to 

70 
o
C, and only the hybridization buffer contained formamide.  While comparing the two 

grafting methods used – polypyrrole electrospotting and spotting of thiol-modified DNA probes 

– rendered higher Td values for thiol chips, the reduction in Td as a function of formamide 

concentration was comparable for both chips for perfect-match duplexes [99].  Experiments 

comparing the effect of formamide concentration on Td values of perfect-match and one and two-

base mismatches showed no significant sequence-dependent reduction in Td, although two-base 

mismatches showed a slightly weaker dependency of Td on formamide concentration, calculated 

as the slope ∆Td per percentage of formamide [99].  Average slopes were -0.57
 o

C/% FA for 

polypyrrole surfaces and -0.59
  o

C/% FA for thiol surfaces.   

 

One note of caution when comparing the effects of formamide on Td values in all these studies, 

as there are vast variations in the protocols of these studies: a) the studies are generally 

conducted with sequences of different composition and lengths; b) the melt buffers differed in 
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composition in terms of salt concentration; c) except for studies by [17] and [99], the melting 

experiments have been conducted under equilibrium conditions; d) the studies vary from static 

(e.g. [17]) to flow-through melts [99]; e) the pre-melt hybridizations have taken place over vastly 

different condition, ranging from no formamide in hybridization buffer [96] to 40% formamide 

in the hybridization buffer [17], not to mention hybridizing under different salt concentration and 

hybridization times.   

 

Thermodynamic models of formamide effect 

While the effect of salt concentration on nearest-neighbor thermodynamic parameters is 

described fairly well and validated by several groups [66], there seems to be a paucity of similar 

work relating formamide concentration to nearest-neighbor parameters.  The only work to the 

best of our knowledge aiming to simulate the effect of formamide on probe dissociation is that 

by Yilmaz and Noguera [100].  They were motivated by the need to develop better theoretical 

tools to optimize protocols for FISH (Fluorescence In Situ Hybridization).  FISH is conducted by 

hybridizing fluorescently labeled DNA oligonucleotides – probes – with rRNA molecules – 

targets - present in fixed whole cells.  The specificity of FISH is achieved by designing the probe 

to be a match to a sequence on the rRNA of the organism of interest with minimal potential for 

cross-hybridization to sites on other organisms, and by minimizing the binding of the probe to 

non-target organisms by adjusting the stringency conditions of the hybridization and wash 

through the use of formamide [100].  The generally practiced approach to optimizing FISH 

protocols involves performing FISH with pure cultures, but the feasibility of this approach is 

however limited by the availability of target or non-target organisms in pure culture, and by the 

sheer number of non-targets of interest [100].  Contrary to the dissociation studies cited above 
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that looked at the effect of a constant concentration of formamide on the thermally induced 

dissociation profiles, in this study, Yilmaz and Noguera obtained formamide-induced 

equilibrium dissociation profiles at a constant temperature, increasing formamide concentration 

from 0 to 80% in 10% increments.  They formulated the effect of formamide on binding free 

energy in the following manner:  

        
        

           

adopting a notion from the literature on thermodynamics of interactions of biopolymers with co-

solvents and other solutes that the free energy change of denaturation is roughly proportional to 

the concentration of the denaturant [100].  The index “i” assumes values between one and 3, 

referring to different reactions that their equilibrium model covers: interaction between rRNA 

and the DNA probe (i=1); intramolecular DNA/DNA interactions due to the self-

complementarity of the probe (i=2); and intramolecular RNA/RNA interactions forming the 

secondary structure of rRNA (i=3) [100].  The proportionality constant in the equation above is 

called the “m-value”.  Using 16-25 base long DNA probes and 16S rRNA of E. coli, the authors 

used curve-fitting of the model to experimental data, and obtained best estimates for m1, m2, and 

m3 either as global formulations applicable to every probe, or functions of probe length, G/C 

content and duplex stability (m2), or target site location, characteristics of the target structure, 

and ∆G3 (m3) [100].  The authors omitted reaction 2 from further consideration as it was shown 

to be insignificant in the overall hybridization process.  Their analysis with perfect-match probe-

target duplexes concluded that several model formulations presented an improvement over the 

predictive power of the simplest model that assumed constant global values for m1 and m3 [100].  

Interestingly, the authors did not find the G/C content to influence the effectiveness of 

formamide-induced denaturation of RNA/DNA duplexes, contrary to DNA/DNA data reported 



28 

 

by Blake and Delcourt [90, 100].  The model chosen for in-depth analysis had the following 

form: m1=θ1+ θ2L, m3= θ3∆G
0
3,0%, where L is the length of the probe, and θ1, θ2, and θ3 are 

constants [100].  While the model predicted the dissociation profiles of perfect-match probe-

target pairs not used during the fitting phase quite well, the situation was different for single-

mismatch duplexes.  The only parameter that should have changed, if formamide denaturation 

mechanisms in mismatched duplexes are the same as in perfect-match duplexes, is ∆G
0
1, which 

was not explicitly included in the model formulation.  However, to obtain agreements 

comparable to those with perfect-match duplexes, Yilmaz and Noguera had to re-optimize 

parameters θ1 and θ2 through curve-fitting using the experimental dissociation profiles on all 

available mismatch duplexes [100].  It is important to keep in mind two things when reflecting 

on the significance of that finding.  First, the accuracy of the model proposed by Yilmaz and 

Noguera is significantly influenced by the input ∆G values, as the authors themselves 

acknowledge [100].  The authors do not discuss whether ∆G
0

1,0% predictions were accurate for 

the mismatch duplexes used in this study.  A follow-up study by Yilmaz et al. discusses the 

incompleteness of the data set of thermodynamic stability parameters for DNA/RNA 

mismatched duplexes and suggests using an average of DNA/DNA and RNA/RNA parameters 

[101].  Second, the data set used for model fitting did not include any data from mismatch 

duplexes: one cannot help but wonder if using a data set comprised of both mismatch and 

perfect-match dissociation profiles for model fitting would have rendered model parameters 

capable of predicting dissociation profiles not used in the original set, regardless of the degree of 

match.  
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1.6 Hybridization kinetics of short DNA oligonucleotides 

While the bulk of the work on using microarrays to distinguish between perfect-match and 

mismatch binding has been on thermodynamic distinction, marked by differences in binding free 

energy, several recent publications have focused on kinetic effects for discrimination.  These are 

especially important for applying microarray technology as a biosensor platform.  One of the 

first experimental studies to investigate the hybridization kinetics of short DNA oligonucleotides 

in microarrays was done by Herning et al. [39].  They monitored the hybridization of short (16-

25 bases) DNA probes onto long DNA targets using fluorescence polarization measurements, 

and investigated the influence of three-base mismatches in the probe and probe length on 

hybridization kinetics.  Herning et al. reported that the presence of mismatches had a significant 

effect on hybridization kinetics, and while they did not find any difference in the hybridization of 

16-base probe versus 25-base probe, the 16-base probe was more sensitive to the presence of 

mismatches than the 25-base probe [39].   

 

The differences in stabilities between perfect-match and mismatch duplexes are mainly due to 

differences in dissociation constants.  Gotoh et al. used a 20-mer oligonucleotide immobilized on 

a planar surface and 11- to 20-mer target oligonucleotides to study the effect of mismatches on 

association and dissociation constants via surface plasmon resonance measurements [102].  They 

found the effect of mismatches to be more pronounced on the dissociation constant than the 

association constant.  In addition, in agreement with findings from Herning et al. [39], Gotoh et 

al. found that the effect of mismatches was more pronounced on the stability (equilibrium 

constant) of the duplex as the target length decreased from 20 to 15, 13 and 11 bases [102].  In 

addition, the overall equilibrium constant of the perfect-match duplex decreased as well, mainly 
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through changes in the dissociation constant, while the association constant was not significantly 

altered.  For example, the equilibrium constant is roughly 3.5 times larger for the duplex with a 

20-mer target compared to 13-mer target, while the ratio of perfect-match versus one-base 

mismatch equilibrium constants was 2.5 for the 20-mer and 7 for the 15-mer [102].   

 

Sorokin et al. demonstrated experimentally with gel-based microarrays that higher probe 

concentration correlates with higher duplex concentrations, but also with longer times to 

equilibrium [103].  They showed that as mismatched duplexes hybridize faster, the perfect-to-

mismatch signal ratio is lower in the transient hybridization regime before equilibrium is 

reached.  This is however augmented if the diffusion coefficient in the probe is increased or if the 

initial concentration of the probe is decreased [103].  This presents a trade-off between perfect-

match and mismatch discrimination and fluorescence signal intensity.  Khomyakova et al. 

demonstrated that 50-mer oligonucleotide probes corresponding to the same genes showing very 

different hybridization signals, and compared the differences in melting temperatures between 

these probes [104].  The majority of the probes studied had fairly similar melting temperatures, 

but anecdotal evidence collected from just one probe complex showed differing hybridization 

kinetics [104].   

 

1.7 Influence of target length on hybridization 

Although this work is not immediately concerned with investigating the effect of target length on 

hybridization and melt in microarrays, a comment on the influence of target length is warranted, 

as it is hard to imagine an application of microarray technology where the sample would consist 

of targets of uniform lengths.  One of the classic papers (by number of citations) on DNA 
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renaturation was written by Wetmur and Davidson in 1968 [105].  Wetmur and Davidson 

confirmed that DNA renaturation can be described as a second order reaction, and proposed an 

equation relating the observed association rate constant ka to the (length-independent) rate 

constant of nucleation kN
’
, DNA length L and sequence complexity N: 

     
   

 
. 

Complexity is defined as the number of DNA base-pairs in non-repeating sequences [105]. The 

step with the lowest rate constant in DNA renaturation is the initial nucleation step, the formation 

of one or a few basepairs in some complementary point along the two DNA strands, while the 

formation of remaining basepairs (“zippering up”) occurs very fast [105].  Wetmur and Davidson 

also remark that “The reaction rate increases as the temperature decreases below Tm, reaching a 

broad flat maximum from about 15 to 30 °C below Tm and then it decreases with a further 

decrease in temperature” [105].  The dependence of kN
’
 on sequence composition (i.e., GC 

percentage) and solution properties was later reviewed by Wetmur [106].    

 

It is important to note that most biophysical studies have focused on short oligonucleotide 

microarrays.  Long oligonucleotide arrays have not received the same amount of attention, nor 

has the binding of long oligonucleotides in solution been characterized as well.  For long 

oligonucleotide microarrays, multi-step models should be employed that would include target 

and probe folding, probe-probe and target-target interactions [107, 108].   

 

Suzuki et al. experimentally investigated the effect of probe length on the sensitivity and 

specificity of hybridization signal [109].  They used probes of 14 to 25 bases tethered to the 

surface of an array, and used synthetic 25-mer DNA oligos to characterize the dependence on the 
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probe length of the hybridization end-point signal intensity (at 16 h) and the ratio of signals from 

the probes presenting a perfect-match and mismatch sequence to the target [109].  While the 

signal intensity as a function of probe length exhibited a sigmoidal shape, the signal intensities at 

longer probe lengths (23- to 25-mer) were saturated at both lower and higher target 

concentrations, corresponding to finite availability of target and probe molecules, respectively 

[109].  Comparing the ratios of signal intensity of PM to those of cognate MM probes as a 

function of probe length and target concentration, Suzuki et al. found that the PM/MM signal 

intensity ratio decreased for all target concentrations as the probe length increased beyond 21 

bases, indicating decreased specificity of longer probes [109].  This agrees qualitatively well 

with earlier published studies [110, 111].   

 

1.8 Secondary structure effects on hybridization 

In this work, we are not concerned with considering secondary structure of targets and/or probes, 

as these effects can be mitigated by elevating hybridization temperature or appropriately 

designing shortened probe sequences and employing shorter target sequences.  There are only a 

few studies that look quantitatively at the effect of oligonucleotide secondary structure on 

hybridization.  For example, Gao et al. use 25-mer DNA oligonucleotide targets of varying 

degrees of secondary structure, and compared the effect of secondary structure on the rate of 

hybridization in solution and in a planar microarray platform, using either UV absorbance or 

surface plasmon resonance spectroscopy [112].  While the hybridization rate was suppressed on 

the surface 20 to 40-fold compared to that in the solution, the inclusion of three intramolecular 

basepairs in the probe and target decreased the apparent association constant in the two-state 
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binding model roughly two-fold [112].  The data from probe and target sequences with four or 

more intramolecular basepairs could not be fitted to a two-state binding model anymore [112]. 

 

1.9 Mathematical modeling of microarray processes 

1.9.1 Significance and potential of microarray modeling 

For the purpose of fulfilling the promise of microarray technology for rapid organism 

identification, it is essential to characterize the limits of detection and recognize instances where 

the identification of a particular species is not possible due to confounding target cross-

hybridization [51].  Mathematical modeling as a scientific method has been successfully applied 

in biological research and technology development.  Several recent papers have pointed out the 

lack of an analytical/theoretical framework to guide the development of data analysis methods 

for diagnostic microarrays [4, 51, 53], and the potential usefulness of computational models to 

better understand PM/MM hybridizations [29, 100, 113].  Simulations can offer the opportunity 

to characterize the response of a system to a wide-range variation of several parameters in a 

manner that is significantly faster, cheaper and more general than actual experiments.  Several 

important lessons about the interpretation of microarray data analysis have already been learned 

from a virtual experiment, as will be outlined below.  However, hybridization and dissociation 

within a three-dimensional gel element of samples of complex target mixtures with different 

target concentrations and sequence heterogeneities, subject to diffusion, convective transport, 

and temperature effects, have not been explored in detail in a single mathematical model.  We 

anticipate that a comprehensive computational model of microarray hybridization will provide an 

important tool for systematic evaluation of analysis algorithms and/or experimental designs for a 
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large variety of sample compositions, and guide the development of methods to further 

discriminate between hybridizations by similar targets [114].   

1.9.2 Langmuir models 

Many important biological processes involve the binding of a solute molecule onto a surface-

immobilized molecule, for example cell signaling after receptor-ligand interactions.  Models of 

receptor-ligand binding are summarized by Lauffenburger and Linderman [115].  As a first 

approximation, DNA target binding onto immobilized probes can be treated as receptor-ligand 

binding [116].  In this work, we are concerned with an approach to modeling DNA hybridization 

and dissociation that is firmly rooted in current understanding of the thermodynamics of DNA 

binding.  The simplest way to incorporate thermodynamics into the modeling of surface-bound 

DNA duplexes in a microarray is using the Langmuir model.  The so-called Langmuir equation 

(or isotherm) relates the coverage, or adsorption of molecules onto a surface, to the concentration 

of the adsorbing species above the surface at a fixed temperature.  If the rate of change in the 

fraction of surface-bound species θ in a complex is described as follows: 

  

  
                

where c is concentration of the adsorbing species, and k1 and k-1 are the forward and reverse 

reaction kinetics constants, respectively, then in equilibrium conditions we obtain 

               

Taking into account that k1/k-1=exp(-∆G/RT) and rearranging, we obtain 

  
        

          
  

This is called the Langmuir equation (or isotherm).   
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The simplest equilibrium thermodynamic model of DNA hybridization in microarrays is the 

Langmuir model, which represents signal intensity as a function of target concentration in 

solution, temperature, and binding free energy: 

     
         

          
  

where Io is the non-specific background signal, A is the proportionality constant, c is target 

concentration in solution, T is temperature, ∆G is binding free energy, and R is the universal gas 

constant.  An in-depth discussion of the use of the Langmuir model has been presented by 

Halperin et al. [117].  As outlined in section 1.4.2 above, the Langmuir model has been 

employed by a number of studies to fit data from microarray experiments measuring end-point 

equilibrium values for signal intensities. 

1.9.3 Mechanistic models of microarray hybridization 

In this section, we will discuss published mechanistic models of DNA binding that are not 

limited to equilibrium and are more detailed than the Langmuir model presented in 2.9.2.  

Several groups have called for a deeper theoretical understanding of physicochemical aspects of 

microarray hybridizations [17, 40, 113, 116, 118, 119].  Let us survey the development literature 

of DNA microarray models.   

 

Several mechanistic models of DNA hybridization combined with mass transport to a surface 

have been proposed in the literature.  One of the first and most cited studies was published by 

Chan et al. [116], modeling DNA diffusion and hybridization.  They considered DNA 

hybridization by two mechanisms: either direct or initial non-specific adsorption following by 

surface diffusion to the probe.  Chan et al. assumed irreversible binding, the existence of a 

constant concentration of soluble targets at a certain distance away from the binding surface that 
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itself was considered as an infinite flat plate, and that the number of available probes is constant 

and not dependent on reaction rates [116].  These assumptions would be most appropriate for the 

initial time points in the hybridization.  They investigated the effect of target DNA molecular 

weight, size of immobilized DNA, and surface probe density on hybridization reaction [116]. 

 

Livshits and Mirzabekov [40] published a theoretical analysis of the kinetics of DNA 

hybridization with gel-immobilized oligonucleotides. They developed analytical solutions to two 

differential equations describing the concentration of free target in the gel and bound duplex, 

determined by the diffusion of targets in the gel and association/dissociation of duplexes.  They 

made two significant assumptions to arrive at analytical solutions: the concentration of target 

outside the gel was set to be constant at all times, and the ratio of bound target to total probe 

concentration was taken to be significantly less than one (low saturation conditions).  They argue 

that “for optimal discrimination of perfect duplexes from duplexes with mismatches the 

hybridization process should be brought to equilibrium under low-temperature nonsaturation 

conditions for all cells” [40] 

 

Wang and Drlica [120] developed a model to describe the hybridization of short complementary 

regions within large nucleic acids, relating the steady-state rate constant to experimentally 

measured free energy parameters (in their case, pertaining to the formation of locally single 

strands and the free energy gained as a result of hybridization).   

 

Erickson et al. presented a general theory of solid-phase hybridization using a two-mechanism 

approach in which the target can hybridize with a surface-bound probe  directly from the 
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solution, or non-specifically adsorb onto the surface and then hybridize with the probe through a 

surface diffusion step [121].  They used a 3D finite element model to simulate the hybridization 

of targets onto a 2-dimensional probe surface in a 3D channel, and investigated the effect of flow 

rate, target concentration, sequence (comparing perfect-match and mismatch target/probe 

hybridization) and channel height on the hybridization time and pattern.  However, they only 

considered a flow-through system (their model included a fixed concentration as a boundary 

condition for target concentration at the inlet), and they compared the hybridization of perfect-

match and mismatch targets as separate hybridization experiments [121].   

 

Gadgil et al. [118] published a finite element reaction-diffusion model of DNA hybridization 

using a realistic assay geometry with a finite volume and reversible reaction kinetics.  They 

considered the effect of target concentration and the effect of mismatch (modeled with an 

increase of dissociation constant).  Gadgil et al. [118] investigated the development of a 

depletion zone in the solution surrounding the probe surface and duplex formation over time as a 

function of target concentration.   

 

The Stahl and Yager groups have co-published a preliminary computational fluid dynamics 

model of the microarray hybridization assay, investigating the effect of convective flow on 

hybridization signal in a single-analyte system.  Using a computational software package, a 

model of the hybridization was composed, that incorporates reversible hybridization, 

incompressible fluid dynamics, and mass transport of the labeled target oligonucleotide, taking 

also into account the three-dimensional geometry of the DNA target binding spots [38].  The 

model was used to calculate three-dimensional profiles of fluid velocity in the hybridization 
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device, concentration of the target in the bulk, and the concentration of probe-target duplexes 

[38], see Figure 6.  The results demonstrate the local depletion of target DNA in the solution 

behind the gel elements that are specific to the target, compared to other non-specific gel 

elements [38].  This is due to the difference in binding kinetics, with the dissociation constant for 

duplexes of target DNA and non-specific probes being significantly larger than that for target 

duplexes with specific probes.  The results presented in [38] demonstrate the increase in signal 

intensity as a function of time under dynamic hybridization compared to the static hybridization.  

Comparison of the simulation results with experimental data showed good qualitative agreement 

[38].   

 

Figure 6 - Data from Dr. Yager’s laboratory on the computational modeling of microarray 
hybridization assay with three-dimensional gel probe structures.  Panel (a) displays the DNA 
concentration profile in the bulk.  Panel (b) displays the normalized signal intensity on selected 
probes.  Eub338 refers to a probe with perfect complementary match sequence to target sequence 
and Eub336 refers to two-base mis-match probe to target sequence.  Figure taken from Lee et al., 
2006 [38]. 

 

All the studies summarized above have one important shortcoming when it comes to 

understanding DNA hybridization in potentially complex mixtures.  The studies of the kinetics of 

oligo- or polynucleotide hybridization had assumed that the interaction between each 

probe/target pair can be treated as a separate event [113].  Most real-life applications of 

microarray hybridization kinetics however involve the simultaneous interactions of targets of 
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varying affinities with probe molecules.  The works by Zhang et al. (Zhang, Hammer et al. 

2005), Bishop et al. [29], and Horne et al. [122]  are some of the first to consider a realistic 

binding scenario: that of a heterogeneous mix of multiple targets competing for probe sites.  The 

main lessons from both the computational and experimental investigations into competitive 

binding have very aptly been summarized by Bishop et al. [123]:  

“1. The specificity of recognition is controlled by the competitive displacement of the lower-

affinity species by the higher-affinity one; 

2. The signature of this mechanism is a nonmonotonic growth curve of the lower-affinity species; 

3. Depending on the relative concentration and rate constants of the primary and secondary 

species, the latter may become a major contributor to the observed signal, especially in the 

transient regime; 

4. The presence of the secondary species extends the time to reach equilibrium; 

5. The maximum specificity is obtained at equilibrium; and 

6. In the absence of the primary target, the secondary species may produce a signal comparable 

to the primary target alone.” 

 

Let us review the studies investigating competitive hybridization in detail. 

Zhang et al. considered a hybridization system consisting of either a single soluble species 

binding on two immobilized spots, or two soluble species binding on two spots.  The kinetic 

model used to mathematically describe the system consisted of differential equations describing 

the change of bound concentrations for the duplexes, and the effects of diffusion were entirely 

ignored as if in a situation of a well mixed solution [113].  The authors found that the ratio of 

duplexes formed on the immobilized spots can change quite dramatically over time, and that the 

results can be influenced heavily by the ratio of soluble (target) to immobilized (probe) 

molecules.  Zhang et al. also simulated the wash after hybridization with the same model used 

for hybridization by simply setting the initial conditions of the duplexes equal to the end 

concentrations in the hybridization simulations, and the concentration of free solute equal to 

zero, and introducing a dilution factor for the free solute concentration to account for the wash 
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solution volume being typically significantly larger than the volume of the hybridization buffer 

[113].  They found that in their simulations, the total wash time and wash volume can 

significantly influence the ratio of high affinity to low affinity bound duplexes, and that 

theoretically, there exists an optimal wash time [113].  While it is not clear what conclusion one 

can really draw for experimental implementation of washing from a kinetic model with a well 

mixed solution, the authors’ emphasis is that the washing step has not quite received the attention 

it deserves.   

 

Bishop et al. [29] built a finite element model, describing oligonucleotide target diffusion in a 

hybridization chamber and binding onto a two-dimensional sensing surface.  They compare the 

hybridization profiles in a single-component system, consisting of one type of a target, with 

those in a two-component system, consisting of two types of targets: a perfect-match and either 

one-, two- or three-base mismatch targets to the probe [29].  The theoretical model assumed that 

the association constant of binding is constant over a range of temperatures and sequences, while 

the dissociation constant is dependent on both duplex sequence and temperature.  Each binding 

scenario considered only one type of probe.  Bishop et al. characterized the effects of target and 

mismatch species concentrations, temperature and total hybridization time on the specificity of 

the hybridization in the two-component system [29].  Important findings of the work are the 

following.  In the two-component model, containing a perfect-match and lower affinity mismatch 

target competing for binding on the same sensing zone, the surface binding reactions proceed in 

two phases [29].  In the early phase, where probe molecules are in excess, binding of perfect-

match and mismatch targets happens independently.  In the second phase where most if not all 

probe molecules have formed duplexes, the perfect-match target species gradually replaces 
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mismatch duplexes due to their lower dissociation rate [29].  This has the following implications 

for interpreting microarray hybridization data.  Bishop et al. showed that at low initial target 

concentrations, it can take up to several days to reach 90% of thermodynamic equilibrium, and 

these times are prolonged even more by the presence of mismatch species [29].  Also, variations 

in hybridization time can significantly impact the fraction of signal on a probe originating in 

bound mismatch versus bound perfect-match.  The simulation results indicate that in scenarios 

where mismatch species are present at equal or higher concentrations than the perfect-match, 

employing mismatch probes to assess nonspecific background is likely to produce errors [29].  

