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ABSTRACT 

A parametric computational study designed to examine the plausibility of an 

external body force generated by active means, such as a plasma actuator, as a means of 

controlling a Laminar Separation Bubble (LSB) over an airfoil at low Reynolds numbers 

was conducted.  Computational Fluid Dynamics (CFD) was employed to characterize the 

effect that a body force, localized to a small region tangent to the airfoil surface, might 

have on an LSB. 

In this study, the effects of altering the strength and location of the “actuator” on 

the size and location of the LSB and on the aerodynamic performance of the airfoil were 

observed.  In a separate investigation, the effects of operating an actuator in a „burst‟ 

mode are investigated, where the effects of pulsing frequency and duty cycle are 

examined to determine whether further performance enhancements can be achieved via 

such means. 

It was found that the body force, when properly located and with sufficient 

magnitude, could effectively eliminate the LSB.  Additionally, it was found that by 

eliminating the LSB, the aerodynamic efficiency of the airfoil could be improved by as 

much as 60%.  Thus, it was determined that such a system may indeed be an effective 

measure of reducing or eliminating the negative effects associated with LSBs at low 

Reynolds numbers.  Additionally, pulsed operation of the actuator was found to enhance 

effectiveness by as much as 20% over a power-equivalent steady actuator.  These results 

indicate that such a control strategy may be an excellent candidate for future 

experimental research regarding this topic. 
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NOMENCLATURE 

Symbol Description 

α Airfoil angle of attack (degrees) 

ρ∞ Free-stream density (kg/m
3
) 

µ∞ Free-stream dynamic viscosity (Pa-s) 

A* Actuator cross-sectional area (volume per unit span to which body force is 

applied, scaled to c
2
, dimensionless) 

Aeff Effective actuator discharge volume per unit span (m
2
) 

c chord-length (m) 

Cd Drag coefficient 

Cl Lift coefficient 

Cp Pressure coefficient 

D Actuator duty cycle (dimensionless) 

f Dimensionless actuator pulse frequency,  
 

 
 

fd Magnitude of applied body-force per unit volume (N/m
3
) 

fnd Dimensionless body force per unit volume,  
   

    
  

Ksc Dimensionless actuator scaling parameter,  
  

  
     

L/D Lift-to-drag ratio,  
  

  
 

M∞ Free-stream Mach number 

Re Chord Reynolds number,  
     

  
 

T Dimensionless actuation period,  
    

 
 

Td Actuation period (s) 

T’ Actuator thrust per unit span (N/m) 

tpd Time actuator is active over 1 duty cycle (s) 

tp Dimensionless time actuator is active over 1 duty cycle,  
     

 
 

V∞ Free-stream velocity (m/s) 

x Chord-wise position with respect to airfoil leading edge (m) 



 

 

xv 

X  
 

 
 

xs Chord-wise position with respect to laminar separation point (m) 

Xs  
  

 
 

y Chord-normal position with respect to airfoil leading edge (m) 

Y  
 

 
 

 

 



 

 

1. INTRODUCTION 

A variety of factors have led to a surge in present interest in low Reynolds 

number aerodynamics.  For instance, recent interest in renewable energy has resulted in 

growing interest in wind turbines and related technologies.  Recent advancements in the 

fields of micro-system technology have enabled the development of mini- and micro 

aerial vehicles, which have a broad range of potential applications.  The development of 

aircraft on such a small scale has led to a variety of previously rarely encountered low 

Reynolds number boundary layer phenomena, such as laminar separation bubbles.   

The boundary layer is extremely influential to aerodynamic performance 

characteristics, especially drag.  The boundary layer is also characteristically sensitive; 

i.e. small perturbations to the boundary layer can result in significant alterations of 

aerodynamic performance.  It is thought that active control strategies designed to take 

advantage of this instability could effect significant improvements in performance with 

relatively low power requirements. 

 

 

1.1. LITERATURE SURVEY 

1.1.1. Laminar Separation Bubbles.  A Laminar Separation Bubble (LSB) is a  

phenomenon which has been encountered in a variety of subsonic, low Reynolds number 

aerospace applications.  A LSB is a phenomenon which occurs when a laminar boundary 

layer encounters an adverse pressure gradient along an aerodynamic surface, which 

induces boundary layer separation.  Instability inherent to the free-shear layer causes the 

boundary layer to undergo a rapid turbulent transition.  This turbulence results in 

increased momentum transport normal to the shear layer, entraining the low-momentum 

fluid in the wake of the separation point and causing boundary layer reattachment.  This 

process results in the formation of a closed bubble, as shown in Figure 1.1. 
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Figure 1.1. Conceptual schematic of a laminar separation bubble. From Horton [1]. 

 

 

1.1.1.1 Common Characteristics of LSBs.  LSBs are widely regarded as a low  

Reynolds number phenomenon, rarely observed in applications with characteristic 

Reynolds numbers greater than 10
6
 [2].  Although a laminar boundary layer and adverse 

pressure gradient are requisite to the formation of a LSB, they do not, by any means, 

guarantee its formation.  In fact, LSBs are only found to exist within a narrow range of 

pressure gradients and Reynolds numbers.  Too small a pressure gradient fails to induce 

laminar separation, while too large a pressure gradient leads to laminar separation 

without reattachment.  Analogous trends are observed with variation in Reynolds 

number.  LSBs are not necessarily steady.  Low frequency LSB oscillations have been 

observed on airfoils which are susceptible to trailing-edge or thin-airfoil stall [3].  

Additionally, LSBs are generally found to be highly sensitive to stimuli.  Experimental 

studies such as that by Zaman and McKinzie [4] have found that LSBs could be 

manipulated via mere acoustic excitation.  Other studies have found minute changes in 

Reynolds number and upstream flow-field perturbations to be capable of dramatically 

altering LSB dimensions and aerodynamic effects, as well as inducing LSB instability 

and „bursting‟, whereby the turbulent boundary layer fails to reattach to the surface, 

causing premature leading-edge stall [3, 5]. 
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LSBs can potentially have a great impact on the aerodynamic performance of a 

body.  Studies have shown that, while an LSB can enhance lift under certain 

circumstances, its primary contribution to aerodynamic performance typically comes in 

the form of a pressure drag penalty.  Several factors contribute to this adverse behavior.  

By displacing the inviscid flow over the leading edge of the airfoil, the LSB 

simultaneously degrades the airfoil‟s natural suction peak and decreases pressure 

recovery over the aft portion of the airfoil, as shown in Figure 1.2. 

 

 

  
 (a) Cp vs. Xs (b) Cp vs. Y 

Figure 1.2. Comparison between pressure distributions of 16% thick elliptic airfoil with 

and without LSB (α = 10°) 

 

 

The drag resulting from an LSB can be tremendous.  For the case shown in Figure 

1.2, the drag coefficient of the airfoil with the LSB is over 150 percent greater than that 

without [6].  Similar behavior has been noted for other airfoils as well [7, 8].  The 

instability which characterizes many LSBs may also influence aerodynamic performance.  

The aforementioned unsteady behavior of certain LSBs has also been found to 

dramatically affect aerodynamic performance.  A study by Zaman et al. [9] found that 

this phenomenon resulted in lift coefficient fluctuations of as much as 50 percent over 

certain airfoils.  At its extreme, this phenomenon results in periodic bursting. 
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1.1.1.2 LSBs in Practice.  LSBs are commonly encountered in a wide variety of  

aerospace applications.  However, LSBs are almost universally considered a parasitic 

phenomenon, both as a result of their tendency to reduce aerodynamic performance and 

their unpredictability.  Consequently, the goal of most current research regarding this 

topic is LSB elimination.  A sampling of applications in which LSBs are encountered is 

given here. 

Wind Energy.  Wind turbines are required to operate under a wide variety of 

operating conditions.  In the development of stall-regulated turbines, observations were 

made that, at high wind speeds, the turbines chaotically exhibited multiple distinct power 

levels under seemingly identical conditions.  Upon further study by Bak, et al. [5], it was 

found that the turbine blades were exhibiting two distinct stalling angles of attack, a 

phenomenon which came to be known as „double stall‟, and that the cause of this 

phenomenon was the existence of a LSB.  In this study, it was found that the LSB was 

extremely sensitive to upstream conditions, and that the premature stall was the result of 

LSB bursting.  Double stall presents a number of issues, specifically regarding the 

estimation of long term energy production and the determination of the maximum 

projected blade loading.  Additionally, it has raised concerns over dynamic loading 

characteristics resulting from stall-induced vibrations [5, 10]. 

Turbo-machinery.  A study by Hourmouziadis [11] found that at high altitude 

cruise, the Reynolds numbers of Low Pressure Turbine (LPT) blades can drop below 

25,000, and a study by Sharma [12] found that the losses experienced by LPT blades can 

increase by nearly 300 percent as the blade Reynolds number is decreased below 

200,000.  He found these losses to be the result of laminar separation over the blade‟s 

suction surface.  An experimental study conducted by Stieger et al. [13] confirms the 

existence of laminar separation over LPT blades.  Stieger observed large scale 

fluctuations in the surface pressure distribution over the blades of a LPT cascade.  It was 

found that the source of the fluctuations was the existence of a periodically bursting LSB, 

similar to that observed by Bak [5].  Stieger observed that the blade row pressure drop 

could fluctuate by as much as 30 percent due to this phenomenon. 

Unmanned Aerial Vehicles.  Recent advancements in the field of micro-system 

technologies have resulted in the development of mini- and micro-UAVs, which have a 
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broad range of potential applications.  Due to the scale of such aircraft, Reynolds 

numbers in the 40,000 to 500,000 range are very common, making the aircraft susceptible 

to low Reynolds number phenomena such as LSBs.  In the design of low Reynolds 

number lifting bodies, LSB consideration is critical.  As reported by Nagel, et al. [14], a 

problem often encountered in low Reynolds number wing design is an abrupt loss of lift 

as a result of stall induced by LSB bursting.  A study by Leslie et al. [15] noted that LSBs 

commonly exist on UAV propellers, and that they are a leading source of propeller noise.  

Leslie found that by eliminating LSBs, propeller noise could be reduced by as much as 4 

dB.   

Planetary Exploration.  Aircraft have been identified as an advantageous means 

of Martian exploration in the distant future [16].  Such an exploration vehicle would be 

advantageous to orbiting satellites with respect to observation data quality, and to 

ground-based rovers with respect to mobility.  However, the density of the Martian 

atmosphere is roughly one percent of the Earth‟s, and early Martian aircraft size will 

likely be limited by launch constraints.  Consequently, characteristic Reynolds numbers 

of the first Martian aircraft will likely be on the order of 1000 – 100,000 [16].  Thus, it is 

likely that Martian UAVs will encounter many of the same low Reynolds number 

phenomena as their counterparts on Earth, including LSBs. 

1.1.1.3 Methods of LSB Control.  Because LSBs are generally considered  

undesirable, due to the parasitic and unpredictable effects they typically have on 

aerodynamic performance, the goal of most current research efforts regarding LSBs is 

their elimination.  LSB control methods can be broadly categorized as either passive or 

active control strategies.  Active control differs from passive control in that active control 

requires the supply of external power and/or input. 

Passive Control Strategies.  The majority of LSB control strategies are passive.  

The simplest and most commonly implemented strategy of LSB elimination is the 

imposition of mechanical turbulators to existing designs and structures.  The principle 

under which a turbulator operates is simple: The turbulator, placed upstream of the 

laminar separation point, acts as an amplifier of laminar boundary layer instabilities, 

promoting premature turbulent transition.  Because turbulent flow is less prone to 

separation than laminar flow, the flow is less likely to separate from the surface when 
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encountering an adverse pressure gradient.  Turbulators take a number of forms, ranging 

from zigzag and dimple tape to boundary layer trip wires.  Such control strategies have 

been successfully implemented by Stieger [13] on LPT blades and Leslie [15] on UAV 

propellers.  A second method of LSB elimination is „careful‟ aerodynamic design.  

Typically, airfoils are specially designed with high leading edge curvature to promote 

premature turbulent transition, as with turbulators.  This control strategy was employed 

successfully by Bak [5] on wind turbine airfoils.  Conceivably, one could also use such a 

strategy to smooth the adverse pressure gradient responsible for separation.  A third 

passive control mechanism which has been successfully demonstrated is the application 

of vortex generators.  Vortex generators are typically small vanes oriented perpendicular 

to the airfoil surface, but with an incidence to the flow direction.  Vortex generators 

induce stream-wise vortices to the boundary layer.  These vortices energize the boundary 

layer and induce a turbulent transition, which prevents flow separation.   

 As indicated, most passive control strategies rely upon artificial turbulence 

generation as a means of preventing flow separation.  All passive control devices are 

optimized for a specific design condition, and thus typically perform sub-optimally under 

off-design conditions.  In applications where a variety of flow conditions are 

encountered, the turbulence inducing controls are typically beneficial under only a small 

subset of those conditions, inducing a net drag penalty much of the expected operating 

time. 

