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Abstract 
 

Respiratory syncytial virus (RSV) is a common virus infecting the respiratory system and 

can cause severe disease in vulnerable populations.  It has been shown that the RSV epidemic in 

the United States is seasonal, peaking in late fall in Florida and a few months later in the upper 

Midwest.  Although a seasonal trend has been described, it is still unclear if there are any spatial 

trends between states. For this paper, RSV laboratory data from the continental United States 

was used to model the transmission dynamics of RSV in each state.  We conducted an 

explanatory analysis to investigate the presence of spatial autocorrelation in parameters 

describing RSV transmission between states using a two-stage approach.  In stage one we 

estimated the parameters using a dynamic mathematical model.  In stage two we utilized 

Bayesian methods, where we considered two modeling options: spatial independence and spatial 

correlation.  To model spatial correlation, we included a state-specific spatial parameter w(si), 

where w(si) is assigned the intrinsic conditional autoregressive (CAR) model.  The two models 

were compared to determine if spatial correlation is present in the data.  The seasonal offset and 

amplitude of seasonality in transmission rate parameters both showed spatial autocorrelation in 

preliminary analyses.  Spatial modeling, using stage two, was implemented for these two 

parameters.  The spatial model showed that spatial correlation was present in the data for the 

seasonal offset and amplitude of seasonality parameters, suggesting the need to account for 

spatial correlations in future work.   
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Tables 

 

Parameter Estimate Moran’s Index 
(p-value) 

𝑅! 0.094 
(0.10) 

b 0.168 
(0.02) 

𝜙 0.54 
(< 0.001) 

h 0.11 
(0.06) 

 
Table 1 Explanatory Analysis The Moran’s I test was conduced for all four parameters.  The 
test statistic and p-value are recorded above.  Only parameters that were statistically significant 
at 𝛼 = 0.05 significant level were further explored 
 
 
 
 
 
 
 

 
Table 2 Sensitivity Analysis of Prior Distributions Each of the four prior distributions was 
used to calculate the proportion of spatial error for the seasonal offset and the amplitude of 
seasonality.  The 95% credible intervals are in parentheses.    
 

 

 

 

Prior Seasonal Offset Amplitude of Seasonality 
Gamma(0.1, 0.1) 0.87 

(0.72, 0.96) 
0.55 

(0.18, 0.90) 
Gamma(0.01, 0.01) 0.95 

(0.83, 0.99) 
0.49 

(0.05, 0.96) 
Gamma(0.001, 0.001) 0.87 

(0.72, 0.96) 
0.46 

(0.01, 0.99) 
Uniform(0, 1000) 0.89 

(0.73, 0.99) 
0.51 

(0.09, 0.90) 
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Figures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Number of RSV positive Tests Time series of RSV-positive test by week from 1989 – 
2010 in four select states.  These states represent different areas within the United States, West 
Coast, Midwest, Southeast and Northeast. The blue line is the laboratory data from NREVSS and 
the red line is the best-fit dynamic model output.  
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Fig. 2. Seasonal offset by State Estimates of the seasonal offset parameter for each state.  The 
top plot is the estimates obtained from the dynamic model and the bottom is from the spatial 
model 
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Fig. 3. Amplitude of Seasonality by State Estimates of the amplitude of seasonality parameter 
(b) for each state.  The top graph is the estimates obtained from the dynamic model and the 
bottom is from the spatial model.  
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Introduction 

Respiratory syncytial virus (RSV) is a common virus infecting the respiratory system, 

specifically the lungs and breathing passageway.  Infection occurs throughout life, but disease 

due to RSV is most common in young infants and the elderly population [1].  Although typically 

mild, RSV can be a serious virus for these vulnerable populations.   For children younger than 5 

years old, an estimated 66,000 – 199,000 deaths per year are attributed to RSV globally [2].   A 

majority of these deaths occurred in developing countries, but RSV still poses a serious threat in 

the United States.   More than 2,000 hospitalizations for every 100,000 infants younger than 1 

year old have been estimated to be caused by RSV each year in the United States [3].   

