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Here I present the application of three established methods for quantitatively and objectively 

assessing robotic surgical performance as well the development and application of a fourth.  

These four tools are used to assess the hypothesis that a certain surgical warm-up protocol 

improves performance of surgeons on a da Vinci robotic surgical system.  In the protocol, 

surgeons perform a brief warm-up task on the Mimic dV-Trainer virtual reality simulator prior 

to performing one of two robotic surgery practice tasks. 

Of the four techniques used for performance assessment, the three established techniques 

consist of basic measures (task time, tool path length, economy of motion and errors), 

algorithmic assessment (using trained Hidden Markov Model machine learning algorithms) and 

surgeon assessment (using the Global Evaluative Assessment of Robotics Surgery). The newly 

proposed technique called Crowd-Sourced Assessment of Technical Skill (C-SATS) draws on 

crowds of people on the Internet to assess the surgical performance. 

The evidence that warm-up improves surgical performance is presented as well as an analysis 

of the strong agreement between C-SATS and grades provided by a group of surgeons trained 

to assess surgical performance.  
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Chapter 1: Introduction and State of the Art 

Rapid development and adoption of new surgical devices and techniques may be outpacing the 

surgical profession’s ability to train providers.  One recent major new technology is 

teleoperated robots for surgery (particularly the da Vinci robotic surgical system1, Figure 1).  

The safety of patients depends on enabling reliable, safe use of new surgical technology.  

Virtual reality (VR) surgery simulation is being investigated as a way to train providers for 

surgery, maximize performance and minimize medical errors.  Effective application of new 

training technology requires sensitive and robust tools to measure surgical performance.  A 

surgeon’s skill level and the quality with which they operate vary over many times scales.  Over 

a career, it is expected their average skill increases, but from case to case and day to day their 

performance may exhibit highs and lows.  These variations may be due to environmental 

factors, patient variation, rest, nutrition, intoxicants, level of training on a surgical system like a 

surgical robot, time since last use of a system or performance of surgery, etc [1]. 

Surgery is physically and cognitively demanding, but unlike performers in other demanding 

areas like sports and performance art, surgeons do not typically warm up for surgery.  Recently, 

researchers have been interested in the use of warm-up tasks including VR simulators to 

prepare surgeons for the operating room (OR), the hope being that a surgeon’s potential 

performance could be maximized just before the operation begins.  There is evidence from 

other fields to support the hypothesis that warm-up might improve surgical performance but 

only a few studies have been published to date that quantify its effect specifically on surgery. 

                                                      

1
 Intuitive Surgical, Inc., Sunnyvale, CA, USA 
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VR systems have emerged as a valuable training tool for surgery.  Skills learned on VR trainers 

have been shown to transfer to the OR.  Currently, VR simulators are available for laparoscopic 

surgery and robotic surgery, since these domains are inherently performed while viewing the 

surgical field on a screen, as opposed to with one’s own eyes.  Robotic surgery VR simulators 

such as the Mimic dV-Trainer2 (Figure 1) are well suited for use in the OR as preoperative warm-

up.  Yet, to date no studies have demonstrated a benefit of warm-up on the performance of 

robotic assisted minimally invasive surgery, and none have measured the utility of a VR 

simulator for robotic surgery warm-up.  Measuring the impact of warm-up on surgical 

performance requires valid assessment tools.  There are a variety of surgical performance 

evaluation tools including basic measures (path length, time, economy of motion, mistakes and 

                                                      

2
 Mimic Technologies, Inc., Seattle, WA, USA 

Figure 1 - Will warming up on a dV-Trainer (left) improve task execution on the da Vinci surgical robot (right)? 
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errors), structured human assessments (OSATS: Objective Structured Assessment of Technical 

Skill, GEARS: Global Evaluative Assessment of Robotic Surgery, etc.) and algorithmic assessment 

using machine learning algorithms such as hidden Markov models (HMM).  All of these tools 

have been shown to correlate with level of training and surgeon seniority and have been 

adopted as measures of performance quality. 

Recently our group developed a new tool to assess surgical performance which is based on a 

structured assessment tool.  This new method, Crowd-Sourced Assessment of Technical Skills 

(C-SATS) recruits crowds of individuals on the Internet to assess surgical performance and may 

be a very useful and convenient way to assess surgeons. 

Recently our team devised a study to measure the effect of VR warm-up using the dV-Trainer 

on the performance of robotic surgical tasks on the da Vinci.  In this thesis I present the analysis 

of the data collected in that study.  The large dataset we collected was subjected to analysis by 

basic measures, GEARS and HMMs, and finally C-SATS to test the hypothesis that VR warm-up 

on the dV-Trainer surgery simulator improves performance of dry lab surgical tasks performed 

on the da Vinci surgical robot. 

In this thesis I present the results of testing the hypothesis that preoperative warm-up 

improves surgical performance.  Confirming this hypothesis through this and other studies may 

make VR warm-up before practicing robotic surgery standard practice for surgeons.  The goals 

of this thesis are therefore to: 

1. Evaluate the hypothesis that preoperative VR warm-up produces a significant 
improvement in robotic surgical performance as measured by basic measures such as 
task time, path length, economy of motion, and errors. 

2. Evaluate the hypothesis that preoperative VR warm-up produces a significant 
improvement in robotic surgical performance as measured by Global Evaluative 
Assessment of Robotic Surgery. 
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3. Evaluate the hypothesis that preoperative VR warm-up produces a significant 
improvement in robotic surgical performance as measured by Hidden Markov Models. 

4. Evaluate the hypothesis that preoperative VR warm-up produces a significant 
improvement in robotic surgical performance as measured by Crowd-Sourced 
Assessment of Technical Skill. 

This chapter is devoted to describing the context of this research by reviewing the relevant 

literature.  I will describe the evolution of technology in the OR, the need to improve surgical 

training and the need for tools to maximize the performance of practicing surgeons.  I will 

describe the types of skill used in surgery, focusing on the aspects of performance we hope to 

measure and improve.  I will describe the tools available to assess performance and the 

evidence for the impact of warm-up on surgeon performance.  Lastly, I describe the warm-up 

study conducted from 2010 to 2012. 

1.1 Surgical Robotics 

Teleoperated surgical robots were first proposed by Alexander in a 1978 report titled Impacts 

of Telemation on Modern Society [2].  The first use of a robot in surgery occurred in 1985 when 

a computed tomography guided Unimation Puma 200 robot was used to guide tumor biopsy 

needles [3].  From the earliest description of laparoscopic minimally invasive surgery, so called 

keyhole surgery has grown into an accepted technique for many procedures [4, 5].  The da Vinci 

surgical robot was introduced in 2000 and is now used in over 360,000 minimally invasive 

procedures per year worldwide with an install base of 2,710 robots as of Q1 2013 [6, 7].  In 

recent years the overall number of medical devices and tools used in the OR has ballooned, 

each with their own specific set of indications, instructions and operational knowledge.  At the 

same time, the total number of hours a resident physician is permitted to train has been limited 
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to 80 hours per week [8].  Tools for efficient training of surgeons are needed as are tools to 

maximize the potential performance of surgeons as they enter the OR. 

1.2 Improving Surgery 

Despite massive investments in pharmaceutical treatments of disease, surgery has maintained 

its prevalence.  According to physician and public health advocate Atul Gawanded: 

The average American can expect to undergo seven operations during his or her 
lifetime.  This profound evolution has brought new societal concerns, including 
how to ensure the quality and appropriateness of the procedures performed, how 
to make certain that patients have access to needed surgical care nationally and 
internationally, and how to manage the immense costs [9]. 

Medical errors in surgery drive costs higher and result in thousands of injuries and deaths each 

year [10].  In the year 2000, the Agency for Healthcare Research and Quality reported more 

than 32,000 deaths resulting from surgery, placing it among the top 10 causes of death in the 

US [11, 12, 13].  Though not all of these deaths are due to errors, many are and thus may be 

prevented by reducing the error rate.  Furthermore, there are many adverse events during 

surgery which are not considered errors.  Intestinal perforations resulting in bowel leaks are a 

known risk of abdominal surgery and while regrettable are generally not considered a medical 

error.  Gawande reasons: 

Today, surgeons have in their arsenal more than 2500 different procedures. Thus, 
the focus of recent advances in the field has been less on adding to the arsenal 
than on ensuring the successes of the treatments we have. 

1.3 Need for Skill Evaluation in Surgery 

In many ways surgical success is easily observed.  Did the patient survive and thrive following 

surgery?  Was bleeding kept to an acceptably low level?  Was a surgical revision required?  
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However identifying the cause of a surgical error or adverse event is a problem confounded by 

so many variables that attribution often becomes impossible.  According to Gawande “the [New 

England Journal of Medicine] is entering its third century of publication, yet we are still unsure 

how to measure surgical care and its results. Experiments in the delivery of care will probably 

provide the next major advancement in the field of surgery.” 

During medical school and residency, physicians in training are required to pass the United 

State Medical Licensure Exam (USMLE).  The USMLE is primarily a cognitive test of the subject’s 

knowledge of medicine and its provision.  A clinical skills portion of the exam tests subject’s 

ability to interact with test patients but no procedural skills are examined beyond ability to 

perform a standard physical exam. 

In Washington State, physicians are required to renew their medical licenses every 4 years.  

Renewal requires reporting 200 hours of continuing medical education (CME) [14].  The state 

does not mandate the content of the CME nor do they require surgeons be subjected to 

technical skill evaluation. 

The American Board of Medical Specialties is an umbrella organization that includes 24 of the 

26 medical specialty boards in the United States, including 9 that oversee the training of 

surgeons.  The member organizations such as the American Board of Surgery (ABS) and the 

American Board of Urology set the educational standards for residency programs providing 

specialty training in the US.  To date, only the ABS requires passing a technical skills exam, the 

Fundamentals of Laparoscopic Surgery (FLS), in order to attain board certification [15]. 

The final qualification to perform surgery in a US hospital is hospital surgical privileges.  These 

can be procedure and system-specific.  Each hospital establishes their own rules but typically 
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surgeons must apply for privileges and then perform a number of procedures under supervision 

of a surgeon with privileges.  This requirement is time consuming and imprecise given the 

variable nature of surgical performance.  And there is a clear economic incentive and a 

potential conflict of interest: hospital profits rely on having surgeons privileged to perform a 

variety of lucrative procedures.  Furthermore, there are open questions as to how to certify a 

novel procedure and how to translate procedures to institutions that don’t currently practice 

those procedures.  Often all that is required to begin using the da Vinci surgical robot in ORs 

around the country is a robot and completion of a weekend in-service training course provided 

by Intuitive Surgical.  The result of insufficient training can be devastating [16, 17]. 

1.4 Training Technical Surgical Skills 

During their training surgeons develop an arsenal of skills.  These include medical decision-

making, doctor-patient relationship management, and technical surgical skills.  Each draws on a 

foundation of knowledge, be it of medical facts, psychomotor knowledge or a combination 

thereof. 

“Psychomotor learning is the relationship between cognitive functions and 
physical movement. Psychomotor learning is demonstrated by physical skills such 
as movement, coordination, manipulation, dexterity, grace, strength, speed; 
actions which demonstrate the fine motor skills such as use of precision 
instruments or tools, or actions which evidence gross motor skills such as the use 
of the body in dance, musical or athletic performance [18].” 

During residency and into professional practice, surgeons develop their psychomotor skills. 

Out-of-OR practice is growing in popularity as a means of training physicians.  VR and phantom 

tissue model based surgery simulators are commercially available.  Practice on these simulators 

has been show to produce improvements in the OR and they provide new ways to evaluate 
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surgeon performance [19].  The tasks used to train and evaluate surgeons must be of sufficient 

difficulty to actually differentiate skill levels.  In their analysis of surgeon performance, Rosen et 

al. found that some surgical tasks (the first step in a laparoscopic cholecystectomy) were easy 

enough that both novice and expert surgeons performed equivalently [20].  This is similar to the 

FLS tasks, criticized by some in the field for being too easy.  It is argued that even technically 

deficient surgeons can practice to FLS proficiency. 

1.5 Surgical Performance Evaluation Tools 

It is believed that medical decision-making and judgment are sufficiently evaluated using 

written exams.  Currently, development and application of tools to measure technical skills, 

psychomotor skills and surgical tool manipulation skills are of more interest [21].  These skills 

are also believed to vary over time and be subject to external influences.  The following are the 

existing techniques in use today for evaluating a surgeon’s skill. 

1.5.1 Direct Observation 

William Halstead promoted the apprenticeship model for training surgeons which evolved into 

the residency training model used today [22].  Direct trainer-trainee interaction allows the 

attending physician to observe and provide qualitative formative feedback to the resident.  This 

approach has the advantage that it requires no additional equipment, the feedback provided is 

specific and directed, the trainer has access to patient information and contextual knowledge, 

and in general this model is compatible with all venues of surgical performance including the 

OR.  Furthermore, feedback can include advice on decision-making. 
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This approach is limited in that the produced evaluation is inherently subjective and thus 

inappropriate for summative assessment and certification.  Furthermore, the fallibility of 

human memory and the fact that the assessor can only reference their own personal 

experiences means that standards will vary across the nation and world.  Nevertheless, 

progression through a board approved residency program is all that is needed to practice 

surgery today in the US.  Residency directors have few tools to prevent trainees from 

graduating and practicing independently even if they believe the trainee may put patients at 

risk. 

1.5.2 Basic Measures 

Basic measures of operative performance for laparoscopic and robotic surgery include task 

completion time (or subtask completion time), overall path length, and economy of motion 

(average velocity) [23, 20, 24].  Additional metrics such as tool accelerations and predefined 

procedural errors also belong in this category.  With regards to time, there are definite benefits 

to minimizing anesthesia, but the correlation between path length and skill is justified more on 

correlation with seniority (construct validity) than a specific theory of how path length 

influences patient health [25, 26]. 

Basic measures are generally very easy to compute.  Procedure time for example is routinely 

recorded for each surgery.  These metrics are also considered to be objective.  Laparoscopic 

and robotic systems lend themselves to these types of metrics, indeed the da Vinci surgical 

robot is internally aware of the position of the end effectors at all times during surgery.   

Unfortunately, this data is tightly guarded by Intuitive Surgical and made available only to 

certain preferred research institutions under restrictive conditions.  Systems such as SurgTrak, 
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described below, can achieve end effector tracking but are not yet available for surgery on 

human patients.  There are also general tracking issues, especially in surgical domains such as 

neurosurgery where the motions are small and influence of tool flexibility is large.  Perhaps the 

most significant limitation of these tools, though, is the fact that there is not an inherent 

benefit to the patient for their surgeon to achieve the surgery with lower acceleration 

magnitudes, path lengths, or increased tool velocities. 

1.5.3 Objective Global Assessments 

A group of Canadian surgeons seeking to measure the surgical skill of their residents first 

developed the Objective Structured Assessment of Technical Skills (OSATS) in 1997 [27].  Martin 

et al. at Toronto General Hospital created the tool which uses 7 areas of assessment each 

graded on a scale from 1 to 5 anchored by text guidelines to assist graders and ensure inter-

rater reliability.  The seven areas were chosen to represent dimensions of surgical performance 

deemed relevant to surgical education and patient outcome by the senior staff surgeons.  

