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Abstract 

Background:  Roşia Montană gold mine is the site of historic mining operations since Roman 
times. Contamination of nearby communitiesby historic mining activities is of serious concern.  
Objective:  The study objective is to investigate whether living in the vicinity of historic gold 
mining increases risk of arsenic exposure from the surrounding environment, and if dietary intake 
from home gardens is associated with reduced risk of arsenic exposure.  
Methods:  We performed assessments in 64 participants from 57 households within the target 
communities. All study participants gave written informed consent. The study was approved by 
the institutional review boards of the regional public health authority of Alba County in Romania. 
Urine samples were digested and analyzed, while fingernails were washed, digested and 
analyzed. Data were compiled as geometric means of urinary total arsenic concentration (µg/L) 
and fingernail arsenic concentration (µg/g).  
Results:  64 participants in the study were divided into 4 clusters based on distance from the 
historic mine.  Urine total arsenic from the closest cluster to the farthest was 30.65 ± 7.60 µg/L, 
27.19 ± 14.17 µg/L, 34.11 ± 11.54 µg/L, 28.97 ± 8.56 µg/L, respectively, all significantly below 
the present standard for urinary arsenic 100 µg/L. In contrast, fingernail arsenic was 10.73 ± 4.87 
µg/g, 12.91 ± 3.42 µg/g, 12.09 ± 1.08 µg/g, 9.35 ± 3.87 µg/g, all significantly above the present 
standard of nail arsenic of 1 µg/g.  Overall, we did not find evidence that people who live closer 
to the mine had higher exposure to arsenic compared to those lived farther away. Drinking water 
source, dietary intake of leafy vegetable and fish, and cleaning practices did not have significant 
effects on either urinary total arsenic or fingernail arsenic.  Self-reported symptoms (extremity 
numbness, frequent and reoccurring heartburn, frequent leg/muscle cramps, frequent joint pains) 
were not found to be correlated with the average distances controlled for self-perceived health 
status and knowledge of arsenic exposure, suggesting these symptoms were less likely to have a 
causal relationship or to be associated with gold mining activities. Self-reported frequent leg 
cramps was associated with increased urinary total arsenic concentration.  
Conclusion:  Our data demonstrate an apparent low-level, on-going, all-source arsenic exposure 
together with a high historic arsenic exposure. Our study provides evidence that people living 
within 38 km from historic gold mines still retain a body burden of arsenic exposure that is not 
reflected in elevated urine total arsenic. And there is concern of self-reported adverse health 
effects associated with current low-level on-going exposure in this area. These findings suggest 
that fingernail arsenic concentration may be a better predictor of arsenic environmental exposure 
than urinary total arsenic in the area with a specific exposure profile - low-level, on-going, all-
source and high historic arsenic exposure. But using both fingernail and urinary arsenic 
concentrations may offer an opportunity for a more effective approach to capture adverse effects 
from low-level exposure, and predict and convey information regarding long-term exposure 
burden after overall environmental arsenic exposure has diminished. 
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Introduction 

More than 140 million people in over 70 countries have chronic exposure to arsenic 

worldwide. Arsenic is distributed ubiquitously as a trace constituent in soils and rocks, natural 

waters and organisms (Irgolic, 1986; WHO, 2001). The main natural occurrences of arsenic are 

ore deposits (Baur and Onish, 1978). Arsenic dispersion into the environment, which naturally 

occurs through weathering processes, can be intensified by mining activities, leading to local or 

regional soil and water pollution. Previous studies have shown that activities related to gold 

mining, such as grinding, drilling and blasting, smelting, leaching, and tailings were highly 

correlated with arsenic concentration in the environment (Ferreira da Silva et al., 2004; Inam et 

al., 2011). 

Arsenic and Gold Mining in Roşia Montană 

Roşia Montană is an historic mining site in the Apueni Mountains of Transylvania, 

Romania. Gold mining activities at Roşia Montană Quadrilateral date back as far as Roman times, 

and nowadays have triggered controversy in Romania, due to the potential environmental 

pollution caused by these mining activities. In fact, the approval process for the “European’s 

largest open-pit gold mine operation” has been halted for decades due to nation-wide protest, 

environmental concerns and the objections of the Romanian parliamentary commission. A 

decision made by the Romania's Ministry for Culture early this year to add Roşia Montană to the 

country's tentative list of UNESCO World Heritage sites has granted Roşia Montană protection 

from industrial activities, including mining (David, 2016), hence currently halted mining 

operation might be held in suspension for good. If this is the case, studies related to Roşia 

Montană gold mine area might not only focus on its historic mining site aspect, but also evaluate 

potential risks associated with a closed mine. The stability of the population in the region may 

then provide a unique opportunity to examine the decay of arsenic body burden depending on on-

going bioavailability to arsenic exposure from the historic mining operations.   

As a result of historic mining activities, abandoned waste dumps and tailings ponds in the 
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Roşia Montană area have been left with high levels of metals including zinc, iron, arsenic, lead 

and cadmium discharged, untreated, into local streams, soils and water (Burja et al., 2010). There 

have been many attempts to demonstrate health effects of arsenic or other metals in mining areas 

including abandoned or closed metal mines (Chung et al., 2005; Lynch et al., 2000). Some studies 

reported that the body burden of arsenic in residents near metal mines was higher than that of 

non-exposed areas (Basu et al., 2010; Moreno et al., 2010), and that increased urinary arsenic 

levels were observed in 33% of 275 residents living in the surroundings of abandoned gold mine 

tailings in Mexico (Colín-Torres, 2014). Both past and current mining activities can contaminate 

the surrounding environment and nearby communities (Fields, 2003). Because gold- and arsenic-

bearing minerals coexist, there is a hazard of mobilizing arsenic during or even after gold mining 

activities (Garelick et al., 2010).  

Multimedia Exposure to Arsenic 

Arsenic exposure from gold mining activities occurs via inhalation and ingestion of 

windblown soil and dust, and ingestion of contaminated water or food (ATSDR 2007; 

Tchounwou et al., 2012). Dermal absorption occurs to a lesser extent (Rossman, 2007). Many 

studies show arsenic pollution from soil, water, sediment, and dust around metal mines (Jung, 

Thornton, & Chon, 2002; Lindberg et al., 2006; Leonardi et al., 2012; Ishinishi et al., 1986).   

Distance 

One study found elevated levels of arsenic in stream sediments that were sampled in the 

vicinity of a mine, and decreased with distance from the mine (Jung, Thornton & Chon, 2002). 

Another study on an abandoned arsenic mine’s effects on drinking water resources quality found 

high concentration of arsenic (about 200 µg/L) near the mine, and a decreasing concentration of 

arsenic in water with increasing distance from the mine (Hajalilou et al., 2011). Martin and 

colleagues found inverse trends between particle size and levels of arsenic, and suggested that 

finer particles are highly susceptible to long-distance transport (Martin et al., 2015).  

Drinking Water 
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Drinking water and food typically account for 99% of the total human arsenic intake 

(Jones, 2007). Several studies also found a significant correlation between arsenic concentrations 

in water and urine (Calderon et al., 1999, Ahsan et al., 2000, Lindberg et al., 2006). Lindberg’s 

study also found that smokers and people with higher BMI have higher urinary arsenic 

concentrations, but that there was no difference of arsenic concentrations in urinary or water 

among different age groups. 

The Arsenic Health Risk Assessment and Molecular Epidemiology (ASHRAM) studies 

of low-level long-term inorganic arsenic exposure via drinking water in eastern Hungary, western 

Romania and Slovakia found that total inorganic arsenic levels in water in the two Romanian 

counties bordering the Alba County to the northwest and southwest were relatively lower than the 

other study areas, with the median values of 0.70 and 2.1 µg/L (Lindberg et al., 2006; Leonardi et 

al., 2012), and far below the US EPA drinking water standard for arsenic (10µg/L) (EPA 

Chemical Contaminant Rules). The concentration range of arsenic in Arad and Bihor Counties 

(downstream to the study area in Alba County) in west Romania is 0-176 µg/L. Estimates suggest 

that there were approximately one million people exposed to naturally occurring arsenic via 

drinking water that exceeded the 10 μg/L WHO and EU standards (Gurzau et al., 2001).   

