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ABSTRACT

The primary focus of this study is to demonstrate an efficient approach for

uncertainty quantification of surface heat flux to the spherical non-ablating heat-

shield of a generic reentry vehicle due to epistemic and aleatory uncertainties that

may exist in various parameters used in the numerical solution of hypersonic, viscous,

laminar blunt-body flows with thermo-chemical non-equilibrium. Two main uncer-

tainty sources were treated in the computational fluid dynamics (CFD) simulations:

(1) aleatory uncertainty in the freestream velocity and (2) epistemic uncertainty in

the recombination efficiency for a partially catalytic wall boundary condition. The

Second-Order Probability utilizing a stochastic response surface obtained with Point-

Collocation Non-Intrusive Polynomial Chaos was used for the propagation of mixed

(aleatory and epistemic) uncertainties. The uncertainty quantification approach was

validated on a stochastic model problem with mixed uncertainties for the prediction

of stagnation point heat transfer with Fay-Riddell relation, which included the com-

parison with direct Monte Carlo sampling results. In the stochastic CFD problem,

the uncertainty in surface heat transfer was obtained in terms of intervals at different

probability levels at various locations including the stagnation point and the shoulder

region. The mixed uncertainty results were compared to the results obtained with a

purely aleatory uncertainty analysis to show the difference between two uncertainty

quantification approaches. A global sensitivity analysis indicated that the velocity

has a stronger contribution to the overall uncertainty in the stagnation point heat

transfer for the range of input uncertainties considered in this study.
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1. INTRODUCTION

1.1. MOTIVATION FOR UNCERTAINTY QUANTIFICATION

Uncertainties are generally ubiquitous in the analysis and design of highly com-

plex engineering systems. Uncertainties can arise from the lack of knowledge in phys-

ical modeling (epistemic uncertainty), inherent variations in the systems (aleatory

uncertainty), and numerical errors in the computational procedures used for analysis.

It is important to account for these uncertainties in applications such as robust and

reliable design of multi-disciplinary aerospace systems. One application is the design

of a thermal protection system (TPS) for an atmospheric reentry vehicle. Orbital ve-

hicles travel at very high velocities when reentering the Earth’s atmosphere and will

experience a significant magnitude of aeroheating. In order to design and fabricate a

reliable TPS for a reentry vehicle, engineers must have a tool set for accurate predic-

tion of the surface heat flux during atmospheric reentry. Due to the high enthalpy and

velocity requirements for most hypersonic flow simulations including reentry flows,

there are few facilities where experiments can be performed. These experiments also

cover a limited reentry envelope with very small operating times. Therefore, compu-

tational fluid dynamics (CFD) methods play an important role in the prediction of

the flow field and the surface heat flux for atmospheric reentry, and for hypersonic

applications in general. Accurate numerical prediction of hypersonic flow fields are

challenging due to the complex nature of the physics such as strong shock waves,

viscous shock layers, and non-equilibrium thermo-chemistry. Various uncertainties

associated with high-fidelity hypersonic flow simulations can have significant effects
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on the accuracy of the results including the surface heat flux. Therefore, it is impor-

tant to include these uncertainties in the simulations to assess the accuracy of the

results and to obtain robust and/or reliable reentry vehicle designs.

1.2. OBJECTIVES OF THE CURRENT STUDY

The primary focus of this study was to demonstrate an efficient approach for un-

certainty quantification of surface heat flux to the spherical non-ablating heat-shield

of a reentry vehicle at zero-angle of attack due to epistemic and aleatory uncertainties

that may exist in various parameters used in the numerical solution of hypersonic,

viscous, laminar blunt-body flows with thermo-chemical non-equilibrium. In specific,

the freestream velocity (V∞) and the recombination efficiency (γ) of oxygen and nitro-

gen atoms used in the description of catalytic wall boundary condition [1] were treated

as uncertain variables. A recent work by MacLean et al. [2], which included both ex-

perimental and numerical studies on the hypersonic aerodynamic heating of spherical

capsule geometries, demonstrated a significant variation of the surface heat-flux with

varying recombination efficiencies (e.g., catalytic wall conditions) and freestream ve-

locity. The uncertainty quantification in CFD simulations of the current study was

performed for a particular test case and capsule geometry selected from the work of

MacLean et al. [2].

Other previous studies regarding uncertainty quantification in different hyper-

sonic re-entry problems include Bose et al. [3], [4], Weaver et al. [5], and Ghaffari et

al. [6]. Within these various studies, all input uncertainties were mainly treated as

probabilistic. In the current stochastic study to be discussed in the following sections,

the freestream velocity was modeled as an inherent uncertain variable described with

a probability distribution. The recombination efficiency was modeled as an epistemic

uncertain variable, since this uncertainty originates due to the lack of knowledge

in a physical model, as described by Oberkampf [7], and represented as an interval

with specified bounds. For the quantification of mixed (the aleatory-epistemic) un-

certainty, Second-Order Probability Theory was used. [8]−[9] The Point-Collocation
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Non-Intrusive Polynomial Chaos (NIPC) Method (Hosder and Walters [10]) was uti-

lized to propagate the input uncertainties in the freestream velocity (inherent un-

certainty) and the recombination efficiency (epistemic uncertainty) for the overall

quantification of uncertainty in surface heat flux. In general, the NIPC methods

which are based on the spectral representation of uncertainty are computationally

more efficient than traditional Monte Carlo methods for a moderate number of un-

certain variables and can give highly accurate estimates of various uncertainty metrics.

In addition, they treat the deterministic model (e.g, the CFD code) as a black box

and the uncertainty information in the output is approximated with a polynomial

expansion, which is constructed using a number of deterministic solutions each corre-

sponding to a sample point in random space. Therefore, the NIPC methods become

a perfect candidate for the uncertainty quantification in the numerical solutions of

viscous, non-equilibrium hypersonic flows, which are computationally expensive and

complex. More information on the uncertainty quantification in fluid dynamics with

NIPC methods can be found in a recent review by Hosder and Walters [11].

1.3. CONTRIBUTIONS OF THE CURRENT STUDY

It is important for any research project to contribute to the “state of the art”

in science and engineering from a broad perspective. The current study provides

two significant contributions to the topic of design and analysis of complex aerospace

vehicles. The first contribution involves implementing and propagating a mixture of

aleatory and epistemic uncertainties through a hypersonic flow simulation. The topic

of mixed aleatory and epistemic uncertainty quantification in hypersonic flows was not

yet investigated before this study. Therefore, the current research project can provide

a detailed description on the methods and the overall approach for propagating mixed

uncertainties through hypersonic flow simulations for any potential future work on

the topic.

The second contribution of this study comes from the particular methodology

used to propagate the mixed aleatory-epistemic uncertainties through a “black-box”
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simulation code. Second-Order Probability is now a well known method for propagat-

ing mixed uncertainties. However, this study modifies the Second-Order Probability

method by utilizing a stochastic response surface constructed using NIPC. This re-

sponse surface is then utilized in the sampling loops of Second-Order Probability as

a highly accurate surrogate model for the original “black-box” simulation code. This

particular method is much more efficient, when compared to traditional Second-Order

Probability, due to the fact that the function evaluation of the stochastic response

surface is much less computationally expensive than the original simulation.

1.4. THESIS OUTLINE

This manuscript is composed of six main sections. The second section is a

literature review describing relevant work that has been completed on the topic of

uncertainty quantification in hypersonic flow and also mixed aleatory and epistemic

uncertainty quantification methods. Next, the third section will describe the method-

ology and approach for aleatory and epistemic uncertainty quantification using Point-

Collocation NIPC and Second-Order Probability. Particular attention will be spent

on describing the Point-Collocation NIPC and how it can be applied to propagate

mixed aleatory-epistemic uncertainties.

The fourth main section of this manuscript describes the implementation of

the uncertainty approach to the Fay-Riddell relation for approximating stagnation

point heat transfer on a blunt body. Furthermore, the details of the computational

procedure involved within the Fay-Riddell calculations will be outlined. Due to the

low computational costs of evaluating the Fay-Riddell relation, the results will also

be compared to Monte Carlo (MC) simulation results which will assess the validity

of the proposed uncertainty quantification approach.

In the fifth main section, all relevant modeling aspects for the high-fidelity CFD

simulations will be outlined along with the description of the stochastic nature of

the problem at hand. Then the uncertainty results will be presented and sensitivity
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analysis will be conducted to describe the relative importance of each uncertainty

source. Finally, all relevant conclusions and a discussion on future work will be given

in the sixth and final section.
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2. LITERATURE REVIEW

The following literature review considers two main topics. The first topic in-

cludes a review of previous studies involved with mixed aleatory and epistemic un-

certainty quantification. The second topic includes a review of various studies that

have been conducted on uncertainty quantification for hypersonic flow applications.

2.1. MIXED UNCERTAINTY QUANTIFICATION

There have been several previous studies conducted on the topic of propagating

a mixture of aleatory and epistemic uncertainties through a simulation code. One

study, conducted by Eldred et al. [8], provided an extensive summary of efficient

algorithms for mixed aleatory-epistemic uncertainty quantification. They proposed

using second-order probability for quantifying the effects of mixed input uncertain-

ties. This particular method separates the aleatory and epistemic uncertainties into

an inner and outer sampling loop, respectively. By segregating the two sampling

loops, it is easy to identify the overall uncertainty which is due to aleatory and epis-

temic input uncertainties. Furthermore, they also applied the method to a sample

problem involving the plastic analysis of a short column which was represented as a

simple analytical function. This function represented an ideal test case due to the

fact that it was very inexpensive to evaluate. Therefore, this study provided an an-

alytical benchmark for validating in-house codes used for mixed aleatory-epistemic

uncertainty quantification. Swiler et al. [12] also performed a similar study which

concisely described using second-order probability for mixed uncertainty quantifica-

tion. They provided several convenient diagrams which were helpful in describing the

second order probability method, and also applied the methods to a simple model

problem which was intended to be used for code validation.
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Guo and Du [13] extended a unified uncertainty analysis framework to reliability

analysis for multidisciplinary systems where aleatory and epistemic are present as

input uncertainties. They applied their method to a single disciplinary system and

then proposed several algorithms to extend the unified reliability analysis framework

to multidisciplinary systems. These algorithms were then applied to two different

example problems, including a mathematical example and a low-speed aircraft wing

design application.

Guo and Du [14] also investigated sensitivity analysis in reliability-based design

and analysis involving mixed aleatory and epistemic input variables. They introduced

four new types of sensitivity indices for epistemic variables and two new indices for

aleatory variables. These indices were calculated using their unified reliability analysis

framework along with first order reliability method. An important aspect of this work

was that the sensitivity indices were produced as a result of the reliability analysis

alone, and there was no need for additional function evaluations. It was also important

that the presence of aleatory and epistemic input uncertainties could be handled

simultaneously using the proposed reliability analysis. They apply their method to

two example problems, where the first example problem involved aleatory variables

which had only normal distributions. The second example had aleatory uncertain

variables with both normal and non-normal distributions. The epistemic variables

were represented using intervals. In both example problems, the sensitivities were

given for both the aleatory and epistemic input uncertainties.

Du et al. [15] also studied reliability-based design with a mixture of aleatory

and epistemic variables present as input uncertainties. They proposed a method for

handling a mixture of aleatory and epistemic input uncertainties by considering the

reliability under the ”worst case” combination of the epistemic variables. Further-

more, they introduced an efficient approach for the reliability-based design process

involving mixed input uncertainties such that the entire analysis was not more compu-

tationally expensive than the reliability based-analysis involving only aleatory input

uncertainties.
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Karanki et al. used a probability bounds (PB) approach for probabilistic safety

assessment for industrial installation applications. [16] PB analysis unites traditional

probability theory (aleatory uncertainty) and interval arithmetic (epistemic uncer-

tainty) to construct probability boxes (p-boxes) which can be propagated through a

simulation.

Jakeman et al. introduced a framework to numerically quantify uncertain-

ties. [17] Their framework attempts to solve an ”encapsulation problem” and is capa-

ble of varying the amount of known information for the input uncertainties from in-

terval bounds (entirely epistemic) to fully probabilistic (entirely aleatory). Therefore,

the framework is capable of handling problems with aleatory uncertainties, epistemic

uncertainties, or a mixture of both types of uncertainties.

Eldred also provides a description of Second-Order Probability for quantifying

mixed aleatory and epistemic uncertainties using an optimization-based interval esti-

mation technique for calculating the upper and lower bounds of some output metric

of interest. [18] He also provides several useful examples with numerical results which

can be used for validating uncertainty quantification codes.

As previously mentioned in the Introduction section, the methods used within

these studies were applied to various example problems but none of which pertained

to hypersonic flow applications. One of the main goals of this study was to implement

the mixed aleatory and epistemic uncertainty quantification methods to a hypersonic

flow application. In particular, the methods were applied in order to quantify the

uncertainty in heat transfer to a hypersonic reentry vehicle [19]. Furthermore, the
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current study takes a slightly different approach for uncertainty quantification of

mixed epistemic and aleatory input uncertainties by constructing a response surface

using the NIPC method.

2.2. HYPERSONIC VEHICLE APPLICATIONS

Various publications have been made on the topic of uncertainty quantification

in various hypersonic reentry problems. One study by Bose et al. [3] investigated

the uncertainty in aerodynamic heating of a Mars reentry vehicle using high-fidelity

computational fluid dynamics (CFD). They also performed sensitivity analysis along

with the uncertainty analysis. A Monte Carlo simulation was performed with a total

of 130 CFD inputs treated as probabilistic uncertainties. Their main goal was to

estimate the contribution of key modeling parameters to the overall uncertainty in

the surface heat flux to the reentry vehicle. Another relevant study by Bose et al. [4]

investigated the uncertainty and sensitivity analysis in a Titan atmospheric entry

problem. Once again, they utilized Monte Carlo for their uncertainty and sensitivity

analysis. The main goal of their study was to identify major sources of uncertainty

in the various thermochemical models used within the numerical simulation (CFD)

and the overall effect it had on the heating to the vehicle during Titan entry.

Another research study was performed by Weaver et al. [5]. Their study was

mainly focused on quantifying the uncertainty in surface heat flux to a FIRE-II vehicle

during hypersonic reentry due to various probabilistic uncertainties. An important

aspect of their study was the implementation of the efficient Polynomial Chaos Gauss-

Hermite quadrature method for quantifying the uncertainty. This particular method

required much fewer function evaluations to obtain the various statistics on the output

variable of interest when compared with traditional sampling methods such as Monte

Carlo. Fewer function evaluations made the UQ method much efficient especially

when each function evaluation was a costly high-fidelity CFD simulation.

All of these studies have modeled every input uncertainty as probabilistic (aleatory

uncertainties). However, there is generally not enough information known regarding
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various physical modeling uncertainties involved with hypersonic simulations (e.g.

collision integrals). Thus, it is not necessarily appropriate to assign a probability

distribution to these uncertain parameters. The current study aims to treat physical

modeling uncertainties as interval uncertainties (epistemic) and use efficient methods

for propagating them through the numerical simulations.
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3. UNCERTAINTY QUANTIFICATION APPROACH

The purpose of this section is mainly to describe in detail the methodology and

approach used to propagate uncertainty through general computational simulations.

In particular, a novel approach will be described for propagating mixed (aleatory-

epistemic) uncertainties in an efficient manner utilizing the NIPC method. It is

important to first describe these fundamental methods so that they can be later

applied to applications in hypersonic flow, as to be discussed in the following sections.

3.1. UNCERTAINTIES IN COMPUTATIONAL SIMULATIONS

As described in Oberkampf et al. [7], there can be three different types of uncer-

tainty and error in a computational simulation: (1) aleatory uncertainty, (2) epistemic

uncertainty, and (3) numerical error. The term aleatory uncertainty describes the in-

herent variations associated with a physical system. Such variations are due to the

random nature of input data and can be mathematically represented by a probability

density function (PDF) if substantial experimental data are available for estimating

the statistical distribution. Common examples of statistical distribution types are

uniform, normal (Gaussian), lognormal, etc. and typical plots for these distributions

are shown in Figure 3.1. Selecting appropriate and accurate distribution types for

random input parameters is crucial because it can have a drastic impact when prop-

agating the input uncertainty to the uncertainty in the output variable of interest.

Aleatory uncertainty is sometimes referred as irreducible uncertainty because the un-

certainty will be prevalent in the physical system because of the stochastic behavior

of the input parameter. Depending upon the application, there may be numerous

sources of aleatory uncertainty within a physical system. The variation of the free
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stream velocity or manufacturing tolerances can be given as examples for aleatory

uncertainty in a stochastic external aerodynamics problem.