Numerous studies have employed OSATS directly and modified versions of global rating scales 

to assess surgical performance.  Recently Goh et al. created and validated the Global Evaluative 

Assessment of Robotic Surgery (GEARS) shown in Figure 2 [28].  Their study established the 

construct validity of the tool, correlating GEARS score during the seminal vesicle dissection 

portion of a robotic radical prostatectomy to surgeon seniority and training. 

Van Hove et al. reviewed recent literature covering OSATS, global operative assessment of 

laparoscopic skills (GOALS), machine learning approaches and check lists for use in assessing 

technical surgical skills [29].  They reported each had evidence showing construct validity, the 

notion that the tool measures what it was built to measure, in this case skill, but that observer 
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blinding practices were often lax or poorly described [30].  Van Hove makes notes that even a 

tool without the validation strength to be used for credentialing purposes may be useful as a 

formative feedback tool for education. 

 

Figure 2 - Global Evaluative Assessment of Robotic Surgery by Goh et al. has been demonstrated to be a valid tool to assess 
robotic surgery. 

Global rating scales are popular because of their relative accessibility and ease of use.  OSATS 

and GEARS scores have been shown to correlate with surgeon seniority and cases performed 

and are often used to assess videos of surgical performances, increasing objectivity of the 

review.  These tools are popular for validating training tools and training curricula. 



12 

They are however time consuming to use.  Under the best circumstances it takes about the 

same amount of time to watch a surgical task as it does to assign a global rating scale score.  

Furthermore, only senior surgeons are trusted to assign global rating scale scores (though 

crowd sourcing this task is an option).  Previous research has shown that clipping, or speeding 

up and slowing down video of surgical performance influences assigned grades so these 

practices are to be prohibited  [31, 32].  Also, when applied to video recordings of performance, 

domains such as Autonomy cannot be evaluated and are usually discarded.  To date, the 

presence of a senior surgeon is required to assign scores so they are not available as immediate 

formative feedback for trainees.  When these tools are applied to surgical education research 

settings, scores from multiple graders are averaged.  Scores from single surgeon scorers may 

not be valid.  Furthermore, in current use, the 5 to 7 sub-scores in a global rating scale are 

summed.  This may indicate valuable data is being discarded.  Finally, I have been unable to 

identify any literature that correlates global rating scales with clinical outcomes for patients. 

1.5.4 Algorithmic Assessment Using Hidden Markov Models 

Markov models and more recently hidden Markov models have proven useful for measuring 

surgical proficiency [12, 24, 33, 34, 35, 36, 37].  Researchers from the BioRobotics Lab and 

elsewhere have refined their application to modeling surgical skill over the past 15 years and 

have demonstrated numerous formulations that are able to correctly group performances into 

expert and novice categories and assign continuous numerical scores. 

The sequence of steps in applying hidden Markov models to performance evaluation typically 

includes:  
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1. Capture time varying signals during a surgical task 
a. These often include movement path, tool velocity, tool contact forces, etc. 

2. Reduce the dimensionality of captured data to a series of code words 
3. Train a model  

a. Validate the new model 
4. Evaluate a new piece of performance data 

Many systems are available for capturing time varying signals.  The BioRobotics Lab has used 

laparoscopic tools instrumented with force/torque sensors and mechanical frames to track the 

motions of surgeons operating on pigs [24, 38, 39].  The da Vinci surgical robot can provide 

similar movement data that is sadly locked away from most researchers [12, 23].  Our SurgTrak 

system, described below, provides similar data about the movement of da Vinci tools 

commanded by a surgeon.  Surgery is fundamentally about manipulation of tissue which 

requires the application of force but since movement and positioning of tools is also critical and 

much easier to capture, this is often the basis of surgical skill evaluation, especially on the da 

Vinci which does not record or report contact forces. 

Frequently in surgical skill evaluation, these signals are high dimensioned signals sampled at 10 

to 100 Hz. Information content analysis leads us to believe the majority of the data about 

surgical performance are found between 0 and 5Hz, indicating this sampling frequency is 

appropriate [24]. 

Once the data has been captured it must be dimensionally reduced to a series of discreet code 

words in order to be used to train HMMs.  This step is known as vector quantization (VQ).  

Kowalewski et al. have well described efficient methods to initiate this dimension reduction 

[40].  Their approach begins with normalizing each dimension of the data by subtracting the 

mean of each of the data dimensions from the data of that dimension, then dividing each 

dimension in turn by the range of the data.  This range can be the full range of each dimension 
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or a range that leaves out 2 to 5% of the numerically largest data assumed to be outliers.  The 

result is data that is numerically in the same range.  This is important so that numerically large 

dimensions to not dominate in the next step.  Next a k-means algorithm is used to divide the 

data into n clusters.  The value of n is usually in the range of 16 to 256 and is chosen 

incrementally by finding a value for n that produces a distortion of 1% of the overall distortion 

of the data, or less than a 1% improvement over a codebook of size 1 larger.  Distortion is 

defined to be the average Cartesian distance between all data points and their corresponding 

cluster centers assigned using the nearest neighbor algorithm. 

Hidden Markov Models are mathematical descriptions of time series systems [41].  They have 

found successful application in speech recognition and signal processing.  They consist of an 

interconnected set of hidden m states that cannot be directly observed.  Each of the m states 

can produce one of n emissions which are observable.  They are parameterized as: 

λ=(A,B,π) 

Where A is an m by m matrix describing the probability of transitioning from one hidden state 

to another over one time step. B is an m by n matrix describing the probability of emitting one 

of the n code words given the underlying state.   The vector of length m containing the 

probability of the initial hidden states is signified by π.   Not all models include an initial state 

probability matrix π, instead, it is appended as an additional row on B with 0 probability of 

returning to that beginning state. 

The series of observations or code words are signified as: 

O = O1O2O3 … OT 

and underlying state sequence as:  



15 

Q = q1q2q3 … qT 

where the length of each, T, corresponds to the discreet number of time samples in the series. 

There are three fundamental tasks for hidden Markov models [41]: 

Problem 1:   Given the observation sequence O and the model λ, how do we efficiently 

compute P(O|λ), i.e. the likelihood the observation sequence was generated by a 

system fitting the model.  This can be thought of as a “score” or quality factor.  

Regardless of the actual sequence, the numerical value of P(O|λ) tends to be 

very small and so is often reported as the log of P(O|λ) and is known as the ‘log 

likelihood’. 

Problem 2: Given the observation sequence O and the model λ what is the most likely state 

sequence Q? 

Problem 3: How do we adjust the model parameters of λ = (A,B,π) to maximize P(O|λ)? 

The evaluation problem is relatively straightforward and can be calculated in a very short 

amount of time.  The third problem, adjusting the model parameters to fit an observation 

sequence or set of sequences is more computationally intensive.  The two common algorithms 

are the Baum-Welch Algorithm and the Viterbi algorithm [42].  In each case an initial guess for 

A and B are provided and their parameters adjusted until the training data fits to a certain 

quality specification.  Guesses for A and B are usually randomly seeded matrices and thus this 

training task lends itself well to parallelization. 

The first problem provides a means of evaluating the fit of a given observation sequence O to a 

model λ.  However log(P(O|λ)) tends to decrease as O increases in size.  Rosen’s group and the 

JHU group address this problem in different ways.  JHU score each trial against novice, 
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intermediate and expert models, λN, λI, λE, and assigns expertise as a discreet level based on the 

model to which the user best fits [37]: 

class = argmax(log(P(Oi|λN)),log(P(Oi|λI)),log(P(Oi|λE))) 

Rosen on the other hand provides a numerical score with a continuous output [20]: 

Expert Similarity Factor = log(P(Oi|λE)) /log( P(Oi|λi)) 

λi is a model of surgical performance trained on one’s own data.  Training this model would take 

some time but through parallelization may be fast enough to enable near-real time formative 

feedback to surgeons in training. 

Hidden Markov models of surgical skill are distinct from Discreet Markov models (DMM) in that 

the true underlying state is not known.  Rosen has described DMMs where force/torque 

signatures implied specific surgical motions such as pulling, sweeping, idle, etc. [24].  This 

approach requires segmented and tagged training data which is very time consuming to 

produce when analyzing large quantities of data.  Automated methods for task decomposition 

have been proposed for surgical skill evaluation.  However, they still require some amount of 

hand labeling to produce a training set for the classifier [35, 43].  

1.6 Warm-Up 

Pre-performance practice or warm-up is a popular preparatory activity in many activities from 

sports to performance art [44, 45, 46, 47].    Benefits include task specific performance 

enhancement, reduced energy expenditure, reduced rates of injury, and reduction of task time 

[48, 49].  Bishop et al. reviewed warm-up literature and identified a number of physical 

mechanisms including increased oxygen consumption, improvement in anaerobic energy 
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provisioning, reduction in muscle and joint stiffness, and increased nerve conduction rate as 

contributing to improved performance following warm-up [50].  Bishop also identified positive 

psychological effects following warm-up.  From other studies, warm-up is also known to reduce 

anxiety and improve cognition [51].  Motor learning literature contributes the notion of motor 

adaptation.  Although still a topic of research, it is known that a user’s expectation of the 

inertial properties of a manipulated object influence the motor commands sent to the muscles 

[52].  Motor planning adapts to load applied to a user’s limbs.  This provides the hypothesis that 

warm-up allows the user to adapt to the mass properties of the master telemanipulator of the 

da Vinci robot.  On our specific case, the user may also be relearning the workspace constraints 

and controls location of the master console. 

Preoperative warm-up is being investigated as a way of maximizing the potential performance 

of surgeons.  The first research specifically into warm-up preparations for surgery was 

performed by Do et al. [53].  In their study 12 residents and 12 medical students performed a 

laparoscopic transfer task with and without warm-up consisting of repetitions of the same task.  

It was found that after warm-up residents’ pill transfer speed increased by 25% and the medical 

students’ pill transfer speed increased by 29%. 

The next researcher to publish an investigation of the effect of warm-up on surgical 

performance was Kanav Kahol and colleagues [54].  Part one of Kahol’s study involved the use 

of a VR laparoscopy simulator for both warm-up and criterion tasks.  14 post-graduate year 

(PGY) 1, 10 PGY2, 11 PGY3 and 10 attending surgeons performed two repetitions of the same 

VR ring-on-pegboard task with the first being marked as the warm-up trial.  The VR tasks 

included both psychomotor and cognitive elements, requiring the subjects to place rings on 
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pegs by memory after prompting.  The reported metrics were gesture proficiency, hand 

movement smoothness, tool movement smoothness, time and cognitive errors.  Warm-up was 

found to improve performance across all metrics.  The study was notable in the use of hand 

movement and tool tracking as well as the use of HMM based gesture proficiency analysis. 

Sadly, the group has only published one paper describing their gesture proficiency analysis 

algorithms and it is not descriptive enough to enable other researchers to try to verify their 

results [55].  In a second experiment, 6 residents performed VR warm-up tasks followed by a 

diathermy task on a ProMIS simulator.  When compared with a control group of residents, 

those having performed warm-up exhibited significantly better performance by the same 

metrics as the first study.   This first study is limited by the fact that the warm-up and criterion 

tasks were identical.  The second was limited by the small number of participants and the non-

self-controlled design.  Both are limited by the opacity of the author’s analysis methodology. 

Calatayud et al. performed the first study examining the transfer of VR warm-up into the OR by 

measuring the impact of warm-up on the performance of a laparoscopic cholecystectomy [56].  

Their study included 8 surgeons and a cross over structure (The original study design included 

10 subjects but video recording problems eliminated two subjects’ worth of data).  The initial 

subject population included 10 right handed surgeons, half with greater than 100 laparoscopic 

cholecystectomies each and half with fewer than 40.  Half of the subjects performed one 

cholecystectomy procedure with warm-up and the other half without.  Then the two groups 

switched and the non-warm-up group performed the same procedure with warm-up.  Warm-up 

consisted of 3 tasks on a Lapsim simulator at the medium difficulty level and lasted 

approximately 15 minutes.  Patients were screened to try to assure similarity but patient 
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variation is not fully controllable.  Surgical videos were analyzed with OSATS by expert 

surgeons.  The surgeons’ performances were found to be significantly better when preceded by 

preoperative warm-up, with the warm-up group achieving an average OSATS score of 28.5 out 

of 35 and the non-warm-up group achieving an average score of 19.25.  The Calatayud group 

describes robust results which are however limited to laparoscopic surgery, a task with 

fundamental difficulty due to the fulcrum effect [57].  Their results are particularly interesting in 

that the criterion task was an actual surgery, with scores so strongly in favor of warm-up and 

effective use of a global rating scale for assessment.  They do not report the performance of 

their subjects on the Lapsim simulator or its utility as a performance predictor. 

1.7 Crowd-Sourcing 

Crowd-sourcing is the practice of asking large groups of people to perform cognitive or 

judgment tasks in fields in which they are not trained [58].  Interestingly, in some cases such as 

solving simple or segmented tasks, crowds of untrained individuals can perform as well or 

better than experts.  Enabled by the Internet, crowd-sourcing has been used for diverse tasks 

from image analysis to translating images of text into computer-readable text files [59, 60].  In 

the medical and science realms, crowd sourcing has been used to solve protein folding 

problems and to offer medical diagnoses [61, 62]. 

Platforms have been created to harness the power of these crowds.  One such platform is 

Amazon Mechanical Turk (See Figure 3).  Mechanical Turk provides a web interface for the 

crowd (known as Workers and consisting of anyone around the globe age 18 or older and 

having access to a computer with an Internet connection) to work on tasks presented by 
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researchers, businesses and others (known as Requesters).  The Workers are paid a small 

commission, on the order of $.05 to $3 for tasks ranging in length from 1 to 10 minutes and 

including such tasks as classifying items, transcribing audio or video, or any other task the 

requesters offer.  Because Mechanical Turk is a marketplace, the quality and rate of work 

completion by the Workers is closely tied to the amount paid. 

 
Figure 3 - Amazon Mechanical Turk homepage interface for Workers and Requesters. 
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1.8 UW/MAMC Warm-Up Study 

This thesis involves the analysis of a set of data collected during a study of the effects of VR 

warm-up on surgical performance.  Chapters 2 through 5 all use the dataset generated in this 

study.  This section describes the study and the collection of data.  Between September 2010 

and January 2012 our group recruited subjects and collected data under Department of 

Defense Grant W81XWH-09-1-0714: “Virtual Reality Robotic Simulation for Robotic Task 

Proficiency: A Randomized Prospective Trial of Pre-Operative Warm-up.”  The objective of the 

study was to measure improvement in surgical performance on the da Vinci surgical robot 

derived from a short VR session on a Mimic Technologies dV-Trainer surgery simulator. 

1.8.1 Study Tasks 

Four physical robotic surgery training tasks were used during the proficiency and primary 

randomized phases of the study.   

