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Abstract 

Drug post marketing safety surveillance is a very important part of pharmacovigilance, 

which is overseen by the Food and Drug Administration (FDA) and other regulatory agencies 

throughout the world. These studies are generally performed by pharmaceutical sponsors and 

academicians, although it is occasionally the case that a regulatory agency will either fund the 

research or have large databases which is analyzed by the regulators themselves. One example of 

agency surveillance is the FDA Adverse Event Reporting System (AERS). Generally, 

preapproval studies only involve several hundred to several thousand patients, so all possible 

side effects of a drug cannot be explored thoroughly because it is not possible to have a high 

probability of detecting rare, but important, adverse events. In addition, the population of 

patients in pre-approval studies are more restricted and better controlled than the wider 

population of patients who take a compound once it has been approved.. In order to monitor 

adverse events and serious/severe adverse reactions, FDA maintains a system of post-marketing 

surveillance programs to identify adverse events that did not appear during the drug approval 

process1. 

In this thesis, we will examine some regulatory/analytic issues that arise in the evaluation 

of pharmaco-epidemiologic data analysis using propensity score analysis from drug post-

marketing safety surveillance. It is my desire to show the rationale and preference of using 

propensity score in post-marketing safety surveillance studies. We also examined several 

independent cases that used propensity score inappropriately, and concluded the FDA’s 

comments on them. We propose some advices on propensity score use in the future statistical 

analysis for reference. 
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Introduction and Background 

Post-Marketing Drug Safety Surveillance 

After a new drug gets its approval from FDA, the regulatory requirements become 

different and change from those applied during the approval process. Figure 1 shows some 

aspects of the changes that occur over the life-cycle of a drug that can exceed 15+ years. In 

initial human studies (Phase 1), safety information is acquired as part of the evaluation of  

various dosing regimens and dose-finding. This is used to determine whether the drug should be 

developed further, and brought into phase 2 testing where both safety and efficacy are evaluated. 

Further safety and efficacy assessments are brought into the evaluation of risk: benefit, and phase 

3 testing proceeds if this risk: benefit profile is deemed desirable based on other drug 

competitors. If phase 3 testing is successful and the drug is approved, then risk: benefit has been 

established. Now, the drug enters the post-approval phase, and safety becomes important as a 

stand-alone issue. It is of interest to determine the safety in a broader population of patients than 

used in the pre-approval stages. Post-approval patients may be older, sicker, and healthier, have 

more or fewer co-morbidities, use more or fewer concomitant medications, and other factors that 

may put them at increased risk of safety compared to a relatively narrowly-defined population 

used during the approval process.  

The major responsibilities facing pharmaceutical companies as well as FDA are similar in 

many aspects throughout the entire lifecycle of the drug. Part of FDA’s mission is to “assure that 

patients and providers have timely and continued access to safe and effective and high quality 

drugs,” and to “facilitate drug innovation.”2 Just as FDA must ensure that the drug is developed 
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and produced according to accepted standards, the company must also provide similar assurances 

when the product is marketed to the general public.3  

 

 

   

 

Figure 1: Safety in the Lifecycle of FDA-regulated Products 

 Generally, post marketing surveillance includes three types: spontaneous/voluntary 

reporting of cases, post-marketing studies (both voluntary and required), and active surveillance. 

The related pharmacy-epidemiology studies can be based on large databases collected from a 

variety of sources. These sources may include spontaneous clinical reporting, and assembling of 

data prospectively gathered from newly designed studies. Furthermore, there is also assembly of 

data from existing data sources such as insurance databases that are used for a variety of 

purposes such as billing. There are several main channels for the cases reporting: 1) FDA Med 

Watch system, 2) the manufacturers’ required regulatory reporting, insurance databases, and 3) 

large governmental databases such as Medicare/Medicaid. The manufacturer/insurance/ 
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governmental reporting accounts for roughly 95% of all reports, and Med Watch accounts for the 

remaining 5%.4   

 The FDA adverse event database is called the Adverse Event Reporting System (AERS), 

which contains information on adverse event and medication error reports submitted to FDA by 

the industry, physicians, lawyers, and patients. The AERS supports a major part of the FDA’s 

post-marketing safety surveillance program for drug and therapeutic biologic products. The 