Dust and Soil 

Incidental soil and dust ingestion, inhalation of soil-born particulate matter, and to a 

lesser extent, direct dermal contact are the major direct exposure pathways (Bacigalupo et al., 

2012).  

Airborne arsenic is generally in the form of arsenic trioxide (Ishinishi et al., 1986). When 

ores are heated in smelters, most of the arsenic goes up the stack and enters the air as a fine dust. 

Dust containing arsenic can enter the body by inhalation and ingestion, or through absorption 

from dermal and eye contact, though it is not a major route of exposure compared to ingestion 

and inhalation exposures (ATSDR, 2007; Martin et al., 2014) 

Soil arsenic is also a significant predictor of increased urinary arsenic concentration for 
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residents living in old mining areas (Hinwood et al., 2006). Elevated arsenic levels were observed 

in soils around historic gold mining areas (Martin et al., 2013). This study also found a significant 

correlation between soil arsenic levels and toenail arsenic concentration (r=0.630, p=0.001), 

suggesting some systemic absorption associated with periodic exposures.  

Dietary intake 

Dietary intake, especially leafy vegetables could be protective against arsenic-induced 

health problems (Kile and Ronnenberg, 2008). For example, Gamble and colleagues (Gamble et 

al., 2007) showed folic acid lowered blood arsenic levels by 14 percent in a Bangladesh 

population exposed to arsenic through contaminated drinking water. Folic acid enhances the 

detoxification (methylation) process of arsenic to MMA and DMA, which are more easily 

excreted in urine. A randomized control trial of folic acid and creatine supplementations as 

therapeutic approaches showed an augmented effect of folic acid on the arsenic methylation 

process in reducing blood arsenic level from baseline when all 662 participants who were 

previously exposed to drinking water arsenic (>50 µg/L) over one year in Bangladesh were 

exposed to low-level arsenic in drinking water (<10 µg/L) using water filter at baseline (Peters et 

al., 2015). Another animal study comparing arsenic methyltransferase knockout mice to wild-type 

mice in arsenic body burden and urinary excretion found a 16-20 fold higher body burden of 

arsenic in lung, liver, kidney, and urinary bladder of the knockout mice (Hughes et al., 2010). The 

study also found that urinary arsenic level was significantly lower in arsenic methyltransferase 

knockout mice than in wild-type mice.  

On the other hand, home garden vegetables might be a potential exposure route for 

inorganic arsenic, through incidental soil and dust ingestion (Bacigalupo et al., 2012), 

contaminated water irrigation (Islam et al., 2016), arsenic-enriched fertilizers and pesticides 

(ATSDR, 2007), or food preparation (Diaz et al., 2015). Studies have shown arsenic contents in 

plant samples to vary with species and parts, with higher concentrations in plant leaves and lower 

concentrations in grains and stalk (Jung, Thornton, & Chon, 2002; Lim et al., 2007). Another 



 8 

review paper reported that both leafy vegetables and nonleafy vegetables are good accumulators 

of heavy metals. In nonleafy vegetables, the bioaccumulation was highest in the leaves (Khan et 

al., 2015).   

Acute and Chronic Arsenic Toxicity 

Adverse health outcomes associated with exposure to mine wastes have been observed in 

residents living close to or within mining-affected areas (Plumlee and Morman 2011). Previous 

epidemiologic studies have shown environmental exposure to arsenic in drinking water or soil has 

been associated with increased risk of skin lesions, cardiovascular diseases, diabetes and cancers 

(Brown et al., 2002, Leonardi et al., 2012). Inhalation, ingestion, or dermal exposure to inorganic 

arsenic has caused peripheral nerve inflammation (neuritis) and degeneration (neuropathy), 

reduced peripheral circulation, anemia, increased mortality due to cardiovascular failure, and 

cancers of the skin, lungs and lymphatic system (Rossman, 2007; Ratnaike 2003).  

The immediate symptoms of acute arsenic poisoning including vomiting, abdominal pain 

and diarrhea, which are often followed by extremities numbness and tingling, muscle cramping 

and even death. Chronic environmental exposure to arsenic has been documented to cause skin 

lesions, patchy palms and hyperkeratosis. Arsenic and arsenic compounds are classified by the 

International Agency for Research on Cancer (IARC) as carcinogenic to humans, causing skin 

cancer, lung cancer and bladder cancer. Long-term exposure is also associated diabetes, 

cardiovascular disease (WHO 2001) 

Arsenic levels in blood, urine, hair and nails have been investigated and used as 

biological indicators of exposure to arsenic. Arsenic is cleared from blood within a few hours 

(CDC 2009; ATSDR 2007).  Arsenic from exposure through inhalation or ingestion is absorbed 

from the lungs or the gastrointestinal tract, undergoes biomethylation in the liver and excreted in 

the urine mainly within 1-2 days (ATSDR 2007; Rossman, 2007). Thus measurement of urinary 

arsenic levels is generally accepted as the most reliable indicator of recent arsenic exposure, and 

has proved useful in identifying above-average exposures in populations living near industrial 
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point sources of arsenic (Milham and Strong 1974; Polissar et al. 1990). Also, arsenic tends to 

accumulate in hair and nails, so measurement of arsenic levels in fingernails is a useful indicator 

of past 6-12 months exposures (Choucair and Ajax, 1988). Garland et al. (1993) showed that 

toenail arsenic levels remain relatively constant over 6 years in 127 women. Another study also 

found toenail measurements of arsenic reproducible over a three to five years period (Michaud et 

al., 2004). Toenails provide an integrated measure of internal inorganic arsenic exposure and 

reflect all sources of exposure, including drinking water, diet, and occupation. Normal levels of 

arsenic in urine is 100µg/L or less, and that in fingernails is 1ppm or less (Valentine et al., 1979; 

Jenkins et al., 1979; ATSDR, 2007).    

Objectives 

This study (funded by Jan A. J. Stolwijk Fellowship) was carried out in the historic 

mining district in the Apuseni Mountains of Transylvania, Romania. Our study is part of a project 

funded by the United States Environmental Protection Agency, covering an area of 1,000 square 

kilometers and population of 50,000. The U.S.EPA funded project focuses on geospatial 

distribution and exposure of multiple heavy metals (arsenic, cadmium, mercury, lead and nickel) 

in the multimedia environment, including air (indoor and outdoor dust), soil, underground and 

surface water, and vegetables. 

The objective of our study was to assess current exposure to arsenic in local residents in 

an historic gold mining area. Specifically, the study investigated risk of self-reported health 

problems and arsenic exposure level in local residents living in the vicinity (within 38 km) of 

gold mines in Roşia Montană of Transylvania area, northwest Romania.  

The seven towns and communes within the sampling area have similar profiles for 

occupation, dietary habits and lifestyle. The primary hypothesis of this study is that living in the 

vicinity of the historic gold mining increases risk of arsenic exposure from the surrounding 

environment, and is associated with self-reported health symptoms. A secondary hypothesis is 

that dietary intake (e.g. leafy vegetable) from home gardens is associated with reduced risk of 
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arsenic exposure.  To address these hypotheses we evaluated arsenic exposure at the level of each 

individual (summer 2015) by measuring urinary total arsenic and fingernail arsenic. The 

existence of potential health problems and household information was obtained by questionnaire.  