1.8.1.1 Rocking pegboard 

This was the primary task performed during the randomized portion of the study.  The rocker 

and pegboard are shown in Figure 4.  Subjects moved a pair of elastomeric rings with a 

specified sequence of pegs and tool movements around a pegboard mounted on an S1000-A 

GyroTwister chemistry rocker3 undulating at a rate of 8 cycles per minute and with amplitude of 

±10° in the roll and pitch axes.  It is a novel task based on a VR task used in Kahol’s study of 

warm-up [54].  Mimic Technologies provided a VR version of the task which was used as the 

                                                      

3
 Labnet International, Inc., Edison, NJ, USA 



22 

warm-up task for the subjects in the warm-up group.  During proficiency testing the task time 

limit was set to 120% of the average best time of two proficient surgeons participating in the 

study design.  During the primary randomized portion of the trial, the outcome measures were: 

 Economy of Motion (continuous) 

 Ring Drops (binary) 

 Mid-air Transfer Error (binary) 

 Out of Order Error (binary) 

 Task Time (continuous) 

 Peg Touches (counts) 

 Cognitive Errors – Mid-air transfer + out of order (counts) 

 Path Length (continuous) 

 

Figure 4 - Rocking pegboard was mounted to a lab mixer rotating at 8 cycles per minute. 

1.8.1.2 Suturing With Intracorporeal Knot Tying 

This task requires the subjects to drive a needle through a 1.5 inch long piece of penrose drain 

material and tie a secure surgeon’s knot.  It is a standard laparoscopy training and evaluation 

task and is an FLS task.  During proficiency testing the task time limit was set again to 120% of a 
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proficient surgeon’s time.  During the primary randomized portion of the trial the outcome 

measures were: 

 Entrance Error (binary) 

 Exit Error (binary) 

 Air Knot Error (binary) 

 Break Error (binary)  

 Task Time (continuous) 

 Economy of Motion (continuous) 

 Cognitive Errors – incorrect topology of knot or forgot surgeon’s knot (binary) 

 Technical Errors – entrance + exit + air knot + break (count) 

 Entrance + Exit + Air Knot error (0,1,2,3) 

 Path Length (continuous) 

1.8.1.3 Peg Transfer 

In this task subjects move triangular rubber blocks through a series of motions, first picking up a 

block from the right set of pegs with the right tool, then transferring the peg in mid-air to the 

left tool and placing the block on an open peg on the left.  Once all six blocks have been moved 

from right to left they are returned to the pegs on the right, again passing the block between 

tools.  Peg transfer is a standard laparoscopy training and evaluation task and is an FLS task.  

This task was used only for proficiency testing.  The time limit was again set at 120% of the 

expert surgeons’ performances.  The task for only used in subject proficiency assessment. 

1.8.1.4 Ring Tower 

The ring tower task is designed to train the use of the camera clutch and tool clutch on the 

surgical robot.  It involves moving 4 elastomeric rings from a central set of features to a distant 

set of 4 posts. It is a standard da Vinci robot training task.  This task was used only for 

proficiency testing.  The time limit was again set at 120% of proficient. 
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1.8.2 Study Structure 

The study was structured such that each subject had to demonstrate task proficiency on the 

four tasks: 1) Block transfer, 2) Suturing with intracorporeal knot tying, 3) Ring tower, and 4) 

Rocking pegboard.  Subjects were required to complete two consecutive iterations of each of 

the proficiency tasks with no errors to be admitted to the study.  The subjects were allowed 

unlimited practice sessions.  After a subject had demonstrated proficient use of the robot, they 

were assigned to either a warm-up group or a non-warm-up group using a four-at-a-time block 

randomization scheme.  Each admitted subject then completed three sessions of rocking 

pegboard followed by one session of suturing with intracorporeal knot tying, with 

approximately one to two weeks in between sessions.  The warm-up group subjects performed 

one round of the rocking pegboard task immediately prior to the rocking pegboard and suturing 

sessions.  The non-warm-up group subjects were assigned 10 minutes of pleasure reading.  

Figure 5 depicts the flow of study subjects through the proficiency and randomized phases of 

the study. 
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Figure 5 - Flow of subjects through the warm-up study. (Courtesy of Tom Lendvay.) 

Table 1 lists the total tasks performed by each subject by the end of the four sessions of the 

primary randomized portion of the study. 
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Table 1 - Tasks performed by each subject during the primary randomized portion of the warm-up study.  Each subject in the 
warm-up group performed one round of the VR rocking pegboard task before their robot trials (including before their 
suturing trial). 

Task Warm-up Group Control Group 

Rocking Pegboard 3 3 

Suturing with 
Intracorporeal Knot Tying 

1 1 

1.8.3 Demographics 

The study was conducted jointly between the University of Washington Medical Center in 

Seattle, Washington and Madigan Army Medical Center at Joint Base Lewis-McChord outside 

Tacoma, Washington and included resident and faculty surgeons with and without da Vinci 

experience.  Table 4 in Chapter 2 lists the comparative characteristics of the two groups.  They 

were found to be very well matched and not to exhibit significant differences. 

1.8.4 SurgTrak Performance Tracking 

We developed a custom system for recording surgical performances on the da Vinci surgical 

robot.  Our system provides surgical performance data locked within the da Vinci combined 

with endoscope video feed and environmental variables [63, 64, 65].  Figure 6 shows a standard 

da Vinci Si large needle driver next to a modified SurgTrak Tool.  Custom software synchronizes 

the various data feeds.  For the warm-up study, task time, sequence errors, peg touches, 

position and orientation of the tools, the pose of the tool graspers and surgeon view video 

were recorded during each task.  Table 2 shows the data recorded and its source.  
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Table 2 - Data types and their sources collected during warm-up study. 

Platform Data Name Characteristics Recording 
Subsystem 

da Vinci (recorded 
with SurgTrak) 

Task video 2 dimension left eye view 
full resolution, contains 
additional performance 
data including use of 
camera clutch and tool 
clutch 

Epiphan4  DVI2USB 

Tooltip position and 
orientation 

sensor located at back of 
tool, position and 
orientation of wrist 
computed as a known 
offset from calibration 
data 

Ascension5 
trakSTAR 

Peg touches Electrical contact 
between tool tip and 
pegs (Rocking pegboard 
task only) 

Phidgets6 Interface 
Kit 

Grasper pose Angle of 4 spindles 
driving the grasper 

dV-Trainer Virtual 
Reality Surgery 
Simulator 

Task video 2 dimension left eye view 
full resolution 

Epiphan DVI2USB 

position and 
orientation of tools 

end effector location 
over time 

dV-Trainer 

port locations provided at beginning of 
task log 

dV-Trainer 

peg touches computed in software dV-Trainer 

applied force relative term computed 
in software but not 
directly related to a  
physical force 

dV-Trainer 

    

                                                      

4
 Epiphan Systems, Inc., Ottowa, Ontario, Canada 

5
 Ascension Technology Corporation, Milton, VT, USA 

6
 Phidgets Inc., Calgary, Alberta, Canada 
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Figure 6 - SurgTrak modified large needle driver for the da Vinci Si. 

Potentiometers were applied to four spindles in the proximal portion of the tool (Figure 7) to 

measure grasper pose (Figure 8).  An electrical contact in each tool detected grasper contact 

with the grounded metal pegs on the rocking pegboard. 

 

Figure 7 - Internal view of SurgTrak tool including potentiometers to measure spindle angle (A), trakSTAR position and 
orientation sensor (B) and peg electrical contact sensor (C). 

A 

B C 
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Figure 8 - Depiction of the four spindle cable-driven degrees of freedom of the end effector of a da Vinci large needle driver. 

Should force data be determined to be of critical importance, prototype da Vinci tools with 

integrated force sensors have been devised by other groups [66]. 

1.8.5 Data Storage 

The data collected during the warm-up study is stored on a server housed in the BioRobotics 

Lab at the University of Washington.  The data is password protected.  A raw copy of the data is 

stored with read-only file permissions.  A second copy of the data is committed to a subversion 

repository that tracks all changes to the primary data itself, derived data and associated 

processing files.  This allows for erroneous changes to be reverted.  The entire subversion 

repository was also automatically copied to a geographically remote offsite backup. 

1.8.6 Collected Data 

The data we collected during the primary randomized trials is summarized in Table 3.  



30 

Table 3 - Performance sessions completed during primary study. 

 Warm-up Control 

Subjects 25 26 

Platform VR Robot VR Robot 

Rocking 
Pegboard 

78 78 0 75 

Suturing 26 (warm-up 
task is rocking 
pegboard) 

26 0 25 
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Chapter 2: Impact of Preoperative Warm-Up on Basic Measures 

of Surgical Skill 

Evaluate the hypothesis that preoperative VR warm-up produces a significant improvement in 

robotic surgical performance as measured by basic performance measures. 

2.1 Summary of Contributions 

This chapter was published as Virtual Reality Robotic Surgery Warm-Up Improves Task 

Performance in a Dry Laboratory Environment: A Prospective Randomized Controlled Study by 

Lendvay, et al. in the June 2013 volume of the Journal of the American College of Surgeons [67].  

The study drew on the efforts of a large number of researchers.  I joined the BioRobotics Lab as 

the systems to collect the study data were being devised.  I designed the surgical tracking 

technology that became SurgTrak.  Along with Timothy Kowalewski, I designed and developed 

modified da Vinci surgical tools with sensors to track their position and grasper pose, as well as 

a complementary software program to facilitate recording from the tracking subsystems, and 

finally a protocol for setting up the da Vinci robot in order to assure optimal data quality.  I built 

many copies of the SurgTrak modified da Vinci tools, making design improvements from my 

original designs as I went.  I helped maintain the data storage infrastructure, trained other 

personnel to record subject performances, and recorded performances of subjects.  We 

collaborated on writing Matlab7 software to compute end-effector location using forward 

kinematics.  I debugged this software and built visualizers to verify data integrity.  Together we 
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collated the data from the randomized stage of the study into an excel spreadsheet which we 

provided to biostatisticians for analysis.  I met with our biostatistical experts to help them 

understand the data we provided them to analyze. 

The full citation of the work follows:  

Thomas S. Lendvay, Timothy C. Brand, Lee W. White, Timothy Kowalewski, Saikiran Jonnadula, 

Laina D. Mercer, Derek Khorsand, Justin Andros, Blake Hannaford, Richard M. Satava, Virtual 

Reality Robotic Surgery Warm-Up Improves Task Performance in a Dry Laboratory Environment: 

A Prospective Randomized Controlled Study, Journal of the American College of Surgeons, 

Volume 216, Issue 6, June 2013, Pages 1181-1192, ISSN 1072-7515, 

http://dx.doi.org/10.1016/j.jamcollsurg.2013.02.012. 

2.2 Introduction 

Finding methods to improve surgical performance for trainees and practicing surgeons has 

become a national mission to mitigate surgical morbidity, reduce health care costs, accelerate 

learning curves, provide curricula for the introduction of new surgical technologies, and ensure 

that reductions in duty hours for trainees do not compromise surgical education [11, 68, 69].  

Surgical simulation methods are mandated by some surgical professional boards [70, 71] and 

the merits of surgical simulation have been validated both in and out of the operating room 

(OR) [72, 73, 74, 75, 76]. 

Most surgical simulation is carried out in dry and animate laboratories at a very different time 

than actual surgery on patients. But recent studies suggest that surgical simulation immediately 

before criterion surgical tasks can benefit performance [56, 77].  This presurgical rehearsal, or 
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warm-up, promises to boost surgical performance. Now that high-fidelity simulator curricula 

exist for robotic surgery, we hypothesized that virtual reality (VR) robotic surgical warm-up for 

similar (basic skills) and dissimilar (complex task, intracorporeal suturing) tasks improves 

performance in both surgical trainees and experienced minimally invasive surgeons. 

High-stakes professions, such as athletics and performing arts, have long relied on the 

principles of the warm-up decrement (ie, the decrease in performance after a period of rest) 

and the Activity Set hypothesis (ie, the idea that to counter the warm-up decrement, some 

activity to elevate the arousal and readiness of the subject is required to boost performance) to 

optimize performance readiness [78, 79, 80, 81].  Yet, surgery does not involve a prescribed 

warm-up or presurgical rehearsal, although it is a high-stakes profession drawing on intense 

psychomotor and cognitive efforts. The benefits of warm-up can be particularly important for 

robotic surgery because of the increased information presented to the surgeon through the 

visual monitor, as visual cues must be processed to derive forces applied by the tools 

(synesthesia) and cognitive arousal is likely to benefit greatly from warm-up. 

Do and colleagues were the first to use a laparoscopic box trainer to study the effect of warm-

up exercises on follow-up laparoscopic tasks, and they observed a considerable improvement in 

performance (25%) for both residents, irrespective of PGY level, and a medical student control 

group (p < 0.0001) [53].  The study was not able to discriminate the effects of the learning curve 

vs a true warm-up effect and so Kahol and colleagues sought to address this in a laparoscopic 

VR simulation study [54]. Surgeons were randomized to receive either warm-up or no warm-up 

using a series of VR ring-transfer tasks that tested psychomotor, attentional, and visuospatial 

skills. The results yielded a substantial reduction in errors (33%). In addition, Kahol and 
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colleagues showed that the warm-up effect was demonstrated in surgeons of all levels of 

expertise and generalized to dissimilar follow-up tasks, such as an electrocautery task. In Kahol 

and colleagues' study, both warm-up tasks and criterion tasks were in a virtual laboratory. But 

in 2010, Calatayud and colleagues showed that a VR simulation warm-up in the OR benefited 

residents performing laparoscopic cholecystectomies [56]. Eight residents demonstrated higher 

global performance scoring on an Objective Structured Assessment of Technical Skills tool [56]. 

In 2012, Lee and colleagues showed that brief reality-based laparoscopic suturing and VR task 

warm-up immediately before the colon mobilization in laparoscopic nephrectomies performed 

by senior urology residents yielded higher global assessment scoring and reduced task time 

[82]. All of these studies have been performed with conventional laparoscopy, yet there have 

been no studies looking at the value of surgical warm-up in robotic surgery. We sought to 

explore the role VR robotic warm-up has on similar and dissimilar robotic surgery tasks. 

2.3 Materials and Methods 

2.3.1 Study Design 

Residents and experienced minimally invasive surgery faculty in General Surgery, Urology, and 

Gynecology from 2 medical centers underwent a validated robotic surgery proficiency 

curriculum on a VR robotic simulator and on the da Vinci surgical robot (Intuitive Surgical Inc). 

Once successfully achieving performance benchmarks, each surgeon was randomized to either 

receive a 3- to 5-minute VR warm-up on the simulator or read a leisure book for 10 minutes 

before performing similar and dissimilar (intracorporeal suturing) robotic surgery tasks. Three 

serial trial sessions were performed with similar warm-up and criterion tasks, followed by a 
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dissimilar warm-up to test generalizability. The primary outcomes analyzed and compared were 

task time, tool path length, economy of motion, and technical and cognitive errors (Figure 9). 

2.3.2 Participant Recruitment 

Institutional Review Board approval (#35096) was granted to recruit surgical residents and 

faculty from the Departments of Urology, General Surgery, and Gynecology at the University of 

Washington Medical Center and Madigan Army Medical Center to get a representation of both 

civilian academic and military sector training programs. After acquiring informed consent, each 

enrollee filled out a demographics questionnaire. The question domains included level of 

training, handedness, musical instrument and video-gaming experience, and minimally invasive 

surgery (MIS) experience; all play roles in surgical skill acquisition. All PGY1−6, surgical fellows, 

and faculty who were experienced in MIS were recruited. All subjects participated in a 

proficiency curriculum. 

