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ABSTRACT 

Characterizing molecular mixing in Rayleigh-Taylor instability (RTI) driven 

flows where the density and velocity fields are coupled is essential for developing 

exacting predictive models. Sensitivity of the Rayleigh Taylor mixing layer to initial 

conditions is a topic that is being explored extensively in interests of accurate turbulent 

mix model development and its direct consequence in various applications like deign of 

inertial confinement fuel capsule and atmospheric modeling. As part ofthe current work, 

an experimental investigation of the effect of initial conditions on molecular mixing in a 

low Atwood number(~ 7.5 x 10-4), high Schmidt number(~ 1000), RTI driven mixing 

layer is undertaken. An experimental facility for observing the evolution of an RTI driven 

mixing layer to a buoyancy Reynolds number of~ 10000 was developed. Diagnostics for 

measuring volume fraction evolution through passive scalar (Nigrosine) estimates and 

mixture fraction evolution through reactive scalar (Phenolphthalein) measurements were 

calibrated and established. The initial perturbations at the interface were modeled from 

the passive scalar runs and validated using an Implicit Large Eddy simulation (ILES). 

Molecular mixing parameter estimates were calculated by combining the results from the 

passive scalar and reactive scalar runs. An examination of molecular mixing 

measurements vis-a-vis variations in initial conditions has revealed that that the low wave 

number loading ofthe initial density perturbation spectrum has a profound effect on 

molecular mixing in the mixing layer. The variation was observed in both local and 

global mixing with possible implications pointing to the delay in mixing transition. 
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1. INTRODUCTION 

1.1. OVERVIEW AND MOTIVATION 

The study of unstably stratified fluids has long been pursued in the interests of 

understanding and quantifying the phenomenological physics associated with turbulence. 

Instability driven flows in this category evolve much faster into the chaotic regime and 

are instrumental in development of predictive models for turbulence. Special cases of 

such instabilities are the Kelvin-Helmholtz (shear driven)[l-2] instability and the 

Rayleigh-Taylor (buoyancy driven) instability[3-4]. The Kelvin- Helmholtz instability 

(KHI) in its most general form arises when the different layers of a stratified 

heterogeneous fluid are in relative motion. Turbulence induced by KHI has received 

extensive experimental and numerical attention in a configuration where in there are two 

participating pure fluids which are superimposed with a relative velocity [5-6]. 

Instabilities derived from the nature of equilibrium of incompressible fluids of variable 

density outline the class ofbuoyancy driven flows. Rayleigh-Taylor instability (RTI) 

pertains to a specific configuration of buoyancy driven flows where in two participating 

heterogeneous fluids of different density are accelerated towards one another. 

Quantifying turbulence in RTI driven flows is by large unexplored as the flow evolution 

is characterized by coupling of the density and the velocity fields, requiring a complete 

detail of molecular mixing for accurate modeling ofthe phenomenon[6]. 

The extent to which Direct Numerical Simulations (DNS) can be used for 

exploring RTI driven flows is severely constricted by the resolution requirements for 

resolving all the involved scales to obtain the mixing detail. The smallest scale to be 

resolved in case of gas phase flows (Schmidt number (Sc)- 1) are dictated by the 

smallest velocity scales (Kolmogorov scales - AK)[7]. In liquid phase, where in the 

Schmidt number is> 1 and generally varies between 600-3000, momentum diffusion 

dominates scalar diffusion and the scalar scales contribute to turbulent diffusion and so 

the smallest scales to be resolved are governed by the smallest scalar field scales 

(Batchelor scales - A.8 )[8] given by: 

(1.1) 
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where in v is the kinematic viscosity ofthe fluid, & is the average kinetic energy 

dissipation rate and Re is the flow Reynolds number. With increasing Schmidt numbers 

domain resolutions required for resolving the flow in 3 dimensions scales as A./ in space 

and as A.8 in time. Therefore, the associated computational cost involved with Direct 

numerical investigations of High Schmidt number turbulent mixing layer scales as 1/ A./ 

which translates to a Re3Sc2 scaling(from 1.1) [6] and is unviable with the current 

computational means to several generation of computational power[9]. Large Eddy 

Simulations (LES) have been instrumental in determining the t1ow metrics with fairs 

accuracy when the internal structure represented by the sub-grid scale(SGS) model was 

dictated by the velocity scales rather than scalar scales[ 10-11]. Development of SGS for 

high Sc t1ows is still an open area of research and requires a complete understanding of 

the role of Schmidt number on the internal structure especially with t1uid entrainment 

occurring at the largest scales of the t1ow[ 12]. The result of energy cascade from the 

small scales to the large scales poses high resolution requirements throughout the 

evolution to capture the flow physics accurately and is therefore computationally taxing. 

RTI driven flows are marked by inherent inhomogeneity and anisotropy due to the 

associated characteristics such as memory of initial conditions, preset directionality of the 

force field, material discontinuities and baroclinic vorticity[ 13] thereby rendering the 

modeling of the flow very challenging. Traditional turbulence models that could very 

well characterize the turbulence associated with passive scalar mixing using scaling 

arguments on the first order statistics of the flow cannot characterize RTI driven t1ows 

due to the above set complexities that violate the pivotal assumptions on which the 

modeling was based. Early efforts in modeling this specific class of t1ows have led to 

independent theories based on large scale observations which were often limited in their 

accuracy to a specific phase of evolution of the instability and even so their universality 

was constrained to specifics of the flow conditions from where the observations were 

derived. Further developments using two t1uid models have shown a reasonable 

agreement with experiments[14] but their universality is debated due to the simplifying 

ansatz applied within. A complete understanding ofthe flow characteristics is therefore a 

pressing need for the development and calibration of accurate predictive models wherein 

the inherent flow physics would be depicted without the environment specific bias. 
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Apart from the intrinsic theoretical interest of investigating variable density f1ows, 

motivation for studying RTI in its phenomenological form is derived as it manifests in a 

wide range of spatial and temporal scales across various natural and artificial processes. 

On the astrophysical scales RTI driven mixing limits heavy element formation in stellar 

implosions (Supernovae) [15-16]. At the geographical scales RTI influences atmospheric 

and oceanographic currents due to temperature or concentration gradients [ 1 7 -18]. At 

smaller scales fuel droplet breakup in IC engines has been attributed to RTI due to the 

unstable interface formed between the air-fuel interface and the resulting acceleration due 

to the local air movement[l9]. At the smallest scales RTI has been observed in the 

implosion phase of an inertial confinement fusion capsule where in the cold shell material 

induced into the high temperature core results in fuel contamination during the implosion 

of an inertial confinement fusion capsule thereby decreasing the overall thermonuclear 

yield per capsule [20-22] and thus lays out the impetus for probing the area in the 

interests of developing predictive models. Development of turbulence models 

encompassing such a wide range of spatia-temporal scales are challenging, especially 

when the mixing process needs to be modeled to accurately predict the flow 

phenomenon. 

l.2. THE RAYLEIGH-TAYLOR INSTABILITY 

RTI arises from interfacial perturbations between two f1uids of different densities 

( P1, p 2 ; P1 > p 2 ) that are unstably stratified such that the pressure (p) accelerates the 

heavy f1uid towards the light t1uid [3-4], mathematically given by \lp.\7 p < 0. The 

current investigation is a realization ofthe RTI driven t1ow where in the pressure field is 

generated by the earth's gravitational field. The generation of baroclinic vorticity 

resulting from misalignment of the density and the pressure gradients, stretches the 

interfacial perturbations in general and in miscible, t1uids mixes them, and the flow 

evolves unbounded. This is evident from the inviscid variable density vorticity equation 

given below: 

Dm I 
-- (m.\l)u = --\7 p x \lp 
Dt p 2 

(1.2) 
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The vorticity generated by the instability is initially concentrated at the interface between 

the two fluids, but in miscible fluids undergoing molecular mixing, the region over which 

there are large density gradients enlarges with time, and so too does the region generating 

vorticity. Rayleigh-Taylor instability is one ofthe purest fluid systems in which 

molecular mixing can be initiated, since the instability exists independently of boundary 

conditions. Despite its apparent geometric simplicity, a horizontal density interface in 

free space gives rise to some of the most complex, important and least well-understood 

phenomena in classical mechanics. Once vorticity has been generated baroclinically, it 

non-linearly advects according to equation 1.2, progressively increasing its spatial 

complexity and leading to turbulence. The onset of instability is insensitive to the spectral 

content of the perturbation at the interface [23] and the configuration is implicitly 

unstable, however independent numerical investigations have reported that the evolution 

ofthe low- and high-order statistics characterizing the growth of the mixing layer, at a 

given Atwood number A~, given by: 

A = Pt- P1 
I 

Pt +P1 
(1.3) 

are sensitive to and strongly influenced by the spatial structure of the initial perturbations 

[24-31]. In general, the initial growth of an R T unstable interface, when the amplitudes of 

the perturbations are much smaller than the wavelength (a< O.lA. ), is exponential as 

predicted by linear instability theory [23, 32]. During this phase the modes grow 

independently until the effects of viscosity result in the emergence of the most unstable 

wavelength given by: 

[33] where g is the net acceleration at the interface and v is the averaged kinematic 

viscosity defined as: 

(1.4) 

(1.5) 

where, J1 is the dynamic viscosity of the corresponding fluid indicated by the suffix. The 

growth rates deviate from the exponential behavior and the predictions from linear 
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stability theory when the amplitudes of the perturbations are comparable to their 

wavelength [33-34]. During this phase, marked by non-linear mode coupling, slower 

growth rates are observed accompanied by emergence of dominant interpenetrating 

structures of the light (bubble) and heavy fluids (spikes). Following the onset of non­

linearity, secondary Kelvin-Helmholtz instabilities develop as regions of high vorticity 

form between rising bubbles and falling spikes. As the instabilities grow, an increase in 

the range of scales present in the mixing layer is driven by the nonlinear interactions 

between buoyant structures. Bubbles and spikes merge to form larger buoyant structures, 

while shearing forces generate smaller-scale structures, as well as more topologically­

complex interfaces. The growth rate of bubbles and spikes is essentially the same at low 

At, while this symmetry is skewed at higher At with the spikes advancing significantly 

faster. During these initial phases of evolution, the growth of the mixing layer is 

dominated by longer wavelengths as they have a larger terminal bubble velocity given 

by[35] : 

dhh oc rx-
dt -v /l.,h 

(1.6) 

The flow evolves through the dynamics of the non-linear growth phase until the dominant 

wavelength, Ad~ l0A111 [33]. The flow then takes a final transition to a regime of self-

similar turbulent mixing where in the most significant length scales - the mix-widths can 

only be scaled as a function of gt2 , and the growth rates at a constant acceleration are 

defined by: 

h, =a,A,gt 2 
(I. 7) 

where the subscript i refers to the bubbles "b" or the spikes "s" and a. is a dimensionless, 

self similar growth constant. The above scaling argument has been established by 

extensions to classical linear stability theory [33], dimensional analysis [26, 36], self­

similarity analysis [29], bubble merger and competition models[30, 37-38], experiments 

[24, 39-42] and numerical simulations [16, 30, 43]. At low At, hh ~ h, andah ~a, =a. 