Bishop et al. explore the theoretical limit of discrimination in a two-component system by using 

the thermodynamic equilibrium equations for the match target and corresponding mismatch 

equation in a two-component system and show the dynamic range as a function of concentrations 

of match and mismatch and dissociation constant ratios.  The theoretical limit for the dynamic 

range is shown to decrease if the mismatch concentration is larger than the matched target 

concentration [29]. 

 

Bishop et al. subsequently verified the predictions of their theoretical model, presenting 

experimental results that aligned well with simulated data [124].  Namely, the authors presented 

the first direct evidence of kinetic competition and displacement of low-affinity targets in the 

literature by monitoring in real time the hybridization of a high (perfect-match) and lower 

affinity (mismatch) target onto a two-dimensional sensing zone [124].  This was achieved by 

labeling the two species in the two-component system with different fluorescent labels [124].  In 

a follow-up paper, the group proposed an interesting experimental approach to monitor the 

hybridization of two species in a two-component system.  The so-called Competitive 
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Displacement Detection Method uses fluorescently labeled “competitor” target species that are 

mixed in with the sample species of interest [125].  As the competitor has a lower affinity than 

the target the binding kinetics of the competitor gives information about target binding via 

competitive displacement.  The requirement for this method is real-time data collection.  The 

authors demonstrated sensitivity of one tenth of competitor concentration with a dynamic range 

of two orders of magnitude [125].   

 

Bishop [126] explored the theoretical limits of the effects of convective flux on the hybridization 

signal in a multi-component system as a function of target concentrations and sample volume, 

using a comparison between a single analyte system and a two-component system: a perfect-

match and lower affinity mismatch target competing for hybridizing onto the same sensing 

surface (probe).  They compared the effect of flow-through with that of recirculation on the time 

to 90% equilibrium in a single-component and two-component competitive system using a 

computational model similar to the one presented earlier [29].  Their results show that the 

enhancement of convective mass transport (defined as the reduction in time to 90% equilibrium) 

for a single analyte system is the upper limit for the achievable enhancement in a multi-

component system [126].  This is not surprising, since convective flow would enhance reactions 

that are limited by mass transport instead of reaction kinetics, and competitive binding in a multi-

component system where probe sites are not in an overwhelming excess, contributes to the 

overall rate of target capture [126].  However, no experimental validation of the predictions was 

presented.  Also, it is curious that the authors chose to focus on time to equilibrium as a metric, 

given that their later work is focused on early hybridization kinetic effects and argues that early 

phase kinetics can provide information about the composition of the hybridizing sample.   
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In a paper from 2008, Bishop et al. [123] proposed a framework to consider multiplex 

hybridization in a general sense.  They considered a general model of hybridization of N 

different species onto a single probe with corresponding solution concentrations and kinetic 

constants, and proposed a simplified three-component model of multiplex hybridizations, 

arguing that it is sufficient to describe the kinetics of hybridization with only three components 

in mind: the perfectly matched target, a competitor of high affinity (typically one-base 

mismatch), and a low affinity “non-target” representing background [123].  The ratio of target 

and competitor dissociation constants was ~100.  They moved away from the finite element 

modeling that the group employed in their first paper [29], and proposed a two-compartment 

model to include mass transport instead, with a mass transfer coefficient representing the 

diffusion of targets across the compartment interface [123].  First, they simulated the 

hybridization of a perfect-match target, competitor and up to five background species with 

decreasing affinities onto the same probe surface, computing the composite curve (sum of all 

species bound) and individual hybridization curves.  As already suggested by the group’s 

previous publications, the highest affinity species of the system (in this case the target) is the 

only species to have a monotonously increasing binding curve, while the hybridization curves of 

the competitor and background species all exhibit a bi-phasic hybridization profile: after initial 

increase in the amount bound, the lower affinity species are displaced by higher affinity species 

in the second phase of the hybridization [123].  They then conducted experiments using a target 

species, fluorescently labeled competitor, and two background species with different affinities, 

varying the concentrations between experiments.  This data was fitted to a three-component 

model, using known competitor concentration and known kinetics constants for target, but 

unknown target and background concentration and background kinetics [123].  The fitting 
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routine obtained target concentrations within 25% of experimental concentration.  This is an 

exciting demonstration that the concentration of the target can be evaluated by monitoring the 

hybridization curve of a competitor.  As the authors point out, this approach can eliminate false 

positives, while not requiring labeling of the target, and reduces assay time as it does not rely on 

reaching thermodynamic equilibrium [123].  It and the work of Dai et al. [30] are among the few 

studies to demonstrate improved microarray signal specificity using real-time binding kinetics.  

However, there are several important issues to keep in mind while interpreting the significance 

of the results of the study.  First, as the authors themselves admit, this approach may not work 

when the concentration of the background is considerably higher than that of the competitor as 

they might outcompete the competitor.  Second, the approach would also heavily rely on proper 

and optimal design of competitors: this method is relying on the competitors to be the highest 

affinity target to the probe after the perfect-match target of interest.  Third, while this study is 

constrained to looking at the binding of multiple targets onto one probe, it is important not to 

lose sight of the notion that part of the promise and beauty of microarray technology is the 

parallel probing of the sample for hundreds or thousands of different targets.  It does not sound 

very feasible to include a fluorescently labeled competitor species for each and every one of the 

probes.  And lastly, the authors do not discuss the sensitivity of the method to different relative 

ratios of probe/target/competitor concentrations.  Biphasic behavior of the competitor species in 

the presence of the target will only occur if probe sites are limited.  Brief discussion of the effect 

of relative target/probe concentrations is offered by this group in [125], using experiments with 

two different competitor concentrations to show that the lower limit of detection for the target 

depends on the competitor concentration.   

 



45 

 

The competitive models have been proposed by a few more groups.  Horne, Fish and Benight 

published a comprehensive analytical framework describing equilibrium and reaction kinetics of 

DNA multiplex hybridizations.  Their work extends that of Bishop et al. [29] by moving from 

focusing on the binding of two targets on one probe to considering a system of any number of 

probes and targets.  The number of probes and targets is limited only by computational power to 

solve the set of equations.  However, their system does not consider transport effects.  Horne et 

al. present numerical solutions of their model, which highlight the importance of relative 

concentrations of probe and target, and the relative stabilities of perfect-match and mismatch 

duplexes [122].   

 

Chechetkin employed a two-compartment model for a two-component hybridization problem 

and presented approximate analytical solutions to the two differential equations, showing that the 

non-monotonous growth of the fraction of non-specific species bound on the probe is a feature 

under both reaction-limited and diffusion-limited scenarios [127].  In yet another paper, 

Chechetkin investigated the effect of geometry and shape of binding elements on the kinetics of 

the binding between the target and probe molecules, again simplifying a set of differential 

equations and obtaining an analytical solution [128].  He considered probes immobilized on the 

surface of hemispherical and flat circular cells, as well as hemispherical gel pads and gel slabs.  

Comparing the binding kinetics in the latter two, as they are the most relevant to this work, 

Chechetkin found that the binding kinetics for hemispherical pads should provide for faster 

binding kinetics.  The overall conclusion from his work was that the shape and geometry of the 

microarray binding elements can have a significant influence on the binding kinetics and 

therefore influence the measurement from a microarray in the transient regime [128].   
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 Li et al. used an equilibrium model of competitive hybridization, considering specific and 

lumped non-specific hybridization (marked by one unified dissociation constant and species 

concentration) [119].  They employed a nearest-neighbor based probe-specific dissociation 

constant and four global parameters that were fitted to the Affymetrix Latin Square spike-in 

dataset: initial probe concentration, a lumped parameter of non-specific binding, association 

constant, and detection coefficient of fluorescence [119].   

1.9.4 Understanding surface effects in microarray hybridization: steric hindrances and 

electrostatics 

Experiments comparing the stabilities of DNA duplexes in solution and in planar microarrays 

have revealed the decreased stability of DNA duplexes on the surface.  Several reasons for this 

have been proposed in the literature.  Immobilization of one ligand restricts the ways in which 

the two ligands can interact with each other, compared to hybridization in solution, which can 

affect the reaction rate [20]. Furthermore, steric hindrances can cause a problem if immobilized 

oligonucleotides are too close to each other.  And second, electrostatic repulsion due to the 

negatively charged backbone of DNA molecules can affect target hybridization.  One of the first 

systematic studies of the effect of spacers on hybridization efficiency was conducted by 

Shchepinov et al., showing that tethering immobilized DNA to a spacer of optimal length can 

dramatically increase hybridization yield [20].  Watterson et al. compared the dissociation 

profiles and Tm values of short perfect-match and one-base mismatch duplexes formed in planar 

microarrays to those in bulk solution at different ionic strengths for three different surface 

densities [129].  They found that while the general trends were the same with respect to ionic 

strength of the buffers and destabilization of a single mismatch, the Tm values in the solution 

were higher than in microarray experiments, and the presence of one-base mismatch was more 
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destabilizing for duplexes in which one strand was immobilized than in solution [129].  

Watterson et al. also observed a broadening of the melt curve in microarray experiments 

compared to solution-based experiments [129].  The electrostatic effects are not thoroughly 

understood and the theoretical analysis of such phenomena has only been considered in a handful 

of papers.  Vainrub and Pettitt were the first to propose a theory describing the repulsion between 

the immobilized probe layer and target DNA in a planar microarray [85], as an extension of their 

earlier work, characterizing the effect of electrostatic interaction between nucleic acids and a 

surface on the thermodynamics of hybridization [130, 131].  Vainrub and Pettitt introduced a 

modification into the Langmuir isotherm that accounts for the repulsion of the target DNA from 

the probe layer [85].  They found good agreement with experimental data from the literature, 

published by Peterson et al. [132] relating increased hybridization efficiency to decreasing probe 

density.  Vainrub and Pettitt were able to also reproduce the broadening of the duplex melt curve 

and decrease in the Tm value [85].   

 

Gong and Levicky [133] characterized experimentally the surface coverage as a function of 

probe density in a planar microarray at different ionic strengths, and observed three different 

hybridization regimes for the probe densities they tested.  Non-hybridizing regime occurred at 

high probe densities and low ionic strengths, where the hybridization signal was below the 

detection limit (all points in 0.012 M buffer, and some measured at 0.037 M and 0.11 M).  

Suppressed hybridization regime corresponded to a region from lower probe densities at lower 

ionic strengths to higher probe densities at very high ionic strengths, and was characterized by 

the non-Langmuir dependence of percentage of probe coverage on probe density.  And finally, a 

pseudo-Langmuir regime at low probe densities (2∙10
12

 probes/cm
2
) up to medium probe 
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densities (~6∙10
12

 - 8∙10
12

 probes/cm
2
) at high ionic strength (0.33-1.0 M) was characterized by a 

near independence of percentage of probe coverage on probe density, a property of Langmuir 

equation [133].   

 

Wong and Melosh [134] proposed an electrostatic model of DNA surface hybridization, 

reproducing the three regimes proposed by Gong and Levicky [133].  The numeric model of 

Wong and Melosh accounted for surface density of probe coverage, salt concentration and 

applied voltage using a fully nonlinear modified Poisson-Boltzmann scheme, assuming that all 

probe molecules can be hybridized and any suppression of hybridization is purely due to an 

electrostatic barrier [134].  Wong and Melosh treated the negative electric fields resulting from 

charged DNA as a kinetic activation barrier that limits hybridization of DNA from solution onto 

surface-immobilized probes, and solved numerically a modified Langmuir equation using a 

hybridization-dependent association constant ka [134].  Their simulations showed that optimal 

conditions for maximizing the hybridized target number density occurs at high probe 

concentrations, high salt concentrations, and high voltages, as opposed to the maximum 

occurring at some intermediate probe density in case of zero applied voltage [134].  An 

interesting side note from their model fitting was that mobile counterions appear to be excluded 

from the immobilized DNA layer at high probe densities (the simulations assumed that the 

charge on DNA was screened to 55% by Manning-condensed counterions) [134].  Lastly, 

focusing on dissociation instead of surface coverage during hybridization, Fuchs et al. conducted 

thermal dissociation experiments with planar microarrays at various salt concentrations, and 

obtained good agreement between the data and a model consisting of a modified Langmuir curve 

similar to that proposed by Vainrub and Pettitt [84].   
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1.9.5 Concluding remarks 

In conclusion, all these theoretical and computational investigations into DNA binding have 

highlighted the power of such methods towards optimizing DNA microarray performance.  Of 

particular importance is the finding, both computational and experimental, of the existence of bi-

phasic binding curves in competitive binding situations.  However, temperature-dependent 

hybridization or non-equilibrium thermal dissociation have not been modeled in detail and 

compared with hybridization data in terms of their ability to discriminate between targets of 

varying affinities, using experimental and computational methods.  This would add to the 

discussion on the future of microarray technology.  Furthermore, in this work, we are 

investigating the possibility of composing a physico-chemical model of a three-dimensional gel-

based microarray platform that agrees with experimental data using nearest-neighbor 

thermodynamics-based understanding of probe/target binding kinetics, and integrating that with 

diffusion of targets in solution and in three-dimensional binding elements.   
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Chapter 2: Mathematical model for DNA duplex melting in solution     

2.1 Objectives 

The ability to accurately describe DNA duplex formation kinetics in mathematical terms is 

essential to achieve the project goals.  The microarray model will be a tool we will be using to 

simulate hybridization and melt patterns of different oligonucleotide sequences in potentially 

different buffer compositions, and the dependency of hybridization and melt curves on duplex 

sequences and buffer composition will be introduced through the mathematical description of 

binding kinetics.  The objectives of this Chapter are to  

a) develop a mathematical model of binding kinetics;  

b) develop the formalism for introducing sequence-, temperature-, and buffer composition 

dependency into the model; 

c) conduct solution-based DNA melting experiments, monitoring DNA hyperchromic effect 

with a UV spectrophotometer, to gather experimental data to validate model simulations 

with different DNA oligonucleotides, including perfect-match, one- and two-base 

mismatch duplexes in buffers of different salt and formamide concentrations; 

d) validate the model using the experimental data, making adjustments in the model as 

necessary. 

The model will be used as the basis for hybridization and dissociation modeling in the 

microarray 3D model in Chapter 3. 
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2.2 Theory & Design Considerations 
 

The DNA hyperchromic effect has been the basis of interrogating DNA stability as a function of 

temperature throughout the study of DNA thermodynamics.  Hyperchromicity refers to an 

increase in the absorbance of a material.  DNA hyperchromicity refers to the strong increase in 

UV absorbance of DNA as the double-helix separates into single strands, for example as a 

response to increasing temperature or adding a denaturant, and the bases become unstacked.  The 

aromatic bases in DNA interact via their electron π clouds when stacked together in the double 

helix, and this stacking in turn limits the absorbance as the latter is due to π electron transitions 

by limiting the potential for these transitions [80].  The peak of DNA absorbance falls around 

260nm, for both double-helix and random coil conformations.   

 

We chose to use DNA oligonucleotide melting in solution as an experimental system to support 

the description of binding kinetics mainly for two reasons.  First, analyzing experimental melt 

data from a microarray platform is part of the objective of this work.  Second, it is widely 

accepted as an assumption in the field of computational modeling of DNA oligonucleotide 

binding and microarray systems that the association constant in duplex formation is largely 

independent of oligonucleotide sequence and temperature within the range studied in this work 

[29].  For example, the changes in standard free energy of binding as a result of considering a 

one-base mismatch duplex instead of a perfect-match duplex, or the change in the binding free 

energy due to increasing the temperature of the system, are assumed to be mainly manifested 

through corresponding changes in the dissociation constant, while the association constant 

remains unaltered [29].  The thermodynamic parameters characterizing the stability of different 



52 

 

DNA duplexes will be calculated using the unified Nearest-Neighbor parameters proposed for 

perfect-match duplexes by SantaLucia [66], by Peyret et al. for internal mismatches [71].   

It is important to note the difference between the quantity modeled and experimental 

measurements in this Chapter.  The mathematical model describes the decrease in the 

concentration of the duplex as a function of increasing temperature.  The experimentally 

measured increase in absorbance as a function of temperature represents both unstacking of 

bases and breaking of bonds between bases, meaning that even a solution of single-stranded non-

selfcomplementary DNA oligonucleotides would exhibit an increase in absorbance (see for 

example [135]).  Hence there is no direct one-to-one correspondence between the experimental 

and numerical melting curve.  Instead, agreement between the model and experiments is defined 

as the agreement of measured and computed melting temperature Tm as a function of duplex 

sequence composition and buffer composition.   

 

2.3 Materials & Methods 
 

Experimental 

DNA oligonucleotides and buffer compositions 

Experiments were performed with synthetic custom-ordered oligonucleotides (Eurofins MWG 

Operon, Huntsville, AL), representing probes and their corresponding matches or mismatches on 

the microarray platforms that are used to collect experimental data for subsequent chapters.  

Table 2 displays the four sets (Set 1, Set 2, Set 3 and Set 4) of sequences of oligonucleotides 

used in this study.  In subsequent discussion about duplex melting, the 5’→3’ and 3’→5’ strands 

in the duplex will be separated by a slash in the notation: for example, 1537/1271 will refer to 

5’→3’ strand of 1537, and 3’→5’ strand of 1271. 
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Table 2 – DNA oligonucleotide sequences used in this Chapter.  Mismatch bases are highlighted 
in red and underlined.  

Sequence code 5’→3’ sequence 

Set 1  

EUB338 GCTGCCTCCCGTAGGAGT 

EUB338MM GCTGCCTCCCCTAGGAGT 

  

Set 2  

1537 CTCACACACGTTCTTGACT 

1271 CTCACACACGTTCTTCACT 

1538 CTCACACACCTTCTTGACT 

  

Set 3  

62 GACGGGCGGTGTGTACAA 

399 GACGGGCGGTGTCTACAA 

  

Set 4  

323 CCACAGCCTTTTACTTCAG 

1282 CCACACCCTTTTACTTCAG 

 

Hybridization and melt were carried out in a buffer containing 10 mM Tris, and varying amounts 

of EDTA, NaCl, and formamide (as specified for each data figure or table below).  Although 

some of the microarray buffers used in subsequent Chapters also contain EDTA, in view of 

minimizing the components of the buffer the model would explicitly have to account for in this 

Aim, we collected experimental melt curves using buffer containing only Tris and NaCl.   

  

Hybridization and melt protocols 

Total concentration of oligonucleotides in the melting solution was 4 µM: either 2 µM each of 

the two strands expected to form a perfect-match or a mismatch duplex, or 4 µM of single-

stranded DNA, used as a control for certain experiments.  The concentration was chosen to be in 

the linear range of the spectrophotometer.  Hybridization prior to starting the melt experiments 

was carried out by two methods: a) adding the oligonucleotides to the buffer, vortexing, and 

waiting for 30 minutes, making sure that the absorbance reading on the spectrophotometer was 

stabilized before starting the melt – all at room temperature (RT); 2) adding the oligonucleotides 
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to the buffer at RT, heating the mixture rapidly up to 90 
o
C on a custom-made heating block 

designed to fit 1.5 ml Eppendorf tubes (courtesy of Peter Kauffman), letting the mixture stay at 

90 
o
C for 5 min., and then letting it slowly cool back to RT in the span of ~70 min., and starting 

the temperature ramp roughly 20 min. after the end of the cooling, again making sure that 

absorbance reading had stabilized.   

 

Melt experiments were carried out with HP 8452A diode array spectrophotometer with an HP 

8909A Peltier temperature control accessory, using a quartz cuvette with 10 mm pathlength. 

Absorbance at either 260 nm or 270 nm (buffer containing formamide) is reported, using buffer 

absorbance as reference.  The temperature ramp was chosen to be the same as the ramp rate used 

in microarray experiments: 0.83 
o
C/min., scanning from 20 

o
C to 70 

o
C in the span of 60 

minutes.  Temperature setting of the Peltier temperature control accessory of the HP was 

manually changed either after every two minutes or a minute through-out the temperature scan.  

The temperature of the solution in the cuvette was independently measured for calibration: the 

temperature in the cuvette was shown to lag behind the input temperature by ~1.5 
o
C.  This 

correction is introduced in the reported experimental Tm values, i.e., the reported Tm values are 

the Tm values of raw data minus 1.5 
o
C.   

 

Data analysis 

Data were analyzed in MATLAB, and first order derivative was calculated using the finite 

difference approximation, employing forward differences.  Tm was calculated as the location 

(temperature value) of the peak of the first order derivative.  Since numerical derivatives are 

known to be very sensitive to noise, cubic spline smoothing of the original raw data was used in 
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MATLAB for some of the experiments before computing the derivative.  For each smoothed 

curve, the adequacy of the fit was determined by minimizing simultaneously the mean difference 

and absolute difference. 

 

Computational 

Mathematical description of duplex formation and dissociation 

In this Chapter, we are considering the dissociation of oligonucleotide duplexes as a function of 

duplex sequences and buffer composition.  We assumed a two-state model of DNA binding and 

dissociation, and no formation of secondary structure [29, 113, 116, 118, 120, 121].  The 

hybridization between two oligonucleotides is described by the following formalism: 

 

where C and P are the concentrations of the two oligonucleotide strands, B is the oligonucleotide 

duplex, ka association rate constant, and kd dissociation rate constant for the reaction.  The 

change in duplex concentration and single strand concentration over time can then be described 

by the following system of differential equations, assuming a well mixed solution: 

                                                        

  

  
                 

  

  
  

  

  

    (1) 

where P0 is the initial single strand concentration.   

Temperature-dependence of the rate of the binding reaction for thermal dissociation modeling 

was introduced to the model through the dissociation constant, since empirical studies have 

found the association constant to be fairly insensitive to temperature in the temperature range of 

interest: 
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where G is binding free energy, H is enthalpy, S entropy, R universal gas constant, and T 

temperature [29].  ΔH and ΔS for a given DNA oligonucleotide sequence can be estimated 

thermodynamic nearest-neighbor parameters [66], see also Appendix section A.3 for a table of 

nearest-neighbor parameters for perfect-match duplexes.  Nearest-neighbor parameters for 

internal mismatches were obtained from [71].  Since the two-base mismatch duplex considered 

has the two internal mismatches five bases apart, the effect of these mismatches was considered 

to be independent of each other.  Dependence on salt concentration for both perfect-match and 

mismatch duplexes was introduced through modifying ∆S while keeping ∆H independent of salt 

concentration: 

                                         

where ∆S
0
([Na

+
]) is the entropy change for an oligonucleotide duplex dissolved in a given 

sodium concentration, ∆S
0
(1 M NaCl) is the entropy change predicted from the unified nearest-

neighbor parameters for 1 M NaCl, and N is the total number of phosphates in the duplex divided 

by 2 [66].  The values for duplex stability, ∆S and ∆H, are given in Appendix, section B for all 

the duplexes investigated in this Chapter.   

 

No explicit way to directly account for the effect of formamide on DNA thermodynamic 

parameters ∆H and ∆S has been reported.  Dependence of melt temperature on formamide was 

introduced into the model simply via a temperature offset of 0.6 
o
C per percent formamide: this 

is a typical offset reported for Tm in experiments where formamide is present [17, 90, 96, 99].  