2.3.3 Statistical Power/Sample Size Calculation 

The statistical power in a repeated measures design was driven by the number of independent 

subjects in the study, the number of serial observations on each individual, and the degree of 

within-person dependence among observations contributed by the same individual. Because 

the within-person dependence was not precisely known, interclass correlations (ICCs) between 

0.5 and 0.8 were explored, which covers the typical range for studies involving repeated 

measurements on the same person [83]. With 51 participants, 3 observations per individual, 

and assuming an ICC of 0.8, we calculated 95% statistical power for detecting an overall 

difference between the warm-up and control groups, if the warm-up factor describes at least 
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an additional 20% of the total variation (0.20 increase in R2). An ICC of 0.8 provides a 

conservative estimate because it implies observations within subjects will be highly correlated. 

The statistical power is even higher for smaller ICC values. We did not have preliminary 

measurements on the path-length metric, however, for the purposes of power assessment, all 

that matters is the spread of the group means relative to the within-group SD. 

2.3.4 Randomization 

Permuted blocks randomization was used. Randomization was stratified by site (University of 

Washington Medical Center and Madigan Army Medical Center) and surgical experience level 

(resident and faculty). Randomization assignments were provided to each site in sealed, fully 

opaque envelopes, so that upcoming study group assignments could not be anticipated by 

study staff or potential enrollees. Randomization occurred at the time the surgeon completed 

their proficiency curriculum (described later). 

2.3.5 Participant flow 

Once enrolled, each surgeon went through a robotic proficiency curriculum that included the 

90-minute da Vinci online didactics module to familiarize the surgeons with the da Vinci S/Si 

systems. After passing the tutorial, each surgeon went through a VR (dV-Trainer simulator; 

MIMIC Technologies, Inc.) and da Vinci dry laboratory robotics curriculum composed of 4 

progressively harder surgical skills modules on each platform, respectively (Figure 10 and Figure 

11). The proficiency curriculum was generated based on incorporating progressively more 

complex technical skills, such as object transfer, followed by camera and instrument clutching, 

followed by all these plus adding motion to the task platform to test spatial relations 
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capabilities. Proficiency benchmarks were established for each module based on performance 

by 2 experienced robotic surgeons (TSL, TCB) who have each performed >150 robotic 

procedures. The benchmark required that each surgeon perform 2 consecutive task iterations 

within 120% of the mean task time of the 2 experienced surgeons with a zero error rate 

respective to each module. For example, in the VR Pegboard Level 1 module, a surgeon would 

have to do as many iterations of the task until 2 consecutive iterations yielded a task time 

<120% of the mean of the 2 benchmark surgeons performing the same task and with no ring 

drops or sequence errors. We chose 2 consecutive iterations of success to try to hone the 

legitimate proficiency of the surgeon for each task. We chose 120% of task time because we did 

not think it necessary for every surgeon to reach experienced surgeon times to demonstrate 

proficiency at a particular task. And we did not want to rely solely on task time as the primary 

benchmark criterion because fast yet error-prone performance is not desirable in surgery. 
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Figure 9 - Patient flow diagram. 

 

 

Figure 10 - Experimental set-up. Demonstration of proficiency modules in their respective jigs and the plumb lines draping 
down onto the jig to ensure standard robotic arm positioning. 
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Figure 11 - MIMIC dV-Trainer VR simulation modules from left to right. Pick and Place, Ring Walk Level 1, Pegboard Level 1, 
Pegboard Level 3. 

Concern for learning effect was addressed. To mitigate the confounding effects of the learning 

curve throughout the study, each surgeon was required to reach proficiency benchmarks 

before the trial sessions on the da Vinci robot. The intention was to obtain some proficiency 

equity among the surgeons and familiarity with instrument/camera clutching and manipulation. 

To equalize the up-front learning of each surgeon irrespective of randomization designation 

(simulator warm-up or no warm-up), we believed that each surgeon must be given the exact 

same opportunity to learn the manipulations of both the robot and the simulator to lessen the 

chance that the warm-up group will have the added benefit of using the simulator at each 

warm-up trial session. 

Once VR robotic simulator proficiency was met, surgeons tested to proficiency on the da Vinci 

robot through 4 task modules (Figure 12). Construct validation of the da Vinci curriculum was 

demonstrated through the use of retrofitted da Vinci training instruments capable of tracking 

tool motions and errors—SurgTrak (described later)—to derive path length and economy of 

motion performance metrics [84, 65, 85].  

Again, proficiency benchmarks had been obtained from the same 2 surgeons and 120% of the 

mean task times and zero error rates through 2 consecutive iterations were required to 

advance to the next module. The modules included 2 Fundamentals of Laparoscopic Surgery 
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(FLS) tasks being performed on the da Vinci robot—block transfer and intracorporeal suturing—

because these have been repeatedly validated in laparoscopy curricula [72, 75]. 

 

Figure 12 - da Vinci dry laboratory modules from left to right. Fundamentals of Laparoscopic Surgery (FLS) block transfer, FLS 
intracorporeal suturing (this was the criterion task for session 4), Ring Tower (The Chamberlain Group), Rotating Rocking 
Pegboard (this was the criterion task for sessions 1 to 3). 

2.3.6 Trial Sessions 

After a surgeon reached proficiency, he or she was randomized to either the warm-up group or 

control group. Four trial sessions per surgeon were performed. The first 3 tested performance 

with or without warm-up on the da Vinci rocking pegboard criterion task. Each of these sessions 

was separated by a minimum of 24 hours so that one session did not warm-up the surgeon for 

the next session [86, 87, 88]. In addition, the surgeon could not have performed the trial 

session if they had done any robotic clinical practice within 24 hours of the session for the same 

reason. The warm-up group performed the Pegboard Level 3 VR task once directly before 

performing the analogous da Vinci rotating rocking pegboard task. This generally took 3 to 5 

minutes to complete and, unlike in the proficiency curriculum, it was not mandatory for them 

to perform the VR task with a zero error rate. The controls spent 10 minutes reading a leisure 

book immediately before performing the da Vinci criterion task so as to minimize the likelihood 

that they were visually imagining the task to be performed because visual imagery warm-up has 

been shown to prime surgeons [89, 90]. They could not read any scientific manuscripts or surf 

the web because we believed that these could also prime the control surgeons. 
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During the fourth trial session, the warm-up and control precriterion process was the same as 

the first 3 sessions, but the criterion task became the FLS intracorporeal suturing task to assess 

whether warm-up generalized to more complex and dissimilar tasks. 

2.3.7 Objective Performance Metrics 

Based on existing surgical curricula validation studies, we chose the following performance 

metrics to track on the simulator and the da Vinci robot [76, 91, 92, 93, 21]. 

1. Total task time (seconds). 
2. Cognitive errors (total count): rings placed on incorrect pegs, incorrect sequence of 

pegs. 
3. Technical errors (total count): dropped rings, peg touches. 
4. Tool path length (total distance traveled for instruments [mm]). 
5. Economy of motion: path length/task time (mm/s). 

During the FLS intracorporeal suturing module, additional performance metrics were assessed 

based on FLS validation of the knot-tying exercise [75]. 

1. Error: breaking the suture. 
2. Error: not placing the suture through the premarked entrance and exit spots. 
3. Error: gap left in suture knot (air knot). 

2.3.8 SurgTrak Tool Motion Tracking and Video Capture 

To capture the objective performance metrics, we developed a system consisting of video 

recording and surgical tool motion recording combined with custom software. Video was 

recorded at 30 frames per second from the digital video imaging output of the da Vinci Si/S 

master console using a DVI2USB device (Epiphan Systems Incorporated). Video was encoded 

using mpeg-4 compression to produce compact, manageable files. Tool motion data were 

recorded at 30 Hz. Tool position and orientation were captured with a 3D Guidance trakSTAR 

electromagnetic tracking system (Ascension Technology Corporation). We retrofitted da Vinci 
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training tools with rapid prototyped holders for the sensors on the proximal ends of the da 

Vinci instruments (Figure 13). 

 

Figure 13 - Retrofitted da Vinci training instrument with sensor housing on back end. 

These data enabled us to compute path length and economy of motion metrics for each task 

performance. Grasper pose and electric contact between the tool tips and the pegboard posts 

were recorded using a PhidgetInterfaceKit 8/8/8 (Phidgets Incorporated). Peg touch errors from 

the rocking pegboard task were detected and the time of occurrence was recorded by our 

software. Data streams from the video recording, position recording, and error recording were 

united using software running on a Windows 78-based laptop computer [65, 85]. Errors on the 

ring tower, FLS block transfer task, and FLS suturing task were documented in real-time by 

study personnel and double-checked by video review. 

2.3.9 Statistical Methods 

Demographic and clinical characteristics measured at baseline were summarized by treatment 

group and compared with Fisher's exact test for categorical variables and t-test for continuous 

                                                      

8
 Microsoft Corporation, Redmond, WA, USA 



43 

variables. The primary comparison for sessions 1 to 3 was a test for the overall mean difference 

between the warm-up and control groups. Because each surgeon contributed 3 observations to 

the dataset, this test for continuous outcomes was calculated using a repeated measures 

ANOVA model and the effect of experience level was investigated by training level (resident vs 

faculty) and surgical experience (>10 robotic and >10 laparoscopic operations performed as the 

primary surgeon vs ≤10 cases in each modality). For binary outcomes, repeated measures 

relative risk regression [94] was used to compare groups and test for interactions. Each surgeon 

contributed only one observation to the data for session 4 outcomes, t-tests were used to test 

for a significant difference between study groups, and the effect of experience level was 

investigated with linear regression models with an interaction term. Session 4 binary outcomes 

and tests for interactions were modeled with relative risk regression [95]. Data were analyzed 

using R Version 2.11.1. 

2.4 Results 

Seventy-three surgeons were assessed for eligibility, with 22 not completing the proficiency 

curriculum due to scheduling conflicts, military deployment during the study, or inability to 

meet the proficiency criteria within the study time period. Fifty-one participants, 31 from the 

University of Washington Medical Center and 20 from Madigan Army Medical Center, were 

randomized and completed the study (warm-up, n = 26; control, n = 25). Once randomized, no 

surgeon dropped out. In each demographic category, the surgeons were well matched between 

the groups, including between faculty and resident participants Table 4.  
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Table 4 – Demographics and Baseline Characteristics by Intervention Group. (*Comparison of surgeons by group. All 
categorical variables were compared with Fisher's exact test and age was compared with a t-test.) 

Variable Control (n = 25) Warm-up (n = 26) p Value* 

Age, y, mean ± SD 35.32 ± 6.47 33.85 ± 5.82 0.40 

Sex, n (%) 

 Female 10 (40.0) 9 (34.6) 0.66 

 Male 15 (60.0) 17 (65.4)  

Musical instrument for >3 y, n (%) 

 No 7 (28.0) 9 (34.6) 0.76 

 Yes 18 (72.0) 17 (65.4)  

Handedness, n (%) 

 Ambidextrous 0 (0.0) 1 (3.8) 0.36 

 Left 2 (8.0) 0 (0.0)  

 Right 23 (92.0) 25 (96.2)  

Training year, n (%) 

 PGY1 1 (4.0) 0 (0.0) 0.34 

 PGY2 0 (0.0) 2 (7.7)  

 PGY3 4 (16.0) 9 (34.6)  

 PGY4 3 (12.0) 1 (3.8)  

 PGY5 3 (12.0) 1 (3.8)  

 PGY6 2 (8.0) 1 (3.8)  

 Faculty 12 (48.0) 12 (46.2)  

Subspecialty, n (%) 

 Urology 14 (56.0) 14 (53.8) 0.61 

 General surgery 7 (28.0) 5 (19.2)  

 OBGYN 4 (16.0) 7 (26.9)  

Recent video game use, n (%) 

 None 15 (60.0) 16 (61.5) 0.99 

 <2x/week 7 (28.0) 6 (23.1)  

 2+x/week 3 (12.0) 4 (15.4)  

Laparoscopic cases, primary surgeon, n (%) 

 None 1 (4.0) 0 (0.0) 0.55 

<= 10 3 (12.0) 3 (11.5)  

 11 - 25 3 (12.0) 1 (3.8)  

 25+ 18 (72.0) 22 (84.6)  

Robotic cases, primary surgeon, n (%) 

 None 9 (36.0) 8 (30.8) 0.61 

<= 10 6 (24.0) 10 (38.5)  

 11 - 25 3 (12.0) 1 (3.8)  

 25+ 7 (28.0) 7 (26.9)  

    

For sessions 1 to 3, testing whether warm-up improved performance with similar VR and 

criterion tasks, we observed a statistically significant decrease in the task time (−29.29 seconds; 

p = 0.001; 95% CI, −47.03 to −11.56) and path length (−79.87 mm; p = 0.014; 95% CI, −144.48 to 

−15.25). Economy of motion favored the warm-up group but was not statistically significant. 
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Technical errors—dropping rings or touching the pegs with the instruments—did not show 

statistically significant differences, yet cognitive error reduction favored the warm-up group, 

but was not statistically significant. The proportion of sessions with errors of placing the rings 

on incorrect pegs (sequence errors) favored the warm-up group, but because of the wide 

confidence interval, this was neither statistically significant nor conclusive (p = 0.087;Figure 14; 

Table 5 and Table 6). 

 

Figure 14 - Control vs warm-up. (A) Economy of motion; (B) task time; (C) peg touch errors; (D) cognitive errors; and (E) tool 
path length. 
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Table 5 – Continuous Outcomes by Study Group (Sessions 1 to 3).  (Outcomes were individually analyzed with repeated 
measures ANOVA.) 

Outcomes Control 
Mean 

 
SD 

Warm-up 
Mean 

 
SD 

Difference (95% CI) p Value 

Economy of motion 4.42 0.66 4.63 0.66 0.21 (-0.06 to 0.47) 0.13 

Task time, s 264.31 56.97 235.01 40.11 -29.29 (-47.03 to -11.56) 0.001 

Total peg touches 21.68 10.06 19.38 9.01 -2.29 (-6.71 to 2.12) 0.31 

Cognitive error 0.12 0.4 0.06 0.3 -0.06 (-0.17 to 0.06) 0.34 

Path length, mm 1,149.23 189.03 1,069.37 132.97 -79.87 (-144.48 to -15.25) 0.014 

       
Table 6 – Binary Outcomes by Study Group (Sessions 1 to 3). (All outcomes were individually analyzed with relative risk (RR) 
regression.) 

Error type Proportion of sessions with error 
 Control Warm-Up RR 95% CI p Value 
Ring drops 0.32 0.333 0.96 0.58-1.59 0.87 

Air transfer 0.04 0.051 0.78 0.19-3.14 0.73 

Out of order (sequence) 0.08 0.013 6.24 0.77-50.76 0.09 

      

For session 4, testing whether a dissimilar VR task can warm-up surgeons for a more complex 

task (FLS intracorporeal suturing) task, we observed no significant improvements in task time, 

economy of motion, or path length for the warm-up group. However, when we assessed global 

technical errors for the suturing (needle entrance, exit errors, and air knot errors, collectively), 

we observed a near 4-fold reduction in the proportion of sessions with these errors (p = 0.020). 

Individually, each error was reduced in the warm-up group, but the differences were not 

statistically significant (Table 7). 

