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ABSTRACT

The following thesis documents the comparison of surface enhancements in rectan-

gular ducts for heat transfer enhancement of the air-side ofoff-road heat exchangers. Two

sets of experiments were completed, one utilizing air as theworking fluid, and the other

utilizing water.

Five air geometries and four water geometries were studied,including those with

crosswise bumps, longitudinal vortex generators, and a unique rifling geometry. A smooth

test section was also tested in the water experiments to verify the experimental setup. Such

verification had been performed previously for the air experiments by Rucker [2007].

The experiment involved an applied constant heat flux to eachchannel as fluid was

circulated through. Heat transfer and friction results were obtained using thermocouple and

pressure drop data. The data was then compared and results obtained.

It was found that longitudinal vortex generators give lowerheat transfer coefficients

than crosswise bumps, but at a substantially lower frictional cost, leading to a higher good-

ness factor overall. The rifling geometry showed similar heat transfer performance to the

crosswise bumps, with substantially lower frictional losses, leading to very good perfor-

mance overall.
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1. INTRODUCTION

Much study has been done in the area of compact heat exchangerdesign. Auto-

mobile radiators are long-tested, tried-and-true designsthat do an efficient job in a small

space. Automobiles, however, have certain luxuries that are not afforded to most large

machinery and tractors. While automobiles generally move quickly through a relatively

clean air stream, machinery and tractors are generally slow-moving and often must ingest

air littered with particulates and debris, such as in harvesting grain, bull-dozing, etc.

Because of these differences, machinery radiators must be designed differently than

those for automobiles. The louvered fins used in automobileswould clog very quickly in

the dirtier environment, and larger fans are needed to move the air in the absence of the

fast-moving flow experienced on the open road.

One solution is to make heat exchangers with full-flow passages on the air side

through which the air can move largely unrestricted. An example of such a heat exchanger

is presented as Figure 1.1. This both helps to keep the heat exchanger from clogging

and reduces the pressure drop experienced, allowing for more modest power to move the

air through the heat exchanger. The downside to this design,however, is that the heat

exchangers must be relatively larger than the louvered-fin design to obtain the same heat

duty.

In an effort to reduce the size of such heat exchangers, surface enhancements are

placed on the walls of the air-side channels to destabilize the flow and increase heat trans-

fer, while keeping pressure drop to a minimum and at the same time leaving the channels

open so debris can pass through and not clog them. Adding to the complexity of the prob-

lem is the fact that the Reynolds numbers based on hydraulic diameter experienced in the

aforementioned heat exchangers is generally between 600 and 3600 which, for horizontal

pipes, is in the transitional regime; though care is taken toensure that the flow is fully in

the forced convection regime (see Figure 1.2.)
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Figure 1.1: Example of radiator simulated in present experiments. Cooling liquid is passed
through flat tubes in-between corrugated fins.

Figure 1.2: Free, forced, and mixed convection regimes for flow in horizontal circular tubes
for 10−2 < PrDL < 1 by Metais and Eckert [1964]

Two sets of experiments were performed in order to attempt tobest represent the

flow in the heat exchangers being studied. In both cases, a single channel in the heat

exchanger was approximated as a rectangular duct. The channel was manufactured with the

desired surface enhancements, and heaters installed. The channel was then well insulated
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and fluid passed through the channel and around a closed-loopwith heat rejection, allowing

for a steady-state to be reached. Fluid temperature measurements were taken at the inlet

and outlet of the test section. In addition, temperature measurements were taken at close

intervals along the wall of the channel. Finally, differential pressure measurements were

taken at points along the channel, as well as across the entire channel in some cases.

In the first set of experiments, air was used as the working fluid, and the chan-

nel was scaled to be ten times larger than the heat exchanger dimensions. The Reynolds

numbers were kept similar in order to ensure similarity. Fora detailed description of the

experimental apparatus and procedure, see Sections 3.2 and4.2.

In the experiments involving air as the working fluid, a significant amount of the

heat provided by the heaters was conducted by the wall, making local effects effects impos-

sible to resolve. Therefore, in the second set of experiments, water was used as the working

fluid in an attempt to see more one-dimensional flow of heat from the heaters to the fluid.

Again, the Reynolds numbers were maintained for similarity. The attempt paid off, and the

experiments involving water did in fact produce much betterresolution of local effects. For

a detailed description of the experimental apparatus and procedure, see Sections 3.1 and

4.1.

In the following sections of the thesis a literature review is performed, the experi-

mental apparatus and procedure are described, an explanation of the data reduction methods

used is given, and, finally, results and conclusions are given and recommendations made.



4

2. LITERATURE REVIEW

2.1. SURFACE ROUGHNESS

In 1933 the German researcher Nikuradse [1950] investigated the affect of surface

roughness on the pressure drop through circular pipes. He developed some very useful

correlations, and discovered that the pressure drop is proportional to the surface roughness

scale divided by the pipe diameter. Later, in 1940, Moody [1944] compiled the most current

research of the day, including Nikuradse’s, and created thenow-famous and much used

Moody charts for estimating friction factors and, to some extend, heat transfer coefficients

in pipes. An example of the results of his research, called a Moody diagram, is included as

Figure 2.1.

Figure 2.1: Moody Diagram by Moody [1944].
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2.2. FLOW DESTABILIZATION

The primary method of augmenting heat transfer is to destabilize the flow, thus pro-

moting mixing and enhancing energy flow from the solid wall tothe fluid. There are both

active and passive methods for destabilizing the flow. Active methods generally involve

fluctuation of the flow rate in some way. Passive methods involve using flow geometries to

generate the flow destabilization. For our purposes, we willonly consider passive methods

of destabilization. Karniadakis et al. [1988] studied flow destabilization using direct nu-

merical simulation by placing flow-disrupting cylinders ina periodic array within a plane

channel, a diagram of which can be seen in Figure 2.2. Simulations of the channel were

run with and without the cylinders present, and results compared.

Figure 2.2: Periodic eddy-promoter channel geometry. [Karniadakis et al., 1988]

They reference Isaacson and Sonin [1976], the results of which implicate low-

Reynolds-number configurations as producing minimum dissipation for a given mass trans-

fer rate. The aim of their analysis was to determine if simplehydrodynamic arguments can

be put forth that isolate the critical phenomena or parameters that determine the relationship

between ‘desirable’ heat or mass transfer and ‘unwanted’ viscous dissipation.

They take the Reynolds’ analogy as the focus of their study and they note that, while

the Reynolds analogy is only truly rigorous for the case of the laminar flat-plate boundary
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layer with unity Prandtl number, it appears to be valid in flows in which direct pressure

effects are small, in which a strong convective-diffuse balance prevails, and in which the

gradients in velocity and temperature appear in similar ways in their respective equations.

Then, taking the Reynolds analogy as given, they state that it then follows from simple

momentum and energy integrals that shear stress, pressure drop, and viscous dissipation

are all reduced if a lower-Reynolds-number flow can be found that achieves the same heat

transfer rate as a higher-Reynolds-number flow. Thus, transport enhancement can best be

described as a hydrodynamic stability problem. A more unstable flow (that is, a flow with

a lower critical Reynolds number) will generate larger Reynolds fluxes at lower Reynolds

numbers, and thus achieve the same Nusselt number at a lower Reynolds number, and

therefore a lower dissipative cost, than a more stable flow.

They demonstrate that the most significant increase in space-average Nusselt num-

ber is due to the spatially homogeneous Tollmien-Schlichting wave, not due to local flow

phenomena induced by the cylinder (see Figure 2.3.) They conclude that eddy-promoter

flows achieve significant heat transfer at low Reynolds numbers, and do so while roughly

preserving the Reynolds analogy, and that eddy promoter flows can save up to 500% in

dissipation in the Nusselt-number (Nu) range of approximately 1< Nu< 5.

Figure 2.3: A plot of the unsteady isotherms at one instant intime of the steady-periodic
supercritical flow for the base geometry at Re= 300. Transport enhancement is effected
by Tollmien-Schlichting-induced convective mixing. [Karniadakis et al., 1988]
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They further conclude that at larger Reynolds numbers the dissipation reduction in

eddy-promoter flows decreases into the turbulent regime, though there is an exception at

transition. The reason for this decrease in dissipation reduction is the fact that as Reynolds

number increases the scales of motion destabilized by the eddy promoters are increasingly

naturally unstable, so the eddy promoters make relatively less difference in flow mixing,

while continuing to contribute to dissipation through cylinder drag. Therefore, if significant

reduction in dissipation is to be realized as Reynolds number and Nusselt number increase,

then destabilization should be applied at the naturally stable scales of motion (such as the

viscous sublayer in turbulent flow.)

Kozlu et al. [1988] demonstrates an experimental method foroptimizing the scale

and type of flow destabilization. They considered the cylindrical eddy promoters as well as

microgrooves along the wall. They found that for very low thermal load, laminar smooth

wall flow performs best due to enhancements having little effect because of the strong sta-

bility of the low Reynolds number flow (a method for choosing optimal Reynolds number

based on thermal load is presented in the article.) As thermal load increases the macro scale

eddy promoters become relatively more efficient than the flatchannel. Finally, as thermal

load, and therefore Reynolds number, increases further, eddy promoters loose their effect

due to the scales at which the eddy promoters have affect becoming naturally unstable.

At this point microgrooves, which match the ‘stable’ part ofthe flow, namely the viscous

sublayer, become most beneficial.

2.3. REPEATED RIBS

Perhaps the most studied method for flow destabilization andthus augmentation of

heat transfer in ducts is by placing repeated ribs on the walls of the channel normal to the

flow direction.
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Webb et al. [1971] developed useful correlations for heat transfer for turbulent flow

in tubes having repeated-rib roughness. They used the law ofthe wall similarity corre-

lations developed by Nikuradse for friction; and for heat transfer they used a correlation

based on application of a heat-momentum transfer analogy toflow over a rough surface,

which was first used by Dipprey and Sabersky for sand-grain roughness. In their work,

they used two non-dimensional parameters: rib height,e, divided by diameter,D, and rib

spacing,p, divided by diameter,D (see Figure 2.4.)

Figure 2.4: Characteristic dimensions of repeated-rib roughness. [Webb et al., 1971]

It was mentioned in the article that, while the repeated-ribsurface can be classified

as a “roughness” geometry, it may also be viewed as a problem in boundary layer separation

and re-attachment. Note in Figure 2.5 that when the rib spacing is large, the flow detaches

and a recirculation zone develops downstream of the rib, andflow reattaches 6-8 rib heights

downstream from the separation point. It is at this reattachment point that experimental

measurements [Edwards and Sheriff, 1961], [Emmerson, 1966] show the maximum heat

transfer occurs.
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Figure 2.5: Flow patterns as a function ofp/e. [Webb et al., 1971]

An experimental setup was used by Webb in which air was forcedthrough a rough-

ened tube with heaters attached to the tube and heat transferand pressure drop measured.

See Figure 2.6 for a schematic of the experimental setup. Four different roughness geome-

tries were studied. The data were then plotted and correlations established. The friction

data showed thatu+e = 0.95(p/e)0.53 for e+ > 35. Adding in the heat transfer data, a rela-

tion for Stanton number was determined, shown in Equations 2.1 and 2.2.

St=
f/2

1+
√

f/2[4.3(e0.28Pr0.57−0.95(p/e)0.53]
(2.1)
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Figure 2.6: Sketch of experimental setup for Webb et al. [1971]

√

2/ f = 2.5ln(D/2e)−3.75+0.95(p/e)0.53 (2.2)

They concluded that law of the wall similarity with a logarithmic velocity distribu-

tion gives good correlations for repeated-rib friction data. It was also concluded that the

heat-momentum transfer analogy based on the law of the wall similarity adequately corre-

lates the heat transfer data over a wide range ofe/D, p/e, and Pr. It is also postulated that

law of the wall similarity and heat-momentum analogy may be applied to correlations for

geometrically similar forms of arbitrary roughness.