Epistemic uncertainty in a non-deterministic system originates due to ignorance,

lack of knowledge, or incomplete information. The key feature of this definition is

that the fundamental cause is incomplete information of some characteristics of the

system. As a result, an increase in knowledge or information can lead to a decrease in

the epistemic uncertainty. Therefore, epistemic uncertainty is referred to as reducible

uncertainty. Epistemic uncertainty fundamentally differs from aleatory uncertainty

in the sense that epistemic uncertainties can be reduced and aleatory uncertainties

cannot be reduced. Another important distinction between aleatory and epistemic

uncertainties is that a statistical distribution type cannot be used to describe the

nature of the epistemic parameter due to the lack of knowledge or information. As

shown by Oberkampf and Helton [20], modeling of epistemic uncertainties with prob-

abilistic approaches may lead to inaccurate predictions in the amount of uncertainty

in the responses due to the lack of information on the characterization of uncertainty
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Figure 3.1. Sample probability density functions of common statistical distributions.
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as probabilistic. One approach to characterize the epistemic uncertain variables is to

use intervals. In this approach, the upper and lower bounds on the uncertain variable

can be prescribed using either limited experimental data or expert judgment. All

values within this interval are equally likely to occur due to the fact that it is not

appropriate to assign a statistical distribution to an epistemic uncertain parameter.

Examples of epistemic uncertainties associated with high temperature hypersonic flow

simulations can include values of transport quantities, Prandtl number, and catalytic

wall recombination efficiencies.

Numerical error is defined as a recognizable deficiency in any phase or activity

of modeling and simulation that is not due to the lack of knowledge. If errors cannot

be well-characterized, then they must be treated as part of the epistemic uncertain-

ties. The discretization error in spatial or temporal domain originating from the

numerical solution of partial differential equations that describes a physical model in

a discretized computational space (mesh) can be given as an example of numerical

uncertainty. For the perspective of uncertainty quantification, it is very important to

minimize the numerical errors associated with computational simulations. Otherwise,

the numerical errors can propagate through the simulation along with the given epis-

temic and aleatory uncertainties and it becomes very hard to decipher the relative

contributions to the overall uncertainty in the output variable of interest that is due

to input uncertainty or numerical errors.

3.2. MIXED UNCERTAINTY PROPAGATION

It is common to have multiple types of uncertainty associated with a complex

simulation such as hypersonic CFD. These types of problems can have a large amount

of input parameters and so there can be several sources of aleatory and epistemic

uncertainties. It is thus important to account for all of these uncertainties to acquire

accurate predictions of the uncertainty in the output of the simulation. In recent

years, there has been a great deal of work in developing methods for propagating

aleatory and epistemic uncertainties through a black-box simulation code. Several



14

common methods for propagating pure epistemic uncertainties include possibility

theory and fuzzy set theory. However, the particular applications investigated in this

study include a mixture of aleatory and epistemic uncertainties. Therefore, another

method is needed which is capable of propagating the mixed uncertainties through a

simulation code.

3.2.1. Second-Order Probability. In the current study, Second-Order

Probability [8]−[9] was utilized to propagate mixed (aleatory and epistemic) uncer-

tainty through several applications such as CFD simulations and the Fay-Riddell

model problem. Second-Order Probability uses an inner loop and an outer sampling

loop as described in Figure 3.2. In the outer loop, a specific value for the epis-

temic variable is prescribed and then passed down to the inner loop. Any traditional

aleatory uncertainty method may then be used to perform aleatory uncertainty anal-

ysis in the inner loop for the specified value of the epistemic uncertain variable. The

Second-Order Probability will give interval bounds for the output variable of interest

at different probability levels. Each iteration of the outer loop will produce a cumu-

lative distribution function (CDF) based on the aleatory uncertainty analysis in the

inner loop. Thus, if there are 100 samples in the outer loop, then 100 different CDF

curves will be generated. One major advantage of Second-Order Probability is that

it is easy to separate and identify the aleatory and epistemic uncertainties. On the

other hand, the two sampling loops can make this method computationally expensive

especially if traditional sampling techniques, such as Monte Carlo, are used for the

uncertainty propagation.

Since this study is mainly focused on efficient uncertainty propagation, the

Point-Collocation NIPC method will be utilized to fit a stochastic response surface to

the output quantity of interest (e.g., surface heat flux ) as a function of both aleatory

and epistemic uncertain variables. The Second-Order Probability approach will then

be implemented by outer sampling for the epistemic uncertain variable and the inner

sampling for the aleatory uncertain variable (for a fixed value of epistemic uncertain

variable) both using the stochastic response surface approximation.



15

 
Outer Loop 

(Epistemic Sampling) 

Inner Loop                     

(Aleatory UQ) 

“Black Box”     

Simulation 

Figure 3.2. Schematic of second-order probability.

3.2.2. Basics of Polynomial Chaos. The Point-Collocation Non-Intrusive

Polynomial Chaos is derived from polynomial chaos theory, which is based on the

spectral representation of the uncertainty. An important aspect of spectral repre-

sentation of uncertainty is that one may decompose a random function (or variable)

into separable deterministic and stochastic components. For example, for any ran-

dom variable (i.e., α∗ ) such as velocity, pressure, or temperature in a stochastic fluid

dynamics problem, one can write,

α∗(~x, ~ξ) ≈
P∑
j=0

αj(~x)Ψj(~ξ) (1)

where αj(~x) is the deterministic component and Ψj(~ξ) is the random basis function

corresponding to the jth mode. Here we assume α∗ to be a function of the deterministic

independent variable vector ~x and the n-dimensional random variable vector ~ξ =

(ξ1, ..., ξn), which has a specific probability distribution. In theory, the polynomial

chaos expansion given by Equation 1 should include infinite number of terms, however

in practice a discrete sum is taken over a number of output modes. For a total order

expansion, the number of output modes is given by,

Nt = P + 1 =
(n+ p)!

n!p!
(2)
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Table 3.1. Density and weight functions associated with several commonly used uni-
variate optimal bases functions.

Input Density Polynomial Weight Support
Distribution Function Name Function p (ξ) Range (R)

Normal 1√
2π
e

−ξ2
2 Hermite Hn (ξ) e

−ξ2
2 [−∞,∞]

Uniform 1
2

Legendre Len (ξ) 1 [−1, 1]

Exponential e−ξ
2

Laguerre Lan (ξ) e−ξ [0,∞]

which is a function of the order of polynomial chaos (p) and the number of random

dimensions (n). The basis function ideally takes the form of multi-dimensional Her-

mite Polynomial to span the n-dimensional random space when the input uncertainty

is Gaussian (unbounded), which was first used by Wiener [21] in his original work

of polynomial chaos. To extend the application of the polynomial chaos theory to

the propagation of continuous non-normal input uncertainty distributions, Xiu and

Karniadakis [22] used a set of polynomials known as the Askey scheme to obtain the

“Wiener-Askey Generalized Polynomial Chaos”. Table 3.1 displays the weight and

density functions for several of the most common polynomials including Hermite,

Legendre, and Laguerre polynomials. Huyse et al. [23] have shown that the Hermite,

Legendre, and Laguerre polynomials are the optimal basis functions, in terms of the

convergence of the statistics, for input uncertainties having Gaussian, uniform, and

exponential distributions, respectively. The optimal basis functions are derived based

upon the inner product of the weighting functions that correspond to the standard

probability density functions (PDF) of a given input uncertainty. A standard PDF

must meet the requirement that the integral of the PDF over the support range is ex-

actly one. The constant multiplicative factor between the weight function and density

function in Table 3.1 is a direct result of this requirement.
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Eldred et al. [24] describes the process of how the multivariate basis functions

can be obtained from the product of univariate orthogonal polynomials. For example,

a multivariate Hermite polynomial can be constructed using,

Hn (ξi1 , . . . , ξin) = Hn(~ξ) = e
1
2
~ξT ~ξ (−1)n

δn

δξi1 , . . . , δξin
e−

1
2
~ξT ~ξ (3)

which can also be obtained using one-dimensional Hermite Polynomials (ψmji
(ξi)) by

using the multi-index mj
i , as shown in Equation (4).

Hn (ξi1 , . . . , ξin) = Ψj(~ξ) =
n∏
i=1

ψmji
(ξi) (4)

The main objective of the polynomial chaos method is to determine each of the

αj (~x) coefficients from Equation (1). The statistics of the stochastic output can then

be calculated using these coefficients and the optimal basis functions. For example,

Hosder et al. [11] show that the mean of a stochastic solution is given by,

µα∗ = ᾱ∗ (~x) = EPC

(
α∗(~x, ~ξ)

)
=

∫
R

α∗(~x, ~ξ)p(~ξ)d~ξ = α0 (~x) (5)

which demonstrates that the mean, or expected value, of the output α∗(~x, ~ξ) is simply

the zeroth coefficient (or mode). Hosder et al. [11] also list the result for the variance

of the distribution:

σ2
α∗ = V arPC

[
α∗(~x, ~ξ)

]
=

∫
R

(
α∗(~x, ~ξ)− ᾱ∗0(~x)

)2

p(~ξ)d~ξ =
P∑
j=1

[
α2
j (~x) < Ψ2

j >
]

(6)

Equations (5) and (6) utilize the fact that 〈Ψj〉 = 0 for j > 0 and 〈ΨiΨj〉 =
〈
Ψ2
j

〉
δij,

where δij is the Kronecker delta function. Furthermore, the inner product of Ψi(~ξ)

and Ψj(~ξ) is defined as:

〈
Ψi(~ξ)Ψj(~ξ)

〉
=

∫
R

Ψi(~ξ)Ψj(~ξ)p(~ξ)d~ξ (7)
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If the probability distribution of each random variable is different, then the

optimal multivariate basis functions can again be obtained using Equation (4) by em-

ploying the optimal univariate polynomial at each random dimension. This approach

requires that the input uncertainties are independent standard random variables,

which also allows the calculation of the multivariate weight functions by the product

of univariate weight functions associated with the probability distribution at each

random dimension. The detailed information on polynomial chaos expansions can be

found in Walters and Huyse, [25] Najm, [26] and Hosder and Walters. [11]

To model the uncertainty propagation in computational simulations via polyno-

mial chaos with the intrusive approach, all dependent variables and random parame-

ters in the governing equations are replaced with their polynomial chaos expansions.

Taking the inner product of the equations, (or projecting each equation onto jth ba-

sis) yields P + 1 times the number of deterministic equations which can be solved

by the same numerical methods applied to the original deterministic system. Al-

though straightforward in theory, an intrusive formulation for complex problems can

be relatively difficult, expensive, and time consuming to implement. To overcome

such inconveniences associated with the intrusive approach, non-intrusive polynomial

chaos formulations have been considered for uncertainty propagation.

The non-intrusive approach polynomial chaos (NIPC) approach, for approxi-

mating αj(~x) coefficients from Equation (1), is based on spectral projection where

α∗(~x, ~ξ) is projected onto the kth basis:

〈
α∗(~x, ~ξ),Ψk(~ξ)

〉
=

〈
P∑
j=0

αj(~x)Ψj(~ξ),Ψk(~ξ)

〉
(8)

Using the fact that the basis functions are orthogonal,

〈
α∗(~x, ~ξ),Ψk(~ξ)

〉
= αk(~x)

〈
Ψ2
k(
~ξ)
〉

(9)

which can then be rearranged as shown in Equation (10). The denominator in Equa-

tion (10) can easily be obtained by using the definition of the inner product and
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the polynomial basis function. Therefore, the main objective of the spectral pro-

jection method is to evaluate the numerator in Equation (10) in order to calculate

the polynomial coefficients α(~x). There are four main NIPC methods which include

sampling-based, quadrature-based, point-collocation, and stochastic-collocation. The

Point-Collocation NIPC was utilized for this study, and it will be described in further

detail. Refer to Hosder et al. [11] for more theory regarding the other three NIPC

methods.

αk(~x) =

〈
α∗(~x, ~ξ),Ψk(~ξ)

〉
〈

Ψ2
k(
~ξ)
〉 =

1〈
Ψ2
k(
~ξ)
〉 ∫

R

α∗(~x, ~ξ)Ψk(~ξ)p(~ξ)d~ξ (10)

3.2.3. Point-Collocation Non-Intrusive Polynomial Chaos. The Point

Collocation NIPC method starts with replacing the uncertain variables of interest

with their polynomial expansions given by Equation (1). Then, P + 1 vectors (~ξi =

{ξ1, ξ2, ..., ξn}k , k = 0, 1, 2, ..., P ) are chosen in random space for a given PC expansion

with P + 1 modes and the deterministic code is evaluated at these points. With the

left hand side of Equation (1) known from the solutions of deterministic evaluations

at the chosen random points, a linear system of equations can be obtained:



Ψ0(~ξ0) Ψ1(~ξ0) · · · ΨP (~ξ0)

Ψ0(~ξ1) Ψ1(~ξ1) · · · ΨP (~ξ1)

...
...

. . .
...

Ψ0( ~ξP ) Ψ1( ~ξP ) · · · ΨP ( ~ξP )





α0(~x)

α1(~x)

...

αP (~x)


=



α∗(~x, ~ξ0)

α∗(~x, ~ξ1)

...

α∗(~x, ~ξP )


(11)

The spectral modes (αk) of the random variable are obtained by solving the

linear system of equations given above. Using these spectral modes, various statistical
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information for the output variable of interest can be computed, such as the mean

(µα∗) from Equation (5),

µα∗ = ᾱ0(~x) (12)

and the variance (σ2
α∗) from Equation (6),

σ2
α∗(~x) =

P∑
i=1

α2
i (~x)

〈
Ψ2
i (
~ξ)
〉

(13)

as shown by Hosder et al. [10] The solution of the linear problem given by Equa-

tion (11) requires P + 1 deterministic function evaluations. If more than P + 1

samples are chosen, then the over-determined system of equations can be solved us-

ing the Least Squares approach. Hosder et al. [27] investigated this option on model

stochastic problems by increasing the number of collocation points in a systematic

way through the introduction of a parameter np (oversampling ratio) defined as the

number of samples divided by P + 1. They found the optimum np to be two. The

Point-Collocation NIPC has the advantage of flexibility on the selection of collo-

cation points and possible re-use of collocation points for higher-order polynomial

construction (i.e., selection of collocation points with incremental Latin Hypercube

sampling). With the proper selection of collocation points, it has been shown that

Point Collocation NIPC can produce highly accurate stochastic response surfaces with

computational efficiency [27].

3.2.4. Implementation of NIPC in Second-Order Probability. The

current study utilizes an efficient approach for the propagation of mixed uncertain-

ties using the framework based on Second-Order Probability. With this approach, the

stochastic response (e.g., the surface heat transfer in the current study) is represented

with a polynomial chaos expansion on both epistemic and aleatoric variables. In this

study, Point-Collocation NIPC is used to construct the stochastic response surface

although other NIPC methods (i.e., quadrature or sampling based) can also be used.

The optimal basis functions are used for the aleatoric variables whereas Legendre

polynomials are used for the epistemic uncertain variables. It should be noted that



21

the use of Legendre polynomials should not imply a uniform probability assignment to

the epistemic variables. This choice is made due to the bounded nature of epistemic

uncertain variables. Once the stochastic response surface is formed, at fixed values

of epistemic uncertain variables, the stochastic response values can be evaluated for

a large number of samples randomly produced based on the probability distributions

of the aleatoric input uncertainties (inner loop of Second-Order Probability). This

procedure will produce a single cumulative distribution function. By repeating the

inner loop procedure for a large number of epistemic uncertain variables sampled from

their corresponding intervals (outer loop of Second-Order Probability), a population

of cumulative distribution functions can be obtained which can be used to calculate

the bounds of the stochastic response at different probability levels. A flowchart of

the entire process of propagating mixed aleatory-epistemic uncertainties is shown in

Figure 3.3. Due to the analytical nature (polynomial) of the stochastic response, the

described procedure will be computationally efficient, especially compared to the ap-

proaches based on direct MC sampling which require a large number of deterministic

CFD simulations.
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Figure 3.3. Flowchart describing the procedure for propagating mixed aleatory-
epistemic uncertainties with Second-Order Probability and NIPC response
surface.
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4. STOCHASTIC MODEL PROBLEM

4.1. DESCRIPTION OF FAY-RIDDELL CORRELATION

Before initiating the high-fidelity hypersonic CFD problem, the mixed uncer-

tainty quantification approach (the NIPC method and Second-Order Probability)

was applied to a model problem which included the prediction of stagnation point

heat flux on a blunt body. This particular model problem was relatively inexpensive

to evaluate and so it was ideal for validating the uncertainty quantification meth-

ods. Stagnation point heat flux was approximated using the Fay-Riddell correlation

as described by Fay and Riddell [28]. The Fay-Riddell correlation requires several

computational procedures for approximating the stagnation point heat flux such as

calculating the properties behind a normal shock wave for equilibrium chemically re-

acting air and species concentrations for air at a specified temperature and pressure.

All procedures and methodology for these computations are outlined in the following

sections.