Also, no sequence-dependent effect on the formamide was introduced in the model as there are 

contradicting reports on that in the literature [17, 90, 99, 100].   
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Numerical model 

The system of differential equations (1) was implemented in MATLAB.  The concentration of 

single-stranded DNA C was assumed to be 0 at time t=0, and the concentration of bound duplex 

B was assumed to be 2 µM.  The implication of the assumption that all oligonucleotides were 

bound in a duplex at time t=0 was tested by running the simulations with initial conditions of a) 

50% of DNA bound in a duplex at time t=0; and b) 10% of oligonucleotides bound in a duplex at 

time t=0.  This was done for 1537/1537 and 1538/1537 duplexes.  For both cases, the largest 

difference in the calculated Tm value from simulations with these varying initial conditions was 

~0.0001% of the Tm value calculated using the original assumption for initial conditions.  The set 

of equations was solved using MATLAB’s ode23 solver, which is an explicit Runge-Kutta 

method implementation based on Bogacki and Shampine’s method [136].  The solver was run 

for time points between 0 and 3600 s.  Temperature was calculated at each time point as a 

function of time, assuming the same ramp rate as in the experimental system: T=273+t∙5/360, 

where T is temperature in Kelvin and t time in seconds.  The value of the dissociation rate 

constant kd was calculated as a function of temperature at each time point.  

 

2.4 Results & Discussion 
 

Comparison of pre-melt hybridization protocols 

As a first part of the study, we compared the effect of pre-melt hybridization protocol on the melt 

data as outlined above: hybridizing at RT after vortexing the solution of oligonucleotides in the 

buffer (subsequently referred to as “RT hybridization” protocol), or bringing the mixture up to 

90 
o
C for 5 min., and slowly cooling down to RT before starting the melt (subsequently referred 

to as “slow cooling” protocol).  The comparison of solutions containing only one single-stranded 
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DNA versus a mix of complementary DNA was conducted to ensure that any temperature-

dependent absorbance observed is not simply due to the base unstacking that is characteristic of 

single-stranded DNA as well.   Figure 7 displays the comparison of melt curves after conducting 

the pre-melt hybridization either at room temperature, or through slow cooling from 90 
o
C.  First, 

note that both single-stranded and double-stranded DNA exhibit an increase in absorbance as a 

function of increasing temperature, but the curve for double-stranded DNA includes a section 

with a sharper rise than that of the single-stranded DNA.  Second, note that the melting curves 

are affected by the pre-melt hybridization protocol, however, the effect is most evident when 

looking at the single-stranded DNA melt curve.   

 

Figure 7 – Effect of pre-melt hybridization protocol on the melt curves of single-stranded and 
double-stranded DNA oligonucleotides: targets mixed at room temperature, vortexed, and melt 
started after 30 min. (panel A), and targets heated up to 90 

o
C, and slowly cooled to room 

temperature (panel B).  Buffer composition: 10 mM Tris, 50 mM NaCl, 1 mM EDTA.  Absorbance 
plotted with buffer as reference.  Target sequence used: EUB338 and its perfect complement for 
complementary DNA, and EUB338(5’→3’) for single-stranded DNA.  Temperature ramp rate: 0.83 
o
C/min. 

Figure 8 displays the effect of pre-melt hybridization treatment on normalized melt curves of 

single-stranded and double-stranded DNA.  In addition to the EUB338 single-strand and 

complementary duplex melt displayed in Figure 7, Figure 8 shows the melts of single-stranded 

EUB338MM and EUB338/EUB338MM duplex.  Note that here and below in referring to 
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duplexes, we mark the 5’→3’ strand on the left side of the forward slash ‘/’, and the 3’→5’ 

sequence on the right.   

 

Figure 8 – Effect of pre-melt hybridization protocol on the normalized melt curves of single-
stranded and double-stranded perfect-match and mismatch DNA oligonucleotides: targets mixed 
at room temperature (‘RT’ in legend), and slowly cooled (‘cooled’ in legend).  Ss stands for single-
stranded, and Ds for double-stranded.  Buffer composition: 10 mM Tris, 50 mM NaCl, 1 mM EDTA; 
total oligonucleotide concentration 4 µM (2 µM of each complementary strand, or 4 µM of single-
stranded DNA).  Absorbance plotted with buffer as reference.  Temperature ramp rate: 0.83 

o
C/min.   

While the curves of single-stranded DNA after RT and slow cooling hybridization are not quite 

overlapping, the agreement between double-stranded DNA melt curves is very good.  This 

allowed us to consider in the subsequent work only RT hybridization protocol. 

 

Sequence effects on experimental and computational melt curves 

We collected experimental melt data, using targets from Sets 1, 3, and 4, which rendered perfect-

match and one-base mismatch duplexes, and targets 1537, 1271 and 1538 from Set 2, which 

rendered perfect-match duplexes, two different one-base mismatch pairs (1537 and 1271, 1537 

and 1538), and one two-base mismatch pair (1271 and 1538).  The particular mismatches 

displayed were: one internal G∙G mismatches for EUB338/EUB338MM, 62/399, 323/1282 and 

1537/1271, one internal C∙C mismatch for P1538/P1537, and two internal mismatches for 



60 

 

1538/1271, G∙G and C∙C.  Figure 9 shows the melt curves of 1537, 1271 and 1538 duplexes, and 

the first order derivatives of these melt curves.  Note the expected overlap of 1537 and 1271 

perfect-match duplexes, the two mismatches (1537/1271 and 1537/1538) being of different 

stability, manifested by shifting of the melt curves along the temperature axis, and the two-base 

mismatch being of the lowest stability.  The melt curves of Set 1 are discussed later as part of 

investigating the effect of different salt concentrations.   

  

Figure 9 – Normalized melt curves (left) and first order derivative of melt curves (right) for targets 
1537, 1271, and 1538.  Buffer composition: 10 mM Tris, 50 mM NaCl; total oligonucleotide 
concentration 4 µM (2 µM of each complementary strand).  Absorbance plotted with buffer as 
reference.  Temperature ramp rate: 0.83 

o
C/min.   

As outlined above, sequence- and temperature-dependence of the affinity of the DNA duplex 

was introduced into the model through sequence-dependent thermodynamic parameters used to 

calculate the dissociation constant.  Figure 10 displays the dissociation constants as a function of 

temperature for the duplexes used for experiments.  Note the larger difference between kinetic 

constants at lower temperatures compared to elevated temperatures. 
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Figure 10 – Theoretical dependence of the dissociation constant on temperature, sequence, and 
NaCl concentration, for Set 1 (left panel) and Set 2 duplexes (right panel).  NaCl concentration for 
the left panel was 50 mM. 

  

Figure 11 – Simulated melt curves for targets 1537, 1271 and 1538, Ds stands for double stranded.  
Temperature ramp rate: 0.83 

o
C/min.  Assumed salt concentration: 50 mM.   

Figure 11 shows the simulated melt curves for Set 2 (1537, 1271 and 1538), Set 1 melt curves 

will be discussed below.  Note that unlike absorbance-based melt data, the variable plotted from 

the simulations is the bound concentration of duplex, which decreases with increasing 

temperature.  Table 3 presents the computed and experimental Tm values for Set 2.  Note the 

close correspondence between the values.    
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Table 3 – Comparison of computed and experimental Tm values for Set 2 targets.   

Tm, 
o
C 1537/1537 1537/1271 1538/1537 1538/1271 

Experimental 58.5 ± 0.4 50.2 ± 0.7 45.2 ± 0.4 33.5 ± 0.8 

Computational 57.6 50.7 45.5 36.1 

 

Salt effects on the experimental and computational melt curves 

Next, we explored the ability of the model to account accurately for different salt concentrations 

by conducting melting studies at two different salt concentrations and comparing the Tm values 

with computed values.  110 mM NaCl concentration was chosen as the highest salt concentration 

to still render a melting temperature within the range of the temperature controlled for the 

spectrophotometer (70 
o
C).  Figure 12 displays the effect of increased salt concentration on Set 1 

duplexes.  Note the dissociation occurring at a higher temperature for a higher salt concentration.   

  

Figure 12 – The measured melt curves and first order derivative of EUB338/EUB338 and 
EUB338/EUB338MM duplexes at two different salt concentrations.  Total oligonucleotide 
concentration 4 µM (2 µM of each complementary strand).  Absorbance plotted with buffer as 
reference. Temperature ramp rate: 0.83 

o
C/min.  Buffer also contained 10 mM Tris. 

Figure 13 displays the simulated melt curves and first order derivatives for Set 1 duplexes.    
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Figure 13 – Simulated melt curves for targets EUB338 and EUB338MM at two different salt 
concentrations.  Temperature ramp rate: 0.83 

o
C/min.   

 

Table 4 – Comparison of computed and experimental Tm values for Set 1 at two different salt 
concentrations (n=3). 

 

Table 4 summarizes the Tm values of the two sets of oligonucleotides at two different salt 

concentrations: 50 mM and 110 mM.  Note again the close agreement between experimental and 

computed Tm values for EUB338/EUB338 duplexes.  The model is slightly overestimating the 

Tm of EUB338/EUB338MM duplex, but also the experimental data is less consistent and has a 

larger standard deviation.  Note that while the first order derivative peaks are very narrow for 

1537 and its respective mismatch duplexes (Figure 9), the peaks are broader for EUB338 

duplexes.  This might contribute to the larger standard deviations in the experimental data, and 

perhaps between the experimental data and model simulations. 

 

 EUB338/ 
EUB338 

EUB338/ 
EUB338MM 

Tm, 
o
C 50 mM 110 mM 50 mM 110 mM 

Experimental 62.7 
±0.7 

67.4 
±0.5 

53 
±1.9 

57 
±1.8 

Computational 63.7 67.7 56.9 61.1 
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Formamide effects on the experimental and computational melt curves 

As a first step, the absorbance spectra of buffers containing 0-40% formamide were measured.  

Formamide has a very high absorbance around 260 nm, resulting in absorbance flattening, so 

even buffers containing very low percentage of formamide were not suitable to track DNA 

duplex related absorbance changes at 260 nm.  Furthermore, as the concentration of formamide 

increased in the buffer, the first wavelength at which formamide’s effects were negligible, kept 

increasing.  Therefore, absorbance values at 270 nm were used in the subsequent DNA melting 

experiments to study the effect of formamide, and only 10% and 20% formamide concentrations 

were considered.  Figure 14 displays the melting curves for 0, 10 and 20% formamide at 50 mM 

NaCl.   

Figure 14 – Effect of formamide concentration of melt curves for EUB338/EUB338 and 
EUB338/EUB338MM duplexes.  Temperature ramp rate: 0.83 

o
C/min.  Total oligonucleotide 

concentration 4 µM (2 µM of each complementary strand).  Absorbance plotted with buffer as 
reference. Buffer composition beyond formamide: 10 mM Tris, 50 mM NaCl.   
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Table 5 displays the experimental and computed Tm values for Set 1 duplexes at different 

concentrations of formamide.  Just like already commented above, the model is slightly 

underestimating the Tm of EUB338/EUB338MM duplex. 

 

Table 5 – Comparison of experimental and computational Tm values for Set 1 duplexes at different 
concentrations of formamide (n=3).  Buffer also contained 50 mM NaCl and 10 mM Tris.  

 EUB338/ 
EUB338 

EUB338/ 
EUB338MM 

Tm, 
o
C 0%  10% 20% 0% 10% 20% 

Experimental 62.7 
±0.7 

57.1 
±0.5 

53.8 
±1.3 

53 
±1.9 

47.2 
±2.1 

41.0 
±1.6 

Computational 63.7 57.7 51.7 56.9 50.9 44.9 

 

2.5 Conclusions 
 

In this Chapter, we composed a simple kinetic model of oligonucleotide thermal dissociation and 

compared the results of the simulations with collected experimental data from solution-based 

melts.  The simulations and experiments considered two different oligonucleotides sets, each 

containing a perfect-match and one-base mismatch duplex, and one of the two oligonucleotide 

sets also contained a two-base mismatch duplex.  In addition to exploring different sequences, 

we varied salt and formamide concentration in the hybridization and melt buffer.  Our results 

demonstrated that a kinetic model of oligonucleotide dissociation, based on thermodynamic 

nearest-neighbor parameters, is able to simulate sequence effects and effects of salt and 

formamide concentration.  These results will form the basis of modeling sequence-dependent and 

buffer composition effects in subsequent Chapters.   

 

However, two points are worth keeping in mind, as we transition from modeling solution-based 

dissociation to modeling microarray hybridization and binding.  First, the thermodynamic 
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nearest-neighbor parameters used in this model are collected from solution-based experiments, 

and the stabilities of duplexes in a microarray platform could differ from those in the solution.  

However, there are published studies that have found generally good correlation between binding 

free energies in the solution and in microarrays [77, 78].  Second, as the experimental data 

focused on thermally introduced dissociation, we did not explicitly verify the assumptions in the 

hybridization model, most notably that the association constant is sequence-independent.   
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Chapter 3: Finite element computational model of single-target DNA 

hybridization and melt in a microarray platform with three-dimensional 

binding elements.   

3.1 Objectives 

This model will incorporate the kinetic description developed in Chapter 2, and expand from 

solution-based dissociation to hybridization and dissociation in a microarray platform.  Desired 

features of this model will include the description of the three-dimensional geometry of DNA 

microarray platform, and the following physico-chemical processes: diffusion of DNA 

oligonucleotide target in bulk solution, diffusion of target into and in the gel elements, and the 

binding reaction as a function of temperature.  In both experiments and simulations, we will 

focus on binding and hybridization of one single target analyte only.   

 

The objectives of this Chapter are to  

a) collect experimental data of single target hybridization and melt in gel-based microarrays, 

using different buffers;  

b) use a one-dimensional model of hybridization and dissociation, developed in Chapter 2, 

to compare hybridization and dissociation predictions with experimental data; 

c) develop a 3D finite element model of single target hybridization and melt in a three-

dimensional gel microarray; 

d) calculate scaling factors for nearest-neighbor based ∆H
o 
and ∆S

o
 for use in the microarray 

model; 

e) perform a constrained optimization to find the best match of model to experiment, and a 

sensitivity analysis to characterize the model sensitivity to experimental inputs that have 
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not been experimentally determined (probe density, diffusion coefficient in the gel 

elements); 

f) conduct an in silico implementation and validation of image analysis strategies;  

g) characterize inter- and intra-array reproducibility of hybridization and thermal 

dissociation metrics in experiments with three-dimensional gel-based microarrays 

h) validate the model against single target hybridization experimental data. 

 

This model will be the basis for developing a competitive binding model in Chapter 4. 

 

3.2 Theory & Design Considerations 

In this Chapter, we will compose and validate a model of a three-dimensional gel-based 

microarray.  The model will simulate target hybridization and dissociation in three-dimensional 

gel probes, and incorporate the effects of diffusion in the gel elements and in the solution, and 

temperature. Figure 15 presents a simplified schematic of the geometries and physico-chemical 

processes to be modeled.  This has not been done before according to the literature for three-

dimensional arrays.  Another novel aspect of this work is the investigation of the link between 

solution-based and microarray (planar or 3D) thermodynamic constants.   

 



69 

 

 

Figure 15- A simplified schematic of the geometries and processes included in the microarray 
model.  Three-dimensional gel-based binding elements are embedded in a microarray chamber.  
Target oligonucleotides diffuse into the gel elements where they can bind to form complementary 
duplexes with probe oligonucleotides, immobilized in the gel matrix.  Schematic not drawn to 
scale.   

In describing the hybridization and dissociation kinetics, we will make use of the formalism 

developed and validated in Chapter 2 to describe the hybridization and temperature-dependent 

dissociation of DNA oligonucleotide complexes.  Strategies for extending the solution-based 

model of Chapter 2 to a microarray context will be discussed below.   

 

Thermodynamic parameters of duplex stability: solution versus microarray 

One of the most important overall goals of this Chapter is to determine how the stability of 

duplexes, measured and simulated with a kinetic model in solution in Chapter 2, correlates with 

stabilities in the microarray.  In Chapter 2, we utilized SantaLucia’s unified nearest-neighbor 

parameters [66] to account for sequence-dependent duplex stability, along with a logarithmic 

correction to the entropy term based on NaCl concentration [66], and a constant offset in the 

temperature variable of the model to account for formamide-lowered stability of the duplex.  
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Several studies have found a general correlation between the binding free energies in the solution 

and in microarrays [74, 77, 78].  For example, Fotin et al. [74] compared the binding free 

energies of very short oligonucleotides in solution and in three-dimensional gel elements, and 

found the following relationship: ∆Gsolution: ∆Gchip=a∆Gsolution+b.  However, it is not clear how 

the nearest-neighbor parameters ∆H and ∆S will need to be modified to account for binding in a 

microarray instead of solution, and whether they can be all scaled by the same factor irrespective 

of sequences.   

 

Equal consideration should be given to extending the modeling of formamide and salt effects 

from solution to microarrays.  The effect of formamide on decreasing the melting temperature of 

the duplex in microarrays has been investigated in two separate studies.  Urakawa et al. found 

that the average decrease in Td was 0.56 
o
C/%FA in a three-dimensional gel-based microarray, 

averaged over all target:probe duplexes, including mismatches [17].  They used 39-base targets 

hybridizing onto 19-base probes.  Fuchs et al. used 15-16 base probes hybridizing with 15-20 

base targets in planar microarrays, and found the average decrease in Td to be 0.57-0.59 
o
C/%FA, 

depending on immobilization chemistry.  Based on these two studies, we propose a simple offset 

in the temperature variable as a function of formamide concentration to account for formamide 

effect (i.e., the temperature variable in the model will be lowered by a constant offset of 5.8 
o
C in 

a buffer of 10% formamide).  However, the effect of salt concentration on duplex stabilities in a 

microarray can be more complex than that characterized in the solution.  In the solution, the 

influence of salt concentration on binding free energy is described through a change in standard 

entropy: standard entropy increases proportionally with the natural logarithm of salt 

concentration.  Only a handful of studies have looked at the effect of salt concentration in 
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microarray binding and dissociation, and the conclusions are not in agreement with each other.  

For example, Peterlinz et al. found that Td followed a logarithmic dependence on NaCl similar to 

that in solution [86], while Fuchs et al. used a modified Langmuir isotherm including a term for 

electrostatic interactions to explain their data of dissociation curves in different salt 

concentrations [84].  Both studies were concerned with planar arrays only.  Electrostatic effects 

have not been studied previously in a three-dimensional gel-based microarray, and investigating 

the effect of salt concentration on hybridization intensities and melting temperatures will be a 

contribution to the field.   

 

Gel-based three-dimensional microarray platform 

In this work, we are utilizing three-dimensional gel-based microarrays, which have not been 

studied as extensively as more widespread planar microarrays.  It has been shown, however, to 

offer distinct advantages over more traditional planar microarrays, most importantly for the 

purposes of this Chapter, solution-like kinetics [8].  Figure 16 displays two images of two 

different formats of gel arrays used in this study, the gel pad and gel drop arrays.  The gel pad 

array consists of an array of 100 µm × 100 µm × 20 µm polyacrylamide pads, polymerized in 

place before loaded with oligonucleotide probes.  Polyacrylamide gel is activated by hydrazine-

hydrate treatment, substituting some amide groups with hydrazide groups [25].  Oligonucleotides 

were immobilized through coupling with the hydrazide groups of the gel via dialdehyde groups, 

which were produced  by activating the 3’-terminal 3-methyluridine on oligonucleotides by 

oxidizing with NaIO4 [25].  A different manufacturing technique, more suitable for large-scale 

manufacturing, is used to fabricate the gel drop microarray where gel polymerization and probe 

immobilization steps are combined and take place simultaneously [18].  Polymerization solution 
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containing modified DNA is spotted onto glass slides for photoinduced polymerization [18].  

This can render a more uniform distribution of probe molecules compared to gel pad technology 

[18].  In this Chapter, we have utilized both platforms for collecting experimental data.  The 

effect of the geometry of a three-dimensional binding element was studied by Chechetkin [128], 

who developed an analytical solution to compare the binding kinetics of targets hybridizing with 

probes immobilized in a hemispherical gel drops and gel slabs (referred to as pads in the 

discussion above).   He found the hemispherical geometry to provide much faster rate of 

hybridization, which is consistent with findings from a computational project by Mike Purfield in 

the Yager lab.  Experimental comparison of these two gel microarray platforms is not within the 

scope of this work.   

 

Figure 16 – Fluorescent and white-light image of Alexa 594-labeled oligonucleotides hybridized on 
binding elements in a gel-pad array (top panel, A), or gel-drop array (lower panel, B).  Scale bar in 
both panels is 10 µm.  Image from Starke et al.  [7]. 
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Approaches for computational modeling 

We will be using a computational model similar to the one employed in Chapter 2, describing a 

well mixed solution, to initially compare the solution-based stability predictions with actual data 

from three-dimensional microarrays.  The desired agreement between the model and experiment 

is defined as agreement between 1) absolute values of melting temperatures in non-equilibrium 

thermal dissociation (Td, temperature at which the signal is 50% of its original value); 2) signal 

ratio from hybridizations with a single target on perfect-match and mismatch probes; 3) time 

constant of the hybridization reactions.  We will then compose a three-dimensional finite element 

model of the microarray hybridization and thermal dissociation processes.  We will also compose 

a compartmental model and validate it with the finite element model to facilitate rapid parameter 

optimization.  While the three-dimensional finite element COMSOL model comprises physically 

realistic processes, it is computationally complex and not really suited for fast parameter 

optimization.  A compartmental model has been used to study kinetics in SPR surface binding 

assays [137] and also in modeling hybridization on planar microarrays [123, 127].   

 

In modeling the hybridization and dissociation in the microarray platform, we are only 

considering two probe elements at a time due to computational constraints, assuming the binding 

of one target analyte onto different probes in the array to be quasi-independent.   
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3.3 Materials and Methods 

Experimental 

Materials 

Experiments were performed with synthetic custom-ordered labeled oligonucleotides (Eurofins 

MWG Operon, Huntsville, AL) that had perfect matches and mismatches among the probes 

displayed on the microarrays.  The sequences of probes used on the three different microarrays 

are given in Table 6.  The single target used presented a perfect-match to either probe EUB338, 

probe 1537, probe 62, or probe 323.  The targets were labeled with either Texas Red or 

OregonGreen488 fluorophore.  The original microarray hybridization buffer contained 900 mM 

NaCl, 20 mM Tris-HCl, and 40% formamide [52], while the original melt buffer contained 4 

mM NaCl, 20 mM Tris-HCl, and 5 mM EDTA, but other buffer formulations were used in some 

of the experiments as specified and explained below.  The three gel microarray platforms used in 

this Chapter, gel pad and two different generations of gel drop arrays (gel binding elements 

printed on a microscope slide), were obtained from Akonni Biosystems (Frederick, Maryland).   

 

The gel drops of spherical cap shape in the gel drop array are 20-40 µm high, and have a 

diameter of 170 µm.  The distance between the centers of gel drops is 300 µm. The standard 

oligonucleotide concentration for probe immobilization is 0.125 mM, out of which roughly 60 

µM is expected to be functional upon immobilization.  The volume V of the spherical cap can be 

calculated as follows:  

  
  

 
          

where h is the height of the spherical cap and a the radius.  Therefore, the volume of a spherical 

cap on a gel microarray with the radius of 85 µm and height of 30 µm is 3.55∙10
-13

 m
3
.  
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Assuming that the height of the drops varies between 20 and 40 µm, the volume will vary 

between 2.31∙10
-13

 m
3 

and 4.87∙10
-13

 m
3
.   