Han et al. [1978] revisited the repeated rib geometry in an effort to study lower

Reynolds number flow as well as the effects of rib symmetry (see Figure 2.7), rib angle

of attack, and rib cross sectional shape (see Figure 2.8) on both friction and heat transfer.

A similar experimental setup to Webb et al. [1971] was used (see Figure 2.9) and air was

again the working fluid.

It is noted that for turbulent flows at lower Reynolds numbersa larger rib height

to hydraulic diameter ratio is needed to achieve fully roughflow conditions. It is also

noted that ribs perpendicular to the flow induce the largest form drag, and that reducing

the angle of attack from 90 degrees can give a better thermal to hydraulic performance.
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Figure 2.7: Symmetric vs. staggered ribs. [Han et al., 1978]

Figure 2.8: Rib cross-sectional shapes. [Han et al., 1978]

They, therefore, determine to find an optimal height to hydraulic diameter ratio as well as

an optimal rib angle of attack.

A number of different rib shapes, heights, and angles of attack were investigated

and it was concluded that symmetry is of little importance, and that rib cross-sectional

shape has a marked effect on friction factor, but only a modest effect on heat transfer.

It was determined that a rib angle of attack of 45 degrees gives higher heat transfer for

the same friction power than that of 90 degrees. It was also found that both the Stanton
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Figure 2.9: Experimental setup used by Han et al. [1978]

number and friction factor have a maximum value when the pitch-to-height ratio of the ribs

is approximately ten.

Han [1984] once again investigated ribbed roughness in channels, but this time

his aim was to discover the effect of having two opposite walls roughened, while having

the other two smooth. This case is of particular interest forthe present application since

the geometry will be similar. When creating a heat exchangersuch as the one shown

in Figure 1.1 it is not feasible to roughen all four sides of the approximately rectangular

channel. The convention, therefore, is to roughen the two vertical sides and leave the

horizontal sides smooth.

The experimental apparatus was very similar to that used previously by Han et al.

[1978], and consists of a blower forcing room air through theroughened section, with

pressure and temperature measurements taken at various locations to determine overall

heat transfer and pressure drop across the channel.

It was concluded that the Stanton number of the ribbed walls was increased by about

1.5 to 2.2 times compared to a smooth duct, but were about 10 percent lower than that for

a four-sided ribbed duct. On the smooth walls the Stanton number was increased about 25

percent as compared to the four-sided smooth duct.
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The average friction factor was about 2 to 6 times that of the four-sided smooth duct

for the range of data tested, but about 30-45 percent lower than that of the four-sided ribbed

duct.

Finally, it was concluded that the average friction factor can be determined by a

weighted average of the four-sided smooth duct friction factor and the four-sided ribbed

duct friction factor by the relation in Equation 2.3.

f =
A fs+B fr

A+B
(2.3)

WhereA is the duct width along the smooth walls,B is the duct width along the

rough sides (see Figure 2.10,)fs is the friction factor for the four-sided smooth duct, and

fr is the friction factor for the four-sided rough duct.

Similarly, the average Stanton number can be predicted by a weighted average of the

four-sided smooth duct and the four-sided ribbed duct Stanton numbers, as in Equation 2.4.

St=
ASts+BStr

A+B
(2.4)

WhereA andB are defined as above, Sts is the Stanton number of the four-sided

smooth channel, and Str is the Stanton number of the four-sided rough channel.

Han [1988] once again looked into the rectangular channel with two facing ribbed

walls and two smooth walls. Much of the data presented and conclusions reached are

similar to those already mentioned. One point of note, however, is that the heat transfer

and friction characteristics are affected by aspect ratio and, particularly, whether the ribs

are placed on the long or short walls of the channel. Han reports that when the channel

aspect ratio,W/H, with ribs on sideW as shown in Figure 2.11, is changed from14 to 4

with pumping power kept constant, that the ribbed side wall heat transfer is decreased, but



14

Figure 2.10: Dimensions of duct for Han [1984]

that the average heat transfer is increased, giving a more even distribution of heat removal

and a more efficient system overall.

Figure 2.11: Dimensions of duct for Han [1988]
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Up to this point, all of the flows looked at in this section havebeen in the fully

turbulent regime. Greiner et al. [1990] performed a similarexperimental procedure to those

above, but for flows in the Reynolds number range of 300< Re< 15,000. A schematic

of the test section which was used can be seen in Figure 2.12. In addition to heat transfer

measurements, flow visualization was also used. For the caseof flow visualization, the

heater on top of the section was replaced with a Plexiglas cover and a tracer dye was

injected, and the flow videotaped.

Figure 2.12: Schematic of test section used by Greiner et al.[1990]

Figures 2.13 and 2.14 show a representation of the streaklines observed. A progres-

sion can be seen with increasing Reynolds number. In Figure 2.13 at Re= 600 the flow

is subcritical, and individual recirculation zones can be seen within each groove, while the

outer flow is straight and parallel to the upper wall, as if there were no grooves at all, em-

phasizing what was said before that flow destabilizations are not beneficial for very low

Reynolds number flows. At Re= 700 a traveling wave structure develops, and the outer

flow is beginning to be disturbed. These streaklines are described as “smooth”, and mostly

two-dimensional. In Figure 2.14 it can be seen that small-scale structures begin to be su-

perimposed on top of the waves. As the Reynolds number increases, the length scales of

the smaller structures decrease and the three-dimensionality of the flow increases. It is
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noted that the Reynolds number above which flow is oscillatory 50 percent of the time is

approximately 630.

Figure 2.13: Streakline flow visualization atx
Dh

= 24.4: (left) Re= 600, steady flow; (right)
Re= 700, traveling wave structure. [Greiner et al., 1990]

Figure 2.14: Streakline flow visualization showing three-dimensional wave structure at
x

Dh
= 24.4: (left) Re= 1000; (right) Re= 2000 [Greiner et al., 1990]

Heat transfer measurements showed that for this channel configuration, an enhance-

ment in heat transfer in excess of 10 percent extends over therange 1200< Re< 4800, and

x
Dh > 16, with the maximum enhancement of 65 percent occurring at Re= 3000±1000.

Greiner et al. [1995] further studied the behavior of the flowdownstream of a

grooved section similar to that described above, a schematic of which can be seen in

Figure 2.15. The regime studied was 1000< Re< 5000. It was concluded that the un-

steadiness produced by the groves persists for up to 20 hydraulic diameters past the end

of the grooved section. The recovery lengths for shear stress and pressure gradient drop
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off rapidly as Reynolds number increases beyond Re= 3000, while the decrease in heat

transfer augmentation is much less rapid, leading to an increase in heat transfer to pumping

power ratio. The article states that the difference betweenthe recovery lengths for shear

stress and heat transfer indicate that heat/momentum transport mechanics in this region are

uncoupled. It may, therefore, be most beneficial to have intermittently grooved channels to

maximize heat transfer while minimizing required pumping power.

Figure 2.15: Partially grooved, rectangular cross-sectional channel used by Greiner et al.
[1995]. The channel has widthW normal to the page. Thez-coordinate origin (z= 0) is at
the center span.

Greiner et al. [1998] further performed a three-dimensional direct numerical simu-

lation of a grooved channel. A single groove was modeled, with periodic boundary condi-

tions along the length and width of the channel (x andz directions), with solid wall bound-

ary conditions at the top of the channel and the bottom of the groove. The computational

domain used, with axes labeled, is shown in Figure 2.16.

It was concluded that at Re= 325 the flow was steady and two-dimensional, but

it exhibits a series of transitions with increasing Reynolds number. AtRe= 350, two

dimensional traveling waves are exhibited. For Re= 482, the flow becomes time-periodic

and regular variations in cross-stream flow are observed. For Re= 748, the flow exhibits
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Figure 2.16: Three-dimensional computational domain and spectral element mesh used to
investigate a periodically grooved transport passage. [Greiner et al., 1990]

irregularities in the z-direction, and more than one dominant frequency is observed. Finally,

for Re= 1530, the flow becomes very irregular and a wide band of flow frequencies is

observed.

It was also noted that two dimensional simulations of the grooved channel flow

predict laminar-like (unmixed) friction factor and Nusselt number verses Reynolds number

behaviors. The author recommends that three-dimensional computations are required to

accurately quantify the heat and momentum transport behavior for Re> 500.

Wirtz et al. [1999] once again studied forced convection in agrooved channel ex-

perimentally. For this analysis the channel was grooved on both top and bottom, as shown

in Figure 2.17. Interesting conclusions from this analysisinclude the finding that the heat

flux is not uniform across the grooves, but that it has a minimum at the vertex of each

groove. Also, the Nusselt number of the windward face of eachgroove is approximately
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twice that of the leeward face. Finally, the fully developedj-factor becomes greater than

equivalent flat channel values when Re> 450.

Figure 2.17: Grooved channel geometry used by Wirtz et al. [1999]

2.4. LONGITUDINAL VORTEX GENERATORS (LVGS)

Another common method for enhancing heat transfer on a surface is by the gener-

ation of longitudinal vortices. Longitudinal vortices arevortices which have their axis of

rotation in the direction of the mean flow path as shown in Figure 2.18. These vortices tend

to persist in the flow longer than transverse vortices. We will commence a review of some

studies involving methods for generation of longitudinal vortices.

Jacobi and Shah [1995] reviewed the current literature of the day pertaining to lon-

gitudinal vortex generators. They mention several different methods for generating lon-

gitudinal vortices, shown in Figure 2.19, and compare the different methods for overall

heat transfer enhancement as well as pressure drop penalty,where available. A table sum-

marizing what was found is presented as Figure 2.20. It appears from the table that, for
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Figure 2.18: Longitudinal vortices. [Jacobi and Shah, 1995]

rectangular channels, heat transfer enhancement is on the order of 20-77%, with pressure

drop penalty ranging from 45-145%.

Jacobi and Shah [1995] concluded that, while some data existed, much more re-

search needed to be done before a real understanding of LVG geometry could be had.

They made particular mention of more LVG testing needing to be done in channels and

pipes since most compact heat exchangers utilize flow through channels, not flow over flat

plates. They also surmise that laminar flow with passively induced longitudinal vortices

could prove to be more efficient than turbulent flow in compactheat exchangers due to the

decreased entropy generation of the less chaotic flow.

Zhu et al. [1993], with the help of numerical techniques, studied heat transfer aug-

mentation due to LVGs in a rectangular channel. Figure 2.21 shows the different LVG

geometries studied. To illustrate what is happening when the flow passes over a LVG

Figure 2.22 shows some cross sectional velocity vectors at variousx locations within and

downstream of a channel with a delta winglet pair showing theformation and development

of longitudinal vortices. Similarly, Figure 2.23 shows thestructure of the temperature field.

Note how the vortices mix the flow and bring the higher temperatures from the walls into
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Figure 2.19: Natural and passively generated vortices and vortex generators for heat ex-
changer applications. (a) The natural formation of a laminar horseshoe vortex at a fin-tube
junction; (b) typical passively generated longitudinal vortices; (c) common vortex genera-
tors and the associated geometrical definitions. [Jacobi and Shah, 1995]

the inner flow. Finally, Figure 2.24 shows an increase in turbulent kinetic energy due to

the longitudinal vortices. They concluded that this increase in turbulent kinetic energy,

along with the exchange of the fluid between the near wall and core region of the channel,

were the mechanisms which augmented the heat transfer from the wall to the fluid. For

the geometry studied, they reported an increase in mean heattransfer of 16-19%, with a
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Figure 2.20: A summary of passive vortex enhancement results by Jacobi and Shah [1995].

corresponding increase in flow losses of 400-500% over that of turbulent flow in a channel

with no vortex generator. They also presented ratios of Nusselt number with and without

LVGs on each wall for the different LVG types and made recommendations for choosing

the best type of LVG for a given flow based on their findings.