AERS database is a useful tool for FDA to look for new safety concerns, evaluation of 

manufacturer’s compliance to reporting regulations, and responding to outside requests for 

information.5 The database contains over 7 million reports since 1969, and nearly 1 million new 

reports each year recently. 6 

 Since some of the adverse events classifications in the post-market phase are relative rare, 

observational and other types of epidemiologic/clinical studies are commonly used in this phase 

compared with use of prospectively randomized, controlled clinical trials in the pre-approval 

phase. Observational/epidemiologic studies have the advantage of: 1) being relatively 

inexpensive compared to randomized trials, and 2) having access to people in a broader 

environment of ‘real life’ situations.. What is more, most of the post-market safety surveillance 

will collect a large amount of cases, which are generally far more than what one would obtain in 

prospectively randomized clinical trials, so the power of the observational studies are greater and 

usually acceptable for making an informed scientifically valid decision. However, observational 

studies may be subject to several biases meanwhile, especially selection bias.7 Channeling bias is 

another problem, since physicians may ‘channel’ or direct patients to a certain therapy more 

often based on their patients’ personal characteristics. Furthermore, such studies may have 

limitation in determining causation. Nevertheless, they contribute to the totality of evidence and 
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thereby provide important information that can be used to evaluate the possibility of safety 

concerns. 

 Selection bias is an important concern in observational studies, especially in post-

marketing observational studies where they may form the basis for possibly removing a drug 

from the marketplace. Often, only one study is done and so the usual requirement of scientific 

replication is ignored. This is due to a number of reasons, including that one study is very large 

and relatively lengthy. In these studies, most data are collected from clinical cases from 

hospitals, clinics and healthcare professionals, in which decisions of using any specific drugs are 

made by local physicians. The selection of any particular drug is complex, and based on their 

perceptions of the risks and benefits for particular patients.8 As a result, substantial selection and 

channeling bias would be introduced since the allocation of treatments will be imbalanced in risk 

factors as well as demographics between patients given the drug of interest and those given an 

alternative or no treatment. That is to say, based on physicians’ previous clinic experiences, a 

certain group of patients who share certain kinds of characteristics are more likely to receive a 

specific treatment because they think it will have better risk: benefit on these patients. These 

imbalances in patient characteristics will directly affect safety outcomes when higher risk 

patients receive the drug.9 This will bias observational studies to the different directions.  

 The question for the analyst of safety data becomes, how these factors can be adjusted in 

the analysis so that biased estimates of safety are minimized/eliminated. It is very important to be 

aware of the fact that, large studies do not guarantee that an unbiased estimate of safety 

assessment will be obtained. Large studies only guarantee that the safety signal estimate will be 

measured with a high degree of statistical precision, ie, a small variance. Clearly, an unbiased 

estimate of the safety signal is what is most important to determining whether a drug should 
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remain or not in the marketplace. We will discuss two possible methods on how one usually 

attempts to obtain an estimate of safety that takes into account the issues including but not 

limited to patient characteristics, and selection and channeling bias. The first is regression 

analysis, which we will begin with. Specifically, we will discuss logistic regression since the 

same principles apply to all methods of regression analysis, and the dependent variable is easiest 

to understand since it is binary (ie, success or failure, present or absent, etc). 

Logistic Regression Model 

 Logistic regression is one of the most frequently used statistical methods in all phases of 

evaluating data. It is used in almost all types of various study designs including prospectively 

randomized clinical trials (RCTs), observational studies, case-control and epidemiologic cohort 

studies. In observational studies, logistic models are frequently used to assess the contribution of 

risk factors to the outcome of interest. It could also be used in the controlling of imbalances 

between groups by adjusting for one or more covariates.10  

A major reason to use logistic regression, is to control for confounding through 

consideration of many variables simultaneously. However, if there are too many variables 

included in the model compared with the number of cases, the estimates could be incorrect in 

these models11,12. Furthermore, the covariates are often correlated with the risk factors or 

predictor variables, which will lead to multiple logistic coefficients that are “collinear” and 

difficult to interpret.13 Great care must be taken when using the logistic model, since it is 

deceptively easy to use the model in ways that are improper for its appropriate interpretation of 

data. These ways include issues including but not limited to: 1) not checking for model 

misspecification, and 2) collinearities. Another often-overlooked issue is use of the model to 

extrapolate to conclusions for which the data do not exist. For example, some may use the model 
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to make predictions for age groups not included in the actual dataset on which the analysis was 

based.  