Figure 1.1 shows a representation of various phases of evolution described above taken 

from a DNS[44]. 
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Figure 1.1 Evolution along a plane of an RTI driven mixing layer for a miscible liquid 
combination taken from a three dimensional DNS[44] at an A1 of7.5 x 10-4 , Sc of7 and 
a grid resolution of 1152 x 760 x 1280 (x,y,z), using initial conditions measured from the 

water channel [45]. 

In sequence, the figure represents an initial perturbed RT unstable interface (at 

time-t = 0 s), initial exponential growth of modes (t = 2.82 s), the non-linear mode 

coupling phase (t = 7.62 s) and the final self similar regime (t = 10.53 s) of the miscible, 

binary fluid system with the color scaling representative of the volume fraction of the 

fluids. As it can be noted, an increased amount of mixing of the constituent fluids can be 

seen in the turbulent regime setting the importance of molecular mixing as a governing 

parameter in characterizing the flow dynamics. Despite the importance of the coupled 

dynamics involved with molecular mixing and their direct relation to aiding several 
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practical problems, the comprehension ofthe question is very limited due to the very few 

molecular mixing measurements that are available. 

The current work targets at quantifying molecular mixing during the evolution of 

a transient, high Schmidt number, RTI driven mixing layer. The transition from the non­

linear growth phase to self-similar evolution was defined by two limiting theories namely 

the bubble merger theory- involving non-linear coupling of two or more bubbles to form 

larger structures and the bubble competition theory-where in the transition occurs by 

saturation of modes present in the initial perturbations. The first theory postulates the 

process of nonlinear coupling of saturated modes and resulting in a universal ah [46-47] 

while the second process retains a memory of the initial conditions. For a long time the 

stark dissimilarity in the value of ah obtained from experimental investigations and 

numerical simulations has been attributed to numerical diffusion until recent work has 

indicated a strong correlation to the dependence of ah on low-wave number loading of 

the initial perturbation spectrum [26-27, 29, 48]. Subsequent work published on 

quantifying the extent of the influence of the bubble merger and bubble competition 

theories [28, 30] have proposed that a universal value of ah is attained only when the 

transition is purely achieved by the mode-coupling mechanism as put forth by bubble 

merger theory and that this can be fully realized by inducing only short wavelength 

perturbations. Real time scenarios and experiments cannot be free from long wavelength 

disturbances and so the theory offers a possible explanation by underlining the existence 

of a definite correlation between the growth parameters and the initial conditions. 

However there is no explanation as to how the isolated effect of dynamics explained by 

each theory can be coupled in a realistic scenario when both the transition mechanisms 

intemperate and this severely curtails development of mix-models based on the 

knowledge of the limiting mechanisms individually. 

1.3. PREVIOUS WORK 

Prior efforts in characterizing turbulent flows from experimental measurements 

have been focused on shear-driven flows such as jets and shear layers where in KHI is the 

fundamental form of instability that was driving the transition to turbulence. Data 



pertaining to statistical measurements ofturbulence from buoyancy driven flows and in 

specific RTI driven flows is limited due to factors such as difficulty associated with 

setting up such experiments and establishing high fidelity diagnostics. 
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Lord Rayleigh's initial attempts at observing the instability experimentally [3] 

used warm salty dyed water supported by a porous membrane above cold fresh water. 

Thermal diffusion of heat to the atmosphere then allowed the upper layer to become cool, 

and reach parity of buoyancy with the lower layer. Under further cooling, the upper layer 

started to migrate into the lower layer in thin vertical finger like strands. Rayleigh 

believed he was observing the baroclinically driven process we know today as Rayleigh­

Taylor instability. However, he had inadvertently discovered a diffusion driven process 

known as viscous fingering[ 49]. However the observations were qualitative in nature and 

accounted for phenomenological detail. Baroclinic vorticity was completely and 

repeatedly observed in the experimental work by Lewis [50] and Emmons et al.[51] 

following Taylors analytical study[4]. Subsequent interest into the problem was driven by 

the technological imperative pressing insight into the phenomenon. Experimental study 

conducted on the Rocket Rig experiment[52] which used the rocket propulsion to reverse 

the acceleration on a configuration stable at gravity established flow behavior 

establishing (1.8) and the quest for obtaining the value of ab.s began. Subsequent 

investigations involving experiments designed on the Rocket-Rig principle of inverting 

gravity over stable configurations were the Gas-gun experiment [53] which employs 

compressed gases for generating the requisite acceleration and the Linear-electric 

motor[54] which leveraging the principle of reactive force produced by electro-magnetic 

induction in coil over a vertical armature for the thrust. These experiments reported ab,s at 

large acceleration for a range of A 1 using both miscible and immiscible fluids. All these 

investigations accounted for the largest scales of flow and power laws governing the 

growth at late time. The inherent complexity associated with the experiments and the 

diagnostics ofthe age inhibited the investigations from adopting techniques necessary to 

account for higher order turbulence statistics or sampling initial conditions. Most of the 

numerical work that was performed in conjunction with these experiments so as to 

establish models was seeded with random perturbations judged by visual inspection and 

resulted in large discrepancies in the results. 
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The simplest experimental designs that had the cleanest realizable form of the R T 

unstable configurations at the earth's gravity were the sliding barrier experiment at 

University of Cambridge[25, 55], the Water channel[56] and Gas-channel[57] 

experiments at Texas A&M. The set-up at Cambridge involves an initially unstable 

configuration of fluids separated by a barrier which is removed manually to study the 

evolution. Though the Cambridge experiment established that the underlying assumptions 

on the nature ofturbulence to be modeled as given by (1.8) are valid, the experiment 

could not deliver values of ab,s with a high degree of statistical confidence[25] due to the 

degree of manual intervention and the transient nature ofthe experiment. The Texas 

A&M experiments have velocity matched streams of different fluids evolving spatially 

into steady state R TI driven mixing layer and so provide for very precise measurements. 

The static nature of these experiments simplified the complications associated with 

setting up high fidelity diagnostics (in comparison to moving reference frames) for the 

measurement of fluctuating quantities and initial conditions. Numerical investigations 

seeded with initial conditions as measured and modeled from experiments were 

performed on the sliding barrier experiment [25] and the water channel experiment [ 45, 

58]. There was a far greater agreement between numerics and experiments in these 

investigations with regard to the evolution of macroscopic and microscopic quantities. 

These recent investigations have led to the appreciation of the significance of the initial 

condition spectrum in the subsequent growth of the instability. This also offers a possible 

explanation to the wide spread in the value of ab.s reported from different experimental 

designs. The turbulence models developed on these investigations relate accurately to 

flow scenario under the influence of the initial conditions they were calibrated against but 

do not provide an explanation or an accounting for the initial condition and Sc 

dependency [13]. Moreover initial condition and Sc dependency of microscopic 

quantities that relate to internal structure and molecular mixing could not be related 

between DNS and the experiments due to constraints on computational expense posed by 

the high Sc of experiments and the question of their sensitivity has been an issue of 

debate [25-26, 58-60]. It is necessary to ascertain data pertaining to the role of varying 

initial conditions and Sc at ditierent A 1 on the evolution of molecular mixing parameter 
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(8) so as to relate to the questions above and in developing a frame work that would fit in 

the effect of Sc and initial conditions into turbulence models. 

Molecular mixing in classical, shear-driven mixing was monitored and quantified 

in variety of experiments. In contrast, experimental investigation of buoyancy-driven 

flows and R TI driven flow in specific are limited due to factors such as the difficulty in 

establishing the experiment and the diagnostics. Initial experiments reporting molecular 

mixing in gas phase shear layer at Sc ~ 7 were designed by Konard[61]. Breidenthal[62] 

reported molecular mixing in liquid phase turbulent shear layers operating at a Sc - 1000. 

Both the measurements employed backlit optical techniques to quantify the degree of 

molecular mixing by measuring the amount of light absorbed by a specific chemical 

species. Equivalent product thickness given by P/J, where Pis the equivalent thickness of 

chemical product across the mixing layer and J is the mix-width (Vorticity thickness in 

shear driven flows) of the turbulent shear layer, was the prime metric of their 

investigation. The technique involved the usage of a diffusion limited chemical reaction 

and so the amount ofproduct formed was representative ofthe amount of molecular 

mixing of the participating fluids. It has been observed that as the flow crossed the 

transition Re, turbulent fluctuations stretched the interfacial surface area between the 

participating fluids resulting in enhanced mixing of the fluids and an increased formation 

of products at a rate that was much greater than the amount of pure fluid that was 

entrained into the mixing layer. Furthermore, these observations were found to be 

invariant with the initial conditions of the flow or the velocity ratio, but strongly 

dependent on the Schmidt number of the participating fluids. This work was extended by 

Koochesfahani and Dimotakis[63] where in a combination of scalar and reactive flow 

techniques were used to quantify the mixing in the post transition region of the mixing 

layer. Similar reactive flow techniques were employed for the study of mixing in 

turbulent jets by Shea [64] to study the effects of equivalence ratio and Reynolds number 

in effect to reduce initial fuel consumption. Zhang et al.[65] employed the same 

technique and reported that enhanced mixing was observed by modifying the geometry of 

the jet exit. Few measurements made in RTI driven flows in this direction have been 

reported in the Water channel where point wise measurements of 8 across the mixing 

layer have been provided using a high resolution thermocouple at Sc- 7[45] and 
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complete evolution of the span wise integrated e was reported using chemical 

reactions[9] at a Sc ~ 1000. Point wise measurements of e using hot wires were reported 

from gas channel measurements for a range of A 1 [66]. Concentration estimates at a single 

equivalence ratio and point wise measurements of mixing using conductivity probes were 

reported from draw plate experiment[24]. Efforts in the direction of controlled initial 

conditions have been reported by the Magnetic immobilization facility[67] which 

employs magnetorheological fluids and control of initial conditions is achieved by using 

magnetic fields; and the drop-tank facility which is similar in principle to the Linear 

Electric motor where in controlled initial conditions are achieved by using a shaker 

motor leveraging on the principle of Faraday waves[68]. 