Figure 2.21: Some types of longitudinal vortex generators:A) Rectangular Winglet Pair
(RWP); B) Delta Winglet Pair (DWP); C) Rectangular Wing (RW); D) Delta Wing (DW).
[Zhu et al., 1993]
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Figure 2.22: Cross sectional velocity vectors at axial locations x
h = 1.3,2.3,4.3, and 9.3,

showing the formation and development of longitudinal vortices in a channel with a delta
winglet pair as shown by Zhu et al. [1993].

Dep et al. [1995] did very similar work to Zhu et al. [1993] andcompared their re-

sults to previous experimental work. They used a RANSk− ε model, the details of which

I will leave to the reader to reference the paper. They found that the numerical model

gave good results compared to the experiments done by Pauleyand Eaton [1988]. Fig-

ure 2.25 shows the schematic of the experimental facility used by Pauley and Eaton [1988].

The numerical domain chosen by Dep et al. [1995] was configured to mimic this geometry.

Figure 2.26 shows vector plots of the secondary flow for both the numerical and experimen-

tal case at threex locations after the LVG. Although the results seem to correspond quite

well at x= 97cmandx= 188cm, atx= 142cmthe experiments show larger secondary ve-
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Figure 2.23: Structure of the temperature field in a turbulent channel flow with a delta
winglet pair: isotherms for a temperature ratio ofTw

T0
= 2 at cross sectionxH = 1.3,2.3,4.3,

and 9.3; ReH = 50,000, Pr= 0.7 as shown by Zhu et al. [1993].

locities than those computed numerically, though the dissipative trends are shown in both.

Finally, Figure 2.27 shows isolines of turbulent kinetic energy at differentx locations for

both the numerical and experimental setups. Again, the results look to be in good harmony

at x = 97cm andx = 188cm, but unfortunately thex = 142cm location is not presented.

No quantitative measurement of error between the numericaland experimental results are

given.

Biswas et al. [1996] did similar numerical work with a singleLVG winglet as well

as a winglet pair. They studied the effect of different winglet angles of attack on Nusselt

number as well as on the quality factor (j/f). Increased angle of attack uniformly increased
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Figure 2.24: Elevation of turbulent kinetic energy in the channel with a built-in delta
winglet pair, ReH = 50,000, as shown by Zhu et al. [1993].

Figure 2.25: Schematic of the experimental facility of Pauley and Eaton [1988].

Nusselt number, while decreasing the quality factor (j/ f ) for the regime studied (Re=

1580,α = 3, Pr= 0.7.)
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Figure 2.26: Vector plots of secondary flow: ReH
2
= 67,000 by Dep et al. [1995].

In their conclusion, they give an explanation of the method by which a winglet in-

duces a longitudinal vortex. They state that the main vortexis formed by the flow separation

at the leading edge of the winglet, while the corner of the winglet induces a horseshoe-like

vortex. These vortices induce a vortex opposite in rotationto both of themselves. The com-

bined effect of these vortices distorts the temperature field and serves ultimately to bring

about enhancement of heat transfer between the fluid and neighboring surfaces.

Xiao-wei et al. [2007] published some nice visualizations of LVG induced flow,

a representation of which is shown in Figure 2.28. They concluded that vortex intensity
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Figure 2.27: Isolines for turbulent kinetic energy at different cross-sections for ReH
2
=

67,000 by Dep et al. [1995].

increased with increased Reynolds number and that the distance over which the vortices

flowed downstream decreased with increasing Reynolds number.

Wu and Tao [2008] performed a numerical simulation of a deltawinglet LVG and

verified that increasing angle of attack uniformly increases pressure drop. They also found

that punching the LVG out and leaving a hole in the fin increased heat transfer near the

location of the LVG, but has little effect on the overall heattransfer. Finally, they found

that an angle of 45 degrees gives the highest Nusselt number compared to the other angles

studied (15, 30, 60, and 90 degrees.)
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Figure 2.28: Double vortices with rib at Re= 1000,1700. (a) Re= 1000, (b) Re= 1000,
(c) Re= 1700, by Xiao-wei et al. [2007].
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3. EXPERIMENTAL APPARATUS

This section describes in detail the experimental apparatus used to conduct the ex-

periments for both the liquid and air experiments. Though the premise was the same in both

cases, there is enough of a difference in the two apparatus that they are treated separately

here. Section 3.1 describes the experiments involving water, and Section 3.2 describes the

experiments involving air.

3.1. LIQUID LOOP

The experimental apparatus consisted primarily of a closedloop though which wa-

ter was circulated. Installed in the loop was an aluminum channel with surface enhance-

ments machined in the channel walls, referred to hereafter as the test section. Heaters were

installed on the test section, and a heat exchanger was installed in another part of the loop

for heat rejection. The loop, along with supporting instruments, was mounted to a 10 foot

long pallet rack for convenience. The apparatus was constructed and first used by Bridges

[2007], though modifications were made to accommodate the current research. A photo of

the entire apparatus is presented as Figure 3.1. Each portion of the apparatus is described

in more detail in the following sections.

3.1.1. Flow Loop. The majority of the flow loop was constructed using 5/8 in.

nominal diameter type L nitrogenized ACR/MED rigid copper tubing and brass Swagelok-

style 3/4 in. O.D. tube fittings. The subsections below describe each portion of the loop in

the order of fluid flow, starting with the pump.

3.1.1.1. Pump. The pump used was a Dayton 6PA10 stainless steel rotary gear

pump, with optional thickened gasket. The pump material allowed for high temperature

operation, as well as good corrosion resistance. The pump was driven by a Dayton 6XH74
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Figure 3.1: Photo of liquid loop test apparatus.

3/4 hp, 1,200 rpm motor. The pump and motor were mounted to a stand isolated from the

rest of the apparatus and connected to the loop with rubber hoses to mitigate vibration as

much as possible.

3.1.1.2. Flow meter. A Micro Motion R-series Coriolis flow meter was used to

monitor the mass flow rate traveling through the closed loop.The meter was connected to

a Micro Motion 2700 series transmitter, which was wired intothe data acquisition system,

details of which can be found in Section 3.1.3.1 below. The flow rate was controlled using

a needle valve located just after the flow meter.
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3.1.1.3. Heat exchanger for heat rejection.Heat rejection was accomplished us-

ing a shop-made concentric counter-flow heat exchanger. Theheat exchanger was con-

structed by assembling a 40 in. long, 11
2 in. nominal diameter coper tube over a section of

the flow loop with reducer fittings and tee’s such that coolantcould flow around the inner

pipe, through which the loop fluid passed. The building cold water supply was used as the

coolant, and was regulated up to a maximum of 2.4 gpm using a gate valve and rotameter.

3.1.1.4. Bleed valves.A bleed valve was placed at the highest point in the loop. It

consists of a tee installed at a right-angle junction, instead of an elbow, and a short piece of

pipe pointing upward with a valve installed. The valve is closed during loop operation, but

may be opened for bleeding when necessary. This valve was also used to relieve the loop

pressure due to expansion of the water during heating. Bleedvalves were also installed in

each settling chamber.

3.1.1.5. Inlet settling chamber. The inlet settling chamber consisted of a large

rectangular duct made from welded1
4 inch thick plate aluminum. On the inlet side a fitting

to receive the loop tubing was installed, and a flange was madeon the outlet side onto

which the test section was bolted. A groove was machined intothe flange to accept a

square rubber o-ring type gasket, which was secured in placewith RTV silicone. Within

the settling chamber were two screens placed before and after a section of honeycomb. The

screens were made from 0.025 in. diameter stainless steel wires at ten wires per inch length

and width. The honeycomb was a 11
2 in. thick section of aluminum honeycomb intended

for use in composite board manufacture. The hexagon side length was approximately 1/10

in. giving a length-to-cell-diameter ratio of roughly 8.5.

The inlet settling chamber is rigidly mounted to a set of linear motion bearings

which extend to the outlet settling chamber in such a way as tomaintain alignment of the

two chambers.
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3.1.1.6. Test section.The test sections were machined from aluminum stock to

represent a scaled-up, single channel in the representative heat exchanger shown in Fig-

ure 1.1. The scale factor was three, giving a channel width of1.125 inch, height of 0.3

inch, and length of 26.5 inches. Once assembled, each test section was fitted with phenolic

flanges at each end, the bolt pattern of which matched the respective settling chambers.

A detailed description of test section construction, instrumentation, assembly, and

installation can be found in Section 3.1.2.

3.1.1.7. Outlet settling chamber.The outlet settling chamber was identical to the

inlet settling chamber, and was bolted to the outlet side of the test section. Unlike the inlet

settling chamber, which is fixed in place, the outlet settling chamber is mounted to a pair

of 3
4 in. linear motion bearings, allowing it to slide toward or away from the inlet settling

chamber, while maintaining their alignment.

3.1.1.8. Building water supply connection.The loop was filled by the building

water supply, which was connected via a tee after the outlet settling chamber. The water

supply was regulated using a needle valve. Also present was apressure gage with which

to monitor the loop gauge pressure. The building line pressure was used to bring the loop

operating pressure up to a nominal 10 psi for all experimentsto prevent cavitation at the

pump inlet.

3.1.1.9. Auxiliary heater. A Zerostart 330-5004 engine block heater was installed

to aid in bringing the loop up to operating temperature more quickly. It had a maximum

output of 2.5 kW and was controlled by a Powerstat S1002 variable autotransformer with

a maximum rating of 2 kW. The heater’s internal thermostat was bypassed so it would not

shut off based on a preset fluid temperature, as it had been normally designed to do.

3.1.1.10. Recirculation loop. A recirculation loop was installed which, when

opened, allowed a portion of the water in the loop to circulate from the pump outlet back

into the pump inlet. The purpose for the recirculation loop was to lessen the burden on the
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pump at very low flow rates by preventing a high pressure build-up between the pump and

the flow-regulating needle valve.

3.1.2. Test Section Design, Fabrication, and Installation. Each test section con-

sisted of two halves bolted together to form a complete channel. Each half was machined

from a single piece of aluminum stock via a computer numerically controlled mill. Sur-

face enhancements were machined into the long edge of each channel, and grooves were

machined into the short edge of each channel to accommodate the seals and side wall insu-

lators described below. A dimensional drawing of a typical test section half cross section

is presented as Figure 3.2.

Figure 3.2: Liquid test section half geometry.

3.1.2.1. Thermocouple wells.Thermocouple wells were drilled along the center-

line of both test section halves. They consist of a 1 mm hole drilled to within .010 inch

of the bottom surface of the channel. This assured that the temperatures measured were

as close as possible to the wall temperature at the surface. For convenience in installation,

a clearance hole of diameter 0.067 in. was drilled to within 0.5 in. of the surface. A

dimensional drawing showing a typical thermocouple well ispresented as Figure 3.3.

Once the test sections were complete, thermocouples were cemented into the holes

using Omegabond 600 high temperature chemical set cement.
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Figure 3.3: Thermocouple well geometry.

3.1.2.2. Pressure tap holes.The pressure tap holes were very similar to the ther-

mocouple holes, except that they were drilled completely through the test section, allowing

pressure to be measured. A dimensional drawing of a typical pressure tap hole is presented

as Figure 3.4.

Figure 3.4: Pressure tap hole geometry.