There have been limited epidemiological studies of arsenic exposure and its implications 

for human health in the Roşia Montană area, Alba County specifically. Therefore it is worthwhile 

to undertake such a study to determine the association between living in the vicinity of the gold 

mine and elevated arsenic concentration in humans and whether this complex exposure is 

associated with residents’ self-reported health symptoms. In contrast to exposure-related 

information, we know little about the relative source contribution for all potential arsenic 

exposure sources from the environment, e.g., drinking water (surface water, groundwater and rain 

water), airborne arsenic, soil, and food combined. Thus this study focuses on how environmental 

exposure due to vicinity to the mines is associated with the arsenic exposure level, without 

limiting the information to certain exposure sources or routes of exposure and how arsenic 

exposure based on biomarkers (source independent) predicts self-reported symptoms. 

From a public health perspective, we are also interested in determining if age, gender, 

BMI, education, income, smoking, dietary intake and cleaning practices would modify the effect 

the all-source arsenic exposure, and thus which groups of participants may be at greater risk to 

chronic arsenic exposure in an historic gold mining area. 

Materials and Methods 

Study area and Participant  

Study area 

The Roşia Montană gold mining region (Figure 1) is located in the Apuseni Mountains in 

Alba County, northwest Romania. The study area included the seven towns and communes in the 

gold mine area. The study area includes two open pits (Cetate and Carnic), 17 waste dumps, and 

two tailing dams. The processing plant is now decommissioned. Alba County has a population of 
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342, 376 (data from census INS) and contains 4 municipalities, 7 towns and 67 communes in 

2011 (INS, 2012a). The seven communities were selected based on their geographical distances 

to the Roşia Montană Gold Mine, including two towns (Abrud and Câmpeni) and five communes 

(Arieseni, Bistra, Bucium, Roşia Montană and Vadu Motilor). The distances from residential 

households to the Roşia Montană Gold Mine range from 2.42 km to 38.59 km. The towns and 

communes had similar occupational, dietary, and lifestyle profiles. Participants were recruited 

through their family doctors at the local medical units who manage the primary care of the 

majority of residents of that town. Each of these towns and communes was served by only one 

primary care center, which supplied all primary health care and referral. Primary care physicians 

provided the advertising and recruitment for the study.  

 

Figure 1 Location of Roşia Montană gold mine (arrow on the left map), the country of Romania 
(top right), and the gold mine area in Alba County (bottom right) 

 

Clusters  

The gold mining area was subdivided for this analysis into four clusters, reflecting 

distance from the gold mine and therefore risk of exposure to arsenic. The subdivision was based 
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on the distance from the gold mine area including its surrounding tailing piles, and established 

towns and communes. Participants were grouped into four clusters, each with small distances 

among the cluster members, and similar distances to the mine area. The clusters were also divided 

such that the majority of each cluster’s members were from the same administrative division (i.e. 

same town or commune). Euclidean distances from households to the gold mine were calculated 

from GPS coordinate values. Household GPS data was collected during home visits. GPS 

coordinates of the gold mine area were estimated at its geometric center. The four clusters were 

significantly different based on distance to the gold mine (p<0.0001).     

Participants 

Eligible participants included those individuals between the age of 18 and 65 years with 

longstanding residence (≥20 years) in the locality. Participants were excluded if they had 

cardiovascular, diabetic, lung diseases or skin cancers. Those who declined biological sampling 

(urine, nail, hair or all), follow-up home visit (i.e. including environmental sampling), or who 

were lost to follow-up also were excluded from this study. 

As shown in Figure 2, Family doctors at local medical units made a total of 98 enquiries, 

to which 84 participants responded and were recruited initially. Following the self-administered 

questionnaire, fingernail and urine samples were collected at the medical units, except that 

participants who had shorter fingernails were sampled later during individual house visits. A 

household visit was scheduled after the initial recruitment and assessment phase. Three 

participants were excluded from the study analysis because they declined both fingernail and 

urine sampling. Eighteen participants were excluded for declining a household visit or being lost 

to follow-up. Participants who did not give consent for household visit were also excluded, even 

if they were sampled with fingernails and/or urine. 64 participants from a total of 57 households 

were followed up in a home visit, among whom there were 7 couples from the same households.  



 13 

 

Figure 2 Recruitment Flow Chart 

 

All 84 participants completed the questionnaire. Eighty-one urine samples and 23 

fingernail samples were available for assessment, with geographic data from 64 participants. 

There was no significant difference in urine or fingernail arsenic concentrations between males 

and females or across the seven different districts. Hence urine and fingernail samples were 

compared among all participants. 

All study participants gave informed written consent. The protocol was approved by the 

institutional review boards of the regional public health authority of Alba County in Romania, 

and qualified the exemption requirements of the Human Investigation Committee for Yale 

University School of Public Health.  
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Questionnaire 

This study used a structured questionnaire collecting information on demographics, 

lifestyle, residential history, health history, occupational history as well as drinking water and 

dietary consumption.  Self-reported symptoms, home garden and home cleaning practices were 

also collected through the structured questionnaire.  

A Household Visit Checklist was used to collect environmental samples (soil, outdoor 

and indoor dust, and hand dust wipe), GPS data, and household information (e.g. construction 

year, construction material, water resources, filtration system, type of stove and heating, and 

number of floors, bedrooms and residents) at follow-up home visits after participants’ initial 

appointments at the medical units in their towns or communes. The follow-up home visit was 

performed during the following 1-3 weeks with the consent of the participants.  

 

Sample Collection and Analysis 

Urine Sample 

Urine samples for all participants were collected as spot urine samples at the time of the 

study. Urine was analyzed because urinary excretion is the major pathway for eliminating arsenic 

from the mammalian body (Vahter ME, 1988). Total urinary arsenic was measured. Speciation 

analysis was not performed for this study.  

Sample pretreatment and mineralization: The urine samples are mineralized using a method 

specific for urine mineralization. They were placed into a microwave digestion system in the 

presence of nitric acid and hydrogen peroxide as follows: 5 ml urine + 5 ml HNO3 + 2 ml H2O2.  

Hydride generation atomic absorption spectrometry (HG-AAS) analysis: After mineralization, the 

samples were introduced in volumetric flasks which were filled up to 25 ml with ultrapure water. 

The analysis method was based on the measurement of the metal ion concentration of the sample 

by atomic absorption spectrometry. Atomic absorption spectrometry with hydride generation was 

used to determine arsenic concentrations, in which procedure the sample reacts as a column 
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reaction with sodium borohydride in an acidic environment with volatile metal hydrides forming 

as a result. The samples were analyzed with a Zeenit 700P atomic absorption spectrometer with a 

hydride generator system, using a sodium borohydride solution as reducing agent and nitric acid 

solution as carrier solution. After each determination set, the calibration curve was plotted. For 

samples analyzed with the technique based on hydrides, the capillary tube was introduced 

manually into the volumetric flasks with the mineralized samples, they were atomized and their 

absorbance was measured. After each reading, the capillary tube was rinsed with 0.5 % nitric acid 

solution.   

Fingernail Analysis  

Nail inorganic arsenic concentration is considered a stable indicator of arsenic exposure 

from the recent 6-12 months. Normal levels in nails are 1ppm or less (Choucair and Ajax 1988; 

Franzblau and Lilis 1989; ATSDR 2007) If exposed, the elevated levels of arsenic may remain 6-

12 months (Choucair and Ajax 1988). Extensive washing of nails is required to remove 

exogenous contamination (Agahian et al., 1990). 

Fingernails were clipped either using participants’ own nail clippers at their home or with 

provided clippers. The provided clippers were wiped with cotton swabs and ethanol before and 

after each participant clipping fingernails. Fingernail samples were collected from all 10 

fingernails. Nail clippings were secured in zip bags and transported at ambient temperature. 