Even though experimental studies of buoyancy driven flows yield quantitative 

measures of e, there is a limited amount of data and it is very difficult to apply high 

fidelity diagnostics to the flow. Recent increase in computational power has led to an 

increased number of numerical investigations of the RTI driven instability. Similar to 

simulations of shear driven turbulent layers, buoyancy driven instabilities require a large 

domain so as to observe growth without interference from the boundaries. With 

increasing computational power numerical investigations till date have progressively 

focused on larger spatial and temporal evolution over each generation and have been 

successful in resolving the flow to a good detail at high Reh pertinent to the turbulent 

regime. However all the investigations have operated at a low Sc ( < 7) due to limitations 

in the computational power posed by the Batchelor scales which is not likely to be viable 

for several generations of computational capability. The first major numerical work that 

resolved the turbulent regime and predicted quadratic growth rate was performed by 

Youngs[33] working in parallel to Read's[52] work. Molecular mixing has been reported 

by a number of DNS. Subsequent DNS conducted by Ristorcelli and Clark [29] who 

reported e in Sc = 1 RTI driven mixing layer with different initial conditions. Cook and 

Cabot[ 16] reported mixing at a high Re and reported global mixing parameters in a Sc= 1 

mixing layer. Livescu and Ristorcelli[69] performed DNS to examine homogenous, 

variable-density turbulent mixing which was intended to mimic the internal turbulent 

core of an RTJ driven mixing layer. However the study was limited to Sc < 2 due to 

computational constraints. In an effort to develop a higher order mix model for RTI 



12 

driven flows, Mueschke and Schilling [58] performed DNS at a Sc of 7 using initial 

conditions measured from the water channel experiment and were combined with the data 

from the same. In an attempt to answer the persistent deviation of a measured from 

experiment and even between different numerical investigations, the 'Alpha group'[70] 

performed a series of simulations that which simulated a series of simple well-defined 

test problems aimed at definitively establishing a universal ab,s· On these test cases, with 

few exceptions, the computer codes predict similar growth rates, and this confirmed that 

in general the spread of values was not caused by algorithmic variation. In the direction 

of increasing the computational efficiency and to relax small scale requirements and to 

increase theRe the flow could evolve to, implicit large eddy simulations(ILES) and 

monotonic implicit large eddy simulations(MILES) were widely adopted in numerical 

studies of RTI driven mixing[ 11, 24-25, 28, 30]. Both the methods conform to the class 

of LES but do not include any sub-grid scale models (SGS) but rather allow numerical 

diffusion which operates analogous to physical diffusion in dampening the small scales 

(of both scalar and velocity) and operate at a Sc ~ 1. Simulations based on MILES and 

ILES were used to predict 8 till late time when the flow evolved to a high Re and showed 

good conformance among all the LES schemes that were employed, they are restricted to 

a Sc of 1 without proper sub-grid scale modeling. 

1.4. CURRENT WORK 

The current work is an experimental investigation of the effects of initial 

conditions on molecular mixing in a miscible, low-A,, turbulent, high-Sc, RTI driven 

mixing layer. As part of the current work an experimental facility for producing an 

unstable density stratification and observing the evolution of an RTI driven mixing layer 

were designed. The design and working principle of the experiment are similar in 

configuration to the facility at University of Cambridge [25]. The quintessential signature 

ofthe experiment is a static tank holding unstably stratified fluids initially separated by a 

solid barrier, the removal of which allows the study of a transient, R TI driven mixing 

layer evolving from an imposed initial perturbation issued in the wake ofthe barrier 

removal. The dimensions chosen in the design of the facility allow for capturing the 
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evolution of the instability till a non-dimensional time of r = 2 which corresponds to an 

actual time of 18 seconds, where -r is given by: 

r =t~A: 
(1.8) 

where His the height of the domain and tis time and a buoyancy Reynolds number (Reh) 

of~ 10000, where Reh is based on the definition provided in [71] as: 

Reh = 0.35~ Agh 3 lv (1.9) 

where is h is the total width of the mixing layer. A detailed description of all the elements 

ofthe experimental set-up will be discussed in section 2. Well calibrated, non-intrusive, 

optical diagnostics are employed to measure the mixing layer evolution using a passive 

scalar (Nigrosine) and a reactive scalar (Phenolphthalein), independently. Following the 

methodology developed at the Texas A&M water channel facility, the measurements of 

volume fraction from the passive scalar experiments are coupled with the chemical 

product formation estimates from a diffusion limited chemical reaction [9, 56, 62-63] 

using the reactive scalar, to accurately quantify the degree of molecular mixing in the 

mixing layer. The details ofthe diagnostics, their calibration and the uncertainty in the 

measurements are detailed in section 3. The results section focuses on examining the 

variations of important macroscopic parameters (such as ah) and microscopic parameters 

(such as molecular mixing parameter- B ) in a turbulent R TI driven mixing layer at an 

A, = 7.5 x 1 o-4 and a Sc ~ 1000 for different initial conditions with particular emphasis 

on the microscopic parameters. The results from the passive scalar are used to model the 

initial density perturbation spectrum and are validated using an implicit large eddy 

simulation. An in house CFD code RTI-30[72] is used to this end. Comparisons are then 

drawn between molecular mixing metrics from water channel in view of the variations in 

the initial conditions between both the experiments. Temporal evolution ofvolume 

fraction estimates, hh, a h , integral mix width ( Wh) are presented from the passive scalar 

concentration measurements. Variation in normalized concentration profiles at various 

equivalence ratios is discussed for the reactive scalar runs. The spatio-temporal evolution 

of e and volume fraction variance ofthe heavy fluid (f.a) derived using the data from 

passive and reactive scalar runs, Equivalent product thickness (Pih) and global mixing 
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parameter (e) variations are studied in comparison with the results from the water 

channel facility so as to explore the extent of influence of initial conditions on the metrics 

of molecular mixing. 
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2. EXPERIMENTAL SET -UP 

The experimental facility comprises of a static tank made of 0.5 inch thick Lexan 

sheets (P ALRAM Industries Ltd.). The shape of the test section is essentially a cuboid 

with a square cross section. The inner dimensions of the tank measure 305 mm in length 

and width, and 635 mm in height. The heavy fluid and the light fluid that are placed in 

the tank in the unstable configuration are initially separated by a rigid stainless steel 

barrier. The instability is set in as the barrier is progressively withdrawn from a slot 

machined on one of the end walls. The other end wall and the side walls are grooved to 

support portions of the barrier to help insertion and withdrawal. The design and principle 

of the experimental set is similar to the facility pioneered by Dalziel et al. [25] at 

University of Cambridge. Figure 2.1 shows a pictorial representation of the tank 

assembly with the flat plate barrier. 

Imaging Direction 

Dra\v 
Direction 

/ 
/ 

Barrier 

63Smm 

Figure 2. 1 Pictorial representation of the experimental facility . 
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Imaging of the mixing layer is performed through the viewing sides which are as 

marked in the above schematic. One of the most important requirements for the viewing 

sides is for the surfaces to be clear and devoid of scratches or particulate depositions. 

Scratch resistance is one of the attributes behind the choice of Lex an as the construction 

material for the test section apart from strength, toughness and superior optical properties. 

Figure 2.2 shows pictures of the test section 

T 
I 

Figure 2.2 Pictures of the experimental facility. 

The facility incorporates into the barrier design, an implementation of the idea 

conceived by Lane-Serff [73] for minimizing the shear layers arising from relative 

motion between the barrier and the fluid in contact with its surfaces. The design requires 

that the barriers are hollow extrudes (tube forms) of the respective 2-D shape forms 

running along the length of the tank and extending outward in excess by about 102 mm. 

Two strips of Nylon fabric, one running over the top surface and the other over the 

bottom surface of the barrier cover 85% of the barrier width all along the portion inside 

the tank at any instant of the barrier withdrawal. One end of each fabric piece is fastened 

to the tank, and the other free end is used to pull. The Nylon strips running on the outer 

surface of the barrier wrap through the inside of the barrier at one end and run out from 
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the opening at the front end of the barrier. The barrier is withdrawn by pulling the fabric 

and simultaneously pushing the barrier so as to maintain a tension in the fabric. Figure 

2.3 presents a schematic of the barrier withdrawal concept explained above. This way the 

portion of the fluid at the inner edge perceives the motion of the barrier while the rest of 

the fluid in contact with the barrier surfaces remains stationary, thereby minimizing the 

effects of the ensuing shear layer. 

+------- Interior face of tank 

Nylon fastened to tank 

1 Uppa Nylon pim 

............................................. 

+------ Fabric Pull 

Barrier Push -
Lower Nylon piece 

Nylon fastened to tank 

Figure 2.3 Schematic of the barrier withdrawal concept. 

Even so, the combined effect of liquid from the top of the tank moving through 

the finite void due to barrier removal, the shear action between the fluid and the barrier at 

the tip and the uncovered regions of the plate pose a significant disturbance at the 

interface. One of the key requirements for the experiment is the complete withdrawal of 

the barrier from the interior of the test section. This requires that the barrier to be brought 

to halt within 0.25 inches of after completely leaving the domain as it still needs to cover 

the opening in slot from where it is retracted. To help this two L- shaped guides are used 

in the inverted configuration which supports the barrier as it is pulled out. The guides are 
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aided by configurable stops in order to precisely halt the barrier within a given tolerance 

after exiting the interior of the test section. This arrangement can be seen from the 

pictures in Figure 2.2 

By design, the experiment ensues a transient RTI driven mixing layer upon 

removing the barrier. The dimensions of the test section allow for examining the mixing 

layer till a non-dimensional time of 't =2, corresponding to an actual time of 18 seconds 

and a Reh ~10000. De-ionized water procured from the campus power plant is stored in 

separate 25 gallon tanks (Den Hartog Industries Inc) and exposed to the laboratory 

ambient for a period of 8 hours so as to reach thermal equilibrium is used as the base 

fluid for conducting the experiment. The density difference between the liquids is 

brought about by adding Sodium chloride to the water in one ofthe tanks. Gravimetric 

measurements of 50 ml samples of the solutions are taken using electronic scales and 

densities are adjusted to the required A,. The current investigation is limited to a small 

A, = 7.5 x 10-4 as refractive index effects become prominent at larger A, [74]. Figure 2.4 

presents a schematic of the experimental configuration for the passive scalar and the 

reactive scalar configurations and Table 2.1 lists values for parameters a,b,c and d 

(control distances) depicted in the figure for the set-up of experiment in different 

configurations. 