 RSV has been shown to have a seasonal component, specifically in the US and other 

temperate locations.   Typically, incidences of RSV peak annually in the winter but the timing of 

peak incidence can range from early October in southern states, such as Florida, to May in states 

in the upper Midwest [4].  Various environmental drivers, such as vapor pressure, minimum 

temperature, precipitation, and potential evapotranspiration are correlated with seasonality 

parameters in RSV transmission [5].   

 Currently, the approved form of prevention for RSV is palivizumab prophylaxis for high-

risk infants [6].  Although effective, this method is very costly and the timing of administration is 

important to maximize the cost-effectiveness, motivating the importance of understanding the 

seasonality of RSV [7]. 

Extensive research has been done to describe the seasonality of RSV, but it is still unclear 

if there are any spatial trends between states after accounting for differences in transmission [8-

10].  The purpose of this paper is to explore potential spatial trends in the transmission dynamics 

of RSV across the continental US.  Discovering insights regarding spatial trends in RSV 
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transmission is important for understanding the seasonality of this epidemic and for determining 

the optimal timing for prophylaxis.  

 

Methods  

Data 

The data used for this analysis consisted of laboratory reporting data from the National 

Respiratory and Enteric Virus Surveillance System (NREVSS) and demographic data from the 

US Census Bureau and Center for Disease Control (CDC).  The laboratory data reported the 

weekly number of positive RSV tests and total number of RSV tests performed by state from 

July 1989 to May 2010.  Positive RSV specimens were detected using the following three 

methods: antigen detection, reverse transcription chain reaction and viral culture.  This data is 

voluntarily reported each week by participating laboratories, resulting in non-consistent data for 

different states over time [11]. A scaling factor was therefore calculated for each state by taking 

the two-year moving average of the number of RSV tests reported each week divided by the 

average number of tests per week for the entire period of consistent reporting [5].  This scaling 

factor was then multiplied by the model output for each state. The demographic data consisted of 

an initial population size and crude annual birth rate for each state [12-13].  

 

Dynamic Model  

The RSV laboratory data was fitted to an age-adjusted Susceptible-Infectious-Recovered-

Susceptible (SIRS)-like model developed by Pitzer et al. to model the transmission dynamics of 

RSV for each of the 49 states (excluding Alaska and Hawaii, and including District of 

Columbia)[5].  The SIRS model assumes infants are born with maternal immunity, which wanes 
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exponentially with a mean duration of 16 weeks, leaving the infant fully susceptible to RSV 

infection.   It is assumed that an individual will build partial immunity with each infection of 

RSV.  This partial immunity reduces both the risk of subsequent infection and the duration of 

such infections.  Furthermore, both age and number of infections influence the risk of developing 

severe respiratory disease; we assume a fraction h of these severe cases are reported in our data 

[5].  The reporting fraction is assumed to vary by state, and is essentially a nuisance parameter, 

since reporting was voluntary and inconsistent across states. 

 The rate of transmission of RSV from infectious to susceptible individuals (λ) is assumed 

to vary seasonally according to a sinusoidal seasonal forcing function: 

𝜆 = 𝛽!(1+ 𝑏 ∗ 𝑐𝑜𝑠 2𝜋 𝑡 − 𝜙 )𝐼 

𝑤ℎ𝑒𝑟𝑒   

𝐼 = 𝐼! + 𝜌!𝐼! + 𝜌!(𝐼! + 𝐼!)  

In the above equation, 𝑏 and 𝜙 represent the amplitude of seasonality and the seasonal offset. 

The basic reproductive number (R0) for this model is given by R0 = β0/γ1, where 𝛽! is the 

transmission matrix and 𝛾! is the removal rate. R0 was calculated using the next generation 

matrix method created by van den Driessche and Watmough [14]. 

 

Stage 1 

We fit the model to the laboratory data to estimate the mean transmission rate as 

indicated by the basic reproductive number (𝑅!), amplitude of seasonality (𝑏), seasonal offset 

(𝜙), and proportion of hospitalizations that are reported ℎ  for each state.  The seasonal offset 

parameter describes the peak timing of RSV transmission as a fraction of the year and can vary 

between -0.5 and 0.5. A seasonal offset of 0 implies that the peak transmission occurs on January 
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1st and -0.5 and 0.5 correspond to a peak time of July 1st  [5]. The laboratory data did not contain 

information on the age of cases, which is an important detail for estimating reliable values of 𝑅! 