Once the test sections were manufactured, tubes were installed into the pressure tap

holes using J.B. Weld. The tubes consisted of a 0.065 in. O.D.steel tube mounted inside
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a 0.065 I.D. copper tube, as shown in Figure 3.5. The tube allowed the pressure taps to be

connected to the pressure transducer manifold during installation.

Figure 3.5: Pressure tap tubes which were mounted in pressure tap holes.

3.1.2.3. Seals and side wall insulators.The two shorter walls of each channel

were insulated to promote 1-dimensional flow of heat from theheaters into the water. The

side walls were machined out of1
4 inch phenolic to fit, along with rubber seals, into the

grooves machined into the test section halves. More detail on the side insulators can be

found in Section 3.1.2.6.
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3.1.2.4. Heaters. Two custom mica etched foil heaters from Hi-Heat Industries

were ordered, which were sized to precisely fit the test section halves, one for each channel

half. In addition to being sized to the wetted portion of the channel, slots were made in

the center to allow the thermocouple wires and pressure tapsto pass through. The heaters

were capable of delivering approximately 1.400 kW each, fora total of 2.8 kW to the test

section. The heaters were very thin and delicate; they were,therefore, permanently installed

between two aluminum plates which were machined to the same shape as the heaters. Each

plate adjacent to the test section was cut from1
16 in. 6061-T6 aluminum, while the plate

opposite the heater was cut from18 in. 6061-T6 aluminum. In addition, a layer of ceramic

paper was placed between the heater and the outer plate, providing a softer and more even

clamping surface, as well as creating a thermal barrier.

3.1.2.5. Flanges.At each end of the test section was a flange to accommodate

bolting of the test section to the settling chambers. The flanges were machined from18

in. phenolic plate. Phenolic was used because of its machinability, thermal resistance, and

strength. Each flange was drilled with the bolt pattern to match the settling chambers, and

an opening was machined through which the tongue of the test section would fit snugly. A

rabbet was also machined around the opening so the test section would be recessed slightly

into the flange for added support. A photo of one flange is presented as Figure 3.6. Each

flange was attached to the test section using high temperature RTV silicone and clamped

by running long threaded rods through two pairs of the flange holes and bolting such that

there was good tension and the flanges were square to the test section. If the flanges were

not square, they would be stressed as they were installed andwould likely leak. A photo of

a flange installed on one end of a test section is presented as Figure 3.7.

3.1.2.6. Assembly.With the thermocouples and pressure tap tubes installed, the

test sections were ready for assembly. Assembly proceeded in the following steps:
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Figure 3.6: Flange for mounting test section to test apparatus.

Figure 3.7: Flange mounted to test section.

1. Assembled halves:The bottom half was placed with the channel facing upward on

supports to ensure the thermocouple wires were not damaged by sitting directly on

the table. Two lengths of 0.139 in. diameter rubber sealing cord were installed, one

in each groove. The two phenolic insulating side walls were then installed. Two more
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lengths of sealing cord were then placed in the grooves in thetop channel and held in

slight tension while the top channel was carefully placed onto the bottom. Once the

top channel grooves had received the phenolic side walls, tension was released and

the top channel slid down to rest onto the bottom half. Thirty-six #8-32x1” socket

head cap screws were then used to secure the two halves together, compressing the

sealing cord. The cord was them trimmed to length and the assembly of the two

halves was complete. Figure 3.8 shows an end view of a completely assembled

channel.

Figure 3.8: End view of liquid test section channel.

2. Installed heaters:Once the halves were assembled, the two heater assemblies were

installed, one each, on the top and bottom of the test sectionas follows: The as-

sembled test section was placed on blocks with the top surface facing upward. The

thermocouple wires were then pulled through the corresponding slot in the heater, as

shown in Figure 3.9, and the heater was slid over the pressuretap holes to rest on
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top of the test section. The test section was then flipped overand the other heater

similarly placed. Installation was completed by using 34 #8-32x2” socket head cap

screws with nuts to secure the heaters firmly in place.

Figure 3.9: Pulling thermocouple wires through slots in heater.

3. Installed flanges:With the heaters installed, the flanges were ready to be installed as

follows: The test section was placed on a block of such a height that the installed

flanges would clear the bench once installed. The flanges werethen test fit and

sanded as necessary. Once everything was fitting well, RTV silicone was spread

in a thin layer on both the flange and the test section surfaces. The flanges were

then set in place and a long threaded rod placed through the lowermost hole in both

flanges, and nuts installed. Care was taken at this step not toknock the flanges off

of the test section. Use of small diameter threaded rod was beneficial to accomplish

this. Another long threaded rod was placed through the uppermost hole in each of the

two flanges and nuts installed. The nuts were then alternatingly tightened until both
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were snug and the distance between the two flanges at each rod location was equal,

thus assuring even clamping pressure and assisting in making the flanges square. The

test section was then removed from the blocks and placed withthe flanges resting on

the bench, and both flanges were squared to the test section inall directions. Any

variations from square were corrected, using a small rubbermallet when necessary.

The RTV was allowed to dry and the threaded rods removed.

With the test section halves assembled and heaters and flanges installed, the test section

was ready to be installed into the testing apparatus.

3.1.2.7. Installation. The outlet settling chamber was slid on the linear bearings

so that it was as far away from the inlet settling chamber as possible. Blocks were placed

across the rails to support the test section at the proper height. The test section was then

placed on the blocks between the settling chambers so that itwas resting against the inlet

settling chamber. The outlet settling chamber was then moved so that it was just touching

the test section flange. One bolt and washer was then threadedonto each end of three

threaded rods. The bolts were threaded toward the middle of the threaded rods so as to fit

between the flanges when installed. One of the threaded rods was then placed through the

uppermost hole in the two flange pairs, such that it was spanning the entire test section.

The other two rods were similarly installed in two of the bottom holes such that the three

rods had the same number of flange holes between each of them. An additional washer and

bolt were then threaded onto each end of the rods and tightened until the settling chambers

were just snug against the test section flanges. The threadedrods served to keep the outlet

settling chamber from sliding back when the loop was pressurized, thus preventing the

phenolic from deforming and causing leaks. The inner bolts on the threaded rod were then

tightened against the test section flanges, and nine bolts with nuts and washers installed in

every other hole in each manifold. It was determined that it was not necessary to install a

bolt in every hole. The installed test section can be seen in Figure 3.10.
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Figure 3.10: Test section installed in liquid loop.

Once the test section was installed between the settling chambers, the thermocou-

ples were wired to the data acquisition card and their placement recorded. The pressure tap

tubes were fitted with nipples, and rubber tubing was attached, which led to the respective

manifold positions. The test section was then well insulated as described in the following

section.

3.1.2.8. Insulation. The test section surface was insulated using one inch thick

mineral wool insulation as shown in Figure 3.11. Mineral wool was chosen because of

its ability to withstand high temperatures. Once the test section was covered with mineral

wool, it was further insulated with standard R-13 home insulation, which was fitted into a

clamshell-style box designed to go around the test section,as seen in Figure 3.12 as well

as in Figure 3.11 mentioned previously.

Once the test section was fully insulated, the flanges were insulated by wrapping

household R-13 insulation around them and securing it with vinyl tape. The gap in the top
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Figure 3.11: Mineral wool insulation around liquid test section.

Figure 3.12: Insulation clamshell installed around liquidtest section.

of the clamshell was also insulated using another piece of R-13. The fully insulated test

setup can be see in Figure 3.13.

3.1.3. Instrumentation. The following sections describe the various pieces of in-

strumentation used in the liquid flow loop, beginning with the flow meter.
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Figure 3.13: Fully insulated liquid test section.

3.1.3.1. Flow meter. Since Reynold’s number was critical to the data reduction

process, it was important to have accurate measurements of mass flow rate and fluid density.

A Micro Motion R025 Coriolis flow meter was used in conjunction with a Micro Motion

2700 series transmitter to measure both quantities. Each quantity was output on a 0-10

V scale. The meter and transmitter combination is accurate to ± 0.5% of the mass flow

reading within its range of 0 to 0.38 kg/s.

3.1.3.2. Differential pressure gauge.Differential pressure measurements were

made using a Validyne DP15-26 pressure transducer connected to Validyne CD-23 carrier

demodulator, which had an accuracy of±0.25% of its full scale reading of 1.4 in.w.g.

Through the use of a manifold, each pressure tap on the test section could be applied to

either the high or low side of the transducer. The inlet and outlet settling chambers also had

pressure taps installed which could be applied to the high and low sides of the transducer,

respectively. The pressure measurement setup is presentedas Figure 3.14.
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Figure 3.14: Pressure measurement setup for liquid loop.

3.1.3.3. Test section heater power control and monitoring.The power to the

each of the two test section heaters was varied using a Powerstat 136B variable autotrans-

former, and was monitored using a Ohio Semitronic GW5-019DY01 AC watt transducer.

The watt transducers had an accuracy of± 0.2% of the reading, or± 0.04% of full scale

voltage, and did output 0 - 10 V linearly withing the operating range of 0 to 2,400 W.
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3.1.3.4. Thermocouples.Standard 30 gage ANSI type-T (copper-constantan) ther-

mocouples were used for both fluid and surface measurements.They were manufactured

using a THERMX Model 258B thermocouple welder with argon as the shielding gas.

The fluid thermocouples were prepared, once welded, first by dipping them in Dow

Corning I-2577 Conformal Coating. They were then fed through a short length of18 in.

O.D. coper tubing so the bead protruded just past the end. They were then held in place

and further sealed by RTV silicone to waterproof them. Omegalok SSLK compression

fittings were used to mount the tubing to the apparatus.

The inlet settling chamber contained four thermocouples evenly spaced throughout,

and the outlet settling chamber contained two thermocouples, which were strategically

placed so that the fluid coming out of the test section would flow over them soon after

exiting. Thermocouples were also placed, one each, in tees in the copper tubing running

into the inlet settling chamber and out of the outlet settling chamber.

The test section wall thermocouples, once welded, were dipped in Dow Corning

I-2577 Conformal Coating to electrically insulate them from the test section once installed.

The installation of test section wall thermocouples is discussed in Section 3.1.2.

Each thermocouple was wired to one of two National Instruments CB-68-LPR con-

necting blocks in Non-Reference Single Ended (NRSE) mode. Each connecting block was

installed in a well insulated electrical box. All thermocouple measurements were refer-

enced to an ice bath, one for each box, to mitigate any error due to temperature variations

at the terminal block. Preparation of the ice baths were in accordance with ASTM [1981].

3.1.3.5. Data acquisition system.Two LabView programs were used in operation

of the loop. The first, which was used as the loop was coming to steady-state, monitored

the bulk inlet and outlet temperatures, as well as the heaterwattages, wall temperatures,

and pressure drop in real-time. An example of the program’s front panel can be seen in
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Figure 13. Once the loop had come to steady-state, the secondprogram was used to record

the data. All data was recorded at 1000 Hz for 30 seconds.

Figure 3.15: LabView front panel for liquid loop start-up.

3.1.4. Liquid Test Section Surface Geometries.This section discusses the sur-

face geometries used for each of the four liquid test sections. They were numbered WFC###,

where WFC stands for Water Fin Channel. Each section is described in detail below:

3.1.4.1. Water fin channel 000.WFC000 was a smooth, rectangular channel of

width 1.125 inch and height 0.3 inch, with no surface enhancements. It was to be used as a
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baseline for comparison with the enhanced geometries, as well as to validate the test setup

by comparison with published results.

3.1.4.2. Water fin channel 010.WFC010 was a bumped test section. The bumps

spanned the most of the width of the test section, ending 0.141 inches inside of each side

wall, as shown in Figure 3.16. The cross section of the bumps,including dimensions, is

presented as Figure 3.17.