Active Control Strategies.  The potential for active flow control strategies is 

evident, whereby, in contrast to passive control strategies, systems are capable of being 

dynamically controlled to maintain optimal aerodynamic performance of a device over a 

range of operating conditions.  However, current active LSB control technology is 

immature.  To successfully implement a LSB control system, interactive techniques are 

required to determine the existence of an LSB and the measures required to control it 

optimally in real time.  Novel LSB sensors, such as that developed by King et al. [2] have 

been developed to provide this capability, but attempts at integration with LSB control 

systems have not met complete success.  Additional concerns exist for individual control 

systems.  Consequently, active LSB control strategies have not been widely adopted in 
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practice.  However, despite these challenges, there is a general consensus that active 

control strategies show a great deal of promise in this application.   

 One of the simplest active LSB control systems available is an adaptive 

mechanical turbulator.  Similar in concept and function to a passive turbulator, adaptive 

turbulators rely upon turbulence generation to prevent flow separation.  However, 

adaptive turbulators are retractable, and can thus be removed from the flow field when 

unneeded.  One drawback to adaptive turbulators, as reported by King [2], is an inability 

to alter the effectiveness of the turbulator, limiting the range of its usefulness.  A second 

drawback of adaptive turbulators is the requirement of mechanical parts to actuate the 

control system.  Similar control strategies have been applied with vortex generators.  

Other, more complex, control systems involve sucking or blowing air through holes in 

the surface to generate vortices which suppress separation [17].  However, these methods 

require complex, and often heavy, systems to process volumes of air, making them 

impractical for many aerospace applications.   

1.1.2. Introduction to Aerodynamic Plasma Actuators.  An aerodynamic  

plasma actuator is a relatively simple device, consisting of a pair of electrodes separated 

by a dielectric material, arranged in an asymmetric configuration, as shown in Figure 1.3.  

As shown, one of the electrodes is exposed to the ambient fluid, while the other is 

embedded within the dielectric material.  In most test articles, the electrodes are thin 

copper strips, and the dielectric material is Kapton polyimide film [18, 19].   

 

 

 
Figure 1.3. Cross-section of an aerodynamic plasma actuator 
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Plasma actuators are operated by applying a high voltage ac potential across the 

electrodes.  When the potential difference reaches critical amplitude, the fluid in the 

region of the region between the exposed electrode and dielectric ionizes, resulting in a 

plasma discharge, as shown in Figure 1.4.  This discharge has the effect of imparting 

directed momentum into the surrounding fluid.  This injection of momentum can have a 

profound impact on the local flow-field.  If properly exploited, plasma actuators can be a 

very effective flow control mechanism.  Although plasma actuators require large voltages 

to operate, they require very little current, and most plasma actuators operate at power 

levels between 2 and 40 Watts per foot of span [20]. 

 

 

 

Figure 1.4. Plasma actuator in action. From Corke, et al [21]. 

 

 

1.1.2.1 Dielectric Barrier Discharge Plasmas.  The Dielectric Barrier Discharge  

(DBD) requires a high ac potential (typically 5 to 10 kVp-p), applied across the electrodes 

at a frequency of 1 to 10 kHz [18, 19].  During the half-cycle of the discharge over which 

the exposed electrode acts as cathode, electrons build up, and begin emitting from the 

surface of the electrode.  These electrons interact with the neutral fluid between the 

electrode and the dielectric, weakly ionizing the gas, before depositing on the surface of 
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the dielectric.  The generated plasma experiences a body force along the field lines, 

proportional to the local electric field strength.  The dielectric barrier physically prevents 

the electrons from reaching the embedded electrode, so the charges build up on the 

dielectric surface, opposing the applied voltage.  For this reason, the process is self-

limiting; i.e. the potential difference must be continually increased for the discharge to be 

maintained.  Similar behavior is observed on the positive running half-cycle of the 

discharge.  In this case, the discharge is limited by the number of charges deposited on 

the dielectric surface during the previous half-cycle.  This self-limiting behavior allows 

for a sustained discharge without arcing at atmospheric pressure [18]. 

 Although a DBD plasma resembles a steady glow discharge to the naked eye, it is 

actually a highly organized structure, both spatially and temporally [19], as illustrated in 

Figure 1.5.  This structure is highly dependent upon the applied voltage waveform.  

However, the frequency at which the DBD is driven is typically several orders of 

magnitude greater than the characteristic fluid response frequency, causing the actuator to 

behave in a quasi-steady manner, unless forced to behave otherwise.  Recent research has 

shown that, by pulsing the actuator at frequencies designed to amplify flow instabilities, 

actuator effectiveness can be dramatically improved in certain flow control applications 

[16, 21, 22]. 

1.1.2.2 Advantages and Disadvantages of Plasma Actuators.  Plasma actuators 

 present several distinct advantages over conventional flow control devices.  Plasma 

actuators are purely solid state devices, requiring no moving parts or bleed air to operate.  

They have virtually no effect on aerodynamic performance when not employed, and their 

effectiveness can be modulated simply via variation in power input.  Plasma actuators 

feature actuation response times far smaller than that achievable via mechanical means.  

As previously mentioned, plasma actuators can be adapted to operate at characteristic 

fluid frequencies, so as to excite desired flow instabilities.   

 However, plasma actuators also have several disadvantages.  Though a plasma 

actuator is not typically considered a massive component, its operation typically 

necessitates the use of a high voltage power supply, and often some means of energy 

storage, such as a battery.  In weight-sensitive applications, such as aircraft flow control, 

the weight penalty incurred by such components can outweigh the aerodynamic benefits 
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Figure 1.5. Spatial-temporal structure of a DBD discharge (PMT signal is proportional to 

plasma density). From Enloe et al. [19]. 

 

 

gained from the actuator.  In such applications, it is important to weigh the advantages 

gained via plasma actuator use against the drawbacks. 

1.1.2.3 Current Applications.  Plasma actuators have been successfully  

implemented in a variety of current flow control applications.  They have been used to 

particular effect in low Reynolds number and boundary layer control applications.  For 

instance, an experimental study by Huang et al. [23] examined the effect that a plasma 

actuator might have on laminar boundary layer separation over airfoils in a LPT cascade.  

It was observed that operation of a plasma actuator steadily downstream of the separation 

point resulted in airfoil performance improvements comparable to that achieved via a 

vortex generator.  An innovative study by Nelson et al. [24] found that steady DBD 

plasma actuators could be moderately effective in enhancement of traditional turbine 

blade stall characteristics and lift generation.  The study also introduced a strategy of 

enhancing actuator performance.  This strategy involved deliberately modifying the 

airfoil shape to induce flow separation at selected positions on the airfoil surface, and 
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placing unsteadily operated actuators in position to control the resultant separation.  It 

was found that this resulted in dramatic improvements to actuator effectiveness.  Plasma 

actuators have also been identified as possible means of augmenting lift over low 

Reynolds number wings [21, 25, 26] and preventing rotating stall in compressors [27], 

among others.  Although most of these applications have made use of steady actuation, 

recent studies have shown that plasma actuators operated at unsteady frequencies 

designed to amplify boundary layer instabilities could result in even more dramatic 

performance enhancements than previously thought in the controlling of unsteady 

phenomena [16, 21, 22]. 

 

 

1.2. PLASMA ACTUATORS AS A POTENTIAL METHOD OF LSB CONTROL 

Due to the success that plasma actuators have demonstrated in various low 

Reynolds number and boundary layer applications, it is thought that they may effective in 

the control of LSBs.  Whereas current LSB control mechanisms rely on turbulence 

generation to prevent separation, it is thought that plasma actuators could achieve the 

same effect by injecting enough momentum into the boundary layer to overcome the 

adverse pressure gradient responsible for separation.  This strategy of LSB elimination is 

thought to be superior to conventional means because it does not rely upon turbulence as 

a means to the end of LSB elimination.  Thus, drag could be reduced beyond the 

capabilities of conventional means.  Additionally, it is thought that the ability of plasma 

actuators to control unsteady phenomena via low frequency pulsing could be harnessed to 

exert additional control over LSBs. 

 

 

1.3. SCOPE OF THE PRESENT WORK 

1.3.1. The Flow Problem and Associated Parameter Space.  In this study, a  

baseline case in which a large Laminar Separation Bubble is present is selected for 

manipulation.  In this study, a 16 percent thick elliptical airfoil at a 10 degree angle of 

attack is selected, as illustrated in Figure 1.6.  The selected Reynolds number and Mach 

number in this case are 10
5
 and 0.01, respectively. 
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Figure 1.6. Stream traces and pressure coefficient contour plot of baseline flow problem 

 

 

The primary objective of this computational study is to assess the feasibility of a 

plasma actuator as a means of controlling Laminar Separation Bubbles.  Both steady and 

pulsed plasma actuation modes are investigated.  In this study, a LSB is observed over 

the leading edge of a 16 percent thick elliptical airfoil at low Reynolds numbers.  A 

plasma actuator, modeled as a localized body force, is applied to the airfoil surface, and 

used to effect changes in the characteristics of the bubble and the aerodynamic 

performance of the airfoil.  Parametric studies are conducted for both the steady and 

pulsed actuator configuration to determine the optimal configurations of the actuator in 

each case.  The pulsed and steady control methods are compared to determine the 

advantages gained by pulsing the actuator.  Additionally, power and voltage requirements 

of the plasma actuator are estimated in order to gauge the practicality and effectiveness of 

the proposed LSB control method. 

1.3.2. Steady Actuator Modeling and Optimization.  An effort is made to  

estimate the effect that a steadily operated plasma actuator can have on the baseline LSB 

case listed above at a Reynolds number of 10
5
.  Toward this end, it is necessary to modify 
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a commercial Computational Fluid Dynamics (CFD) code to incorporate a localized body 

force.  A parametric study is conducted, in which the location and strength of the actuator 

are varied, in order to determine the optimal configuration of the actuator.  The 

practicality of such a plasma actuator configuration is examined. 

1.3.3. Pulsed Actuator Modeling and Optimization.  In contrast to a steadily  

operated actuator, a pulsed actuator can control separation via periodic excitation of 

boundary layer instabilities.  For instance, the actuator can be used to induce Tollmien-

Schlichting (TS) waves upstream of the laminar separation point, forcing premature 

turbulent transition, and thus preventing separation [28].  It is necessary to modify the 

CFD code to handle a pulsed body force.  A parametric study is conducted, in which the 

pulsing frequency and duty cycle of the actuator are varied.  One goal of this study is to 

establish a relationship between pulsing frequency and duty cycle of the actuator and its 

influence on aerodynamic performance.  A second goal is to determine the optimal pulsed 

actuator configuration.  The effectiveness of the pulsed actuator configurations is then 

compared to that of the steady configuration to determine whether unsteady actuation is 

beneficial. 
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2. COMPUTATIONAL APPROACH 

2.1. FLOW-FIELD GRID GENERATION 

2.1.1. Surface Geometry Definition.  For obvious reasons, it was necessary to  

select an airfoil over which LSBs have been observed in practice.  In this study, a 16 

percent thick elliptical airfoil was selected as the surface geometry upon which to 

conduct this analysis.  While elliptical airfoils are rarely if ever used in current aerospace 

applications, they have been proposed for niche applications such as hybrid rotor/wing 

aircraft [29].  In any case, the geometry of the selected airfoil itself is immaterial to the 

purposes of this study.  What is important is the fact that the existence of laminar 

separation bubbles over the leading edge of the airfoil under specific free-stream 

conditions has been numerically confirmed, making it a suitable airfoil geometry for this 

study [29].   

2.1.2. Surface Grid Generation.  In this study, a baseline 250 point surface grid  

was slightly modified to accommodate the actuator model.  The original grid featured 250 

points, with point density proportional to the curvature of the airfoil, as shown in Figure 

2.1. 

 

 

 

Figure 2.1. Original volume grid 
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This ensured that regions in which the highest pressure and velocity gradients are 

expected would have adequate stream-wise grid density to capture said gradients.  The 

surface grid was limited to 250 points due to a flow-solver constraint.  As previously 

mentioned, the grid was modified to handle a „plasma actuator‟ model.  Grid points were 

reallocated from the aft lower surface of the airfoil to the leading edge region over which 

the actuator was to be placed.  In this region, the points were distributed linearly to 

prevent changes in the size of the actuator region, as shown in Figure 2.2. 

 

 

 

Figure 2.2. Upper leading edge of modified volume grid (stream-wise linear region is 

highlighted in red) 
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Grid density is lost over the lower trailing edge as a result of this grid point 

reallocation.  However, because the lower trailing edge is far removed from the flow-

field region of interest where the LSB is observed (the upper leading edge), the effect that 

the reduced grid density over this region has on the numerical accuracy of this study is 

considered an acceptable loss. 