Sample pretreatment: Before beginning the washing process, any visible impurity from the 

surface of the nails had to be removed. The nails were washed with distilled water 5 times, then 

left in acetone for 30 minutes. They were removed from the acetone and rinsed 5 times with 

distilled water, followed by an overnight drying in a drying stove at 50-60 degrees Celsius (122-

140 F), after which they were kept in a desiccator for 2 more hours.  

Acid digestion and mineralization: The fingernail samples were weighed and mineralized using a 

specific method for animal tissue mineralization. The samples were mineralized in a Teflon 

digestion system, with nitric acid (HNO3) in a MARS 6 microwave oven, with 600 W power.  
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HG-AAS analysis: After mineralization, the volumetric flasks were filled up to 50 ml with 

ultrapure water. The samples were analyzed with a Zeenit 700P atomic absorption spectrometer 

with a hydride generator system, using a sodium borohydride solution as reducing agent and 

nitric acid solution as carrier solution. 

The analysis method is based on the metallic ion concentration determination in the 

sample by atomic absorption spectrometry. For arsenic determination, atomic absorption 

spectrometry with hydride generation is used, resulting in the reaction between the sample and 

the sodium borohydride in acidic environment and the generation of volatile metal hydrides. After 

each determination set, the calibration curve was plotted. For samples analyzed with the 

technique based on hydrides, the capillary tube was introduced manually into the volumetric 

flasks with the mineralized samples, they were atomized and their absorbance was measured. 

After each reading, the capillary tube was rinsed with 0.5 % nitric acid solution. 

 

Statistical Analysis  

Data were analyzed using SAS software (version 9.2; SAS Institute Inc., Cary, NC, 

USA). Study population demographic characteristics, dietary intake, drinking water sources, 

cleaning practices, fingernail arsenic and urinary total arsenic were analyzed across distance-

based clusters and tested for significance using chi-square test, Fisher’s exact test, and student t-

test where appropriate. The arsenic data were analyzed with respect to exposure and the four most 

frequently self-reported symptoms (numbness and tingling in extremities, frequent or recurring 

heartburn, frequent leg cramps, constant or frequent joint pains) out of 17 total symptoms in the 

questionnaire using a multivariate analysis of variance, controlling for age, BMI, sex, education 

level, income, smoking status, residence type, behavior and diet. 

One-way analysis of variance (ANOVA) was used to detect significant differences across 

clusters. The Tukey-Kramer honest significant difference (HSD) test, based on a significance 

level of 0.05, was used to determine differences among clusters. Correlations between urinary 
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total arsenic, fingernail arsenic levels and distance to the mine were performed assuming linear 

relationship. All p values presented herein were determined with one-way ANOVA. Two-way 

ANOVA was used to examine the interaction between covariate and control for confounders. 

Significant differences were considered at an α=0.05. 

Regression model analysis was performed for each of the four most frequently reported 

symptoms. Age, gender, income and education were included in the models, regardless of 

significance, as these are thought to influence both behaviors, dietary and non-dietary intake of 

arsenic and metabolism of arsenic, although this study did not focus on the metabolic facet of 

arsenic. Race was not included only because all participants declared the same race-Romanian, 

though race/ethnicity was inquired in the questionnaire (Romanian, Hungarian, German, Gypsy).  

Results 

Of the total of 84 participants, we restricted our analysis to the 64 individuals (76.2%) 

who had complete geographic information and urine samples.  

 

Geographic and Demographic Characteristics 

The study used a simplified distance-based clustering approach to divide participants and 

communities into four clusters. Number of participants and households, and geometric means and 

standard deviation were presented in Table 1. Each cluster varies significantly in distance from 

the gold mine area (p<0.0001).   
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Figure 3 Roşia Montană gold mine site and areas considered in this study: yellow pins were the 
locations of the seven towns/communes; dots of colors represented participants/households 
included in the analysis; red circles were different distance radius (4.5km, 8 km, 12 km, 16 km 
and 37 km, respectively) 

 
Table 1 Geometric mean distances from households to the Roşia Montană gold mine by cluster 

 
Cluster 

1 2 3 4 
No. of participants 12 23 17 12 
No. of households 11 18 17 11 
Distances     

Mean 2.42 7.94 9.39 28.46 
STD 0.83 1.81 1.10 1.03 
Min 2042 4.55 7.62 16.26 
Max 4.93 11.16 10.93 38.59 
 

Demographic characteristics are summarized in Table 2 for participants from different 

distance-based clusters. The participants within each cluster were not significantly different in 

terms of age, BMI, gender, education level, household income, smoking status, and residence 

type (house or apartment).  
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Table 2 Demographics for residents living near gold mine area by distance-based cluster a 

  Distance-based cluster  
Characteristics 1 b 2 b 3 b 4 b p c 
Age (Years) a 44.2 ± 12.3 46.5 ± 20.8 50.0 ± 17.4 41.2 ± 14.4 0.6192 
BMI a 23.9 ± 3.0 26.9 ± 4.0 25.6 ± 3.8 27.0 ± 3.8 0.1584 
Gender     0.3479 

Male 5 (41.7) 9 (39.1) 2 (14.3) 5 (41.7)  
Female 7 (58.3) 14 (60.9) 12 (85.7) 7 (58.3)  

Education level     0.1817 
Secondary 0 (0.0) 3 (13.0) 0 (0.0) 0 (0.0)  
High 1 (9.1) 9 (39.1) 6 (46.2) 3 (27.3)  
College 9 (81.8) 11 (47.8) 6 (46.2) 8 (72.7)  
Graduate 1 (9.1) 0 (0.0) 1 (7.7) 0 (0.0)  

Household income     0.2064 
<500 0 (0.0) 0 (0.0) 2 (16.7) 2 (16.7)  
500 – 1000 1 (9.1) 2 (13.3) 0 (0.0) 1 (8.3)  
1000 – 2000 1 (9.1) 6 (40.0) 6 (50.0) 3 (25.0)  
>2000 9 (81.8) 7 (46.7) 4 (33.3) 6 (50.0)  

Smoke     0.9982 
Current smoker 2 (16.7) 4 (20.0) 2 (14.3) 2 (16.7)  
Former smoker 3 (25.0) 6 (30.0) 4 (28.6) 4 (33.3)  
Never smoked 7 (58.3) 10 (50.0) 8 (57.1) 6 (50.0)  

Residence type     0.1415 
House 9 (75.0) 17 (73.9) 13 (92.9) 12 (100.0)  
Apartment 3 (25.0) 6 (26.1) 1 (7.1) 0 (0.0)  

a Table values are mean ± SD for continuous variables and n (column %) for categorical variables. 
b Numbers may not sum to total due to missing data, and percentages may not sum to 100% due 
to rounding. 
c P-value is for ANOVA (continuous variables) or chi-square/Fisher’s exact test (categorical 
variables). 

 

Table 3 summarizes leafy vegetable consumption and drinking water source, as well as 

whether the participants had a vegetable gardens at their household or not. Reported dietary 

intake habits (e.g. consumption of leafy vegetable, frequency of vegetable intake, and 

consumption of fish from local water) were not significantly different among clusters. The major 

drinking water source differed substantially across clusters (p=0.0112), as shown in Table 3. 

Participants from cluster 1 predominantly used non-well water as their main drinking water 
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source, with only two participants reported using all three sources. In contrast, cluster 3 has the 

lowest proportion (14.3%) of participants reporting use of tap water, but the highest proportion 

(71.4%) reporting use of well water as main drinking water source. Cluster 2 and cluster 4 have 

similar proportions of residents who reported using well water (40.9% and 40.0%, respectively). 

No participants from cluster 3 or 4 reported they used bottled water as a main drinking water 

source. Main household water supply was not analyzed in this study.  Cleaning practices (Table 

4) at participants’ households were similar among all four clusters, except that floor wet mopping 

frequency was higher in cluster 2 and 4 (50.0% and 60.0% of participants did mopping everyday, 

p=0.024), and lower in cluster 1 and 3 (10.0% and 15.4% mopping daily). 