Figure 3.16: WFC010 test section half.

3.1.4.3. Water fin channel 012.WFC012 was identical to WFC010, except that

the bumps were shorter. Since the bump angle was the same, theflats on the peaks and

valleys were also longer. The cross section of the WFC012 bumps, including dimensions,

is presented as Figure 3.18.
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Figure 3.17: WFC010 bump geometry (dimensions are in inches.)

Figure 3.18: WFC012 bump geometry (dimensions are in inches.)

3.1.4.4. Water fin channel 103.For WFC103, a new approach was studied. For

this test section, the bumps were meant to resemble rifling, inducing a rotation in the bulk

flow. The bumps were similar to those in WFC010, except that they were turned 45 degrees

to the flow. The bumps on the top of the channel were rotated so they were perpendicular

to those on the bottom, creating the desired rifling. Insteadof having the bumps span the

entire width of the test section, a valley was left in the middle so that the overlapping

bumps would not cause a significant area restriction. One test section half is presented as

Figure 3.19, and the half-bump geometry is shown, with dimensions, as Figure 3.20.
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Figure 3.19: WFC103 test section half.

3.2. AIR LOOP

The experimental apparatus consisted primarily of a closedloop though which air

was recirculated through the heated test sections as well asan optional heat recovery ven-

tilation (HRV) unit for heat rejection. The loop, along withsupporting instruments, were

mounted to a 10 foot long pallet rack for convenience. The apparatus was constructed and

first used by Rucker [2007], though some minor modifications were made to accommodate

the current research. A photo of the entire apparatus is presented as Figure 3.21. Each

portion of the apparatus is described in more detail in the following sections.

3.2.1. Flow Loop. The loop was constructed primarily of clamp-together six-inch

diameter sheet metal ducting from K&B Duct. Exceptions werejust before and after the

pump, which was two-inch rubber hose, and between the outletsettling chamber and the
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Figure 3.20: WFC103 half-bump geometry (dimensions are in inches.)

orifice flow meter, which was six-inch diameter PVC pipe to ensure there were no leaks in

that section.

The subsections below describe each portion of the loop in the order of air flow,

starting with the blower.

A schematic of the loop is presented as Figure 3.22.

3.2.1.1. Blower. A blower was placed in the upper corner of the loop to drive the

flow. It was an Ametek model 116637M, with a maximum volumetric flow rate of 100

cfm. It could overcome up to a 6750 Pa static pressure loss. The blower was configured to

receive two inch rubber hose, so a reducer was placed just before the blower to transition

from the six inch loop ducting. Two inch rubber hose was then used to secure the blower to

the loop. A 2-inch PVC gate valve was placed just after the blower to regulate the air flow
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Figure 3.21: Photo of air loop test apparatus.

through the loop. An expander was placed after the throttling valve to transition from the

2-inch rubber hose back to the 6-inch ducting.

3.2.1.2. Heat recovery ventilator (HRV). The heat recovery ventilator was a Nu-

Air Ventilation Systems model NU120-2 with aluminum core. The HRV warmed incoming

air some, but due to it’s inefficiency the incoming air was notas warm as the exhaust air,

thus mimicking closed-loop heat rejection.

3.2.1.3. Inlet settling chamber.The inlet settling chamber was an eight-inch wide

by 6 inch tall plexi-glass duct containing four screens and asection of honeycomb for flow

conditioning. The screens had a wire diameter of 0.011 inch with a mesh count of 18x16
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Figure 3.22: Schematic of air loop test apparatus.

wires per inch and were made of aluminum. Rucker [2007] chosethe design. A schematic

is presented as Figure 3.23.

3.2.1.4. Test section.The test section was machined from aluminum to represent

a scaled-up, single channel in the representative heat exchanger. The scale factor was 10,

giving a channel height of 3.75 inches, width of 1 inch, and length of 36 inches. Each of

the four sides of the rectangular channel were fitted with a heater.

A detailed description of test section construction, instrumentation, assembly, and

installation can be found in Section 3.2.2.
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Figure 3.23: Schematic of inlet settling chamber, dimensions in mm [inches].

3.2.1.5. Outlet settling chamber. The outlet settling chamber was constructed

similarly to the inlet settling chamber, except it only included two screens, also spaced four

inches apart, and no honeycomb. The outlet settling chamberwas 10 inches wide by 6

inches tall.

3.2.1.6. Orifice plate flow meter. After exiting the outlet setting chamber, the

flow passed through a 1.0917 inch diameter quadrant-edged orifice plate flow meter, which

is described in more detail in Section 3.2.3.1.

The flow then returned to the blower, and the loop was complete.

3.2.2. Test Section Design, Fabrication, and Installation. The test sections con-

sisted of two major parts: The top and bottom pieces were generic, and were re-used on

each test section assembly, while the sides featured the destabilizing geometry and were
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changed. Because of the limitations of the travel of the CNC machine used to manufacture

each piece, it was not possible to make each side in one piece.The sides, therefore, were

manufactured in two pieces, and the top and bottom were manufactured from three pieces

each. In this way, the joints were staggered and the assemblyheld itself together once

fasteners were installed.

The following subsections describe in more detail the construction, assembly, and

installation of the test sections.

3.2.2.1. Construction of sides.Each set of sides was first drawn in UGS NX in

3-D. The drawings were then used to CNC mill the destabilizing geometry into the sides, as

well as drill and, where applicable, tap all fastener holes,thermocouple wells, and pressure

tap holes.

3.2.2.2. Thermocouple wells.Thermocouple wells were machined along the cen-

ter of each side, as well as the top and bottom of each test section. The exact linear place-

ment varied due to geometry considerations. The side onto which the primary flow desta-

bilizers were machined contained approximately 30-40 thermocouples over its length. The

geometry of the thermocouple wells were identical to those in the experiments involving

water, as described in Section 3.1.2.1.

3.2.2.3. Pressure tap holes.Three pressure tap holes were machined into the top

segments, such that when assembled they were located near the inlet, center, and outlet of

the test section. The pressure tap holes were also identicalto those used in the experiments

involving water, as described in Section 3.1.2.2.

3.2.2.4. Heaters.Each of the four sides of the test section had a heater installed.

The heaters were etched-foil type with silicone rubber insulation. The heaters had a ca-

pacity of 2.1 W/in2 and a maximum operating temperature of 200◦C. The heaters were

sandwiched between two18 inch aluminum plates before being bolted to the sides of the

test section. The heaters and aluminum plates had slots and holes cut in them to allow the

thermocouple wires and pressure taps to pass through.
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3.2.2.5. Flanges.The test section flanges were machined from1
4 inch phenolic

plate. A rectangle was machined in the middle to receive the test section, and a bolt pattern

was drilled to match the inlet and outlet test sections, similarly to the flanges for the water

test sections.

3.2.2.6. Assembly and installation.The test sections were assembled by bolting

the top and bottom sections to the side section to form a rectangular channel. The fasteners

used were 8-32x1/2” socket head cap screws. Ceramic paper was placed between the sides

and the top and bottom to prevent heat from conducting between them as much as possible.

Thermally conductive paste was applied at the joint of each side section and the joint of

each of the top and bottom sections to allow heat to travel more readily across the joints,

simulating an unbroken section. The assembly and installation process for each test section

proceeded as follows:

1. Assembled test section:The sides were placed in the correct order on the bench.

Thermal paste was applied to the joints, and the pieces butted together and placed

the correct distance apart, as shown in Figure 3.24. Ceramicpaper was then cut and

placed on top of the sides in preparation for bolting on the top sections. The top

sections were then bolted on one at a time, and thermal paste applied at all joints.

Figure 3.25 shows a top piece being installed onto the sides.The test section was

then flipped over and placed on blocks to protect the top thermocouples and pressure

taps. Once the test section was flipped over, the bottom sections could be installed.

It was slightly easier to line everything up properly if the center bottom section was

installed before the two end sections, as shown in Figure 3.26.

2. Installed flanges and installed test section in loop:Once the test section was assem-

bled, the flanges were glued to each end using high temperature RTV silicone. A

thin, even layer of silicone was spread on each flange, and another on each mating

test section surface, and the flanges pressed into place. Thetest section was still
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Figure 3.24: Test section sides prepared for assembly.

Figure 3.25: Installing top section onto sides.

on blocks, which prevented the flanges from contacting the bench. The test section

was then carefully placed into the flow loop between the inletand outlet settling

chambers, and threaded rod used to clamp the settling chambers to the test section.

The blower was turned on to ventilate the test section as the RTV was allowed to
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Figure 3.26: Installing bottom section onto sides.

dry. While the RTV was drying, the rest of the bolts were installed on the flanges to

complete installation of test section into the flow loop.

3. Installed heaters:Once the test section was installed in the flow loop, the heaters

were installed. Each heater was fastened using #6-32x1/4” socket head cap screws

around the edges, as well as #6-32x3/8” socket head cap screws with washers along

the center. Figure 3.27 shows the position of the fasteners.One fastener was also

used to secure a ground wire from the test section to the test apparatus frame to

ensure that any shorts of the heater to the test section were immediately grounded

and would not present a risk to the operator.

4. Hooked up thermocouple wires and pressure taps:The thermocouple wires were

then installed on the data acquisition card and their positions recorded. The pressure

taps were also connected to the pressure gauge manifold using rubber tubing.
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Figure 3.27: Fasteners used to mount heaters.

With the test section assembled and the heaters installed, the test section was ready

to be insulated.

3.2.2.7. Insulation.The test section was insulated first with one inch thick mineral

wool insulation and then wrapped in household R-13 insulation, similar to the tests involv-

ing water. The inlet and outlet settling chambers were then insulated with household R-13

insulation. Care was taken to ensure all surfaces were covered and well insulated, includ-

ing the bottom and the flanges. A picture of the fully insulated test section is presented as

Figure 3.28.

3.2.3. Instrumentation. The instrumentation used in the experimental setup were

the flow meter, pressure gauge, test section heater controls, watt transducers for heaters,

thermocouples for temperature measurement, and a data acquisition system. Each piece of

instrumentation is described in more detail in the following subsections.

3.2.3.1. Flow meter. The flow meter was a 1.0917 inch diameter quadrant-edged

orifice plate flow meter, which accommodated flow measurementfrom 1 to 29.5 cfm, with
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Figure 3.28: Fully insulated air test section.

a corresponding pressure drop of 0.0023 to 2 in. w.g. The orifice plate was mounted in

the loop between two PVC holding blocks and two 150# ANSI flanges. Each interface

also included a Buna-N gasket. A schematic of the orifice mounting set-up is included as

Figure 3.29. The pressure difference across the orifice plate was measured using a Dwyer

Micrometer manometer as described in the following section.

3.2.3.2. Pressure gauge.The pressure gauge used was a Dwyer Micrometer manome-

ter, which had a maximum pressure difference reading of 2 in.w.g., with an uncertainty of

±0.00025 in. w.g. A manifold was constructed which allowed the gauge to measure the

pressure drop across the orifice flow meter or to measure the pressure drop across any two

test section pressure taps by adjusting the valves on the manifold. A schematic of the

pressure measurement set-up is presented as Figure 3.30.

3.2.3.3. Test section heater control.The test section heaters were controlled using

two Superior Electric 116C variable transformers to vary the voltage, and thus heater power.
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Figure 3.29: Schematic of orifice plate installation.

Figure 3.30: Schematic of pressure measurement system.