Thus, some have proposed use of a second method that explicitly forces the data analyst 

not to over-interpret the data. Also, this method attempts to make non-randomized 

observational/epidemiologic study data into “quasi-randomized studies” by mimicking methods 

found in prospectively randomized studies. This method is called the propensity score method. 

 

Propensity Score 

A relatively new statistical method is available to reduce selection and channeling bias, 

and to explicitly account for confounders. It also addresses the issue of inappropriate 

extrapolation of conclusions to places where the data do not allow valid comparisons to be made. 

This method is called propensity score analysis. It is increasingly used in drug safety studies, 

especially in large datasets. The propensity score, defined as ‘the conditional probability of 

assignment to a particular treatment given a vector of observed covariates’, was first described 

by Rosenbaum and Rubin in 1983.14 It could be used in the analysis of observational and 

epidemiologic studies to reduce bias by identifying control subjects that are matched in 

probability on a large number of potential confounders to cases.15 The propensity score will 

adjust the different nonrandomized groups in terms of known covariates, in order to perform 

between-treatment group comparisons. Thus, the propensity score is a method that allows for 

scientifically valid conclusions to be drawn. It is fundamentally different from regression 

analysis methods where such explicit matching is not performed.  
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There are three main approaches for taking into account confounders and/ or 

selection/channeling bias: matching, stratification/regression adjustment, and weighting. 

Matching adjusts for differences via study design, and stratification/regression adjusts during 

estimation of treatment effect.16 Propensity scores represent an alternative way for adjustment for 

confounders and controlling for biases. 

In most of the post-marketing safety surveillance situations, the data are obtained from 

observational or epidemiologic (ie, non-prospectively randomized) studies. Using propensity 

score as a covariate in the regression model for adjustment, and using it as a matching process 

are both very common. In these situations, propensity score is supposed to reduce the bias due to 

non-comparability between groups in the confounding variables. The goal is to obtain less 

biased/unbiased estimates of treatment effect. For the first condition, the propensity score serves 

as a covariate that indicates the probability of treatment that will be applied in a certain case. In 

the second case, the Propensity Score Matching (PSM) employs a predicted probability of group 

membership, to create treatment groups that are balanced on covariates even a large number of 

covariates (i.e., confounders). The PSM is generally considered the preferred approach to 

adjustment and minimizing selection/channeling and other biases. 

 

Regulatory Issues and Propensity Scores 

 Propensity scores are increasingly used in post-marketing surveillance studies for 

analysis by the FDA. However, there are some issues underlying the use of this method, not only 

in the regulatory perspective, but also on the statistical side. These issues include the design and 

analysis of studies that appropriately collect information on as many important factors as 
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possible. This will allow the propensity score to be calculated and achieve a better 

covariate/confounder balance between treatment groups. This will enable academicians, 

pharmaceutical sponsors, and regulators around the world achieve the goal of accurate safety 

assessments of drugs. For it is the goal of regulators to keep safe drugs on the market, and to 

remove unsafe drugs from the market. It can happen however, that misuse of regression and 

propensity score methods can lead to safe drugs being wrongfully removed from the marketplace 

or unsafe drugs remaining on the market. This is where the pharmaceutical sponsors and the 

FDA’s regulatory requirements align completely. 

 

FDA’s Opinions on Using Propensity Score 

 Generally speaking, there are various epidemiologic and statistical methods to identify 

and handle confounding in pharmacoepidemiologic safety studies. The FDA does not endorse or 

suggest any particular method. FDA encourages the continued development, use, and evaluation 

of innovative methods for confounding adjustment.17 

 The FDA’s view on use of the propensity score issue may be summarized as follows.  A 

propensity score for an individual is a predicted probability for treatment with a particular drug 

(usually the drug under study), which is conditioned on the measured covariates within the 

databases.18 However, FDA also clarified a very clear rule: “when propensity score modeling is 

used, investigators should present diagnostics of the propensity score model to allow for an 

assessment of its performance and fit.” The propensity score discussion has been discussed 

widely, and many articles provide a more in-depth discussion of this model and its appropriate 

application to pharmacoepidemiologic safety studies.19 ,20,21 



 