 
Table 3 Diet and drinking water for residents living near the gold mine areas by cluster a 

  Distance-based cluster   
Characteristics 1 a 2 a 3 a 4 a Pb 
Vegetable garden     0.1967 

Yes 5 (45.4) 9 (50.0) 13 (71.4) 9 (81.8)  
No 6 (54.6) 9 (50.0) 4 (28.6) 2 (18.2)  

Drinking water source     0.0112 
Tap water 6 (50.0) 8 (36.4) 2 (14.3) 6 (60.0)  
Well water 0 (0.0) 9 (40.9) 10 (71.4) 4 (40.0)  
Bottled water 4 (33.3) 3 (13.6) 0 (0.0) 0 (0.0)  
All 2 (16.7) 2 (9.1) 2 (14.3) 0 (0.0)  

Eat fish in local water     0.0965 
Yes 5 (41.7) 5 (25.0) 9 (69.2) 5 (45.5)  
No 7 (58.3) 15 (75.0) 4 (30.8) 6 (54.6)  

Eat leafy vegetable     0.3293 
Yes 11 (91.7) 11 (64.7) 8 (61.5) 8 (72.7)  
No 1 (8.3) 6 (35.3) 6 (38.5) 3 (27.3)  

Vegetable frequency     0.6216 
Less often 3 (25.0) 4 (19.1) 6 (42.9) 4 (33.3)  
Monthly 2 (16.7) 1 (4.8) 2 (14.3) 0 (0.0)  
Weekly 3 (25.0) 9 (42.9) 2 (14.3) 4 (33.3)  
Daily 4 (33.3) 7 (33.3) 4 (28.6) 4 (33.3)  

a Numbers may not sum to total due to missing data, and percentages may not sum to 100% due to 
rounding. 
b P-value is for chi-square/Fisher’s exact test (categorical variables). 
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Table 4 Cleaning practices for residents living near the gold mine areas by cluster a 

  Distance-based cluster   
Characteristics 1 a 2 a 3 a 4 a pb 
Cleaning frequency     0.3253 

Everyday 4 (33.3) 10 (43.5) 7 (50.0) 9 (75.0)  
3 times/ week 5 (41.7) 6 (26.1) 2 (14.3) 1 (8.3)  
Once/week 3 (25.0) 6 (30.4) 5 (28.6) 1 (8.3)  
Less than once/week 0 (0.0) 0 (0.0) 1 (7.1) 0 (8.3)  

Vacuum     0.7811 
Yes 11 (91.7) 21 (91.3) 13 (92.9) 12 (100.0)  
No 1 (8.3) 2 (8.7) 1 (7.1) 0 (0.0)  

Vacuum frequency     0.1903 
Everyday 1 (8.3) 3 (14.3) 5 (35.7) 1 (8.3)  
3 times/ week 6 (50.0) 6 (28.6) 1 (7.18) 3 (25.0)  
Once/week 4 (33.3) 12 (57.1) 7 (50.0) 8 (66.7)  
Less than once/week 1 (8.3) 0 (0.0) 1 (7.1) 0 (0.0)  

Wet mop floor     0.4345 
Yes 11 (100.0) 23 (100.0) 13 (92.9) 11 (91.7)  
No 0 (0.0) 0 (0.0) 1 (7.1) 1 (8.3)  

Wet mop frequency     0.0240 
Everyday 1 (10.0) 11 (50.0) 2 (15.4) 6 (60.0)  
3 times/ week 7 (70.0) 5 (22.7) 8 (61.5) 2 (20.0)  
Once/week 2 (20.0) 1 (4.6) 1 (7.7) 0 (0.0)  
Less than once/week 0 (0.0) 5 (22.7) 2 (15.4) 2 (20.0)  

Wet wipe window seal     0.2542 
Yes 11 (100.0) 23 (100.0) 14 (100.0) 11 (91.7)  
No 0 (0.0) 0 (0.0) 0 (0.0) 1 (8.3)  

Wet wipe frequency     0.2274 
Everyday 1 (8.3) 1 (4.6) 1 (7.1) 0 (0.0)  
3 times/ week 5 (41.7) 16 (72.7) 3 (21.4) 6 (54.6)  
Once/week 3 (25.0) 2 (9.1) 3 (21.4) 1 (9.1)  
Less than once/week 3 (25.0) 3 (13.6) 7 (50.0) 4 (36.4)  

Ventilation frequency     0.5823 
Everyday 10 (83.3) 11 (50.0) 8 (61.5) 7 (58.3)  
More than once/ week 2 (16.7) 7 (31.8) 4 (30.8) 3 (25.0)  
Less than once/week 0 (0.0) 2 (9.1) 0 (0.0) 0 (0.0)  
During specific activity 0 (0.0) 2 (9.1) 1 (7.7) 2 (16.7)  

a Numbers may not sum to total due to missing data. percentages may not sum to 100% due to 
rounding. 
b P-value is for chi-square/Fisher’s exact test (categorical variables). 

 

Urinary and Fingernail Arsenic 

In our study, there were 3 urinary total arsenic samples excluded from further analysis 

due to a larger than two standard deviation on a normal distribution of urinary total arsenic 

values. The biomarkers indicated recent exposure and prolonged exposure (Figure 4). All urinary 
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total arsenic levels for the 64 participants tested were below the “normal human level” of 100 

µg/L in urine indicated by ATSDR. But all fingernail samples had much higher arsenic levels 

than the 1µg/g normal level. Urinary total arsenic concentrations ranged from 3.02 to 53.49 µg/L 

(geometric mean ± standard error: 29.81 ± 11.56 µg/L). Fingernail arsenic levels ranged from 

3.54 to 18.61 µg/g (11.67 ± 3.75 µg/g), with a normal distribution slightly skewed to the left. 

Among the 64 participants 93.4% had lower than 50 µg/L urinary arsenic level, which is 

classified as the “normal category” based on CDC’s National Health and Nutrition Examination 

Survey (NHANES) urinary arsenic categories (≤50 µg/L as normal, >50 to <200 µg/L as high 

normal, and ≥200 µg/L as high) (Flanagan et al., 2012). However, we did not observe a 

correlation between urinary total arsenic and fingernail arsenic (n=23, r=-0.13, p=0.54).  

 

 

  
 
 
 
 
  

* 
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Figure 4 Urinary total arsenic and fingernail arsenic concentrations by Cluster: showing within 
cluster mean concentration of urinary and fingernail arsenic compared to “Normal human 
levels” indicated by ATSDR, <100 µg/L in urine and ≤1 µg/g in nail (*: p<0.05 for difference 
between total arsenic and standard value)  

 

Vicinity 

Summary statistics of each biological matrix by distance-based cluster are shown in 

Table 5. Mean urinary total arsenic concentration was the highest in cluster 3, nearly two-fold as 

high as the mean urinary total arsenic concentration of cluster 2.  One-way analysis of variance 

(ANOVA) was performed, using cluster group as the independent variable and urinary and 

fingernail arsenic concentrations as dependent variables, to detect significant differences across 

clusters. The urinary total arsenic (p=0.36) and the fingernail arsenic (p=0.34) did not vary 

significantly among clusters. Pearson correlation analysis was also performed, using distance to 

the mine as a continuous variable. No correlations were observed between distance and either of 

these measures, urinary total arsenic (r=-0.06, p=0.67), the fingernail arsenic levels (r=-0.34, 

p=0.12). Participants from cluster 2 had the lowest mean urinary total arsenic level (27.19 ± 14.17 

µg/L), and those from cluster 4 had the lowest fingernail arsenic concentrations (9.35 ± 

* 
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3.87µg/g). Neither the total urinary arsenic nor the fingernail arsenic levels varied significantly 

with age (p=0.62, p=0.49), BMI (p=0.62, p=0.74), sex (p=0.16, p=0.41), education (p=0.51, 

p=0.95), income (p=0.37, p=0.82), cigarette smoking (p=0.42, p=0.92), residence type (p=0.29, 

p=0.10), or occupation i.e. whether working on the mine or not (p=0.88).  