 

Two different generations (the word ‘generation’ here refers to arrays manufactured at different 

times, not to actual differences in the general manufacturing process) of gel drop arrays, both 

manufactured by Akonni Biosystems (Frederick, Maryland), were used in this Chapter.  While 

the first generation of gel drop arrays was fully populated by gel drops with immobilized probes 

in them and had been designed by the Stahl lab, the second generation of arrays was designed 

specifically for this project and contained a mix of empty gel drops without probe and probe-

immobilized gel drops to cut down on the cost of the array.  One microarray slide consisted of a 

9 mm × 9 mm printable area, divided into four quadrants (see Figure 17 for details).  Each 

quadrant contained two beacon probes, one immobilized with Texas Red and the other with 

Oregon Green 488 fluorophore.   

 

Figure 17 – A map of the second generation gel drop array used in Chapters 3 and 4 of this work.  
The letter ‘E’ refers to empty gel drop (i.e. no probe immobilized in it), and numbers refer to 
different probes as listed in Table 6.  ‘H’ and ‘166’ refer to manufacturer placed hybridization 
control probes.  Each color refers to ‘related’ probes, i.e. a perfect-match probe and its 1- or 2-
base mismatch companions.  Total printed area of the array is 9 mm × 9 mm.   
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Table 6 - DNA oligonucleotide probe sequences used in Chapter 2.  Mismatch bases are 
highlighted in red and underlined. 

Sequence code 5’→3’ sequence 

Gel pad array 

EUB338                   GCTGCCTCCCGTAGGAGT 

EUB338MM                   GCTGCCTCCCCTAGGAGT 

EUB338III (2MM)                   GCTGCCACCCGTAGGTGT 

  

EUB336                        TGCCTCCCGTAGGAGTCT 

EUB336MM                        TGCCTCCCCTAGGAGTCT 

Spir CTTARCTGCTGCCTCCCG 

SpirMM CTTARCTCCTGCCTCCCG 

  

Gel drop array 

1537 CTCACACACGTTCTTGACT 

1271 CTCACACACGTTCTTCACT 

1538 CTCACACACCTTCTTGACT 

322 CTCACACTCGTTCTTGACT 

1272 CTCACACACCTTCTTCACT 

1217 CTCACACTCCTTCTTGACT 

  

62 GACGGGCGGTGTGTACAA 

399 GACGGGCGGTGTCTACAA 

  

323 CCACAGCCTTTTACTTCAG 

1282 CCACACCCTTTTACTTCAG 

  

65 GCTGCCTCCCGTAGGAGT 

407 GCTGCCTCCCCTAGGAGT 

 

Microarray reader, image capture and data analysis 

Imaging was performed with a custom-built fluorescent microscope (Argonne National 

Laboratory), illuminated by a short-arc Mercury lamp, with a cooled CCD camera and a thermal 

table that is connected to a thermoelectric temperature controller (LFI-3751; Wavelength 

Electronics, Inc., Bozeman, MT) and a water bath (VWR, West Chester, PA).  Images were 

recorded, using a custom-written MCI program (Argonne National Lab).  The sample was only 

exposed to light when taking an image; otherwise, the sample was shielded from the light by a 

closed mechanical shutter in the light path.  The intensities were extracted from the images with 

iStackX, in-house written software obtained from the Stahl lab.  MATLAB-based image 
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conversion scripts were developed and validated as part of this work to facilitate data flow 

between those two programs, as MCI records images in a customized IMG format, and iStackX 

accepts images in TIF format.   

 

iStackX places a grid of rectangular boxes on an image, and in case of a stack of images such as 

a sequence of hybridization or melt images, subsequently applies the same grid automatically to 

all the images in the stack.  Currently, iStackX does not have image registration capabilities, and 

all the images in one stack were checked for sliding relative to the grid from the first image.  

Also, the grid size was altered in the analysis to confirm that it did not have an effect on the data.  

The data was then further processed through background adjustment and normalization.  The 

need for such data transformations in processing microarray data has been established [138, 

139].  Specifically, in our case, each box in the iStackX grid contains an inner border and outer 

border, with the intensity in the area within the inner border representing the estimate of 

foreground (spot) intensity, and the intensity in the area in between the outer and inner border 

representing the estimate of (local) background intensity (see Figure 18).  Both foreground and 

background intensities were averaged over the area.  Currently, the intensities are background 

adjusted for analysis, subtracting the background from the foreground intensity, and then divided 

by the background value, which is a standard approach in microarray data analysis [139].  The 

division by background was done only for hybridization experiments but not for thermal 

dissociation experiments, as explained in the sections below.  This data transformation and all 

downstream processing were conducted in MATLAB.  For determining the Td values of melt 

curves, the melt curves were 1) normalized between 0 and 1; 2) using the two intensity values 

closest to 0.5, the temperature corresponding to 0.5 was found via interpolation.   
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Figure 18 – Transformations of raw data before downstream processing.  Left side of the Figure 
shows a part of a gel pad array image with a grid, and right side displays the location of 
‘foreground’ and ‘background’ regions mentioned in the text.  Local background is estimated in 
the immediate vicinity of the pad (band between the outer and inner box), and subtracted from the 
foreground signal (value in the inner box).  The division by background was carried out for data 
from hybridization experiments, but not for thermal dissociation experiments.   

 

Experimental protocols 

Experiments with gel drop arrays were conducted in a hybridization chamber (Grace Biolabs, 

Bend, Oregon) affixed to the surface of the microarray glass slide (see Figure 41 in Chapter 4), 

containing 40 µl of hybridization buffer, while gel pad array experiments were conducted using a 

microfluidic platform later employed and further discussed in Chapter 4 (see Figure 41 in 

Chapter 4).  All hybridizations and melts occurred in static conditions.  The total volume of the 

hybridization chamber in the microfluidic platform was roughly 40 µl.  In both platforms, a wash 

was conducted at the end of the hybridization and before starting the melt, washing away all 

unbound target.  For the wash step, the hybridization chamber was removed from the glass slide 

in the gel drop experiments, and an imaging chamber (Grace Biolabs, Bend, Oregon) was affixed 

on the glass slide.  Hybridization experiments were conducted at 20
 o
C, while in the melt 

experiments, the temperature was ramped from 20 
o
C to 70 

o
C in the span of an hour, rendering a 

ramp rate of 0.83 
o
C/min.  The gel drop arrays were hybridized in the dark, with total time of 
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hybridization 17-18h (unless specified otherwise), since only end-of-hybridization signal was 

collected.  During thermal dissociation experiments, images were taken after every minute.  Gel 

pad arrays were continuously imaged in the microarray reader during the hybridization (image 

taken every 5 minutes, 1500 ms exposure time) as well as the melt (image taken every minute, 

exposure time 1500 ms).   

 

Computational 

Mathematical description of duplex formation and dissociation 

In this Chapter, we are considering the simultaneous binding and dissociation of one 

oligonucleotide target onto two pads with different probe sequences.  We assumed a two-state 

model of DNA binding and dissociation, and no formation of secondary structure [29, 113, 116, 

118, 120, 121].  The hybridization between a target and probe is described by the following 

formalism: 

 

 

where C is target, P probe, B probe-target duplex, ka association constant, and kd dissociation 

constant for the reaction.  The change in duplex concentration over time then can be described by 

the following differential equation: 

  

  
                   

where P0 is the initial probe concentration. 

Temperature-dependence of the binding reaction for thermal dissociation modeling was 

introduced to the model through the dissociation constant, since empirical studies have found the 
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association constant to be fairly insensitive to temperature in the temperature range of our 

interest: 

       
       

    

where H is enthalpy, S entropy, R universal gas constant, and T temperature [29].  ΔH and ΔS for 

a given DNA oligonucleotide sequence can be estimated using the thermodynamic nearest-

neighbor parameters [66].   

 

Thermodynamic parameters of duplex stability 

Temperature-dependence of the binding reaction for thermal dissociation modeling was 

introduced to the model through the dissociation constant, similarly to Chapter 2.  In brief, 

       
   
       

       
    

where ∆G is the change in binding free energy, H is enthalpy, S entropy, R universal gas 

constant, and T temperature [29].  For solution binding, considered in Chapter 2, ΔH and ΔS for 

a given DNA oligonucleotide sequence can be estimated using thermodynamic nearest-neighbor 

parameters [66], see also Appendix section A.3 for a table of nearest-neighbor parameters for 

perfect-match duplexes and Peyret et al. for nearest-neighbor parameters for internal mismatches 

[71].  Dependence on salt concentration for both perfect-match and mismatch duplexes in the 

solution was introduced through modifying ∆S while keeping ∆H independent of salt 

concentration : 

                                         

where ∆S
0
([Na

+
]) is the entropy change for an oligonucleotide duplex dissolved in a given 

sodium concentration, ∆S
0
(1M NaCl) is the entropy change predicted from the unified nearest-

neighbor parameters for 1M NaCl, and N is the total number of phosphates in the duplex divided 
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by 2 [66].  The values for duplex stability, ∆S and ∆H, are given in Appendix, section C.  

Microarray hybridization and dissociation buffers have varying amounts of salt and formamide, 

and our model accounts for different stabilities during the hybridization and dissociation phase of 

microarray experiments.  The formamide effect, similarly to Chapter 2, was introduced into the 

model simply via offset of the temperature variable by 0.6
o
C per percent formamide.  

 

One-compartment model 

Initial investigation of parameter sensitivity was performed using the implementation of the 

binding reaction for single target in MATLAB, assuming a well mixed solution, to gain a 

preliminary understanding of the relationship between target/probe concentration and binding 

kinetics without carrying out computationally expensive finite element simulations.  This was 

similar to the MATLAB model described in Chapter 2, except we also considered binding of a 

single target onto two different probes, and initial conditions were appropriate for simulating 

hybridization (duplex concentrations were set to 0 at time t=0).  The local concentration of the 

probe molecules was not considered; instead, the total amount of probe molecules was computed 

using the geometry of the gel pad and probe concentration, and divided by the total volume of 

the reaction chamber.  The same one-compartment model was also used for the initial 

comparison between a compartmental model and three-dimensional finite element model, except 

dissociation from only one probe was considered, and initial conditions were those reflecting of 

melt, similarly to the model described in Chapter 2.   

 

In Chapter 2, the Tm value for both experimental and computational melt curves was taken to be 

the location of the maximum of the first order derivative of the melt curves.  In this Chapter, the 
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parameter calculated from the experimental data is Td, the temperature at which the signal has 

decreased to 50% of its original value during the melt, and the same parameter was computed 

from the simulations for comparison: the temperature at which the bound concentration was 

decreased to 50% of its original maximum.  A comparison of the two methods for calculating the 

melt temperature (Tm and Td) from simulation results showed that the difference was less than 

0.8 
o
C.   

 

Two-compartment model 

A schematic description of the two models is given in Figure 19.   

 

Figure 19 - Schematic description of one- and two-compartment model.  C refers to target 
available for binding, P available probe, and B bound duplex. 

 

For the 1-compartment model, the set of differential equations to be solved was as follows: 

 
 

 
  

  
                 

  

  
  

  

  

    

         

  

where B and C are the concentrations of bound duplex and free target, respectively; ka and kd are 

kinetic constants; Po is the initial probe concentration; and Vgel/Vsolution is the ratio of the volume 

of one gel pad versus the volume of the hybridization chamber, equal to 5·10
4 

(dimensions taken 
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from actual experimental system).  At time 0, beginning of melt, free target concentration was 

assumed to be 0.  The two-compartment model consisted of the following differential equations: 

 

  

  
                 

  

  
  

  

  
            

  

where km is mass transfer coefficient between the two compartments.  Cout was assumed to be 

zero at all times, so the outer compartment functions as a permanent sink.   

 

Three-dimensional finite element model 

Numerical simulations of hybridization and melt in the microarray platform were performed with 

finite element modeling package COMSOL Multiphysics
TM 

(Burlington, MA, versions 3.5a to 

4.2a).  The binding elements were assumed to be embedded in a hybridization chamber with a 

square footprint, with a surface area of 2.29·10
-4

 m
2
, height 100 μm.  The dimensions of the 

three-dimensional cube-like pads were assumed to be 100 μm × 100 μm × 20 μm; the 

dimensions of the drop shaped gel elements was assumed to be 170 µm, height 30 µm, as 

specified by the manufacturer.   

 

The binding in three-dimensional gel elements was modeled using the kinetic equation above, 

defining it for both the two pads considered, rendering the following set of binding equations: 
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where BPM and BMM refer to duplex concentrations on perfect-match and mismatch probes. P0PM 

and P0MM refer to initial concentrations of these probes (assumed to be equal), and kdPM and kdMM 

are the dissociation constants for PM and MM duplexes, respectively. 

The diffusion of the free targets in the bulk and in the gel element was modeled using Fick’s law: 

  

  
     , 

where C is the concentration of the target, and D diffusion coefficient. 

 

Modeling of free target diffusion in bulk and in gel elements was implemented in COMSOL by 

applying the diffusion mode  (essentially defining the diffusion equation), and defining two 

separate diffusion constants, one for the bulk solution and one for the gel environment.  The 

mobility of DNA fragments in the gel is expected to be lower than in the free solution and is 

determined by the size of the diffusing DNA fragments and properties of the gel.  The binding of 

free target was reflected in the target concentration through a reaction term linked to the kinetic 

equation shown above.  Modeling of the binding of target DNA onto immobilized probe 

molecules was implemented by applying two different approaches in the subdomain of the gel 

elements: 1) using COMSOL’s subdomain PDE weak mode for the binding reaction; 2) defining 

a new diffusion mode to account for the bound probe species, with D=0 diffusion coefficient and 

a reaction term linked to the kinetic equation.  The results from both were compared for a range 

of model input parameters, and the results were identical.  Implementing a separate diffusion 

mode for the immobilized species was chosen and has been used throughout this work.   

 

For thermal dissociation modeling, temperature as a linear function of temperature was defined 

under global expressions in COMSOL modeling interface, and kd was calculated at every solver 
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step as a function of temperature.  The vertical walls of the hybridization chamber, the top and 

bottom of the chamber were set to an insulation boundary.  The boundaries along three-

dimensional binding elements were set to continuity for target concentration.  The initial 

conditions for the time-dependent solver when modeling hybridization were set to 0 for duplex 

concentration, 0 for free target concentration inside three-dimensional binding elements, and a 

pre-determined value in the solution.  For dissociation, all non-bound target concentration (inside 

and outside binding elements) was assumed to be zero, while the concentration of bound duplex 

was set to a pre-determined value.   

 

The shape of the spherical cap shaped gel drops in the model was created in two steps.  First, a 

sphere was created with a 135 µm radius, lowering the center of the sphere 105 µm below the 

bottom of the hybridization chamber, and a square block was created with its height equal to 30 

µm and length of the side more than the desired diameter of the spherical cap.  Second, an 

intersection of those two objects was formed which rendered a spherical cap with the radius of 

170 µm and height 30 µm.   

 

Main issues with building the model had to do with negative concentrations in cases where 

reaction flux was large compared to the diffusional flux.  Concentration of free target would 

consistently dip into negative, with the ratio of integrated absolute concentration to integrated 

concentration in the binding pad subdomains being close to 2.  Three different approaches were 

employed simultaneously to avoid this problem: 1) forcing the solver to take smaller time steps; 

2) optimizing mesh element size around the pads; 3) for some modeling cases, avoiding spatially 

discontinuous initial conditions by using a smoothed Heaviside function (flc2hs in COMSOL).   
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The list of COMSOL model constants and their values is given in Table 7. 

Table 7 – List of COMSOL model constants with sources (if applicable) and flexibility in the value 
for purposes of model fitting. 

Parameter (Starting) 
Value  

Source Flexibility in the value 

Association 
constant ka 

10
6 
1/(M·s)

 
 [29, 118, 126] Fairly little flexibility; 

literature claims ka to be 
fairly independent of target 
sequence and temperature 
within our range of interest  

Dissociation 
constant for PM 
kdPM  

Starting value 
computed as a 
function of 
ΔHPM, ΔSPM, 

and T 

[29] We hypothesize that ΔHPM, 
ΔSPM  for microarray 
binding are linear functions 
of solution thermodynamic 
parameters: flexibility in the 
constants of the linear 
functions 

Initial target 
concentration 

Nano- to 
micromolar 
range 

Experimental value No flexibility 

Initial probe 
concentration Θ0  

60 µM – 1 mM Depends on the microarray type 
(gel pad versus gel drop) 
[7, 8] 

Possible to explore lower 
probe concentrations in the 
model to account for 
hindered target penetration 
and a population of 
inaccessible probe 
molecules 

Diffusion constant 
in solution Ds  

~5·10
-7 

-10
-6

 
1/cm

2
·s

 
 

[29, 118, 126] No flexibility 

Diffusion constant 
in gel matrix Dg  

<Ds  Leaving it as a rather open 
parameter: upper limit 
would be the value of 
solution diffusion constant 

 

Parameter optimization 

Optimization of thermodynamic parameters was conducted with the two-compartment model, 

utilizing MATLAB’s Optimization toolbox.  Specifically, a nonlinear least-squares based 

Levenberg-Marquardt optimization algorithm was used from MATLAB optimization toolbox 

[140, 141].  The thermodynamic parameters in the two-compartment model were optimized 
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either based on the comparison with thermal dissociation modeling results from a 3D model, or 

based on the experimental dissociation curves.   

 

3.4 Results & Discussion 

Experimental: photostability of the fluorescent labels over several hours of light exposure 

As the fluorescently labeled targets are imaged over several hours during hybridization, the 

photostability of two different fluorescent labels was characterized.  Texas Red (TR) or Oregon 

Green (OgG) labeled target solution was subjected to same conditions as in the hybridization 

experiments, only on a blank microscope array with no binding elements present. Images were 

collected every 5 minutes, exposure time 1500 ms, at 20 
o
C and dark-frame subtracted.  Note the 

very good stability of the TR and OgG fluorophore in the span of several hours of imaging 

(Figure 20 and Figure 21). ROI1-ROI5 refer to SI taken from five separate spots on the array: 

four corners, and the center of the image.  Control refers to a spot on the image outside the 

hybridization chamber.  Relative standard deviations for the corresponding regions of interest (1-

5) and control region in Figure 20 were 1.2%, 1.2%, 1.0%, 2.0%, 3.0%, 0.8% (average values 

684.6, 644.6, 901.5, 796.3, 705.3, 306.6, respectively).   
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Figure 20 – Signal intensity as a function of time in a hybridization chamber for Texas Red labeled 
target solution in five different regions of interest in the chamber and a control spot.  See text for 
detailed description of the ROI locations.   

Relative standard deviations for the corresponding regions of interest (1-5) in Figure 21 were 

1.0%, 1.9%, 1.0%, 0.7%, and 1.9% (average values 38.6, 36.4, 64, 56.7, 52.7, respectively).  

 

Figure 21 – Signal intensity as a function of time in a hybridization chamber for Oregon Green 
labeled target solution in five different regions of interest in the chamber and a control spot.  See 
text for detailed description of the ROI locations.   

In conclusion, both labels exhibited good photostability over the course of the experiments, and 

are suitable to use for monitoring hybridization reaction over several hours with frequent light 

exposure. 
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Experimental: Microarray hybridization and thermal dissociation for model validation 

 

Sample image from hybridization inside the microfluidic platform is shown in Figure 22.  The 

locations of probes that are used later in the Chapter for analysis are labeled.  Figure 23 displays 

the hybridization signal as a function of time on multiple probes from experiments with a single 

hybridizing target.  Note that the signal from probe EUB338 has not reached a plateau yet, 

illustrating the potentially long time to equilibrium in static experiments.  Also, note the striking 

difference between the signal intensities from EUB338 and EUB338MM probes.   

 

 

Figure 22 - Sample image from a hybridization experiment with a gel pad microarray.  Dark 
squares are gel elements, bright squares probes with fluorescently labeled target hybridized.  
Light background is due to fluorescently labeled unbound target.  The hybridization solution 
contains target that is perfect match to EUB338 probe.   



90 

 

  

Figure 23 – Signal intensity with standard deviation from different probes on the gel pad 
microarray during the course of hybridization of a single target, perfect-match to probe EUB338 
(n=3).  Hybridization temperature 20

o
C, target concentration 500 nM, buffer composition 900 mM 

NaCl, 40% formamide, 20 mM Tris-HCl.     

Figure 24 shows normalized melting curves from non-equilibrium thermal dissociation 

experiments following the initial hybridization, and Table 8 lists the Td values (temperature at 

which the signal is at 50% from its maximum value) for the probes considered in Figure 24.  

Note the marked difference in EUB338 and EUB338MM Td values, but curious overlap of Td 

values between probes EUB338 and EUB336. 

  

Figure 24 – Normalized and averaged (n=3) melt curves with standard deviations for different 
probes in the gel pad microarray, after hybridization of single perfect-match target to probe 
EUB338 at 500 nM.  Temperature ramp rate:0.83 

o
C/min.  Buffer composition: 4 mM NaCl, 20 mM 

Tris-HCl, 5 mM EDTA. 
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Table 8 – Average Td (temperature at which normalized signal intensity is at 50%) values and 
standard deviations for melt curves in Figure 24 (n=3).  The target was a perfect match to EUB338 
probe.  Hybridizing target: 5′-ACTCCTACGGGAGGCAGC-TexasRed. 

Probe 
ID 

 
EUB338 

 
EUB338MM 

 
EUB336 

 
EUB336MM 

 
Spir 

 
SpirMM 

 
EUB338_2MM 

Td, 
o
C 45.6 

±0.77 
36.4 
±0.71 

45.5 
±0.73 

41.6 
±1.0 

39.0 
±0.1 

33.8 
±0.5 

34.5 
±1.0 

 

Computational: will the solution-based thermodynamic constants render stabilities similar to 

those seen experimentally? 

We are aiming to describe accurately both the microarray hybridization as well as thermal 

dissociation experiments.  In particular, the agreement between model predictions and 

experimental data would mean the following: 1) alignment of the ratio of hybridized amount on 

perfect-match and mismatch probes; 2) time to equilibrium in the hybridization reaction; 3) Td 

values of thermal dissociation.  In Chapter 2, we developed a solution-based kinetic model of 

thermal dissociation, and supported it with solution-based experimental data, using DNA 

oligonucleotides of different sequences in different buffers.  As a first step in examining the 

applicability of our kinetic model to microarray experimental data, we neglect the effects of mass 

transport and therefore are not concerned with the time course of hybridization reaction, and 

investigate a one-dimensional model of ordinary differential equations of binding with a well 

mixed solution, similar to the one described in Chapter 2, before delving into the model of 

hybridization chamber with spatially discrete binding elements.   

 

PM/MM ratio: experimental versus one-compartment kinetic model  

Figure 25 displays the experimental PM/MM signal ratio from EUB338 and EUB338MM probe 

in the presence of one target, a perfect-match to EUB338 probe.  At the end of 10 hours of 

hybridization, the signal from perfect-match probe on the average exceeds that from a mismatch 
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probe roughly 8 times.  Also note that the PM/MM ratio has not reached a plateau yet, meaning 

the true equilibrium value could even be higher.   

 

Figure 25 – Ratio of signal from probes presenting a perfect match (EUB338) to the hybridizing 
target and one-base mismatch (EUB338MM), corresponding to Figure 23.  Dashed lines represent 
mean +/- 1 SD.   

In order to characterize the specificity of binding reactions in a mathematical model of 

hybridization with a well mixed solution (solution-based model), taking into account the 

thermodynamic nearest-neighbor based parameters for the appropriate salt concentration 

(Appendix, section C) and formamide concentration, we calculated the equilibrium fraction of 

probe occupied as a function of probe concentration, target concentration, and dissociation 

constant, assuming the binding of one target onto one probe.  The results of these simulations are 

displayed on Figure 26.  While the experimental PM/MM ratio is obtained from an experimental 

set-up where one target is simultaneously hybridizing onto two separate probes, Figure 26 

different panels show the fraction of probe bound for separate hybridizations of one target onto 

one probe as a function of dissociation constant.  A hypothetical PM/MM ratio can be inferred 

from the figure assuming an average of three-fold difference in dissociation constants between a 

perfect-match and mismatch duplex.  For example, one can see from the uppermost left panel, 

that regardless of the target concentration, the fraction of probe bound is insensitive to the 
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dissociation constant at values 10
-4

 1/s and lower, and the hypothetical PM/MM ratio for kd < 10
-
 

4
 1/s is 1.  