Diffuser Vellum Sheet 

Light Source ~,/ Test Section 

l : II' High Speed Camera 

: c d + . . .. i 
Wide Angle Lens =n 

1 
1 

*~ ------.- -- -- -r --------------;: ;il:~ } o cB 1 

Diffuser Lens • '/ Barrier dmv direction 

b Green filter 

Figure 2.4 Schematic ofthe experimental set-up (Green filter is used only in the reactive 
scalar experiments). 
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Table 2.1. Listing of parameters in the experimental set-up for different configurations. 

Variable Value for Passive scalar setup Value for Reactive scalar setup 

(em) (em) 

a 394 204 

b 4.2 4.2 

c 26 22 

d 195 195 

The test section is illuminated from the side using a 200W Metal Halide arc lamp 

housed and stabilized in ARRILUX 200 POCKETP AR system (ARRI). The lamp head is 

used in a full flood configuration along with a frosted diffuser lens and a beam widening 

lens mounted on an inbuilt lens holder. A fluorescent light cover and a sheet of vellum 

paper are placed behind the test section to produce a uniform intensity back ground for 

backlit imaging. PHOTRON 1024 PCI, a CMOS based high speed camera operating at a 

512 x 1024 pixel resolution, 60 frames per second and 1160 sec shutter speed is used for 

recording 8-bit black and white images as the experiment progresses. The images are then 

corrected for variations in the background intensity and analyzed using MATLAB scripts. 

All the necessary coding for extracting and processing pertinent information from the 

image analysis is provided in Appendix-B. Pictures ofthe light source and the camera 

involved are shown in Figure 2.5. 
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Figure 2.5 Pictures of the light source and the camera. 

Concentration measurements of Nigrosine dye (Sigma Aldrich) and 

Phenolphthalein indicator (Sigma Aldrich, derived from intensity readings, directly relate 

to the span averaged values of volume fraction of the heavy fluid and the quantity of the 

mixed fluid (at a given ratio), respectively. Nigrosine absorbs most of the visible 

spectrum and its emissions are limited to upper blue region[75] , so in conjunction with 

passive scalar experiments the camera was used along with a UV filter. Phenolphthalein, 

on the other hand selectively absorbs green light (552 nm wavelength)[75], so the 

physical presence of the indicator tracing the mixture ratio is marked by pink color. For 

the light source and camera combination used here the CMOS was saturated by the 

energy from rest of the spectral content as it was rich in energy across all the wavelengths 

in the visible spectrum as compared to a conventional light source and could not detect 

phenolphthalein. A band pass optical filter operating at 550±10 nm (Edmund Optics) was 

used to measure green light absorptions for the reacting flow experiments. Figure 2.6 

shows the spectral signature of the current light source as given by the manufacturer of 

the Lamp (GE®). 
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Figure 2.6 Spectral signature of the light source used in the present investigation. 
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3. DIAGNOSTICS AND UNCERT AINITY IN MEASUREMENTS 

The current investigation uses optical diagnostics via backlit imaging techniques 

to measure and quantify the metrics reported. The usage of optical diagnostic renders the 

measurement process non-intrusive and free of probe resolution constraints. The resulting 

measurements of the primary quantities which in the current investigation are essentially 

concentrations of the passive and the reactive scalar are span integrated values. The 

derived quantities scale from plane averaged values and above. 

3.1. WORKING PRINCIPLE OF THE DIAGNOSTIC 

All the liquids used in the current investigation are transparent and do not 

attenuate light except for the passive scalar-Nigrosine and the reactive scalar­

Phenolphthalein in its ionized form. The reaction chemistry detailing the ionization states 

and the optical nature of Phenolphthalein during the different pH ranges encountered 

during the course of the experiment will be detailed subsequently. The indicators are 

therefore detected by absorption in light characteristic of their absorption spectrum. The 

attenuation of light ray passing through the span of the test section, marked by a decrease 

in intensity over the incident intensity as receded by the camera is related to the span 

integrated concentration of the indicator in the mixing layer by the Beer-Lambert law 

[75], given by: 

(3.1) 

where a is the absorption of light by the indicator, measured as attenuation in the 

measured intensity I with respect to the incident intensity / 0 • According to this law, the 

amount of absorption is directly proportional to the length of the path travelled by light 

ray, at a given concentration of the indicator- In, denoted by the square brackets [In], 

& being the constant of proportionality called as the molar absorptivity coefficient. As a 

direct consequence of the above relation it follows that for a calibrated value of & the 

concentration of the indicator can be linearly related to the absorption of light. Though 

the law is universal, the non-linearity of the imaging sensor sensitivity at low intensities 

sets the concentration bounds under which the set up needs to be operated for a given 



span of the test section - L. [in jdenotes the span wise averaged concentration of the 

solution which is the measured quantity in the current set-up. 

3.2. REACTION CHEMISTRY 
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It is important in the current investigation to study the behavior of the reaction 

mixture and the reactive scalar (phenolphthalein) in order to measure its concentration 

accurately. In the current experiments involving the reactive scalar the pH of the heavy 

fluid is maintained alkaline (pH1 > 7) and the pH of the lighter fluid is maintained either 

acidic or neutral (pH2 ::::; 7). Measured concentration of phenolphthalein is mixed along 

with the lighter fluid during all the runs. 

In aqueous solutions, the concentration ofhydrogen and hydroxide ions remain 

balanced as per the reversible reaction: 
_, 

(3.2) 

The equilibrium constant for the above reaction is given by: 

Kw = [H+] [OH-] = 10-14 (3.3) 

where the square brackets denote the molar concentrations in moles/liter. As the light and 

the heavy fluids mix the local concentration of H+ and OH- adjust to a new equilibrium 

satisfying 3.3. The pH of the mixture is then given by pHmix = -logJO[H+]mix· The pH is 

controlled by adding either NaOH or HCl to either stream. The acid and the base react in 

stoichiometric amounts to produce NaCl and H 20 and liberate 59.8 KJ of heat per mole. 

For the extreme pH case considered in the current study where the pH of the streams is 

11.5 and 2 the reaction produces a local temperature change of -0.02°C and therefore has 

a negligible effect on the Atwood number or on the buoyancy effects driving the mixing. 

To track this neutralization reaction a small amount of indicator (5x 1 o-6 

Mole/liter), phenolphthalein (C20H 140 4) is injected into the bottom stream. While the 

chemistry of neutralization is straight forward the chemistry ofthe indicator is complex. 

Phenolphthalein is a weak acid dissociates based on the local pH according to the 

reaction: 

Transparent Indicator + 20H- ~ Colored indicator 

The indicator has multiple ionization states and therefore several different chemical 

forms (denoted by Roman numeral subscripts): 

(3.4) 
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(3.5) 

(3.6) 

Inm .,....__:_ Invu + 2H+ (3. 7) 

All the forms of the indicator above are colorless except for In1v which exists in pink 

quinine phenolate form. As the pH of the mixture rises above 8 the equilibrium ofthe 

first two reactions moves to the right as perLe Chatelier's principle, and the colored form 

of the indicator is produced. However as the pH of the mixture increases beyond 11.5, the 

equilibrium of the last reaction moves to the right and less of indicator is available in the 

colored form. 

The fraction of dissociation of the indictor in the colored form is another factor 

that is dependent on the pH ofthe local mixture. Phenolphthalein exhibits an abrupt and 

high dissociation value (a;~~~) of 0.96 (meaning 96% of the indicator exists in the) 

colored form at a pH of 11.3. The indicator reaction has been shown to be sufficiently 

fast to capture mixing dynamics in turbulent jets operating at Re~32,000[65]. For the 

current investigation a Damkohler number ((Da) which is the ratio of hydrodynamic to 

reaction time scales) of> 40 would suffice, while the indicator exhibits aDa ~0(1 05) and 

is therefore a suitable indicator to capture dynamics in the current investigation. 

3.3. CALIBRATION PROCEDURE 

In the present investigation the molar absorptivity coefficient of both Nigrosine 

and the colored form of Phenolphthalein were calibrated over the entire span of the test 

section. The calibration procedure involved the set of the experiment and the diagnostics 

as per the schematics given in the previous section for the respective indicator. The lower 

portion of the test section was then filled with distilled water and the pH was adjusted to 

a value of 11.5 in case of the calibration of the reactive scalar. The pH level was 

maintained so that most of the indicator in the test section was in its colored form. The 

sensitivity of the indicators dissociation coefficient to its colored form and the high 

absorptivity of green light are a very important factor that needs to be controlled so as to 

perform accurate calibration. To this effect a pH meter and a micropipette were used so 

as to ensure accurate pH control of the fluids in the top half and the bottom half of the 

test section. The amount of light absorbed by the indicator was recorded while varying 
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the concentration of the indicator from zero incrementally over a range of concentration 

values till saturation in the recorded intensity was observed. The slope from a plot of 

absorption versus the product of indicator concentration and the span of the test section 

yielded the molar absorptivity coefficient values. Figures 3.1 and 3.2 present the 

calibration curve obtained by the above procedure for Nigrosine and Phenolphthalein. A 

regression fit to the calibration values in the zone of linearity is also shown in the curves 

and the slope ofthis line is used as the & in either case. As it can be seen from the plots, 

the set-up has a non-linear response for absorptions exceeding 1.3 with Nigrosine and 1.5 

with phenolphthalein and so the concentration of the indicator was limited to exclude 

absorptions above 1.2 in both the cases. 