12 
 

 From the FDA’s viewpoint, there are ways to deal with confounders other than the 

propensity score although they may be less desirable and need to be considered on a case-by-

case basis. One is to exclude patients who have risk factors for the safety outcome that are 

unrelated to drug use, or data were never collected. This strategy can be appropriate, but can also 

have unintended consequence of reducing the size of the population under study and also 

introducing bias if the reason for ‘missingness’ is not ‘missing at random’. This reduces the 

power of the study to detect true safety signals. Another issue involves the extent to which 

results can be generalized when subjects are excluded, or if bias in introduced. If the reason for 

missing data is not ‘missing at random’, or MARS, then biased estimates of relative safety can 

arise. It is not surprising then, that the FDA discourages the exclusion of patients because it 

prevents investigators from enhancing the generalizability of the study results, compromises 

statistical power, and precludes the examination for effect modification by these other risk 

factors.22 

 In summary, FDA requires that all confounders, including time-varying confounders and 

effect modifiers, should be operationally defined and justified. Considering the rationality and 

practicality of this FDA reasoning, the use of the propensity score method in the controlling of 

confounders becomes a very attractive alternative to standard regression methods. This is 

especially true in the circumstance of FDA’s clear opposition to the other commonly used 

methods. 
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Practical Issues in Study Design and Statistical Analysis 

In the application of any statistical methodology, there are statistical as well as regulatory 

issues that arise in the study design and analysis process of the study results. For example, pre-

specifying clinically relevant covariates are needed so that they will be measured and included in 

the analytic database. In addition, appropriate patient populations are needed to be identified, and 

essential elements of statistical analysis, planning sample size in the context of propensity score 

methodology should be further quantified.23 Furthermore, missing covariates in generating 

propensity scores should be dealt with, and assessing the success of the propensity score method 

by evaluating treatment group overlap in terms of this methodology, will require revisiting the 

‘missing data’ issue. 24 

Furthermore, propensity score methods can only adjust for observed covariates and not 

for unobserved ones. It is seriously degraded when important variables influencing treatment 

selection have not been collected. The ideal situation is occurs when two treatment groups 

overlap well in terms of the propensity scores, and all important covariates have been collected 

and missing data are minimal. We could then compare the two treatment groups adjusting for the 

PS.25 

In addition, propensity score matching is a powerful, but imperfect surrogate for 

randomization. Propensity score matching can not considering factors that are unknown or not 

measured, while randomization tends to insure balance on both known as well as unknown 

covariates. With propensity score matching, not all patients can be matched as a result. So a large 

sample is desired to maintain the ability to insure  balanced on the known factors of importance 

in predicting the outcome variable.  
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Cases of Inappropriate Use of Propensity Score within Clinical Trials that 

Failed to Get Approved under FDA’s Regulatory Environment 

1. Duke Database Propensity Score Matching Analysis 

In 2013, FDA documented an Executive Summary for a first-of-a-kind transcatheter 

mitral valve repair system manufactured by Abbott Laboratories. This device has been reviewed 

by the Division of Cardiovascular Devices within the Center for Devices and Radiological 

Health of the Food and Drug Administration under Premarket Approval (PMA) application 

P100009, which was the subject of this Advisory Panel meeting.26  

This executive summary is a representative one, and it shows clearly FDA’s attitude 

towards the use of propensity score in an observational study. This summary not only introduced 

the background of several commonly used methods in medical device clinical trials, but also 

gave comprehensive comments on them. This signals FDA’s intentions in the use of related 

methods in clinical trials including propensity scores.  

Initially, in order to analyze the safety and effectiveness of the device, 351 patients were 

registered. Extensive post-hoc analyses were performed. However, in the study, FDA had 

examined the appropriateness and success of each step required to make the sponsor’s proposed 

comparative analyses scientifically valid. The FDA concluded that significant problems existed 

at each step. From the sponsor’s submitted materials, FDA thought ‘with no comparator 

available for analysis, it is difficult to make a safety determination for use of this device in the 

high risk population’. For the effectiveness exploration, FDA believed that ‘The Integrated High 

Surgical Risk Cohort has major design limitations since it was developed by pooling two 

individual cohorts, each with their own weaknesses, in a post hoc manner. These shortcomings 



 

15 
 

pose challenges to any consequential interpretation of data that would stand alone in support of a 

determination of safety and effectiveness, but do provide observations that are useful for 

hypothesis-generation necessary to guide future studies.’27 

It is not surprising that FDA’s negative comments led to denying approval of the device. 