[5].  Therefore, a normal prior with mean 8.9 and variance 0.2 for the estimate R0 value for each 

state was added to the likelihood estimation framework for the dynamic model, based on the 

estimated variation in R0 for 10 states with age-specific hospitalization data [5]. The best-fit 

model parameters for each state were determined by maximizing the likelihood of the dynamic 

model output given the data.  This likelihood was calculated by assuming a Poisson distribution 

for the number of positive RSV tests per week, 𝑥!, with mean 𝑥!, where 𝑥! is the number of 

severe respiratory infections predicted from the model multiplied by the reporting fraction [5].  

Using the ‘fminsearch’ command in MATLAB, the parameter estimates were obtained by 

minimizing the negative log-likelihood for each of the 49 models. 

 

Spatial Exploration 

For this paper, we defined the spatial structure using a neighborhood approach, where a 

state was considered a neighbor if their borders touch.  For example, Alabama has neighbors, 

Georgia, Mississippi, Florida and Tennessee.  The spatial weights matrix was a matrix of 0’s and 

1’s, where entry 𝑊!,! = 1 when state 𝑖 and  𝑗 are neighbors.  

Parameter estimates describing the variation in transmission between states were first 

examined for any spatial autocorrelation using a Moran’s I test.  Parameter estimates were 

considered to be statistically significant at 𝛼 = 0.05 significance level.   The parameter estimates 

that showed spatial trends were then modeled in stage two, first using a non-spatial model and 

then comparing the results to a spatial model. Both models were fit using Markov chain Monte 

Carlo (MCMC) methods, which were executed through OpenBUGS.  Each MCMC simulation 
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was run with 3 chains for 100,000 iterations and a burn-in length of 50,000 iterations based on 

visual inspection of the trace plots and assessment of Monte Carlo standard errors for the 

posterior means.   

The parameter estimates that were analyzed were 𝜙(𝑠!) and 𝑏 𝑠! , where  𝜙(𝑠!) is the 

seasonal offset parameter for state 𝑠!, (i ranging from 1 to 49), and 𝑏 𝑠!  is the amplitude of 

seasonality for state 𝑠!  All states were included with the exception of Alaska and Hawaii, and 

the inclusion of the District of Columbia.  

 

Stage 2 

In stage 2A, we used a baseline model to be later compared with the spatial model.  

Below is the baseline model 

 

𝜙 𝑠!   
iid
~   𝑁 𝜇,𝜎!  

 where 𝜙 𝑠!  is assumed to be normally distributed with mean 𝜇 and variance 𝜎!.  𝜇 is given a 

flat prior distribution to allow the data to drive the inference rather than our prior beliefs and 

𝜎!  is assumed to follow an approximately inverse gamma prior distribution with shape and scale 

parameters both equal to 0.1.  

In stage 2B, spatially correlated parameters w(si) are added to the model, where w(si) is 

modeled by the intrinsic conditional autoregressive (CAR) model [15]. The CAR model is a 

prior distribution for random effects where the conditional mean is a weighted sum of its 

neighbors and the variance depends on the total number of neighbors [16].  Regions with more 

neighbors have a smaller prior variance compared to regions with fewer neighbors. 

𝜙 𝑠! = 𝜇 + 𝑤 𝑠! + 𝜖(𝑠!)  
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The above model has two pieces of variability: spatial (𝜎!"#$%#&! ) and non-spatial (𝜎!!).  When the 

spatial variance is equal to zero, we end up with the non-spatial model. The 𝜖 𝑠!  values are 

normally distributed with mean 0 and variance 𝜎!!, which has a prior distribution of inverse 

gamma with shape and scale parameters equal to 0.1.  This variance represents the non-spatial 

variability.  The prior distribution for the spatial variance is also inverse gamma with shape and 

scale parameters equal to 0.1. Similar to stage 2A, the prior distribution for 𝜇 is a flat 

distribution.    