2.1.3. Volume Grid Generation.  The volume grid in this study was a 

2-dimensional overset structured grid, generated with a NASA supplied software package 

called HYPGEN (Hyperbolic grid generator).  Because of the bluntness of the selected 

airfoil trailing edge, a traditional „C-grid‟, in which a wake surface boundary is 

intersected with the trailing edge of the airfoil and a volume grid is wrapped around the 

airfoil-wake surface, could not be used.  Instead, an „O-grid‟ was used, in which layers of 

grid points are „grown‟ outward toward the trailing edge.   

The volume grid was „grown‟ or extrapolated outward from the airfoil surface in 

three layers.  Because the key focus of this study is boundary layer development, special 

consideration is given to the region nearest the airfoil, here designated the „viscous 

region‟ because it encompasses the boundary layer.  In this region, the grid point 

distribution was linear, with an individual grid point spacing of 1×10
-4

c.  The viscous 

region featured 100 points, corresponding to a net region thickness of 0.01c. 

The second region, designated the „inner region,‟ featured 100 points, spaced 

nonlinearly, and a net thickness of 0.5c.  Though the inner region is less densely 

populated than the viscous region, the velocity gradients here were observed to be very 

small, if not negligible, meaning that a sparser grid could be used without sacrificing 

numerical accuracy. 

The third region, labeled „outer region‟ was very sparsely populated, with 83 

points spanning 10 chord lengths.  This region primarily served as a buffer between the 

inner region and the far-field boundary.  Velocity and pressure gradients were not readily 

visible in this region.  A summary of the preceding information is given in table 2.1. 
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Table 2.1. Volume grid layer summary 

Region Points Net Thickness Spacing 

L1 (viscous region) 100 0.01c Linear 

L2 (inner region) 100 0.50c Nonlinear 

L3 (outer region) 83 10.00c Nonlinear 

Total 283 10.51c  

 

 

2.2. FLOW-FIELD SOLUTION METHODOLOGY 

2.2.1. Description of Flow Solver.  Computational Fluid Dynamics (CFD) was  

the primary tool employed in this study.  The flow solver used was a Reynolds-Averaged 

Navier Stokes (RANS) code called NASA OVERFLOW (OVERset grid FLOW solver).  

OVERFLOW was originally developed by NASA in the 1970s to simulate flow over the 

space shuttle, but was later modified to handle the low-speed subsonic flight regime [30].  

OVERFLOW uses a first-order implicit time marching scheme to handle unsteady flows.  

More information about OVERFLOW is provided in the OVERFLOW manual [30]. 

2.2.2. Boundary Conditions.  In the specified grid, four boundaries are present,  

as shown in Figure 2.3.  These boundaries are the airfoil surface, the intersecting grid 

boundaries at the trailing edge of the airfoil, and the far-field boundary.   

 The airfoil surface is modeled as a viscous, adiabatic wall.  The periodic boundary 

condition is applied to the intersect boundary.  The free-stream/characteristic condition is 

applied to the far-field boundary, forcing a specified free-stream velocity and angle of 

attack.  This information is summarized in table 2.2.  One additional condition, planar 

symmetry, is applied in the Z-plane to assure 2-dimensional flow.   

2.2.3. Turbulence Modeling.  The RANS equations are time-averaged by  

definition.  This results in several limitations of RANS codes such as OVERFLOW.  

Approximate and typically empirical turbulence models are required to accurately 

simulate time-steady characteristics where turbulent flow is present.  In this study, the 

Spalart-Allmaras (SA) turbulent model was applied in the viscous regions of the flow.  

Furthermore, RANS alone cannot be used to predict turbulent transition.  However, in 

this study, the laminar-to-turbulent transition itself is not investigated, but rather the 
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Figure 2.3. Grid boundaries (solid=airfoil surface, dash-dot=intersecting grid boundaries, 

dashed=far-field boundary) 

 

 

Table 2.2. Summary of boundary conditions 

Boundary Specified Boundary Condition 

Airfoil surface Viscous, adiabatic wall 

Grid Self-intersection Periodic 

Far-field Characteristic/free-stream 

 

 

influence that a control mechanism can have on the shape and size of the resultant LSB.  

Therefore, laminar flow was assumed from x/c = 0 to x/c = 0.1.  Turbulent transition was 
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forced at x/c = 0.10, and fully turbulent boundary layer flow was assumed beyond x/c = 

0.15.  This modeling technique resulted in the formation of a stable LSB, as shown in 

Figure 1.1.  Obviously, this technique is limited, insofar as it cannot predict the effect that 

an actuator might have on the turbulence transition mechanisms.  However, as a 

demonstration of a control strategy designed to alter the pressure distribution over the 

airfoil, it is thought to be adequate. 

2.2.4. Plasma Actuator Modeling.  The actuator was modeled as a simple body  

force applied to a small region adjacent to the airfoil surface, as shown in Figure 2.4.  To 

model this force, the OVERFLOW source code was modified to handle an additional 

right-hand side body force source term, incorporating a dimensionless quantity, fnd, 

defined as 

 

      
   

    
 , (1) 

 

where    is the magnitude of the applied body force per unit volume, c is the airfoil 

chord,    is the free-stream density, and    is free-stream velocity.  The space the body 

force occupied was designed to be the rough equivalent of that required by a plasma 

actuator.  In this study, the body force was localized to a region 0.02c × 0.003c, with the 

body force applied in the x-direction, as shown in Figure 2.4. 

 Modeling a pulsed actuator was done by varying the frequency and duty cycle of 

the actuator pulse.  Variations in body force magnitude due to the voltage change are 

ignored.  Thus, the resultant applied waveform is a step, as shown in Figure 2.5. 

2.2.5. Input Parameter Space.  The free-stream conditions in this study are held  

constant.  The free-stream Mach number is set to 0.01, ensuring negligible 

compressibility effects, and the Reynolds number is set to 1×10
5
.  The angle of attack α 

of the airfoil is held constant at 10 degrees.  Free-stream turbulence intensity is 10 



 

 

20 

 

Figure 2.4. Body force location and direction 

 

 

 

Figure 2.5. Example body force waveform 
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percent in all regions except where laminar flow is specified, near the leading edge of the 

airfoil.  Other free-stream conditions are assumed to be those of air under standard sea-

level conditions.  This is summarized in table 2.3. 

 

 

Table 2.3. Free-stream conditions 

Condition Set value 

Mach Number (M∞) 0.01 

Reynolds Number (Re) 1×10
5
 

Angle of Attack (α) 10° 

Turbulence Intensity 10% 

 

 

The parameters of interest in this study are body force location, magnitude, 

frequency and duty cycle.  The location of the leading edge of the actuator is varied 

between Xs = -0.005c and 0.028c, while the magnitude of the body force is varied 

between fnd= 0 and 20.  The duty cycle of the actuator is varied between 0 (no pulse) and 

100% (steady state) while the pulse frequency is varied between f = 0.125 and 2.0 for 

selected conditions.  This information is summarized in table 2.4. 

 

 

Table 2.4. Investigated parameter space 

Parameter Selected Range 

Xs -0.005c to 0.028c 

fnd 0 to 20 

D 0% to 100% 

f 0.125 to 2.000 
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2.2.6. Methodology Validation and Limitations.  To this author‟s knowledge,  

no experimental data is available for the specific case under investigation (16% thick 

elliptical airfoil at α=10 deg., Re = 1.0e5).  However, a limited amount of experimental 

data is available for similar cases.   

A study by Choi [31] considers the aerodynamic characteristics of a 20% thick 

elliptical airfoil at a Reynolds number of 2.48e5-3.91e6, and presents computational 

results alongside with experimental.  In this study, both the computational and 

experimental results presented indicate the presence of a leading edge LSB at angles of 

attack ranging from 8-15 degrees at Reynolds numbers ranging from 2.48e5 to 4.96e5.  A 

study conducted prior to this work using identical methods to those in this study [6] 

predicted the formation of a LSB over a 16% thick elliptical airfoil at a 10 degree angle 

of attack over a Reynolds number range of 5.0e4 to 6.0e5.  This is completely consistent 

with the range of Reynolds numbers under which LSBs were experimentally observed 

(2.48e5 was the lowest Reynolds number considered and the next highest was 1.24e6).  

While these data sets cannot be directly compared because of the slightly different airfoil 

geometries studied, the comparison nevertheless lends confidence to the work conducted 

in this study. 

A more direct comparison can be made with the work of Kwon [32].  This study 

provides experimental data for a 16% thick elliptical airfoil at a Reynolds number of 

3.0e5 and a range of angles of attack.  Though no observation of a LSB was made in this 

study, it was noted by the authors that the methods used were incapable of detecting such 

phenomena.  Cross-referencing this study with that previously mentioned using identical 

methodology, we find that they share a common data point within their respective 

parameter spaces.  The lift and drag coefficients found by Kwon in this condition is 

compared to the numerical predictions in table 2.5. 

 As shown, the computational study underestimated the magnitudes of both force 

coefficients by approximately 20%.  The reason for these discrepancies is not known with 

certainty, though several known issues may have contributed.  Trailing edge separation of 

elliptical airfoils is inevitable due to their bluntness, and this separated region has a 

tremendous impact on the aerodynamic performance of the airfoil.  Insufficient surface 

grid density over the aft portion of the airfoil may have prevented the flow solver from 
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Table 2.5. Comparison between experimental and computational force coefficients for 

16% thick elliptic airfoil (α=10°, Re= 3.0e5) 

Parameter Kwon [32] CFD Error 

Cl ~1.0 0.82 ~18% 

Cd ~0.04 0.032 ~20% 

 

 

accurately modeling this flow region.  Additionally, the simple Spalart-Allmaras 

turbulence model, while capable of efficiently and accurately modeling attached 

boundary layers, is not well suited to predict flow separation.  While this isn‟t an issue in 

modeling the LSB (the separation is laminar), it is important in predicting trailing edge 

separation.  Although these issues may prevent highly accurate comparison with 

experimental results, the overarching goal of this study is not accurate performance 

prediction, but relative performance enhancement.  These sacrifices in accuracy are 

considered acceptable, providing the computational results to be compared are equally 

handicapped.   

On an analogous note, for the reasons listed above, steady and time-accurate 

solutions are not directly compared in this study.  As will be seen, time-accurate solutions 

of un-actuated and steadily actuated cases were found to consistently produce slightly 

larger LSBs resulting in predictable differences of up to 11% in Cl and Cd even after the 

flow-field has reached equilibrium.  The cause of this phenomenon is unknown, but 

comparison of the flow-fields showed no major discrepancies between the solutions 

generated by each method other than the one previously noted.  However, because of this 

discrepancy, when comparing the effectiveness of pulsed and steady actuators, the pulsed 

actuator results are compared to time-accurate solutions with steady actuators run to 

equilibrium, rather than true time-steady solutions, to eliminate inadvertent numerical 

bias. 
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2.3. POST-PROCESSING 

2.3.1. Quantitative Analysis.  A variety of tools was used to extract and analyze  

data obtained from OVERFLOW.  FOMOCO (FOrce and MOment Computation tools 

for Overset grids), a software package often bundled with OVERFLOW, was used to 

compute the force and moment coefficients of the airfoil under each obtained case.  

Plotting of the airfoil pressure distribution and pressure gradient distribution, as well as 

the determination of laminar separation and reattachment points were achieved with 

Tecplot 360™, a proprietary flow visualization software. 

2.3.2. Qualitative Analysis.  Tecplot 360™ was also used to conduct flow- 

visualization, which is essential to understanding the flow physics governing airfoil 

performance.  Pressure and velocity contour plots, vector field plots, and streamline plots 

are produced and analyzed in this work. 
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3. RESULTS AND DISCUSSION: PARAMETRIC STUDY OF EFFECTS OF 

STEADILY OPERATED ACTUATOR ON LSB AND AIRFOIL 

PERFORMANCE 

3.1. NOMENCLATURE USED IN PROCEEDING ANALYSIS 

To better represent the obtained results, a new coordinate system is defined. The 

location of the leading edge of the actuator is used as the X-axis variable in the following 

analysis, as indicated in Figure 3.1. As shown, Xs is defined as the location of the leading 

edge of the actuator with respect to the laminar separation point of the control case. This 

schematic also shows the direction of the applied body force. 

 

 

 
Figure 3.1. Coordinate system used in analysis 

 

 

3.2. QUALITATIVE INVESTIGATION OF EFFECTS OF ACTUATOR ON LSB 

CHARACTERISTICS 

 

Figure 3.2 shows the effect of the body force magnitude and location on the LSB 

and airfoil lift to drag ratio. This figure is organized into three rows. The top row shows 
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the reference case, where no actuator was applied. The center and bottom rows show the 

effects of actuator placement on LSB development for actuator strengths fnd = 10 and 20, 

respectively. In frames d through i, the actuator location is indicated with a pale 

highlight. 