2.0 ~------------------------------------------------~ 

1.6 

1.2 

0.8 

0.4 

0.0 
0.00 0.50 

-- e = 5776.9 (1/Mol-cm) 

1.00 1.50 2.00 2.50 3.00 

L[Nigrosine] x 10'4(Mol-c:mll) 

Figure 3.1 Nigrosine calibration curve (cr has uncertainty bounds of ± 1.5%). 
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 

L[Pheolphthalein] x 104 (Mol-emil) 

Figure 3.2 Phenolphthalein calibration curve (cr has uncertainty bounds of± 1.23%). 

3.4. UNCERTAINTY QUANTIFICATION 

As a check on the accuracy of set-up, estimates of uncertainty in the measured 

quantities were calculated using Kline and McClintock uncertainty quantification 

methodology for single sample measurements. Table 3.1 summarizes uncertainties 

associated with certain salient physical quantities calculated using this methodology. A 

complete accounting of the uncertainty calculation involved with each quantity is given 

in Appendix C. The uncertainty in concentration measurements with phenolphthalein is 

driven by the uncertainty in the initial injected concentration while the uncertainty in 

volume fraction is driven by the back-ground intensity fluctuations during the course of 

the experiment. Even though£ of Nigrosine has the highest uncertainty in relating to 

concentration it does not percolate into the volume fraction estimates as the amount of 

Nigrosine mixed in the fluid can be estimated by measuring absorption in the top half of 
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the tank, this way the volume fraction estimates carry a smaller amount of uncertainty. 

The e of Phenolphthalein on the other hand is instrumental in the determination of the 

normalized concentration due to two reasons, one being the nature of indicator to be 

unviable for priori optical measurement and the second being the incomplete dissociation 

of the indicator in its colored form even on complete reaction, as the amount of visible 

indicator formed is governed by the mixture ratio ofthe participating fluids. 

Table 3 .1. Summary of uncertainty bounds for measured quantities. 

Physical Quantity Symbolic reference Uncertainty 

Incident Intensity Io ± 0.78% 

Absorption <T =-In(:, J ±0.5% 

Length L ± 0.654% 

Volume ofwater Va ± 0.315% 

Volume of phenolphthalein 
Vz ±0.6% 

injected 
Total Concentration of 

phenolphthalein Injected [InL ± 0.67% 
into the flow 

Molar absorptivity 
coefficient of e ± 1.23% 

Q_henolphthalein 
Normalized Concentration --

of Phenolphthalein C=[Inw]I[In] 2 ± 1.75% 

Volume ofNigrosine v; ±0.6% injected 
Total Concentration of 

Nigrosine Injected into the [Dye] 1 ± 1.07% 
flow 

Molar absorptivity e ± 1.5% coefficient ofNigrosine 
Span Average Volume --
fraction of heavy liquid ft = [Dye]/[Dye] 1 ± 1.15% 

Atwood number Ar ± 4.67% 
Alpha ab ± 4.18% 
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Molar absorptivity coefficient for phenolphthalein has been measured as 29704 

± 1.23%, including the uncertainty bounds the value stands in fair agreement with similar 

measurements by Mueschke (29350 ± 0.67%) [9]and Zhang (29340) [65]. The spike in 

the absorptivity coefficient may be attributed to the increased sensitivity resulting from 

the usage of a CMOS sensor in comparison with the CCD array employed by the other 

two investigations. The uncertainties in the rest of the physical quantities that are 

computed as part ofthe investigation are basically derived from these fundamental 

quantities. 
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4. RESULTS AND DISCUSSION 

The results presented in the section are from an ensemble average of four runs for 

the passive scalar and from 4 for each pH combination in case of the reactive scalar. One 

Table 4.1 presents a summary ofthe experimental runs performed as part ofthe current 

investigation. As it can be seen, 1 successful run in about 4-5 trials ( -20-25% success 

rate) could be achieved with the current set-up. The dominant factor contributing to the 

failure is the difficulty in ensuring uniform wrapping of the Nylon strips around the 

barrier ends as it is being pulled. Adhesion oftop Nylon strip to the barrier due to 

presence of Vaseline, leaks from the side grooves prior to start of the experiment due to 

break in Vaseline seal at high hydrostatic head, stall due to nylon wrapping inside the 

barrier while being withdrawn, Nylon not wrapping due to insufficient push force 

compared to the pull in the manual operation, Vaseline blobs contaminating the flow are 

some ofthe major contributors to the failure ofthe experiments. Typical set-up time for 

the experiment for the passive scalar case took 4-5 hours while the set-up time for the 

experiment with reactive scalars took about 5-6 hours as it was more involved in terms of 

ensuring absence of indicator on the top of the barrier which required special cleaning 

procedures. All the experiment was conducted during night time as it was difficult to 

block out sunlight entering the test section during the daytime which measured up to 7-1 0 

intensity units despite the best blocking efforts limiting experiments to 2 per day. 

Table 4.1 Summary of experiments performed. 

Run description Reported runs. 
With Nigrosine 4 

With Phenolphthalein 
4 

pHI=11.5; pH2=?.0S 
With Phenolphthalein 

4 
pHI=11.5; pH2=3.04 
With Phenolphthalein 

4 
pHI=11.5; pH2=2.57 
With Phenolphthalein 

2 
pHI=l1.5; pH2=2.03 

Total 18 
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4.1. MIXING LAYER GROWTH FROM PASSIVE SCALAR RUNS 

Experiments involving the usage of passive scalar have been conducted to as to 

ascertain volume fraction detail of the constituent fluids during the evolution ofthe 

mixing layer. The current diagnostic capabilities provide for span average measurements 

of volume fraction at each point on the focal plane. In this study, plane averaged 

measurements of the volume fraction are used to estimate the mixing layer growth. 

Nigrosine dye was added to the heavy fluid (top) in the tank and absorption of light was 

measured using techniques mentioned in the diagnostic section. The amount of dye to be 

added was estimated using the calibration procedures and the absorptions were related to 

the mean dye concentration (across the span). 

4.1.1. Qualitative Results From Passive Scalar. Figure 4.1 shows a sequence of 

images at different times in the evolution of the mixing layer for a typical run with 

Nigrosine. Contrast enhanced images are presented here for better visualization. In order 

to exclude the effects ofthe walls, the central 80% ofthe domain dimensions were 

considered for quantitative analysis[56]. A 2.0 em wide region towards the bubble side 

from the mid-plane and 1.0 em towards the spike side were optically unviable for 

measurements due to the presence of groove holding the barrier and the Vaseline (used 

for preventing seepage of the top fluid into the bottom around the edges) smeared onto 

the edge during barrier operation. The barrier was manually withdrawn and usually takes 

2-3 seconds for removal at an approximate velocity of0.12 m/s. It has been reported that 

the spatial structure ofthe wake left on barrier removal remains the same with the 

variations in the time involved while the variations reflect in the strength ofthe 

perturbations that have been imparted at the interface[25]. The experiment ensues a 

transient turbulent mixing layer by design and would therefore require a very large 

number of realizations to attain statistical convergence on higher order flow metrics. This 

limits the facility to investigations that relate to quantitative explanations of a 

phenomenal order rather than to engineering precision. 
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Figure 4.1 Evolution of the RTI driven mixing layer with passive scalar (A 1=7.5 x 104 ). 
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The formation of the fluid plume is an artifact of barrier removal and can be 

explained as follows. As the barrier is removed, the upper layer moves downward to 

replace the volume of the barrier no longer in the tank. The floating lid forces this motion 

to be essentially uniform along the length of the tank. While there is a potential energy 

change associated with the change in free-surface height, it is exactly balanced by the 

work done on the barrier by the hydrostatic component of the pressure acting on the end 

of the barrier, and may thus be ignored [25]. If the barrier is withdrawn at a constant 

velocity, then the upper layer adjusts downwards at a constant velocity. However, at the 

level of the barrier, the area over which this adjustment is made depends on how far the 

barrier has been withdrawn. At the initial instant this area is very small, inducing 

extremely large velocities towards the trailing edge ofthe barrier. With the barrier further 

out, the horizontal area over which the adjustment takes place is increased, reducing the 

magnitude of the velocities. This can be observed in the sequence of images shown in 

Figure 4.1 where the development ofthe interface shows a variation in the extent of the 

spatial structure formed by interpenetration of the fluid packets as a result ofthe 

increasing area for adjustment due to barrier removal. The resulting plume travels faster 

in reaching the bottom of the domain as the mixing layer takes to reach the top of the 

domain. The growth of the mixing layer on the spike side is therefore very complex as it 

is initiated and dominated by a turbulent plume and has the coupled dynamics of plumes 

and RTI while the bubble side evolution is initiated by a dominant spatial perturbation 

than velocity perturbation. To this effect, all further analysis will be confined to the 

bubble side. 

4.1.2. Quantitative Results From Passive Scalar. The mean dye concentration 

was normalized by the dye concentration of the pure heavy fluid and this was related to 

the volume fraction ofthe heavy fluid by the relation: 

(4.1) 

where .f.. is the dimensionless measure ofthe mean density field and the overbars denote 

planar averaged quantities. Figure 4.2 shows the evolution of f.. over the entire test 
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section at different times. In general, the growth of small-Atwood RTI mixing layers is 

supposed to be symmetric about the interface and linear on both the bubble side and the 

spike side[33, 56]. The mixing layer shows linear variations in the growth profile but the 

symmetry is skewed owing to an initial plume of fluid that enters the bottom half of the 

tank. 
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Figure 4.2 Evolution ofthe heavy t1uid volume fraction at various non at • ranging from 
0.25 to 2 at an interval of0.25. 

The bubble height is measured by identifying the 5%-95% thresholds from the f.. 

data. Figure 4.3(a) and (b) shows growth ofthe mixing layer half-width on the bubble 

side (or bubble height) as a function of the Argr and 't, respectively. 
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Ristorcelli and Clark [29] showed that a measurement of ab directly from the 

relation hb = a01gf is not independent of additional terms that scale as t1 and t0 and so 



proposed an ordinary differential equation based on self similar analysis for small­

Atwood RT mixing layer half-width given by: 
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ah,RC = 4A h ,g h 

(4.2) 

Where all quantities with subscript "b" correspond to the bubble side and the sub script 

RC denotes the self-similarity constant arrive from Ristorcelli and Clark definition. For 

constant ah.RC A 1 and g, the solution to the above equation (taking only the positive root 

as physically realizable) can be written as: 

(4.3) 

where ho is a virtual starting thickness. The virtual thickness is a measure of the time 

taken for the flow to become self-similar and depends on the initial perturbation 

spectrum. The plot in Figure 4.3(b) also shows a fit (in blue) based on the above equation 

with a ho = 2 em, ah,RC = 0.085. From the graph we can infer late time agreement 

between the experimentally observed values and a quadratic fit as per equation 4.3 using 

the constants mentioned above. Due to the transient nature of the experiment a lot of 

fluctuation can be observed in the resulting half-width evolution and so there is a lot of 

fluctuation observed in the value of ah calculated based on the definition in equation 4.2. 