 

Figure 26 - Fraction of probe bound as a function of dissociation constant for various probe 
concentrations (different subfigures) and target concentrations (different colored lines on each 
subfigure).  The probe and target concentrations correspond to actual concentrations in 
microarray experiments as the probe concentration was “diluted” in the solution-based model by 
multiplying it by the ratio of probe gel element. 
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If we consider the following conditions for the hybridization reaction: T=293 K plus an offset to 

account for 40% formamide, 0.9M NaCl buffer, we obtain the following dissociation constant 

values for EUB338/EUB338 (PM) and EUB338/EUB338MM (MM) duplexes: kdPM=7.7 10
-10 

1/s; kdMM=1.1 10
-7 

1/s.  Consulting Figure 26, one can see that regardless of probe or target 

concentrations, it is not possible to replicate a PM/MM ratio above 1 with these dissociation 

constants.    

 

Td values: experimental versus one-compartment kinetic model  

It is important to realize that Td, the temperature at which the original end-of-hybridization signal 

has decreased by 50%, depends on the concentration of the bound duplex.  This is similar to the 

concentration-dependence of the equilibrium parameter Tm (the derivation of this parameter and 

a figure illustrating its dependence on DNA concentration is given in Appendix, Section A.1).      

Figure 24 displays the dissociation curves for EUB338 PM and MM duplexes in the 

experimental section; we are going to compare it with Figure 27 that displays the computed 

dissociation curves for four different initial probe concentrations, assuming that at the end of the 

hybridization, all probe molecules had formed a duplex with target molecules.  This assumption 

is not critical: we ran simulations where the initial probe concentration was the same as in the 

four cases displayed in Figure 27 but only 50% of the total probe was bound, and the maximum 

difference between the Td values of the two scenarios was only 0.15%.  The Td values of the 

EUB338 PM duplex dissociation curves shown in Figure 27 and of EUB338 MM duplex 

(dissociation curves not shown), and the difference between these Td values are given in Table 9.  

Note that the computed dissociation curves have a higher Td value for all but very low initial 

probe concentrations compared to experimental data in Table 8.  However, the difference 
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between the EUB338PM and EUB338MM Td values is comparable between the experimental 

data and one-compartment model (minimum of 7.0 
o
C at the highest probe concentration 

considered in the simulation versus 9.2 
o
C in the experiments).   

 

Results of repeating the same comparison for the probes on gel drop array are given in Table 10, 

listing the Td values for perfect-match and one-base mismatch duplexes.  The same qualitative 

trends as are displayed as in the corresponding experimental data (Table 9): the Td of probe 62 

with its perfect-match target is higher than that of probe 1537 with its respective perfect-match 

target, and the mismatch probe 1271 has a higher Td than probe 1538.   

 

 

Figure 27 – Computed dissociation curves of EUB338 PM duplex for four different initial probe 
concentrations, assuming all of the probe was involved in a duplex at the beginning of the 
dissociation.  Buffer conditions: 4mM NaCl.  Thermodynamic parameters used in the model are 
given in Appendix, Section C.   
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Table 9 – Computed Td values of EUB338 PM and EUB338 MM duplexes for different probe 
concentrations.  ∆Td values are the differences between EUB338PM and EUB338MM  Td values.  
Buffer conditions: 4 mM NaCl.  Thermodynamic parameters used in the model given in Appendix 
Section C.   

 

Similarly to the kd values calculated above for hybridization, if we consider that at the beginning 

of the melt, T=293 K and the buffer contains 4 mM NaCl and no formamide, we obtain the 

following dissociation constant values for the EUB338 PM and MM duplex: kdPM=2.3 10
-10 

1/s; 

kdMM=1.4 10
-7 

1/s.   

 

The conclusion from the comparison of hybridization simulations with experimental data was 

that the high PM/MM signal ratios could be replicated only if one considers the kd values to be 

significantly higher than computed based on the nearest-neighbor model, while keeping the same 

relative ratio of the dissociation constants of perfect-match and mismatch duplexes.  Similarly, in 

dissociation modeling, the observed lower experimental Td values can be replicated by starting 

the thermal dissociation at a higher starting dissociation constant value in the model, which 

would be equivalent of introducing a temperature offset in the model (e.g., experimental 

temperature T=293 K would correspond to model temperature T=293K+ offset.  That will lower 

the calculated Td values by the magnitude of the offset: for example, offset of 14K will give us 

starting values of kdPM=1 10
-5 

1/s; kdMM=3.5 10
-3 

1/s and lower calculated Td values by 14 
o
C.   

 

Initial probe conc. Td, 
o
C ∆Td, 

o
C 

Hybridizing target: 
5′-ACTCCTACGGGAGGCAGC-TexasRed 

EUB338 PM EUB338 MM 

1 nM 43.0 29.0 14 

1 µM 49.4 35.5 13.9 

0.1mM 56.4 42.7 13.7 

1mM 60.0 46.5 13.5 
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Table 10 - Computed Td values of duplexes formed on probes 1537, 1271, 1538, 62 and 399 at 
different probe concentrations for two different hybridizing targets.  Buffer conditions: 4 mM NaCl.  
Thermodynamic parameters used in the model given in Appendix Section C.   

Initial probe 
conc. 

Td, 
o
C 

Set a 
Hybridizing target: 
5’-TTGTACACACCGCCCGTC-
OgG 

Set b 
Hybridizing target: 
5’-AGTCAAGAACGTGTGTGAG-OgG 

62 399 1537 1271 1538 

1 nM 42.4 29.7 37.5 25.6 24.7 

1 µM 48.3 36.4 43.0 32.1 30.4 

0.1mM 55.0 43.8 49.3 39.4 37.0 

1mM 58.5 47.6 52.5 43.2 40.4 

 

Experimental: effect of initial pre-hybridization target concentration on thermal dissociation 

While the amount of target hybridized on a probe is generally proportional to the initial target 

concentration below saturation of probe, as well as a function of affinity, the effect of initial 

target concentration on thermal dissociation curves has not been studied to the best of our 

knowledge.  Generally, the Td value is considered to be an indicator of duplex stability – lower 

Td values corresponding to less stable duplexes, the effect of initial target concentration on the Td 

values has not systematically been studied in a simple system.  Table 11 displays Td values from 

non-equilibrium thermal dissociation experiments with gel drop microarrays, varying single 

target concentration over two orders of magnitude.  Note the decrease in Td as a function of 

increasing target concentration for all probes except 1538 – the Td at higher target concentration 

(mM) for a perfect-match is almost comparable to the Td value of mismatch at a lower 

temperature.  The decrease in Td is especially pronounced for perfect-match duplexes formed on 

probes 62 and 1537, and the difference between perfect-match and corresponding one-base 

mismatch decreases with increasing target concentration.  For example, ∆Td for probes 62 and 

399 decreases from 8.1 
o
C to 6.8 

o
C (by 1.3 

o
C), while the ∆Td for probes 1537 and 1271 

decreases from 7.4 
o
C to 5.6 

o
C (1.8 

o
C).  The possible reasons behind these trends will be 

discussed below.   
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Table 11 – Average Td (temperature at which normalized signal intensity is at 50%) values and 
standard deviations (n=4) from gel drop arrays, as a function of probe sequence and added target 
concentrations.  Set a corresponds to experiments with an added target that is perfect match to 
probe 62 (399 is a one-base mismatch to 62), and Set b corresponds to experiments with an added 
target that is perfect match to probe 1537 (probes 1271 and 1538 are different one-base mismatch 
probes).   

Target  
concentration 

Probe ID 

Set a 
Hybridizing target: 
5’-
TTGTACACACCGCCCGTC-
OgG 

Set b 
Hybridizing target: 
5’-AGTCAAGAACGTGTGTGAG-OgG 

62 
 

399 1537 1271 1538 

10 nM 54.5 
±1.0 

46.4 
±10.6 

50.2 
±0.5 

42.8 
±0.4 

37.62 
±4.5 

100 nM 51.8 
±0.8 

44.2 
±0.4 

46.3 
±0.7 

40.0 
±0.2 

38.4 
±0.2 

200 nM 48.7 
±0.5 

41.3 
±0.2 

43.6 
±0.2 

37.3 
±0.1 

36.1 
±0.2 

1 µM 49.5 
±1.4 

42.7 
±0.3 

44.0 
±0.7 

38.4 
±0.1 

37.3 
±0.1 

 

Three-dimensional finite element model: effect of diffusion coefficient, free target inside the gel 

element, and thermal dissociation initial conditions 

Before continuing with the discussion of experimental results, we will introduce the three-

dimensional finite element model of microarray hybridization and dissociation.  Figure 28 shows 

the geometry of the COMSOL three-dimensional model, containing two gel drops, 

corresponding to perfect-match and mismatch probe.   

 

The only open parameter in the model is intra-gel diffusion coefficient (see Table 7).  While the 

intra-gel diffusion coefficient will not affect the expected equilibrium values of bound duplex 

concentration, it can alter the time course of the hybridization.  We conducted a sensitivity 

analysis to determine the effect of diffusion coefficient on hybridization time course and thermal 

dissociation curve.  The second question of interest was the contribution that the free targets 

inside the three-dimensional binding element will make to the total amount of targets (bound and 
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unbound) in the binding element, specifically during non-equilibrium thermal dissociation.  In a 

hybridization experiment, free fluorescently labeled targets will diffuse into the gel element and, 

depending on the presence of complementary base pairs, form duplexes.  The experimentally 

observed signal is the light emitted by fluorophores attached to targets in a specific area – the 

binding element, regardless of whether the target was bound to a probe molecule or not.  

Similarly, in a thermal dissociation experiment, the observed signal is again the light emitted by 

fluorophores attached to targets in the binding element, regardless of whether they are still bound 

to a probe or already freely diffusing inside the gel.  The third question of interest was what 

effect the fraction of probe bound at the beginning of a thermal dissociation has on the shape of 

the dissociation curve.   

 

Figure 28 – Geometry of the COMSOL three-dimensional model: microarray chamber (bulk 
solution) and two three-dimensional binding elements. 

To explore the effect of intra-diffusion coefficient on the hybridization simulations, three 

different cases were considered: 1) intra-gel diffusion coefficient equal to that in the solution; 2) 

intra-gel diffusion coefficient 10 times smaller than the solution coefficient; 3) intra-gel diffusion 
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coefficient 100 times smaller than the solution coefficient.  Two different initial probe 

concentrations (6∙10
-2 

mol/m
3
 and 6∙10

-4 
mol/m

3
, the first concentration being in the range of 

what we expect our experimental arrays to contain) and two initial target concentrations (10
-4 

mol/m
3 

and 10
-8 

mol/m
3
) were considered.  Figure 29 displays the effect (or lack of thereof) of 

altering the diffusion coefficient on the time course of hybridization for the probe concentration 

we expect to have in our binding elements. 

 

Figure 29 – Simulated hybridization curves for different intra-gel diffusion coefficient values.  
Solution-based diffusion coefficient was 10

-10
 m

2
/s.  Initial probe concentration 6∙10

-2
 mol/m

3
, 

dissociation constant kd=10
-7

 1/s, association constant ka=10
6
 1/(M∙s).  Initial target concentration 

c0=10
-6

 mol/m
3
.  

 

For comparison, Figure 30 displays the dramatic effect of reducing the solution diffusion 

coefficient.  We also computed the amount of free target in the binding element to estimate its 

effect on the total amount of target in the binding element, but found the ratio of free target to 

bound target to be less than 0.5 %.  We therefore conclude that the three-dimensional model of 

the hybridization system is rather insensitive to the value of intra-gel diffusion coefficient, given 

our expected probe density, and that there is no significant accumulation of free target inside the 

gel element.   
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Figure 30 – Simulated hybridization curves for two different values of the diffusion coefficient in 
the solution.  Intra-gel diffusion coefficient was 10

-11
 m

2
/s.  Initial probe concentration 6∙10

-2
 

mol/m
3
, dissociation constant kd=10

-7 
1/s, association constant ka=10

6
 1/(M∙s).   

Conducting a similar analysis for the model of thermal dissociation, Figure 31 displays computed 

thermal dissociation curves, showing the effect of reducing the value of the intra-gel diffusion 

coefficient below the solution value for two different ways of computing the ‘total amount’ of 

targets: either just the amount of targets that are part of a duplex, or the sum of targets in the 

duplex and free targets in the binding element.  It is only at an intra-gel diffusion coefficient that 

is a hundred times lower than the solution coefficient that one begins to see a small contribution 

by the free targets in the gel element to the total amount of targets (difference between solid and 

dashed lines in the bottom panel of Figure 31).  However, it is only appreciable in a scenario 

where targets cannot reassociate after dissociation (compare blue and black lines in bottom panel 

of Figure 31).  Figure 31 also demonstrates the profound effect of target rebinding on the shape 

of the dissociation curves: the blue lines on all three panels of Figure 31 are shifted to the left 

compared to black lines, rendering a reduction in apparent Td values by several degrees.  We will 

return to discussing this observation later in this Chapter.    
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Figure 31 – Computed effect of free target on the total amount of target in the binding element 
(total amount) during thermal dissociation, for three different values of intra-gel diffusion 
coefficient Dg as a fraction of solution diffusion coefficient Ds=10

-10 
m

2
/s.  ‘No rebinding’ refers to 

target dissociation as an irreversible process, while ‘With rebinding’ refers to target having the 
option of rebinding after initial dissociation.  Solid lines refer to the total target amount only being 
composed of targets that are in the duplex, while dashed lines refer to the total target amount 
being composed of the sum of free targets in the binding element and targets in the duplexes.  
Model parameters: initial fraction of probe bound = 100%, initial probe concentration 6∙10

-2 
mol/m

3
 

, ∆H=-148 kcal/mol,  ∆S=-403.4 cal/(mol∙K), Ds=10
-10 

mol/m
2
, association constant ka=10

6
 1/(M∙s).   

Dg=10
-11 

mol/m
2
.  Assumed temperature ramp rate 0.83 

o
C/min. 

Dg=Ds 

Dg=0.01Ds 

Dg=0.1Ds 
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Lastly, we explored the effect that the fraction of probe bound at the beginning of thermal 

dissociation will have on the simulated thermal dissociation curves.  Specifically, we considered 

two extreme cases: 100% of total probe concentration bound in a duplex, and 5% of total probe 

concentration bound in a duplex at the beginning of the dissociation.  Figure 32 displays the shift 

in the dissociation curve to the left that accompanies the increase in the fraction of probe 

involved in a duplex at the beginning of the melt.  We will compare this simulation result with 

experimental observations in the following section.  Also, note that similarly to modeling 

hybridization, accounting for free target in the gel element does not have an appreciable effect on 

the total amount of target in the gel element.   

 

Figure 32 – Normalized simulated thermal dissociation curves, varying in the fraction of probe that 
is initially bound in a duplex (100% vs 5%).  Also, the sum of bound duplex and free target in the 
gel element was included for comparison.  Initial conditions: initial probe concentration 6∙10

-2
 

mol/m
3
, ∆H=-148 kcal/mol,  ∆S=-403.4 cal/(mol∙K), Ds=10

-10 
mol/m

2
, Dg=10

-11 
mol/m

2
.  Association 

constant ka=10
6
 1/(M∙s).  Assumed temperature ramp rate 0.83 

o
C/min. 
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Alternative explanation for the concentration dependence of Td: experiments versus simulations 

As shown earlier in this Chapter (Table 11), the Td value of thermal dissociation curves depends 

on the initial concentration of target at the beginning of hybridization – specifically, the value of 

Td was shown to decrease with increasing target concentration at the beginning of the 

hybridization.  Our first hypothesis was that this phenomenon is due to electrostatic effects, as 

the initial experimental protocol included a buffer switch at the end of the hybridization: while 

the hybridization itself was conducted at a very high salt concentration (900 mM NaCl), the wash 

buffer and melt buffer contained only 4 mM NaCl.  To probe this hypothesis, we conducted 

thermal dissociation experiments in three different buffers, using the newest generation of gel 

drop arrays: 1) hybridization and melt with the original protocol that prescribes a buffer swich, to 

observe the phenomenon also in the new gel arrays; 2) hybridization and melt both in the original 

hybridization buffer (40% formamide, 900 mM NaCl, 20 mM Tris-HCl) without switching 

buffers but still washing away unbound targets at the end of the hybridization; 2) hybridization in 

the old buffer and melt in a high salt melt buffer (900 mM NaCl, 5 mM EDTA, and 20 mM Tris-

HCl); 4) both hybridization and melt in the high salt buffer (900 mM NaCl, 5 mM EDTA, and 20 

mM Tris-HCl).   

Repeating the experiments with the old protocol of buffer switch rendered qualitatively similar 

results to those obtained earlier.  Note that one should not directly compare the absolute Td 

values of these experiments with the old Td values from the previous generation gel drop arrays 

due to potential changes in the platforms.  However, the trend of decreasing Td value with 

increasing initial target concentration was present also in the other three protocols that prescribed 

high salt concentration for both hybridization and dissociation, with or without a buffer switch, 

although absolute Td values varied.  Note that even in the ‘no buffer switch’ experiments a wash 
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with the hybridization/melt buffer was carried out to wash away unbound targets at the end of the 

hybridization.  Table 13 reports the Td values for experiments conducted with high salt 

hybridization and melt buffers (the same buffer used for both hybridization and melt).   

Table 12 – Average Td values, in 
o
C (temperature at which the signal has decreased by 50%), and 

standard deviations for three different initial target concentrations.  The hybridizing target was 
perfect-match to probe 1537 and one-base mismatch to probes 1271 and 1538.  Hybridization 
buffer contained 40% formamide, 900 mM NaCl, 20 mM Tris-HCl, and melt buffer contained 900 
mM NaCl, 5 mM EDTA, and 20 mM Tris-HCl.  Note the decrease in Td values as the initial target 
concentration increases, similarly to earlier observations.  

 
Probe ID 

Initial target concentration 

 10 nM 100 nM 1 µM 

1537  40.2 ± 0.3 37.8 ± 0.3 35.9 ± 0.2 

1271 35.7 ± 0.1 34.7 ± 0.2 32.7 ± 0.2 

1538 33.8 ± 0.2 33.0 ± 0.2 31.1 ± 0.2 

 

Table 13 - Average Td values, in 
o
C (temperature at which the signal has decreased by 50%), and 

standard deviations for two different initial target concentrations.  The hybridizing target was 
perfect-match to probe 1537 and one-base mismatch to probes 1271 and 1538.  Hybridization and 
melt buffer contained 900 mM NaCl, 5 mM EDTA, and 20 mM Tris-HCl.  Note the decrease in Td 
values as the initial target concentration increases, similarly to Table 12. 

 
Probe ID 

Initial target concentration 

10 nM 100 nM 

1537 54.0 ± 0.5 49.8 ± 0.5 

1271 49.7 ± 0.6 45.3 ± 0.5 

1538 45.9 ± 1.2 41.3 ± 0.4 

 

This data leads me to believe that while electrostatic effects could still be playing a role in the 

experiments that include a switch from high salt hybridization buffer to low salt melt, there is an 

additional reason for the decrease in Td value with increasing initial target concentration, given 

that the decrease in Td values is also seen with very high salt concentration in the melt buffer.  

Going back to the simulation data presented above, exploring the effect of the initial fraction of 

probe bound in a duplex on the shape of the dissociation curves, one can see a qualitative 

similarity between experimentally observed dissociation curves for two different dissociation 

buffers (see Figure 33).  We can also estimate the difference in the fraction of probe bound by 
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normalizing the intensity of the probe at the beginning of the melt to the Texas Red beacon on 

the array, assuming identical behavior of beacons on different arrays: we find that the initial 

signal intensity is five times higher between the initial 1 µM and 10 nM target concentrations in 

case of the experiments with high initial salt concentration during hybridization and low salt 

concentration during a melt; and 13 times higher in case of the high salt hybridization and melt 

experiments.  We propose that at least part of the observed decrease in Td value as a function of 

initial target concentration and indirectly initial bound duplex concentration is due to the vacant 

probe sites slowing down the departure of dissociated target molecules during a non-equilibrium 

melt.   

Hybridization buffer contained 40% formamide, 900 

mM NaCl, 20 mM Tris-HCl, and melt buffer 

contained 900 mM NaCl, 5 mM EDTA, and 20 mM 

Tris-HCl 

Hybridization and melt buffer: 900 mM NaCl, 5 mM 

EDTA, and 20 mM Tris-HCl 

  

Figure 33 – Normalized thermal dissociation curves from probe 1537, using two different buffer 
compositions, initial target concentration either 1 µm or 10 nM.  Hybridizing target was a perfect 
complement to probe 1537.  Note the shift to the left in the dissociation curves with higher initial 
target concentration.   
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Simulating thermal dissociation: compartmental model versus 3D COMSOL model 

The remainder of this Chapter will discuss optimization of thermodynamic parameters in the 

model to achieve a quantitative fit between the model and the experiment, specifically for 

thermal dissociations.  To determine whether for modeling non-equilibrium thermal dissociation 

a simple compartmental model could be used in lieu of the significantly more complicated finite 

element three-dimensional model, we compared simulated thermal dissociation curves between a 

compartmental model (1- and 2-compartments) and 3D COMSOL finite element model of three-

dimensional gel microarray.   

 

In the one-compartment model, the target has a very slim chance of rehybridizing after it has 

unbound from the probe: this is due to accounting for different volumes in the equation 

corresponding for free target.  Therefore, the results from the one-compartment model were 

compared with those from a 3D COMSOL model that did not include target rebinding after 

dissociation – i.e. the association constant ka was equal to 0 in the 3D model.  All other input 

parameters were the same between the one-compartment model and the 3D model, no parameters 

were optimized.  Temperature-dependence was introduced through the dissociation constant kd 

as explained above.  Excellent agreement between the two models is displayed in Figure 34.  The 

same was true for a significantly lower probe concentration (6∙10
-6

 mol/m
3
), and for the initial 

condition of 5% of total probe bound.     
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Figure 34 - Normalized simulated thermal dissociation curves using one-compartment model and 
3D COMSOL model with no target rebinding after dissociation.  Temperature ramp rate in the 
model was 0.83 

o
C/min.  Note how the two curves overlap completely.  Initial conditions for both 

models: initial probe concentration 60∙10
-3 

mol/m
3
, 100 % probe bound at time t=0, ∆H=-148 

kcal/mol,  ∆S=-403.4 cal/(mol∙K), Ds=10
-10 

mol/m
2
, Dg=10

-11 
mol/m

2
.  For compartmental model, 

ka=10
6
 1/(M∙s), for 3D model ka=0.  Assumed temperature ramp rate: 0.83 

o
C/min. 

For solving the two-compartmental model, the mass transfer coefficient km was considered an 

open parameter – one whose value can be optimized.  The question of interest was whether the 

mass transfer coefficient is highly dependent on the initial fraction of probe bound and/or kinetic 

constants when simulating thermal dissociation – if yes, then the mass-transfer coefficient would 

need to be re-optimized for every case of modeling thermal dissociation.  Figure 35 depicts the 

results of simulations where the mass transfer coefficient km was first optimized to fit the 3D 

simulations of thermal dissociation from a 100 % saturated probe with perfect-match kinetics, 

and the same km value was used to then simulate 1) dissociation with mismatch kinetics; 2) 

dissociation starting at 5 % initial saturation level.   Optimization of km for perfect-match kinetics 

and 100 % of probe initial bound rendered km  value of 0.0671 1/s (solid green line in the left 

panel of Figure 35).  Simulating the dissociation from a probe that was occupied at a lower level 

by target at time 0 (5 % bound) rendered a shift in dissociation curves, but using the km value of 

0.0671 1/s still resulted in good agreement between the compartmental and three-dimensional 
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model (dashed lines in the left panel of Figure 35).  The good agreement was present also when 

repeating the same simulations or mismatch kinetics, while still assuming km=0.0671 1/s (right 

panel of Figure 35) 

 

In conclusion, the results show close agreement between compartmental model and 3D 

COMSOL model for all four cases, although the mass transfer coefficient was only optimized for 

one of the four scenarios.  This suggests that the two-compartment model is a good 

approximation for the 3D COMSOL model for thermal dissociation modeling in the three-

dimensional binding elements, and the mass transfer coefficient does not need to optimized for 

every new set of initial conditions.  Therefore, the two-compartment model was used later in this 

work for optimizing thermodynamic parameters in lieu of the finite element model.   