The sponsor concluded that, because of a lack of data that could serve as a concurrent control 

group, it led them to look for an additional ‘real world’ cohort in moderate to severe MR patients 

who did not have surgery. As a result, the sponsor decided to use the Duke database because it 

contained a population with recorded MR and also it had patient outcome data. Because of the 

nature of clinical outcome data and the way it was obtained, the sponsor selected propensity 

score matching analysis as its method in order to decrease selection and channeling bias.  

 

Figure 2: Duke Database Patient Selection Work Flow 
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 It is important to emphasize that this need for re-definition of the characteristics of the 

Duke High Risk patients to be used for matching was identified after outcome (mortality) 

analysis was conducted for matched subjects. This matching allowed the patients’ characteristics 

to more closely match the inclusion/exclusion criteria from the HRR and REALISM HR, and per 

the sponsor, to avoid listing of duplicate patient records.27 This is due to the concerning of the 

appropriateness in the propensity score use to create balance between the two treatment groups 

conducted with outcome data concealed. This met the criteria and solved the potential concerns 

within the propensity score matching use in clinical trial studies. 

 The covariates listed following were specified to be included in the logistic regression in 

the model to calculate propensity scores: 

 

Table 1: List of Covariates Specified to be Included in a Logistic Regression Model 

Age Diabetes 

Gender History of renal disease 

BMI NYHA Functional Class 

Previous Cardiac Surgery History of COPD 

Previous Cardiac Intervention MR Etiology (functional or degenerative) 

Previous MI Ejection Fraction (EF) 

Previous Stroke LVIDs 

History of smoking LVIDd 

History of hypertension STS Score 
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From the Duke Dataset, three levels of propensity score matching were performed. 

However, the sponsor did not include all clinically relevant variables such as MR etiology and 

ventricular size in the model. As a result, functional MR can occur in non-ischemic heart failure 

(HF) as well and adds a high risk factor for outcomes in addition to ejection fraction (EF). The 

inappropriate exclusion of both MR and EF would be a serious problem even though they are 

closely related with functional etiology. When using propensity score for matching, both should 

be included.27 

 As for all the concerns, the FDA concluded that the interpretation of all the results 

achieved from the sponsor’s analysis were neither clear nor reliable. The KM graph (Figure 3) 

was difficult to interpret. 

Figure 3: Kaplan-Meier Freedom from All-Cause Mortality  

FMR Subgroup of Matched Cohort 1 

 

 FDA’s comment on this case is also negative. ‘The Duke Propensity Score Analysis was 

retrospective, subset analysis with results that are difficult to interpret and matched cohorts do 
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not represent any well-defined population. Given all the concerns regarding the creation of the 

matched cohorts above, the difficulties in interpreting the results and considering the post-hoc 

nature of this analysis in a cohort that is not well-defined through different time periods, this 

analysis should be viewed with extreme caution and should be considered hypothesis generating. 

Furthermore, since the patients in the Duke databases were accumulated in an era where 

significant changes in medical and device therapy of CHF have occurred, there were no data on 

either the medical device therapy type or adequacy of treating the registry patients.  

 From this representative case, we can see that the FDA has a strict regulatory viewpoint 

and comprehensive concern about the use of propensity score in clinical studies. The population 

that are matched with needs to be clearly defined and reasonable, which is consistent with the 

concern we mentioned above.  

 

2. A Statistical Memorandum of Alirocumab Using Propensity Score – A Case 

of Propensity Use in Post-Randomization and FDA’s Comments 

Alirocumab is Sanofi’s drug whose primary treatments are hypercholesterolemia or 

mixed dyslipidemia. The analyses were based on data from 12 phase 2 and 3 placebo- or active- 

controlled trials.28 The document illustrated the applicant’s analysis methods of post-

randomization subgroups based on Cox models adjusted for propensity scores.29  

In general, propensity scores are used to conduct the trials in observational studies that 

lack randomization. However this one is not typical - the propensity score was used to do the 

post-randomization analysis. 
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Below are the specific questions from the FDA information request that motivated the 

Applicant’s subgroup analyses which are evaluated.28 

Question 2: 

Provide a time to event analysis including a Kaplan-Meier cure of time to new onset of 

impaired fasting glucose (combining data from both AEs [adverse events] and laboratory 

values): (1) by treatment group and (2) within alirocumab-treated patients only, by two 

consecutive LDL-C values < 25mg/dL vs. others. Provide these plots for both the global pool as 

well as separately for the placebo and ezetimibe pools. 