3.2.3.4. Watt transducers. The watt transducers which were used to measure

heater wattage were model GW5 from Ohio Semitronics. They had an accuracy of±0.2%

of the reading plus±0.04% of full scale wattage. The output of each transducer was 0-

10 VdC, corresponding linearly with its range of 0-1200 W.

3.2.3.5. Thermocouples.Each settling chamber had eight thermocouples evenly

spaced in a plane perpendicular to fluid flow. The average of the eight thermocouples gave

a good approximation of the bulk air temperature.
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The test section thermocouples were identical to those usedin the experiments in-

volving water, described in Section 3.1.3.4.

3.2.3.6. Data acquisition system.Similarly to the experiments involving water,

one program was written to monitor the experiment until steady state was reached, and

another was used to collect the data. The data collection program was identical to the one

used in the experiments involving water.

3.2.3.7. Room air temperature and relative humidity measurement. The room

air temperature and relative humidity were measured using aTH Pen model 8708 digital

thermo-hygrometer.

3.2.3.8. Room barometric pressure.The room barometric pressure was measured

using an Omega model EWS-BP-A barometric pressure transmitter, which was calibrated

to output a voltage between 1-5 VdC, corresponding linearlywith its range of 20.8-32.0

inches of mercury.

3.2.4. Air Test Section Surface Geometries.This section discusses the surface

geometries used in the three air test sections. Section SFC010 was a bumped plain bumped

geometry, while SFC020 and SFC021 were LVG geometries with differing dimensional

characteristics. Each test section is described in detail in the following subsections.

3.2.4.1. Scaled fin channel 010.The surface enhancements on SFC010 were sim-

ilar to those on WFC010, but scaled up by10
3 . Figure 3.31 shows the inlet portion of the

enhanced side of the channel. The outlet portion is similar,and continues the same bumps.

The opposite side of the channel is a reverse image of the first. Thus, when one side has a

bump, the other has a valley, thus maintaining a constant cross-sectional area. The bump

dimensions are shown as Figure 3.32.

3.2.4.2. Scaled fin channel 020.The surface enhancements on SFC020 were pe-

riodic LVG patches. The inlet portion of the enhanced side isshown as Figure 3.33, and

the outlet portion is shown as Figure 3.34. All lvg’s are 0.335 inches tall, with a 45◦ slope.

Again, the opposite side has valleys to match the LVG bumps onthe enhanced side.
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Figure 3.31: Side of SFC010 test section, showing bumps.

Figure 3.32: SFC010 bump geometry, with dimensions.

3.2.4.3. Scaled fin channel 021.The enhancements on SFC021 were LVG patches

as well, but this time the LVG geometry was different. The inlet portion of the enhanced

side is shown as Figure 3.35, and the outlet portion is shown as Figure 3.36 All lvg’s are

0.335 inches tall, with a 45◦ slope. To reduce machining time and material cost, and sinceit

was assumed that the difference would be negligible, the unenhanced surface from SFC020

was re-used for SFC021.
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Figure 3.33: SFC020 side geometry, for the inlet portion of the duct.

Figure 3.34: SFC020 side geometry, for the outlet portion ofthe duct.
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Figure 3.35: SFC021 side geometry, for the inlet portion of the duct.

Figure 3.36: SFC021 side geometry, for the outlet portion ofthe duct.
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4. EXPERIMENTAL PROCEDURE

This section describes the procedure for conducting the experiments once the test

sections are manufactured, assembled, installed, and insulated. The procedure for manufac-

ture, assembly, installation, and insulation of the test sections was described in Section 3.

Again, the two sets of experiments were described separately, with Section 4.1 describing

the experiments involving water, and Section 4.2 describing the experiments involving air.

4.1. LIQUID LOOP EXPERIMENTS

The steps for operation of the liquid loop were as follows:

1. Prepared Loop:Before filling the loop, it was important to ensure that the drain

valve at the bottom of the loop was closed and that the each bleed valve on the

settling chambers as well as the bleed valve in the upper corner were open, so that

water could freely flow into the loop without compressing theair in the loop. Also,

the pressure equalization valve on the pressure manifold was open so that the filling

of the loop did not over pressurize the sensitive pressure transducer.

2. Filled Loop: Once the loop was prepared, it was filled with building supplywater by

opening the needle valve. As the loop filled, water would begin to flow out of the

bleed valves in sequence, from the closest to the furthest from the filling point. As

the water began to flow out of each bleed valve, it was closed and the loop continued

filling, until water was flowing out of the top most bleed valve. It was not imme-

diately closed, as doing so would begin to pressurize the loop. Instead, the supply

water was turned off. The bleed valve was left open for the next step: bleeding of the

pressure transducer manifold.
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3. Bled the pressure transducer manifold:Once the loop was full of water, it was nec-

essary to bleed the pressure transducer manifold to remove all air. Even a small

amount of air in the loop or the manifold could cause large discrepancies in pressure

readings.

The pressure transducer manifold was bled using an over-head five gallon bucket

filled with water, which was plumbed into the pressure transducer manifold. A valve

was opened which allowed water to flow via gravity from the bucket into the loop

through the manifold. Thus, each part of the manifold was bled by opening valves in

turn so that the bubbles could escape either out the bleed valves in the manifold, or

back into the loop. As water was released from the bucket intothe loop the excess

water would spill out of the main bleed valve.

The reason for using the bucket instead of loop pressure for bleeding was to reduce

the chance of over pressurizing the pressure transducer. Once all air was bled from

the manifold, the transducer itself was bled by slowly loosening the bleed screws in

turn until they were both opened. Once all air was out of the line from the manifold

to the transducer, the bleed screws were closed.

Once the manifold was bled, the valve to the bucket was closedand the building water

needle valve turned on to allow a slow flow of water into the loop. The loop was again

bled to remove any air that had entered during the manifold bleeding process. The

loop water was also circulated by turning on the pump to ensure all bubbles had been

worked loose, and each bleed valve was again opened in turn toensure all air was

allowed to escape.

4. Pressurized loop:Once the loop was satisfactorily bled, it was pressurized to10 psi.

It was necessary to run the loop under pressure to prevent cavitation at the pump

inlet, as well as to prevent dissolved gases from being released from solution as the

water heated up.



67

Once the loop was pressurized and bled, it was ready to run. Pressure measurements

were taken first, then temperature measurements were taken,as described in the following

two subsections:

4.1.1. Pressure Drop Measurements.All pressure drop measurements were con-

ducted at room temperature, as follows:

1. Adjusted flow rate:The pump was turned on and the flow rate adjusted using the

flow rate needle valve until the desired flow rate was attained. If the flow rate was

particularly low, it was necessary to open the recirculation gate valve to reduce power

requirements on the pump and to stabilize the flow rate.

2. Selected pressure taps:Valves on the pressure transducer manifold were used to

select the pressure taps across which to measure the pressure drop.

3. Collected data:Data was collected for thirty seconds at a rate of 1000 Hz and stored

in a file using LabView.

4. Repeat:The above procedure was repeated until all desired pressuredrop data at all

desired operating points had been collected.

4.1.2. Temperature Measurements.Once the pressure measurements were taken,

the temperature measurements were taken according to the following procedure:

1. Turned on data monitoring system:The data monitoring system was turned on so that

the critical system variables could be monitored. The values monitored by the data

monitoring system were mass flow rate, pressure drop, heaterwattages, and various

fluid and wall temperatures throughout the loop.

2. Adjusted flow rate:The pump was then turned on and the flow rate adjusted using

the flow rate needle valve until the desired flow rate was attained. If the flow rate
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was particularly low, it was necessary to open the recirculation gate valve to reduce

power requirements on the pump and to stabilize the flow rate.

3. Turned on test section heaters:The test section heaters were then turned on and ad-

justed to the desired power. The auxiliary heater could alsobe turned on at this point

to speed up loop heating. Once the loop neared steady state operating temperature,

the auxiliary heater was turned off.

4. Monitored loop:The loop was monitored as it heated up, and water was bled off as

necessary to avoid over pressurizing the loop.

5. Turned on cooling water:Once the loop reached the desired operating temperature,

the cooling water was turned on and the flow rate adjusted to maintain the loop tem-

perature. The loop was then allowed to find a steady state.

6. Collected data:Once the loop reached a steady-state, the data was collectedfor thirty

seconds and saved in a file, ready for data reduction.

7. Repeat:Once the data has been taken, the flow rate, wattage, and cooling water rate

were changed, and a new steady state was found, data taken, and this process was

repeated until data had been taken for all desired flow conditions.

4.2. EXPERIMENTS INVOLVING AIR

The steps for operation of the air loop are as follows:

1. Set flow rate:The flow rate was set by turning on the bower and opening the gate

valve until the correct pressure difference across the orifice flow meter was measured.

2. Set heater wattage:The heater wattages were then adjusted until they were at the

proper output level.
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3. Monitored loop:The loop was then monitored, and allowed to reach steady state.

4. Collected data:Once the loop reached steady-state, the temperature and wattage

data were collected for thirty seconds and saved to a file. Thevarious pressure drop

data were then taken by manually adjusting the manometer manifold valves to select

the desired points and manually reading and recording the manometer. Each reading

was taken either two or four times. The room air temperature and relative humidity

were then measured and recorded. Finally, a voltage readingwas taken from the

barometer.
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5. DATA REDUCTION

All experimental data were either measured and recorded by hand, or were recorded

using a custom LabView program. The program took samples at arate of 1000 Hz, and

samples were recorded for at least 30 seconds once the experiment had come to steady

state, giving a total of at least 30,000 samples. The data were stored in columns in a text

file, and each column was averaged for use in the data reduction process. The purpose of

taking so many samples was to mitigate any effect of random noise in the data.

5.1. DIRECTLY MEASURED QUANTITIES

This section discusses those properties which were directly measured by the instru-

mentation.

5.1.1. Temperature. Thermocouple data was recorded as a voltage created by the

difference in temperature at the two ends of each thermocouple. For each block of thermo-

couples, an ice bath was used. The ice bath voltage was subtracted from the thermocouple

voltage, giving a voltage difference representing the difference between the thermocouple

temperature and that of the ice bath, designated as∆VT , in microvolts. A polynomial given

by Nanmac Corp. [2006] was then used to convert the voltage difference to temperature,

given as Equation 5.1.

T =

2.5928×10−2∆VT −7.602961×10−7∆V2
T +

4.637791×10−11∆V3
T −2.165394×10−15∆V4

T + (5.1)

6.048144×10−20∆V5
T −7.293422×10−25∆V6

T

WhereT is the temperature in degrees Celsius.
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The bulk inlet and outlet temperature values were taken as the average of all ther-

mocouples in the respective settling chambers. The bulk temperature of the fluid in the

channel was taken as a linear variation due to the uniform imposed heat flux. For property

determination, the temperature used was the average of the two settling chamber tempera-

tures.

5.1.2. Mass Flow Rate.Since mass flow rate was measured differently for each of

the flow loops, they will be discussed separately in the subsections following:

5.1.2.1. Liquid Loop. As mentioned previously, the mass flow rate in the liquid

loop was directly measured using a coriolis flow meter. During the data acquisition, the

voltage reading was sampled as a column in the previously mentioned data file and aver-

aged. The mass flow meter did output a voltage which was linearly proportional to the

observed mass flow rate. The conversion from voltage to mass flow rate was given by

Equation 5.2

ṁ= 0.06763VFM −0.1253 (5.2)

whereṁ was the mass flow rate in kg/s andVFM was the flow meter voltage reading.

5.1.2.2. Air Loop. The air loop mass flow rate was calculated using the volumetric

flow rate given by the orifice plate flow meter. The pressure drop across the orifice plate was

converted to volumetric flow rate using an equation given by Miller [1996] and presented

here as Equation 5.3

V̇ = FELFMNvp
CDd2

√

1− (d/D)4

Y1√ρ f 1

√

hw (5.3)

whereFEL was an elevation correction factor,FEM was a manometer correction factor,Nvp

was a units conversion factor,CD was the discharge coefficient for the quadrant orifice plate,

d was the orifice bore diameter,D was the duct inside diameter,Y1 was the gas expansion
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factor, ρ f 1 was the density at the high pressure tap of the orifice plate, and hw was the

measured differential pressure across the orifice plate.