The fluctuations and the resulting discrepancies in the growth rate parameters due to lack 

of statistical convergence have been observed in other transient experiments and 

numerical investigations. To work around this problem Andrews & Spalding [39] defined 

an integral mix-width given by: 

H/2 

Wh = 6 f.t;.f~dy = ah,wA,gt 2 (4.4) 
0 

The factor of 6 comes from assuming a linear profile of the volume fractions which is a 

valid approximation for the volume fraction profiles on the bubble side. Figure 4.4 shows 

the evolution ofthe integral mix-width as function of non-dimensional time. It can be 

seen that fluctuations originating from the nature of the experiment are mitigated using 

this approach. A corresponding definition of a based on the Ristorcelli & Clark[29] 

definitions on the integral mix-width is given by: 
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(4.5) 

Figure 4.5 presents the evolution of ab computed using the Ristorcelli and Clark 

definition on the mix width and the integral mix width. (J.h,RC value of 0.085±0.0035 is 

reported from the current investigation. 
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Figure 4.5 Evolution of self-similarity parameter calculated using Ristorcelli & Clark 
definitions based on bubble height and integral mix-width. 

4.2. INITIAL CONDITION ESTIMATES FROM PASSIVE SCALAR RUNS 

The results from the passive scalar and the imagery were used to estimate the 

initial conditions ofthe experiments. The initial conditions ofthe experiment were 

calculated based on a wave counting methodology that is described in the appendix. The 

method essentially estimates the most dominant wavelength and the connected amplitude 

that described the wake upon removal of the barrier. The nature of the initial perturbation 

for the modeling methodology was assumed to be two dimensional as was observed in 

the wake. The estimates were then validated by simulations using an Implicit Large Eddy 

Simulation (ILES) using an in house code- RTI3D[72]. The validation exercise was 

performed on the self-similarity growth rate parameter ab, representative of growth of the 

flow on the largest scales and is resolved by the computations. Estimates of molecular 

mixing were not compared as the code operates at a Sc of 1 with numerical diffusion 

while the experiment operates at a Sc of~ 1000. The observations asserted by works of 

Mueschke et al. [9], wherein the effect of Sc on a were found to be marginal form the 

basis for such a comparison. 



4.2.1. Governing Equations. The ILES code resolves the mixing layer in 3 

dimensions (Cartesian) by solving the Eulerian equations given by: 

V.u =0 

Pf =O 
Dt 

D(pl}_) = -Vp + pg 
Dt ~ 
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( 4.6) 

( 4.7) 

( 4.8) 

where the equations represent the governing equations for volume conservation, scalar 

transport and momentum conservation. In the equations, the representative velocity 

components in 3 dimensions are given by y_ = (u, v, w), density by p, pressure by p, gravity 

by g = (0, O,g=) and the scalar byf The system of equations has 6 variables and 5 

unknowns and the closure is obtained by a linear equation of state connecting the scalar 

and the density such that p=L(f). The present work defines the non-dimensional density 

given by.f= (p- p2 )/(p1 - p2) to be representative of the scalar. The code solves the above 

set of governing equations and employs numerical diffusion to model turbulent diffusion. 

This methodology of arriving at solutions has been found to be fruitful in modeling the 

flow accurately at a Schmidt number of 1 [33]. The details of the solution procedure 

employed for solving the coupled set ofpartial differential equations can be found in the 

works of Andrews[72, 76]. While the solver does not employ explicit viscosity, 

numerical dit1'usion serves to dissipate small scales in a manner similar to physical 

viscosity and therefore provides us the leverage to observe aggregate behavior without 

loss of accuracy on not modeling the small scales. This is also the reason for the 

restriction in the Schmidt number of the t1ow that can be resolved by the solver. The code 

has been extensively used to compute single-mode and multimode RTI driven flows [30-

31, 70, 77] and the results have compared well with other bench mark codes that have 

been used for numerical evaluation ofRTI. 
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4.2.2. Simulation Setup. The size of the domain chosen here is representative of 

the test section and measure 0.3m x 0.3m x 0.6m in the x, y and z directions, respectively. 

The boundary conditions are periodic in the x andy directions and zero flux boundary 

conditions are enforced in the z -direction along which gravity acts. As the boundary 

conditions are periodic it is important to choose wavelengths that have an integral 

number of occurrence over the domain which is given by the mode number defined as N 

=AIL where/.., is the wavelength ofthe perturbation and Lis the span ofthe domain. The 

wavelengths that were used to seed the initial perturbation were from the observed modes 

over an ensemble of 4 experiments. A mode number corresponding to 5.5 was observed 

on averaging with the distribution varying from 4-6 and so a spectrum of wavelengths 

ranging from 4-6 were chosen to initialize the density perturbation at the interface. The 

root mean square (rms) value ofthe density perturbations which is representative ofthe 

energy carrier by the modes calculated using the amplitudes of the perturbations was 

adjusted till there was an approximate match with the amplitude of the perturbation 

observed in the wake of barrier removal. This resulted in arms amplitude of0.007 to be 

distributed with equal energy among modes 4-6. The Cartesian translation of equal 

energy distribution between the wave numbers is done by assigning initial (t = 0) 

amplitude (h) on the nodes of the x,y plane at z = 0: 

h(x,y) = ~)acos(kxx)cos(kvy) +bcos(kxx)sin(k1,y) 
(4.9) 

+ csin(kxx)cos(k 1.y) + d sin(kxx)sin(k y)) . y 

where a,b,c,d are random numbers and kx and ky represent the 2-D wave-number space 

which is related to the mode number (k) by k= ~ k; + k; . The resulting h(x,y) field is 

rescaled so as to provide the necessary rms density perturbation. The effect of higher 

mode numbers with a tenth of the energy of the dominant modes was studied by seeding 

the interface with mode number 10-32 and the results only varied marginally as there was 

an order of magnitude difference in the amplitudes causing the lower modes to dominate 

the flow. Furthermore as a validation exercise the rms value of the amplitudes measured 

from the experiment was distributed in the spectrum modeled to represent the density 

perturbation spectrum of the water channel[77]. With the mode numbers used to seed the 

initial perturbations limited to 32, a grid resolution of 128x128x256 was chosen over the 



domain. Figure 4.6 presents a schematic of the computational domain and a pictorial 

view of the initial density perturbation used in the two cases. 
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Figure 4.6 (a) Schematic of the computational domain showing with the heavy fluid on 
the top( red) the light fluid at the bottom (blue) and a perturbed interface; (b) and (c) show 

initial perturbations for simulating water channel and the current experiment, 
respectively. 



Figure 4. 7 gives the spectrum of the modes seeded in the initial perturbation for 

the two cases considered here. 
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Figure 4. 7 (a) and (b) depict the spectrum of initial conditions that were modeled from 
the current experiment and the water-channel[77], respectively. 
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Figure 4.8 presents contours of the density perturbation at the plane z = 0 for the 

different cases considered here. The code in its current form runs as a single thread and 

took an execution time of 4 hours on a Dual Quad core machine with a processor speed 

of2.4 GHz and a RAM space of24 GB. 

a. 

b. 

120 

100 

80 

60 

40 

20 

120 

100 

20 

20 

40 60 80 100 120 

40 60 80 100 120 

Figure 4.8 (a) and (b) depict the contours of density perturbations at z = 0 plane that were 
modeled from the current experiment and the water-channel[77] , respectively. 
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4.2.3. Simulation Results. The modeled initial conditions were then validated 

from the simulation data. As mentioned earlier, the self-similarity growth constant which 

is representative of growth on the largest scales was used to validate the modeled initial 

conditions through the simulations. ab values corresponding to 0.0835 and 0.0675 were 

observed from the simulations corresponding to initial conditions modeled from the 

current investigation and the water-channel, respectively. The value of ab obtained from 

simulations seeded with initial conditions from the current investigation is in close 

agreement with the experimentally observed value of 0.085 and is within the uncertainty 

ofthe value. ab values of0.0675 and 0.07 correspond to the values observed in the water 

channel from modeled initial condition simulations and experiments, respectively. Figure 

4.9 shows a comparison of ab obtained from the experiment and the simulations. The 

slight deviation in the self-similarity constant arrived from the simulation in both the 

cases can be attributed to the low Schmidt number of the code. 
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Figure 4.9 Comparison of <Xb values obtained from simulations and experiment. 
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Based on these results, we can see that the simulations are in fair agreement with the 

values obtained from the experiments with the modeled initial conditions. It can be 

observed that the most dominant modes in the initial conditions for the current 

investigations are essentially 2 dimensional and carry most of the energy. Having 

captured the most dominant modes in the initial perturbations we proceed to pose further 

comparisons and arguments of variations in the physical quantities based on the modeled 

initial conditions. 

4.3. CONCENTRATION MEASUREMENTS FROM REACTIVE SCALAR RUNS 

Experiments using a reactive scalar- Phenolphthalein, which tracks the interface 

of a diffusion limited chemical reaction indicating the presence of a specific mixture 

fraction in the turbulent RTI driven mixing layer were conducted. By varying the pH of 

the two fluids it was possible to track the presence of specific mixture fractions in the 

mixing layer. The current facility allows to measure span averaged values of chemical 

product concentrations which are then related to the mixture fraction ofthe fluids in a 

given plane. The amount of colored chemical product formed was measured using the 

backlit imaging techniques described in section 3. 