Table 7 – Continuous Outcomes by Study Group (Session 4). (All outcomes were individually analyzed with a t-test. 
*Composite of air knot, needle targeting errors by Fundamentals of Laparoscopic Surgery (Entrance and Exit dots errors).) 

Outcomes Control 
Mean 

 
SD 

Warm-up 
Mean 

 
SD 

Difference (95% CI) p Value 

Task time, s 111.2 29.3 107.6 37.8 3.6 (-15.4 to 22.6) 0.7 

Economy of motion 3.69 0.86 3.82 0.8 -0.14 (-0.61 to 0.33) 0.56 

Path length, mm 401.4 114.4 401.5 134.8 0.0 (-71.2 to 71.1) 0.99 

Global technical error, 
count* 0.44 0.58 0.12 0.33 0.32 (0.06 to 0.59) 0.02 

       

When we assessed the effect that MIS experience (>10 laparoscopic and >10 robotic cases as 

primary surgeon vs ≤10 cases in each modality as primary surgeon) had on the warm-up effect, 
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we observed that the warm-up effect was more pronounced with experience. Economy of 

motion (0.63 mm/s; p = 0.007; 95% CI, 0.18−1.09), task time (−53.5 seconds; p = 0.001; 95% CI 

−83.9 to −23.0), and path length (−97 mm; p = 0.093; 95% CI, −210 to 16) favored the warm-up 

subgroup among the experienced cohort, and only path length (−75 mm; p = 0.063; 95% CI, 

−154 to 4) favored the warm-up group in the inexperienced cohort, and not to a statistically 

significant degree (Table 8). 

Table 8 – Effect of Experience on Performance Metrics (Warm-Up vs Control). (The mean (SD) and estimated difference 
between warm up and control for the 5 continuous outcomes measured in sessions 1 to 3 in the study overall and broken up 
by robotic/laparoscopic case experience.) 

Outcomes <=10 Robotic and <=10 laparoscopic cases  
(n = 34) 

>10 Robotic and >10 laparoscopic cases  
(n = 17) 

 Control, 
mean (SD) 
(n = 15) 

Warm-up, 
mean (SD) 
(n = 19) 

Difference 
(95% CI) 

p Value Control, 
mean (SD) 
(n = 10) 

Warm-up, 
mean (SD) 
(n = 7) 

Difference 
(95% CI) 

p Value 

Economy 
of motion 

4.49 (0.56) 4.51 (0.57) 0.02 (-0.3 to 
0.34) 

0.9 4.31 (0.78) 4.94 (0.77) 0.63 (0.18 
to 1.09) 

0.007 

Task time, 
s 

258.6 (43.7) 240.8 (39.6) -17.8 (-39.2 
to 3.5) 

0.10 272.9 (72.6) 219.4 (41.0) -53.5 (-
83.9 to -
23.0) 

0.001 

Peg 
touches, 
counts 

24.2 (8.8) 20.7 (9.8) -3.6 (-8.8 to 
1.7) 

0.18 17.9 (10.7) 15.9 (6.1) -2 (-9.4 to 
5.5) 

0.60 

Cognitive 
errors, 
counts 

0.13 (0.45) 0.05 (0.30) -0.08 (-0.22 
to 0.06) 

0.27 0.10 (0.40) 0.10 (0.45) 0 (-0.21 to 
0.20) 

0.96 

Path 
length, 
mm/s 

1,152 (174) 1,077 (140) -75 (-154 to 
4) 

0.06 1,145 (213) 1,049 (118) -97 (-210 
to 16) 

0.09 

         

When the groups were divided based on resident (n = 27) vs faculty (n = 24) level, the results 

were mixed. Path length (−96 mm; p = 0.029; 95% CI, −181 to −10) and task time (−31 seconds, 

p = 0.013; 95% CI, −55.7 to −6.4) were reduced in the resident warm-up group, and task time 

reduction only (−27.4 seconds; p = 0.039; 95% CI, −53.5 to −1.4) reached statistical significance 

in the faculty warm-up group. Path length and economy of motion only favored, but not 

statistically significantly, the warm-up group (Table 9).  
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Table 9 – Effect of Training Level on Performance Metrics (Warm-up vs Control).  (The mean (SD) and estimated difference 
between warm up and control for the 5 continuous outcomes measured in sessions 1 to 3 by training level, where faculty are 
defined as PGY >6 and residents ≤6.) 

Outcomes Residents (n = 27) Faculty (n = 24) 
 Control, 

mean (SD) 
(n = 13) 

Warm-up, 
mean (SD) 
(n = 14) 

Difference 
(95% CI) 

p Value Control, 
mean (SD) 
(n = 12) 

Warm-up, 
mean (SD) 
(n = 12) 

Difference 
(95% CI) 

p Value 

Economy 
of motion, 
mm/s 

4.51 (0.64) 4.69 (0.64) 0.2 (-0.2 to 
0.6) 

0.35 4.32 (0.68) 4.55 (0.14) 0.2 (-0.2 to 
0.6) 

0.25 

Task time, 
s 

266.6 (51.9) 235.6 (40.5) -31.0 (-55.7 
to -6.4) 

0.013 261.8 (62.7) 234.4 (9.4) -27.4 (-
53.5 to -
1.4) 

0.039 

Peg 
touches, 
counts 

22.1 (10.3) 20.6 (8.3) -1.5 (-7.6 to 
4.7) 

0.64 21.3 (9.9) 18.0 (2.3) -3.3 (-9.8 
to 3.2) 

0.32 

Cognitive 
errors, 
counts 

0.10 (0.38) 0.12 (0.47) 0.02 (-0.14 to 
0.17) 

0.84 0.14 (0.47) 0.0 (0.00) -0.14 (-
0.30 to 
0.03) 

0.10 

Path 
length, 
mm/s 

1,188 (180) 1,092 (140) -96 (-181 to -
10) 

0.029 1,109 
(192.7) 

1,043 
(140.8) 

-66 (-156 
to 23) 

0.15 

2.5 Discussion 

We hypothesized that robotic surgery VR warm-up would enhance technical and cognitive 

performance on da Vinci dry laboratory tasks. In our randomized study comparing warm-up and 

control groups of experienced and inexperienced surgeons, we demonstrated that 

preprocedural warm-up does improve task performance and error reduction. This is a 

fundamental observation because, to date, the literature has established a warm-up's potential 

role in conventional laparoscopy, but not in robotic surgery. In addition, laparoscopic warm-up 

has been shown to decrease operative times in experienced surgeons in the OR, [77] a finding 

consistent with our observations of warm-up benefiting experienced performers. Many of our 

tracked performance metrics favored the warm-up group. Task time, path length, economy of 

motion, error reduction—all surrogates for surgical technical ability—were significantly 

improved. 
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We also hypothesized, as Kahol and colleagues showed, that a dissimilar warm-up task can 

generalize a warm-up benefit or elevate criterion task performance [54]. We observed a 

statistically significant reduction in the proportion of sessions with global technical errors in 

suturing, such as air knots and inaccurate needle targeting. The value of this finding is that the 

ideal warm-up curricula might not need to look like the planned robotic surgery tasks. We did 

not observe, however, significant improvements in standard technical performance metrics, 

such as task time or path length, in the generalizability session. It is possible that robotic 

suturing is so highly technical that psychomotor practice of actual suturing is still the best 

warm-up task for suturing. When looking at warmed-up urology residents, Lee and colleagues 

saw a warm-up benefit for a dissimilar intraoperative task of taking down the white line of Toldt 

in a nephrectomy, but did not see a benefit once the case got to suturing up of the white line at 

the end of the case. This was explained by the fact that suturing during the nephrectomy was at 

the end of the case and all surgeons might have experienced the maximal amount of warm-up 

from all the steps leading up to the end of the case [82]. 

Similar to the enhancement seen in laparoscopy, we demonstrated a reduction in not only 

technical errors, but cognitive errors. This suggests that warm-up curricula recruiting not only 

simple psychomotor centers of the brain, but also spatial relations centers, can be additive to 

the warm-up benefit. Kahol and colleagues specifically emphasized that warm-up tasks need to 

not only stimulate psychomotor centers, but also spatial relations and short-term memory 

centers [54]. In our study, however, some errors were not affected by warm-up, in part because 

of the low frequency at which these errors occurred, such as peg touches. To observe statistical 
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significance with this metric, a larger sample size would have been needed, however, it remains 

unclear whether peg touches are a clinically valid surrogate of precision. 

An interesting and unexpected finding was that when the MIS experience of the surgeon was 

the cohort discriminator, warm-up seemed to benefit the more experienced surgeon. This 

could be explained by unequal proficiency in robotic skills. We attempted to create a rigorous 

proficiency curriculum to level baseline robotic skills. And, although all surgeons had met our 

defined proficiency benchmarks, this most likely did not assure equivalent skills. So we 

hypothesize that experienced surgeons derive a performance boost from warm-up because 

they only have to be familiarized with the specific task to do better; they do not have to focus 

on basic manipulations of the robot itself. Less MIS-experienced surgeons not only require task 

priming, but may spend additional attentional capacity on performing the basic robotic 

manipulations (eg, grasping, object transfer, camera and arm clutching). Gallagher and 

colleagues [76] demonstrated that novice surgeons expend a large proportion of their fixed 

attentional capacity on performing basic technical skills and experienced performers do not 

have such high demands on simple psychomotor skills. Experienced surgeons can invest more 

attention to decision making [76]. These findings about experience are important because there 

are far more practicing robotic surgeons than there are robotic surgery trainees, and our 

findings can be relevant to hospital credentialing and maintenance of certification processes. 

When we divided the cohort by faculty vs resident, our results were mixed. This might reflect 

that not all faculty in our group were experienced robotic surgeons because we did not require 

as an inclusion criterion that “MIS experience” meant robotic surgery experience. Some of 
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these faculty members had robust conventional laparoscopic experience, but no robotic 

experience. 

There were some key limitations to our study that should be mentioned. First, although we 

randomized surgeons to 1 of 2 groups—warm-up or control—our proficiency curriculum might 

not have leveled the proficiency between the groups. Although our groups were very well 

matched, another design for this study to minimize group skill differences would have been to 

have each surgeon be their own control. 

Second, we strove for intervals between sessions to never occur <24 hours apart or 24 hours 

from earlier robotic surgery so that one robotic performance did not warm-up the earlier one. 

However, we do not know if the 24-hour interval extrapolates to robotic surgery. In addition, 

participants ideally should not have had longer than 2 weeks between sessions, but this was 

not logistically feasible in some circumstances. Many of our surgeons were on active clinical 

services and rotated through services that altered the consistency of their intervals. 

Recognizing the work of Jenison and colleagues, which showed that after 4 weeks of rest, 

robotic surgery skills degrade, we strove to minimize the number of intervals that exceeded this 

threshold [96]. We did not, however, adjust surgeons' data based on intervals between 

sessions. 

We have validated portions of the proficiency curriculum using this tracking methodology, but 

there is potential for varied signal integrity throughout the sessions. The proprietary Ascension 

software provided us with real-time readouts of the quality of the signal and all our surgeons' 

sessions fell within the quality requirements of the tracking system, so we believe that we 

captured accurate data. In addition, task time and error recognition were not dependent on the 
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tracker data. Signal quality between the transmitter and the sensors on the instruments can be 

affected by the amount of ferrous material and components generating their own 

electromagnetic fields. Before enrolling participants, we tested the optimal positioning of the 

sensors, the transmitter, and the various dry modules to minimize signal distortion. We 

standardized the positioning of the arms of the robot in relation to the task modules and the 

transmitter by creating: 

1. A jig that housed each module in a fixed position relative to the transmitter (Figure 10); 
2. An optimal orientation holder for the sensors on the tools by testing multiple rapid 

prototyped interface elements before study launch (Figure 11); 
3. Plumbs that dangled from set positions on the camera and instrument trocars down to 

the task module jig that allowed us to set up the robot in identical port configurations 
between sessions (Figure 10); and 

4. Calibration software that tested for sufficient data inputs from all systems before each 
task iteration commenced. 

Alternative instrument tracking methods could include optical fiducials that can be tracked by 

cameras within the OR, such as those used by Lee and colleagues for their intraoperative 

laparoscopic study [82]. They tracked surgeon arm and hand movements by affixing sterile 

markers on the gowns and gloves of the surgeons and used high-resolution cameras to detect 

precise movements. The advantage of this method is that intraoperative tracking is possible 

because the markers are sterile, and although the electromagnetic tracker sensors are 

sterilizeable, the transmitter needs to be within 1 m of the sensors, prohibiting its practicality in 

the OR. The disadvantage with optical tracking is that this method requires clear line of sight, 

which is not always possible in the OR. Perhaps a preferable method would be to capture data 

directly from the da Vinci application programming interface, which has the capability of 

providing >100 data elements of the instruments' movements in real-time, but such access is 
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limited to a few centers through contractual agreements with Intuitive Surgical, Inc, and the 

application programming interface does not capture video or tool contact data [97]. 

Finally, our findings were unambiguous in a dry laboratory setting, yet the true test of robotic 

surgery VR warm-up will need to be in the OR, as Calatayud and colleagues and Mucksavage 

and colleagues did for conventional laparoscopy [56, 77]. This fundamental research in the 

robotic dry laboratory setting, however, highlights the potential benefit using preoperative VR 

warm-up for patient robotic surgery to improve patient outcomes and reduce costs. Our 

experiment used the MIMIC dV-Trainer, which is a desktop platform that has the same VR 

modules as the current Intuitive backpack simulator that drives VR simulation modules at the 

da Vinci console. So our findings might be easily translatable into the OR due to the parity 

between our VR curriculum and what is available today in the OR on the da Vinci Si system. This 

is a decided advantage for use with robotics systems because the software package that 

generates the virtual images can reside on any robotic system and, therefore, the preoperative 

warm-up would actually become part of the operative procedure. Preoperative warm-up in 

open or laparoscopic surgery, on the other hand, requires an entirely separate simulator to be 

available in the OR for the surgeon to practice the warm-up. Likewise, in future-generation 

robotic systems, not only will a warm-up module be included in the robotic system, but 

downloading patient-specific images (from CT or MRI scans) will also enable the surgeon to 

perform surgical rehearsal of the critical parts of the operation, so that any errors can be 

discovered and avoided during the actual operation. The value of mission rehearsal has proven 

to be of great value in many other domains, such as the military and aviation, and has the 

potential to greatly increase patient safety in surgery as well [98, 99, 100]. 
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2.6 Conclusions 

A brief VR robotic simulation warm-up improves robotic surgery task performance and reduces 

errors for experienced and inexperienced robotic surgeons in a dry laboratory setting. Further 

investigation is required to see if these results translate to the OR. These data provide a 

foundation for future predictive validation studies assessing the role of robotic warm-up for 

improved patient outcomes and reduced operative cost, and pave the way for novel 

preprocedural rehearsal investigation in all areas of surgery. 
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Chapter 3: Structured Surgeon Assessment of Preoperative 

Warm-Up 

Evaluate the hypothesis that preoperative VR warm-up produces a significant improvement in 

robotic surgical performance as measured by GEARS. 