We conducted a sensitivity analysis to determine the sensitivity of the results to different 

choices of prior distributions (Table 1).  The sensitivity analysis revealed that the results were 

generally robust to the choice of prior distribution, confirming our decision to use an inverse 

gamma distribution with shape and scale parameters equal to 0.1.  

Model 2A and model 2B were compared to determine if some of the variability in the 

estimates could be explained by the addition of a spatially correlated parameter.  The models 

were compared using the proportion of spatial variance compared to the total variance, where the 

total variance is the sum of spatial variance and noise. 

𝑃𝑟𝑜𝑝 =   
𝜎!"#$%#&!

𝜎!"#$%#&! + 𝜎!!
 

When the proportion is close to 1, this suggests that most of the variability can be explained by 

the spatial correlation between states.  However, if the variance of the spatial model is close to 0, 

then the above equation would approach 0.  Proportions close to 0 suggest that most of the 

variability in the estimates is due to spatially independent errors.  
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Results 

Laboratory Data 

The laboratory data had a total of 1087 weeks worth of data, where the number of weekly 

reported data varied state by state.  No state had data for all 1087 weeks; Louisiana was the 

closest with a total of 1084 weeks of reported data.  Various states had minimal data, such as 

Vermont, who only had 187 weeks of reported data.  The average number of weekly data across 

all 49 states was 875 weeks and had a standard deviation of 207.69 (Table S1).   The number of 

positive tests per week also varied state by state.  Some states had an average of 1 positive test 

per week (District of Columbia), while others had an average of 64 positive tests per week 

(Texas) (Table S1).   

      

Dynamic Model 

The dynamic model was able to capture the observed seasonality of RSV based on the 

laboratory data for each state (Fig. 1). For the 49 states, the average estimated 𝑅! was 9.097, and 

ranged from 8.5 – 9.59.  The amplitude of seasonality and the seasonal offset parameter had 

means of 0.2255 and -0.0974, respectively.  The range of 𝜙 and 𝑏 across the continental US can 

be seen in Fig. 2 and Fig. 3.  Although h is hard to interpret as mentioned above, the average 

estimated value for all 49 states was 0.19 and ranged from 0.04 to 1.02.  The parameter estimates 

for all 49 states are available in Table S2.   

The seasonal offset parameter was shown to be spatially autocorrelated with a p-value 

<0.001.  The Moran’s index was 0.54, suggesting a clustering effect.  The amplitude of 

seasonality was also spatially autocorrelated with a p-value = .024 and a Moran’s index of 0.168.  

The p-values for 𝑅! (0.1) and h (0.06) were not statistically significant at 𝛼 = 0.05 significance 
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level, so these estimates were not further explored.  The results from the Moran’s I test are 

summarized in Table 1.   

 

Seasonal Offset 

The seasonal offset parameters were first modeled using a non-spatial model.  This 

resulted in 𝜇 =   −0.099 and 𝜎! = 0.0078.  With the addition of the spatial parameter 𝑤(𝑠!), 𝜇 

remained the same and 𝜎! increased to 0.046.  The proportion of spatial variance compared to 

total variance is 0.87 (Table 2), meaning that 87% of the variation in the model is due to spatial 

variation.  The parameter estimates from the spatial model are compared to the dynamic model in 

Fig. 2.  

 

Amplitude of Seasonality 

The same process was repeated for the amplitude of seasonality.  With the non-spatial 

model, we saw a 𝜇 = 0.228 and 𝜎! = 0.0069.  In the spatial model, 𝜇 stayed the same 

and  𝜎!  increased to 0.1667.  The proportion of spatial variance compared to total variance is 0.54 

(Table 2) meaning that approximately 54% of the variation in the model is due to spatial 

variation. The estimated 𝑏 from the dynamic and spatial models is compared in Fig. 3.  
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Discussion  

Understanding the spatiotemporal trends of RSV is essential for optimizing the timing of 

prophylaxis for high-risk infants [7].  With the use of spatial smoothing methods and 

mathematical modeling, we are able to learn more about the seasonality of RSV, specifically 

regarding the spatial patterns among seasonal parameters describing the transmission of RSV.   