4.3.1. Qualitative Results From Reactive Scalar. Figure 4.10 shows images in 

sequence of the mixing layer evolution. The pink chemical indicator represents the 

presence of mixed fluid at a given mixture fraction. For the images shown in Figure 4.10 

the colored regions represent a mixture fraction of 99 to 1 of the light and heavy fluids, 

respectively. The pH combination used for this run is pH1 = 11.5 and pH2 = 7.05. A 99 

to 1 mixture fraction thresh hold can be interpreted qualitatively as the threshold marking 

the interface between the two pure fluids in the mixing layer. It can be observed 

qualitatively that the amount of colored product formed at early times is low due to the 

entrainment of pure fluid blobs as marked by the resulting product formation only at the 

interface between the structures even though the interpenetration (volume fraction 

change) is significant at the corresponding time as noted from the passive scalar 

measurements. At late times, increased product formation 
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Figure 4.10 Evolution ofRTI driven mixing layer with reactive scalar (A 1=7.5 x 10·4). 
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in the mixing layer can be observed as secondary instabilities at the pure fluid interface 

and turbulent fluctuations at result in increased segregation and mixing which translates 

to an increased surface area between the two fluids. Also can observe the bias in the 

colored product formation in the spike side due to the initial plume of heavy fluid and so 

we confine our subsequent analysis to the bubble side. 

4.3.2. Quantitative Results From Reactive Scalar. Figure 4.11 shows the 

normalized concentration profiles defined by: 

C = [inw] 
[In ]2 

(4.10) 

where the numerator represents the measured concentration and the denominator is 

representative of the total indicator concentration in the lighter fluid, for pH2=7.05(99 to 

1 oflight to heavy fluid in the mixture), pH2=2.57(3 to 1 of light to heavy fluid in the 

mixture) and pH2= 3 .04(1 to 1 of light to heavy fluid in the mixture). The pH of the 

heavier fluid (pH 1) was maintained at 11.5 for all the three cases. It can be seen that there 

is a decrease in the amount of indicator formed as the pH of the light fluid decreases. This 

is expected as with higher acidity a higher amount of fluid from the heavy fluid section is 

required to neutralize the acid bring about the necessary change in the pH of the mixture 

for the indicator to change its color. In all the cases the amount of chemical indicator 

formed increases as the mixing layer evolves showing that there is increased mixing as 

the instability progresses. This is expected, as the intensity of turbulence increases and 

the internal structure of the mixing layer becomes more complex with increasing 

Reynolds numbers. Turbulent fluctuations continuously stretch the interface between 

pockets of fresh water and salt water, which increases the reaction surface area and brings 

fresh reactants into contact. A fourth set of experiments with pH2 = 2.03 ( 1 to 3 of light 

to heavy fluid in the mixture) were run but there was no observable chemical indicator 

formation and so subsequent calculations of molecular mixing were based on the 

concentration data arrived from the three pH combinations mentioned above. 
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Figure 4.11 Evolution of planar averaged concentration profiles for 't ranging from 0.25 
to 2 at an interval of0.25 for different pH combinations (pH 1=11.5 in all the cases). 
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Figure 4.11 Evolution of planar averaged concentration profiles for 't ranging from 0.25 
to 2 at an interval of0.25 for different pH combinations (pH 1=11.5 in all the cases) 

(cont.). 

Previous researchers have found that the amount of indicator produced is a 

function of the equivalence ratio qJ, which is a measure of balance or excess of reactants. 

The canonical definition of qJ formulated for the cases of shear and jet flows for the 

reaction involving phenolphthalein as the chemical indicator is given such that: 

(4.11) 

Where the subscript -'st' denotes the stoichiometric ratio (0.5) of reactants (refer Section 

3). In the limit (/)In approaches 0, the quantity of indicator reaches an asymptotic value and 

is a function of the degree of molecular mixing between the two fluids[62, 64-65]. The 

above definition however neglects the neutralization reaction as the two streams mix and 

is accurate only for the limiting case when (/)In approaches 0. It fails to explain the 
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reduced quantity of indicator formed in the cases when the acidity ofthe lighter stream of 

fluid is increased. To account for this we adopt the definition of equivalence ratio given 

by Mueschke et al.[9} for the current work given by: 

(4.12) 

where the stoichiometric ratio of the reactants (denominator) for neutralization is 1. The 

neutralization equivalence ratio, (/Jn controls the volume fractions of the reactants that 

must mix in order to achieve the pH necessary for the indicator to change color. As (/Jn 

approaches zero an excess of OH- ions exist in the top stream and only a small fraction of 

the heavy fluid must mix with the lighter fluid in order to produce the necessary color 

change. On the other hand when (/Jn approaches a large values, there is an excess of H+ 

ions and so a large quantity ofthe heavy fluid must mix with the lighter fluid to bring 

about the necessary change in the pH of the mixture for a color change in the indicator. 

For pH combinations ofpH2=7 and pH 1=11.5, the resulting (/Jn value is 3.2 x 10-5 << 1 and 

with an indicator concentration ofthe order of 10·6 , the combination should be insensitive 

to the equivalence ratio and therefore representative of degree of molecular mixing. 

Figure 4.12 presents a comparison of the concentration profiles as observed in the 

water channel facility at a pH combination of 11.5,7 and 11.5, 2.5. As it can be seen 

observed the current experiment measures higher concentration values at the lower 

mixture fraction thresholds indicating an increase amount of entrainment while the 

concentration measured at higher mixture fraction thresholds, requiring greater mixing 

have resulted in lower concentration values. Furthermore the water channel experiments 

have shown a presence of mixture fraction as concentration measurement were recorded 

for pH combination of 11.5 and 2.03 while there was no indicator detected for this pH 

combination in the current facility which is consistent in terms of the trend observed from 

the other pH combinations. Similar to the water channel observations a slight bias in the 

measurement of the concentration was observed due to the absorption of the light by 

NaCl that is present on the bubble side. At higher equivalence ratios the flattening of the 

concentration profiles at the center of the mixing layer is also observed in both the 

experiments. Also we can see that as the flow attains higher Reh it can be observed that 



the concentration profiles tend to become linear in contrast to an initial parabolic 

behavior. The most significant difference being the reduced concentration at higher 

equivalence ratios marking a pronounced decrease in molecular mixing is attributed the 

change in initial conditions. 

0.25 

- 0.20 
.~ I increasing 
-:; 
~ 
'5 
~ 0.15 ,. 
~ -
~ 0.10 

·~ 
~ ;;.-: 
. .; 0.05 

0.00 

z ( l'l11) 

0.020..------------------------, 

~ 0.015 

~ 
r; 
:::! 

:~ 0.010 
·~ 
'J 

~ 
~ 
;. 0.005 

·_, 

pH2= 2.57 

0.000 ..__ __ --J.. ___ _._ ___ ..__ __ __. ___ _,_ __ __. 

0 5 10 15 20 25 30 

z 1<:111) 

0 .. !0 

(J.IX 

-~ 
II. I(> 

"' 0.14 ~ 
:.:; 
'=! 0.1~ 
~ :_, 

II. J(l 1 
~ 
~ 

;;.-: 
.,.; 

z(cm) 

0. 1 :--·--·-~·------~-~ 

;: 
·.; 
€ 
:.:; 

~ 

I pH,=2.44 I 
0.00: - l 

o.re~ j 
: \ . . I 

0_07 : \r mcreasmg j 
I I 

O.oo 1, 1· 

j 
..., 
~:J ! 
::-: 

~ 

;;: .-
"" 

'· 
10 

z(cm) 

50 

Figure 4.12 Comparison of planar averaged concentration profiles for -r ranging from 
0.25 to 2 at an interval of0.25 for different pH combinations (pH 1=11.5 in all the cases) 

between the current experiment and the water channel facility[9]. 
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One of the important differences to note between the two experiments is the 

range of Re to which the mixing layer spawns to in each of the experiments. The non­

dimensional time scale does not put this difference in perspective. While in the current 

experiment the mixing layer attains a Reh number of~ 10000, the maximum attainable Re 

in the water channel is limited to a maximum of ~3000. To put this variation in 

perspective, the experiments are compared on the Equivalent product thickness which is 

representative of the fraction of chemical formed in the mixing layer. The equivalent 

product thickness is defined for an RTI driven mixing layer as [9]: 

p = _!_ J [iniV ]dz 
h h h.,. [In ]2 

(4.13) 

For our investigation in the low At. hs= hb=h/2. The parameter is analogous to P/6 

observed in shear layers[62, 65] . To account for the bias induced by salt a correction was 

applied to account for the absorption by the salt and therefore equation 4.13 becomes: 

(4.14) 

Where c;;-~0.00087 is the span integrated measure of C due to salt that was measured 

before the experiment started. Figure 4.13 shows the evolution of Plh as a function of the 

Reh in the current experiment and the water channel facility. The bubble height was 

computed using 5%-95% limits on the passive scalar runs and the concentration were 

taken from the reactive scalar runs and the physical quantities correlated at similar times 

to compute this integral parameter. It can be observed that the ratio reaches the 

asymptotic limit of equivalent product thickness observed in shear layers at higher Re. 

Asymptotic Plh behavior has been observed with shear layers at a Re - 8000-10000, 

however the current investigation does not show such behavior at similar Re even though 

it attains such a value at corresponding Reh. A facility with an extended domain would be 

needed to observe such asymptotic behavior. This trend is also an indicator ofRTI driven 

mixing to be a more effective mixing mechanism in terms of stretching the interfacial 

contact area between the two fluids. Similar trends in Plh variation at Reh > 1000 

between the two experiments can be observed from the plot adding to the validation of 

the diagnostic. Though it has been established in shear flows that the amount of colored 

product formation at high Re is independent of initial conditions[62], the sensitivity of 
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equivalent product thickness to initial conditions in RTI driven flows is a question yet to 

be answered. The variation in this parameter observed at early time between the two 

facilities can be attributed to the effect of initial condition as is true with shear layer and 

jets. 
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Figure 4.13 Comparison of equivalent product thickness evolution between current 
investigation and the water channel (pH1 = 11 .5 and pH2= 7). 