4.1.1. Calculation of Properties Across a Normal Shock Wave. Dur-

ing reentry, the vehicle travels at very high speeds and as a consequence a strong

bow shock will develop in front of the vehicle. Shock waves have strong gradients

where the flow properties abruptly change across the shock. From a reliability based

design point of view, it is important to have a method for accurately calculating

properties behind a shock wave. An important observation for this study is that at

the stagnation streamline one can assume the bow shock wave to be normal to the

flow for axis-symmetric bodies at zero degrees angle of attack. Thus, the normal

shock relations can be utilized to calculate properties behind the shock. In general,

hypersonic flows will contain strong shocks which can cause the air temperature to

be significantly large. At these high temperatures, the air molecules will partially

or completely dissociate and thus the traditional calorically perfect gas assumption

is no longer valid. In place of the calorically perfect gas, one can assume the air to
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be in thermodynamic and chemical equilibrium. For chemical equilibrium, the main

assumption is that the time scale of the flow is much smaller than the time scale of the

chemical reactions occurring in the flowfield. Also for thermodynamic equilibrium, all

internal energy modes are in equilibrium at the translational temperature. Thus, the

governing equations (continuity, momentum, and energy) should be utilized assuming

equilibrium air (i.e. not calorically perfect). For air in thermodynamic and chemical

equilibrium, the procedure for calculating properties behind a normal shock becomes

more complex than the traditional calorically perfect gas assumption because a closed

form solution is not possible. However, a numerical approach can be implemented

to closely approximate the solution for the flow properties behind the shock with a

great deal of accuracy. The paragraphs below describe this procedure in detail which

is described by Anderson [29].

The first step in the procedure for approximating the properties across a normal

shock for equilibrium air is to guess an upper and lower bounds for the density ratio

across the shock, as given by the continuity equation in Equation (14) below. In

Equation (14), the subscript 1 represents the flow property ahead of the normal shock,

and the subscript 2 represents the property behind the shock. A general guideline for

guessing the density ratio (ε) is to use 0.0001 and 0.5 as the lower and upper bounds,

respectively.

ε =
ρ1

ρ2

=
u2

u1

(14)

The next step in the procedure is to calculate the pressure behind the normal

shock (P2) using the initial guess of ε and the momentum equation, as shown in

Equation (15).

P2 = P1 + ρ1u
2
1 [1− ε] (15)

After the pressure behind the shock has been calculated, the next step is to

calculate the enthalpy behind the normal shock (h2) using the energy equation, as
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shown in Equation (16). The enthalpy ahead of the shock (h1) was calculated using

thermodynamic curve fits as described by Srinivasan et al. [30]. A MATLAB code

was written for finding the enthalpy as a function of temperature and pressure based

on the thermodynamic curve fits by Srinivasan et al. Refer to the code, which is

included in Appendix A, for any further details on this procedure.

h2 = h1 +
u2

1

2

(
1− ε2

)
(16)

The fourth step is to calculate the approximate enthalpy behind the normal

shock (h̃2) by again utilizing the thermodynamic curve fits included in the MAT-

LAB code. In Equation (17), the pressure behind the shock (P2i) was found from

Equation (15) and the density behind the shock (ρ2i) can be calculated using Equa-

tion (14).

h̃2 = h̃2 (P2i , ρ2i) (17)

If a good estimate was made for the density ratio (ε), then the results for h̃2

and h2 should be consistent. The difference between h̃2 and h2 should meet a desired

level of accuracy or tolerance level. A tolerance level of 10−6 was selected for this

study.

∣∣∣h̃2 − h2

∣∣∣
h2

< 10−6 (18)
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However, if the guess for ε was not sufficiently accurate (Equation (18) not

satisfied), then a new value for ε must be produced. In the present study, the Secant

Method was used to calculate the updated values of ε. The equation for the Secant

Method is shown below. In Equation (19), εi−1 is the initial guess for the lower bound

of ε and εi−1 is the initial guess for the upper bound. Therefore, if the convergence

criteria specified in Equation (18) is not satisfied, Equation (19) should be used to

calculate an updated value for the ε (guess for the density ratio across the shock).

Then, these steps should be repeated until the convergence criteria is satisfied.

εi+1 = εi −
f (εi)

f(εi)−f(εi−1)
εi−εi−1

(19)

where,

f (εi) = h̃2 (εi)− h2 (εi) (20)

The overall procedure will produce flow values behind the normal shock wave

accurate to the level specified by the convergence criteria. This procedure is essential

for the Fay-Riddel model problem, as will be seen in the following sections.

4.1.2. Mass Fraction Calculation for Air. During reentry flight, a

reentry vehicle traveling at a very high velocity will experience extreme temperatures.

At standard room temperature, air is composed of approximately 20% oxygen (O2)

and 80% nitrogen (N2) molecules with other trace amounts of molecules such as

argon (Ar). However, the molecules will start to dissociate as the temperature of

the air increases. At atmospheric pressure, Oxygen molecules begin to dissociate

at approximately 2,500 K (Anderson [29]). At a temperature of 4,000 K, almost

all Oxygen molecules are dissociated and Nitrogen molecules begin to dissociate.

Nitrogen molecules are almost completely dissociated at approximately 9,000 K, and
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ionization occurs for even higher temperatures. Some of the important chemical

reactions are shown below, where M is a generic third-body.

O2 +M 
 2O +M (21)

N2 +M 
 2N +M (22)

N2 +O2 
 2NO (23)

NO +M 
 N +O +M (24)

O2 +N 
 NO +O (25)

N2 +O 
 NO +N (26)

The chemical composition (mass fractions) of the air molecules can vary as a

function of temperature. This directly affects the heat transfer rate between the air

and the structure of the reentry vehicle. Therefore, it is important to take account for

this hypersonic phenomena when calculating the heat transfer rate to the vehicle. For

this study, the air was assumed to be in chemical equilibrium and a five species model

was selected which consisted of O2, N2, NO, O, and N (neglecting trace elements).

The procedure for calculating the mass fraction of air as a function of temperature

and pressure will be described below.

The equilibrium constant is an important parameter which governs the equilib-

rium composition of air. Statistical thermodynamics and quantum mechanics theory

was used to compute the equilibrium constant as a function of temperature as shown

by Vincenti and Kruger [31]. A brief outline of this procedure is given in Appendix

B. By definition, the equilibrium constant for an atomic specie can also be written
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in terms of the partial pressure of each species as shown in Equation (27). The no-

tation a and aa represents the partial pressure for the atomic and molecular specie,

respectively.

K (T ) =
(pi,a)

2

pi,aa
(27)

For the five species model selected in this study (O2, N2, NO, O, and N), there will

be a total of three equilibrium constants. The partial pressure of each species (PO2 ,

PN2 , PNO, PO, and PN) must be solved for, and therefore a total of five equations

must be utilized to solve for the five unknowns. The equilibrium constant equations

constitute three of the five equations which are necessary. The fourth equation comes

from Dalton’s Law of partial pressure (Vincenti and Kruger [31]).

P = PN2 + PO2 + PNO + PO + PN (28)

The fifth and final equation comes from the fact that all atoms must be conserved

during a chemical process, which essentially implies that no atoms can be created

or destroyed during a chemical reaction process. Furthermore, notice that only O

and N elements are present in the five-species model for air. Therefore, the atom

conservation equation can be written as the following.

ÑN

ÑO

=
2PN2 + PN + PNO
2PO2 + PO + PNO

(29)

Equation (29) states that the number of moles of Nitrogen (numerator) and Oxygen

(denominator) must be equivalent before and after the chemical reaction. Therefore,

the five necessary equations are now known from the equilibrium constants, Dalton’s

Law of Partial Pressure, and atom conservation. For clarity, the exact equations are

written below for the five-species model for air.

N2 
 2N =⇒ KN2 (T ) =
(pN)2

pN2

(30)
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O2 
 2O =⇒ KO2 (T ) =
(pO)2

pO2

(31)

NO 
 N +O =⇒ KNO (T ) =
(pNpO)2

pNO
(32)

P = PN2 + PO2 + PNO + PO + PN (33)

ÑN

ÑO

=
2PN2 + PN + PNO
2PO2 + PO + PNO

(34)

Notice that Equations (30), (31), (32), (33),and (34) is a system of five non-

linear equations. Also note that there are only five unknowns, mainly the partial

pressures of of specie. Therefore, this system can be solved using various numerical

methods to obtain the desired partial pressures. For this study, a built in function

from MATLAB was utilized in solving for the partial pressures. Once the partial

pressures are known, the mole fraction can easily be calculated using,

Xi =
pi
p

(35)

where pi is the partial pressure of the ith specie and p is the pressure behind the

normal shock wave. However, the desired quantity is the mass fraction rather than

the mole fraction. To convert to mass fraction, one must first find the molecular

weight (µ) of the gas mixture behind the normal shock wave using the following:

µ =
n∑
i=1

Xiµi (36)

Finally, the mass fraction can be calculated using Equation (37) below.

ci = Xi
µi
µ

(37)

For more details regarding the conversion between theory and numerical coding

in MATLAB, refer to the source code in Appendix C. The capability of finding the

mass fraction of air species behind a normal shock wave as a function of temperature
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and pressure will next be directly applied to approximating the stagnation point heat

transfer to a hypersonic reentry vehicle.

4.1.3. Fay-Riddell Correlation. The Fay-Riddell correlation was first

developed by Fay and Riddell [28] to approximate the stagnation point heat flux to

a blunt body. Fay and Riddell first started with the full form of laminar boundary

layer equations in a chemically reacting flow. However, the most general form of the

equations have no closed-form, exact solution due to the complexity of the equations.

So Fay and Riddell restricted the problem to stagnation point flow so that the depen-

dent variables were a function of only one direction. Furthermore, they assumed the

flow to be in equilibrium and that the vehicle’s wall was fully catalytic. Using these

assumptions, Fay and Riddell were able relate the flow variables to the stagnation

point heat flux. They were able to reduce the full governing equations down to the

following system of equations,

(
l
∂2f

∂η2

)
+ f

∂2f

∂η2
+

1

2

[
ρo
ρ
−
(
∂f

∂η

)2
]

= 0 (38)

∂
[(

l
σ

)
(1 + d) ∂g

∂η

]
∂η

+ f
∂g

∂η
= 0 (39)

where,

l ≡ ρµ

ρwµw
=

(
α1√
g

)
−
(
α2

g

)
(40)

ρ0

ρ
= 1− γ1 (1− g)− γ2 (1− g)4 (41)

d = β1e
−β2/g (42)

with boundary conditions,

f (0) = 0 (43)

∂f

∂η
(0) = 0 (44)

∂f

∂η
(∞) = 0 (45)
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g (0) = g0 (46)

g (∞) = 1 (47)

Equations (38) and (39) are ordinary differential equations subject to the five

boundary conditions. Five boundary conditions are necessary because Equation (38)

is third order and Equation (39) is second order (i.e. five necessary boundary condi-

tions). Furthermore, the coefficients α1, α2, β1, and β2 were determined by Fay and

Riddell [28] by fitting Equations (40), (41), and (42) to equilibrium air calculations.

Thus, Equations (38)- (47) represent a system of differential equations which the so-

lution can be approximated using numerical methods. However, one important thing

to note here is that the boundary condition specified in Equations (45) and (47) are

specified at the far boundary (∞) rather than at the wall of the vehicle. Therefore,

a ”shooting-method” numerical technique must be utilized for finding the boundary

condition at the wall. This is a fairly simple procedure where a guess is made for

the unknown boundary conditions at the wall and the system of equations is solved.

Then, the original far boundary condition is compared with the solution of the sys-

tem of equations to see if they match to a certain tolerance level. If not, then a new

guess must be supplied for the wall boundary conditions and this procedure should

be repeated until the tolerance level, or level of accuracy, is satisfied. Essentially, this

is a root finding problem and so traditional techniques such as Newton’s Method can

be applied to efficiently determine the boundary conditions at the wall. This process

will ultimately produce values for g and f , and these values can be directly related

to the heat transfer to the wall of the vehicle. Refer to Fay and Riddell [28] for more

details on this relation.

The procedure described above is fairly simple in theory, but it is still somewhat

complex to implement into computer code. It is also fairly computationally expensive

to solve the system of equations a numerous amount of times. Therefore, Fay and

Riddell [28] developed a numerical correlation for the stagnation point heat transfer.

This correlation represents an analytical expression which is very consistent with the
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solution of the governing equations listed above. Correlations are particularly useful

due to their computational efficiency. In other words, the Fay-Riddell correlation is

much more computationally efficient than the original system of governing equations

and a high level of accuracy is still maintained with the correlation formula. Assuming

that the boundary layer was laminar, flow was in equilibrium, and the vehicle’s wall

was fully catalytic (full recombination at the surface), the final form of the Fay-Riddell

correlation ([28] and [29]) which approximates the stagnation point heat transfer to

a blunt body is shown below.

q̇w = 0.76 (Pr)−0.6 (ρwµw)0.1 (ρeµe)
0.4

√(
dUe
dx

)
sp

(hoe − hw)

[
1 +

(
Le0.52 − 1

)(hD
hoe

)]
(48)

where (
dUe
dx

)
sp

=
1

RN

√
2
pe − p∞
ρe

(49)

hD =
∑
i

Cie (∆hf )
◦
i (50)

In Equation (48), the Pr symbolizes the Prandtl Number which was assumed

to be 0.714 and Le symbolizes the Lewis Number which was taken to be 1.4. The

subscripts e and w represent the property at the edge of the boundary layer and at the

wall of the vehicle, respectively. Also, RN represents the radius of the truncated sphere

of the spherical capsule which was obtained from the experimental set-up described by

MacLean et al. [2]. In Equation (50), Ci represents the species mass fraction behind

the normal shock wave which was calculated using statistical thermodynamics [31],

as described previously. In these calculations, the heats of formation at absolute

zero, (∆hf )
◦
i , were taken as zero for the molecules. The properties behind the normal

shock were found with equilibrium air assumption using thermodynamic curve fits by

Srinivasan et al. [30]. The freestream conditions correspond to one of the experimental

test cases conducted by MacLean et al. [2] (Table 4.1) and the wall temperature was
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held constant at 300 K (cold-wall boundary condition), which was consistent with the

experiment. It should be noted that the conditions of the experimental test case were

used just as reference values for the model problem and not for comparison, since the

actual flow in the tests are in thermo-chemical non-equilibrium.

4.2. DESCRIPTION OF THE STOCHASTIC PROBLEM

The freestream velocity and the dynamic viscosity at the boundary layer edge

(µe) were treated as random variables within the Fay-Riddell relation. The freestream

velocity was assumed to be an inherent uncertain variable and the coefficient of vis-

cosity (physical model parameter) was assumed to be an epistemic uncertain variable.

The dynamic viscosity was modeled using Sutherland’s Law. It is known that the

accuracy of Sutherland’s Law degrades at high temperatures beyond 3000◦K due to

dissociation and ionization effects. The uncertainty in the dynamic viscosity was

demonstrated by Anderson [29], which is shown in Figure 4.1 for clarity. In Fig-

ure 4.1, the Sutherland’s calculation is normalized by a more accurate calculation

of the dynamic viscosity which can be obtained using either high-order models or

curve-fits. Notice in the figure that there is quite a large discrepancy between the

two calculations as the temperature increases. This demonstrates the importance of

accounting for the uncertainty in dynamic viscosity for hypersonic, high temperature,

applications.

One can use high-order models or curve-fits to increase the prediction accuracy

of viscosity at high temperatures. However, by retaining Sutherland’s Law in this

Table 4.1. Table outlining the free stream conditions for the CFD (Case 1) and the
model problem (Case 2).

Case H0 V∞ T ρN2 ρO2 ρNO ρO
# (MJ/kg) (m/s) (K) (kg/m3) (kg/m3) (kg/m3) (kg/m3)

1 4.7 2922 180 2.26 · 10−3 6.10 · 10−4 2.14 · 10−4 1.51 · 10−6

2 9.9 4167 522 1.17 · 10−3 2.72 · 10−4 1.04 · 10−4 4.60 · 10−5
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study, an epistemic uncertainty was intentionally introduced to the model problem.

In specific, the coefficient of viscosity was modeled as an epistemic variable through

the introduction of a factor (k) which is multiplied with the value obtained with

Sutherland’s Law (e.g., µe = k×µeref ). This factor is treated as an epistemic uncertain

variable with a specified interval which had the upper and lower bounds approximated

using the following procedure: First, a stagnation temperature of 4,388◦K behind a

normal shock wave was obtained with the equilibrium air calculations using the mean

freestream velocity, as described in the previous sections. Then, the chart in Figure 4.1

was utilized to approximate the range of variation for the coefficient of viscosity at

the calculated temperature relative to the value calculated by the Sutherland’s Law.

This gave an upper and lower bounds of 1.0 to 1.15 for the multiplier k, which has

been used in the calculations.

The freestream velocity was assumed to have a uniform distribution with a

mean of 4167 m/s (Run 2), which was the nominal velocity in the test section of

the wind tunnel for the experiments from MacLean et al. [2] The lower and upper

bounds were set at 3958.65 m/s and 4375.35 m/s, respectively, which corresponds to

a ± 5% percent uncertainty in the freestream velocity. For comparison purposes, the

freestream velocity was also modeled as a normal random variable with a mean of

 

Figure 4.1. Variation of coefficient of viscosity as a function of temperature and pres-
sure (Anderson [29]).
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4167 m/s and a standard deviation of 100 m/s. The standard deviation in velocity

was selected with the intention of producing consistent standard deviation values for

the stagnation heat transfer for both uniform and normal distributions.