Question 4 

Please provide in tables using the format in ISS appendix 1.4.5.4 (global pool) and 

1.4.5.5 (placebo pool) TEAEs by HLGT [high level group term], HLT [high level term], and PT 

[preferred term] in control patients, alirocumab patients, alirocumab-treated patients with LDL-C 

≥ 25 mg/dL and patients with 2 consecutive LDL-C < 25 mg/dL. Please provide p-values for the 

following comparisons of interest 2 LDL-C < 25mg/dL versus ≥ 25 mg/dL within alirocumab 

group; 2 LDL-C < 25mg/dL alirocumab versus control or placebo; and LDL-C ≥ 25 mg/dL 

versus control or placebo. (We recognize that this post hoc testing is exploratory and that the 

comparisons being made are not randomized comparisons since the subgroups are defined by 

post-randomization data.) Please provide a table using this same format and analyses described 

above listing AEs of special interest (e.g. diabetic CMQ, neurologic, neurocognitive, hepatic, 

etc.) 

The following post-randomization subgroups were requested in the IR: 

 Alirocumab LDL-C < 25 (low-LDL): patients with two consecutive LDL-C < 25 mg/dL 
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 Alirocumab LDL-C ≥ 25: patients without 2 two consecutive LDL-C < 25 mg/dL 

For question 2, the analyses were conducted within the alirocumab arm to compare LDL-

C < 25 to LDL-C ≥ 25 for patients with normal glucose at baseline or without diabetes at 

baseline in the specified trial groupings. For Question 4, the analyses were conducted for all 

patients, irrespective of baseline glucose or diabetes status, within the alirocumab arm for the 

trial groupings specified.29 

However, FDA thought it was questionable that propensity scores should be used in post-

randomization. As for the reviewers, they commented that the findings from analyses of post-

randomization subgroups are difficult to interpret and questionable.  

For example, the bias could favor the low LDL group as fewer outcomes might be 

considered in the analyses (e.g. outcomes that occur shortly after treatment such as injection site 

reactions). In addition, the bias might also disfavor the low LDL group because the follow-up 

period is shorter than the non-low LDL patients. Not knowing which direction the bias occurs 

makes it difficult to interpret if the hazard ratios obtained from the Applicant’s analyses over- or 

under-estimate the risks for the outcomes under investigation. 

Another concern is whether the propensity score analyses have adequately accounted for 

confounding between the alirocumab LDL-C < 25 and alirocumab LDL-C ≥ 25 groups. 

Typically with propensity score analyses, diagnostics are performed to assess how well the 

analyses have achieved its goal, i.e. to create balanced groups in terms of baseline characteristics 

for the comparisons. Such diagnostics have not been provided in the Applicant’s response 

document. Therefore, there is uncertainty whether subgroup findings are due to achieving low 
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LDL or if due to inherent baseline characteristics of the patients that caused them to experience 

the outcomes analyzed. 

Finally, the process for variable selection in the propensity score estimating model may 

not be optimal. In these analyses, prognostic factors for achieving low LDL were determined 

using a logistic regression model with stepwise selection for identifying factors for inclusion in 

the model. Stepwise selection methods have been criticized30 for yielding inaccurate estimates of 

parameters and their variances. This could thereby impact the estimation of the propensity scores 

and lead to misclassification of patients into the quintiles used in the stratified Cox model. The 

consequences would include possible bias or other types of inaccuracies in the hazard ratio 

estimates.  

The FDA concluded that given concerns with the Applicant’s propensity score analyses, 

and concerns with analyses of post-randomization subgroups in general, there is uncertainty 

about the reliability of findings from these exploratory analyses. We can see from this case that 

the use of propensity score should be applied with great caution, such as the post-randomization 

analysis in this case. The safest application of propensity score analysis is in the analysis of 

observational studies to decrease selection bias.  