3.1 Introduction 

The Global Evaluative Assessment of Robotic Surgery has been shown to be a valid tool for 

assessing surgical performance on the da Vinci surgical robot [28].  It has the potential to be 

more sensitive than performance metrics based on tool motion alone as the scores can reflect 

the interaction of the surgeon with the surgical field.  We selected a subset of the warm-up 

data set for scoring.  We then recruited 3 surgeons to apply the GEARS system to this set of 

videos.  The impact of warm-up can be detected in these scores.  Another use of the GEARS 

scores is comparison with and evaluation of other methods to assess surgical performance.  

Ours is the first study ever to measure the impact of VR warm-up on robotic surgery 

performance. 

3.2 Methods 

3.2.1 Data 

Scoring videos using GEARS can be time consuming and requires surgeons experienced in 

robotic surgery.  These individuals are typically busy people and so a subset of the entire 

dataset was scored.  Table 10 shows the videos scored.  51 subjects proceeded through the 

study.  This should have yielded 51 videos for both the rocking pegboard task and the suturing 
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task.  However, 2 of the 51 performances for the rocking pegboard task and 2 of the 51 

performances for the suturing task were not recorded due to errors in the recording 

equipment.  Thus, in both cases, 49 videos were available for analysis.  Selecting one rocking 

pegboard task and one suturing task allowed us to comment on the impact of warm-up when 

the warm-up VR task was either similar to or dissimilar from the criterion task.  Videos from 

session 3 of the rocking pegboard task were selected as these performances were the most 

temporarily separated from the proficiency phase of the study.  This should minimize the 

influence of having had recent significant proficiency phase practice on the task. 

Table 10 - Tasks scored by expert surgeons using GEARS. 

Performance Type Performances Available for Scoring Session Number 

Rocking Pegboard 49 3 

Suturing 49 4 

   
Each of the videos was assigned a unique code that signified the task and subject. 

3.2.2 GEARS Assessment Survey Website 

In previous experiments we have found that the additional time needed to score a performance 

using a GEARS tool is negligible relative to the amount of time needed to review the video itself.  

In order to further minimize the amount of time needed from the surgeons for scoring, we 

created a web-based scoring system.  A home launch page, shown in Figure 15, linked to pages 

for each scoring ‘Task’.  Each task page linked to 49 unique scoring pages, one for each 

performance to be scored.  Architecture to automatically generate these pages was created in 

Matlab.  This allowed site revisions to be disseminated across all survey pages quickly.  The 

graphical user interface of the survey was iteratively designed to be acceptable to the graders. 
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Figure 15 - WarmUp Study GEARS Grading Suite.  Automatically generated surveys that are multi-device capable and 
accessible from anywhere in the world via the Internet. 

Figure 16 shows an example survey including a GEARS grading sheet with radio buttons to 

select the subject’s score along with integrated video viewing.  The GEARS survey website 

promotes objective grading by providing a double-blind assessment, where neither the proctor 

nor the reviewers know the identity or warm-up status of the subject being scored.  The fifth 

GEARS category, Autonomy, was eliminated as the surgeons in this study received no outside 

direction during the criterion task performances.  The survey site was available on the Internet 

and was compatible with most browsers and devices.  This included phones and tablet 

computers.  The surgeon graders were pleased with the convenience of being able to grade 

anywhere with an Internet connection and at any time during the day, no matter their physical 
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location.  The surgeons were required to enter a username and password when they entered 

the site.  This served a security function and allowed the server to identify the user. 

The HTML form website used JavaScript form validation to prevent the surgeons from 

submitting work before completing scoring of the surgical task.  The score data was recorded to 

a server using the Common Gateway Interface (CGI), a standard Internet method for receiving 

data from HTML forms.  The CGI interface was written in PHP Hypertext Preprocessor.  This 

allowed for some sophisticated quality control features.  This flexible and scalable foundation 

meant the same surveys could be used by small groups of surgeons as well as thousands of 

graders from across the Internet. 

 

Figure 16 - Example Survey used in the assessment of performance videos, optimized for efficient grading. 
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3.2.3 Surgeon Scorer Recruitment 

A total of three surgeons from UWMC, Seattle Children’s and MAMC were recruited as scorers.  

Table 11 shows the overall level of experience of the recruited surgeons. 

Table 11 – Surgeon graders’ training and experience. 

 Years as Attending 
Surgeon 

Years as Robotic 
Surgeon 

Estimated Cases on 
da Vinci 

High 8 7 500 

Low 4 6 150 

Mean 6 6.66 270 

3.2.4 Grader Selection and Assurance of Inter-Rater Reliability 

The textual anchors included in the GEARS scale are meant to assure graders understand the 

scoring criteria (see Figure 2).  This was intended to promote consistency between raters, 

known as inter-rater reliability [27, 101].  Inter-rater reliability helps ensure the validity of 

assigned performance scores.  Scorer agreement of 0.8 computed using Cronbach’s alpha 

indicates “Good” agreement.  We have found that scoring criteria alone are not enough to 

ensure acceptable levels of agreement.  A better way to assure inter-rater reliability is to have 

the graders practice by reviewing a sample set of data.  Prior to grading the main corpus of 

data, the three graders completed 10 demo surveys for tasks from the proficiency phase of the 

study.  Then a teleconference was held to compare their scores and re-watch the videos from 

the surveys they completed. 

3.2.5 Statistical Analysis 

Comparison of warm-up subject performance vs. control subject performance was computed 

using a non-paired single tailed t-test at the 0.05 significance level [102].  This test is 

appropriate because the subjects in the two groups are different.  The hypothesis that warm-up 
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produces an improvement in performance, and thus GEARS score, makes a single tailed test 

appropriate.  We rejected the null hypothesis of no warm-up effect if the test statistic 

computed on the collected normalized scores for all subjects is less than 0.05.  

We anticipated that some of the variance in surgical performances would be due to overall skill 

and level of training.  Senior surgeons in the study had a better average performance than their 

resident counterparts, regardless of warm-up status.  For this reason the groups of 

performances scored using GEARS were also divided by level of training.  This also allowed us to 

see if warm-up affects experts differently than novice surgeons. The ‘expert’ group criteria was 

that a subject must have performed more than 10 robotics cases as primary surgeon and more 

than 10 laparoscopic cases as primary surgeon.  All subjects not meeting these criteria were 

deemed ‘novice’.  This subdividing of data does put us at risk of failing to have the statistical 

power to detect an improvement due to warm-up 

3.3 Results and Discussion 

3.3.1 Expert Surgeon Graders Calibration to Establish Inter-Rater Reliability  

The group of three experienced surgeons achieved an initial agreement of 0.7620 when grading 

10 videos presenting a range of skill values.  This first round of grading also served to expose 

the graders to the GEARS grading website and to expose them to a range of performances.  

After the grader calibration meeting, the surgeons felt they had come to an understanding of 

one another’s grading expectations and so we decided to proceed with grading the first round 

of performances, the rocking pegboard task.  Grader agreement improved, as shown in Table 

12, with that task and improved further still when the surgeons graded the suturing task. It may 
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be because the surgeons grading performance improves with experience or perhaps that the 

suturing task tends to be more accurately graded using GEARS.  Another possibility is that the 

shorter duration of the suturing task, generally less than 2 minutes as opposed to 3 or more for 

rocking pegboard, led to a better experience for the graders.  Interestingly some of the graders 

saw the grading task as entertaining while others saw the work as arduous.  The surgeons 

began grading the main body of work on April 30th, 2013.  The last surgeon finished the final 

grading task on May 29th, 2013, 29 days later.  In that period of time each surgeon graded 98 

performance videos.  The actual amount of time spent grading was of course much less.  The 

surgeons reported finding time to devote to grading to be the primary challenge. 

Table 12 – Surgeon grader agreement within certain tasks.  

 Rocking Pegboard Suturing 

Cronbach’s alpha agreement 0.7876 0.8879 

Confidence Acceptable to Good Good to Excellent 

   
Figure 17 shows the overall agreement between individual graders.  The graphs include each of 

the 49 rocking pegboard and 49 suturing scores, with mean scores as well as scores for 

individuals graders represented.  The performances are sorted in order of increasing mean 

score.  It can be seen that while the graders express the same trend, the third grader often 

scores higher than the average and grader 1 often scores lower than the average score.  One 

interpretation of this finding is that in situations where only one grader is available, a ‘handicap’ 

could be applied to scores they provide to try to recover a more accurate performance 

assessment.  Such a handicap could be computed after having the individual grader assess a 

standard set of ‘gold standard’ data for which a true score is known. 
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3.3.2 Influence of Warm-Up on Robotic Surgery GEARS Scores 

When considering the impact of warm-up on the two tasks, we first look at the performances as 

a group.  As seen in Figure 17, for the rocking pegboard task the warm-up group achieved a 

mean GEARS score of 17.63 while the control group performed slightly better, scoring 17.68 on 

average.  For the suturing task the warm-up group outperforms the control group 18.92 to 

17.89.  However, in neither case do the differences between the distributions of scores achieve 

statistical significance. 

 

Figure 17 – Agreement between surgeon graders.  LEFT: Rocking Pegboard.  RIGHT: Suturing.  Performances in each task are 
sorted left to right by increasing average GEARS score.   

Figure 18 – GEARS Scores for All subjects.  LEFT: Rocking Pegboard.  RIGHT: Suturing. 
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When we separate the groups into experts and novices and consider their performances 

separately, we find that in all but one case (novices on the rocking pegboard task), GEARS 

scores favor warm-up, however only for experts does this difference approach statistical 

significance at the level we selected.  These results are depicted in Figure 19 and in Figure 20 as 

well as summarized in Table 13. 

 

  

Figure 19 – GEARS Scores for Experts only.  LEFT: Rocking Pegboard.  RIGHT: Suturing.  In both tasks the GEARS assessment 
nearly demonstrated statistically significant differences. 

Figure 20 – GEARS Scores for Novices only.  LEFT: Rocking Pegboard.  RIGHT: Suturing.  For rocking pegboard, warm-up 
seemed not to improve performance.  For suturing, warm-up did increase the mean score but this difference did not rise to 
the level of statistical significance. 
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Table 13 –Warm-up impact on surgeon GEARS scores. 

Group Task Warm-up Control t-test 

All Subjects Rocking Pegboard 17.63 17.68 0.522 

Experts Rocking Pegboard 21.33 19.13 0.054 

Novices Rocking Pegboard 16.26 16.56 0.613 

All Subjects Suturing 18.92 17.89 0.092 

Experts Suturing 20.81 18.40 0.051 

Novices Suturing 18.19 17.52 0.228 

3.4 Conclusions 

Taken as a whole, it appears that GEARS scores do favor warm-up over the control group.  

However, as was the case with basic measures, the improvement is slight.  This is likely due in 

part to the non-cross-over design of the study.  We are not able to compare a subject’s 

performance with warm-up to their performance without.  While others such as Calatayud in 

particular observe an improvement of 9 points in a structured assessment tool following warm-

up, we were unable to measure such an improvement.  This may be due to the nature of the 

warm-up phenomena, the design of the study (Calatayud utilized a cross-over study design), the 

applicability of warm-up to robotic surgery, some feature of how we implemented the warm-up 

task or another factor.  
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Chapter 4: Hidden Markov Model-based Assessment of Surgical 

Motions Following Preoperative Warm-Up 

Evaluate the hypothesis that preoperative VR warm-up produces a significant improvement 

in robotic surgical performance as measured by Hidden Markov Models. 

4.1 Introduction 

Using algorithms to assess surgical performance has been a goal and focus of research since 

methods to track surgical motions were first created.  Hidden Markov Models (HMM) are the 

most popular method for encapsulating the characteristics of surgical performance that track 

surgical skill.  The appeal of skill assessment algorithms is obvious.  Once a model is created, 

assessing a surgical performance with an algorithm costs next to nothing.  This makes these 

methods attractive to those performing studies of surgical training curricula since such studies 

often involve the assessment of large numbers of surgical performances.  These algorithms may 

one day be used for surgical credentialing purposes.  The methods to apply HMMs to surgical 

performance are fairly well established but even those wishing to use them without developing 

new types of models must build their models carefully for them to be useful.  We decided to 

employ HMMs in the assessment of the performances of the warm-up study to evaluate the 

warm-up hypothesis. 
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4.2 Methods 

4.2.1 Data 

In order to be able to use expert surgeon scores for comparison with scores produced using 

HMMs the same set of tasks were used in this phase of the study as in the GEARS assessment 

phase.  These performances are listed in Table 14.  Of the original 51 subjects, problems with 

data capture eliminated 4 and 5 suturing performances and rocking pegboard performances, 

respectively, from our analysis. 

Table 14 - Tasks assessed using HMMs. 

Performance Type Performances Scored Session Number 

Rocking Pegboard 47 3 

Suturing 46 4 

   
The raw data fed into the analysis and used to train the models included the Cartesian position 

of each tool as well as the four spindle angles that determine the grasper pose of each tool.  

This made for a total of the 14 continuous variables listed in Table 15.  SurgTrak software 

recorded the tool motions at a rate of 30 Hz. 

Table 15 – Variables used in the training of skill assessment HMMs. 

Source Units Details Dimensions 

Cartesian Position Inches X, Y, Z position 3 per tool 

Spindle Angles 
(grasper pose) 

Radians Left Jaw, Right Jaw, 
Wrist Angle, Tool Roll 

4 per tool 

4.2.2 Data Processing 

It is standard practice to convert the data streams to velocity.  The justification being that since 

surgical targets can vary in location through a patient’s body, the absolute location should not 
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be considered.  For this reason the velocity of each variable was computed using standard 

numerical methods.   

The resulting velocity stream from each of the individual performances from either the rocking 

pegboard or suturing task were concatenated and then normalized by computing the mean and 

standard deviation in each dimension.  The associated mean was subtracted from each data 

stream.  The result was divided by the standard deviation associated with that dimension.  This 

resulted in a 14 dimension block of velocity data, the length of which was the total number of 

samples across all performances of a given task type.  The channel means and standard 

deviations computed before are essentially the channel scale factors and so they were saved 

for later encoding of data. 

4.2.3 Vector Quantization 

The two data blocks produced by the above processing were then clustered using a k-means 

algorithm.  The k-means algorithm provides a way to reduce the dimensionality of a data set, in 

our case, from 14D continuous at 30 Hz to a 1D discreet variable at 30 Hz.  The k-means 

algorithm takes as its input a block of data to be grouped into clusters and the desired number 

of clusters.  From the data set a group of k points are selected at random.  These become the 

cluster centers.  All point closest to a given cluster center are assigned to that center.  The aim 

of the algorithm is to iteratively move these cluster centers so as to minimize the sum squared 

distance from each point to its cluster center.  The optimal number of clusters, k, is determined 

by running the k-means algorithm with varying cluster sizes and choosing the cluster size that 

generates a 1% improvement in distortion of the data over having k-1 cluster centers, as 

measured by the average sum squared distance from the each point in the data set to the 
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nearest cluster center.  Table 16 shows the optimal number of cluster centers for the two tasks 

in this study. 

Table 16 – Computed optimal codebook sizes. 

Task Size 

Rocking Pegboard 70 

Suturing 55 

  
Finally, data were clustered with the optimal number of centers shown in Table 16.  These 

cluster centers, collectively known as the codebook, signify the k codewords that summarize the 

dataset.    Each performance in Table 15 was scaled using the task-specific scale factors and 

encoded using the appropriate generated codebook.  The nearest-neighbor search algorithm is 

used for this task and produces 1D by 30 Hz ‘observation sequences’ consisting of the index 

number (1 to k) of the cluster center closest to a given point in the performance.  These 

observation sequences can be used to train HMMs. 