  

Figure 35 - Normalized thermal dissociation curves, comparing the results from a 2-compartment 
model and 3D COMSOL model.  Left panel – assuming perfect-match kinetics, comparison of 
simulations with 100% and 5% initially bound probe.  Mass transfer km was optimized for perfect-
match kinetics only, assuming that 100% of probe was initially bound in a duplex.  Right panel – 
assuming mismatch kinetics, comparison of simulations with 100% and 5% initially bound probe 
with no optimization of km.  Note the close agreement between compartmental model and 3D 
COMSOL model for all four cases, although the mass transfer coefficient was only optimized for 
one of the four scenarios.  Initial conditions for both models: initial probe concentration 60∙10

-3 

mol/m
3
, ∆H=-148 kcal/mol,  ∆S=-403.4 cal/(mol∙K), Ds=10

-10 
mol/m

2
, Dg=10

-11 
mol/m

2
.  Association 

constant ka=10
6
 1/(M∙s).  Assumed temperature ramp rate 0.83 

o
C/min. 
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Optimizing thermodynamic parameters: is there a link between the solution and microarray 

parameters? 

As we have shown in Chapter 2 (see e.g. Figure 26), nearest-neighbor based thermodynamic 

parameters describe the solution-based melt curves with good accuracy for 18-19 basepairs long 

perfect-match duplexes and one-base mismatches.  However, as we saw earlier in this Chapter, 

using the same thermodynamic parameters to describe binding and dissociation in gel-based 

microarrays leads to overestimation of duplex stability in the predictions.  In this section, we are 

testing the hypothesis that the thermodynamic parameters of DNA binding in microarrays, ∆H
o

A 

and ∆S
o

A, can be represented by solution-based parameters in the following way: 

   
      

    

   
      

     

where ∆H
o
S and ∆S

o
S are the thermodynamic parameters in the solution, and a, b, c, and d are 

scaling constants that are obtained via fitting the data to the equations above.  Table 14 lists the 

solution-based thermodynamic parameters for four perfect-match probes used in the experiment.  

Specifically, we are going to assume that these are global constants, applicable to every probe on 

one platform.  Built into the hypothesis are two assumptions: 1) the dependence of ∆S
o
S and ∆S

o
A 

on salt concentration is the same; 2) electrostatic effects do not play a role. 

Table 14 – Nearest-neighbor based calculated thermodynamic parameters for probes 1537, 62, 65 
and 323, assuming the hybridization of a perfect-match target.  Buffer contains 50 mM NaCl.   

Thermodynamic 
parameter 

Probe 1537 Probe 62 Probe 65 Probe 323 

∆H
o
, kcal/mol -148 -143.4 -139.9 -146.1 

∆S
o
, cal/(K·mol) -422.5 -401.7 -390.2 -418.8 

 

As we have shown above, the fraction of probe bound at the beginning of the thermal 

dissociation can affect the shape of the dissociation curve.  To minimize this difference between 
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the probes when calculating global scaling constants, we used a very high target concentration to 

saturate all probe sites in the experiments (10 µM) and long hybridization time before starting 

the dissociation, 24h.  We also used a salt concentration similar to the one used in experiments 

for Chapter 2 for best comparison.   

 

As a first pass, we fitted the thermodynamic parameters to the thermal dissociation model 

independently for all four perfect-match probes.  The experimental curves and model best fits are 

given in Figure 36.  Figure 37 plots the values of optimized thermodynamic parameters against 

the nearest-neighbor parameters.  Note that for either thermodynamic parameter, we obtain a 

reasonably good linear fit, meaning one can use the solution-based parameters to predict 

microarray thermodynamic parameters for perfect-match duplexes, using the linear relationship 

obtained from select probes.   

 

Figure 36 – Normalized thermal dissociation curves from four different probes, corresponding to 
four different perfect-match duplexes.  Solid lines refer to model simulations, symbols to mean 
experimental values.  Experimental hybridization and melt buffer consisted of 50 mM NaCl, 20 mM 
Tris-HCl.  Initial target concentration was 10 µm.  Note the close correspondence between the 
model simulations and experimental curves. 
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Figure 37 – Optimized and nearest-neighbor based solution thermodynamic parameters - ∆H
o
 in 

the left, and ∆S
o
 in the right.  Linear regression for ∆H

o 
yielded y=2.35x+282.39, R

2
=0.72; for ∆S

o 

y=1.75x+572.90, R
2
=0.79. 

Using the same linear relationships between nearest-neighbor and microarray thermodynamic 

parameters for mismatch probes gives so large dissociation constant values that the duplex is 

predicted to dissociate in an instant, rendering a duplex concentration of 0 for any time point 

after time t=0.  The corresponding nearest-neighbor based thermodynamic parameters for the 

mismatch duplexes are given in Table 15.  This leads us to conclude that in the case of the probes 

utilized in this work, the linear relationship that holds between the nearest-neighbor parameters 

and microarray thermodynamic parameters for perfect-match duplexes does not predict the 

parameters for mismatch duplexes: the latter appear to be more stable in the microarray platform 

than predicted.   

 

Table 15 - Nearest-neighbor based calculated thermodynamic parameters for probes 1538, 399, 
407 and 1282, assuming the hybridization of a target complementary to probes 1537, 62, 65 and 
323, respectively.  Buffer contains 50 mM NaCl.   

Thermodynamic 
parameter 

Probe 1538 
(MM to 1537) 

Probe 399 
(MM to 62) 

Probe 407 
(MM to 65) 

Probe 1282 
(MM to 323) 

∆H
o
, kcal/mol -130.5 -120.4 -128.9 -124.9 

∆S
o
, cal/(K·mol) -384.5 -344.6 -365.4 -368.9 
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A note about reusability and reproducibility of gel-based microarrays 

While the scope of a study of reusability and reproducibility of the three-dimensional gel-based 

microarrays is not in the scope of this work, a short discussion of the issues as they relate to the 

development of applications for the microarray platform is presented below.  Note that these 

observations should not be generalized to all gel-based platforms, but simply serve to answer 

questions about this specific commercial platform as the manufacturer in our experience has 

been rather opaque about performance expectations.  Specifically, we looked at the 

reproducibility of two metrics on the newest generation of gel-based microarrays: 1) absolute Td 

values; 2) the difference in Td values between a probe that is a perfect match to the target and a 

probe that is a one-base mismatch.  These metrics were compared in experiments with new 

arrays stored at different amounts of time and reused arrays.  Overall, the absolute values of Td 

between fresh and used arrays could differ by as much as 5 
o
C; the absolute Td values could also 

differ by 2-3 degrees between new arrays that were stored at different amounts of time unused 

(although in the same conditions – at 4 
o
C in the dark).  The used arrays were stored in water at 4 

o
C in the dark.  This cautions to develop applications focusing just on the absolute Td values as 

indicators of duplex stability – the differences between the absolute values were often the same 

magnitude as those seen between perfect-match and mismatch probes.  However, comparing the 

differences between Td values, collected from perfect-match and mismatch probes, rendered very 

consistent results irrespective of the length of time the arrays had been stored or whether they 

were used as new, after one use or two uses.  Figure 38 shows the ∆Td values between a perfect-

match probe and three different one-base mismatch probes, combining those measures from two 

new slides, used in experiments four months apart, and 2 used slides.   
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Figure 38 – Differences in Td values between a perfect-match probe 1537, and three different 
mismatch probes 322, 1538 and 1271 following a single-component hybridization of a target 
complementary to probe 1537.  Hybridization and melt buffer contained 900 mM NaCl, 5 mM EDTA, 
and 20 mM Tris-HCl.  Initial target concentration 100 nM.  Thermal dissociation ramp rate was 0.83 
o
C/min. 

   

3.5 Conclusions 

In this Chapter, we have collected experimental hybridization and melt data from gel-based 

three-dimensional microarray platforms for a number of different probe sequences and at 

different target concentration for single target analytes.  We also analyzed the predicted perfect-

match/mismatch signal ratios and Td values using a one-compartment mathematical model, 

employing thermodynamic parameters calculated from solution-based nearest-neighbor 

parameters.  Building on the solution-based model, we developed a three-dimensional finite 

element model in COMSOL for modeling the diffusion of analyte in the bulk solution, within the 

gel elements, and binding of analyte onto immobilized probe molecules.  We used the model to 

compute the effect of intra-gel diffusion coefficient on the simulations, the contribution by the 

free target inside the gel element to the overall amount of target in the binding elements, and the 

effect of the fraction of probe bound in a duplex at the beginning of the hybridization on the 
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thermal dissociation curves.  For optimizing thermodynamic parameters for thermal dissociation 

modeling, we developed and validated a two-compartment mathematical model.  We were able 

to obtain good agreement between model simulations of thermal dissociations and experimental 

data, and saw a linear relationship between the nearest-neighbor based thermodynamic 

parameters and those optimized for the microarray model.   

The findings can be summarized as follows: 

1) The melting temperature Td is lower in the microarray than predicted by the model or 

observed in the solution;  

2) The perfect-match/mismatch signal intensity ratio corresponds to dissociation constants 

significantly larger than those predicted by the model; 

3) The differences between Td values from different probes are predicted accurately by the 

model using solution-based parameters; 

4) Td values decrease as the target concentration increases, which is more pronounced the 

higher the original signal intensity – even in experiments with high salt concentration; 

5) Higher fraction of probe bound at the beginning of the thermal dissociation lowers the Td 

value in the model, similarly to experimental results; 

6) In the three-dimensional finite element model, lowering intra-gel diffusion coefficient by 

an order of magnitude will not substantially affect the hybridization nor thermal 

dissociation simulations; 

7) In the three-dimensional finite element model, free target in the gel element contributes 

very little to the overall amount of target in the probe; 

8) A two-compartment model can substitute for three-dimensional finite element model for 

modeling non-equilibrium thermal dissociation; 
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9) Thermodynamic parameters for perfect-match duplexes can be predicted using a linear 

relationship between microarray parameters and nearest-neighbor based parameters. 
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Chapter 4: Competitive binding of targets in the microarray  

4.1 Objectives 
 

The purpose of this Chapter is to extend the previous work in Chapters 2-3 in two specific ways.  

First, to introduce targets that are competing for binding sites on the same probe into the 

experimental system and into the model, mimicking hybridization and melt in conditions similar 

to real-world applications of microarrays, involving a potentially complex system of targets of 

similar sequences.  We will explore the utility of thermal dissociation curves in a three-

dimensional microarray after a multicomponent binding for distinguishing between related 

targets.  Second, we introduce convective transport into the experimental system to mitigate 

mass transport limited hybridization in static systems.   

 

The objectives of this Chapter are the following: 

a) collect experimental melt data of multiple target melt (two targets of closely related 

sequences, 1537 and 1271 in gel drop array), varying the relative concentration of targets;  

b) collect hybridization data of multiple targets with two different labels to track each 

individually;  

c) extend the microarray hybridization model from previous Chapter to include a second 

target and validate the model; 

d) characterize the performance of the microfluidic recirculation platform and collect 

hybridization and melt data with the recirculating microfluidic device;  

e) characterize the utility of thermal dissociation after a multicomponent hybridization to 

resolve between related sequences. 
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4.2 Theory and Design Considerations 
 

In the previous Chapter, a three-dimensional model of a gel-based microarray platform was 

developed, and experimental data on single target hybridization in static conditions was collected 

to support the model.  While this is an important step in learning about the physico-chemical 

processes in the model, the ultimate objective of this work is to inform the design of DNA 

microarray-based biosensors.  The applications for these kinds of biosensors are likely to include 

targets of mixed composition and also put a premium on reducing the time it takes to complete a 

measurement with desired sensitivity and specificity.  In this Chapter, we extend the single 

analyte model to a multi-analyte model, investigate multicomponent melts in a controlled 

system, and incorporate recirculation of target sample.  An updated schematic from Chapter 3 of 

the processes considered is shown in Figure 39. 

 

Figure 39 - A simplified schematic of the geometries and processes included in the microarray 
model.  Three-dimensional gel-based binding elements are embedded in a microarray chamber.  
Target oligonucleotides are transported via convection and diffusion into the gel elements where 
they can bind to form complementary duplexes with probe oligonucleotides, immobilized in the 
gel matrix.  Schematic not drawn to scale.   
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Up until only a few years ago, studies aiming to model the transport and binding of DNA 

oligonucleotides onto DNA microarrays only considered the hybridization of one target at a time.  

While this certainly can give much insight into the hybridization process, and the hybridization 

of multiple oligonucleotides with dissimilar sequences could be viewed as independent events, 

the simultaneous hybridization of multiple related targets, however, cannot be approximated as a 

superposition of single-target hybridizations.  This has been shown in several recent publications 

for planar microarrays, through both computational and experimental work [29, 113, 122, 123, 

125, 142].  Melting in a multi-component system on microarrays has not emerged as a topic of 

thorough investigation until recently.  Multiplex DNA melting in planar arrays under equilibrium 

conditions was recently explored by Williams et al. [143], concluding that equilibrium 

dissociation curves do not help in resolving heterogeneous duplexes in the probe limited regime.  

While non-equilibrium thermal dissociation as a potential tool to distinguish between related 

sequences even in complex systems has been suggested in the literature [51, 52, 58], we are not 

aware of studies examining the non-equilibrium melt with a controlled set of closely related 

targets in a gel-based microarray, attempting to describe the system with a computational 

physics-based model, as opposed to statistical methods.   

 

In this Chapter, we are characterizing the effect of competitive binding on hybridization and melt 

signals for gel-based microarrays.  For collecting experimental data, we are again using artificial 

samples of synthetic oligonucleotides with known sequences and concentrations, as the collected 

data will be compared with the results from the extended mathematical model, describing the 

simultaneous binding of multiple analytes.  Slow DNA diffusion is one of the reasons for why it 

can take a long time to reach equilibrium in the microarray hybridization, and a number of 
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approaches to overcome mass transport limitations have been proposed in the literature (see 

Background section for a summary).  For sample recirculation, we are using a microfluidic 

recirculation platform developed in collaboration with Micronics, Inc. (Redmond, WA).  The 

main emphasis of this Chapter is to consider the implications of multicomponent binding and 

subsequent thermal dissociation on resolving between closely related DNA sequences.   

 

4.3 Materials and Methods 

Experimental platform 

The microfluidic microarray hybridization chip was fabricated in partnership with Micronics 

(Redmond, WA), and is displayed in Figure 40.  The card features a pneumatically-activated 

pump for solution recirculation within the card itself under the control of a microfluidic 

controller (Micronics’ MicroFlow System), which is, in turn, controlled by a computer (panel B 

in Figure 41).  Each of the valves on the card can be controlled individually.  The 

hybridization/wash solution is loaded into the card manually with a pipette, isolating the pump 

line and hybridization chamber via closing off the respective valves for separate loading.  The 

gel element array is situated in an imaging chamber for continuous monitoring of fluorescence 

intensity of the gel pads during hybridization and melting (Figure 40).  The total volume of the 

recirculating loop within the card is around 40 µL.  During recirculation, the valves connecting 

the inlet and outlet channels with the main fluidic loop are closed off, allowing for recirculation 

of the target solution upon executing the pump line.  The microfluidic card is placed into a 

manifold, interfaced with the MicroFlow System (panel B in Figure 41), which in turn is placed 

onto a thermal table that is connected to a thermoelectric temperature controller and a water bath.  

Imaging is permitted with the custom-built fluorescence microscope (Argonne National 
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Laboratory), allowing on-line imaging without removing the card from the MicroFlow System’s 

manifold.   

 

Materials 

Experiments were performed with synthetic custom-ordered labeled oligonucleotides (Eurofins 

MWG Operon, Huntsville, AL) that had perfect matches and mismatches among the probes 

displayed on the microarrays.  The sequences of probes used on the two different microarrays are 

the same as in Chapter 3, but are reproduced here for reference (see Table 16).  The targets used 

in gel drop arrays presented a perfect-match to one of the probes EUB338, probe 1537, probe 

1271, or probe 62.  In gel pad experiments, the target was either an 18-base perfect match to 

probe EUB338, or a 38-base sequence that in its middle contained an 18-base sequence perfectly 

complementary to probe EUB338 (5’-

AACCACACCAACTCCTACGGGAGGCAGCACCACACCAA-3’).  Table 17 shows the 

relative concentrations of perfect-match and mismatch targets used in competitive binding 

experiments on gel drops.  The targets were labeled with either Texas Red or OregonGreen488 

fluorophore at the 3′ terminus.  Microarray hybridization buffer contained 900 mM NaCl, 20 mM 

Tris-HCl, and 40% formamide [52], while the melt buffer contained 4 mM NaCl, 20 mM Tris-

HCl, and 5 mM EDTA.  The two gel microarray platforms used in this Chapter, gel pad and gel 

drop array (gel binding elements printed on a microscope slide), were obtained from Akonni 

Biosystems (Frederick, Maryland). 
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  Table 16 - DNA oligonucleotide probe sequences used in Chapter 4.  Mismatch bases are 
highlighted in red and underlined. 

Sequence code 5’→3’ sequence 

Gel pad array 

EUB338                   GCTGCCTCCCGTAGGAGT 

EUB338MM                   GCTGCCTCCCCTAGGAGT 

  

Gel drop array 

1537 CTCACACACGTTCTTGACT 

1271 CTCACACACGTTCTTCACT 

1538 CTCACACACCTTCTTGACT 

  

62 GACGGGCGGTGTGTACAA 

399 GACGGGCGGTGTCTACAA 

 

Table 17- Concentrations of targets to probes 62, 1537 and 1271 used in competitive binding 
experiments (A, B, C, D).  Each row in the table represents a separate experiment.   

Exp. ID Target to probe 62 Target to probe 1537 Target to probe 1271 

A 20 nM 10 nM 10 nM 

B 210 nM 10 nM 200 nM 

C 400 nM 200 nM 200 nM 

D 210 nM 200 nM 10 nM 

 

Experimental protocols 

Experiments with gel drop arrays were conducted covering the hybridization or melt solution 

with a hybridization chamber as discussed in the Methods section of Chapter 3 (panel A in 

Figure 41), while gel pad array experiments were conducted using the microfluidic platform with 

and without sample recirculation.  In both platforms, a wash was conducted at the end of the 

hybridization and before starting the melt, washing away unbound target.  Hybridization 

experiments were conducted at 20
 o
C, while in the melt experiments, the temperature was 

ramped from 20 to 70 
o
C in the span of an hour, rendering a ramp rate of 0.83 

o
C/min.  The first 

generation of gel drop arrays were hybridized in the dark, with total time of hybridization 17-18 

h, since only end-of-hybridization signal and subsequent melt data (imaging every minute, 1500 

ms exposure time) was collected.  The second generation of gel drop arrays was also used for 

continuous imaging of hybridization.  Gel pad arrays were continuously imaged in the 
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microarray reader during the hybridization as well as the melt (image was taken every 10 

minutes, 1500 ms exposure time).   

 

Microarray reader, image capture and data analysis 

For details on single-color imaging, the reader can see Methods section in Chapter 3.  For 

multicolored imaging, the oligonucleotides were labeled with Oregon Green and Texas Red 

labels that were characterized in Chapter 3, corresponding to Oregon Green and Texas Red 

beacons on the array.  Instead of tracking the emission from one fluorophore during the 

experiment, dual color imaging was used.  Peak excitation and emission wavelengths for Texas 

Red and Oregon Green (488) fluorophores are 596 nm and 615 nm for Texas Red, and for 

Oregon Green 496 nm and 524 nm, respectively, giving rise to little overlap in the excitation and 

emission spectra.  Multicolor imaging was accomplished by switching the excitation and 

emission filters in the microscope after each image.  As described in the previous Chapter, the 

sample was only exposed to light when an image was being taken; otherwise, the sample was 

shielded from light by a closed mechanical shutter in the light path.  The filter change was 

automated as follows: a LabView program was designed to interface with the current reader 

system and to automatically change the filter as specified at the beginning of the experiment 

immediately after each image capture (implemented by Mike Purfield in the Yager lab, with help 

from Peter Kauffman).  The time between taking each image, irrespective of the filter set, was 

constant, meaning the data for each fluorophore (filter set) was not captured at the same exact 

time, which was taken into account when analyzing images.  Both real-time hybridization and 

subsequent melt data were recorded. 
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Figure 40 – Microfluidic microarray platform used in Chapters 3 and 4 of this dissertation.  Blow-
up of the microarray imaging chamber shows the gel pad microarray. 

 

 

Figure 41 – Two experimental platforms used in Chapters 3 and 4 of this dissertation: a 
hybridization chamber affixed to a microarray glass slide (panel A); microarray glass slide 
embedded in a microfluidic chip and interfaced with a microfluidic controller (Micronics, 
Redmond, WA). 
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Computational 

Competitive binding 

The model developed in Chapter 3 served as a basis of model development for this Aim.  The 

only modification with respect to considering competitive binding was adding binding of a 

second analyte to the mathematical description to account for multi-species competitive binding.  

Instead of one binding reaction, keeping track of the binding of one target onto one probe, we 

considered the binding of two targets onto two probes: 

     

  
                                  

     

  
                                  

     
  

                                  

     

  
                                   

where the subscripts m and n refer to two different probes, subscripts i and j to two different 

targets.  Bm,i marks the bound concentration of target i on probe m,  Bm,j marks the bound 

concentration of target j on probe m, and so on.  Pm0 and Pn0 stand for the initial concentrations 

of probes m and n.  Ci and Cj stand for the free concentration of targets i and j in the solution, and 

kdi,m, kdj,m etc. denote the dissociation constants for target i in a duplex with probe m, and target j 

in a duplex with probe m, respectively.  At time 0 at the beginning of hybridization, all duplex 

concentrations were assumed to be zero.  The diffusion of both analytes in the solution was 

described using Fick’s Law.  
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For modeling thermal dissociation, the initial free target concentration was assumed to be 0, and 

the fraction of the total probe bound by each possible target was used as an input parameter for 

the simulations.   

 

4.4 Results and Discussion 

Assessing fluid recirculation in the microfluidic platform 

 

The performance of the fabricated card, connected to the Micronics Microflow System
TM

, was 

tested first to verify the recirculation of the fluid within the microfluidic card, and second, to 

estimate the range of circulation flow rate achievable by executing the chip.  Recirculation of 

liquid sample was visually confirmed using two differently colored samples, loading one into the 

imaging chamber, and the other into the pump line (Figure 39).  The flow rate within the chip is 

controlled by the timing of pump execution, which in turn is controlled by the computer-operated 

microfluidic controller (MicroFlow System
TM

, Micronics, WA).  The timing of pump execution 

is controlled by the delay time specified in the executable script for the MicroFlow System.  A 

range of valve timings was tested by weighing the amount of water pumped out of the card when 

the recirculation circuit is broken by an appropriate selection of valve states.  Figure 43 shows 

the flow rate as a function of valve timings, measured by weighing the amount of water pumped 

out.   
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Figure 42 – Recirculation of sample in the microfluidic platform.  At time 0, red liquid has been 
loaded into the pump line, and clear liquid into the imaging chamber (left).  Upon starting the 
execution of the on-card pumps, the sample is recirculated (right).  Photo courtesy of Joshua 
Thompson. 