 

3. A propensity score used in retrospective observational study in post-

marketing safety surveillance 

An observational study for Trasylol (asprotinin injection) was conducted by Mangano et 

al comprising an analysis of the international database which contained 5065 evaluable patients 
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collected in the multicenter study of perioperative Ischemia, Epidemiology II between 1996 and 

2000.31  

With 691 treated patients excluded, 4374 patients were categorized into one of four 

treatment cohorts: no treatment (1374 patients), aprotinin (1295 patients), aminocaproic acid 

(883 patients), and tranexamic acid (822 patients).32  

Multivariable logistic regression and propensity-score adjustment was conducted in order 

to reduce bias and incorporate numerous covariates that were imbalanced between treatment 

groups. However, the FDA thought it was unreliable because it did not follow principles or the 

correct analysis of observational studies. There were several significant concerns using 

propensity scores used in this study: 

1) The choice of covariates was apparently done explicitly using the outcome variable in 

a stepwise regression, thereby violating a fundamental principle of design in both 

randomized experiments and observational studies.33 This will lead to exaggerated 

significance levels. 

2) The estimated propensity score was used as a variable in a covariate adjustment and 

not used to create bins or to match units. This violates another rule of propensity 

score technology.33 

3) It appears that distinct propensity scores were not estimated for each pair of treatment 

groups compared, which generally violates another rule of propensity score 

technology.34 

4) The goodness of fit statistic (the C-statistic) is of limited relevance for propensity 

score estimation; covariate balance is critical, not fit of the underlying regression used 

to create the propensity score.35,36 
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The renal composite outcomes were applied in the analysis such as renal event (‘renal 

dysfunction with an increase over preoperative baseline level of at least 62 µmol per liter’ or 

‘renal failure requiring dialysis’), and propensity scores were used in this analysis. Except for 

death, the authors did not conduct any analysis to assess the risk of individual events of clinical 

interest. 

The analysis for the renal composite outcome event in all patients of Mangano et al study 

[Table 2 page 359(1)], comprised comparisons between each of the three exposed cohorts 

(aprotinin cohort, aminocaproic acid cohort, and tranexamic acid cohort) and the untreated 

cohort. Odds ratios are reported after multivariable logistic regression “in the presence of 

covariates with propensity adjustment” based on treatment with any anti-fibrinolytic versus no 

treatment. 

From the data, we can see that multiple significant baseline imbalances for risk factors 

remained for predicting renal dysfunction between the aprotinin and no treatment cohorts.  So we 

should expect that the odds ratio for the composite renal event after ‘multivariable regression and 

propensity adjustment’ would be different from the corresponding odds ratio based on crude 

data. However the reported odds ratio is not very different from the odds ratio calculated from 

the crude data. It is not possible to make the analogous comparison for the authors’ stratified 

analysis because the crude data Ares not available. 

The propensity score in this case is not the most proper way to deal with baseline 

imbalances. The method it used appears to be mathematically inconsistent with the odds ratios 

given in the authors’ Table 331, which reports the analysis by ‘multivariable linear regression 

with propensity score adjustment’. 
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In summary, FDA commented that although Mangano et al attempted to apply propensity 

score methodology in the statistical analysis of this observational study, however the application 

was incorrect and inconsistent with its appropriate application as described by the propensity 

score technology as mentioned above.  

 

Conclusions 

 From the cases we mentioned in this article as well as some concerns when using 

propensity score, we can see that FDA has strict requirements. Also considering many strict 

conditions for propensity score use, it should be used with great caution. When used properly, 

the propensity score method has great strengths in forming covariate-balanced groups between 

treatment groups. Then, any observed differences are likely attributable to the different 

treatments as compared to other covariates. We have also seen from these cases that propensity 

score methods have potential risks when the method is not applied correctly or in questionable 

circumstances. The FDA might reject a sponsor’s application because of unclear pre-defined 

populations, or misuse to deal with imbalanced baselines. The use in post-randomization should 

also be careful performed. 

 Even though this article contains most of the concerns and some cases in the propensity 

scores usage under FDA regulatory environment, it did not include all the potential risks for 

evaluating post-marketing surveillance data. More research and reviews should be conducted to 

further elucidate where the use of propensity score methodology is most advantageous. 
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