 

 

 
 (a) fnd=0 (ref. case): L/D=16.1 (b) fnd=0 (ref. case): L/D=16.1 (c) fnd=0 (ref. case): L/D=16.1 

 
(d) fnd=10, Xs=-0.003c: L/D=19.5(e) fnd=10, Xs=0.009c: L/D=18.6 (f) fnd=10, Xs=0.022c: L/D=17.5 

 
(g) fnd=20, Xs=-0.003c: L/D=23.5 (h) fnd=20, Xs=0.009c: L/D=25.8(i) fnd=20, Xs=0.022c: L/D=25.3 

 

Figure 3.2. Influence of actuator strength and location on LSB development and 

corresponding lift-to-drag ratio 
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As shown, when placed upstream of the nominal separation point (Xs = -0.003), 

the actuator has the effect of shrinking the LSB in all dimensions.  As the actuator is 

moved 0.009 c downstream of the separation point, the same effect is observed, but to a 

lesser effect in the fnd = 10 case.  In the fnd = 20 case, the LSB appears to have been 

simultaneously “squeezed” to the airfoil surface and “stretched” laterally.  The laminar 

separation point is clearly shifted downstream from the nominal location.  As observed 

for fnd = 10, as the actuator is moved further downstream to Xs = 0.022 c, it causes 

additional flow complexity in the form of an LSB breakup.  As shown in  

Figure 3.2.f, two smaller clockwise rotating bubbles are clearly visible upstream 

of the primary one, which interact to induce secondary counter-clockwise rotation.  Here, 

the effective airfoil shape does not appear to have been significantly altered with respect 

to that of the reference case.  As shown in  

Figure 3.2.i, for fnd = 20, as the actuator is shifted to Xs = 0.022 c, the LSB is merely 

shifted and stretched further downstream.  However, a secondary separation point has 

formed upstream of the actuator, near the nominal separation point.  From this 

information, it would appear that moving the actuator too far downstream of the laminar 

separation point results in the reformation of the LSB upstream of the actuator.   

Figure 3.2 also shows a correlation between LSB size reduction and airfoil 

aerodynamic performance.  As indicated, the cases in which the LSB size is reduced most 

tend to yield higher lift-to-drag ratios than their counterparts. This correlation is 

discussed in greater detail in 3.3 and 3.4.   

Figure 3.3 through Figure 3.5 give the computed pressure coefficient distribution 

of the airfoil over the upper leading edge of the airfoil for various force magnitudes at 

given actuator locations.  Each figure contains two plots: one conventionally plotting the 

pressure coefficient against Xs, and a second plotting Cp against y.  The Cp vs. Y plots are 

relevant to this analysis because they can be integrated to find the net pressure drag over 

the airfoil, just as Cp vs. x plots can be integrated to determine lift.  The location of the 

LSB in each case roughly corresponds to the location of the secondary suction peak 

located downstream of the airfoil‟s natural peak.  The reason that LSBs tend to reduce 

aerodynamic efficiency is their tendency to degrade the natural suction peak of the airfoil.  

The most significant consequence of this increase in pressure over the leading edge of the 
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airfoil is a dramatic increase in pressure drag.  In extreme cases, it can also reduce the lift 

generated by the airfoil [6].  It follows, then, that airfoil performance can be enhanced by 

restoring the “natural” suction peak of the airfoil.  As shown in Figure 3.3 through Figure 

3.5, regardless of actuator location, as the magnitude of the body force is increased, the 

primary suction peak of the airfoil becomes more pronounced.  This is the physical 

mechanism responsible for the improvement in the aerodynamic efficiency of the airfoil.  

The greatest improvement is shown in Figure 3.4 with fnd = 20.  As shown, in this case 

the suction peak associated with the LSB has effectively vanished, and the natural suction 

peak has been restored.  Not coincidentally, this case corresponded to the greatest 

improvements seen in the lift-to-drag ratio of the airfoil.  Of special note in Figure 3.5 is 

the existence of multiple distinct pressure peaks for all but one of the cases.  This is the 

result of the LSB breakup previously mentioned, wherein multiple distinct bubbles are 

observed. 

 

 
 (a) Cp vs. Xs (b) Cp vs. Y 

Figure 3.3. Influence of actuator strength on pressure distribution over upper leading edge 

of airfoil (Xs = -0.003c) 

 

For convenience, Figure 3.6 and Figure 3.7 are provided, complementing the data 

shown in Figure 3.3 through Figure 3.5.  Figure 3.6 and Figure 3.7 show the effect of 

moving the actuator downstream for two force magnitudes.  As shown, the optimal 
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 (a) Cp vs. Xs (b) Cp vs. Y 

Figure 3.4. Influence of actuator strength on pressure distribution over upper leading edge 

of airfoil (Xs = 0.009c) 

 

 

 
 (a) Cp vs. Xs (b) Cp vs. Y 

Figure 3.5. Influence of actuator strength on pressure distribution over upper leading edge 

of airfoil (Xs = 0.022c) 
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location of the actuator with respect to pressure peak restoration is dependent upon force 

magnitude.  This is consistent with the observations previously made with respect to the 

LSB size and airfoil lift to drag ratio. 

 

 
 (a) Cp vs. Xs (b) Cp vs. Y 

Figure 3.6. Influence of actuator location on pressure distribution over upper leading edge 

of airfoil (fnd = 10) 

 

 
 (a) Cp vs. Xs (b) Cp vs. Y 

Figure 3.7. Influence of actuator location on pressure distribution over upper leading edge 

of airfoil (fnd = 20) 
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3.3. DEPENDENCE OF LSB SIZE ON ACTUATOR STRENGTH AND 

POSITION 

In order to quantitatively examine the relationship between the actuator 

strength/position and the size of the bubble, and thus the change in the effective airfoil 

shape, a new parameter was defined.  The comparative area plotted in Figure 3.8 is 

simply the product of the chord-wise length of the bubble and the height of the center of 

rotation with respect to the airfoil surface.  It is merely a means of comparing solutions, 

and should not be treated as a direct measure of the area of the LSB. Figure 3.8 shows the 

dependence of the comparative area of the LSB on actuator position, for fnd magnitudes 

of 0, 5, 10, 15, and 20. 

 

 

 
Figure 3.8. Influence of actuator location and strength on LSB size 
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As shown in Figure 3.8, it was found that increasing the body force magnitude 

generally reduced the size of the LSB.  This is in agreement with intuition, as a body 

force applied in the direction of the fluid motion would be expected to counteract the 

adverse pressure gradient responsible for the initial flow separation.  It was found that for 

fnds of 5, 10, and 15, the location of the actuator which resulted in minimum LSB size 

was upstream of the nominal leading edge of the LSB.  For each of these cases, optimal 

actuator performance was observed to occur when the actuator was “straddling” the LSB 

separation point, with the actuator leading edge upstream of the separation point, and the 

trailing edge downstream.  However, for fnd = 20, the optimal actuator location was found 

to be roughly 0.017 c downstream of the LSB separation point.  This discrepancy was 

unexpected.  It may be the case that the larger force magnitude had a strong enough 

upstream influence to achieve the desirous effect seen in the other cases, and that 

downstream placement had a greater effect on the rest of the bubble.  However, more 

research is required to confirm this hypothesis.  It may also be the case that the 

discrepancy was the result of error associated with the crudeness of the method to 

determine LSB area.  However this suggestion would seem to be partially discredited by 

the airfoil performance data given in 3.4.  The trends described in this section break down 

as the actuator leading edge is moved roughly 0.2 c downstream of the LSB separation 

point for the fnd = 5, 10, and 15 cases, as shown in Figure 3.8.  This phenomenon is the 

result of actuator-induced flow-field complexity, more fully discussed in 3.5. 

 

 

3.4. DEPENDENCE OF AIRFOIL AERODYNAMIC PERFORMANCE ON 

ACTUATOR STRENGTH AND POSITION 

Figure 3.9 gives the lift to drag ratio of the airfoil versus actuator location for 

various force magnitudes.  As shown, the actuator location corresponding to peak 

aerodynamic efficiency is not constant with respect to fnd.  For fnd = 5 and 10, the optimal 

actuator leading edge location is slightly upstream of the nominal LSB leading edge.  For 

the fnd = 15 case, optimal efficiency occurs when the actuator is placed 0.005 c 

downstream of the separation point, and for the fnd = 20 case, this occurs at approximately 

0.013 c.  It was found that for an fnd of 5, the lift to drag ratio of the airfoil could be 
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improved by 8.1 percent at Xs = -0.0027 c (0.0027 c upstream of the separation point).  

For fnd = 10, the lift to drag ratio could be increased by 21.8 percent at Xs = 0.  At fnd = 15, 

the lift to drag ratio could be improved by 39.8 percent at Xs = 0.0028 c.  At fnd = 20, the 

lift to drag ratio was found to improve by 61.2 percent to 25.9 at Xs = 0.0119 c.   

 Although the optimal locations of the actuator with respect to the LSB area and 

airfoil efficiency are not identical, it is apparent from the data that the shrinking or 

elimination of the LSB generally corresponds to improvements in aerodynamic 

efficiency. Comparing the case whereby the maximum performance enhancement was 

attained to the reference case, this trend becomes apparent. Under the maximum 

performance case, the actuator effectively eliminates the LSB, as shown in Figure 3.10, 

which compares that case to the control case.   

 

 

 
Figure 3.9. Dependence of airfoil lift-to-drag ratio on actuator strength and location 
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 (a) fnd=0 (ref. case) (b) fnd=20, Xs=0.0119 

Figure 3.10. Comparison between stream-traces and pressure coefficient contour plots for 

control and optimal performance case 

 

The lift and drag coefficients obtained from this solution were 0.9591 and 0.0370, 

corresponding to a lift to drag ratio of 25.90.  By comparison, in the reference case, the 

airfoil had a lift coefficient of 0.8486, a drag coefficient of 0.0528, and a lift to drag ratio 

of 16.08.  The actuator had the effect of increasing the lift of the airfoil by 13 percent 

over the nominal case, and reducing the drag by 30 percent, improving the lift to drag 

ratio by 61 percent.  Presumably, this boost in lift can be explained by the actuator 

induced acceleration of the flow over the upper surface of the airfoil.  The drag reduction 

can be explained by the restoration of the leading edge suction peak of the airfoil, as 

previously established. 

As a second actuator performance barometer, a high Reynolds number case, under 

which an LSB is not observed, can be examined.  Here, a case identical to the control 

case, but with a Reynolds number of 2 million is observed.  The lift coefficient, drag 

coefficient, and lift-to-drag ratio of this case are computed to be 0.7530, 0.0256, and 

29.44, respectively.  As Figure 3.11 shows, the actuator has the effect of restoring the 

pressure distribution over the leading edge of the airfoil to something roughly similar to 

that attained at a Reynolds number of 2 million without an actuator.  In fact, the leading 

edge suction peak of the optimized case is superior to that observed at higher Reynolds 

numbers.  Compared with the high Reynolds number case, the optimal solution featured 
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27 percent greater lift, and 45 percent greater drag (compared with the 106 percent 

increase in drag associated with reference case).  The lift to drag ratio was merely 12 

percent lower than that attained at a Reynolds number of 2 million.  The actuator has the 

effect of marginally increasing the lift of the airfoil (already inflated due to the low 

Reynolds number), while drastically reducing the drag associated with the LSB. 

 

  

 (a) Cp vs. Xs (b) Cp vs. Y 

Figure 3.11. Comparison between pressure distributions of optimal performance case and 

control case with Re = 2 million 

 

 

3.5. OBSERVATION OF ACTUATOR INDUCED LSB BREAKUP AND 

INSTABILITY 

As previously mentioned, erratic LSB behavior is observed as the actuator is 

moved significantly downstream of the laminar separation point.  This appears to be the 

result of an LSB breakup induced by the actuator.  As shown in Figure 3.12, as the 

actuator is progressively shifted downstream of the nominal separation point, additional 

clockwise circulatory regions appear upstream of the primary LSB core.  These separate 

circulations ultimately interact, inducing secondary counter-rotational flow between 

them.  This behavior results in progressively increasing flow-field complexity, rendering 

the applied method of measuring LSB size inadequate, and ultimately resulting in flow-

field instability.  This behavior was noted in each of the fnd = 5, 10, and 15 cases.  As 
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suggested, the stability of the LSB is highly sensitive to the location of the actuator, when 

located downstream of the laminar separation point. 

 

 

 
 (a) Xs=0.0088 c (b) Xs=0.0151 c 

 
 (c) Xs=0.0215 c (d) Xs=0.0281 c 

Figure 3.12. Evolution of LSB structure as actuator is shifted downstream of nominal 

separation point (fnd=15) 
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4. RESULTS AND DISCUSSION: PARAMETRIC STUDY OF EFFECTS OF 

PULSED ACTUATOR ON LSB AND AIRFOIL PERFORMANCE 

The purpose of this analysis is to investigate the effects of „pulsing‟ an actuator on 

the LSB flow structure and the corresponding effects on airfoil aerodynamic 

performance.  In this analysis, the actuator is pulsed at various frequencies and duty 

cycles, while the magnitude of the applied dimensionless body force fnd is held constant 

at 20.  The overarching goal of this portion of the study is to determine whether pulsing 

an actuator can result in any performance enhancement with respect to a steadily operated 

device. 