4.3. MIXED UNCERTAINTY QUANTIFICATION

The approach described in Section 3 was followed to propagate the mixed

(aleatory and epistemic) uncertainty through the Fay-Riddell relation. It is important

to realize that the results of the uncertainty propagation approach is dependent upon

the polynomial order used within the NIPC method. Furthermore, the number of

function evaluations drastically increases with the polynomial order (p). Therefore,

it is important to intelligently select an appropriate value for p. An optimal value

for p would be a high enough value to produce accurate results while requiring the

smallest number of required function evaluations. In order to find the optimal value

for p, convergence studies were carried out where the average and standard deviation

of the stagnation point heat flux was analyzed as a function of polynomial order.

The results are shown in Figures 4.2 and 4.3. From the figures, it is clear that a 3rd

order polynomial chaos was sufficient for convergence of the NIPC response surface.

This can be seen from the fact that there is no noticeable changes in the average and

standard deviation of the stagnation point heat flux for values of p higher than three.

Therefore, a third order polynomial was selected along with an over-sampling ratio

of two which corresponded to a total of 20 Fay-Riddell function evaluations needed

to construct the NIPC response surface. The sample points were selected according

to the respective statistical distribution of each stochastic input variable.

After the convergence study had been completed, the next step was to perform

the mixed aleatory-epistemic uncertainty propagation techniques to the Fay-Riddell

relation. A Latin Hypercube Sample (LHS) of size 5,000 was used for the outer

loop (epistemic) sampling for µ. For each value of µ, the NIPC response surface was

utilized for the inner-loop (aleatory) UQ which produced a single cumulative distribu-

tion function (CDF). The overall Second-Order Probability analysis produced 5,000
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CDF curves. Figure 4.4 shows the mixed uncertainty results for uniformly distributed

velocity and Figure 4.5 displays the results for velocity modeled with a normal dis-

tribution. In each figure, the left plot shows the results obtained with Second-Order

Probability approach with the NIPC response surface formulation and the other plot

gives the results obtained with a direct Monte Carlo (MC) approach that utilized

10,000 samples for the outer-loop and 5,000 samples for the inner loop (a total num-

ber of 5× 107 Fay-Riddell evaluations). By comparing the results of NIPC and MC,

it can clearly be seen that the NIPC results compare well with MC. This indicates

that the the stochastic response surface approach to Second-Order Probability is per-

forming well. These results help validate the current method for mixed uncertainty

propagation and provides confidence for using the same method in CFD simulations

(to be discussed in the next section). Figures 4.4 and 4.5 also imply a fairly linear

dependency of stagnation point heat transfer on the statistical distribution type of

the freestream velocity. In Figure 4.4, the velocity has a uniform distribution and the

CDF shapes show that the distribution of stagnation heat transfer is fairly uniform as

well. Similarly for Figure 4.5, the velocity has a Gaussian distribution and the CDF

curves for stagnation point heat transfer are very similar to typical Gaussian CDF
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Figure 4.2. Convergence of the average stagnation point heat transfer.
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Figure 4.4. Horse-tail plot representing mixed aleatory-epistemic uncertainty results
for the Fay-Riddell model problem (uniform distribution for velocity).

curves. These results also demonstrate the importance of distribution type for model-

ing aleatoric variables. When the distribution type for the velocity was changed from

uniform to normal, the results from Second-Order Probability were also significantly

altered.

Stagnation heat flux information at particular probability levels are shown in

Tables 4.2 and 4.3 which is for the uniform and normal distribution of freestream

velocity, respectively. In these tables, the heat flux uncertainty results obtained from

Second-Order Probability are reported using intervals at each probability level. The

second column in the table is for the results obtained with the NIPC response surface

formulation for uncertainty propagation and the third column shows results obtained
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Figure 4.5. Horse-tail plot representing mixed aleatory-epistemic uncertainty results
for the Fay-Riddell model problem (normal distribution for velocity).

with the MC. Once again, the NIPC results are consistent with the MC which demon-

strates the effectiveness of the NIPC method. The fourth column lists the results

from a pure aleatory uncertainty analysis that modeled the coefficient of viscosity as

a uniform random variable. The same 3rd order NIPC response surface was used to

propagate the aleatory uncertainty. Although it may not be appropriate to treat the

coefficient of viscosity as a probabilistic uncertainty due to its nature, the results are

shown here for the purpose of comparison to mixed uncertainty results. It can be

seen that only a single value is available (not an interval) at each probability level for

the aleatory NIPC results.

Table 4.2. Stagnation point heat transfer (W/cm2) at different probability levels for
the model problem (Free-stream velocity is taken as a uniform random
variable).

Probability Second-Order Second-Order Aleatory
Level Probability (NIPC) Probability (MC) (NIPC)

P = 0.0 [106.67, 112.80] [106.18, 112.29] 106.86
P = 0.2 [113.25, 120.36] [112.97, 119.86] 116.92
P = 0.4 [120.23, 128.06] [120.15, 127.45] 124.32
P = 0.6 [127.62, 135.87] [127.48, 135.26] 131.91
P = 0.8 [135.37, 144.04] [135.16, 143.20] 139.89
P = 1.0 [143.86, 152.13] [143.14, 151.37] 151.94
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Table 4.3. Stagnation point heat transfer (W/cm2) at different probability levels for
the model problem (Free-stream velocity is taken as a normal random
variable).

Probability 2nd Order 2nd Order Aleatory
Level Probability (NIPC) Probability (MC) (NIPC)

P = 0.0 [81.80, 103.29] [83.31, 101.73] 90.14
P = 0.2 [116.81, 124.10] [116.72, 123.78] 120.35
P = 0.4 [121.90, 129.45] [121.94, 129.21] 125.67
P = 0.6 [126.42, 134.24] [126.42, 133.91] 130.43
P = 0.8 [131.63, 139.88] [131.76, 139.61] 136.07
P = 1.0 [154.78, 186.28] [156.07, 184.57] 168.41

4.4. SENSITIVITY ANALYSIS

The purpose of global sensitivity analysis (SA) is to measure or rate the im-

portance of individual uncertain random variables on the overall uncertainty in an

output variable of interest from a simulation code. For the model problem, a global

SA approach was used to provide the relative importance of each of the two uncer-

tain variables on the stagnation point heat transfer uncertainty. Helton et al. [32]

describes a sampling-based SA procedure using linear regression for calculating cor-

relation coefficients and interpreting the results based on these coefficients. Bose

et al.[3, 4] considered a similar SA approach in their uncertainty quantification stud-

ies of hypersonic entry into Martian and Titan atmospheres. The same linear global

SA method was used in this study by creating a total number of 20,000 samples from

the 3rd order stochastic response obtained for the uncertainty analysis described in

the previous section.

The SA results are shown in the form of scatter plots in Figures 4.6, 4.7, 4.8,

and 4.9. Figures 4.6 and 4.7 shows results for the freestream velocity having a uni-

form distribution and Figures 4.8 and 4.9 are the results for velocity having a normal

distribution. Figures 4.6 and 4.8 shows the stagnation point heat transfer as a func-
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tion of freestream velocity and Figures 4.7 and 4.9 displays the stagnation point heat

transfer as a function of k = µe/µeref . Qualitatively, one can see the relative impor-

tance simply by observing the thickness of the band in the scatter plot. It is obvious

that the freestream velocity has a more drastic impact on stagnation point heat trans-

fer for the Fay-Riddell model problem. This is consistent for the freestream having

both a uniform and normal distribution. Furthermore, the correlation coefficient was

calculated using linear regression [32] and is imposed on the plots in Figures 4.6, 4.7,

4.8, and 4.9. The correlation coefficient (CC) gives an indication of the linear relation-

ship between the stochastic inputs and the output variable of interest. A CC value

of one indicates a perfect linear relationship between the input uncertainty and the

output uncertainty. Notice that the CC is close to one for the velocity. In contrast,

the CC for k is approximately 0.2 for both distributions. Thus, by also comparing

the correlation coefficients, it is clear that the uncertainty in the freestream velocity

contributes more to the overall uncertainty in the stagnation point heat transfer.
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Figure 4.6. Correlation plots demonstrating the influence of velocity on the overall
uncertainty in the stagnation heat flux with velocity following a uniform
distribution.
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Figure 4.7. Correlation plots demonstrating the influence of k (k = µe/µeref ) on the
overall uncertainty in the stagnation heat flux with velocity following a
uniform distribution.
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Figure 4.8. Correlation plots demonstrating the influence of velocity on the overall
uncertainty in the stagnation heat flux with velocity following a normal
distribution.
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Figure 4.9. Correlation plots demonstrating the influence of k (k = µe/µeref ) on the
overall uncertainty in the stagnation heat flux with velocity following a
normal distribution.
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5. UNCERTAINTY QUANTIFICATION IN CFD SIMULATIONS

The primary focus of this section is to apply the efficient uncertainty quantifi-

cation approach described in Section 3 to a high-fidelity CFD simulation in order

to quantify the uncertainty in the surface heat flux to the spherical non-ablating

heat-shield of a reentry vehicle at zero-angle of attack due to epistemic and aleatory

uncertainties that may exist in various models and parameters used within the CFD

simulation. The uncertainty quantification was performed for a particular test case

and capsule geometry selected from the work of MacLean et al. [2].

5.1. INTRODUCTION TO COMPUTATIONAL FLUID DYNAMICS

Computational fluid dynamics (CFD) is a vital tool in the analysis and design

of complex aerospace systems. The main goal of CFD is to provide an accurate

representation of fluid flow over an arbitrary geometry, and extract valuable fluid flow

variables (temperature, pressure, velocity, etc.) at any point in the entire flowfield.

Hypersonic experiments are both difficult and expensive to perform, and so it is

important to have an accurate numerical approximation (such as CFD) to replace or

supplement these experiments in the design process of a hypersonic vehicle.

To numerically approximate the fluid flow over an given geometry, the governing

equations, in the form of highly couples partial differential equations (PDE’s), must

be discretized. The most general form of fluid dynamic equations are known as

Navier-Stokes, and these equations are implemented into most modern CFD codes.

Additional equations must also be added for more complex fluid flows such as high

temperature, hypersonic, flows which involve thermo-chemical non-equilibrium. A

common numerically scheme for approximating the governing equations is the finite

volume method, which is utilized in most CFD codes. This particular method requires

a computational mesh domain of the geometry of interest and a sufficient amount of

volume surrounding the geometry. One may use either a structured or unstructured
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computational mesh, depending on the problem at hand or the capabilities of the

CFD software. Once a computational mesh has been constructed, one must specify

the freestream, or farfield, conditions to be used in the simulation. Furthermore, in

any type of process involving the numerical approximation of PDE’s, it is crucial

to accurately model all relevant boundary conditions for the problem at hand. For

example, one may specify the surface of the vehicle to be an adiabatic ”no-slip” wall

BC for many low speed aerodynamic applications. Furthermore, the user must specify

the most appropriate physical models for the problem at hand. For example, if the

problem involves hypersonic high-temperature flows, then it is most appropriate to

choose a chemical non-equilibrium chemistry model for the fluid. Lastly, the user must

specify all relevant methods to be used in the numerical approximation scheme utilized

within the CFD code. These may includes things such as inviscid flux modeling,

limiters, and parallel computing options.

It is also important to ensure the CFD code produces accurate results. To ac-

complish this task, one must ensure that the physical modeling errors are kept to a

minimum by selecting appropriate models, and also the discretization error should be

minimized. Discretization error is directly related to the grid density of the compu-

tational mesh used within the CFD. It is a good practice to perform grid convergence

studies to ensure that the CFD solution is grid independent and that the discretiza-

tion error is kept at a minimum. If these steps are followed, then the accuracy of CFD

results can be increased for the analysis and design of complex aerospace vehicle and

they can be a beneficial supplement to costly wind tunnel experiments.

5.2. COMPUTATIONAL MODELING

5.2.1. CFD Solver and Numerical Scheme. The high-fidelity CFD

simulations were performed with GASP [33], a three-dimensional, structured, finite-

volume, RANS code which is capable of modeling high-speed flows with frozen, equi-

librium, or non-equilibrium thermo-chemistry. For modeling the inviscid fluxes, the



44

Roe-Harten inviscid flux scheme was utilized with a third order accurate upwind bi-

ased MUSCL approach and Min-Mod limiter. The Roe-Harten scheme is particularly

useful for high speed blunt body flows because it helps to avoid carbuncle effect near

the stagnation region. The CFD simulations were performed using parallel MPI pro-

cessing on a high-performance Linux computing cluster consisting of 64 processors to

help ease computational costs.

5.2.2. Boundary Conditions. A no-slip non-ablating boundary condition

was specified at the capsule wall, and the wall temperature was held at 300◦K to

enforce a cold-wall boundary condition, which is consistent with the experiment.

Simulations were conducted at zero degrees angle of attack which allowed an axis-

symmetric flow assumption. The freestream was fixed at the values from Case #1

shown in Table 4.1, and a 1st order extrapolation was specified for the outflow.

An important aspect of GASP for this study is the capability of modeling wall

recombination efficiencies (γ) for partially catalytic walls. The GASP code utilizes

the method described by Milos et al. [1] to model the non-ablating finite rate catalytic

wall boundary condition that requires the specification of recombination efficiency (γ)

for Nitrogen and Oxygen atoms [34, 35, 36]. For the current study, the catalytic wall

represents recombination of dissociated oxygen and nitrogen species on the wall with

a certain percentage. The limiting case of a fully-catalytic wall represents complete

recombination at the wall (100% efficiency), and the non-catalytic wall represents

zero recombination (0% efficiency). In terms of the heat transfer to the vehicle, a

fully-catalytic wall provides the highest heat transfer due to the exothermic nature

of the recombination process and a non-catalytic wall provides the lowest amount

of heat transfer. Thus, fully-catalytic and non-catalytic walls represent the theoret-

ical upper and lower bounds of the heat flux to the vehicle for a given set of flight

conditions. The catalytic wall model used in this study does not include the surface

reactions that include the recombination of the nitric oxide (NO) species. The heat

flux to the surface of the reentry vehicle, at a freestream velocity of 2922 m/s, is

shown in Figure 5.1. A significant variation in heat flux to the surface can be seen
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Figure 5.1. CFD solution for surface heating for fully-catalytic and non-catalytic wall

boundary condition.

when comparing the non-catalytic (γ=0.0) and fully-catalytic (γ=1.0) wall boundary

condition specification which will be the basis of the uncertainty modeling in the

following section.

5.2.3. Physics Modeling. In accordance with the experimental test case

selected from MacLean et al. [2] which is used in the current stochastic CFD study,

laminar flow was assumed for modeling the viscous terms. A five species chemical

model, Park [37], is selected for this study in order to model the high temperature

air. Also, finite rate chemistry is used to obtain the highest level of accuracy of the

chemical reactions that occur behind the shock wave. Furthermore, a vibrational non-

equilibrium model was selected with three non-equilibrium energies coming from the

diatomic molecules included in the 5-species Park model. Vibrational non-equilibrium

rates are modeled using the formulation given by Millikan and White. [38]. The

CFD simulations utilized the curve-fits by Gupta et al. [39] for approximating the

collision integrals required to calculate the transport quantities (viscosity, diffusion
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coefficient, and thermal conductivity) for high temperature non-equilibrium flows.

At the particular velocity range considered in this study, the main mechanisms that

contribute to the total surface heat flux will be heat conduction to the surface via

translational and vibrational modes and the diffusion of chemical energy flux to the

surface which will depend on the surface catalysis. The radiation heat transfer is not

modeled in the present work.

5.2.4. Computational Grid. The computational grid used for the CFD

simulations was provided by Maclean et al. [2]. The original grid dimensions were 257

grid points in the streamwise direction and 229 in the normal direction and the geom-

etry of the vehicle was based upon the experiments performed by MacLean et al. [2]

which utilized the capsule geometry shown in Figure 5.2. Grid convergence studies

were conducted to find the optimum grid mesh size in terms of minimizing the dis-

cretization error and computational expense by dividing the original grid into coarser

grid levels by skipping every other grid point in both the normal and stream-wise

directions. Additional grid points were added at the outer boundary in the normal

direction to obtain converged CFD solutions. Convergence studies demonstrated that

the optimum mesh size was 129 grid points in the streamwise direction and 130 in

the normal direction and the final grid used for all the CFD simulations is shown in

Figure 5.3. Since the CFD runs were conducted for test cases involving the capsule

geometry at zero degrees angle of attack, the numerical solutions were obtained with

an axis-symmetric flow assumption. The left side of Figure 5.3 is the entire domain

of the grid. On the right side of Figure 5.3 is a zoomed in view of the stagnation line

in order to help visualize the grid spacing. A sample pressure contour plot is shown

in Figure 5.4 to demonstrate that a well converged CFD solution had been obtained

with the current computational grid.
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Figure 5.2. Geometry and coordinate nomenclature for the reentry vehicle used in the
experiments by MacLean et al. [2]

 

 

Figure 5.3. Computational grid for the 2-D axis-symmetric spherical capsule.