 

Dynamic Model 

The dynamic model was able to capture the overall seasonality of RSV for each of the 49 

states.  The parameter estimates obtained for the transmission rate were consistent with the 

values seen in the literature [5, 17,18].  Our mean estimate of 𝑅! (9.097) was slightly higher 

compared to the mean 𝑅! obtained by Pitzer et al., however we fit all 49 states regardless of the 

quality of data while Pitzer et al. looked at a subset of states based on the consistency of data 

reported [5].  

The seasonal offset parameter showed a clear spatial trend when plotted for each of the 

49 states.  The smallest seasonal offset parameter was for Florida, implying that RSV 

transmission peaks the earliest in this state.  The map in Fig. 2 clearly shows the values of 𝜙 

increasing as it moves northwest from Florida.  Previous research suggests that the incidence of 

RSV peaks firsts in Florida and then later in the upper Midwest [4]. Although the research by 

McGuiness et al. looked at the timing of RSV cases rather than the timing of transmission, our 

research is consistent with these results.  Despite the different analyses, it is plausible to see the 

same pattern of movement for both the timing of transmission and incidence since the incubation 

period of RSV is 2-8 days [19].  Studying the timing of transmission can help understand how 
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and why RSV spreads through the United States.  Additionally, understanding the timing of 

transmission can help predict outbreaks of the epidemic.  

The amplitude of seasonality parameter does not show as clear of a spatial trend 

compared to the seasonal offset parameter, but there are still important insights that can be 

gained from our analysis. Florida has the smallest amplitude of seasonality parameter and there 

appears to be some clustering effects around the Midwest, Southwest, and Northeast.  

A significant Moran’s I test confirmed the potential spatial correlation for both the 

seasonal offset and the amplitude of seasonality.  Additionally, they both had a positive Moran’s 

index, suggesting that there is a spatial clustering effect  

 

Seasonal Offset 

With the addition of the spatial parameter, we begin to see parameter estimates becoming 

more similar to their neighbors.  For example, West Virginia becomes less of an outlier in the 

spatial model as its estimate begins to decrease towards its neighbors.  Similarly, the estimates 

for New Jersey, New York, and Pennsylvania increase to become more like their neighbors in 

the spatial model.  Another interesting observation is that Florida appears to be more of an 

outlier when accounting for spatial correlation.  This is due to Florida’s neighbors, Georgia and 

Alabama, having seasonal offset estimates closer to their neighbor, Tennessee’s value.  With the 

exception of Florida, the southernmost states (Texas, Louisiana, Alabama, Mississippi and 

Georgia) have estimates that shifted closer to estimates for the rest of the country. 
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Amplitude of Seasonality 

Fig. 3 shows the estimates of the amplitude of seasonality in the spatial model becoming 

similar to their neighbors.  This is especially true for states that were outliers in the dynamic 

model, such as Arizona and Vermont.  In the dynamic model, the amplitude of seasonality did 

not appear to follow a clear spatial pattern for the middle of the US.  With the spatial model there 

is a clear cluster of states with similar amplitude of seasonality estimates starting in Texas and 

working its way north to Wisconsin and Michigan. A few states that had estimates similar to 

Florida in the dynamic model have increased to become more like their neighbors.  These states 

include Idaho, Nevada, Colorado, and West Virginia.  Another interesting note is that the 

parameter estimate for Alabama decreased in the spatial model and shifted more towards Florida.  

 

Connection Between Moran’s I Test and Stage 2.  

The results obtained from stage 2 are consistent with what we saw with the Moran’s I 

test.  For the seasonal offset parameter, we saw a p-value <0.001 from the Moran’s I test and the 

proportion of variation due to spatial variance was 0.87.  This suggests that there is a strong 

spatial trend for this parameter.  Similarly, we saw a smaller p-value for the amplitude of 

seasonality, which was 0.024.  The proportion of variance was also smaller in comparison to the 

seasonal offset parameter, suggesting less of a spatial trend.  Our results from stage 2 are 

consistent with the Moran’s I test, validating the methods and results of our analysis.  