 

 

4.1. QUALITATIVE INVESTIGATION OF ACTUATOR INDUCED UNSTEADY 

EFFECTS 

Streamline and pressure coefficient plots are examined at various time intervals to 

develop a conceptual understanding of the unsteady flow physics resulting from pulsed 

actuation and how those physics relate to the aerodynamic performance of the airfoil.   

To understand the quasi-steady state aerodynamic behavior exhibited by the 

airfoil, it is necessary to understand the unsteady flow developments over the course of a 

single actuation period.  Figure 4.1, Figure 4.4, Figure 4.6, and Figure 4.8 are streamline 

distribution and pressure coefficient contour plots showing the flow developments 

present at specific points within the actuation period for a non-dimensional frequency of 

2.0 and duty cycles ranging from 20 to 80 percent.  The „snapshots‟ shown in each figure 

were taken after the initial transient response of the flow-field to the actuator had 

dissipated, and the lift and drag of the airfoil had reached quasi-equilibrium.  Figure 4.3, 

Figure 4.5, Figure 4.7, and Figure 4.9 show the time-dependent airfoil pressure 

distributions over the upper leading edge region of the airfoil corresponding to Figure 

4.1, Figure 4.4, Figure 4.6, and Figure 4.8.   

4.1.1. f = 2.0 case.  Figure 4.1 shows the periodic flow-field developments  

corresponding to a frequency f of 2.0 and a 20 percent duty cycle, once the flow-field has 

reached a quasi-equilibrium state.  Frame (a) corresponds to the snapshot in time directly 
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preceding the actuator pulse.  Frames (b) through (f) show the response of the flow field 

up to the point of the next actuator pulse in dimensionless time increments of 0.1.  

Because the dimensionless actuation period T corresponding to f=2.0 is 0.5, frame (f) also 

corresponds to the instance in time directly preceding the following actuator pulse.   

 

 
 (a)         (off)  (d)          (off) 

 
 (b)         (on)  (e)          (off) 

 
 (c)          (off)  (f)          (off) 

Figure 4.1. Pressure coefficient contour and streamline distributions over 1 duty cycle 

(f=2.0, D=0.2) 

 

 

As shown in frame (b), the LSB has been “split” into three distinct bubbles, a 

small, “flat” bubble separating upstream of the actuator and reattaching between the 

leading and trailing edges of the actuator, a smaller bubble just downstream of the 

actuator trailing edge, and a taller, better developed bubble further downstream of the 

actuator trailing edge.  All three bubbles rotate clockwise.  Also shown in Figure 4.1 is 

the leading edge of a fourth bubble located far downstream of the actuator, which does 

not noticeably change with time.  As shown, there is a very pronounced low pressure 
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peak associated with the third bubble (as indicated by the blue color), and a smaller peak 

associated with the second.  As time progresses, several trends are observed.  The second 

bubble is observed to quickly grow, eventually merging with the first bubble, and 

forming an increasingly strong suction peak, as indicated in frames (b) through (e).  As 

time progresses, the leading edge bubble extends further downstream, more closely 

resembling the steady-state reference solution, as expected.  The previously mentioned 

third bubble is observed to propagate downstream with time.  The bubble is observed to 

“flatten” and the pressure peak is shown to dissipate.  Ultimately, the bubble merges with 

the fourth downstream bubble, strengthening it, as shown in frame (f).  It is noted that the 

apparently stable fourth bubble was found to be present in all f=2.0 cases, but never in the 

lower frequency cases.  As will be shown later, this bubble does not seem to have an 

appreciable effect on the aerodynamic performance of the airfoil.  

Figure 4.2 shows the effects of the actuator on the airfoil surface pressure 

distribution over the course of a single actuation period.  As shown, directly following the 

actuator pulse (     = 0.2), there are three low pressure peaks over the leading edge of 

the airfoil: the natural suction peak of the airfoil (x/c = 0), that corresponding to the 

previously mentioned second bubble near the trailing edge of the actuator (x/c = 0.05), 

and that of the third and most developed bubble (x/c = 0.08).  As shown, the natural 

suction peak pressure coefficient reaches approximately -3.4, and remains relatively 

constant with time.  This is a modest improvement over the reference natural peak of -

3.0.  The second peak magnifies with time, and shifts slowly downstream.  As shown, 

from      = 0.2 to      = 1.0, the peak shifts from x/c = 0.05 to x/c = 0.07, while the 

pressure coefficient decreases from -2.2 to approximately -3.5.  It is fairly clear from 

Figure 4.3 that the actuator pulse results in further enhancement of this peak to -4.2, 

where it transitions to the third pressure peak, while another peak forms at x/c = 0.05 to 

replace the second.  After the pulse, the third peak quickly dissipates and moves 

downstream with the previously mentioned third bubble.  As shown, from      = 0.2 to 

     = 0.4, this pressure coefficient of this peak increases dramatically from -4.2 to -2.0, 

while shifting downstream from x/c = 0.08 to 0.1.  From this point, the peak continues to 

dissipate and move downstream until the third and fourth bubbles merge at      = 1.0. 
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 (a) Cp vs. X (tp/T=0.2, on)  (b) Cp vs. Y (tp/T=0.2, on) 

  
 (c) Cp vs. X (tp/T=0.4, off)  (d) Cp vs. Y (tp/T=0.4, off) 

  
 (e) Cp vs. X (tp/T=0.6, off)  (f) Cp vs. Y (tp/T=0.6, off) 

  
 (g) Cp vs. X (tp/T=0.8, off)  (h) Cp vs. Y (tp/T=0.8, off) 

  
 (i) Cp vs. X (tp/T=1.0, off)  (j) Cp vs. Y (tp/T=1.0, off) 

Figure 4.2. Influence of pulsed actuator on airfoil pressure distribution (f=2.0, D=0.2) 
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Figure 4.3 compresses the data from Figure 4.2 into single Cp vs. X and Cp vs. Y 

plots.  To save space, all following pressure distribution data will be presented in this 

fashion. 

 

 
 (a) Cp vs. X  (b) Cp vs. Y 

Figure 4.3. Influence of pulsed actuator on airfoil pressure distribution (f=2.0, D=0.2) 

 

Figure 4.4 shows the flow-field developments corresponding to f=2.0 and D = 0.4.  

As shown, the flow developments over the course of an actuation period are slightly 

different than those seen in the D = 0.2 case.  As shown, at      = 0.2, three clockwise 

circulation cores are observed near the leading edge of the airfoil, and a sharp pressure 

peak is observed near the third bubble.  Whereas in the D = 0.2 case in which the first and 

second bubbles are found to merge, in this case, mergence of the second and third 

bubbles is observed as time progresses, leaving only two circulation cores.  Once this 

mergence has occurred, the flow behaves similarly to that of the      = 0.2 case.  

Notably, the third bubble begins dissipating before the actuator is turned “off” (     = 

0.4), indicating that the behavior of the third bubble is not directly driven by the actuator, 

but is rather the natural fluid response of the second bubble (which is generated during 

each pulse as a result of a break-up of the first), as it transitions into “becoming” the 

third. 
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 (a)         (off)  (d)          (off) 

 
 (b)          (on)  (e)          (off) 

 
 (c)          (on)  (f)          (off) 

Figure 4.4. Pressure coefficient contour and streamline distributions over 1 duty cycle 

(f=2.0, D=0.4) 

 

 

As shown in Figure 4.5, the time-dependant behavior of the pressure distribution 

over the airfoil is slightly different than that shown in Figure 4.3.  As shown, a small 

secondary suction peak forms at x/c = 0.05 after the actuator is “turned on” at       = 

0.2.  However, it quickly moves downstream until merging with the third suction peak at  

     = 0.6.  However, another suction peak simultaneously reappears at x/c = 0.5.  From 

comparison with Figure 4.4, this corresponds to the first bubble growing and shifting 

downstream.  This peak, rather than degrading and disappearing, grows until the next 

actuator pulse, at which point, the bubble breaks up.  In terms of overall aerodynamic 

effect, it appears that the primary effect of the increased duty cycle with respect to the D 

= 0.2 case above is to enhance the natural suction peak of the airfoil.  As shown, the 
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natural pressure coefficient peak varies between -3.6 and -3.8 over the course of a period, 

0.2-0.4 lower than the corresponding peak of the D = 0.2 case and 0.6-0.8 lower than that 

of the reference case.   

 

 
 (a) Cp vs. X  (b) Cp vs. Y 

Figure 4.5. Influence of pulsed actuator on airfoil pressure distribution (f=2.0, D=0.4) 

 

 

Figure 4.6 and Figure 4.7 show the flow-field developments and surface pressure 

coefficient distribution changes over the course of an actuation period with D = 0.6.  The 

flow-field development is similar to that of the D = 0.4 case.  This observation is 

confirmed in Figure 4.7.  However, in contrast to the D = 0.4 case, the growth of the first 

suction peak to replace the disappeared second peak is delayed until      = 0.8.  In 

contrast, this event took place at      = 0.6 in the D = 0.4 case.  Intuitively, this 

observation indicates that the expansion of the first bubble is suppressed by the actuator 

while “on,” thus limiting the eventual size of the bubble when the next actuation cycle 

begins.  As shown in Figure 4.7, in the D = 0.6 case, the natural suction peak pressure 

coefficient of the airfoil is enhanced to approximately -4.0.   
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 (a)          (off)  (d)          (on) 

 
 (b)          (on)  (e)          (off) 

 
 (c)          (on)  (f)          (off) 

Figure 4.6. Pressure coefficient contour and streamline distributions over 1 duty cycle 

(f=2.0, D=0.6) 

 

 

 
 (a) Cp vs. X  (b) Cp vs. Y 

Figure 4.7. Influence of pulsed actuator on airfoil pressure distribution (f=2.0, D=0.6) 
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 (a)          (off)  (d)          (on) 

 
 (b)          (on)  (e)          (on) 

 
 (c)          (on)  (f)          (off) 

Figure 4.8. Pressure coefficient contour and streamline distributions over 1 duty cycle 

(f=2.0, D=0.8) 

Figure 4.8 and Figure 4.9 show the flow development and airfoil pressure 

distribution corresponding to the case with f = 2.0 and D = 0.8.  As shown in Figure 4.8, 

the flow-development is fundamentally similar to the D = 0.4 and D = 0.6 cases.  As 

shown, in comparison to the other cases, the bubble features are much less pronounced 

than in any of the previous cases, with all features “squeezed” to the airfoil surface.  

Because, in this case, the actuator is “on” for most of the actuation period, there is little 

time available for the growth of the first bubble during the “off” portion of the period.  

Consequently, the surface pressure peaks corresponding to the aft bubbles are much less 

pronounced with respect to the previous cases, as shown in Figure 4.9.  However, the 

natural suction peak of the airfoil in this case is enhanced to a pressure coefficient of -4.2 

to -4.4, which would be expected to enhance the aerodynamic performance of the airfoil 

with respect to the previously discussed cases.   
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 (a) Cp vs. X  (b) Cp vs. Y 

Figure 4.9. Influence of pulsed actuator on airfoil pressure distribution (f=2.0, D=0.8) 

 

 

Figure 4.10, Figure 4.11, and Figure 4.12 plot the temporal responses of the airfoil 

lift coefficient, drag coefficient, and lift-to-drag ratio for f = 2.0 and D from 0 (reference 

case) to 1 (steady actuation) in increments of 0.2, corresponding to all of the cases 

discussed above.  As shown in Figure 4.10, as the duty cycle is increased, the quasi-

equilibrium lift coefficient increases.  This is to be expected, given the greater amount of 

time spent in the active state, and hence power requirements.  However, the degree of 

improvement over the baseline case clearly does not increase linearly with the duty cycle.  

For instance, the improvement in the average lift coefficient of the D=0.2 case and the 

reference case is marginal (approximately 0.01).  However, the D=0.4 case exhibits a Cl 

improvement of approximately 0.06, despite only double the duty cycle of the previous 

case, making the actuator of D=0.4 roughly 3 times as effective as an actuator of D=0.2 

in terms of lift enhancement. 

Further examination of Figure 4.10 reveals that the time required to reach quasi-

equilibrium after initialization is dependent upon the duty cycle.  From visual 

observation, the time required for initial large-scale flow-field instabilities to damp out 

decreases as the duty cycle increases.  For instance, it takes more than twice as long for 

the instabilities in the D=0.2 case to become negligible than for the D=1.0 case.  The 
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Figure 4.10. Transient response of lift coefficient to pulsed actuator (f = 2.0) 

 

 

amplitude of the quasi-equilibrium oscillations resulting from pulsing is also shown to be 

dependent upon duty cycle.  As shown, the amplitude of the equilibrium waveform of the 

D=0.2 case is clearly greater than that of any of the higher D cases.  Presumably, this 

results from the previously mentioned dependence of the aft-bubble peak amplitude on 

the length of the “off” portion of the actuation period.   