5.3. DESCRIPTION OF THE STOCHASTIC PROBLEM

In general, it is difficult to obtain the exact values of the recombination ef-

ficiencies for different wall materials, temperatures, and gas species, therefore γ is

considered as one of the uncertainty sources in this study. Recombination efficiency

is mainly a physical modeling parameter so it is appropriate to treat it as an epistemic

uncertain variable. In this study, the same recombination efficiency for oxygen and
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Figure 5.4. Pressure contour plot indicating a converged CFD solution.

nitrogen were used, therefore γ should be considered as a single epistemic uncertain

variable. It should be also noted that for the range of velocities and free-stream con-

ditions considered in the CFD study, no dissociated nitrogen exists in the flow, so

the uncertainty in the recombination efficiency mainly affects the recombination of

oxygen atoms on the surface.

Heat transfer to the surface of the vehicle is also strongly dependent on the

total enthalpy of the flow, hence the free stream velocity. The variation in free

stream velocity can be described through probabilistic measures due to its inherent

nature. For the current study, the freestream velocity input to the CFD simulation is

treated as an aleatoric uncertain variable with a uniform distribution with a mean of

2922 m/s (freestream condition given in Table 4.1). The upper and lower bounds for

velocity were taken to be ±3% from the mean which corresponds to 2834.34 m/s and

3009.66 m/s respectively. For the freestream velocity uncertainty range, preliminary

CFD results along with the model problem demonstrated the effects of velocity on the

stagnation heat transfer to the vehicle to be fairly linear. Therefore, three collocation
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points (V= 2834.34, 2922.0, and 3009.66 m/s) were sufficient to accurately describe

and capture the change in heat flux as a function of freestream velocity at a given γ

value.

Bose et al. [3] showed that the largest variation in heat flux to a Mars entry

vehicle due to wall catalytic parameters occurred in moderately catalytic wall regime

where γcat in their reactions ranged between 10−3 and 10−1. Preliminary results

of the current study have also demonstrated the same type of trend for air. For

the velocity range and the wall temperature considered in this study, the change in

surface heat transfer was found to be negligible for γ values above 0.5. Based upon

these results, the interval bounds for γ was taken to be 0.001 and 0.5. Variation

in heat transfer to the surface was extremely sensitive to changes in γ in the lower

end of the interval. Therefore, the collocation points were selected to optimally

capture the trend and accurately fit a response to the exponential growth curve.

Furthermore, the actual uncertainty analysis was performed by taking log10(γ) as an

epistemic uncertain variable instead of γ. This approach improved the quality and the

convergence of stochastic response surface obtained with the NIPC approach. A total

number of ten recombination efficiency values were selected to capture the change in

heat flux due to variations in log10(γ) within the moderately catalytic regime at a

given velocity. These 10 values were held consistent at all three velocities which gave

a total number of 30 collocation points. This was sufficient for a 5th order polynomial

chaos expansion for two uncertain variables with a over-sampling ratio of 1.4. The

deterministic CFD solutions were obtained at these collocation points and the Point-

Collocation NIPC method was utilized to calculate the stochastic expansion for the

surface heat transfer.

5.4. UNCERTAINTY QUANTIFICATION IN AEROHEATING

5.4.1. Results with Purely Aleatoric Uncertainty Assumption. Be-

fore the mixed uncertainty analysis, uncertainty quantification was conducted with

the assumption of purely aleatoric input uncertainty. The results presented in this
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section is later compared to the mixed uncertainty quantification results to show the

difference between two uncertainty quantification approaches. For purely aleatoric

uncertainty modeling, besides freestream velocity, the [log10(γ)] was also assumed to

have a uniform distribution (changing between -3 and -0.301). The Point Collocation

NIPC was utilized to propagate the uncertainty in log10(γ) and freestream velocity

through the CFD simulations using the collocation points described in the previous

section. It is important to ensure that the polynomial order is sufficient to capture

the non-linear effects of the uncertainty in the output variable of interest. Therefore,

a convergence study was conducted in which the polynomial order was increased up

to 5 and the stagnation point heat transfer was analyzed at each order. Figure 5.5

shows the CDF of stagnation point heat transfer for each polynomial order. There

is no noticeable difference in CDFs beyond a polynomial order of 3. Therefore, it is

clear that NIPC response surface was converged at the 5th order.

Figure 5.6 displays the probability density function (PDF) for the stagnation

point heat transfer using 5th order NIPC. This distribution is fairly non-linear and
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Figure 5.5. Convergence of NIPC response surface.
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skewed which demonstrates the non-linear relationship between the uncertain vari-

ables and the stagnation point heat transfer, mostly due to γ. This can also be

seen from the NIPC response surface for stagnation point heat transfer shown in Fig-

ure 5.7. Notice that the effects on the heat transfer due to velocity is fairly linear,

whereas the effect due to log10(γ) is quite non-linear. Furthermore, other statistical

information can be calculated using NIPC, such as the mean and the standard devi-

ation, since this analysis is made with the assumption of purely aleatory uncertainty.

The mean stagnation point heat transfer was found to be 53.45 W/cm2 and the stan-

dard deviation was calculated to be 2.99 W/cm2 (e.g., a coefficient of variation of

5.6%). The 95% confidence interval (CI) for stagnation heat transfer was calculated

as [46.05, 60.02] W/cm2. Figure 5.8 displays the mean heat transfer along the surface

of the vehicle along with the 95% confidence intervals (C.I.) at selected points. The

fairly large standard deviation and CI values are indicative of the large amount of

uncertainty in the heat flux to the surface of the vehicle.
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Figure 5.6. PDF curve for 5th order NIPC.
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Figure 5.7. NIPC response surface (p = 5).
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Figure 5.8. Mean and 95% C.I. for surface heat flux distribution (purely aleatoric
uncertainty assumption).

5.4.2. Results with Mixed (Aleatory-Epistemic) Uncertainty Assump-

tion. For the mixed uncertainty propagation, the same stochastic response surface

used for purely aleatory uncertainty quantification (5th degree polynomial chaos ex-

pansion for heat transfer) was utilized in Second-Order Probability approach. The

outer loop utilized 20,000 values for the epistemic uncertain variable (log10(γ)) sam-

pled from its specified interval. In the inner loop, for each value of the epistemic

uncertain variable, the stochastic response surface was evaluated with a total number

of 10,000 randomly produced samples based on the standard probability distribution
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Figure 5.9. Second-Order Probability results for surface heat transfer at the stagna-
tion point.

of the aleatoric input uncertainty (standard uniform distribution in this problem due

to the uniform distribution assumption made for the velocity). This procedure was

used to produce 20,000 CDFs, which were then evaluated to find the upper and the

lower bounds of the interval for heat transfer at each probability level.
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Figure 5.10. Second-Order Probability results for surface heat transfer at the shoulder
region.
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Table 5.1. Surface heat transfer (W/cm2) for the stagnation point and the shoulder
region at different probability levels for the CFD problem.

Probability Stagnation Point Stagnation Point Shoulder Shoulder
Level Mixed Aleatory Mixed Aleatory

Uncertainty Uncertainty Uncertainty Uncertainty

P = 0.0 [43.37, 48.43] 43.41 [50.93, 54.90] 50.96
P = 0.2 [45.90, 51.49] 49.76 [52.32, 57.72] 55.34
P = 0.4 [48.46, 54.24] 52.36 [53.88, 60.56] 57.44
P = 0.6 [50.74, 56.70] 54.74 [55.45, 63.42] 59.63
P = 0.8 [52.80, 58.89] 57.16 [57.60, 66.20] 62.39
P = 1.0 [54.75, 60.82] 60.81 [58.81, 68.92] 68.84

The mixed uncertainty results for the heat transfer at the stagnation point

and shoulder regions are plotted in Figures 5.9 and 5.10. Note that at a particular

probability level, the variation in the the heat transfer is due to the uncertainty in the

recombination efficiency (log10(γ), epistemic uncertainty), which is represented by the

interval bounded by the maximum and the minimum heat transfer values obtained

from the CDF samples at the same probability level. In the stagnation region, the

width of the interval at each probability level is fairly constant. In contrast, the

interval bounds tend to increase at higher probability levels in the shoulder region as

can be also seen quantitatively in Table 5.1. The pure aleatory results from the CFD

simulations are also listed in Table 5.1 for comparison purposes. As expected, the

stagnation heat flux from the purely aleatory uncertainty quantification lies within

the bounds of the Second-Order Probability results. At the probability levels 0% and

100%, the purely aleatory heat transfer values are located at the boundaries of the

corresponding intervals (lower and upper respectively).

The interval bounds for the heat transfer were plotted at selected points across

the surface of the reentry vehicle at the 2.5%, 50%, and 97.5% probability levels.

The resulting plots are shown in Figures 5.11, 5.12, and 5.13. Furthermore, the pure

aleatory NIPC results are also shown in the figures at the corresponding probability

levels. Notice that the pure aleatory is once again just a single value at each probabil-

ity value at each point along the surface. In contrast, the mixed uncertainty results
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are given as an intervals along the surface of the reentry vehicle. At probability level

2.5%, the pure aleatory values stay almost in the center of the mixed uncertainty

intervals at most of the surface points except the shoulder region. Furthermore, the

interval size is fairly constant along the surface of the vehicle. At probability level

50%, the pure aleatory values skew towards the upper bound of the mixed uncertainty

interval. Also, the interval size slightly increases moving from the stagnation to the

shoulder region along the surface. Furthermore, the size of the interval is larger for

50% when compared to the 2.5% probability level. At probability level 97.5%, the

pure aleatory values lie almost at the upper limits of the aleatory-epistemic interval.

There is a significant increase in the size of the interval near the shoulder region,

consistent with the observation made from Figures 5.9 and 5.10.
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Figure 5.11. Comparison of pure aleatory and mixed aleatory-epistemic uncertainty

results for surface heat transfer (Probability level 2.5%).
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Figure 5.12. Comparison of pure aleatory and mixed aleatory-epistemic uncertainty
results for surface heat transfer (Probability level 50%).
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Figure 5.13. Comparison of pure aleatory and mixed aleatory-epistemic uncertainty

results for surface heat transfer (Probability level 97.5%).

5.5. SENSITIVITY ANALYSIS

The global linear SA was also used for the CFD problem to provide the relative

importance of each of the two uncertain variables, freestream velocity and log10(γ),

on the overall uncertainty in the stagnation point heat transfer. To be consistent

with the uncertainty analysis described above, the same 5th order NIPC response

surface was used for Monte Carlo (MC) simulation with 20,000 samples to obtain SA

results. Scatter plots are shown in Figures 5.14 and 5.15 indicating the stagnation

point heat transfer for various combinations of velocity and log10(γ). Figure 5.14

shows the stagnation point heat transfer as a function of freestream velocity and

Figure 5.15 displays the stagnation heat transfer as a function of log10(γ). For this

problem also, the freestream velocity has a higher relative importance on the overall

stagnation point heat transfer. The correlation coefficient (CC) was calculated using

linear regression [32] and is imposed on the plots in Figures 5.14 and 5.15. The CC
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is approximately 0.9 for the velocity and approximately 0.4 for log10(γ), which again

demonstrates that velocity has a stronger contribution to the overall uncertainty in

the stagnation point heat transfer.
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Figure 5.14. Correlation plots demonstrating the influence of velocity on the overall
uncertainty in the stagnation heat flux.
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Figure 5.15. Correlation plots demonstrating the influence of log10(γ) on the overall
uncertainty in the stagnation heat flux.
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6. CONCLUSIONS AND FUTURE WORK

6.1. CONCLUSIONS

The primary focus of this study was to demonstrate an efficient approach for

uncertainty quantification of surface heat flux to the spherical non-ablating heat-

shield of a reentry vehicle due to epistemic and aleatory uncertainties that may exist

in various parameters used in the numerical solution of hypersonic, viscous, laminar

blunt-body flows with thermo-chemical non-equilibrium. In specific, the freestream

velocity (V∞) and the recombination efficiency (γ) of oxygen and nitrogen atoms

used in the description of catalytic wall boundary condition were treated as uncertain

variables. The freestream velocity was modeled as an inherent uncertain variable de-

scribed with a uniform probability distribution, whereas the recombination efficiency

was modeled as an epistemic uncertain variable represented with an interval. For the

quantification of mixed (the aleatory-epistemic) uncertainty, Second-Order Probabil-

ity Theory that utilized a stochastic response surface obtained with Point-Collocation

Non-Intrusive Polynomial Chaos (NIPC) Method was used.

Before the implementation of the uncertainty quantification method to the

stochastic high-fidelity CFD problem, the approach was applied to a stochastic model

problem for the prediction of stagnation point heat transfer with Fay-Riddell relation,

which considered velocity as an inherent uncertain variable and the boundary layer

edge dynamic viscosity as an epistemic uncertain variable. For the model problem,

the Second-Order Probability was implemented with two different approaches for the

propagation of mixed uncertainty: (1) direct Monte Carlo sampling and (2) a 3rd

order stochastic response surface obtained with the Point-Collocation NIPC. The un-

certainty results for the stagnation point heat transfer obtained with two approaches
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matched well indicating the computational efficiency and the accuracy of the NIPC

approach for mixed uncertainty propagation.

The uncertainty quantification in CFD simulations of the current study was

performed for a particular test case and capsule geometry selected from the work

of MacLean et al. [2], where the freestream velocity for the experiment was 2922

m/s. For the stochastic CFD problem, the mixed uncertainty quantification approach

was utilized with a 5th degree stochastic response surface obtained with the Point-

Collocation NIPC, which required 30 deterministic simulations. The uncertainty in

surface heat transfer was obtained in terms of intervals at different probability levels at

various locations including the stagnation point and the shoulder region. The mixed

uncertainty results were compared to the results obtained with a purely aleatory

uncertainty analysis to show the difference between two uncertainty quantification

approaches. A linear global sensitivity analysis indicated that the velocity has a

stronger contribution to the overall uncertainty in the stagnation point heat transfer.

Overall, the results obtained in this study show the potential of the uncertainty

quantification approach that utilizes Second-Order Probability and the Non-Intrusive

Polynomial Chaos for efficient and effective propagation of mixed (aleatory and epis-

temic) uncertainties in high-fidelity hypersonic flow simulations including re-entry

problems and the prediction of uncertainty in aerodynamic heating, which can be

used for the design of reliable and optimized thermal protection systems.

6.2. FUTURE WORK

There are several tasks that remain as future work in the area of uncertainty

quantification for hypersonic flow applications. For example, more relevant epistemic

uncertainties could be introduced into the hypersonic reentry problem. If the flow

is not laminar, then uncertainties in transition and turbulence modeling parameters

can be investigated. Another aspect to be studied is the uncertainty in the collision

integral curve fits used to model the transport quantities due to the fact that they

can have a significant impact on the heat transfer to the vehicle’s surface. Higher
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freestream velocities, and thus higher stagnation enthalpies, will be used for future

CFD runs to amplify the effects of uncertainty in the transport quantities as well as

the recombination efficiency. Other types of aleatory uncertainties, such as geometric

uncertainty, will also be investigated.

In future work, a slightly different technique for Second-Order Probability method

with the NIPC response surface formulation will be investigated. In the current study,

a large number of samples are taken for the inner and outer loops of Second-Order

Probability and these sample points are evaluated using the stochastic response sur-

face. To improve the computational efficiency of the proposed UQ approach further,

one can use an optimization technique rather than basic sampling of the inner and

outer loops. An optimization routine can be used to find the minimum and maximum

of the output variable at certain probability levels. This process requires much fewer

function evaluations when compared with the simple sampling techniques and can

provide the same level of accuracy.

Other capabilities to be investigated in the future will include non-linear sen-

sitivity analysis to rank the relative importance of each input uncertainty. Sobol

indices [40, 41] will be calculated and used for global sensitivity analysis to determine

higher-order correlation between input and output uncertainties as well as mixed

contributions of the input variables. Another possibility for future work will be to

investigate importance sampling in the selection of collocation points used within the

non-intrusive polynomial chaos.

The proposed mixed aleatory and epistemic uncertainty quantification method

can also be applied to other vehicle configurations due to its non-intrusive nature.

For example, B. Bettis, S. Hosder, and T. Winter (M4 Engineering) are currently de-

veloping a generic uncertainty quantification framework under a NASA project. The

methods discussed in this document are being added as capabilities into the generic

UQ framework. The framework will be implemented to quantify uncertainties in the

predictive capabilities of integrated spacecraft, such as a reusable launch vehicle.
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Uncertainties are generally ubiquitous in the analysis and design of highly com-

plex engineering systems. The uncertainties associated with hypersonic flows can have

significant effects on the overall design process of hypersonic vehicles. Therefore, one

of the main goals for future work will be to integrate uncertainty quantification to

the design of hypersonic vehicles for robust and reliable hypersonic systems (thermal

protection systems, propulsion, etc.) and vehicles.