OnceV̇ was known, then ˙m, the mass flow rate, was calculated by multiplyingV̇ by

the air density,ρ f 1.

5.1.3. Differential Pressure. Differential pressure was also measured differently

for each of the flow loops. The next two subsections discuss each loop in turn.

5.1.3.1. Liquid Loop. The pressure transducer voltage readings, as recorded by

the procedure in Section 4.1.1, were converted to pressure readings using Equation 5.4

∆P = 1.4×V (5.4)

where∆P was the pressure drop reading, in inches of water andV was the transducer

voltage.

In addition to those pressure taps in the test sections, pressure taps were also in-

stalled in the bulk inlet and outlet settling chambers. These taps gave better results for the

pressure drop across the enhanced surfaces, since they werenot affected by local unsteadi-

ness within the channel due to bumps. The settling chamber taps were, therefore, used in

the pressure drop calculations, and the entrance and exit losses were subtracted out. The

entrance and exit losses were calculated using Equation 5.5

∆Pts = ∆Pb−ξ
1
2

ρU2 (5.5)

where∆Pts is the pressure drop across the test section, in N/m2, ∆Pb is the pressure drop

across the settling chambers, also in N/m2, ξ is a non-dimensional head loss coefficient,

andU is the mean fluid velocity, in m/s. The coefficient was calculated to beξ = 1.5 by

adding the known coefficients for a sudden contraction, 0.5,and sudden expansion, 1.0.

The coefficient was verified using the plain channel test section. Figure 5.1 shows the
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friction coefficient calculated using the measured pressure drop internally across the test

section. Figure 5.2 shows the friction factor using the measured bulk pressure drop without

losses subtracted, and finally Figure 5.3 shows the frictionfactor using the bulk pressure

drop with losses subtracted.

0 1000 2000 3000 4000 5000 6000 7000
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Figure 5.1: Friction factor as measured within channel.

The calculation of the friction factor is discussed in Section 5.2.1. The error bars

indicate uncertainty due to the pressure transducer, discussed in Section 5.3.2.

5.1.3.2. Air Loop. The differential pressure between the various pressure taps was

found by manually opening one valve each on the high and low side of the manifold to allow

air flow between the desired points and the Dywer manometer, and manually observing and

recording the reading. Each reading was repeated either twoor four times, and an average

was taken.

5.1.4. Heater Power.Heater power was converted directly from the voltage read-

ing given by the watt transducers using Equation 5.6 for the liquid loop, and Equation 5.7
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Figure 5.2: Friction factor as measured across settling chambers, no head losses removed.
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Figure 5.3: Friction factor as measured across settling chambers, head losses removed.

for the air loop whereP was the power, in watts, andV was the watt transducer voltage

reading.

P= 2400×V (5.6)

P= 1200×V (5.7)
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5.2. CALCULATED QUANTITIES

Most of the quantities calculated were compared to the Reynolds Number based

on hydraulic diameter, ReDh, as expressed in Equation 5.8 whereDh was the hydraulic

diameter of the channel,µ was the viscosity of the fluid,ν was the kinematic viscosity

of the fluid, andU was the mean fluid velocity. In the case of air,U was calculated by

dividing the volumetric flow rate,̇V, by the duct cross-sectional area,W×H. In the case of

water,U was calculated by dividing the mass flow rate, ˙m, by the density,ρ, and the duct

cross-sectional area.

ReDh =
ρUDh

µ
=

UDh

ν
(5.8)

Hydraulic diameter was calculated using Equation 5.9 whereAx was the cross-

sectional area,p was the perimeter,H was the channel height, andW was the channel

width.

Dh =
4Ax

p
=

2HW
H +W

(5.9)

5.2.1. Frictional Losses.The primary indicator used to compare frictional losses

was the Fanning friction factor,f . The formula used to calculate the Fanning Friction

Factor is given in Equation 5.10 where∆P was the pressure drop between the two pressure

taps andL was the distance between the taps.

f =
∆P

2( L
Dh
)ρU2

(5.10)
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5.2.2. Heat Transfer. The primary indicator used to compare heat transfer was the

length averaged Nusselt number based on hydraulic diameter, NuDh, defined as in Equa-

tion 5.11.

NuDh =
1
L

∫ L

0
Nu(x)dx (5.11)

In order to get the length averaged Nusselt number, a numerical integration was per-

formed using the local Nusselt numbers at each thermocouplelocation. The local Nusselt

numbers were each multiplied by the distance from half way tothe previous thermocouple

to half way to the next thermocouple, and the results summed.In the case of the first ther-

mocouple, the distance was from the inlet to the point half way to the second thermocouple,

and for the last thermocouple the distance was from the pointhalf way to the next-to-last

thermocouple and the exit. These products were then summed,and the total divided by the

channel length to determine the length average Nusselt number.

In order to calculate the local Nusselt number, it is necessary to first calculate the

local convective heat transfer coefficient,h. This was done via Equation 5.12 whereTbo

and Tbi were the outlet and inlet bulk fluid temperatures, respectively, Tw was the wall

temperature as measured by the thermocouple, andTb was the local bulk fluid temperature,

as calculated using an assumption of a linear change in fluid temperature across the channel,

W was the channel width, andl was the channel length.

h=
q′′s

Tw−Tb
=

ηthP
2Wl(Tw−Tb)

=
ṁCp(Tbo −Tbi )

2Wl(Tw−Tb)
(5.12)

The local Nusselt number was then defined as Equation 5.13 where k was the con-

vective heat transfer coefficient of water at the average bulk temperature.
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NuDh =
hDh

k
(5.13)

In order to compare heat transfer to frictional losses, the length averaged Colburn

j factor was calculated using Equation 5.14 where Pr is the Prandtl number at the bulk

average fluid temperature in the channel.

j =
Nu

(Re)(Pr)
1
3

(5.14)

5.2.3. Goodness Factor.Once the Colburn j factor and the Fanning friction factor

were calculated, the goodness factor was calculated asj/ f . This factor gives a good indi-

cation of the trade-off between heat transfer and frictional losses. A high goodness factor

indicates relatively good heat transfer for the frictionalpenalty paid.

5.3. UNCERTAINTY ESTIMATION

5.3.1. Reynolds Number. The possible sources of uncertainty for the Reynolds

number are the measurement of fluid velocity, determinationof hydraulic diameter, and the

determination of fluid density and viscosity. Of these, determination of fluid velocity is

the most likely source of error. Some error may be introducedby not applying a viscosity

correction factor due to the wall temperature, but the errorinvolved is expected to be very

small due to the relatively small temperature difference between the bulk fluid and the wall.

The accuracy of the liquid loop mass flow rate meter was very high at± 0.0025% of

the reading, so there should have been very little error in fluid velocity determination there.

The accuracy of the orifice plate on the air loop, however, wasnot as high, with an expected

accuracy of approximately±2.5% as observed by Rucker [2007]. Since Reynolds number
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varies linearly with fluid velocity, it is expected that the accuracy of Reynolds number

would be on the same order.

5.3.2. Friction Factor. The primary source of error for the calculation of friction

factor was the measurement of the pressure drop across each channel. For the experiments

involving air, the pressure drop was measured using the Dwyer micrometer manometer

earlier mentioned, which had an accuracy of±0.00025 in. w.g. and the convenience of

not needing calibration. The manometer zero was checked before each set of readings and

adjusted if necessary to ensure the greatest accuracy.

Due to the relatively high pressure of the liquid flow loop andthe small pressure

drop being measured, it was very difficult to get an accurate reading for the lower flow rates.

The diaphragm-type pressure transducer was very sensitiveto overpressure, and would

need recalibration or could even be ruined if the pressure difference across the diaphragm

became too high. Because of this, the transducer used had a larger range than what would

have been ideal for the lowest flow rates. The∆P at the lowest flow rates was on the order of

0.01 inches of water. The pressure transducer used had an accuracy of 0.25% of full scale,

which was 14 inches of water, giving an overall accuracy of±0.0035 inches of water. It

was attempted to use a diaphragm with a scale of 0 - 1.4 inches of water, but efforts to

install and bleed the diaphragm without permanently damaging it were not successful.

Another source of error in the pressure transducer was a potential bias in the cal-

ibration. It was necessary to calibrate the sensor dry with adead weight pressure tester,

then introduce water into the chambers once installed in theloop. Even after very careful

bleeding of the loop, manifolds, and pressure transducer, the zero would shift to a reading

on the order of -0.03 inches of water, still within the tolerance of the transducer. For each

run, the actual zero reading was recorded and added as a tare value to the reading taken.

Since the origin of this zero shift was unknown, it was included as a possible bias error.

Figure 5.4 shows a plot of friction factor of the WFC000, the plain flat tube, with error

bars representing this potential bias error. Also on the same plot is the expected results
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from Moody [1944]. It is clear that the error is substantial at lower Reynolds numbers, but

diminishes at higher Reynolds numbers, and thus higher pressure drops.
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Figure 5.4: Friction factor error estimation.

5.3.3. Heat Transfer Results. The primary source of potential error in the heat

transfer results was the assumption of an adiabatic wall boundary condition. Actual insu-

lating efficiencies, as expressed by Equation 5.15 were between 96% and 99%. For each

run, the efficiency was calculated and used in the convectiveheat transfer coefficient calcu-

lations. It is, therefore, expected that the heat transfer readings would generally be accurate

to±5%.

ε =
ṁCp(Tbo −Tbi )

P
(5.15)
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6. RESULTS AND DISCUSSION

6.1. LIQUID-LOOP TEST SECTIONS

6.1.1. Overall Results. The primary purpose of this study was to determine the

effectiveness of each of the selected geometries in promoting overall heat transfer from a

solid channel wall to the bulk fluid, while at the same time minimizing overall pressure

drop. Figure 6.1 is a plot of the length averaged Nusselt number based on hydraulic diam-

eter of each of the test sections. Also included is a correlation by Gnielinski [1976] and the

Dittus-Boelter equation [Winterton, 1998] for comparisonto the plain channel.

It would seem WFC010, the plain bump geometry, had the highest heat transfer in

general, with WFC103, the rifling geometry, being a very close second. Next is WFC012,

which was similar to WFC010 besides having a shorter bump height.

The overall heat transfer, however, is only one half of the picture. Figure 6.2 shows

the length averaged Fanning friction factor for each of the test sections. Here, WFC010,

which had the highest heat transfer coefficient, also had by far the highest friction co-

efficient. However, WFC103, which had nearly the same heat transfer performance as

WFC012 had the lowest friction penalty of all of the enhancedgeometries. We can also

see that WFC012 had a substantially lower friction penalty than WFC010, though it was

slightly higher than WFC103.

The friction factor results were also compared to equivalent sand grain roughness

heights,ks, using the Colebrook equation, shown in Equation 6.1, and tabulated, along with

actual bump heights, in Table 6.1.

1√
4 f

=−2.0log10

(

ks/Dh

3.7
+

2.51
Re

√
4 f

)

(6.1)
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Figure 6.1: Length averaged Nusselt number.

The equivalent sand grain heights were then used to compute the roughness Reynolds

number, Rek, as calculated in Equation 6.2 and tabulated in Table 6.2.

Rek =
Re

√

f/2
Dh/ks

(6.2)

Fully rough is defined as Rek > 70. As Reynolds number decreases, only WFC010

remains fully rough, with the rest lying in the transitionally rough regime. This would

account for the higher Nusselt numbers and friction coefficients of the WFC010 geometry,

particularly at lower Re.
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Figure 6.2: Length averaged Fanning friction factor.