As shown in Figure 4.11, the time-averaged drag coefficient in the D=0.2 case is 

approximately 0.046, significantly lower than that of the reference case (0.056).  

Subsequent increases in the duty cycle result in further reductions in the drag coefficient.  

As with the lift coefficient, this trend is to be expected, given the larger fraction of time 

spent in the active state as D is increased.   

The amplitude of the Cd waveform with respect to the average values is relatively 

high.  In the most severe example (D=0.4), the peak-to-peak amplitude of the waveform 

is approximately 4 percent of the average value.  By comparison, the most severe 

variations in the lift coefficient at f=2.0 (D=0.2) is about 1 percent of the mean Cl at that 
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case.  However, the absolute magnitudes of the drag amplitudes are significantly smaller 

than those of the lift.  As shown, the cases with mild duty cycles (D=0.4 and D=0.6) 

exhibit larger amplitudes than the cases with either “high” or “low” duty cycles. 

 

 

 
Figure 4.11. Transient response of drag coefficient to pulsed actuator (f = 2.0) 

 

 

Figure 4.12 shows the temporal response of the lift to drag ratio of the airfoil at a 

frequency f of 2.0 and various duty cycles.  In agreement with the previous results, the 

quasi-steady average lift-to-drag ratio increases with D.  Also in agreement with the 

previous results, the time required for the airfoil to reach quasi-steady operation 

decreases as D is increased.  In agreement with Figure 4.11, the largest steady-state 

waveform amplitudes are observed at mild duty cycles (D=0.4 and D=0.6).   

4.1.2. f=1.0 case.  Figure 4.13 shows the flow-field developments over one 

 quasi-steady actuation period.  Note that the time increment between frames is double 

that of the figures in the previous section.  As shown, the bubble features are far more 
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Figure 4.12. Transient response of lift to drag ratio to pulsed actuator (f = 2.0) 

 

 

pronounced in this case than any of the previously presented cases.  This is a result of the 

longer sustained inactive state associated with the lower actuation frequency (longer 

period).  Put another way, within each period, the fluid has a longer time to respond after 

the actuator pulse.  It logically follows that the fluid would tend, in this state, to approach 

the reference solution.  As explained in the previous section, the greater time allowed for 

the flow-field development would also tend to result in greatly enhanced pressure peaks 

associated with the bubble flow structures.  This trend is also observed when comparing 

Figure 4.14 with the comparable figures from the previous section.  In terms of net 

aerodynamic effects, this would also be expected to result in larger peak-to peak 

amplitudes in the lift coefficient, drag coefficient, and lift-to-drag ratio. 

 The flow and pressure distribution trends for this case, and all cases with f = 1.0 

are the same as those observed for the D = 0.4, 0.6, and 0.8 cases for f = 2.0, so they will 

not be discussed in great detail here.  For reference, Figure 4.15 through Figure 4.20 are 

provided, which contain the same data for the D = 0.4, 0.6, and 0.8 cases. 
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 (a)          (off)  (d)          (off) 

 
 (b)          (on)  (e)          (off) 

 
 (c)          (off)  (f)          (off) 

Figure 4.13. Pressure coefficient contour and streamline distributions over 1 duty cycle 

(f=1.0, D=0.2) 

 

 
 (a) Cp vs. X  (b) Cp vs. Y 

Figure 4.14. Influence of pulsed actuator on airfoil pressure distribution (f=1.0, D=0.2)
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 (a)          (off)  (d)          (off) 

 
 (b)          (on)  (e)          (off) 

 
 (c)          (on)  (f)          (off) 

Figure 4.15. Pressure coefficient contour and streamline distributions over 1 duty cycle 

(f=1.0, D=0.4) 

 

 
 (a) Cp vs. X  (b) Cp vs. Y 

Figure 4.16. Influence of pulsed actuator on airfoil pressure distribution (f=1.0, D=0.4)
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 (a)          (off)  (d)          (on) 

 
 (b)          (on)  (e)          (off) 

 
 (c)          (on)  (f)          (off) 

Figure 4.17. Pressure coefficient contour and streamline distributions over 1 duty cycle 

(f=1.0, D=0.6) 

 

 
 (a) Cp vs. X  (b) Cp vs. Y 

Figure 4.18. Influence of pulsed actuator on airfoil pressure distribution (f=1.0, D=0.6)
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 (a)          (off)  (d)          (on) 

 
 (b)          (on)  (e)          (on) 

 
 (c)          (on)  (f)          (off) 

Figure 4.19. Pressure coefficient contour and streamline distributions over 1 duty cycle 

(f=1.0, D=0.8) 

 

 
 (a) Cp vs. X  (b) Cp vs. Y 

Figure 4.20. Influence of pulsed actuator on airfoil pressure distribution (f=1.0, D=0.8) 
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 Figure 4.21 shows the transient response of the lift coefficient to an actuator 

operated at a non-dimensional frequency of 1.0.  As shown, many of the trends observed 

in Figure 4.10 are also present in Figure 4.21.  There exists a non-linear dependence of 

actuator effectiveness on duty cycle as well as shorter damping times and smaller 

amplitude oscillations associated with increased duty cycle.  As was observed in Figure 

4.10, there exists a dependence of Cl amplitude upon frequency.  As shown, the 

oscillation amplitudes in Figure 4.21 are clearly greater than those present in Figure 4.10.  

This is in agreement with the previous comments regarding the effects of frequency on 

waveform amplitude. 

 

 

 
Figure 4.21. Transient response of lift coefficient to pulsed actuator (f = 1.0) 

 

 

Figure 4.22 shows the Cd response of the airfoil under an actuation frequency f of 

1.0.  As shown, the general trends discussed above regarding the mean Cd and amplitude 

dependence upon duty cycle are still present.  There is no appreciable change in the mean 
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Figure 4.22. Transient response of drag coefficient to pulsed actuator (f = 1.0) 

 

drag coefficient with respect to the f=2.0 case.  However, the amplitudes under each duty 

cycle are noticeably greater than those at f=2.0.  This again was expected as a result of 

the longer fluid response times over the course of each period.  As the frequency is 

further decreased, as will be shown in Figure 4.32, Figure 4.33, and Figure 4.34, the 

amplitudes increase dramatically, to the point where the peaks in the D=0.4 and D=0.6 

waveforms exceed the reference Cd and the trough values fall below the equilibrium 

steady-state Cd over the course of a single period in the f=0.125 case.  In these cases, the 

drag coefficient is observed to fluctuate by over 50% of the respective average values. 

Figure 4.23, Figure 4.34, Figure 4.45, and Figure 4.56show the transient response 

of the lift-to-drag ratio for frequencies f=1.0 through f=0.125.  The trends regarding peak-

to-peak amplitude in drag as frequency is decreased are also present in the lift-to-drag 

ratio.  As shown, as the actuator frequency is decreased, the waveform amplitudes are 

noticeable increased.  In the most severe cases, the lift-to-drag ratio is found to fluctuate 

by greater than 50 percent of the respective mean, which may be undesirable in most 

practical applications for obvious reasons. 
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Figure 4.23. Transient response of lift to drag ratio to pulsed actuator (f = 1.0) 

 

 

 

4.1.3. f = 0.5 case. Figure 4.24 through Figure 4.31 give the periodic flow-field  

and pressure distribution developments for f = 0.5 and duty cycles between 0.2 and 0.8.  

The flow physics are fundamentally the same as those previously discussed, and will not 

be discussed here.  However, the figures are provided as a reference.   

Figure 4.32, Figure 4.33, and Figure 4.34 show the temporal response of the lift 

coefficient, drag coefficient, and lift-to-drag ratio at f=0.5.  Of note in Figure 4.33 is that 

the effectiveness of the actuator in enhancing lift at low duty cycles is clearly superior to 

that predicted at higher frequencies (f = 1.0 and 2.0).  For instance, for a 20% duty cycle, 

the actuator was more than twice as effective in Cl enhancement at f=0.5 (improvement of 

~0.03) than at f=2.0 (improvement of ~0.01).  However, as will be shown, this trend does 

not extrapolate to lower frequencies.   
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 (a)          (off)  (d)          (off) 

 
 (b)          (on)  (e)          (off) 

 
 (c)          (off)  (f)          (off) 

Figure 4.24. Pressure coefficient contour and streamline distributions over 1 duty cycle 

(f=0.5, D=0.2) 

 

 

 
 (a) Cp vs. X  (b) Cp vs. Y 

Figure 4.25. Influence of pulsed actuator on airfoil pressure distribution (f=0.5, D=0.2)
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 (a)          (off)  (d)          (off) 

 
 (b)          (on)  (e)          (off) 

 
 (c)          (on)  (f)          (off) 

Figure 4.26. Pressure coefficient contour and streamline distributions over 1 duty cycle 

(f=0.5, D=0.4) 

 

 
 (a) Cp vs. X  (b) Cp vs. Y 

Figure 4.27. Influence of pulsed actuator on airfoil pressure distribution (f=0.5, D=0.4)
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 (a)          (off)  (d)          (on) 

 
 (b)          (on)  (e)          (off) 

 
 (c)          (on)  (f)          (off) 

Figure 4.28. Pressure coefficient contour and streamline distributions over 1 duty cycle 

(f=0.5, D=0.6) 

 

 
 (a) Cp vs. X  (b) Cp vs. Y 

Figure 4.29. Influence of pulsed actuator on airfoil pressure distribution (f=0.5, D=0.6)
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 (a)          (off)  (d)          (on) 

 
 (b)          (on)  (e)          (on) 

 
 (c)          (on)  (f)          (off) 

Figure 4.30. Pressure coefficient contour and streamline distributions over 1 duty cycle 

(f=0.5, D=0.8) 

 

 
 (a) Cp vs. X  (b) Cp vs. Y 

Figure 4.31. Influence of pulsed actuator on airfoil pressure distribution (f=0.5, D=0.8) 
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Figure 4.32. Transient response of lift coefficient to pulsed actuator (f = 0.5) 

 

 
Figure 4.33. Transient response of drag coefficient to pulsed actuator (f = 0.5) 
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Figure 4.34. Transient response of lift to drag ratio to pulsed actuator (f = 0.5) 

 

 

 

4.1.4. f = 0.25 case. Figure 4.35 through Figure 4.42 give the flow-field and  

pressure coefficient distribution developments for a frequency f = 0.25 and duty cycles D 

between 0.2 and 0.8.  As with the figures previously discussed, the flow developments 

are similar to those presented previously, and will not be discussed at length. 

Figure 4.43 shows the transient response of the lift coefficient for the f=0.25 case.  

As shown, in contrast to previously presented cases, here, two-peak waveforms are 

observed for all duty cycles.  This behavior is observed in the drag and lift-to-drag ratio 

as well, as shown in Figure 4.44 and Figure 4.45.  This phenomenon is discussed in detail 

in 4.3. 
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 (a)          (off)  (d)          (off) 

 
 (b)          (on)  (e)          (off) 

 
 (c)          (off)  (f)          (off) 

Figure 4.35. Pressure coefficient contour and streamline distributions over 1 duty cycle 

(f=0.25, D=0.2) 

 

 

 
 (a) Cp vs. X  (b) Cp vs. Y 

Figure 4.36. Influence of pulsed actuator on airfoil pressure distribution (f=0.25, D=0.2)
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 (a)          (off)  (d)          (off) 

 
 (b)          (on)  (e)          (off) 

 
 (c)          (on)  (f)          (off) 

Figure 4.37. Pressure coefficient contour and streamline distributions over 1 duty cycle 

(f=0.25, D=0.4) 

 

 
 (a) Cp vs. X  (b) Cp vs. Y 

Figure 4.38. Influence of pulsed actuator on airfoil pressure distribution (f=0.25, D=0.4)
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 (a)          (off)  (d)          (on) 

 
 (b)          (on)  (e)          (off) 

 
 (c)          (on)  (f)          (off) 

Figure 4.39. Pressure coefficient contour and streamline distributions over 1 duty cycle 

(f=0.25, D=0.6) 

 

 
 (a) Cp vs. X  (b) Cp vs. Y 

Figure 4.40. Influence of pulsed actuator on airfoil pressure distribution (f=0.25, D=0.6)
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 (a)          (off)  (d)          (on) 

 
 (b)          (on)  (e)          (on) 

 
 (c)          (on)  (f)          (off) 

Figure 4.41. Pressure coefficient contour and streamline distributions over 1 duty cycle 

(f=0.25, D=0.8) 

 

 
 (a) Cp vs. X  (b) Cp vs. Y 

Figure 4.42. Influence of pulsed actuator on airfoil pressure distribution (f=0.25, D=0.8) 
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Figure 4.43. Transient response of lift coefficient to pulsed actuator (f = 0.25) 

 

 
Figure 4.44. Transient response of drag coefficient to pulsed actuator (f = 0.25) 



 

 

68 

 

 

 
Figure 4.45. Transient response of lift to drag ratio to pulsed actuator (f = 0.25) 

 

 

 

4.1.5. f=0.125 case. Figure 4.46 through Figure 4.53 give the flow-field  

developments and pressure distribution developments for f=0.125 and various duty 

cycles.  As with numerous previous figures, these are provided as a reference, and will 

not be extensively commented on. 