APPENDIX A

Thermodynamic Curve-fits: MATLAB Source Code
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% ====================================================================
% This i s a MATLAB equ iva l en t to tgas3 which f i n d s the temperature o f
% an equ i l i b r i um gas f o r a g iven dens i ty and pre s su r e .
%
% Reference : Sr in ivasan , S . , Tannehi l l , J . C. , and Weilmuenster , K. J . ,
% ” S imp l i f i e d Curve F i t s f o r the Thermodynamic Prope r t i e s o f
% Equi l ibr ium Air , NASA Technica l Report , August , 1987 .
% ====================================================================

func t i on H = Entha lpy fnc t p r e s rho (P, rho )

% Calcu la te Y,X, and Z based on inputs o f Pres and dens i ty
Y = log10 ( rho / 1 . 2 9 2 ) ;
X = log10 (P/101300) ;
Z = X − Y;

% Co e f f i c i e n t s o f curve f i t w i l l vary depending on the value o f
% Y and Z
i f (Y > −0.5) && (Z <= 0 .30 )

c1 = 1 . 4 ;
c2 = 0 ;
c3 = 0 ;
c4 = 0 ;
c5 = 0 ;
c6 = 0 ;
c7 = 0 ;
c8 = 0 ;
c9 = 0 ;
c10 = 0 ;
c11 = 0 ;

e l s e i f (Y > −0.5) && (Z > 0 . 30 ) && (Z <= 1 .15 )
c1 = 1 . 42598 ;
c2 = 0 .000918 ;
c3 = −0.092209;
c4 = −0.002226;
c5 = 0 .019772 ;
c6 = −0.036600;
c7 = −0.077469;
c8 = 0 .043878 ;
c9 = −15;
c10 = −1.0;
c11 = −1.040;

e l s e i f (Y > −0.5) && (Z > 1 . 15 ) && (Z <= 1 .60 )
c1 = 1 . 64689 ;
c2 = −0.062155;
c3 = −0.334994;
c4 = 0 .063612 ;
c5 = −0.038332;
c6 = −0.014468;
c7 = 0 .073421 ;
c8 = −0.002442;
c9 = −15;
c10 = −1.0;
c11 = −1.360;

e l s e i f (Y > −0.5) && (Z > 1 . 60 )
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c1 = 1 .48558 ;
c2 = −0.453562;
c3 = −0.152096;
c4 = 0 .303350 ;
c5 = −0.459282;
c6 = 0 .448395 ;
c7 = 0 .220546 ;
c8 = −0.292293;
c9 = −10.0;
c10 = −1.0;
c11 = −1.600;

e l s e i f (Y >−4.50) && (Y <= 0 . 5 ) && (Z <= 0 .30 )
c1 = 1 . 4000 ;
c2 = 0 ;
c3 = 0 ;
c4 = 0 ;
c5 = 0 ;
c6 = 0 ;
c7 = 0 ;
c8 = 0 ;
c9 = 0 ;
c10 = 0 ;
c11 = 0 ;

e l s e i f (Y >−4.50) && (Y <= 0 . 5 ) && (Z > 0 . 30 ) && (Z <= 0 .98 )
c1 = 1 . 42176 ;
c2 = −0.000366;
c3 = −0.083614;
c4 = 0 .000675 ;
c5 = 0 .005272 ;
c6 = −0.115853;
c7 = −0.007363;
c8 = 0 .146179 ;
c9 = −20.0;
c10 = −1.0;
c11 = −0.860;

e l s e i f (Y >−4.50) && (Y <= 0 . 5 ) && (Z > 0 . 98 ) && (Z <= 1 .38 )
c1 = 1 . 74436 ;
c2 = −0.035354;
c3 = −0.415045;
c4 = 0 .061921 ;
c5 = 0 .018536 ;
c6 = 0 .043582 ;
c7 = 0 .044353 ;
c8 = −0.049750;
c9 = −20.0;
c10 = −1.04;
c11 = −1.336;

e l s e i f (Y >−4.50) && (Y <= 0 . 5 ) && (Z > 1 . 38 ) && (Z <= 2 .04 )
c1 = 1 . 49674 ;
c2 = −0.021583;
c3 = −0.197008;
c4 = 0 .030886 ;
c5 = −0.157738;
c6 = −0.009158;
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c7 = 0 .123213 ;
c8 = −0.006553;
c9 = −10.0;
c10 = −1.05;
c11 = −1.895;

e l s e i f (Y >−4.50) && (Y <= 0 . 5 ) && (Z > 2 . 04 )
c1 = 1 . 10421 ;
c2 = −0.033664;
c3 = 0 .031768 ;
c4 = 0 .024335 ;
c5 = −0.178802;
c6 = −0.017456;
c7 = 0 .080373 ;
c8 = 0 .002511 ;
c9 = −15.0;
c10 = −1.08;
c11 = −2.650;

e l s e i f (Y >= −7.0) && (Y <= −4.5) && (Z <= 0.398 )
c1 = 1 . 4 0 0 ;
c2 = 0 ;
c3 = 0 ;
c4 = 0 ;
c5 = 0 ;
c6 = 0 ;
c7 = 0 ;
c8 = 0 ;
c9 = 0 ;
c10 = 0 ;
c11 = 0 ;

e l s e i f (Y >= −7.0) && (Y <= −4.5) && (Z > 0 . 398 ) && (Z <= 0 .87 )
c1 = 1 . 47003 ;
c2 = 0 .007939 ;
c3 = −0.244205;
c4 = −0.025607;
c5 = 0 .872248 ;
c6 = 0 .049452 ;
c7 = −0.764158;
c8 = 0 .000147 ;
c9 = −20.0;
c10 = −1.0;
c11 = −0.742;

e l s e i f (Y >= −7.0) && (Y <= −4.5) && (Z > 0 . 87 ) && (Z <= 1 .27 )
c1 = 3 . 18652 ;
c2 = 0 .137930 ;
c3 = −1.89529;
c4 = −0.103490;
c5 = −2.14572;
c6 = −0.272717;
c7 = 2 . 06586 ;
c8 = 0 .223046 ;
c9 = −15.0;
c10 = −1.0;
c11 = −1.041;
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e l s e i f (Y >= −7.0) && (Y <= −4.5) && (Z > 1 . 27 ) && (Z <= 1.863 )
c1 = 1 .63963 ;
c2 = −0.001004;
c3 = −0.303549;
c4 = 0 .016464 ;
c5 = −0.852169;
c6 = −0.101237;
c7 = 0 .503123 ;
c8 = 0 .043580 ;
c9 = −10.0;
c10 = −1.0;
c11 = −1.544;

e l s e i f (Y >= −7.0) && (Y <= −4.5) && (Z > 1 . 863 )
c1 = 1 . 55889 ;
c2 = 0 .055932 ;
c3 = −0.211764;
c4 = −0.023548;
c5 = −0.549041;
c6 = −0.101758;
c7 = 0 .276732 ;
c8 = 0 .046031 ;
c9 = −15.0;
c10 = −1.0;
c11 = −2.250;

e l s e
H = ’ inputs not with in acceptab l e range ’

end

% Equation f o r c a l c u l a t i n g gamma tilda
gamma tilda = c1 + c2∗Y + c3∗Z + c4∗Y∗Z + ( c5 + c6∗Y + c7∗Z + c8∗Y∗Z)/(1 . . .

+ exp ( c9 ∗(X + c10∗Y + c11 ) ) ) ;

% Ca lcu la te the enthalpy
H = (P/rho )∗ ( gamma tilda /( gamma tilda −1)) ;



69

% ====================================================================
% This i s a MATLAB equ iva l en t to tgas3 which f i n d s the temperature o f
% an equ i l i b r i um gas f o r a g iven dens i ty and pre s su r e .
%
% Reference : Sr in ivasan , S . , Tannehi l l , J . C. , and Weilmuenster , K. J . ,
% ” S imp l i f i e d Curve F i t s f o r the Thermodynamic Prope r t i e s o f
% Equi l ibr ium Air , NASA Technica l Report , August , 1987 .
% ====================================================================

func t i on T = Temp fnct rho pres (P, rho )

check = 0 ;

% Calcu la te Y,X, and Z based on inputs o f Pres and dens i ty
Y = log10 ( rho / 1 . 2 2 5 ) ;
X = log10 (P/101325) ;
Z = X − Y;

% Co e f f i c i e n t s o f curve f i t w i l l vary depending on the value o f
% Y and Z
i f (Y > −0.5) && (Z > 0 . 48 ) && (Z <= 0 .90 )

d1 = 0 .27407 ;
d2 = 0 ;
d3 = 1 .00082 ;
d4 = 0 ;
d5 = 0 ;
d6 = 0 ;
d7 = 0 ;
d8 = 0 ;
d9 = 0 ;
d10 = 0 ;
d11 = 0 ;
d12 = 0 ;

e l s e i f (Y > −0.5) && (Z > 0 . 90 )
d1 = 0 .235869 ;
d2 = −0.043304;
d3 = 1 .17619 ;
d4 = 0 .046498 ;
d5 = −0.143721;
d6 = −1.37670;
d7 = 0 .160465 ;
d8 = 1 .08988 ;
d9 = −0.083489;
d10 = −0.217748;
d11 = −10.0;
d12 = −1.78;

e l s e i f (Y > −4.5) && (Y <= −0.5) && (Z > 0 . 48 ) && (Z <= 0.9165)
d1 = 0 .281611 ;
d2 = 0 .001267 ;
d3 = 0 .990406 ;
d4 = 0 ;
d5 = 0 ;
d6 = 0 ;
d7 = 0 ;
d8 = 0 ;
d9 = 0 ;
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d10 = 0 ;
d11 = 0 ;
d12 = 0 ;

e l s e i f (Y > −4.5) && (Y <= −0.5) && (Z > 0 .9165) && (Z <= 1.478 )
d1 = 0 .457643 ;
d2 = −0.034272;
d3 = 0 .819119 ;
d4 = 0 .046471 ;
d5 = 0 ;
d6 = −0.073233;
d7 = −0.169816;
d8 = 0 .043264 ;
d9 = 0 .111854 ;
d10 = 0 ;
d11 = −15.0;
d12 = −1.28;

e l s e i f (Y > −4.5) && (Y <= −0.5) && (Z > 1 . 478 ) && (Z <= 2.176 )
d1 = 1 .04172 ;
d2 = 0 .041961 ;
d3 = 0 .412752 ;
d4 = −0.009329;
d5 = 0 ;
d6 = −0.434074;
d7 = −0.196914;
d8 = 0 .264883 ;
d9 = 0 .100599 ;
d10 = 0 ;
d11 = −15.0;
d12 = −1.778;

e l s e i f (Y > −4.5) && (Y <= −0.5) && (Z > 2 . 176 )
d1 = 0 .418298 ;
d2 = −0.252100;
d3 = 0 .784048 ;
d4 = 0 .144576 ;
d5 = 0 ;
d6 = −2.00015;
d7 = −0.639022;
d8 = 0 .716053 ;
d9 = 0 .206457 ;
d10 = 0 ;
d11 = −10.0;
d12 = −2.40;

e l s e i f (Y >= −7) && (Y <= −4.5) && (Z > 0 . 30 ) && (Z <= 1 .07 )
d1 = 2 .72964 ;
d2 = 0 .003725 ;
d3 = 0 .938851 ;
d4 = −0.011920;
d5 = 0 ;
d6 = 0 .682406 ;
d7 = 0 .089153 ;
d8 = −0.646541;
d9 = −0.070769;
d10 = 0 ;
d11 = −20.0;
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d12 = −0.82;

e l s e i f (Y >= −7) && (Y <= −4.5) && (Z > 0 . 30 ) && (Z <= 1 .07 )
d1 = 2 .72964 ;
d2 = 0 .003725 ;
d3 = 0 .938851 ;
d4 = −0.011920;
d5 = 0 ;
d6 = 0 .682406 ;
d7 = 0 .089153 ;
d8 = −0.646541;
d9 = −0.070769;
d10 = 0 ;
d11 = −20.0;
d12 = −0.82;

e l s e i f (Y >= −7) && (Y <= −4.5) && (Z > 1 . 07 ) && (Z <= 1 .57 )
d1 = 2 .50246 ;
d2 = −0.042827;
d3 = 1 .12924 ;
d4 = 0 .041517 ;
d5 = 0 ;
d6 = 1 .72067 ;
d7 = 0 .268008 ;
d8 = −1.25038;
d9 = −0.179711;
d10 = 0 ;
d11 = −20.0;
d12 = −1.33;

e l s e i f (Y >= −7) && (Y <= −4.5) && (Z > 1 . 57 ) && (Z <= 2 .24 )
d1 = 2 .44531 ;
d2 = −0.047722;
d3 = 1 .00488 ;
d4 = 0 .034349 ;
d5 = 0 ;
d6 = 1 .95893 ;
d7 = 0 .316244 ;
d8 = −1.01200;
d9 = −0.151561;
d10 = 0 ;
d11 = −20.0;
d12 = −1.88;

e l s e i f (Y >= −7) && (Y <= −4.5) && (Z > 2 . 24 )
d1 = 2 .50342 ;
d2 = 0 .026825 ;
d3 = 0 .838860 ;
d4 = −0.009819;
d5 = 0 ;
d6 = 3 .58284 ;
d7 = 0 .533853 ;
d8 = −1.36147;
d9 = −0.195436;
d10 = 0 ;
d11 = −20.0;
d12 = −2.47;

e l s e i f (Z < 0 . 48 ) && (Y > −0.5)
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check = 1 ;
e l s e i f (Z < 0 . 3 )

check = 1 ;

e l s e
T = ’ inputs not with in acceptab l e range ’

end

i f ( check == 0)
% Equation f o r c a l c u l a t i n g Temp (To i s standard sea l e v e l cond i t i on )
To = 273 . 2 ; %Kelvin
RHS = d1 + d2∗Y + d3∗Z +d4∗Y∗Z + d5∗Zˆ2 + (d6 + d7∗Y + d8∗Z + d9∗Y∗Z . . .

+ d10∗Zˆ2)/(1 + exp ( d11 ∗(Z + d12 ) ) ) ;

T = (10ˆRHS)∗To ;
T = T/1 . 8 ; % Temperature

e l s e
T = P/( rho ∗287) ; % Temperature

end



APPENDIX B

Statistical Thermodynamics
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One of the overarching goals of statistical thermodynamics is to relate the mi-

crostate (molecular level) of a fluid to the macrostate (measurable level). In other

words, the goal is to relate the molecular movement of a fluid to the measurable ther-

modynamic quantities such as temperature and pressure. A microstate is defined as

the state of a system inspected from the quantum, or molecular, level. Microstates are

defined by the number of particles (N), characteristic energies (εj), and the number

of quantum energy states (Cj) . Several assumptions must be made in order to ac-

complish the goal of relating the mass fractions for air as a function of the macrostate

of the fluid system (temperature, pressure, etc.). The main assumption of statistical

mechanics is that all possible microstates of a system (N, εj, and Cj) are equally

probable. This is a valid assumption due to the fact that a system’s microstate can

constantly change due to intermolecular collisions and there is no reason for nature

to prefer one microstate over another. Furthermore, the Boltzman limit states that

the number of particles is much smaller than the number of energy states (Cj � Nj).

This limit is indeed true in mostly all physical systems. Using the Boltzman limit, the

specific macrostate which yields the most possible number of microstates (N∗) can

be written as a function of temperature, number of particles, and the various quan-

tum energy states and this is shown in Equation (B.1). Note that k is the Boltzman

constant.

N∗j = N
Cje

−εj/kT∑
j Cje

−εj/kT
(B.1)

The denominator of Equation (B.1) is called the molecular partition function

and it holds special significance in statistical mechanics. The partition function is

defined as,

Q ≡
∑
j

Cje
−εj/kT (B.2)

but it is generally more convenient to express it in terms of degeneracy (gi) rather

than energy groups. Degeneracy is defined as the number of all energy states having
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identical values of energy εj. So the partition function can be rewritten as,

Q =
∑
i

gie
−εi/kT (B.3)

Note that the change of subscripts from j to i in Equations (B.2) and (B.3) merely

indicates the change from examining energy states (j) to energy levels (i). The

partition function is the key link in relating the molecular state (microstate) of a

physical system to the thermodynamic state properties that are generally of interest

in fluid dynamic problems such as temperature, pressure, entropy, etc. Therefore, it

is crucial to have a procedure for calculating the partition function.

The internal structure of a particle (atom or molecule) must be analyzed to

calculate the partition function. More specifically, all of the various contributions

from various energy modes, which sum to be the total energy of the particle, must

be quantified. For this study, the possible energy modes for molecules are transla-

tional, vibrational, rotational, and electronic energy. Atoms will have translational

and electronic energy modes, but they will obviously not have the rotational and

vibrational energy modes. For analysis sake, assume the following discussion pertains

to a molecule which has the four energy modes mentioned here. The total particle

energy will be the summation of each contributing energy mode, which can be seen

in Equation (B.4).