 

 

Figure 43 – Mean flow rate in the microfluidic hybridization platform as a function of delay time 
between pump executions.  The experiments were carried out at 30 

o
C, using water.  Data courtesy 

of Joshua Thompson.   
 

Target recirculation in the microfluidic platform 

Initial experiments, employing this microfluidic hybridization platform, characterized the rate of 

hybridization and temperature-dependent dissociation of targets from the DNA probes under 

static and dynamic (recirculation) conditions as a function of target length and concentration.  
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Figure 44a and Figure 44c display the results of hybridizing a synthetic target to perfect-match 

(PM) and mismatch (MM) probes, demonstrating that recirculation accelerates the hybridization 

rate (more pronounced at lower target concentrations).  Also, the magnitude of signal intensity is 

dependent on the length on the target.  Figure 44b displays the Td values (temperature at which 

the normalized hybridization signal has dropped to 50% of its original value) collected after 

hybridization during dissociation for 18-and 38-base targets under static and dynamic conditions.  

In addition to observing the expected reduced stability (lower Td value) for the mismatched 

hybrid, relative to the perfect match, the results shown in Figure 44 also demonstrate a decrease 

in apparent Td for the 18-nucleotide target with recirculation compared to static dissociation.   
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Figure 44 - Isothermal hybridization and thermal dissociation of target complementary to EUB338 
probe.  Panel (a) displays the hybridization signal as a function of time under static and dynamic 
conditions; panel (b) displays Td, temperature at which the normalized signal during a thermal 
dissociation is 50% of its original value; panel (c) displays the hybridization signal as a function of 
time under static and dynamic conditions for a 10 times less concentrated target solution than 
panel (a).  PM and MM refer to signal from EUB338 and EUB338MM probes, 18 and 38 refer to the 
length of the target in number of bases, under static and recirculation (recirc) conditions, 
respectively.  Rep.1 and Rep.2 on panel (b) refer to two replicas in the same experiment.  

 

Competitive hybridization and melt in the three-dimensional microarray platform 

At first, two targets, one complementary to probe 62 and the other to probe 1537, were 

hybridized simultaneously, and the results compared with single-target hybridizations.  As 

expected, since these dissimilar targets do not compete for hybridizations onto the same probe, 

the hybridization patterns of their co-hybridization were superpositions of their individual 

hybridization experiments.   

 

(a) 
 

 (b) 

(c) 
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This was not the case when using related target sequences.  Figure 45 displays the end-of 

hybridization signal intensity ratios from probes 1537 and 1271 for competitive binding 

experiments with four different relative target concentrations.  As expected, the PM/MM signal 

ratio changes significantly as the relative concentrations of targets vary.  While the PM/MM >1 

values for experiments does seem to correctly suggest, irrespective of the presence of mismatch 

target at low levels, that a high affinity target to probe 1537 is present (experiments A and D), 

the interpretation of the signal intensity ratios from experiments B and C is more complex.  The 

ratios from these experiments could also stem from scenarios that do not include the presence of 

EUB338 target: for example, simply high level of mismatch target (B), or even higher level of 

mismatch probe that would overwhelm both probes, irrespective of degrees of affinity.    

 

Figure 45 - Ratio of signal intensities from probes 1537 and 1271 in competitive binding 
experiments A-D on the gel drop microarray (Table 17).  Text above the bars refers to the relative 
concentrations of perfect-match and mismatch targets: purple text to perfect-match, and red to 
mismatch.  n=4. 
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Table 18 lists the Td values from experiments A-D for different competitive binding scenarios.  

The typical approach to using melt curves for discrimination between related targets relies on the 

assumption that the duplex formed on a mismatch probe will have a lower Td than the perfect-

match duplex.  This indeed holds true in Chapter 3 with single target hybridizations.  However, 

in case of competitive binding, the Td values from experiments A and C are virtually 

undistinguishable, and the only “clear” interpretation scenario corresponds to experiment D.   

 

Table 18 - Average Td , 
o
C (temperature at which normalized signal intensity is at 50%) values and 

standard deviations (n=4) from gel drop arrays, as a function of probe sequence and added target 
concentrations.  Set a corresponds to experiments with an added target that is perfect match to 
probe 62 (399 is a one-base mismatch to 62), and Set b corresponds to experiments with an added 
target that is perfect match to probe 1537 (probes 1271 and 1538 are different one-base mismatch 
probes).   

 
 
 
Exp.  
ID 

Probe ID 

Set a Set b 

62 399 1537 1271 1538 

A  49.5 
±0.1  

36.0 
±16.4 

45.3 
±0.2 

45.0 
±0.3  

41.7 
±3.7  

B  54.0 
±1.4  

46.2 
±0.3 

45.3 
±0.7  

47.6 
±0.6  

41.5 
±6.5  

C  52.1 
±1.7  

45.2 
±0.1  

46.4 
±0.6 

46.0 
±0.5 

39.3 
±0.1  

D  51.5 
±2.1 

44.5 
±0.1  

46.7 
±0.2  

41.8 
±0.2  

37.8 
±0.2  

 

To further explore the utility of melt curves in distinguishing between related sequences, let us 

explore the actual shapes of the melt curves.  Specifically, we will look at the melt curves from 

the probe 1271, comparing experiments B, C, and D, where the relative concentrations of 

perfect-match target (1271) to mismatch target (1537) was 20:1, 20:20, and 1:20, respectively 
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(see Table 17).  Figure 46 displays the thermal dissociation curves from these experiments.  Note 

the difference in shapes: the sharpest transition corresponds to the experiments where the ratio of 

perfect-match to mismatch target was 20:1 (blue line in Figure 46): one would not expect to see 

any notable contribution by mismatch targets to the overall signal following an overnight 

hybridization in a stringent buffer.  Slightly earlier thermal dissociation is observed for the 20:20 

ratio (red line in Figure 46), most likely due to a small contribution by the mismatch target to the 

overall signal.  And lastly, in the case of mismatch target in excess at the beginning of 

hybridization (1:20 ratio), one sees distinct two-phase behavior of the dissociation process.  This 

finding is particularly important when one re-examines the Td values of the probe for all three 

scenarios, given in Table 18.  While the Td values for experiments B and C – either perfect-

match and mismatch target present at equal concentrations or perfect-match in excess – are fairly 

similar, the Td value for experiment D (mismatch target in excess) is lower.  This argues that Td 

value by itself cannot necessarily point to the presence of high affinity target, if lower affinity 

target is present in excess.  However, the shape of the dissociation curves show promise for 

displaying multi-phasic behavior, indicative of a mixed population of dissociating duplexes. 
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Figure 46 – Normalized thermal dissociation curves from probe 1271.  Hybridization preceding the 
thermal dissociations were conducted with different relative ratios of target 1271 and one-base 
mismatch target 1537, as specified in the legend.  Ratio 20:1 corresponds to experiment B, ratio 
20:20 to experiment C, and ratio 1:20 to experiment D in Table 17.  Temperature ramp rate: 0.83 
0
C/min.  Hybridization buffer contained 900 mM NaCl, 20 mM Tris-HCl, and 40% formamide; melt 

buffer contained 4 mM NaCl, 20 mM Tris-HCl, 5 mM EDTA. 

 

Multi-color imaging of competitive hybridization and dissociation 

To confirm that we see biphasic hybridization of lower affinity target during the hybridization of 

a mixture of two targets, we used a Texas Red labeled target 1537 and Oregon Green labeled 

target 1538.  Lower affinity target t1538 was present at 10 times higher concentration than higher 

affinity target: 1 µM versus 100 nM.  Figure 47 displays the hybridization curves from probe 

1537 (perfect-match probe to target 1538). Note the bi-phasic hybridization behavior of the 

lower affinity target, reflecting the competitive displacement of the mismatch target by perfect-

match higher affinity target after the initial phase of hybridization.  This is also indirect 

confirmation that at this total target concentration, we have saturated the probe within the first 
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~30 minutes, as the decay in the hybridization curve of the mismatch target will only occur if 

there is an excess of target relative to the total available number of probe sites.   

 

Figure 47 – Normalized hybridization curves, corresponding to a perfect-match and lower affinity 
mismatch target competing for hybridization onto the same probe.  Initial concentrations were 100 
nM for perfect-match target, and 1 µM for mismatch target.  Perfect-match target was labeled with 
Texas Red, and lower affinity target with Oregon Green fluorophore.  Note the bi-phasic 
hybridization curve of the lower affinity target.  Hybridization buffer contained 900 mM NaCl, 20 
mM Tris-HCl, and 40% formamide. 

Figure 48 displays the normalized thermal dissociation curves from the same probe 1537, 

tracking separately the Texas Red labeled target 1537 and Oregon Green labeled target 1538.  

The dissociation curves and their Td values are very similar to those obtained from single-

component melt (e.g. Td for the melt of target 1537 in the multicomponent dissociation was 38.5 

± 0.5 
o
C, while the Td value for the melt of 100 nM target 1537 in a single-component 

experiment in the same buffer was 37.8 ± 0.6 
o
C).   
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Figure 48 – Normalized thermal dissociation curves for perfect-match and mismatch target 
dissociation from the same probe.  Temperature ramp rate: 0.83 

o
C/min.  Melt buffer contained 4 

mM NaCl, 20 mM Tris-HCl, 5 mM EDTA. 

 

Computational 

Modeling multi-component hybridization 

To validate the model, we simulated experimental conditions described above and reported in 

Figure 47.  Specifically, we used as model inputs experimental target concentrations, and 

dissociation constant values typically reported for perfect-match and mismatch duplexes for 18-

20 bases long sequences [29, 118, 142].  Note the good agreement in Figure 49 between the 

experimental data and model simulations – no model parameters were optimized for the fit.   
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Figure 49 – Simulated normalized competitive hybridization curves from one probe for a high 
affinity (PM, perfect-match) and lower affinity (MM, mismatch) targets.  Intra-gel diffusion 
coefficient Dg=10

-11
 m

2
/s, initial probe concentration 4∙10

-2
 mol/m

3
, initial target concentrations 100 

nM for perfect-match, and 1 µM for mismatch target.   

 

Modeling thermal dissociation following a multi-component hybridization 

To computationally explore the thermal dissociation of two targets hybridized onto the same 

probe, we altered the fraction of probe bound by high affinity target versus lower affinity target 

at the beginning of the thermal dissociation.  Note that this does not directly correspond to the 

initial target concentrations at the beginning of hybridization, as the total time of hybridization, 

and relative concentrations of probe and targets will impact the fraction of total available probe 

bound by one target versus the other.  Figure 50 displays the simulated thermal dissociation 

curves corresponding to different initial bound fractions. 
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Figure 50 – Simulated normalized thermal dissociation curves, corresponding to different 
fractions of probe bound to high affinity versus low affinity target.  The numbers in the legend for 
each line refer to the fraction of probe bound by affinity target (first number) and lower affinity 
target (second number).  Assumed temperature ramp rate was 0.83 

o
C/min.   

 

4.5 Conclusions 

In this Chapter, we investigated multi-component hybridization and subsequent thermal 

dissociation of a heterogeneous duplex population in three-dimensional gel microarrays.  We 

also demonstrated increased apparent rate of hybridization due to sample recirculation in a 

microfluidic platform.  The increase in the rate was larger for longer nucleic acid fragments, and 

for lower concentration of targets, as those hybridization scenarios would be the most affected by 

mass transport limitations.   

 

We demonstrated bi-phasic behavior of the hybridization curves belonging to lower affinity 

target in three-dimensional gel-based arrays, using multi-color imaging.  Also, we showed that 

our three-dimensional model of the hybridization and dissociation process gives rise to results 
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similar to those observed in the experiments.  Specifically, we replicated the bi-phasic 

competitive binding observed by multi-color imaging, obtaining good agreement between 

experimental results and model simulations, and also demonstrated how different relative 

fractions of probe bound to targets with different affinities result in different shapes of thermal 

dissociation curves.  We also demonstrated bi-phasic behavior of thermal dissociation curves in 

case of low concentration of high affinity target and high concentration of mismatch target, 

showing promise for using three-dimensional gel arrays for distinguishing between related 

sequences in a multi-component system.       
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Chapter 5: Computational characterization of the potential of microarray 

real-time hybridization to distinguish between related sequences 

5.1 Objectives 

The final Chapter of this work utilizes the computational models developed in previous Chapters, 

taking advantage of the ability of the model to rapidly interrogate a large set of experimental 

parameters with respect to their influence on the sensitivity of the signal to variations in target 

affinities.  This Chapter also serves as an example of the kinds of questions one could explore 

with the computational models characterized in previous Chapters.  Specifically, we characterize 

the potential of microarray real-time hybridization data to distinguish between related target 

sequences.   

 

The objectives of the Chapter are the following: 

a) investigate the potential of ‘cooling’ hybridizations – hybridizations started at an elevated 

temperature, cooling down to room temperature – in preferentially binding perfect-match 

targets; 

b) analyze the contribution of the data from an added mismatch probe on the array to 

distinguish between the binding of targets of different affinities.   

 

5.2 Theory and Design Considerations 

There are two main types of data that are currently collected from microarray experiments to 

elucidate the target sequences present in the sample: 1) data from the hybridization phase, either 

time-dependent signal relating to bound concentration, or end-of-hybridization time point that 
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may or may not reflect equilibrium values (the latter significantly more widespread than the 

former); 2) data from experiments where the stringency of hybridization is altered after an initial 

hybridization phase, resulting in differential dissociation of duplexes of different affinities (e.g. 

non-equilibrium thermal dissociation experiments).  Recent theoretical and experimental work 

towards understanding the effects of competitive binding on hybridization profiles demonstrate 

that the relative contribution of lower affinity targets to the signal compared to the contribution 

of the perfect match target can change significantly over the course of the experiment – as the 

hybridization experiment progresses, higher affinity targets will gradually replace lower affinity 

ones [29, 113, 122, 123, 127, 142].  While the equilibrium signal in the hybridization is the most 

specific, time to equilibrium can often be very long (up to days!), depending on the 

concentrations of the targets in the sample, which is not known a priori.  Therefore, attaining 

equilibrium can be unrealistic for practical applications, meaning that aiming to determine the 

specificity of the bound target from a single time-point collected at the end of the hybridization is 

rather questionable if not downright impossible.  In light of this, analysis of real-time 

hybridization data or melting analysis has been suggested as a potential promising alternative to 

standard hybridization timepoint analysis.  However, current theoretical and experimental studies 

of hybridization kinetics have been limited to considering the hybridization of multiple related 

targets onto one probe, real-time data hybridization data from arrays that include a purposefully 

designed mismatch probe with each perfect-match probe to a target of interest has not been 

considered before.  This current Chapter explores the limitations of promise of using real-time 

microarray hybridization data to distinguish between closely related targets and answer the 

question whether a target of interest is present in the sample based on the signal collected from 

its perfect-match and/or mismatch probe. 
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The three-dimensional model of the two-dimensional binding elements was not separately 

validated with experimental data, as a similar two-dimensional finite element binding model with 

one binding zone has already been published [29, 118, 142] and we validated our model by 

reproducing the published results.  For simulating the presence of different targets in the 

hybridizing solution in this Chapter, we do not strictly need to tie the thermodynamic parameters, 

such as binding free energy change, to specific sequences.  What we are interested in in this 

Chapter, is the theoretical sensitivity of data typically measured in experiments to target affinities 

under a variety of experimental conditions.  This Chapter also serves as an example of the kinds 

of question one can explore in assay development with the use of computational methods.   

 

5.3 Materials and Methods 

Computational model 

This Chapter is largely utilizing the mathematical models described in previous Chapters.  For 

modeling cooling hybridization, the diffusion coefficient for 18- and 19-base targets was 

assumed to be 10
-10 

m
2
/s at 20 

o
C [144, 145] and a temperature-correction was used for the 

diffusion coefficient based on the Stokes-Einstein equation: 

   
   

 
  
  

   
   

 

where T1 and T2 are two different temperatures, DT1 and DT2 are diffusion coefficients 

corresponding to these two temperatures, and µT1 and µT2 dynamic viscosities of the liquid.  

Taking DT1 equal to 10
-10 

m
2
/s at 20 

o
C and using the dynamic viscosities of water (1.002 mPa s), 

we obtain the relationship displayed on Figure 51.   
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Figure 51 - Relationship between oligonucleotide diffusion coefficient and temperature. 

The 2D binding model was composed similarly to the development of the 3D binding model in 

Chapters 3 and 4 with respect to the diffusion of the free analytes in the bulk solution.  The main 

difference between the 3D binding and 2D binding model is in the treatment of the planar 

binding regions.  The binding reaction was described similarly to Chapters 3 and 4, surface 

diffusion in the binding region was not considered, and boundary PDE weak mode was utilized.  

The two-dimensional binding region was coupled to the bulk compartment via a flux boundary 

condition.  Processing and analysis of simulation data was conducted with MATLAB. 

Dimensions of the hybridization chamber in the 3D model were 1cm × 1 cm × 100 µm, binding 

element diameter was 100 µm.  Diffusion coefficient in the solution was 10
-10 

m
2
/s, intra-gel 

diffusion coefficient was 10
-11 

m
2
/s.  Association constant ka was 10

6
 1/(M∙s), dissociation 

constant kd value will be specified for each simulation.  At the beginning of the hybridization, 

duplex concentration and free target concentration inside the gel were assumed to be 0.  Initial 

free probe and target concentration will be specified for each simulation.   
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5.4 Results and Discussion 

“Cooling” hybridization – can it replace the melt in resolving related sequences?   

Cooling hybridization, unlike an isothermal hybridization, would start at an elevated temperature 

(e.g. 70 
o
C), and continue at a decreasing temperature down to RT (or 20 

o
C).  Unlike during 

isothermal hybridization, where lower affinity targets get slowly replaced by higher affinity 

targets and the time to equilibrium can be unreasonably long for practical applications (up to 

days), during cooling hybridization, higher affinity targets would preferentially bind at higher 

temperatures.  

  

The first question we explored was the effect of the ramp rate on the hybridization curves.  For a 

system where a target and a competitor are competing for binding onto one probe, we see a slight 

effect of the ramp rate on the maximum slope in the total hybridization curve (Figure 52) and a 

more profound effect on the ratio of target bound versus competitor bound curves (Figure 53).   

 

Figure 52 – Total amount bound (target of interest plus competitor) as a function of temperature 
for three different ramp rates.  Initial probe concentration: 5∙10

-8 
mol/m

2
, initial target of interest 

and competitor concentration 5∙10
-6 

mol/m
3
.  
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Figure 53 – Ratio of target versus competitor bound on a single probe as a function of 
temperature, for three different ramp rates.  Initial probe concentration: 5∙10

-8 
mol/m

2
, initial target 

of interest and competitor concentration 5∙10
-6 

mol/m
3
.  

We can compare this with isothermal hybridization at either 20 
o
C or 30 

o
C, with the target of 

interest and competitor present at equal concentrations (5·10 
-6 

mol/m
3
) with 5·10 

-8 
mol/m

3 
probe 

(Figure 54).   What is interesting about Figure 54, is that although the relative contributions from 

target of interest and competitor are very different between hybridizations at 20 
o
C and 30 

o
C, the 

total amount bound does not vary significantly (compare red and black solid lines) – and the 

latter would be observed in the applications where all sample DNA is labeled.   
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Figure 54 – Isothermal hybridization at either 20 
o
C or 30 

o
C as a function of time, for total bound 

and target and competitor bound.   

Looking at cooling hybridization, we then simulated a case where only one of the two is present: 

either target of interest, or competitor.  In order to distinguish between these two cases, the 

hybridization curves should fall between different temperature ranges.  In the parallel case of 

melting, we would expect the melting point for a target-of-interest-only case to be higher than for 

competitor-only.  The cooling hybridization curves however do depend on the concentration of 

the hybridizing target.  Figure 55 and Figure 56 display the hybridization curves for target of 

interest and competitor in a one-component system.  Ten-fold difference in concentration shifts 

the curves significantly (compare solid and dashed lines), and the steepest part of the solid curves 

in Figure 56 (higher concentration of competitor) is similar to the location of the steepest part of 

dashed lines in Figure 55.  This means that cooling hybridization is influenced by the 

concentration of the hybridizing target – lower affinity target, if present at higher concentration, 

can produce hybridization curves similar to a higher affinity target at lower concentration.  This 

means that the cooling hybridization does not appear to hold any more promise for distinguishing 

between related species than isothermal hybridization. 



146 

 

 

Figure 55 – Bound concentration of target of interest in a 1-component system for three different 
temperature ramp rates.  Dashed lines refer to 10

-6 
mol/m

2
, while the solid lines to 10

-5 
mol/m

2 

initial target concentration. 

 

Figure 56 - Bound concentration of competitor in a 1-component system for three different 
temperature ramp rates.  Dashed lines refer to 10

-6 
mol/m

2
, while the solid lines to 10

-5 
mol/m

2 

initial target concentration. 
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Does adding a mismatch probe make a difference for resolving between closely related 

sequences? 

We implemented a second binding element in the three-dimensional microarray hybridization 

model to investigate the potential utility of collecting data from a mismatch probe in parallel 

with a probe that is a perfect complement for the hybridizing target.  Specifically, we focused on 

the initial phase of the hybridization, without necessarily waiting for equilibrium.  The different 

affinity of the target towards the two different probes was modeled through altering the 

dissociation constant: kd equal to 10
-4

 1/s represents values typically reported for a single-

mismatch probe, and kd equal to 10
-2

 1/s corresponds to two-base mismatch probe.  Figure 57 

displays the normalized amount bound on both the perfect-match and mismatch probes for 

different probe and target concentrations in a single-component system.  The figure illustrates the 

wide range of possible duplex concentration ratios, depending on the relative probe and target 

concentration and also on the kinetic constants of the binding reaction.  Seeing the ratio of 

amount bound to perfect-match probe over the mismatch probe considerably over 1 would lead 

to unambiguous evidence about the difference in affinity of the target towards the two probes.  

As Figure 57 demonstrates, the ratio of the amount bound to the two probes can be equal to 1 

either in cases of high target concentration, leading to rapid equilibrium and full saturation of 

both probes (for example blue lines in the upper right panel), or in case of low target 

concentration relative to probe concentration, leading to mass transport limitations for the 

hybridization reaction (red and black lines in the upper right panel).  The unambiguous case of 

the ratio of the duplex concentration over 1 in the Figure below corresponds to either large 

dissociation constant value and moderate to low target concentrations, or low probe 

concentration and moderate to low initial target concentrations.   
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θ0 = 10
-7

 mol/m
2 

  

θ0 = 10
-9

 mol/m
2
 

  

Figure 57 – Normalized hybridization curves from a perfect-match and mismatch probe upon a 
single-component hybridization.  Normalization was done with respect to the maximum value of 
duplex concentration on the perfect-match probe for each target concentration.  Different affinities 
to the two different probes were modeled by altering the dissociation constant kd (see above each 
subplot).  Upper figures refer to initial probe concentration of 10

-7 
mol/m

3
, while the bottom row 

corresponds to initial probe concentration of 10
-9 

mol/m
3
.  The solid lines refer to perfect-match 

probe, and dashed lines to mismatch probe.  Different colors represent different initial target 
concentration.   
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Chapter 6: Overall Conclusions 

 

The goal for undertaking this work was two-fold.  One was to advance the development of 

physico-chemical computational models to aid in the fundamental understanding of the 

microarray system, and in the development of applications either based on microarray 

technology, or on binding and thermal dissociation of short oligonucleotides in a three-

dimensional matrix or on a planar platform.  The second goal was to further explore the limits of 

the data currently obtained from microarray experiments in distinguishing between closely 

related target sequences, using both experimental and computational methods.   