 

Relationship to Previous Studies 

 Pitzer et al. explored the relationship between various environmental drivers and the 

transmission dynamics of RSV.  The seasonal offset parameter and amplitude of seasonality 
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were both found to be negatively correlated with vapor pressure, minimum temperature, and 

precipitation [5].  In contrast, we looked at the spatial trends of these two parameters and saw 

them increase as one moves north.  With the assumption that northern states have lower 

minimum temperature, our results follow the theory that the seasonal offset parameter and 

amplitude of seasonality are negatively correlated with minimum temperature.  Using the 

previous research, we begin to understand the spatial trends that are observed.  Assuming 

neighboring states have similar environments, it makes sense to see that neighboring states have 

similar parameter estimates as well. 

 

Limitations and Future Directions 

A major limitation of this research is the variation of the RSV laboratory data for each 

state.  As seen in Table S1 and Table S2, the total amount of weekly data reported and overall 

number of cases of RSV varies from state to state.  This variation is likely to affect the overall fit 

of the dynamic model, especially for states with a biennial pattern of RSV transmissions, as it is 

difficult to capture these patterns.  It is plausible that the variation we saw between the dynamic 

model and spatial model was due to the differences in the data.  

Another limitation regarding the RSV laboratory data is that it did not contain age-

specific information, which is an important factor for estimating the state-specific transmission 

rate, R0.  Although we found that the estimates of R0 were not spatially autocorrelated and thus 

the spatial analysis focused on the offset of seasonality and seasonal amplitude variable, all of 

the parameter estimates depend on one another.  It is possible these estimates would have been 

improved with age-specific RSV data. 
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This analysis treated the estimates like data, meaning that we did not account for the 

uncertainty in the parameter estimates obtained from the dynamic model.  In order to get 

accurate variances, likelihood profiles would have needed to be created, requiring the models for 

each of the 49 states to be refit for different values of φ and b.  This process is both 

computationally intensive and time consuming, but we hope to consider it in future work.  

Lastly, the way space was defined is a limitation.  We only took into account the number 

of neighbors a state had, which varies across the US.  For example, states in the Northeast are 

very close to each other, resulting in more neighbors, whereas states in the Midwest are further 

apart and may have fewer neighbors.  Future work should consider other definitions of space, 

such as the total distance between states. Using what is known about environmental drivers and 

their affects on the transmission dynamics of RSV, future work should incorporate these 

environmental drivers into the way we define space.  Additionally, it may be of interest to 

consider the migration and travel habits of American citizens.  For example, residents in the 

Northeast may frequently travel to Florida during the winter months.  It would be interesting to 

take account of these social habits when trying to determine the timing of transmission.  

This paper used explanatory analysis to explore the need to account for spatial correlation 

in modeling the transmission dynamics of RSV.  By first employing a Moran’s I test, we saw a 

spatial correlation for the seasonal offset and amplitude of seasonality parameters.  Using 

Bayesian methods we showed that spatial correlation is present in the data.  This explanatory 

analysis provides evidence suggesting future model development should account for spatial 

correlation that exists between neighboring states.    
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Appendix 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table S1 Laboratory Data Summary The total number of weekly RSV data reported for each 
state and the average number of positive RSV tests.  