 
Table 5 Geometric mean urinary total arsenic (µg/L) and nail arsenic (µg/g) by Cluster from the 
Roşia Montană Gold Mine area (GM ± STD) 

  Distance-based cluster  

 1 2 3 4 p 
No. of ppl 12 23 14 12  
Urine 30.65 ± 7.60 27.19 ± 14.17 34.11 ± 11.54 28.97 ± 8.56 0.36 
Fingernail 10.73 ± 4.87 12.91 ± 3.42 12.09 ± 1.08 9.35 ± 3.87 0.34 

 

 
Drinking Water 

Main drinking water source in this study includes tap water, well water, bottled water and 

all sources. The urinary and fingernail arsenic values were not significantly different among 

drinking water sources as shown in Figure 5 (p=0.90 and p=0.089, respectively). Nor was an 

association observed between urine/nail ratio and the main drinking water source (p=0.62). 

Participants who used well water as the main drinking water source had the highest fingernail 

arsenic level (14.0 ± 2.4µg/L), compared to participants who used tap water (12.3 ± 4.2µg/L) and 

bottled water (8.5 ± 1.1µg/L), and those who reported using all sources (9.5 ± 1.3µg/L). The 

difference between drinking well water and tap water was more obvious in fingernail arsenic 

concentrations than urinary arsenic concentrations. The mean urinary arsenic concentration was 

30.0 ± 11.0 µg/L among those who used tap water, as compared to 29.6 ± 12.4 µg/L of those 

using well water, 33.3 ± 8.4 µg/L of those using bottled water and 30.5 ± 13.0 µg/L of those 

using all sources. 
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Figure 5 Urinary total arsenic (n=61) and fingernail arsenic (n=23) by drinking water sources: 
one-way ANOVA showing effect of drinking water source 

  

Diet and Cleaning Practices 

The dietary intake of leafy vegetable and fish from local water, as well as vegetable 

consumption frequency and vegetable washing before eating did not have significant effects on 

either urinary total arsenic or fingernail arsenic (all p values >0.05). Similarly, the urinary total 

arsenic and fingernail arsenic concentrations were not influenced by different cleaning practice 
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habits, including vacuum, floor wet mopping, window seal wet wiping, as well as frequencies of 

cleaning, vacuum, floor wet mopping, window seal wet wiping and ventilation (all p values 

>0.05).  

 

Symptoms, Exposure and Vicinity 

For this study, all participants were recruited based on overall good health. There were 

78.7% of the participants who had a self-perceived above “Good” health status (Good, very good, 

and excellent). Out of the total twenty-seven symptoms (answered with yes/no) in the 

questionnaire, four symptoms were most frequently reported among all the participants, including 

numbness and tingling of the extremities, frequent and reoccurring heartburns, frequent leg and 

muscle cramps, and frequent pains in the joints. These four symptoms were specifically looked at 

because of their higher reported frequencies. The number of symptoms was not significantly 

differentiated between male and female (p=0.40), by self-perceived health status (p=0.12), or by 

the self-perceived knowledge level of arsenic exposure (p=0.38). The self-reported symptoms did 

not vary significantly among age (p=0.08) and BMI (p=0.77) groups, with different education 

levels (p=0.92), occupation (p=0.16) or smoking status (p=0.15). Although there were no 

significant differences in terms of the number of self-reported symptoms between male and 

female groups, a higher percentage of females (72.2%) reported having symptoms compared to 

men (56.0%) (p=0.19).  

The multivariate ANOVA was performed using categorized number of self-reported 

symptoms as the dependent variable (categorized by number of symptoms, i.e. no symptoms, one 

symptom, and more than two symptoms), and urinary arsenic and fingernail arsenic as 

independent variables (Table 6). There was no association between the number of symptoms and 

the arsenic levels in urine or fingernail (p=0.27 and p=0.29, respectively). Participants who 

reported experiencing one symptom had both the highest urinary total arsenic (33.46 ± 13.30 µg 

/L) and fingernail arsenic (12.52 ± 2.47 µg /g) levels.  
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Table 6 Geometric mean urinary total arsenic (µg/L) and fingernail arsenic (µg/g) by number of 
symptoms (GM ± STD) 

No. of symptoms No. obs Urinary arsenic Nail arsenic 

0 25 27.45 ± 9.57 10.99 ± 3.52 

1 16 33.46 ± 13.30 14.07 ± 3.79 

≧ 2 20 29.83 ± 12.18 11.07± 3.91 

P value  0.27 0.29 

 
 

The pattern of the numbers of self-reported symptoms was not substantially different 

among clusters (p=0.49). When using distance as a continuous variable, the means of distances 

varied significantly as the number of symptoms changed (p=0.092). Overall, as the number of 

symptoms increased, the average distances from residences to the gold mine areas also increased. 

The distances from households to the mining area, urinary and fingernail arsenic as continuous 

factors of self-reported symptoms were further analyzed using a simple logistic regression and 

multivariate logistic regression analysis adjusting for influential factors including age, BMI, sex, 

education level, income, smoking status, self-perceived health status, and self-perceived 

knowledge on arsenic exposure risk. Results were expressed as ratios of the least squared means 

of arsenic concentration (μg/g) in Table 7. After controlling for all the other covariates, there was 

a small, but significantly (p=0.02) increased risk of self-reported frequent leg and muscle cramps 

as the urinary total arsenic level increased (1.14, CI: 1.01,1.29). 
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Table 7 Odds ratios of self-reported symptoms with urinary total arsenic, fingernail arsenic and distance by the most frequently self-reported symptoms 

  Urinary arsenic Fingernail arsenic Distances 
Symptoms Mean a  Crude b  Adjusted c Mean Crude  Adjusted  Mean Crude  Adjusted  
Extremity Numbness 

 
  

 
  

 
  

Yes 32.5±16.9 1.00 (0.96,1.05) 1.01 (0.94,1.09) 13.2±4.2 1.09 (0.89, 1.33) 0.97 (0.72, 1.31) 32.5±16.9 1.04(0.99,1.10) 1.13 (0.98, 1.31) 
No 35.3±27.1 1.00 1.00 10.9±3.3 1.00 1.00 35.3±27.1 1.00 1.00 

Frequent heartburn 
 

  
 

  
 

  
Yes 35.6±20.5 1.02 (0.97, 1.07) 0.98 (0.90,1.06) 11.0±3.5 0.91 (0.72, 1.15) 0.87(0.64, 1.17) 35.6±20.5 1.04(0.98,1.10) 1.04 (0.91, 1.20) 
No 33.7±24.6 1.00 1.00 11.8±3.8 1.00 1.00 33.7±24.6 1.00 1.00 

Frequent leg cramps 
 

  
 

  
 

  
Yes 36.5±24.3 1.02 (0.97,1.07) 1.14 (1.01,1.29) 12.2±4.2 1.08 (0.87, 1.34) 1.31(0.88, 1.94) 36.5±24.3 1.07(1.01,1.14) 1.01 (0.88,1.16) 
No 33.4±23.5 1.00 1.00 11.8±3.8 1.00 1.00 33.4±23.5 1.00 1.00 

Constant joint pains 
 

  
 

  
 

  
Yes 31.3±12.8 1.02 (0.96,1.07) 1.02 (0.94,1.10) 10.0±2.5 0.97 (0.77, 1.23) 1.10(0.78, 1.54) 31.3±12.8 1.03(0.97, 1.09) 1.02 (0.88, 1.17) 
No 34.9±25.6 1.00 1.00 12.2±3.9 1.00 1.00 34.9±25.6 1.00 1.00 

Symptoms (Y/N) 
 

  
 

  
 

  
Yes 35.4±21.0 1.03 (0.99,1.08) 1.04 (0.95,1.13) 12.6±3.9 1.08 (0.89, 1.32) 1.03 (0.74, 1.45) 35.4±21.0 1.03(0.97, 1.09) 1.07 (0.92, 1.23) 
No 32.5±27.2 1.00 1.00 11.0±3.5 1.00 1.00 32.5±27.2 1.00 1.00 

a Column values are mean ± SD, p-value for Logistic regression was not presented in this table. 
b Ratio were calculated using No symptom as reference group. 
c Adjusted ratio was adjusted for age (18-35, 36-55, >55), BMI, education, income, smoking status, self-perceived health status, knowledge of arsenic exposure. 
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Discussion   

The Roşia Montană gold and silver mining project in Romania's Apuseni Mountains has 

been in and out of the environmental headlines in recent years (Egresi et al., 2011). In the 

community around the historic Roşia Montană gold mine site, exposures to environmental 

pollutants are of concern. The assessment in this study was based on both short- and long-term 

biomarkers that inform all-source arsenic exposure from environmental routes such as soil, dust, 

water, and dietary intake, as well as health behaviors and practices. 