ε = εtrans + εrot + εvib + εel (B.4)

Now recall the formula for the partition function from Equation (B.3). Also

recall that the entire set of possible energy states is translational, rotational, vibra-

tional, and electronic energy. Therefore, the summation in Equation (B.3) can be

broken into four separate summations, mainly translational, rotational, vibrational,
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and electronic energy.

Q =
∑
i

gie
−εi/kT = gi

(∑
trans

e−εi/kT

)(∑
rot

e−εi/kT

)(∑
vib

e−εi/kT

)(∑
el

e−εi/kT

)
(B.5)

Using the relation of the partition function in Equation (B.3), this can be rewritten

in terms of partition functions alone.

Q = QtransQrotQvibQel (B.6)

Recall that Equation (B.6) represents the overall partition function of a molecule

in terms of each energy mode. For an atomic particle, only the translational and

electronic energy modes will be present. Therefore, the overall partition function of

an atomic particle is written as:

Q = QtransQel (B.7)

Using statistical thermodynamics, the partition functions can now be written in

a useful manner. The entire derivation for the partition functions can be seen in the

textbook by Vincenti and Kruger [31] but due to space constraints and objectivity

only the final form of the partition functions will be given. The partition function for

the translation energy mode is (Vincenti and Kruger [31]),

Qtrans =

(
2πmkT

h2

)
(B.8)

where m is the molecular mass, k is the Boltzman constant, T is the translational

temperature, and h is Planck’s constant (6.63× 10−34 kg·m2

s
). Assuming a rigid rotor

model for diatomic molecules, the partition function for rotational energy mode can

be shown to be the following (Vincenti and Kruger [31]),

Qrot =
T

Θr

(B.9)
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where Θr is the characteristic temperature of rotation. Values of Θr vary for different

molecular species, and typical values can be found in Vincenti and Kruger [31]. Next,

the partition function for the vibrational energy mode can be derived utilizing a

harmonic oscillator assumption for the molecule. The final form of the partition

function is (Vincenti and Kruger [31]),

Qvib =
1

1− e−Θv/T
(B.10)

where Θv is the characteristic temperature of vibration. Once again, Θv can vary

depending on the molecular species and typical values for the applicable species can

be found in Vincenti and Kruger [31]. Lastly, the partition function for the electronic

energy mode can be reduced to (Vincenti and Kruger [31]),

Qel = g0 + g1e
−Θ1/T (B.11)

where g0 and g1 is the degeneracy at the ground state and first energy level, re-

spectively, and Θ1 is the characteristic temperature for electronic excitation. These

values are generally known from spectroscopy experiments and typical values can be

obtained in Vincenti and Kruger [31].

Now that the partition functions for each energy mode is explicitly written in

terms of known quantities, the next step is to apply the law of mass action to find the

equilibrium composition of air as a function of temperature and pressure. Vincenti

and Kruger [31] describe the process for deriving the law of mass action for an ideal

dissociating gas. The final form of the equation is written below.

α∗2

1− α∗
=
ρd
ρ
e−Θd/T (B.12)

In Equation (B.12), ρd is the characteristic density for dissociation and Θd is the

dissociation temperature. Values for ρd and Θd vary for O2 and N2 and typical values

can be found in Vincenti and Kruger [31]. Furthermore, α∗ is known as the degree of
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dissociation and is defined as the following (Vincenti and Kruger [31]).

α∗ =
mass of dissociated i− atom

total mass of gas
(B.13)

The characteristic density for dissociation can be written as (Vincenti and Kruger

[31]),

ρd =
m (Qa)2

2V Qaa
= const. (B.14)

which can be shown to be a constant value for most conventional high temperature

systems. The next step is to solve the quadratic equation in Equation (B.12) for α∗.

This can be done using any root finding method, but for this study a built in function

in MATLAB was used to solve for α∗.

The degree of dissociation of each species can now be calculated using the proce-

dure described above. There is now enough information to calculate the equilibrium

constants which will be directly used to calculate the partial pressures of each species

of air present behind the normal shock. To find the equilibrium constant, rewrite

Equation (B.12) as

α∗2

1− α∗
=
G (T )

ρ
(B.15)

where,

G(T ) = ρde
−Θd/T (B.16)

The details will not be shown here, but Vincenti and Kruger derived a relationship

between G(T ) and the equilibrium constant K(T ). The final form is given in Equa-

tion (B.17).

2kT

mi,a

G(T ) = K (T ) (B.17)
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% =================================================================
% Author : Ben Be t t i s
% Date : 1/21/2010
% Purpose : This program approximates the heat t r a n s f e r to a r eent ry
% veh i c l e us ing the Fay Ridde l l equat ion . To do th i s , the p r op e r t i e s
% behind an equ i l i b r ium normal shock must be c a l c u l a t ed . Then , the
% equ i l i b r ium compos it ion o f a i r i s found us ing s t a t i s t i c a l
% mechanics . F ina l ly , the se qu an t i t i e s are i n s e r t e d in to Fay Riddel
% equat ion to f i nd the heat f l u x .
% =================================================================
func t i on q = Mont e Ca r l o Hea t f l ux r e en t ry veh i c l e (u1 , k v i s c )

format ’ long ’

% =================================================================
% Fi r s t s tep i s to c a l c u l a t e the equ i l i b r ium p r op e r t i e s a c r o s s a
% normal shock wave given that the f r e e s t r eam cond i t i on s are known .
% =================================================================

n = 1 ;

f o r q = 1 : n
Rn = 0 .17526 ;
% Thermochemical Equi l ibr ium Analys i s
% Free stream f low cond i t i on s
T1 = 522 ; % Temperature
% Mass f r a c t i o n N 2
c N2 = 0.001168/(0.001168+0.0002719+0.0001041+0.00004596) ;
% Mass f r a c t i o n O 2
c O2 = 0.0002719/(0.001168+0.0002719+0.0001041+0.00004596) ;
% Mass f r a c t i o n NO
c NO = 0.0001041/(0.001168+0.0002719+0.0001041+0.00004596) ;
% Mass f r a c t i o n N
c N = 0/(0.001168+0.0002719+0.0001041+0.00004596) ;
% Mass f r a c t i o n O
c O = 0.00004596/(0.001168+0.0002719+0.0001041+0.00004596) ;

% Ca lcu la te the gas constant o f the mixture
R mix = ((296 .939∗ c N2 )+(259.822∗ c O2 )+(277.143∗c NO )+ . . .

(593 .8786∗ c N )+(519.64375∗ c O ) ) / ( c N2+c O2+c NO+c O+c N ) ;
% Density o f the mixture
rho1 = 0.001168+0.0002719+0.0001041+0.00004596;
% Pressure o f the mixture
P1 = rho1∗R mix∗T1 ;
% Enthalpy o f the mixture
H1=Entha lpy fnc t p r e s rho (P1 , rho1 ) ;
% Mach number
Mach = u1/ sq r t (1 .4∗287∗T1 ) ;
% Wall temperature (K)
Twall = 300 ;

% Use the root f i nd i n g Secant Method to s o l v e f o r the p r op e r t i e s
% behind the normal shock wave .

%f i r s t guess f o r the dens i ty r a t i o
e p s i l o n (1 , 1 ) = 0 . 0 0 1 ;
e p s i l o n (2 , 1 ) = 0 . 1 ;
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P(1 ,1)=P1+rho1∗u1ˆ2∗(1− ep s i l o n ( 1 , 1 ) ) ;
rho2 (1 ,1)= rho1/ ep s i l o n ( 1 , 1 ) ;
h2 (1 , 1 ) = H1 + (u1ˆ2/2)∗(1− ep s i l o n ( 1 , 1 ) ˆ 2 ) ;

% Thermodynamic curve− f i t s ( enthalpy as func t i on o f temp & rho )
h 2 t i l d a (1 , 1 ) = Entha lpy fnc t p r e s rho (P(1 , 1 ) , rho2 ( 1 , 1 ) ) ;
dH(1 , 1 ) = h2 t i l d a (1 , 1 ) − h2 ( 1 , 1 ) ;
P(2 ,1)=P1+rho1∗u1ˆ2∗(1− ep s i l o n ( 2 , 1 ) ) ;
rho2 (2 ,1)= rho1/ ep s i l o n ( 2 , 1 ) ;
h2 (2 , 1 ) = H1 + (u1ˆ2/2)∗(1− ep s i l o n ( 2 , 1 ) ˆ 2 ) ;
h 2 t i l d a (2 , 1 ) = Entha lpy fnc t p r e s rho (P(2 , 1 ) , rho2 ( 2 , 1 ) ) ;
dH(2 , 1 ) = h2 t i l d a (2 , 1 ) − h2 ( 2 , 1 ) ;
e p s i l o n (3 , 1 ) = ep s i l o n (2 , 1 ) − dH(2 , 1 ) / ( (dH(2 ,1)−dH( 1 , 1 ) ) / . . .

( e p s i l o n (2 ,1)− ep s i l o n ( 1 , 1 ) ) ) ;

% Proceed on with the Secant Method f o r 25 i t e r a t i o n s or un t i l the
% convergence c r i t e r i a o f 10ˆ−6 i s met
f o r n = 3:25

P(n ,1)=P1+rho1∗u1ˆ2∗(1− ep s i l o n (n , 1 ) ) ;
rho2 (n ,1)= rho1/ ep s i l o n (n , 1 ) ;
h2 (n , 1 ) = H1 + (u1ˆ2/2)∗(1− ep s i l o n (n , 1 ) ˆ 2 ) ;
h 2 t i l d a (n , 1 ) = Entha lpy fnc t p r e s rho (P(n , 1 ) , rho2 (n , 1 ) ) ;
dH(n , 1 ) = h2 t i l d a (n , 1 ) − h2 (n , 1 ) ;
convergence = abs (dH(n , 1 ) / h2 (n , 1 ) ) ;

% Check the convergence c r i t e r i a
i f ( convergence < 10ˆ−6) break
end

ep s i l o n (n+1 ,1) = ep s i l o n (n , 1 ) − dH(n , 1 ) / ( (dH(n,1)−dH(n− 1 , 1 ) ) / . . .
( e p s i l o n (n,1)− ep s i l o n (n−1 ,1 ) ) ) ;

end

% Calcu la te p r op e r t i e s behind the normal shock wave ( r e s u l t s o f the
% Secant Method )
H2 = h2 t i l d a (n , 1 ) ;
% Thermodynamic curve− f i t s ( temperature as func t i on o f temp & rho )
T2 = Temp fnct rho pres (P(n , 1 ) , rho2 (n , 1 ) ) ;
P2 = P(n , 1 ) ;
Rho2 = rho2 (n , 1 ) ;
U2 = ep s i l o n (n , 1 )∗ u1 ;

% =================================================================
% Next step i s to f i nd the equ i l i b r i um compos it ion o f the a i r
% behind the normal shock wave based on the p r e s su r e and
% temperature va lue s j u s t found .
% =================================================================

% Calcu la te the mass o f each s p e c i e s
m N2 = 28/(6 .023∗10ˆ26) ; m N = 14 / ( 6 . 0 2 3 ∗ 1 0 ˆ 2 6 ) ; . . .

m O = 16/(6 . 023∗10ˆ26) ; m O2 = 32 / ( 6 . 0 2 3 ∗ 1 0 ˆ 2 6 ) ; . . .
m NO = 30/(6 .023∗10ˆ26) ;

k = 1.38∗10ˆ−23; % Boltzman ’ s constant
V = 1 ; % Volume

% Cha r a c t e r i t i c temperature o f v i b r a t i on
thetav N = 3390 ; thetav O = 2270 ; thetav NO = 2740 ;
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% Cha ra c t e r i t i c temperature o f r o t a t i on
thetar N = 2 . 9 ; thetar O = 2 . 1 ; thetar NO = 2 . 5 ;
% Cha r a c t e r i t i c temperature o f d i s s o c i a t i o n
thetad N = 113000; thetad O = 59500; thetad NO = 75500 ;

h = 6.63∗10ˆ−34; % Planck ’ s Constant

% Redef ine naming convent ions f o r s imp l i c i t y o f programming
rho = Rho2 ;
T = T2 ;
temp = T2/ thetad N ;

% =================================================================

% Now ca l c u l a t e p a r t i t i o n func t i on s f o r each s p e c i e s
% Nitrogen
Qtr N = (2∗ pi ∗m N∗k∗T/(h ˆ 2 ) ) ˆ 1 . 5 ; % Tran s l a t i ona l
Qtr N2 = (2∗ pi ∗m N2∗k∗T/(h ˆ 2 ) ) ˆ 1 . 5 ; % Tran s l a t i ona l
Qrot N = 0.5∗T/ thetar N ; % Rotat iona l
Qv N = (1−exp(−thetav N/T))ˆ−1; % Vibra t i ona l
Qel N = 4 ; % E l e c t r on i c
Qel N2 = 1 ; % E l e c t r on i c
Q tot atom N = Qtr N∗Qel N ;
Q tot mol N = Qtr N2∗Qrot N∗Qv N∗Qel N2 ;

% Oxygen
Qtr O = (2∗ pi ∗m O∗k∗T/(h ˆ 2 ) ) ˆ 1 . 5 ; % Tran s l a t i ona l
Qtr O2 = (2∗ pi ∗m O2∗k∗T/(h ˆ 2 ) ) ˆ 1 . 5 ; % Tran s l a t i ona l
Qrot O = 0.5∗T/ thetar O ; % Rotat iona l
Qv O = (1−exp(−thetav O/T))ˆ−1; % Vibra t i ona l
Qel O = 5+3∗exp(−228/T)+exp(−326/T) ; % E l e c t r on i c
Qel O2 = 5 ; % E l e c t r on i c
Q tot atom O = Qtr O∗Qel O ;
Q tot mol O = Qtr O2∗Qrot O∗Qv O∗Qel O2 ;

% N i t r i c Oxide
Qtr NO = (2∗ pi ∗mNO∗k∗T/(h ˆ 2 ) ) ˆ 1 . 5 ; % Tran s l a t i ona l
Qrot NO = 0.5∗T/thetar NO ; % Tran s l a t i ona l
Qv NO = (1−exp(−thetav NO/T))ˆ−1; % Rotat iona l
Qel NO = 2+2∗exp(−174/T) ; % Vibra t i ona l
Q tot atom NO = Q tot atom O∗Q tot atom N ; % E l e c t r on i c
Q tot mol NO = Qtr NO∗Qrot NO∗Qv NO∗Qel NO ; % E l e c t r on i c

% ==================================================================

% Degree o f d i s s o c i a t i o n c a l c u l a t i o n s −− Nitrogen
LHS N = (m N/(2∗ rho ) )∗ ( Q tot atom Nˆ2/Q tot mol N )∗ exp(−thetad N/T) ;
aa = [1 LHS N −LHS N ] ;
r o o t f i n d e r = roo t s ( aa ) ;
dod N = r o o t f i n d e r ( 2 , 1 ) ;
GT N = LHS N∗ rho ;

% Degree o f d i s s o c i a t i o n c a l c u l a t i o n s −− Oxygen
LHS O = (m O/(2∗ rho ) )∗ ( Q tot atom Oˆ2/Q tot mol O )∗ exp(−thetad O/T) ;
aa = [1 LHS O −LHS O ] ;
r o o t f i n d e r = roo t s ( aa ) ;
dod O = r o o t f i n d e r ( 2 , 1 ) ;
GT O = LHS O∗ rho ;
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% Degree o f d i s s o c i a t i o n c a l c u l a t i o n s −− Ni t r i c ox ide
LHS NO = (m NO/(2∗ rho ) )∗ ( Q tot atom NO/Q tot mol NO ) ∗ . . .

exp(−thetad NO/T) ;
aa = [1 LHS NO −LHS NO ] ;
r o o t f i n d e r = roo t s ( aa ) ;
dod NO = r o o t f i n d e r ( 2 , 1 ) ;
GT NO = LHS NO∗ rho ;

% Mixutre o f Equi l ibr ium Air (N2 , 02 , & NO)
% Equi l ibr ium Constants
K O = 2∗k∗T∗GT O/m O;
K N = 2∗k∗T∗GT N/m N;
K NO = 2∗k∗T∗GT NO/m NO;

% Composition o f Air ( r a t i o o f N 2 to O 2 molecu le s at STP)
Ra t i o a i r = 4 . 0 ;

% Solve system o f non−l i n e a r equat ions (5 eqns and 5 unknowns )
c l e a r k n k o k no Pres A i r r a t i o
syms k n k o k no Pres A i r r a t i o
eqn1 = ’Pnˆ2/Pn2−k n ’ ;
eqn2 = ’Poˆ2/Po2−k o ’ ;
eqn3 = ’ (Po∗Pn)/Pno−k no ’ ;
eqn4 = ’ Pres − Pn2−Po2−Pn−Po−Pno ’ ;
eqn5 = ’ A i r r a t i o − (2∗Pn2+Pn+Pno)/(2∗Po2+Po+Pno) ’ ;