States Total)Number)of)Weeks Avg)Number)of)Positive)Tests
Alabama 939 7.40
Arizona 977 14.90
Arkansas 967 7.01
California 1047 37.67
Colorado 1049 11.68
Connecticut 951 6.67
Delaware 1008 4.24
DistrictAofAColumbia 581 1.01
Florida 991 25.91
Georgia 988 25.40
Idaho 475 1.39
Illinois 1030 18.43
Indiana 1048 16.05
Iowa 748 3.03
Kansas 471 9.93
Kentucky 998 8.23
Louisiana 1084 20.53
Maine 432 2.37
Maryland 657 10.32
Massachusetts 879 10.35
Michigan 940 7.08
Minnesota 586 21.21
Mississippi 791 2.64
Missouri 1035 37.34
Montana 995 3.34
Nebraska 1025 7.93
Nevada 904 9.54
NewAHampshire 790 2.55
NewAJersey 1002 10.22
NewAMexico 745 4.78
NewAYork 1049 33.26
NorthACarolina 904 6.27
NorthADakota 895 3.29
Ohio 1016 20.81
Oklahoma 1035 8.10
Oregon 641 5.26
Pennsylvania 494 26.89
RhodeAIsland 810 8.29
SouthACarolina 993 6.24
SouthADakota 1026 11.65
Tennessee 1034 16.79
Texas 1021 63.89
Utah 746 16.81
Vermont 187 2.02
Virginia 994 10.21
Washington 1057 18.16
WestAVirginia 1013 13.66
Wisconsin 1035 10.88
Wyoming 771 2.71
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States R_0 b* ϕ* h
Alabama 9.04 0.20 +0.16 0.12
Arizona 8.98 0.33 +0.07 0.16
Arkansas 8.98 0.19 +0.13 0.19
California 8.89 0.26 +0.08 0.07
Colorado 9.17 0.24 +0.04 0.18
Connecticut 9.09 0.27 +0.15 0.17
Delaware 9.20 0.26 +0.14 0.38
DistrictBofBColumbia 9.13 0.17 +0.12 0.07
Florida 8.92 0.12 +0.29 0.14
Georgia 9.16 0.21 +0.18 0.19
Idaho 8.66 0.16 0.00 0.04
Illinois 9.01 0.22 +0.11 0.10
Indiana 9.08 0.24 +0.08 0.20
Iowa 9.10 0.30 +0.07 0.07
Kansas 8.91 0.23 +0.09 0.12
Kentucky 9.03 0.17 +0.14 0.16
Louisiana 9.15 0.21 +0.17 0.31
Maine 9.14 0.28 +0.04 0.08
Maryland 9.20 0.20 +0.14 0.09
Massachusetts 9.05 0.22 +0.13 0.13
Michigan 9.06 0.27 +0.07 0.05
Minnesota 9.17 0.25 +0.11 0.18
Mississippi 8.95 0.18 +0.18 0.05
Missouri 9.02 0.25 +0.09 0.53
Montana 9.38 0.27 +0.01 0.29
Nebraska 9.58 0.23 +0.01 0.30
Nevada 9.03 0.15 +0.07 0.28
NewBHampshire 9.05 0.26 +0.08 0.16
NewBJersey 9.39 0.22 +0.16 0.09
NewBMexico 9.19 0.27 +0.04 0.11
NewBYork 9.05 0.20 +0.15 0.14
NorthBCarolina 9.27 0.25 +0.14 0.05
NorthBDakota 9.40 0.19 +0.01 0.34
Ohio 9.11 0.26 +0.10 0.14
Oklahoma 9.12 0.27 +0.09 0.17
Oregon 9.47 0.22 0.00 0.07
Pennsylvania 8.91 0.20 +0.15 0.10
RhodeBIsland 9.15 0.26 +0.13 0.61
SouthBCarolina 9.51 0.18 +0.11 0.10
SouthBDakota 9.33 0.24 +0.02 1.02
Tennessee 9.07 0.20 +0.14 0.23
Texas 9.00 0.24 +0.15 0.16
Utah 8.52 0.27 +0.02 0.22
Vermont 9.07 0.35 +0.09 0.06
Virginia 9.26 0.19 +0.14 0.10
Washington 9.14 0.21 +0.05 0.23
WestBVirginia 8.90 0.10 0.00 0.05
Wisconsin 9.12 0.26 +0.08 0.17
Wyoming 9.02 0.16 +0.06 0.31

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table S2 Dynamic Model Parameter Estimates Best-fit parameter estimates obtained by 
minimizing the negative log-likelihood for all 49 states 


	Yale University
	EliScholar – A Digital Platform for Scholarly Publishing at Yale
	January 2015

	Bayesian Spatial Modeling Of Respiratory Syncytial Virus Transmission In The United States
	Samantha Emanuele
	Recommended Citation


	Thesis_Final_MPH