In our study, the high arsenic concentrations in fingernail samples are especially of 

concern due to the levels of fingernail arsenic significantly above the normal human standard of 1 

µg/g. Nail arsenic levels greater than 1 µg/g are indicative of excessive long-term exposure to 

arsenic. However, in contrast to the higher than normal fingernail samples, urinary total arsenic 

levels were all below the normal standard of 100 µg/L (ATSDR 2007). The urinary total arsenic 

levels detected from participants in our study were consistent with the 4th National Report on 

Human Exposure to Environmental Chemicals, which reported that the 95th percentile for total 

urinary arsenic and the sum of inorganic-related arsenic as 65.4 and 18.9 µg/L respectively for all 

participants aged 6 years or older, based on the 2003-2004 NHANES survey data (CDC 2009), 

Indicating that there was no high arsenic exposure in the historic mining area.  

We did not find a significant correlation between urinary total arsenic and fingernail 

arsenic concentrations.  Instead, our data demonstrate an apparent very low-level, on-going, all-

source arsenic exposure together with a high historic arsenic exposure. The data indicate that the 

extremely elevated concentrations of fingernail arsenic are the result of the cumulative effect 

from long-term environmental exposure. Total urinary arsenic concentrations suggest less 

elevated risk of recent and present arsenic exposure from all routes in the participants living in the 

vicinity of the Roşia Montană gold mine. Previous studies have shown positive significant 

correlations between urinary and nail arsenic, and environmental measurements and arsenic levels 
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in urine and fingernails, particularly among those with higher level of arsenic exposure (Hughes 

et al., 2006; Rapant et al., 2006; Karagas et al., 2001).  On the other hand, the fact that the urinary 

arsenic did not correlate with fingernail arsenic well was also indicative that the environmental 

exposure was at a low level. Karagas et al. (2001) showed a better correlation between urinary 

and nail arsenic concentrations when the exposure level was higher (r=0.42, p=0.044) compared 

to the low-level exposure (r=0.25, p=0.071). Her study also showed that the correlation between 

urinary arsenic and drinking water arsenic was higher with elevated arsenic exposure from 

drinking water (r=0.46, p=0.029) as compared to low arsenic concentration in water (r=0.02, 

p=0.90). Garland et al. (1993) and Michaud et al. (2004) showed that toenail arsenic levels 

remained relatively constant over 6 years in 127 women, and reproducible over a three to five 

years period. Karagas’s study also confirms the long-term reproducibility of toenail measures in 

populations exposed to low levels of arsenic. In this case, fingernail arsenic concentration may be 

a better predictor of arsenic environmental exposure than urinary total arsenic concentration in 

this area with a specific exposure profile - low-level, on-going, all-source and high historic 

arsenic exposure, and may more effectively convey information regarding the key dimension of 

arsenic exposure in this study area.  

Less is known about arsenic concentrations in the environment.  Our data do not shed 

light on the underlying reason that the vicinity to the historic mine was not associated with on-

going arsenic exposure, but instead highlight that all of these communities had historically high 

exposure. People living within 38 km distance to the gold mine area still retain a body burden of 

arsenic that is reflected in the elevated fingernail arsenic. Our study used residential proximity to 

the gold mine as the proxy of potential for exposure to arsenic from all sources. It has been well 

established in studies that proximity to a point source is significantly correlated with the intensity 

of environmental exposure (Hogervorst et al., 2006; Su et al., 2009). Overall, we did not find 

evidence that people living closer to the mine had higher exposure to arsenic compared to those 

who lived farther away. The primary hypothesis of this study that living in the vicinity of the 
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historic gold mine increased the risk of on-going arsenic exposure from the surrounding 

environment is not supported. The absence of a decreasing pattern with distance also indicates 

that there are other risk factors that were not captured in the distance-surrogate exposure scheme. 

In addition, the inactive mining activities since the 2006 project cessation also explains the 

present low all-source environmental arsenic exposure and low urine arsenic levels. It is likely 

that arsenic exposure may have been decreasing longitudinally since the mining activities ceased 

in 2006, thus arsenic levels in urine and fingernails have been reduced appreciably compared to 

those during the active mining period. The current study period may function as a washout phase, 

should the mine start to operate again. Studies in former or current gold mining areas worldwide 

where there are high environmental arsenic concentrations have reported elevated arsenic levels 

in biomarkers of both urine and nails (Hinwood et al., 2003; Basu et al., 2011; Rapant et al., 

2006). 

With the assessment both across clusters and within clusters, drinking water source did 

not have significant effects on either urinary total arsenic or fingernail arsenic. All the 

participants have lived over 20 years in the same town/commune at the time of this study, which 

suggests that they’ve been consistently exposed to either historically high levels of arsenic or 

present low levels of arsenic. Previous studies have already proved that level of arsenic exposure 

by drinking water was a significant predictor of arsenic levels in nail (Schmitt et al., 2005; 

Slotnick et al., 2007). Elevated fingernail arsenic levels ini our study suggest long-term arsenic 

exposures, likely from the drinking water source. The low-level urinary arsenic concentrations 

suggest currently there is less likely an excessively high arsenic exposure from the drinking 

water. Since there are only 23 fingernail samples available for analysis, we do not have the 

statistical power to prove drinking water as a significant predictor (p=0.089). However, we found 

a decreasing pattern in fingernail arsenic in residents who used well water, tap water and bottled 

wateras their principal drinking water source. Important to our assessment and interpretation of 

the relationship between various drinking water sources and arsenic concentration in the 
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biomarkers was the inter-cluster difference in the utility of drinking water sources. Romania 

started its Municipal Services Project a decade ago, and is still in the process of improving the 

coverage of municipal water supply and wastewater services (World Bank 2006). Residents from 

different towns and communes may predominantly use one or two types of drinking water 

sources, for example, residents in Arieseni, the farthest commune from the gold mine, all use well 

water as major drinking water source; while residents from Rosia Montana, the closest town to 

the gold mine, predominantly use tap water and bottled water. This might also explain the 

absence of exposure decay pattern with distance to the gold mine. A survey study of a population 

exposed to high concentrations of arsenic in well water in Alaska found significant correlation 

between well water arsenic levels and levels of arsenic In urine (r = 0.58, p < 10−8) among well-

water drinkers. Schmitt et al. (2005) found a significant correlation was observed between toenail 

and well water arsenic (r=0.84, p<0.0001). There is some trend in terms of the relationship 

between fingernail arsenic concentration and drinking water sources, but a significant proportion 

of the variation in nail arsenic concentration remains unexplained by drinking water source alone.  