Figure 6.3 presents the calculated Colburn j-factor,j, which was used to compare

the heat transfer and friction results directly. A goodnessfactor, calculated asj/ f was

calculated and the results are presented as Figure 6.4. Notethat, while WFC010 had the

highest heat transfer coefficient, it also had the lowest goodness factor of all of the enhanced

geometries. Also, of all of the enhanced geometries, WFC103clearly had the highest good-

ness factor. Note that while the plain channel, WFC000, would seem to be a good choice

based on goodness factor alone, the very low heat transfer provided would require a very

large heat transfer surface if it were chosen. Conversely, though the WFC010 geometry
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Table 6.1: Equivalent pipe sand grain roughness heights, ininches.

Re WFC000 WFC010 WFC012 WFC103
615 0.0240 0.2132 0.0838 -0.0003
1549 0.0025 0.1479 0.0505 0.0409
2509 0.0008 0.1297 0.0549 0.0439
3505 0.0004 0.1178 0.0561 0.0462
6654 0.0001 0.1058 0.0491 0.0390

Actual bump heights:
0.000 0.168 0.120 0.075

Table 6.2: Roughness Reynolds number,Rk, values.

Re WFC000 WFC010 WFC012 WFC103
615 4.3623 86.0478 19.7373 -0.0270
1549 0.7619 111.9536 27.2588 20.7085
2509 0.3484 150.3384 48.8584 36.5252
3505 0.2023 185.3158 69.6080 54.4314
6654 0.1026 304.2074 111.0761 83.1062

had the lowest goodness factor, it may still be a desirable option if one desired to build a

heat exchanger of the smallest size possible, and if power requirements were of little conse-

quence. Also note that the plain channel’s perceived high goodness factor falls off at lower

Reynold’s numbers. Since the purpose of surface enhancements is to destabilize the flow

and make transition happen at a lower Re, it is hypothesized that at lower, more laminar,

Reynolds numbers, the enhanced geometries would all have higher goodness factors than

the plain channel.

6.1.2. Local Observations.The temperature data obtained was of a fine enough

resolution that some local observations were able to be made. Plots showing wall temper-

ature and local Nusselt number variations plotted against channel position for the liquid

experiments are presented in the Appendix.
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Figure 6.3: Length averaged Colburn j factor.

The plain tube had a wall temperature distribution which increased more rapidly

in the channel inlet, and became more linear as it approachedthe midpoint and remained

mostly linear to the outlet. As one might expect, the local Nusselt number was also highest

toward the entrance, and decreased and finally leveled off toward the outlet. The phe-

nomenon was more dramatic for the higher Reynolds number flows. It is hypothesized that

increased turbulence in the entrance was a contributing factor. An example plot of wall

temperature and Nusselt number variations are presented asFigures 6.5 and 6.6.

The bumped geometries, WFC010 and WFC012, had temperature distributions

which were much closer to being linear across their length. They did, however, show a
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Figure 6.4: Goodness factor comparison.

wavy, almost periodic distribution. The distribution was further studied to try to determine

the cause for the waviness. It was hypothesized that the waviness was actually showing

variations in temperature at various locations on each individual bump, and that the varia-

tions were aliased such that a larger periodic distributionwas observed. Figure 6.7 shows

the temperature distribution along with a linear regression of the data and the channel wall

geometry. A vertical line is drawn at the center of each bump.It was observed that the

majority of the points lying above the linear regression arejust behind a bump centerline,

while the majority of those below the regression are just in front of the bump centerline. It

was hypothesized, therefore, that the majority of the cooling is done at the leading edge of
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Figure 6.5: Wall and bulk fluid variation for WFC000 at Re = 6493.

the bump. This result is intuitive if we consider that the fluid begins to develop a boundary

layer as when it hits the bump. Heat transfer is best when the boundary layer is smallest.

As the fluid flows over the bump toward the back, the boundary layer grows and the fluid

nearest the wall is heated and is thus less effective at cooling the wall by the time it reaches

the bump trailing edge.

Test section WFC103, the rifling geometry, showed the most linear temperature

distribution of all of the enhanced geometries. An example wall distribution is shown

in Figure 16, suggesting an even fluid heating throughout thelength. Due to the highly

three-dimensional nature of the WFC103 geometry, it would be difficult to make any local

observations with a one-dimensional approach as was done inthis study.
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Figure 6.6: Nusselt number variation for WFC000 at Re = 6493.
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Figure 6.7: Wall temperature variation for WFC012 at Re=18025.

6.2. AIR LOOP TEST SECTIONS

Figure 6.9 is a plot of the length averaged Nusselt number based on hydraulic di-

ameter of each of the test sections studied, including test sections done by Rucker [2007]
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Figure 6.8: Wall temperature variation for WFC103 at Re=1191.

for comparison, as denoted by ‘sjr’ replacing ‘sfc’ in the legend. The LVG geometries,

SFC020 and SFC021, are similar, both being somewhat lower than the plain bumped ge-

ometries at higher Reynolds numbers, but doing better at lower Reynolds numbers. The

Nusselt numbers for the higher Reynolds numbers are consistent with those found in the

liquid tests for similar geometries.

Figure 6.10 shows the length averaged Fanning friction factor for each of the test

sections. SFC020 and SFC021 again have similar heat frictional losses, with considerably

lower friction factors than the plain bump test sections previously studied. The SFC021

geometry was also similar in design to the SFC020, both having LVG patches. The SFC021

geometry’s LVG’s were longer, and at a shallower angle of attack to the fluid flow.

Figure 6.11 presents the calculated Colburn j-factor,j. A goodness factor, cal-

culated asj/ f was calculated and the results are presented as Figure 6.12.The SFC020

and SFC021 again gave similar results, each doing substantially better than the previous ge-

ometries. SFC020 did better at lower Reynolds numbers, while SFC021 did better at higher
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Figure 6.9: Length averaged Nusselt number.

Reynolds numbers. This is intuitive due to the sharper angleof attack of the SFC020 ge-

ometries, which would tend to cause transition earlier. While the longer, shallower LVG’s

of the SFC021 geometries would cause less flow mixing, they would also have less of an

effect on pressure drop.

Due to the large mass of aluminum in the walls of the SFCXXX geometries and the

relatively low convective heat transfer of the air on the walls, there was a significant amount

of conduction withing the walls. This conduction acted to spread out the temperature profile

along the length, making any local effects impossible to distinguish.
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7. CONCLUSIONS AND RECOMMENDATIONS

It was concluded that, while the plain bump geometry in the baseline bump (XFC010)

channels have relatively high heat transfer coefficients, the frictional losses were observed

to be too great to justify the higher heat transfer, except inthe case of desiring to make

a heat exchanger as small as possible while neglecting powerrequirements. Shortening

the bumps, as in the XFC012 geometries does decrease heat transfer somewhat, but the

decrease in frictional losses are of a greater magnitude, giving a better goodness factor

overall.

Of all of the test sections studied, the XFC103 rifling geometry was the most in-

triguing. It was observed to have heat transfer coefficientsbetter than the XFC012 geome-

tries, while having the lowest frictional losses of all of the enhanced geometries studied.

Employing the XFC103 geometries, therefore, would allow heat exchangers with sizes on

the order of those having the XFC012 geometry, but requiringsignificantly less power to

drive the flow.

The LVG geometries, XFC020 and XFC021, were also promising,giving relatively

high heat transfer for a more modest pressure drop than the bumped geometries.

Further study into the rifling geometries would be recommended. Ideas for future

research would be varying rifling bump angle of attack, height, width, and leading/trailing

edge angles, as well as intermittent rifling along the channel. Since the exact dimensions

chosen in this study were more or less educated guesses, it iscertainly likely that better

geometries exist. Future research could also include studies of the local and three dimen-

sional phenomena at work in rifled channels. Visualization and numerical methods could

be employed, as well as studies similar to this one, but with thermocouples strategically

placed to capture local wall temperature variations.

As mentioned previously, studying the current geometries at lower Reynolds num-

ber with accurate pressure drop measurements would also addquality to the data.
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APPENDIX

This appendix contains figures showing the wall temperaturevariations for each

of the various experiments discussed in the preceding document. Also presented are the

Nusselt number variations. Each figure’s caption indicatesthe test section designation as

well as the Reynolds number at which the test was run.
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Figure 1: Wall and bulk fluid variation for wfc000 at Re = 1571.
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Figure 2: Wall and bulk fluid variation for wfc000 at Re = 3571.
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Figure 3: Wall and bulk fluid variation for wfc000 at Re = 5144.
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Figure 4: Wall and bulk fluid variation for wfc000 at Re = 6493.
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Figure 5: Wall and bulk fluid variation for wfc000 at Re = 10652.
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Figure 6: Wall and bulk fluid variation for wfc010 at Re = 1065.
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Figure 7: Wall and bulk fluid variation for wfc010 at Re = 3015.
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Figure 8: Wall and bulk fluid variation for wfc010 at Re = 4915.
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Figure 9: Wall and bulk fluid variation for wfc010 at Re = 6536.
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Figure 10: Wall and bulk fluid variation for wfc010 at Re = 11132.
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Figure 11: Wall and bulk fluid variation for wfc012 at Re = 1153.
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Figure 12: Wall and bulk fluid variation for wfc012 at Re = 3601.
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Figure 13: Wall and bulk fluid variation for wfc012 at Re = 5892.
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Figure 14: Wall and bulk fluid variation for wfc012 at Re = 8717.
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Figure 15: Wall and bulk fluid variation for wfc012 at Re = 18025.
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Figure 16: Wall and bulk fluid variation for wfc103 at Re = 1191.
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Figure 17: Wall and bulk fluid variation for wfc103 at Re = 3587.
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Figure 18: Wall and bulk fluid variation for wfc103 at Re = 5747.
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Figure 19: Wall and bulk fluid variation for wfc103 at Re = 7549.
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Figure 20: Wall and bulk fluid variation for wfc103 at Re = 15372.
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Figure 21: Nusselt number variation for wfc000 at Re = 1571.
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Figure 22: Nusselt number variation for wfc000 at Re = 3571.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
25

30

35

40

45

50

55

x

N
u

wfc000 Nusselt number distribution for Re = 5144

Figure 23: Nusselt number variation for wfc000 at Re = 5144.
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Figure 24: Nusselt number variation for wfc000 at Re = 6493.
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Figure 25: Nusselt number variation for wfc000 at Re = 10652.
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Figure 26: Nusselt number variation for wfc010 at Re = 1065.
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Figure 27: Nusselt number variation for wfc010 at Re = 3015.
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Figure 28: Nusselt number variation for wfc010 at Re = 4915.
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Figure 29: Nusselt number variation for wfc010 at Re = 6536.
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Figure 30: Nusselt number variation for wfc010 at Re = 11132.
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Figure 31: Nusselt number variation for wfc012 at Re = 1153.
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Figure 32: Nusselt number variation for wfc012 at Re = 3601.
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Figure 33: Nusselt number variation for wfc012 at Re = 5892.
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Figure 34: Nusselt number variation for wfc012 at Re = 8717.
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Figure 35: Nusselt number variation for wfc012 at Re = 18025.
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Figure 36: Nusselt number variation for wfc103 at Re = 1191.
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Figure 37: Nusselt number variation for wfc103 at Re = 3587.
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Figure 38: Nusselt number variation for wfc103 at Re = 5747.
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Figure 39: Nusselt number variation for wfc103 at Re = 7549.
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Figure 40: Nusselt number variation for wfc103 at Re = 15372.
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