4.2.4 Hidden Markov Model Training 

For algorithmic assessment in this study we used a 15 state black-box HMM.  This type of model 

is consistent with the most successful vetted models chosen by Rosen et al. in their latest work 

[24] and by Kowalewski in his thesis [103].  In both cases laparoscopic instead of robotic 

motions were analyzed and in both cases force data was also used in model training.  In our 

approach we do not have force data.  To train the models, 35 randomly initialized models were 

generated.  These models consisted of a 15 by 15 state transition matrix and a 15 by k 

emissions matrix.  Selected training data was applied to the models and the models were 

allowed to train until a tolerance of 0.0001 was met.  The training iterations were limited to 500 

and in the rare case that a training failed to converge, the model produced was discarded.  Of 
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the generated candidate models, the model with best fit to the training data was selected for 

further use.  The fit criteria was: 

           
  {∑               

 

    

} 

Where λ are the candidate models and the set of n observation sequences was signified by O. 

4.2.5 Scoring of Performances and Statistical Analysis 

A continuous numerical score was required for each subject performance.  All of the 

performances were scored using the following statistic similarity factor formula presented by 

Rosen [34]: 

Expert Similarity Factor = log(P(Oi|λE)) /log( P(Oi|λi)) 

Thus to score performances, two models were needed: one for experts and one for novices. We 

used the same single tailed t-test to compare the expert similarity factor performance scores of 

the subjects in the warm-up and control groups based on the same justification discussed in the 

Chapter 3.  The null hypothesis will be rejected if the test statistic computed on the data is 

found to be below 0.05. 

4.2.6 Selection of Model Training Data 

Recently Tim Kowalewski of the BioRobotics lab came upon a new notion for choosing the 

surgical performances with which models should be trained [103].  Even very experienced 

surgeons perform poorly on occasional tasks.  Since the HMMs will incorporate any data on 

which they are trained, it was reasoned that only the best runs of the most experienced 

surgeons should be used as model training data.  Furthermore, it was reasoned that all runs 
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where the surgeon performs an error should be excluded.  Figure 21 shows how the expert and 

novice training trials and were selected for each task.   The performance models were trained 

with data from the same task as the criterion task, i.e. rocking pegboard performances will be 

evaluated with rocking pegboard models. 
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Figure 21 – Criteria for selecting performances used in training skill models. 
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Within the dataset, ‘experts’ were defined to include any surgeon who had completed at least 

10 cases as the primary surgeon on an actual patient using the da Vinci and at least 10 cases as 

primary surgeon using laparoscopic tools.  All those who did not meet this criterion were to be 

considered ‘novice’ for our purposes.  A total of 17 of the 51 subjects qualified as demographic 

experts and 34 qualified as novices.  We applied these criteria to the rocking pegboard and 

suturing performance recordings.  The number of performances used to train expert and novice 

models is listed in Table 17. 

Table 17 – Numbers of runs used in training expert and novices models. 

 Group Runs 

Rocking Pegboard 
Expert Training Trials 9 

Novice Training Trials 10 

Suturing 
Expert Training Trials 9 

Novice Training Trials 8 

4.2.7 Computational Tools 

To facilitate fast computational analysis including k-means clustering and HMM training we 

built a parallelized distributed computing system.  Because the SurgTrak codebase is written in 

Matlab and to promote fast development, we elected to use Matlab Distributed Computing 

Server (MDCS) to enable distributed computing.  MDCS was installed on 10 PCs running 

Windows 7.  The individual Worker Node PCs were networked together and connected to a 

Head Node to manage and distribute computational tasks.  On each of the 10 Worker Node 

PCs, between two and four worker processes were initiated.  The number depends on the PC 

processor and usually matches the number of CPU cores so that 100% CPU utilization is 

achieved.  Worker Node PC performance specifications varied.  The job scheduler used by the 

MDCS is not sophisticated and does not balance load to higher performance nodes in the 
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network.  The system as a whole was very susceptible to network glitches and if a single node 

lost connection with the Head Node the entire job would fail.  An instance of Matlab running on 

a Client Node submits tasks to the Head Node and receives results once computation is 

complete.   

In addition to training on the local cloud, models were also trained on a high-end desktop PC 

for the sake of comparison. The desktop PC featured 24GB of DDR3 RAM, a 10K RPM hard drive 

and a 2.53 GHz Intel Quad Core Xeon CPU. 

4.3 Results and Discussion 

4.3.1 Model Training Performance 

Table 18 shows the relative gain in performance for model training on the MDCS cluster vs. the 

high-specification PC.  Although the distributed computing approach with MDCS did garner 

faster training times the difficulty of maintaining one’s own network of computers was 

decidedly not worthwhile. Future researchers should focus on using open source free software 

and larger scale remote computing resources rather than take this approach. 

Table 18 – Relative performance of MDCS vs. robust PC training task execution time. 

 MDCS Training Time 
(Seconds) 

Robust PC Training 
Time (Seconds) 

Increase Factor 

RPB Expert Model 4560 17967 x 3.94 

RPB Novice Model 7417 24982 x 3.36 

Suturing Expert Model 1661 5799 x 3.49 

Suturing Novice Model 3792 10927 x 2.88 
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4.3.2 Model Validation 

Four models were eventually trained and used for analysis, expert and novice models for 

rocking pegboard and suturing tasks.  Each performance was scored against the expert and 

novice models for their task.  From these raw scores Expert Similarity Factors were computed. 

These ESF scores and thus the models were validated by comparing scores for data used to 

train the expert models to data used to train the novice models. For rocking pegboard all but 

two of the rocking pegboard expert training trials received scores of 0.96 or less, while all but 1 

of the rocking pegboard novice training trials scored above 0.96.  For the suturing models an 

ESF score of 0.98 fully discriminated between novice training trials and expert training trials.  

Thus the models did find performance sequence characteristics in the training data to 

discriminate between the performances. 

Curiously, when the ESF score was compared to a variety of other measures such as the basic 

measures of Chapter 2, including task time, path length, economy of motion, or such other 

measures as GEARS score (Chapter 3) or C-SATS score (Chapter 5), essentially no correlative 

relationship could be identified. 

4.3.2 Influence of Warm-Up on Robotic Surgery GEARS Scores 

Table 19 shows the mean ESF scores and t-test statistics for each group of performances.  We 

were unable to identify any improvement in performance due to warm-up.  Figure 22, Figure 

23, and Figure 24 depict boxplots of the ESF scores comparing subjects in the warm-up group 

with those in the control group for the two tasks and three groupings.  
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Table 19 –Warm-up impact on HMM ESF scores. 

Group Task Warm-up Control t-test 

All Subjects Rocking Pegboard 0.99 0.98 0.343 

Experts Rocking Pegboard 0.98 0.98 0.716 

Novices Rocking Pegboard 0.99 0.99 0.354 

All Subjects Suturing 0.96 0.96 0.379 

Experts Suturing 0.96 0.96 0.272 

Novices Suturing 0.96 0.96 0.565 

     

 

 

Figure 22 – HMM-based ESF scores for all subjects.  LEFT: Rocking Pegboard. RIGHT: Suturing.  Warm-up did not generate a 
noticeable difference in performance. 

Figure 23 - HMM-based ESF scores for Experts.  LEFT: Rocking Pegboard. RIGHT: Suturing.  Warm-up did not generate a 
measurable difference in performance. 
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4.4 Conclusions 

The HMMs developed for this analysis did produce scores which discriminate between the 

groups of data used to train them.  Yet, the ESF scores did not correlate with any other 

validated measure of performance.  This leads us to question the utility of this technique.  

There may be improved experimental models that would have yielded better results.  There 

also may be characteristics of the data we used that limit the accuracy or utility of the ESF 

score.  In previous successful HMM scoring work force application on the surgical field provided 

additional data streams to the models [24, 103].  Here we have only motion and velocity data.  

Also, in previous work, longer surgical procedures were recorded.  These procedures had a 

wider variety of tasks.  Among the characteristics that discriminated between the subjects in 

these studies was time spent idle while novices decided what surgical step to take next.  All of 

the subjects in our study had reached task proficiency.  The effects of warm-up thus may not be 

amenable to analysis using black box HMMs.  

Figure 24 - HMM-based ESF scores for Novices.  LEFT: Rocking Pegboard. RIGHT: Suturing.  Warm-up did not generate a 
measurable difference in performance. 
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Chapter 5: Application of a Novel Crowd-Sourcing Tool to Assess 

Surgical Performance Following Preoperative Warm-Up 

Evaluate the hypothesis that preoperative VR warm-up produces a significant improvement 

in robotic surgical performance as measured by C-SATS. 

5.1 Introduction 

Over the years that the BioRobotics Laboratory has been interested in surgical skill evaluation 

and performance assessment we have come to understand the benefits and drawbacks of the 

various techniques.  Basic measures such as path length, task time and economy of motion are 

simple to compute and provide immediate results but the resulting measures are not clearly 

correlates of clinical outcome.  Furthermore, the equipment to perform motion tracking can be 

quite expensive which limit their wider clinical adoption.  Machine learning-based algorithms 

could provide more sensitive data about performance and similarity of an examined 

performance to known expert performances.  However, the methods for successful application 

are far from established, often requiring hand-tuning of model parameters, and require 

expensive computational and motion tracking equipment.  Not to mention that many of the 

most successful approaches require force data.  Structured assessment tools like GEARS and 

OSATS seem to be more sensitive to the interaction of the surgeon and the environment, 

whereas basic measures and algorithms only view the actions of the surgeon without the 

surgical context.  The drawbacks of these assessment tools lie in the high cost of expert surgeon 

time which leads to a long delay between performance and score. 
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We seek a method to assess surgical performance which is clinically valid, inexpensive to 

produce and which can provide assessments in a short period of time.  In this chapter I will 

describe a novel method for assessing surgical performance called Crowd-Sourced Assessment 

of Technical Skill (C-SATS).  This method satisfies all of these criteria.  I will describe a pilot study 

to compare an assessment of a surgical performance performed by surgeons to one performed 

by a crowd of individuals on the Internet who do not have specific training in surgical skill 

evaluation.  Then I will demonstrate that when applied to a range of performance videos 

exhibiting a wide variety of skill levels, the crowd agrees well with trained surgeon graders.  

Finally, I will use C-SATS to measure the impact of VR warm-up on the performance of robotic 

surgery. 

5.1.1 C-SATS Pilot Study 

During the summer of 2012 a pilot study was completed to examine the ability of a crowd of 

untrained individuals to assess a video of a surgical performance [104].  The crowd consisted of 

workers on an online crowd-sourcing website called Mechanical Turk.  Mechanical Turk serves 

as an Internet marketplace for work which is best done by people, rather than computers.  

Workers there complete Human Intelligence Tasks (HITs) such as completing surveys and 

categorizing images.  Workers are paid for each HIT they complete successfully.  A simplified 

version of the GEARS tool was used consisting of only the Depth Perception, Bimanual Dexterity 

and Efficiency categories, shown in Figure 25. 
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Figure 25 - C-SATS assessment domains. 

An online survey was created which first presented a screening video of two surgeons operating 

side by side on a block transfer task.  The subjects were instructed to select the video from the 

performance they thought to be better in order to test their ability to discriminate between skill 

levels.  Next the subjects read a paragraph of text that instructed them not to answer the 

question that followed.  Both of these attention check questions were intended to eliminate 

responses from subjects who were not paying attention.  Finally, the subjects were presented 

with a video of a surgeon performing an FLS intracorporeal suturing task using the da Vinci and 

asked to grade the video using the three categories discussed above.  A screenshot from that 

video is shown in Figure 26. 
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The online survey was sent to 10 recruited faculty-level surgeons.  These surgeons were 

required to have a minimum of three years of minimally invasive surgery experience.  The 

survey was also posted to Facebook to collect voluntary responses.  Finally a HIT was created 

using Mechanical Turk to collect 500 responses from Mechanical Turk workers.  Each worker 

was paid $1.00 (USD) to complete the survey.  The score response density for the three groups 

of responses is shown in Figure 27.  Responses from people who failed the attention checking 

questions were eliminated.  This yielded 409 valid Mechanical Turk responses, 9 valid surgeon 

responses and 67 valid Facebook responses as summarized in Table 20. 

Table 20 - Response yield by group. 

Group Total Responses Correct Responses Yield % 

Mechanical Turk  500 409 81.8 % 

Surgeons 10 9 90.0 % 

Facebook 110 67 60.9 % 

 

Figure 26 - Criterion video of a surgeon performing an FLS intracorporeal 
suturing task using the da Vinci surgical robot. 
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Our equivalence criterion was whether the 95% confidence interval of the responses from the 

Mechanical Turk workers fell entirely within one point of the mean surgeon score, 11.11 to 

13.11.  The 95% CI of the Mechanical Turk Responses was found to be 11.98 to 12.43, thus 

satisfying our equivalence criterion.  Another most striking result of the pilot study was the 

response time from the various groups.  Shown in table Table 21 and Figure 28, the Mechanical 

Turker workers were much, much faster to respond. 

Table 21 - Time to collect full responses from each group of graders. (* Surveys were released to Mechanical Turk over the 
course of 5 days but each time they were released the surveys were almost immediately completed by workers.  Actual 
cumulative time to completion disregarding delays between group releases was less than 1 day.) 

Group Days 

Mechanical Turk Workers 5* 

Surgeons 25 

Facebook 24 

 

Figure 27 - Scoring density for three groups of scorers: experts, Mechanical Turk workers, 
and Facebook responses. 
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This pilot study satisfied us that Mechanical Turk workers could grade comparably to surgeon 

graders and that wider examinations of these phenomena were needed.  Furthermore, it 

showed that the Mechanical Turk workers were willing to provide responses much more quickly 

than surgeons and for a potentially much lower cost. 

5.2 Methods 

5.2.1 Data 

The same set of tasks scored using GEARS by the trained surgeon graders, discussed in Chapter 

3, were selected to be scored using C-SATS.  This allows us to compare the crowd scores to the 

surgeon scores.  Selecting one rocking pegboard task and one suturing task allowed us to 

comment on the impact of warm-up when the warm-up VR task was either similar to or 

Figure 28 - Simulated completion time for the surgeons vs. the Mechanical Turk 
workers.  The delays between survey releases on Mechanical Turk have been 
eliminated. 
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different from the criterion task.  51 subjects proceeded through the study.  This should have 

yielded 51 videos for both the rocking pegboard task and the suturing task.  However, 2 of the 

51 performances for the rocking pegboard task and 2 of the 51 performances for the suturing 

task were not recorded due to errors in the recording equipment.  Thus, in both cases, 49 

videos were available for analysis.    Videos from session 3 of the rocking pegboard task were 

selected as these performances occurred the longest time from the proficiency phase of the 

study.  This should minimize the influence of having had recent significant practice on the task. 

Table 22 - Tasks scored by expert surgeons using C-SATS were the same as those scored using GEARS. 