 Figure 4.54, Figure 4.55 and Figure 4.56 give the transient response of the lift 

coefficient, drag coefficient, and lift-to-drag ratio for the f=0.125 case for various duty 

cycles.  As shown, the multi-peak waveform phenomenon observed in 4.1.4 is also 

present, to a lesser extent in several of these cases.  This is more thoroughly discussed in 

4.3. 
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 (a)          (off)  (d)          (off) 

 
 (b)          (on)  (e)          (off) 

 
 (c)          (off)  (f)          (off) 

Figure 4.46. Pressure coefficient contour and streamline distributions over 1 duty cycle 

(f=0.125, D=0.2) 

 

 

 
 (a) Cp vs. X  (b) Cp vs. Y 

Figure 4.47. Influence of pulsed actuator on airfoil pressure distribution (f=0.125, D=0.2) 
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 (a)          (off)  (d)          (off) 

 
 (b)          (on)  (e)          (off) 

 
 (c)          (on)  (f)          (off) 

Figure 4.48. Pressure coefficient contour and streamline distributions over 1 duty cycle 

(f=0.125, D=0.4) 

 

 
 (a) Cp vs. X  (b) Cp vs. Y 
Figure 4.49. Influence of pulsed actuator on airfoil pressure distribution (f=0.125, D=0.4) 
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 (a)          (off)  (d)          (on) 

 
 (b)          (on)  (e)          (off) 

 
 (c)          (on)  (f)          (off) 

Figure 4.50. Pressure coefficient contour and streamline distributions over 1 duty cycle 

(f=0.125, D=0.6) 

 

 
 (a) Cp vs. X  (b) Cp vs. Y 
Figure 4.51. Influence of pulsed actuator on airfoil pressure distribution (f=0.125, D=0.6) 



 

 

72 

 

 (a)          (off)  (d)          (on) 

 
 (b)          (on)  (e)          (on) 

 
 (c)          (on)  (f)          (off) 

Figure 4.52. Pressure coefficient contour and streamline distributions over 1 duty cycle 

(f=0.125, D=0.8) 

 

 
 (a) Cp vs. X  (b) Cp vs. Y 
Figure 4.53. Influence of pulsed actuator on airfoil pressure distribution (f=0.125, D=0.8) 
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Figure 4.54. Transient response of lift coefficient to pulsed actuator (f = 0.125) 

 

 
Figure 4.55. Transient response of drag coefficient to pulsed actuator (f = 0.125) 
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Figure 4.56. Transient response of lift to drag ratio to pulsed actuator (f = 0.125) 

 

 

4.1.6. Effect of actuator frequency on periodic flow developments. 

Figure 4.57 and Figure 4.58 are provided, below, to illustrate how flow-field 

developments are affected by actuator frequency.  The left and right columns of Figure 

4.57 compare the flow developments observed over one actuation period for the f=2.0 

and f=0.125 cases with D=0.2.  The same is shown in Figure 4.58 with D=0.8.   

Immediately evident in these figures is the fact that higher frequency actuation 

results in more successful suppression of the LSB.  Unsurprisingly, because the LSB is 

larger at any given point in the period at lower frequencies, the suction peak associated 

with the LSB is characteristically broader.  However, it is also apparent from visual 

observation that the intensity of the peak is much lower at lower frequencies.  Because 

these two effects counteract each other, it is not clear what relationship exists between 

frequency and net lift production.   



 

 

75 

Another effect shown in these figures is that the intensity of the airfoil‟s leading 

edge suction peak is higher, on average, at the higher frequency.  This suction would be 

expected to result in lower pressure drag at higher frequencies, which would also be 

expected to result in higher lift-to-drag ratios.  This prediction will be confirmed in 

chapter 4.2, where the mean lift coefficient, drag coefficient, and lift-to-drag ratio are 

tabulated as functions of f and D.   
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 (a) f=2.0,          (off)  (g) f=0.125,           (off) 

  
 (b) f=2.0,           (on)  (h) f=0.125,           (on) 

  
 (c) f=2.0,           (off)  (i) f=0.125,           (off) 

  
 (d) f=2.0,           (off)  (j) f=0.125,           (off) 

  
 (e) f=2.0,           (off)  (k) f=0.125,           (off) 

  
 (f) f=2.0,           (off)  (l) f=0.125,           (off) 

 
Figure 4.57. Comparison between flow developments of f=2.0 and f=0.125 cases (D=0.2) 
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 (a) f=2.0,          (off)  (g) f=0.125,           (off) 

  
 (b) f=2.0,           (on)  (h) f=0.125,           (on) 

  
 (c) f=2.0,           (on)  (i) f=0.125,           (on) 

  
 (d) f=2.0,           (on)  (j) f=0.125,           (on) 

  
 (e) f=2.0,           (on)  (k) f=0.125,           (on) 

  
 (f) f=2.0,           (off)  (l) f=0.125,           (off) 

 
Figure 4.58. Comparison between flow developments of f=2.0 and f=0.125 cases (D=0.8) 
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4.2. QUANTITATIVE INVESTIGATION OF UNSTEADY EFFECTS OF 

PULSED ACTUATOR 

To examine the effect that the aforementioned flow developments may have on the airfoil 

aerodynamic characteristics, the unsteady response of the lift, drag, and lift-to-drag ratio 

of the airfoil are observed.  To compare results obtained under different frequencies and 

duty cycles, the coefficients are averaged over one duty cycle, once quasi-equilibrium has 

been achieved.  The effectiveness of the actuator is then evaluated under a variety of 

frequencies and duty cycles to find the conditions under which actuator effectiveness is 

optimized. 

4.2.1. Influence of actuator frequency and duty cycle on airfoil lift 

characteristics.  The effectiveness of a pulsed actuator in lift enhancement is discussed  

here.  Figure 4.59 shows the dependence of the time-averaged lift coefficient on actuator 

frequency for various duty cycles.  For reference, the nominal and steady actuator cases 

are also plotted.  As previously mentioned, the average lift coefficient increases as the 

duty cycle is increased, regardless of frequency.  However, the degree of Cl improvement 

over the reference case is not easily predictable with respect to frequency and duty cycle.  

As shown, for the D=0.8 case, steady improvement in the lift coefficient is observed as 

actuator frequency is increased.  However, no such trend is exhibited by the other three 

cases plotted. 

To estimate the effectiveness of the actuator based on power requirements, the 

time-averaged results previously obtained were compared to the steady state cases 

corresponding to equivalent mean power requirements.  According to Mertz [33], a 

plasma actuator‟s input power requirement is roughly proportional to the body force the 

actuator produces for a given actuator.  It logically follows that the required power for a 

pulsed actuator is proportional to the body force magnitude multiplied by the duty cycle.  

Hence, an actuator with fnd=20 and D=0.2 would be expected to require roughly the same 

long-term power requirements as a steady actuator of fnd=4, etc.  By dividing the time-

averaged lift, drag, or lift-to-drag ratio by that of the power-equivalent steady case, we 

obtain a rough measure of the effectiveness of a pulsing actuator for each unsteady case.  

This allows the direct comparison between results obtained at all duty cycles.  As shown 

in Figure 4.60, pulsing the actuator does not result in significant lift enhancement 
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Figure 4.59. Dependence of mean lift coefficient on actuator frequency and duty cycle 

(fnd = 20) 

 

 

(or degradation) under any conditions within the observed parameter space.  As shown, 

the obtained mean lift coefficients generally lie within ±4 percent of the steady power-

equivalent values.  This indicates that a pulsed actuator may not be appreciably more 

effective than a steady actuator in terms of lift enhancement. 

4.2.2. Influence of actuator frequency and duty cycle on airfoil drag 

characteristics.  The effects of a pulsed actuator on airfoil drag are observed in this  

section.  As was done with the lift coefficient, the average drag coefficient was taken 

over the course of a single period under each condition.  Figure 4.61 shows the 

dependence of the time-averaged Cd on frequency for various duty cycles.  Despite a 

great deal of variability in the unsteady results shown previously, the time-averaged 

results are fairly well-behaved.  In Figure 4.61, it is clearly shown that as the actuation 

frequency is increased, the average drag coefficient decreases, regardless of D.   
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Figure 4.60. Lift enhancement as function of frequency and duty cycle 

 

 

 To evaluate the drag reduction capabilities of the actuator with respect to power 

requirements and compare results at various duty cycles, the time-averaged drag 

coefficient was divided by the case‟s power-equivalent steady drag coefficient, as 

described previously in 4.2.1, allowing the estimation of actuator effectiveness in drag 

reduction and comparison between results of various duty cycles.  As Figure 4.62 shows, 

there are clear advantages of pulsed over steady-state actuation.  As shown, for the range 

of duty cycles shown, there exists a 7-13 percent reduction in drag at the f=2.0 case.  

However, no general trend is observed regarding the dependence of effectiveness on duty 

cycle.  Under the optimal case (f=2.0, D=0.4), the drag is approximately 13 percent lower 

than the power-equivalent steady value.  It is evident that a pulsed actuator may be 

effective in drag reduction if pulsed at high frequencies, but more work is required to 

determine the relationship between drag reduction and duty cycle.   
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Figure 4.61. Dependence of mean drag coefficient on actuator frequency and duty cycle 

(fnd =20) 

 
Figure 4.62. Drag enhancement as function of frequency and duty cycle 
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4.2.3. Influence of actuator frequency and duty cycle on airfoil lift to drag 

ratio.  To quantify the net effect of the actuator on airfoil efficiency, the dependence of  

the lift-to-drag ratio on actuator frequency and duty cycle is examined.  Figure 4.63 

shows the dependence of the time-averaged quasi-equilibrium lift-to-drag ratio on 

frequency for all duty cycles observed in this analysis.  As shown, regardless of duty 

cycle, as the actuation frequency is increased, moderate improvements in the lift-to-drag 

ratio are observed.  This is in line with the observations previously made regarding drag. 

 

 

 
Figure 4.63. Dependence of mean lift-to-drag ratio on actuator frequency and duty cycle 

(fnd =20) 

 

 

 Finally, to estimate the effectiveness of the actuator with respect to power 

requirements, the ratio of the obtained L/D values to the corresponding power-equivalent 

steady values is plotted in Figure 4.64.  As shown, a clear dependence of actuator 
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effectiveness on frequency is observed.  Regardless of duty cycle, the effectiveness of the 

actuator improves as the actuation frequency is increased.  The improvement observed in 

the lift-to-drag ratio for the frequencies strongly correlated to the reductions observed in 

drag (for comparison, see Figure 4.62).  As with the lift and drag, there is no clear 

relationship between duty cycle and the lift-to-drag ratio.  Figure 4.64 indicates that there 

exist clear potential advantages of a pulsed actuator.  However, due to the lack of a clear 

understanding of the effect of duty cycle on actuator effectiveness, application specific 

optimization will be required to make use of the concept in practice. 

 

 
Figure 4.64. Lift-to-drag ratio enhancement as function of frequency and duty cycle 

 

 

4.3. OBSERVATION OF DOUBLE PEAK IN CL WAVEFORM IN F=0.25 AND 

F=0.125 CASES 

To illustrate the mechanism responsible for the double peak wave formation, 

Figure 4.65 shows the flow-field developments over the course of a single actuation 
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period for the f=0.25, D=0.4 case.  In this figure, frames corresponding to peaks or 

troughs in the Cl waveform are indicated in the appropriate captions.  Frame (a) 

corresponds to the instant before the actuator pulse.  As indicated, this corresponds to a 

peak in the Cl waveform.  With the actuator pulse comes a quick reduction in LSB size 

and the associated suction peak, leading to the Cl trough corresponding to frame (c).  

However, as the actuator continues to operate, the leading edge suction peak improves 

substantially, and the pressure over the aft portion of the airfoil decreases slightly.  These 

effects combine to form the Cl peak in frame (g).  Following frame (g), the pressure over 

the aft portion of the airfoil recovers, resulting in the trough in frame (k).  From frame (k) 

to the beginning of the next duty cycle, the LSB continues to become larger, propagating 

downstream, and resulting in lift enhancement, which leads back to the initial Cl peak. 