A case control study used cumulative water consumption estimated by multiplying volume and 

frequency of intake and cumulative fluid consumption by adding up all individual beverage 

intake, to examine the effect of increased intake, whether it increased exposure or lowered the 

risk by more frequent urine excretion, especially in low-level arsenic exposure environment 

(Michaud et al., 2007). 

Although dietary intake may influence arsenic level in human fingernails, we did not find 

a significant effect of dietary intake and habits on arsenic levels in the two biomarkers. Drinking 

water and food together typically account for 99% of the total human arsenic intake (Jones, 

2007). The dietary intake of leafy vegetables can be both protective and risky in terms of arsenic 

exposure. The uptake of metals from soils by garden vegetables (and their subsequent 

consumption) has been recognized as a potential indirect human exposure pathway and is a 

function of both the transfer of arsenic from soil to garden produce, and the consumption rate of 
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that produce (Bacigalupo et al., 2012). Exposure to arsenic via vegetable consumption can also be 

increased through cooking (Ramirez-Andreotta et al., 2013). Del Razo et al. (2002) reported that 

high arsenic concentration in water used for cooking is an additional source of inorganic arsenic 

exposure. Since little is known about the concentrations of arsenic in soil and water, potential 

contamination in food, or the speciation of urine arsenic, we do not have the information on the 

form of arsenic absorbed based on the total urinary arsenic concentration alone. On the other 

hand, leafy vegetables could be protective against arsenic exposure in that folate enhances the 

detoxification (methylation) process of arsenic to MMA and DMA, which are more easily 

excreted in urine (Gamble et al., 2007). Several randomized control trials from the Health Effects 

of Arsenic Longitudinal Study (HEALS) have proved dietary supplementation with folic acid 

increased arsenic methylation and lowered blood arsenic concentration (Gamble et al., 2006; 

Gamble et al., 2007).  

In our study, vegetables consumption (and fish consumption) did not demonstrate a 

significant effect on arsenic levels in the biomarkers. As a population with low seafood 

consumption, the absolute levels of total urinary arsenic in this study were also in accordance 

with Norin and Vahter’s study of a population with no intake of seafood arsenic, which reported 

urinary arsenic concentrations of 5-50 µg/L in subjects with no intake of seafood arsenic and no 

excessive exposure to inorganic arsenic in drinking water or in the working environment (Norin 

and Vahter 1981). In general, participants living in the study area maintain similar profile in their 

daily diet, lifestyle, and years of residence in the same region. There was less likely to be 

significant variations in biomarker arsenic concentrations with dietary intake or cleaning 

practices. To better understand the inter-individual differences, further speciation analysis and 

future sample collection are warranted to study the inter-individual differences in the forms of 

arsenic absorbed, the underlying arsenic detoxification, the metabolites partitioning and the 

accumulation and excretion rate. 
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Our study also found a significant increased risk of self-reported frequent leg cramps 

with the increasing urinary total arsenic concentration. Though the odds ratio was the only one 

that was significant, and the confidence interval was very close to 1, the incidence of self-

reported leg cramps did associate with urine indicated arsenic exposure. Komulainen et al. (1998) 

study on 35 current users and 12 former users of drilled wells in Finland also found a higher 

prevalence of muscle cramps among those with high arsenic exposure and an over 3-fold level of 

urinary total arsenic in current users (Komulainen et al., 1998).  

Limitations 

Our study was faced with the problem of missing fingernail data. The small sample size 

may diminish the statistical power of this study. Inaccurate self-reported symptoms may 

introduce response bias. The environmental exposure data were not available for our study, so 

this study does not reveal the chemical form of arsenic to which subjects were exposed. Using 

distance-based cluster as a proxy for risk of arsenic exposure has its inherent limits because of the 

arbitrarily selected cutoff points. It also limits understanding of the complex interaction among 

multiple other covariates. Speciation analysis was not performed in this study, which limits the 

understanding of inter-individual variability, and the underlying metabolic explanation for the 

high fingernail arsenic and normal urinary arsenic. More data are needed that tie biomarkers of 

absorbed dose, especially urinary concentrations of arsenic metabolites to arsenic exposure 

concentrations, tissue concentrations (Gebel et al., 2002; Vahter et al., 2002). 

This study used fingernails instead of toenails as indicators of long-term arsenic 

exposure. Measurement of arsenic in fingernails has limitations when it comes to quantify 

internal exposure due to non-definitive exclusion of potential external exposure. Thus the major 

disadvantage of using fingernails as biomarkers of arsenic exposure is that it is difficult to 

distinguish between arsenic incorporated into the fingernails from systemic circulation and that 

bound externally, such as from water, dust, and soil. Arsenic level in toenails may be preferred to 
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assess arsenic exposure, because they are exposed less extensively to outdoor air or water than are 

fingernails (Karagas et al., 2000). It is normal for some arsenic to be present in nails, as 

everybody is exposed to trace amounts of arsenic from the normal diet. Arsenic concentrations in 

fingernails, at least to a small extent and depending upon quality of sample preparation, can be 

regarded as markers of external exposure as well as markers of absorbed dose. The variation in 

accumulation in fingernails between individuals is unknown.  

In addition, our study did not adjust urinary total arsenic concentration with creatitine 

concentration. We cannot exclude the possibility of a dilution effect which could result in 

lowered urinary total arsenic levels possibly caused by large amount of fluid intake before the 

urine sampling. Urine flow is highly variable, and dependent on multiple factors, such as BMI, 

body water content, solute intake, physical activity, and diurnal variations (Diamond 1988). 

Conclusion 

We found high arsenic concentrations in fingernail samples, which were significantly 

above the normal human standard of 1 µg/g.  In contrast, urinary total arsenic levels were all 

below the normal standard of 100 µg/L. The finding suggests excessive long-term historic 

exposure to arsenic, and a current low-level ongoing arsenic exposure. Overall, we did not find 

evidence that people who live closer to the mine had higher exposure to arsenic compared to 

those living farther away. Drinking water source, dietary intake of leafy vegetable and fish, 

vegetable consumption frequency and vegetable washing before eating, and cleaning practices did 

not have significant effects on either urinary total arsenic or fingernail arsenic.  Therefore, the 

major contributors did not explain the current exposure profile in the Roşia Montană gold mine 

area. However, our study also provides evidence that people living within 38 km from historic 

gold mines still retain a body burden of arsenic exposure that is not reflected in elevated urine 

total arsenic. An increased risk of self-reported frequent leg cramps associated with increased 

urinary total arsenic level was also noted. This finding may add weight to the concern of current 
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low-level on-going universal arsenic exposure in the gold mining area. Overall, these findings 

suggest fingernail arsenic concentration may be a better predictor of arsenic environmental 

exposure than urinary total arsenic concentration in this area with a specific exposure profile - 

low-level, on-going, all-source and high historic arsenic exposure. Using both fingernail and 

urinary arsenic concentrations may offer an opportunity for a more effective approach to capture 

smaller adverse effects from low-level exposure, and predict and convey information regarding 

long-term exposure burden after overall environmental arsenic exposure has diminished.  

Given the potential for chronic arsenic exposure and a retained body burden of arsenic, 

arsenic should be monitored regularly and remediation should be addressed. Longitudinal follow-

ups of these participants is warranted to ascertain if urinary arsenic concentrations and fingernail 

concentrations decrease over time as the gold mine remains inactive. Although the study sample 

size was small, generalizing the study results across the locale is reasonable considering the non-

differentiated low all-source arsenic exposures and homogenous demographic characteristics, 

diet, lifestyle and practices. A systematic testing of drinking water, as well as sources of soil and 

air contaminations for the presence of arsenic should be a high priority for the public health 

authority. Determining the underlying metabolic partitioning patterns may help explain inter-

individual variation, identify those more highly exposed and the variation in the susceptibility to 

arsenic-induced health hazards among healthy individuals, and to inform future exposure 

assessment regardless of the cessation or proceeding of mining activities. 
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