Performance Type Performances Scored Session Number 

Rocking Pegboard 49 3 

Suturing 49 4 

   

5.2.2 C-SATS Mechanical Turk Crowd Survey 

We adapted the HTML Form-based GEARS Grading Suite to create a survey similar to that used 

in the pilot study.  The survey including screening questions followed by the three grading 

domains with free text response fields is shown in Figure 29.  Surveys for each task to be graded 

were automatically generated using a Matlab script.  A PHP CGI script on a BioRobotics Lab web 

server received the survey responses, stored the scores to our server and generated a unique 

survey code that the workers copied into the Mechanical Turk website.  We created a HIT 

requesting 30 crowd responses for each of the 49 rocking pegboard and 49 suturing tasks using 

the Mechanical Turk web interface.  We decided to collect 30 responses from the crowd 

because we believed this to be a number sufficient to judge the overall agreement between 

surgeons and the crowd and a sufficiently high number to get a sample mean that should be 

representative of the crowd response population mean.  Furthermore, this was a number that 
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we could afford to request as we had to pay for each response generated.  Table 23 describes 

the HIT parameters including the pay per tasks completed.  Mechanical Turk manages the 

assignment of HITS to workers so that each worker may complete multiple HITS but they may 

only complete a given HIT once.  Thus the 30 responses collected per performance are from 

unique workers.  Also, since some of the workers will answer the attention check questions 

incorrectly, the work from these workers was rejected and the HIT relaunched for other 

workers to complete.  This allowed us to assure we collected at least 30 valid responses per 

performance. 

Figure 29 - C-SATS survey for Mechanical Turk workers.  LEFT: screening questions. RIGHT: grading domains with free text 
response areas. 
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Table 23 – C-SATS survey characteristics. 

 Rocking Pegboard Suturing 

Pay $0.25 $0.50 

HITs per performance 30 30 

   
To provide additional insight into general trends in the accuracy of how crowd-derived 

performance scores varied across the spectrum of performance levels, that is, to answer the 

question “does the crowd score poor performances as accurately as excellent performances?” 

three additional performances from each task were each presented to 150 workers.  The 

selected tasks were at the 10th, 50th, and 90th percentile level within the range of performances 

according to surgeon-derived C-SATS score.  This allowed us to analyze the performance 

quality-dependent bias in the crowd. 

Table 24 – C-SATS deep bias survey characteristics. 

 Rocking Pegboard Suturing 

Pay $0.50 $0.50 

HITs per performance 150 150 

   

5.3 Results and Discussion 

5.3.1 Response Statistics 

We launched the rocking pegboard task first and paid $0.25 per completed HIT.  This seemed to 

be a little low for the amount of time needed to complete the task.  As can be seen in Table 25, 

the completion time was must faster for the following task, suturing, where we paid $0.50.  

Another observation about the responses we collected was that perhaps because of price 

sensitivity and because the HIT was launched in the morning in the United States, the majority 

of responses were from the US (based on worker self-reporting).  See Figure 30 and Figure 31. 
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Table 25 – C-SATS survey response characteristics. 

 Rocking Pegboard Suturing 

Pay $0.25 $0.50 

Total Responses 2027 1668 

Valid Responses 1433 1498 

Yield % 70.7% 89.8% 

Cost $493.75 $768.00 

Completion Time (95%) 108:48:00 8:52:00 

Domestic Responses 37.79% 94.60% 

   

 

We also observed a much higher yield (correct responses out of total responses) for the 

suturing task.  Based on the predominance of domestic responses for the suturing task, one 

might suspect the higher yield to be due to the English comprehension capabilities of the 

workers.  Further analysis might indicate that domestic workers produce a higher proportion of 

valid responses. 

Figure 30 - Crowd worker self-reported location. 
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5.3.2 Validating Crowd-Sourced Assessment of Technical Skills (C-SATS) using 

Amazon Mechanical Turk 

To compare the grades provided by the surgeon graders to those provided by the crowd, 

simulated surgeon C-SATS scores were generated from the 5 domain scores collected in the 

GEARS grading portion of the study.  The scores provided by the surgeons in the 3 gears 

domains of C-SATS were isolated and summed to produce a surgeon C-SATS score.  The 

surgeons were not required to answer the attention check questions.  The simulated surgeon C-

SATS score was then compared to the score provided by the members of the crowd who 

Figure 31 – Locations of Mechanical Turk Workers.  GREEN: Self-reported locations.  RED: IP-derived locations for the Rocking 
Pegboard task.  BLUE: IP-Derived locations for the Suturing task. 
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answered the screening questions correctly.  Figure 32, Figure 33 and Figure 34 show the 

relationship between the surgeon C-SATS scores and the crowd C-SATS scores.  The correlation 

coefficient between surgeon score and crowd score was found to be 0.79 for the rocking 

pegboard task and 0.86 for the suturing task, indicating the scores were very highly correlated.  

The equivalence criteria developed in the pilot study showed that for that video 95% of the 

time the crowd score was within 1 point of the surgeon score.  If that were to occur in this 

experiment we would expect almost all of the crowd scores to fall within the dotted lines on 

their side of the lines of slope 1 in Figure 33.  In our collected data across a wider range of 

performance levels it was seen that 16 and 15 scores for rocking pegboard and suturing, 

respectively, fell outside this equivalence zone. 

 
Figure 32- Crowd-Surgeon correlation coefficients and lines of best fit. LEFT: Rocking Pegboard.  RIGHT: Suturing. 

y = 0.52 * x + 5.2 y = 0.76 * x + 2.7 
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It can also be observed that for the rocking pegboard task the crowd scored more critically 

those performances which the surgeons scored at the higher end of the performance spectrum.  

Results from the deep bias analysis in which three performances from both tasks were 

presented to 150 members of the crowd showed the same bias for better rocking pegboard 

performances.  See Figure 34.  While the crowd bias was flat across the performance spectrum, 

Figure 33 - Crowd-Surgeon equivalence analysis. LEFT: Rocking Pegboard.  RIGHT: Suturing. If the crowd grade is within 1 
point of the surgeon grade the point will fall within the dotted lines. 

Figure 34 – Another way to depict the agreement between the workers and the surgeons.  LEFT: Rocking Pegboard.  RIGHT: 
suturing.  It can be seen that the workers seem not to grade the best performances as highly for the rocking pegboard task. 
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the crowd disagreed with the surgeons for the 90th percentile rocking pegboard performance, 

scoring nearly two points more critically. 

 

Understanding this task-and-performance-quality-dependent bias could allow for a correction 

factor to be applied in future efforts, thus recovering a more accurate estimation of a surgeon 

derived score from the crowd. 

Next, we computed the level of agreement between the surgeons as a group and the crowd as 

a group.  Using Cronbach’s alpha, and treating the mean surgeon C-SATS score as one grader 

and the mean crowd C-SATS score as another, the agreement on the rocking pegboard task 

score 0.84 and the agreement on the suturing task scored 0.92.  

Figure 35 – Deep bias analysis shows correlation between surgeon score and crowd score for 3 
performances each from the two tasks.  The selected tasks were the 10%, 50%, 90% of the range 
of performances according to surgeon-derived C-SATS score.  Then 150 Mechanical Turk 
workers were recruited to grade the performances, with the aim being to determine if the 
accuracy of the workers is dependent on the quality of the performance. 
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Table 26 – Agreement when surgeon-derived C-SATS scores are compared with crowd-derived C-SATS scores. 

 Rocking Pegboard Suturing 

Cronbach’s alpha 0.84 0.92 

Agreement Quality Good Excellent 

   
By a variety of metrics we see that the crowd can provide high-quality performance assessment 

metrics for the assessment of surgical performance.  This study focused on the dry-lab setting.  

Further assessment, refinement and development are needed to see if these strong results hold 

in the setting of actual surgeries.  Further work is also needed to determine the best way to 

have the crowd score longer videos or segments of tasks longer in duration than those scored 

here. 

5.3.3 Warm-up Results 

Having shown the C-SATS score to be an accurate and useful tool to assess surgical 

performance, we also tested the warm-up hypothesis using the grades from the crowd.  When 

considering the impact of warm-up on rocking pegboard and suturing, we first look at the 

performances as a group.  As seen in Figure 36, for the rocking pegboard task the warm-up 

group achieved a mean C-SATS score of 10.87 while the control group performed slightly worse, 

scoring 10.57 on average.  For the suturing task the warm-up group outperforms the control 

group 11.10 to 10.55.  In the rocking pegboard case the differences between the distributions 

of scores did not achieve statistical significance, but in the case of suturing, the warmed up 

group was statistically significantly better.
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When we separate the groups into experts and novices and consider their performances 

separately, we find that in all but one case (novices on the rocking pegboard task), C-SATS 

scores favor warm-up, however only for experts does this difference achieve statistical 

significance at the level we selected.  These results are depicted in Figure 37 and in Figure 38 as 

well as summarized in Table 27. 

 

Figure 36 – C-SATS-based scores for all subjects.  LEFT: Rocking Pegboard.  RIGHT: Suturing.  Warm-up did generate a 
statistically significant difference in performance for the suturing task. 

Figure 37 - C-SATS-based scores for experts.  LEFT: Rocking Pegboard.  RIGHT: Suturing.  Warm-up did generate a statistically 
significant difference in performance for both tasks. 
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Table 27 –Warm-up impact on surgeon C-SATS scores. (*statistically significant) 

Group Task Warm-up Control t-test 

All Subjects Rocking Pegboard 10.87 10.57 0.280 

Experts Rocking Pegboard 12.55 10.90 0.030 * 

Novices Rocking Pegboard 10.25 10.32 0.548 

All Subjects Suturing 11.10 10.55 0.038 * 

Experts Suturing 11.78 10.66 0.045 * 

Novices Suturing 10.84 10.48 0.136 

     
These results are very similar to those found in the GEARS score analysis.  Here though, the 

differences between the warm-up group and the control group did achieve statistical 

significance for three categories:  all subjects on the suturing task and experts for both tasks. 

5.4 Conclusions 

5.4.1 C-SATS Utility 

C-SATS allows researchers and educators to grade surgical performance videos much faster 

than is usually possible using structured assessment tools.  The technique produces scores 

which are highly correlated with assessments by trained surgeons, as measured by correlation 

coefficient and by Cronbach’s alpha.  In most cases the scores provided by the crowd are within 

Figure 38 - C-SATS-based scores for novices.  LEFT: Rocking Pegboard.  RIGHT: Suturing.  Warm-up did generate a statistically 
significant difference in performance for the suturing task. 
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1 point of that provided by our group of surgeons.  Additional refinement of the application of 

C-SATS could further improve this agreement.  It may be possible to eliminate performance 

quality bias in the crowd responses.  This tool could be very useful for assessing large sets of 

data where expert surgeon grading would be impractical or impossible.  There is a cost to using 

the tool but it is less than the cost to have surgeons score performances.  Furthermore, it is a 

better use of surgeon resources.  Finally, there are communities of people willing to do similar 

crowd-sourced work for the advancement of science without getting paid.  Such a system for 

assessing surgical performance of trainees may be one way to further lower the cost to perform 

C-SATS assessments.  Because of the existence of the Internet and surgical systems that allow 

for immediate and possibly automatic upload or real-time streaming of surgical video feeds, a 

future where crowd-sourced surgical skill assessment is a reality could be imminent. 

5.4.2 C-SATS Measurement of Warm-up 

The crowd seemed to be more sensitive to the effects of warm-up.  They observed a benefit in 

all but one case (novice surgeons on rocking pegboard) and those benefits where statistically 

significant in three of those cases.  Interestingly, expert surgeons benefitted most from warm-

up, both when the VR warm-up was similar to the criterion task and when it was different.  The 

benefit of warm-up in a clinical setting should be measured.  Evidence so far indicates that it 

could help. The monetary and time costs of having surgeons sit down to a simulator, especially 

when that simulator is actually the master console of the robot itself, could be acceptably low 

for widespread implementation.  
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Chapter 6: Summary 

The promise of identifying a convenient deployable tool to maximize robotic surgical 

performance prompted our team to devise and complete this series of studies.  Via three of 

four analysis approaches we have identified clear benefits to warming up before performing 

robotic surgery.  These results are summarized in Table 28.  Further examination is needed, 

including testing the warm-up hypothesis in the clinic.  Furthermore, a study structure that 

directly controls for individual performance will be utilized in all future studies. 

Table 28 – Warm-up impact on surgical performance assessed by a variety of metrics and displayed as corresponding test 
statistics.  Green shading: mean favors warm-up but not statistically significant.  Red shading: Statistically significant 
improvement. Rocking pegboard: Error 1 = peg touches, Error 2 = cognitive error.  Suturing: Error 1 = technical error, Error 2 = 
global error score.  Cells where a test statistic was not computed are left blank. 

 Rocking Pegboard Suturing 

Metric All Subjects Experts Novices All Subjects Experts Novices 

Basic Measures 

EOM 0.132 0.007 0.9 0.557   

Path 0.014 0.093 0.063 0.999   

Time 0.001 0.001 0.10 0.703   

Error 1 0.313 0.60 0.18 0.115   

Error 2 0.340 0.96 0.27 0.014   

GEARS 0.522 0.054 0.613 0.092 0.051 0.228 

C-SATS 0.280 0.030 0.548 0.038 0.045 0.136 

HMM 0.343 0.716 0.354 0.379 0.272 0.565 

       
Regarding the methods for analyzing surgical performance, each had their pros and cons in 

terms of convenience, cost, and clinical relevance, as can be seen in Table 29.  C-SATS is a new 

and exciting way to assess surgical performance.  It correlates well with the gold standard 

assessment of performance using expert surgeons.  This is clearly an area with great potential 

for research and clinical application.  
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Table 29 – Pros and cons of each method for assessing surgical performance. 

 Pros Cons 

Basic 
Measures 

 Easy to compute 

 Potentially OR compatible 
(especially if fully robot 
integrated) 

 Some measures, like task time, 
linked to clinical outcome 

 Tracking technology is expensive 

 cumulative error tabulation is 
time consuming for a proctor 
(but potentially crowd-source-
able) 

 Not clearly linked to surgical 
outcome 

 Limited to surgical procedures 
where motion data is available 

 Limited surgical field context 

GEARS  Widely accepted 

 Potentially applicable to a wide 
variety of type of surgery and 
other medical interventions 

 Leverages the perceptive power 
of the human brain 

 OR compatible 

 Expensive in terms of expert 
surgeon time 

 Needs further clinical validation 

 Long time delay between 
performance and score coming 
back 

 potential for patient privacy 
issues 

C-SATS  Based on an accepted clinical 
performance measure 

 Scalable to large amount of 
performance data 

 Potentially applicable to a wide 
variety of type of surgery and 
other medical interventions 

 Short time from performance to 
score, possibly less than an hour 

 Leverages the perceptive power 
of the human brain 

 OR compatible 

 Needs further clinical validation 

 Potential for patient privacy 
issues 

 May require training for 
improved scoring 

 Expensive for large datasets 

 Needs careful control of crowd 
to avoid bad data and system 
abuse 

HMM  Essentially zero marginal cost to 
assess a performance once 
model is built and refined 

 Immediate scores for existing 
skill models 

 Potentially OR compatible 

 Tracking technology is expensive 

 Skill model technology is still at 
the research stage 

 Model training can be expensive 
and time consuming 

 No surgical field context 

 Only aware of surgeon 
movements 
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