%Subs t i tu t e in f o r p r e s su r e and Ra t i o a i r e t c .
eqnt1 = subs ( eqn1 , k n ,K N) ;
eqnt2 = subs ( eqn2 , k o ,K O) ;
eqnt3 = subs ( eqn3 , k no ,K NO) ;
eqnt4 = subs ( eqn4 , Pres , P2 ) ;
eqnt5 = subs ( eqn5 , A i r r a t i o , Ra t i o a i r ) ;

% Bu i l t in func t i on f o r s o l v i n g the non−l i n e a r system o f eqns
A = so l v e ( eqnt1 , eqnt2 , eqnt3 , eqnt4 , eqnt5 ) ;

% Pa r t i a l p r e s su r e o f each s p e c i e s
Pres Pn2 = double (A. Pn2 ) ;
Pres Pn = double (A.Pn ) ;
Pres Po2 = double (A. Po2 ) ;
Pres Po = double (A. Po ) ;
Pres Pno = double (A. Pno ) ;

% Re a l i s t i c check f o r p a r t i a l p r e s su r e
% (P can ’ t be l e s s than 0 , e t c . )
i f ( r e a l ( Pres Pn2 (1 ,1))>0 && r e a l ( Pres Pn (1 ,1))>0 && . . .

r e a l ( Pres Po2 (1 ,1))>0 && r e a l ( Pres Po (1 ,1))>0 && . . .
r e a l ( Pres Pno ( 1 , 1 ) ) > 0)

Pres sure n2 = r e a l ( Pres Pn2 ( 1 , 1 ) ) ;
Pres sure n = r e a l ( Pres Pn ( 1 , 1 ) ) ;
Pre s sure o2 = r e a l ( Pres Po2 ( 1 , 1 ) ) ;
Pre s sure o = r e a l ( Pres Po ( 1 , 1 ) ) ;
Pres sure no = r e a l ( Pres Pno ( 1 , 1 ) ) ;

end

i f ( r e a l ( Pres Pn2 (2 ,1))>0 && r e a l ( Pres Pn (2 ,1))>0 && . . .
r e a l ( Pres Po2 (2 ,1))>0 && r e a l ( Pres Po (2 ,1))>0 && . . .
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r e a l ( Pres Pno ( 2 , 1 ) ) > 0)
Pres sure n2 = r e a l ( Pres Pn2 ( 2 , 1 ) ) ;
Pres sure n = r e a l ( Pres Pn ( 2 , 1 ) ) ;
Pre s sure o2 = r e a l ( Pres Po2 ( 2 , 1 ) ) ;
Pre s sure o = r e a l ( Pres Po ( 2 , 1 ) ) ;
Pres sure no = r e a l ( Pres Pno ( 2 , 1 ) ) ;

end

i f ( r e a l ( Pres Pn2 (3 ,1))>0 && r e a l ( Pres Pn (3 ,1))>0 && . . .
r e a l ( Pres Po2 (3 ,1))>0 && r e a l ( Pres Po (3 ,1))>0 && . . .
r e a l ( Pres Pno ( 3 , 1 ) ) > 0)

Pres sure n2 = r e a l ( Pres Pn2 ( 3 , 1 ) ) ;
Pres sure n = r e a l ( Pres Pn ( 3 , 1 ) ) ;
Pre s sure o2 = r e a l ( Pres Po2 ( 3 , 1 ) ) ;
Pre s sure o = r e a l ( Pres Po ( 3 , 1 ) ) ;
Pres sure no = r e a l ( Pres Pno ( 3 , 1 ) ) ;

end

i f ( r e a l ( Pres Pn2 (4 ,1))>0 && r e a l ( Pres Pn (4 ,1))>0 && . . .
r e a l ( Pres Po2 ( 4 , 1 ) ) > 0 && r e a l ( Pres Po (4 ,1))>0 && . . .
r e a l ( Pres Pno ( 4 , 1 ) ) > 0 )

Pres sure n2 = r e a l ( Pres Pn2 ( 4 , 1 ) ) ;
Pres sure n = r e a l ( Pres Pn ( 4 , 1 ) ) ;
Pre s sure o2 = r e a l ( Pres Po2 ( 4 , 1 ) ) ;
Pre s sure o = r e a l ( Pres Po ( 4 , 1 ) ) ;
Pres sure no = r e a l ( Pres Pno ( 4 , 1 ) ) ;

end

% Calcu la te molar concen t ra t i on s
xn2 = Pressure n2 /( Pres sure n2+Pres sure n+Pres sure o2 + . . .

Pre s su re o+Pressure no ) ;
xn = Pres sure n /( Pres sure n2+Pres sure n+Pres sure o2 + . . .

Pre s su re o+Pressure no ) ;
xo2 = Pres sure o2 /( Pres sure n2+Pres sure n+Pres sure o2 + . . .

Pre s su re o+Pressure no ) ;
xo = Pre s sure o /( Pres sure n2+Pres sure n+Pres sure o2 + . . .

Pre s su re o+Pressure no ) ;
xno = Pressure no /( Pres sure n2+Pres sure n+Pres sure o2 + . . .

Pre s su re o+Pressure no ) ;
molar mass = xn2∗28 + xn∗14 + xo2∗32 + xo∗16 + xno ∗30 ;

% Calcu la te mass f r a c t i o n s o f each s p e c i e s
cn2 = xn2∗28/molar mass ;
cn = xn∗14/molar mass ;
co2 = xo2∗32/molar mass ;
co = xo∗16/molar mass ;
cno = xno∗30/molar mass ;

% ================================================================
% Using the above in format ion , now use Fay Ridde l l r e l a t i o n to
% approximate the s tagnat i on heat t r a n s f e r to the r eent ry v eh i c l e .
% ================================================================

Pr = 0 . 7 1 ; % Prandtl number
Le = 1 . 4 ; % Lewis number
Hoe = H2+0.5∗Rho2∗U2ˆ2 ; % Stagnat ion ( t o t a l ) enthalpy

% Sutherland ’ s Law − approximate dynamic v i s c o s i t y
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mu e = k v i s c ∗(1.716∗10ˆ−5)∗(T2/287)ˆ1 .5∗ (287+110 .6)/(T2+110.6) ;

% Ve loc i ty g rad i en t at the wa l l o f the v e h i c l e
dUedx = (1/Rn)∗ s q r t (2∗ (P2−P1)/Rho2 ) ;

% D i s s o c i a t i o n enthalpy
hd = cn ∗ (4 .714∗10ˆ8)/ (14) + co ∗ ( 2 . 4 7∗10ˆ8 ) / ( 16 ) ;

% Gas constant at the wa l l ( note − f o r low wal l temperature )
R mix w = 287 ;

% Density at the wa l l
rhow = P2/(R mix w∗Twall ) ;

% Enthalpy at the wa l l
Hw = Entha lpy fnc t p r e s rho (P2 , rhow ) ;

% Suterhland ’ s Law − dynamic v i s c o s i t y at the wa l l
mu w = (1.716∗10ˆ−5)∗( Twall /287)ˆ1 .5∗ (287+110 .6)/( Twall +110 .6) ;

% Equi l ibr ium Heat t r a n s f e r to the wa l l
qdot = 0.76∗Prˆ−0.6∗(Rho2∗mu e )ˆ0 . 4∗ ( rhow∗mu w)ˆ0 .1∗ s q r t (dUedx ) ∗ . . .

(Hoe−Hw)∗(1+(Leˆ0.63−1)∗hd/Hoe ) ;

% Convert un i t s to (W/cmˆ2)
qwal l (q , 1 ) = qdot /10000;

end

q = qwal l ;

c l e a r v a r s −except q
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% ==================================================================
% Author : Ben Be t t i s
% Date : 2/16/2010
% Purpose : This program propagates mixed a l eatory−ep i s t emic
% un c e r t a i n t i e s through the Fay−Riddel c o r r e l a t i o n us ing
% Second−Order Probab i l i t y and Non−I n t r u s i v e Polynomial Chaos
% response su r f a c e fomulat ion . The f i n a l r e s u l t s o f the mixed
% unce r ta in ty propagat ion r e s u l t s in an i n t e r v a l bounds at
% var i ous p r obab i l i t y l e v e l s f o r the s tagnat i on po int heat
% t r a n s f e r .
% ==================================================================

format ( ’ long ’ ) ; c l e a r a l l ; c l o s e a l l ; c l c ;
rand ( ’ s t a t e ’ , 0 )

% +/− 5% unce r ta in ty in v e l o c i t y
lower bound u1 = 3958 . 65 ;
upper bound u1 = 4375 . 35 ;

% k , ep i s t emic var i ab l e , [ 1 , 1 . 1 5 ]
lower bound k = 1 . 0 0 ;
upper bound k = 1 . 1 5 ;

% I n i t i a l i z e the i n t e r v a l s bounds at each p r obab i l i t y l e v e l
% Note − the l a r g e numbers here are meant to be psuedo +/− i n f i n i t y
ResponseSur f ProbLeve ls = [1000000000000000000000000000000000 . . .

−100000000000000000000000000000000;
1000000000000000000000000000000000 −100000000000000000000000000000000;
1000000000000000000000000000000000 −100000000000000000000000000000000;
1000000000000000000000000000000000 −100000000000000000000000000000000;
1000000000000000000000000000000000 −100000000000000000000000000000000;
1000000000000000000000000000000000 −100000000000000000000000000000000];

% ==================================================================
% Point Co l l o ca t i on NIPC

% Order o f polynomial chaos
p = 5 ;

% Number o f samples needed ( twice the minimum requ i r ed )
P = 2∗ ( ( f a c t o r i a l (2+p ) ) / ( f a c t o r i a l (2 )∗ f a c t o r i a l (p ) ) ) ;

% Choose samples
M = uni f rnd ( lower bound u1 , upper bound u1 ,P , 1 ) ; % Ve loc i ty
Y = uni f rnd ( lower bound k , upper bound k ,P , 1 ) ; % Mu

% Determine exact s o l u t i o n (RHS o f the matrix equat ion )
f o r i = 1 :P

RHS( i , 1 ) = Mont e Ca r l o Hea t f l ux r e en t ry veh i c l e (M( i , 1 ) ,Y( i , 1 ) ) ;
end

% Var iab le t rans fo rmat ion
xi M = (M−lower bound u1 )/( upper bound u1−lower bound u1 )∗2 − 1 ;
xi Y = (Y−lower bound k )/( upper bound k−lower bound k )∗2 − 1 ;

p s i = ze ro s (P,P/2 ) ;

x i a r r a y ( : , 1 ) = xi M ;
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x i a r r ay ( : , 2 ) = xi Y ;

f o r i =1:P
% ps iYi ( : , i ) = po lynomia l t e s t ( rand var va lue , [ d i s t t yp e poly
% order ] ,# random var i ab l e s , t o t a l t e n s o r (2 ) or t a i l o r e d t e n s o r ( 1 ) )
p s i ( i , : ) = polynomial combine ( x i a r r a y ( i , : ) , [ 2 p ; 2 p ] , 2 ) ;

end

% Solve the overdetermined matrix
co e f = ps i \RHS;

% ==================================================================
% ! ! ! Second Order Probab i l i t y (Mixed unce r ta in ty propagat ion ) ! ! !
% Fit a su r roga t e to the data ( curve f i t ) . Then use the re sponse
% su r f a c e to r ep l a c e the ’ b lack box ’ s imu la t i on code in 2nd order
% p r obab i l i t y . There are two loops in 2nd order p robab i l i t y , an
% inner loop ( a l e a t o ry UQ) and an outer loop ( ep i s t emic UQ) . Each
% i t e r a t i o n o f the outer loop w i l l produce one CDF curve . F ina l ly ,
% the i n t e r v a l bounds f o r the output va r i ab l e o f i n t e r e s t w i l l be
% found f o r var i ous p r obab i l i t y l e v e l s . Note that Second Order
% Probab i l i t y w i l l use d i r e c t Monte Carlo (MC) sampling f o r the
% inner and outer l oops . The func t i on eva lua t i on w i l l come from
% the s t o c h a s t i c re sponse su r f a c e formed us ing NIPC . . . .NOT
% EVALUATING FROM DETERMINISTIC CODE
% ==================================================================

% Now use the su r roga t e curve f i t to do a Monte Carlo s imu la t i on
% us ing Latin Hypercube sampling to get the CDF
n PostProc outer = 5000 ;
n PostProc inner = 10000;

% Get the samples from uniform d i s t r i b u t i o n
var PostProc Outer = uni f rnd (−1 ,1 , n PostProc outer , 1 ) ;

% I n i t i a l i z e a matrix o f z e r o s
ResponseSurf Array = ze ro s ( n PostProc inner , 1 ) ;
ResponseSurf = ze ro s ( n PostProc outer , 1 ) ;
CDF = ze ro s ( n PostProc inner , 2 ) ;

% I n i t i a l i z e va lue s f o r the minimum and maximum va lues in the i n t e r v a l
% bounds at each p r obab i l i t y l e v e l
MinMax ResponseSurf = ze ro s ( 6 , 1 ) ;

cnt = 0 ; % counter f o r p l o t t i n g each CDF curve
f o r i = 1 : n PostProc outer

i
f o r j = 1 : n PostProc inner

var PostProc Inner = uni f rnd (−1 ,1 , n PostProc inner , 1 ) ;
% Cal l MATLAB code to generate ba s i s f un c t i on s
BasisFnct = polynomial combine ( [ var PostProc Inner ( j , 1 ) . . .

var PostProc Outer ( i , 1 ) ] , [ 2 p ; 2 p ] , 2 ) ;
sum = 0 ;
f o r k = 1 :P/2

sum = sum + coe f (k , 1 )∗ BasisFnct (1 , k ) ;
end
ResponseSurf Array ( j , 1 ) = sum ;

end
ResponseSurf = so r t ( ResponseSurf Array ) ;
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% CDF curve data
f o r m = 1 : n PostProc inner

CDF(m, 1 ) = ResponseSurf (m, 1 ) ;
CDF(m, 2 ) = m/ n PostProc inner ;

end

% Plot every 100 th CDF curve
cnt = cnt + 1 ;
i f ( cnt == 100)

f i g u r e (22)
s e t ( gca , ’ FontSize ’ ,12 , ’FontName ’ , ’ Times ’ )
p l o t (CDF( : , 1 ) ,CDF( : , 2 ) )
x l ab e l ( ’ Heat Trans fe r (W/cmˆ2) ’ , ’ FontSize ’ , 16)
y l ab e l ( ’CDF’ , ’ FontSize ’ , 16)
hold on
cnt = 0 ;
dlmwrite ( ’ CDF multipleCurves uniform . dat ’ ,CDF, ’−append ’ )

end

% Find the min and max va lues in i n t e r v a l bounds f o r each p r obab i l i t y
% l e v e l
mu l t i p l i e r = 0 . 0 ;
f o r l e v e l c n t = 1 :6

i f ( l e v e l c n t == 1)
MinMax ResponseSurf ( l e v e l c n t , 1 ) = ResponseSurf ( 1 , 1 ) ;
mu l t i p l i e r = mu l t i p l i e r + 0 . 2 ;

e l s e
MinMax ResponseSurf ( l e v e l c n t , 1 ) = . . .

ResponseSurf ( round ( mu l t i p l i e r ∗ n PostProc inner ) , 1 ) ;
mu l t i p l i e r = mu l t i p l i e r + 0 . 2 ;

end
end

% Replace the ” o v e r a l l ” minimum and max va lue s in the
% i n t e r v a l bounds at each p r obab i l i t y l e v e l

f o r l e v e l c n t = 1 :6
i f (MinMax ResponseSurf ( l e v e l c n t , 1 ) > . . .

ResponseSur f ProbLeve ls ( l e v e l c n t , 2 ) )
CDF max = CDF;
ResponseSur f ProbLeve ls ( l e v e l c n t , 2 ) = . . .

MinMax ResponseSurf ( l e v e l c n t , 1 ) ;
end
i f (MinMax ResponseSurf ( l e v e l c n t , 1 ) < . . .

ResponseSur f ProbLeve ls ( l e v e l c n t , 1 ) )
CDF min = CDF;
ResponseSur f ProbLeve ls ( l e v e l c n t , 1 ) = . . .

MinMax ResponseSurf ( l e v e l c n t , 1 ) ;
end

end

end

% Plot the minimum and maximum CDF curves on the same p lo t
f i g u r e (33)
s e t ( gca , ’ FontSize ’ ,12 , ’FontName ’ , ’ Times ’ )
p l o t (CDF min ( : , 1 ) , CDF min ( : , 2 ) , ’ r ’ ,CDF max ( : , 1 ) ,CDF max ( : , 2 ) , ’b ’ )
x l ab e l ( ’ Heat Trans fe r (W/cmˆ2) ’ , ’ FontSize ’ , 16)
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y l ab e l ( ’CDF’ , ’ FontSize ’ , 16)

% Write the CDF curve data to an ex t e rna l f i l e
dlmwrite ( ’ Fay Riddel l Epistemic Results uni form Max CDFCurves . dat ’ . . .

,CDF max)
dlmwrite ( ’ Fay Riddel l Epistemic Results uni form Min CDFCurves . dat ’ , . . .

CDF min)
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