 

Several models of planar microarray hybridization processes have been proposed, exploring 

either a single-component system with only one target hybridizing onto a probe [118, 121], or a 

multicomponent system with two or more targets competing to hybridize onto the same probe 

[29, 78, 123, 124, 127, 142].  The current work is the first to propose a three-dimensional model 

of the hybridization and thermal dissociation processes on a three-dimensional microarray 

platform, and obtain a good fit between simulations and experiments with single-component 

thermal dissociation and multi-component competitive binding and thermal dissociation.  The 

three-dimensional gel-based microarray technology is a rather new type of a microarray platform 

that has been less extensively characterized than planar microarray technology.  Furthermore, 

beyond presenting a finite element model for a new type of microarray platform, we explored the 

link between nearest-neighbor based thermodynamic parameters characterizing duplex stability, 

and microarray thermodynamic parameters.  Current planar array models that are concerned with 

a comparison with experimental data either use optimized kinetic constants to describe the 
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binding reaction, or introduce a temperature offset into the model to account for experimentally 

observed reduced stability of the duplexes compared to binding reactions in the solution [29].  

The gel-based microarray platform has been proposed in the literature to potentially present 

solution-like binding kinetics.  While our kinetic model for solution-based thermal dissociation, 

utilizing nearest-neighbor based thermodynamic parameters, agreed very well with experimental 

results, the parameters significantly overestimated the stability of the duplexes in the microarray 

platform.  Optimizing thermodynamic parameters to obtain a good fit between the experimental 

microarray thermal dissociation curves and model simulations rendered a linear relationship 

between the nearest-neighbor based parameters and microarray parameters for perfect-match 

duplexes.  This demonstrates the possibility of predicting the thermodynamic parameters for a 

number of different perfect-match duplexes on the array based on a small set of duplexes used to 

establish the linear relationship.  However, we did not find the same linear relationship to hold 

between nearest-neighbor parameters and microarray parameters for mismatch probes, and the 

small selection of mismatch probes presented on the array did not allow us to study this effect 

further based on the position and nature of mismatch.   

 

The remainder of this work utilized the composed computational models, in concert with 

experimental data, to explore the limits of the microarray hybridization and thermal dissociation 

data in distinguishing between related sequences.  In addition to thermal dissociation data, 

collecting real-time hybridization data in microarray experiments has been suggested to aid in 

distinguishing between related sequences, although latest research papers have expressed 

skepticism towards that idea [1].  This work has been limited to collecting data on one probe of 

interest.  In this work, we explored the potential advantage of adding a mismatch probe to the 
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hybridizing target in determining the affinity of the target towards the perfect-match probe, and 

found that even in the simplest system of one target hybridizing onto two probes, the relative 

ratio of duplex concentrations on the two probes will only lead to unambiguous determination of 

the relative affinity of the target towards the two probes in a limited range of probe and target 

concentrations.   Lastly, we explored thermal dissociation in a multicomponent system, utilizing 

experimental data from gel-based microarrays and computational results.  While the Td values of 

the thermal dissociation curves (temperature at which the signal from a probe has decreased by 

50 %) were misleading in cases with high mismatch target concentration and low perfect-match 

target concentration, we observed bi-phasic behavior of the dissociation curves, indicative of a 

heterogeneous population and showing potential to distinguish between targets of different 

relative affinities.      
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Chapter 7: Current Industry Trends and Future Research Directions. 

 

Although commercialized DNA microarray technology dates back to the mid-1990s (the first on 

the market, Affymetrix introduced its first array product in 1994), published studies investigating 

the reproducibility and reliability of microarray hybridization experiments are less than ten years 

old [146].  As FDA declared pharmacogenomics and toxicogenomics key areas of interest, it 

initiated a wide-scale project to address concerns about reliability of data from microarray 

experiments, involving scientists from over 50 organizations [146].  Gene expression data from 

seven different microarray platforms, generated at multiple test sites, were compared for intra- 

and inter-array variability.  Six of the tested microarray platforms were commercially available 

(Applied Biosystems, Affymetrix, Agilent Technologies, GE Healthcare, Illumina, Eppendorf), 

and one was a spotted microarray, prepared in-house by a team at the National Cancer Institute 

[146].  The study demonstrated good intra-array reproducibility and also a “high level of 

interplatform concordance in terms of genes identified as differentially expressed” [146].  The 

conclusions from that study have been cited as one of the possible reasons for consolidation of 

the microarray market in the mid-2000s – contrary to marketing campaigns by array 

manufacturers, the performance of different platforms was shown to be quite similar, and the 

main differences were suspected to be rooted in sample preparation and processing  [147].  As of 

the beginning of year 2012, the four largest manufacturers of DNA microarrays were 

Affymetrix, Agilent, Illumina and Roche [147], but Roche recently announced its decision to 

phase out its DNA microarray business by the end of 2012 [148].  As of Summer 2012, 

Affymetrix, Agilent and Illumina have stated their firm commitment to producing DNA 

microarrays [149].  The other competitors, GE Healthcare, Nanogen and Applied Biosystems 
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(now Life Technologies) had discontinued their microarray production a few years ago [147].  

This has been attributed generically to the maturing of the market, and also to a variety of 

reasons from selling too closed systems that could not be integrated with other array 

instrumentation (Applied Biosystems) to tight control of intellectual property by early entry 

companies [147].   

 

In the past few years, next-generation sequencing (NGS), also referred to as ‘massively parallel 

sequencing’, has emerged as a competitor to DNA microarray technology, as the price of 

sequencing is getting closer to that of a microarray experiment [150, 151].  The advantages of 

NGS over DNA microarray technology are several:  NGS has a higher dynamic range than the 

DNA microarray technology; NGS is quantitative while microarray technology is qualitative; 

NGS is more sensitive than microarray technology, offering a lower background than microarray 

technology; and finally, NGS, unlike microarray technology, is not hampered by cross-

hybridization, which means accurate single-nucleotide resolution [151-155].  Microarray 

technology also requires generally a priori knowledge of potential hybridizing sequences to 

guide probe design.  Despite the advantages, reviews in the literature that compare the 

performance of NGS and DNA microarray technology conclude that DNA microarrays will 

remain relevant as a research tool in the foreseeable future [151, 153-155].  As of right now, 

DNA microarray technology is considerably more familiar and in general more accessible to the 

research community as a whole.  Also, NGS requires access to a sequencing facility and massive 

infrastructure for information technology for data analysis, and the bioinformatics support for 

NGS is considerably less mature than for microarray technology [156].  Even as the cost of 

sequencing is rapidly going down, storage and analysis of massive volumes of data are predicted 
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to form a bottleneck for the user [152-155].  For example, Illumina’s Solexa Genome Analyzer II 

will produce over 115,000 files during one run, amounting to 1 terabyte of data [156].  While a 

growing number of researchers is likely to begin to use NGS instead of DNA microarray 

technology for genomic studies, the degree of adoption of NGS will probably vary across 

applications: for example, NGS is predicted to be a strong competitor in the area of global 

expression profiling, while DNA microarrays will retain their stronghold for custom genotyping 

and copy-number variation analysis [151].  Employing DNA microarrays will also remain 

considerably cheaper and less time-consuming when analyzing the DNA or RNA in a large 

number of clinical samples [154].  Another key area where DNA microarrays have been 

predicted to occupy a middle ground between PCR and NGS, is the detection and analysis of 

microorganisms [155].  Several different DNA microarray platforms for that purpose have been 

proposed in the literature, differing in the fabrication, the organisms detected, and the 

sensitivity/specificity [155]. The ability to design probes against conserved regions allows the 

use the microarrays both for detecting existing and discovering novel microorganisms [155].  

Furthermore, the so-called universal detection microarrays that have been proposed in the 

literature do away with the limitation of needing to know sequenced microbial genomes 

beforehand for probe design; instead, the probe sequences are generated randomly, but 

hybridization of the genomic DNA from different organisms on the array still gives rise to 

unique hybridization patterns [155].  Overall, DNA microarray technology continues to show 

great potential for fast and affordable microbial detection in point-of-care type devices, provided 

further advances are made in automated sample preparation, DNA/RNA extraction, faster time to 

read-out, and efficient analysis algorithms that do not require more computing power than is 

typically found in a smart-phone [155].  However, achieving fast, reliable and reproducible 
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application of DNA microarray technology, either in medical setting, food safety, or 

environmental monitoring, requires a deeper understanding of the complex biophysical 

phenomena that occur on the array [155].  The aim of this dissertation was to contribute towards 

that goal.   

 

Future directions for research, arising from the lessons learned in this work, can be broadly 

divided into three categories: research towards a deeper understanding of DNA binding in the 

solution; investigations of the stability of duplexes in the microarray; and further study of 

multiplex non-equilibrium melt in gel-based microarrays.  While the nearest-neighbor model 

performed well, predicting the melting temperatures for perfect-match and even one-base 

mismatch sequences tested in this work, there were notable discrepancies between the melting 

temperatures predicted by the nearest-neighbor based model and experimental solution-based 

thermal dissociation data for two-base mismatch duplexes.  Specifically, the model estimated the 

stability of the duplexes to be higher than what was seen in the solution-based experiments.  In 

order to move closer to a predictive quantitative mathematical model of the microarray processes 

to guide the development of practical applications (for example universal detection arrays as 

outlined above), a solid understanding of the affinities of both perfect-match and mismatch 

duplexes in the solution is needed as a foundation.  It can be hypothesized that longer than 

nearest-neighbor influences by the two (or more) mismatches weaken the duplex more than is 

predicted simply by considering the mismatches independent of each other.  Regarding the 

binding process in microarrays, further work is needed to fully understand the link between 

solution-based duplex stability and stability in the microarray.  While the selected perfect-match 

duplexes considered in this study rendered a linear relationship between the nearest-neighbor 
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based thermodynamic parameters and microarray thermodynamic parameters, a larger selection 

of duplexes would be needed to fully validate the findings.  Also, further work would need to be 

done to explore the relationship between nearest-neighbor based and microarray thermodynamic 

parameters for one-base mismatch duplexes.  Investigation of the relationship for more than one-

base mismatch duplexes is awaiting improvements in the description of the stability of duplexes 

in the solution as pointed out above.  While the current work only focused on duplexes where the 

target and probe molecule were of equal length, future work on investigating DNA duplex 

stability in microarrays should also take into account anticipated variability in the target lengths 

in practical applications of microarray technology.  The length of the DNA target will have an 

impact on the rate of mass transport of the target, and will influence the predicted stability of the 

duplex (see work on dangling end duplexes in [72, 157-160]).  Lastly, this dissertation 

demonstrates the promise of non-equilibrium thermal dissociation to distinguish between closely 

related target sequences, as the observed biphasic shape of the melt curve allowed to detect low 

levels of perfect-match target in the presence of high levels of mismatch target.  Further 

experiments would need to be done, using more complex samples, to explore the feasibility of 

this detection technique.   
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Appendix A: DNA Thermodynamics 

A.1 Derivation of TM equation 
 

The melting temperature TM is defined as the temperature at which half of the DNA strands are 

in the double-helical state, and half are in the random coil state.  Marking K as the equilibrium 

constant of the reaction and CT, S1eq, S2eq, Deq as the total strand concentration and 

concentrations of the two strands and duplex at equilibrium, respectively, we can write 

  
   

         
 

    

             
 

 

  
  

where we assumed that the two strands S1 and S2 are present at equal concentrations.  From the 

other hand, the standard free energy change of the reaction, ∆G
0
 can be written out as follows: 

                     

 where R is the universal gas constant and T is temperature.  Combining the two relationships, 

we obtain 

                       
 

 
          

   
   

             
 

Figure 58 depicts Tm values as a function of total target concentration for duplex 1537/1537.  

Increase in total oligonucleotide concentration by two orders of magnitude translates roughly 

into an increase in Tm by 7 
o
C.   
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Figure 58 – Tm as a function of total oligonucleotide concentration.  ∆H
o
=-148 kcal/mol, ∆S

o
=-422.5 

cal/(K∙mol), values corresponding to duplex 1537/1537 at 50 mM NaCl.   

 

A.2 Derivation of thermodynamic parameters from melt curves 
 

The hyperchromicity method 

The thermodynamic parameters are mainly derived using either the van’t Hoff method or the 

concentration method.  Van’t Hoff equation relates the change in temperature T to the change in 

the equilibrium constant K given the change in standard enthalpy H
0
 for the process: 

     

  
 

   

   
, 

R is the universal gas constant.  Integrating this between temperatures T1 and T2 gives the 

following relationship: 

   
  
  
  

   

 
 
 

  
 
 

  
   

where K1 and K2 are equilibrium constants at absolute temperatures T1 and T2, respectively.  

Using the following relationships: 
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we obtain 

     
   

  
 
   

 
  

 

Plotting lnK as a function of inverse temperature, one can obtain ∆H
0
 from the slope and ∆S

0 

from the Y-intercept of the so-called van’t Hoff plot.  K as a function of temperature can be 

determined from thermal melting experiments using the hyperchromicity method with the 

following rationale.  The fraction αT of DNA strands that remains hybridized in a duplex at a 

particular temperature T can be expressed as 

   
    

     
  

where As is the absorbance of the single strands in fully dehybridized condition, Ad the 

absorbance of duplex in fully hybridized condition, and A the absorbance at a particular point on 

the equilibrium thermal melting curve at temperature T.  Assuming a two-state model of DNA 

binding, and denoting the total concentration of strands cTS, KT can be calculated using αT in the 

following manner: 
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Concentration method 

This method obtains the thermodynamic parameters using the relationship between Tm and cTS.  

At Tm, by definition αT=0.5.  Substituting this into KT equation above, and then substituting that 

into lnKT expression from van’t Hoff equation, we obtain the following: 

   
 

   
 

 

  
 

 

   
      

       

   
  

This equation is used to obtain thermodynamic parameters from a linear fit to a plot of 1/Tm 

versus ln cTS.   

 

A.3 Unified oligonucleotide nearest-neighbor parameters ∆H
0 

and ∆S
0
 

 

The unified nearest-neighbor parameters ∆H
0 

and ∆S
0 

used throughout this work are summarized 

in Table 19. 

Table 19 – Unified oligonucleotide nearest-neighbor thermodynamic parameters in 1 M NaCl  [66, 
67].  The dimer duplexes as marked with a slash separating strands in antiparallel notation.  For 
example, notation CA/GT means sequence 5’-CA-3’ paired with 3’-GT-5’ sequence.   

 ∆H
o 

kcal/mol
 

∆S
o
 

cal/K∙mol Sequence 

AA/TT -7.9 -22.2 

AT/TA -7.2 -20.4 

TA/AT -7.2 -21.3 

CA/GT -8.5 -22.7 

GT/CA -8.4 -22.4 

CT/GA -7.8 -21.0 

GA/CT -8.2 -22.2 

CG/GC -10.6 -27.2 

GC/CG -9.8 -24.4 

GG/CC -8.0 -19.9 

   

Init. w/term G∙C 0.1 -2.8 

Init. w/term A∙T 2.3 4.1 

Symmetry correction 0 -1.4 
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Appendix B: Calculated Thermodynamic Parameters for Duplexes Used in 

Chapter 2 

 

Table 20 – Thermodynamic parameters for duplex combinations used in Chapter 2, calculated 
from nearest-neighbor parameters for perfect matches (Table 19) and internal mismatches [71], for 
three difference NaCl concentrations.  Salt concentration for ∆S

0
 was calculated based on the 

empirical relationship outlined in section 2.5.1.  ∆H
0 

is considered independent of salt 
concentration.   

 ∆H
o 

kcal/mol 
∆S

o 
(1M NaCl) 

cal/K∙mol 
∆S

o
(110 mM 

NaCl) 
cal/K∙mol 

∆S
o
(50 mM NaCl) 

cal/K∙mol  

EUB338/EUB338 -139.9 -371.5 -385.3 -390.2 

EUB338/EUB338MM -128.9 -346.7 -360.5 -365.4 

     

1537/1537 -148.0 -402.7 -417.3 -422.5 

1537/1271 -128.1 -350.6 -365.2 -370.4 

1538/1537 -130.5 -364.7 -379.3 -384.5 

1538/1271 -110.6 -312.6 -327.2 -332.4 

     

62/62 -143.4 -383.0 -396.8 -401.7 

399/62 -120.4 -325.9 -339.7 -344.6 

     

323/323 -146.1 -399.0 -413.6 -418.8 

1282/323 -124.9 -349.1 -363.72 -368.9 
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Appendix C: Calculated Thermodynamic Parameters for Duplexes Used in 

Chapter 3 

 

Table 21 – Thermodynamic parameters for duplex combinations used in Chapter 3, calculated 
from nearest-neighbor parameters for perfect matches (Table 19) and internal mismatches [71], for 
three (or two in case of 1537 and 62 and their mismatches) different NaCl concentrations.  Salt 
concentration for ∆S

0
 was calculated based on the empirical relationship outlined in section 2.5.1.  

∆H
0 
is considered independent of salt concentration.   

 ∆H
o 

kcal/mol 
∆S

o  

(1 M NaCl) 
cal/K∙mol 

∆S
o 
(900 mM 

NaCl)
 

cal/K∙mol 

∆S
o 

(4 mM NaCl) 
cal/K∙mol 

 

EUB338/EUB338 -139.9 -371.5 -372.2 -406.0 

EUB338MM/EUB338 -122.4 -333.5 -334.2 -368.0 

     

1537/1537 -148 -402.7  -439.3 

1271/1537 -119.1 -325.0  -361.6 

1538/1537 -130.5 -364.7  -401.3 

     

62/62 -143.4 -383.0  -417.5 

399/62 -120.4 -325.9  -360.4 
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Appendix D: MATLAB Code for One-compartment and Two-compartment 

Models 

 

The following code for the one-compartment model was used for thermal dissociation 

simulations in Chapter 2 and Chapter 3.  The code for the two-compartment model was used for 

simulations in Chapter 3.  The parameter values – initial probe and target concentration, 

thermodynamic parameters, and the initial fraction of probe bound at the beginning of the melt – 

are given below only as examples. 

 

The solver for differential equations was called out from program main.m.  For the one-

compartment model, main.m was the following: 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
options=odeset('AbsTol',1e-20,'RelTol',1e-17); 
 
%%Until what time to run the simulations 
tmax=3600; 
 
%%Specify deltaH and deltas; the values below belong to duplex 1537 
deltaH=-148000; deltaS=-417.3; 
 
%%Third value in par is initial probe concentration 
par=[deltaH,deltaS,2e-3]; 

 
%initial duplex concentration 
initD=2e-3; 
 
[t1_1537,y1_1537]=ode23(@diffmelt_1duplex_solution,[t0 tmax],[initD 0]', options, par); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%One-compartment model for solution-based melting 
  
function concdiff = diffmelt_1duplex_solution(t,conc,par) 
 
% define the derivatives of these variables from equations 
  
deltaH=par(1,1); 
deltaS=par(1,2); 
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b0=par(1,3); 
ka=1e6; 
 
%Temperature ramp: 0.83^oC/min, starting temperature 20^oC  
T=293+5*t/360; 
  
kdPM=ka*exp(0.5035246727089627*(deltaH-deltaS*T)/T); 
 
bpm=b0-conc(1); 
  
cdotPM=(ka/1000)*conc(2)*bpm-kdPM*conc(1); 
adot=-cdotPM; 
% 
%return the derivatives in dxy in the right order 
% 
concdiff = [cdotPM adot]'; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 

The above code assumes that the probe molecules and free target molecules occupy the same 

volume in the reaction chamber, as is the case during solution-based melting.  When 

approximating the gel-based microarray system with the one-compartment model as was done in 

Chapter 3, one must also take into account the volume differences: in that case, the function 

diffmelt_1duplex_solution was modified to include the ratio of probe versus hybridization 

chamber volume in the adot term.   

 

For two-compartment model for simulating thermal dissociation, the program main.C was 

modified in the following way: 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
options=odeset('AbsTol',1e-20,'RelTol',1e-17); 
  
b0=60e-3; 
 
tmax=3600; 
tspan=0:60:tmax; 
 
%Thermodynamic parameters 
deltaH=-148000; deltaS=-403.4;  
 
%fraction of probe bound at time t=0 
F=1; 
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%initial bound duplex concentration 
initb=F*b0; 

 
km=0.0671; 
par=[deltaH,deltaS,b0,km]; 
  
[t2comp,y2comp]=ode23(@diffmelt_1duplex_2compartments,[0 tmax],[initb 0]', options, par); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
 

The function main.C calls out is as follows. 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
%Solving the differential equation of melting 
  
function concdiff = diffmelt_1duplex_2compartments(t, conc,par) 
 
%b0 is initial probe concentration 
b0=par(1,3); 

 
deltaH=par(1,1); 
deltaS=par(1,2); 
km=par(1,4); 
ka=1e6; 
 
T=293+5*t/360; 
  
kdPM=ka*exp(0.5035246727089627*(deltaH-deltaS*T)/T); 
 
bpm=b0-conc(1); 
 
cdotPM=(ka/1000)*conc(2)*bpm-kdPM*conc(1); 
 
adot=-(ka/1000)*conc(2)*bpm+kdPM*conc(1)-km*conc(2); 
 
%return the derivatives in dxy in the right order 
% 
concdiff = [cdotPM adot]'; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
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Appendix E: MATLAB Code for Optimization of Thermodynamic 

Parameters 

 

For optimizing thermodynamic parameters, using the two-compartment model, the following 

experimental data was used: a vector of average normalized signal intensity, each component 

corresponding to a different time point during the melt.  The code below requires MATLAB 

Optimization Toolbox in order to run. 

 

The optimization was started by calling out a program optimizer.m: 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
OPTIONS = optimset('TolFun',1e-12, 'Algorithm','levenberg-marquardt'); 
  
%Set initial conditions for deltaH and deltaS: these vary depending on the %duplex 
X0=[-66089, -168]; 
  
[X,RESNORM] = lsqnonlin(@ObjFun1537,X0, [],[],OPTIONS); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% 
 

 

The function ObjFun1537 is a duplex-specific function – ObjFun1537 refers to duplex 1537, and 

is given here as an example.  The function diffmelt_1duplex_2compartments that the code below 

calls out is similar to the function described in Appendix D.   

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
function [ yn ] = ObjFun1537( X0) 
 
%Computes the objective function for optimization 
%   Calls out the solver for differential equations, and computes the %difference with respect to 
experimental curves - total n differences, where %n is the number of experimental measurements 
%  The parameters in X are deltaH, deltaS. 
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%load the temperature points at which experimental data was collected 
T=load('temperature.txt'); 
  
%Now load and manipulate the rest of the experimental data 
 
%load the ‘in’ signal 
intensities=load('30_35sumintensities1537.txt'); 
 
%load the ‘background’ signal 
intout=load('30_35sumintensitiesout1537.txt'); 
IN=30; 
OUT=35; 
avgint=intensities(:,2:8)/(IN*IN); 
avgintout=intout(:,2:8)/(OUT*OUT-IN*IN); 
  
corrint=(avgint-avgintout); 
  
NT=length(T); 
corrint0=zeros(NT,7); 
  
for i=1:7 
    corrint0(:,i)=corrint(1:NT,i)-min(corrint(1:NT,i)); 
end 
  
corrint01=zeros(NT,7); 
for i=1:7 
    corrint01(:,i)=corrint0(:,i)/max(corrint0(:,i)); 
end 
  
expdata=mean(corrint01'); 
expdata=expdata(1:49); 
  
options=odeset('AbsTol',1e-20,'RelTol',1e-17); 
  
b0=60e-3; 
  
tspan=0:60:3600; 
  
%Fraction of probe in a duplex at time t=0 
F=1; 
 
deltaH=X0(1); deltaS=X0(2); initb=F*b0; km=0.0671; 
par=[deltaH,deltaS,b0, km]; 
   
[t1it,y1it]=ode23(@diffmelt_1duplex_2compartments,[tspan],[initb 0]', options, par); 
  
y1itnorm=Normalize1(y1it(:,1)); 
  
yn=1000*(y1itnorm'-expdata); 
  
end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% 
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