Figure 4.66 shows the pressure distributions of the peaks and troughs for all of the 

f=0.25 cases.  Though not immediately evident, the mechanisms responsible for the 2-

peak waveform are roughly the same.  Initially following the tp/T peak, the actuator 

destroys or reduces the suction peak associated with the LSB, reducing the lift 

coefficient.  However, the actuator gradually improves the natural suction peak of the 

airfoil, and by accelerating the flow, decreases the pressure over the mid and aft portions 

of the airfoil.  Eventually, these effects dissipate, leading to the final trough.  As time 

progresses, the LSB continues to develop, moving downstream, and enhancing the lift at 

the end of the duty cycle and the beginning of the next. 
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 (a)                 , (off) (peak)  (g)                    (off) (peak) 

  
 (b)                    , (on)  (h)                     (off) 

  
 (c)                   , (on) (trough)  (i)                   (off) 

  
 (d)                     (on)  (j)                     (off) 

  
 (e)                   (on)  (k)                    (off) (trough) 

  
 (f)                     (on)  (l)                     (off) 

 

Figure 4.65. Pressure coefficient contour and streamline distributions over 1 duty cycle 

(f=0.25, D=0.4) 
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 (a) D=0.2 (b) D=0.4 

 
 (c) D=0.6 (d) D=0.8 

Figure 4.66. Pressure distributions at peaks and troughs in C/ amplitude (f=0.25) 
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5. ACTUATOR SCALABILITY AND PRACTICAL CONSIDERATIONS 

For these computational results to be of practical use to engineers, it is necessary 

to establish a mathematical link between the dimensionless parameters used in this study 

and physically measurable plasma actuator parameters.  The most easily measurable 

actuator performance characteristic is thrust, measured in force per unit length.  Thus, in 

this exercise, a link is established between the dimensionless force magnitude fnd and the 

physical actuator thrust T’.  Beginning with equation (1), reproduced here for 

convenience, we have 

 

     
   

    
 . (1) 

 

The dimensional body force magnitude fd can be related to thrust T’ via 

 

    
  

    
, (2) 

 

where Aeff is the effective plasma discharge volume per unit span.  For the numerical 

solutions to be truly representative of physical reality, the following relation must hold 

true: 

 

          , (3) 

 

where A* is the cross-sectional area of the region to which the body force is applied in 

the simulation in dimensionless units (for this case A*=0.02×0.003=6e-5).  Substituting 

equations (2) and (3) into (1), and rearranging slightly, we find  

 

     
  

  

    
  

. (4) 
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This equation is highly useful, insofar as the dependence of peak actuator effectiveness 

on velocity and the chord are immediately made obvious.  However, for cross-referencing 

with CFD results, it is convenient to express velocity in terms of the Reynolds number.  

Hence, both sides of equation (4) are then multiplied by Re
2
 to eliminate V∞ from the 

right hand side: 

 

     
     

  

  
    . (5) 

 

The remaining dimensionless term on the right hand side is a convenient scaling 

parameter, as will be shown later, and thus is given a special designation,  

 

     
  

  
     . (6) 

 

Substituting the definition for Ksc into equation (5), we arrive at  

 

     
        . (7) 

 

 Ksc is a convenient parameter for this application for several reasons.  It is quite 

simple to compute for a physical actuator, requiring only knowledge of the free-stream 

operating conditions, characteristic length scale, and actuator thrust.  As shown in 

equation (6), Ksc is proportional to actuator thrust (and hence power), so for constant flow 

conditions and chord length, Ksc scales linearly with T’.  Conversely, for a constant T’, 

Ksc scales proportionally with the chord length.  The two characteristic flow parameters, 

ρ∞ and µ∞, though appearing in the Reynolds number, are not design parameters, and for 

most low Reynolds number applications are treated as constants.  The remaining 

parameters are design parameters, independent of velocity.  Hence, leaving Ksc constant, 

while altering the Reynolds number in equation (7), we isolate the relationship between 

fnd and free-stream velocity for a specific actuator configuration (T‟) and airfoil (c).  

Additionally, it can be trivially shown that by fixing the ratio Ksc/Re in equation (7), we 

isolate the effect of altering the airfoil size (c) on actuator performance for a specific 
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actuator (T’) and flow velocity (V∞).  By varying Ksc and fixing the Reynolds number, we 

observe the effect of varying actuator thrust on fnd for a specific chord and velocity.   

 It is convenient to plot equation (7) in a contour plot, as this illustrates many of 

the relationships previously discussed.  Figure 5.1 plots the relationship between Ksc, 

Reynolds number and fndA* (the dimensionless equivalent of T’).  The solid lines in this 

figure are constant Ksc contours.  The corresponding values are scaled in millions.  Each 

one of these lines represents a constant power curve for a specific actuator-airfoil 

combination, and shows the relationship between velocity and maximum actuator 

effectiveness, as previously described.  The dashed lines represent constant Ksc/Re 

contours, and variations in Reynolds number correspond to changes in the chord of the 

airfoil for a specific T’ and V∞, as discussed above.  The maximum value on the vertical 

axis (fndA*=1.2e-3) is equivalent to fnd=20, and fnd=5, 10, and 15 occur at fndA*=0.3e-3, 

0.6e-3, and 0.9e-3, respectively.   

 

 
Figure 5.1. Relationship between Re, fndA*, and Ksc 
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 Figure 5.1 is a useful plot because it allows us to quickly cross-reference actuator 

effectiveness, however defined, for a given application with the power required to 

achieve that effectiveness under a variety of operating conditions.  For instance, one 

could easily generate a contour map of L/D enhancement as a function of fndA* and Re for 

a given airfoil and angle of attack with a set actuator placement.  By overlaying Figure 

5.1 over that plot, one could quickly determine the Ksc required to achieve a desired 

condition.  This relationship would hold under all conceivable applications using that 

airfoil, from wind turbines at sea-level to UAVs on Mars.  With knowledge of the 

operating conditions, one could then quickly determine the actuator thrust requirements 

and design an active control system accordingly. 

 A quick examination of equations (6) and (7) indicates that, intuitively, for a 

constant Re and c, fnd scales linearly with T’.  This is quickly confirmed in Figure 5.1.  As 

shown, the Ksc=3e6, 6e6, 9e6, and 12e6 lines intersect the Re=1e5 line in regular 

intervals, at fndA*=0.3e-3, 0.6e-3, and 0.9e-3, respectively.  From equation (4), it is 

evident that fnd scales inversely with V∞
2
, indicating that for every doubling of the 

velocity, the fnd achievable for a given actuator decreases by a factor of 4.  This is 

immediately evident in Figure 5.1.  As shown the fndA* value corresponding to Ksc=12e6 

line quarters from 1.2e-3 at Re=1e5 to 0.3e-3 at Re=2e5, and again to 0.075e-3 at 

Re=4e5.  Correspondingly, the Ksc required to maintain fndA*=1.2e-3 is 48e6 at Re=2e5 

and 192e6 at Re=4e5, requiring 4 and 16 times the power requirements of the same 

actuator at Re=1e5, respectively.  Similar behavior is observed when investigating the 

relationship between airfoil size (c) and fnd, while holding the actuator thrust T’ and 

velocity V∞ constant.  It can be trivially shown from equation (4) that fnd scales inversely 

with the chord-length c, indicating that doubling the chord-length will result in a halving 

of the maximum achievable fnd.  This can also be quickly observed by following any one 

of the dashed lines in Figure 5.1.  These findings indicate very strongly that plasma 

actuators scale poorly to incompressible high speed and large scale flows.  This supports 

the widespread conviction that plasma actuators are extremely inefficient and/or 

impractical for macro-scale flow control applications. 

It is of interest in this study to compare the produced CFD results against 

hypothetical practical cases to gauge the practicality of the results.  In this exercise, the 
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minimum actuator thrust required to match the most extreme case in this study (fnd = 20, 

Re=1e5, up to 60% L/D enhancement) is estimated.  One of the most intriguing potential 

applications for plasma actuators is wind turbine technology.  Generally, wind turbines 

are designed with a cut-in (minimum) wind speed near 3 m/s.  The chord-length required 

to meet the Reynolds number (1e5) at this velocity, assuming standard sea-level 

conditions, (ρ∞=1.225 kg/m
3
, µ∞=1.78e-5 Pa-s) is 0.484 m.  From Figure 5.1, the 

minimum Ksc required to achieve this condition is 12 million.  Solving for T’ using 

equation (6), we find that the minimum actuator thrust required to operate at this 

condition is approximately 6.4 mN/m, perhaps greater than ideal, but certainly 

achievable.  Airfoils with larger chords would be incapable of operating at this Reynolds 

number due to the minimum airspeed requirement, while airfoils with chords smaller than 

0.484 m would require more thrust to achieve the required Ksc.  However, smaller airfoils 

would reach the cut-in speed at lower Reynolds numbers.  For instance, an airfoil with 

half the chord of the previous would reach the cut-in limit at a Reynolds number of 5e4.  

The Ksc value required at this Reynolds number is only 3 million, meaning the predicted 

thrust required to achieve fnd=20 in this specific case is only 3.2 mN/m.  Conversely, 

larger airfoils cutting in at a higher Re would require greater thrust per unit span.  

Crudely assuming that turbine blade power produced is proportional to blade area, this 

information indicates that the ratio of actuator power required to turbine power generated 

is roughly constant with respect to scale.   

Of course, this analysis fails to account for changes in the flow-physics with the 

Reynolds number.  It is unknown what level of effectiveness is required to achieve the 

desired performance enhancement at lower or higher Reynolds numbers.  It is thought 

that, due to the more dominant presence of the LSB at lower Reynolds numbers, that less 

thrust would be required to achieve a similar performance enhancement.  At higher 

Reynolds numbers where the LSB is less pronounced, it may not be practically possible 

to achieve the performance enhancements seen at a Reynolds number of 1e5.  However, 

this is speculative.  A more complete parametric analysis, varying Reynolds number and 

fnd would be required to determine the relationship between Re and actuator effectiveness.  

Such an analysis could then be cross-referenced against Figure 5.1 to determine the 

optimal operating conditions for the actuator.   
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6. CONCLUSIONS AND OUTLOOK 

6.1. CONCLUSIONS 

A body force generation system, such as a plasma actuator, would seem to make 

an ideal low Reynolds number aerodynamic performance enhancement device, 

particularly in the presence of LSBs.  In this study, it was found that a localized body 

force was capable of significantly reducing the size of a LSB, or even eliminating it 

entirely.  The actuator was consistently found to marginally increase lift, while 

dramatically reducing the drag associated with the LSB.  The resultant aerodynamic 

efficiency of the airfoil was as much as 60 percent greater than that of the reference case, 

and comparable to that attained by the same airfoil at higher Reynolds numbers, where 

the LSB was not observed. 

Further enhancement was achieved by operating the actuator in a pulsed, rather 

than in steady state.  With no special optimization, a high frequency pulsed actuator was 

found to consistently reduce drag by 8 to 13 percent and improve the airfoil‟s lift-to-drag 

ratio by as much as 19 percent over equivalently powered steady actuators.  There is 

clearly potential for enhanced power-equivalent effectiveness using a pulsed actuator. 

These results, given the relatively conservative modeling of the actuator, are 

encouraging.  With a greater body force magnitude, higher pulsing frequencies, or lower 

characteristic Reynolds numbers, the application of an external body force might result in 

aerodynamic performance surpassing that found at very high Reynolds numbers.  

However, the effect the actuator had on both the size of the LSB and the aerodynamic 

performance of the airfoil was highly sensitive to the physical placement of the actuator.  

It was found that the optimal location of the actuator with respect to the LSB varied with 

the actuator‟s strength, but that it was always near the nominal separation point.  If placed 

too far downstream of the separation point, the actuator was found to induce instability.  

Despite this, the results of this study are promising for body force generators, such as 

plasma actuators, as a means of eliminating LSBs and generally improving low Reynolds 

number aerodynamic performance.  This study warrants further experimental research 

into the feasibility of plasma actuators in such applications. 
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6.2. SUGGESTIONS FOR FUTURE WORK 

This computational work could be expanded upon in a number of ways.  More 

sophisticated modeling techniques could be utilized to obtain more accurate solutions.  It 

was assumed in this analysis that the actuator itself (i.e. the exposed electrode) had no 

aerodynamic footprint, or that the airfoil surface in that region was perfectly smooth.  It is 

unknown how the geometry of the actuator may affect flow-field developments or 

turbulence in this flow problem.  Additionally, a more sophisticated code solving the 

Navier-Stokes and Maxwell equations would be capable of more accurately 

approximating the spatial-temporal distribution of the actuator-induced body force.  

Another assumptions made in this study was that the actuator had no effect on turbulence 

intensity.  Using higher fidelity modeling techniques, such as Large Eddy Simulation 

(LES) or Direct Numerical Simulation (DNS), it may be possible to estimate these 

effects. 

Another way to expand upon this work would be to use the analysis tools 

developed in chapter 5 to explore in depth the feasibility and potential effectiveness of 

plasma actuators as a means of flow control over a variety of phenomena, including 

LSBs, in numerous applications, such as wind turbines, UAVs, turbo-machinery, Martian 

aircraft, etc.  Such a reference would be highly valuable to the broader research 

community, in that it would allow researchers to quickly identify the most promising 

applications for their work, and tailor it toward that end.   
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