4.4. MIXING ESTIMATES 

The current investigation adopts the technique developed at the water channel 

facility for relating passive scalar and reactive scalar measurements to fluctuating density 

statistics and quantifying the molecular mixing parameter at local and global scales[9]. 
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4.4.1. Local Mixing. The definition of local molecular mixing adopted in this 

case is derived from Danckwerts [78] which is based on the intensity of the segregation 

parameter. According to this definition molecular mixing is defined by the parameter (8) 

is defined by: 

-- '2 

l]- f.J2 -1-_fj_ u---- --
J;J2 J;J; 

(4.15) 

where J..'2 denotes the Reynolds averaged fluctuation of the heavy fluid volume fraction 

'2 '2 ( )2 from the mean which translates to .t; = p I !).p , and !).p = p 1 - p 2 [33]. ()is therefore 

a measure of homogeneity of a mixture such that B= 1 when the two fluids are completely 

mixed at the molecular level and 0=0 if the mixture is stirred but no diffusive mixing has 

occurred. Indicator formation can be directly related to the volume fraction variance. A 

detailed description of the derivation relating the volume fraction variance to the 

measured concentration profiles is given by Mueschke et al.[9]. The relation is given by: 

+'2 = f -~ __ 1_f~ C(f5o%)d+5o% 
.!1 .1.2 max 2 .!2 

aln/V 0 

(4.16) 

where the quantity a;:;~. is the fraction of maximum dissociation of the indicator and is 

0.96 for the current indicator. The quantity / 2
50% is volume fraction of the light fluid in 

the mixture at a given equivalence ratio at which half the indicator dissociates to its 

colored form. The quantityC(/250%) is concentration of the indicator as measured at the 

corresponding volume fraction. The integral represented in the right hand side of 

equation 4.15 may be interpreted as the sum of the chemical product produced at all 

possible equivalence ratios. Using 4.15 the equation 4.14 can be rewritten as: 

I f C(/250% )df{O% 

() = .::_0 __ --===--
max ..(" [ a,,w .11. 2 

(4.17) 

The terms on the right hand side ofthe above equations (4.13 and 4.14) include the mean 

volume fraction vales which are obtained from the volume fraction profiles that have 

been estimated using the passive scalar and the mean chemical indicator profiles which 

have been estimated using the reactive scalars as presented in the previous sections. 
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Before the estimation of the integral the bounding values of C(/2
50%) at / 2

50% = 0 and 

/ 2
50% = 1 are important to be considered. If the light fluid carrying the indicator was 

highly acidic with an infinite H+ concentration then / 2
50% = 0 as there will be no indicator 

in the dissociated form and consequentlyC(/250%) = 0. Ifthe light fluid was basic all the 

indicator would exist in the colored form acting as a passive scalar and C(/2
50% ) = 

a;~;~ / 2 . Thus, these two bounding values are known priori. The intermediate 

concentration values at the three other equivalence ratios are used from the reactive scalar 

runs and a quadratic fit[9] to the resulting five data points is used as the concentration 

variation profile at different equivalent ratios to resolve the integral. We adopt this 

simplifying assumption as it is impossible to run experiments corresponding to each and 

every equivalence ratio. 90%-10% volume fraction bounds are adopted as measurements 

at the mixing layer edges show increased intermittency at lower thresholds. 

Figure 4.14(a) and 4.15(a) shows the evolution ofthe molecular mixing parameter and 

volume fraction variance based on equations 4.17 and 4.16, respectively. For comparison 

purposes the corresponding parameters measured from the water channel facility are 

plotted along side ( 4.14(b) and 4.15(b) ). As obvious from the plots, a decreased value of 

molecular mixing parameter is observed from the investigation in the current facility. 

This can be attributed to the difference in the spectral signature of the initial conditions as 

every other parameter remains the same between the two facilities in terms of the 

parameters describing the binary fluid combination that quantify the nature if the 

instability. It is interesting to observe the value of molecular mixing at the tails shows an 

increased behavior. This may in part be attributed to the vorticity in the initial velocity 

perturbations posed on removal ofthe barrier (from the uncovered edges ofthe barrier) 

which propagate and strengthen as the mixing front advances. The nature of variation in 

the molecular mixing parameter at the core ofthe mixing layer remains between the two 

investigations and tends to flatten out as the flow evolves. 
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Figure 4.14 Comparison of evolution of molecular mixing parameter from the current 
investigation (a) and the water channel (b). 
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Figure 4.15 Comparison of evolution of volume fraction variance from the current 
investigation (a) and the water channel (b). 
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As it can be noticed from the volume fraction estimates that the strength of the 

volume fraction variance remains comparable to that observed in the water channel while 

the molecular mixing is significantly low. This may be explained by the following, the 

entrainment dynamics associated with the dominant large modes on the initial interfacial 

perturbation continuously feed the mixing layer with the pure fluids and advance the 

fronts, while segregation (break up) ofthe entrained fluid occurs as marked the variance 

in the volume fraction, the flow is dominated by momentum due to the entrainment 

occurring on the large scales that pushes the fluids before subsequent breakup of the fluid 

takes place to result in enhanced molecular mixing. Though the exact influence of any 

single mode cannot be isolated or tracked at present, the corresponding Fermi transitions 

of the dominant modes would explain the exact reasons for the dynamics observed in the 

mixing layer. Quantitative assessments of such transitions can be arrived at by 

performing PLIF measurements across the mixing layer along with selective seeding of 

initial perturbations. 

4.4.2. Global Mixing. Mixing on a global scale is quantified by the global mixing 

parameter introduced by Youngs[33]. The parameter is given by: 

( 4.18) 

At low A 1, hs= hh and so the above relation reduces to 

h, /"' 0 = 1- J .!;'2 dz J J; f 2 dz 
0 0 

(4.19) 

This parameter operates analogous to the molecular mixing parameter given by 8, a value 

of 1 indicates perfect mixing and 0 indicates complete segregation. The global mixing 

parameter was deduced using the above estimated value of volume fraction variance and 

so was calculated based on 10%-90% volume fraction fiducials. The evolution of the 

global mixing parameter over the entire mixing layer is presented as a function of -r 

Figures 4.16 along with values reported from previous investigations. 
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Figure 4.16 Evolution of global mixing parameter as a function of r along with values 
reported by previous investigations. 

All the values reported here correspond to low-At experiment and so form the 

basis for comparison. In case of point wise measurements made at the center line of the 

mixing layer of the gas-channel and water channel facilities operating at Sc of 1 and 7, 

respectively it can be seen that the there are two marked stages at times before r ~ 0.4 and 

r > 0.4. As to the behavior of the parameter, it has been attributed [66] that for r ~ 0.4, the 

two pure fluids are "stirred" with little molecular mixing and the flow pertains to regimes 
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of initial exponential growth and onset of the non-linear stabilities where in there is 

entrainment of the pure fluids without molecular mixing and a lowering of the values is 

observed. For r > 0.4, the flow is characterized by the onset of secondary instabilities, 

Kelvin-Helmholtz in particular, leading to increases interfacial surface area between the 

fluids and consequently enhanced mixing as marked by the subsequent raise in 8. As to 

the values themselves, it has been reported that the values are over estimated due to probe 

size limitations[9, 66]. The evolution of 8 in the water channel investigation shows a 

significant lowering ofthe value in comparison with the value measured from point wise 

measurements made at the center plane using thermo couples. The trend has been 

attributed to the difference in the Scat which the two measurements were operating, the 

nature ofthe measurement (one being local and the other global) and the over estimation 

due to resolution limitation ofthe probe[9]. The trend of increased mixing has been 

observed about r ~ 0.5 without the initial decrease in the water channel facility using the 

reactive flow technique and span wise measurements. In the current experiment we see an 

increase in 8 at r~ 1.25. The value ofthe parameter decreases slightly till this time and 

increases subsequently. Significantly reduced values as compared with the previous 

investigations support the fact that there is a strong segregation(stirring)( as observed 

from the volume fraction variance) with little molecular mixing (as observed from the 

local values of mixing) suggesting that a change in the molecular mixing dynamics with 

the nature ofthe initial perturbation spectrum. 

To better understand the transition in mixing, Figure 4.1 7 presents a plot of the 

mixing parameters observed previously as a function of the Reh ofthe mixing layer. It can 

be observed from the plot that the flow becomes self-similar with a constant value of e 
for the point wise measurements made in the water channel and the gas channel facilities 

at a Reh-2000 and so the non-linear mixing transition was attributed to 100 < Reh < 2000 

regime. However the water channel investigation using the reacting flows technique has 

not seen a asymptotic value for a flow Reh ~ 3000 and so could not ascribe the range for 

the mixing transition but however pointed out that such an asymptotic value maybe 

arrived at a Reh~S000-10000 if the mixing mechanism is similar to that of shear layers at 

the limit. The current investigation reports values which are much lesser than the values 

of the 8 observed in the water channel by the same diagnostic and at the same A 1 even 
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Figure 4.17 Evolution of global mixing parameter as a function of Reh along with values 
reported by previous investigations. 

though the flow has spawned to a Reh ~ 10000, moreover the trend in the mixing as 

similar to that observed by other investigations where in there is a slight increase in the 

mixing metric has shifted to Reh ~ 3000. It is difficult to conclude as to whether the trend 

of increased 8 is monotonic while there are no pointers towards asymptotic behavior of 



8 even at the high Reh. In comparison to shear layers, which asymptote on their mixing 

characteristics at Reh~8000-10000 irrespective of their initial conditions, a pronounced 

sensitivity to the initial conditions can be observed in case of mixing by RTI. 
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The plots a slight increase in the global mixing parameter can be observed at 

higher Reh and 't suggesting enhanced mixing observed across the mixing layer. The 

implications of such an increase can be attributed to transition in the flow dynamics 

shifting towards molecular mixing over the dominance of segregation. Little can be 

inferred about the mixing transition as the global mixing parameter does not show any 

asymptotic behavior as is observed in Gas-channel and water-channel point wise 

measurements at the center plane. This is in conformance with the Plh measurements 

which do not show asymptotic behavior at high Reh. The results point at a qualitative 

inference that the low wave number loading of energy in the initial density perturbation 

spectrum as a possible mechanism in delaying the mixing transition. 
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5. CONCLUSIONS AND FUTURE WORK 

5.1. SUMMARY 

The primary objective of the current investigation was to study the effect of initial 

conditions on molecular mixing in a high Schmidt number RTI driven flow in the 

interests of developing predictive models that characterize the flow accurately. Due to 

limitations in the current computational capabilities in resolving the Batchelor scales, 

which is necessary to estimate molecular mixing, the current investigation has adopted an 

experimental approach to attain the objective. Non-intrusive optical diagnostic techniques 

involving back-lit imaging were established to observe the growth of flow. The imaging 

was calibrated against a passive and a reactive scalar to quantify volume fraction and 

mixture fraction evolution as the flow proceeds. A detailed standard operating procedure 

to run the experiment with acceptable repeatability was developed to ensure an RTI 

driven mixing layer in the test section. MA TLAB scripts necessary for translating the 

information in the imagery into flow defining metrics were developed. Macroscopic 

parameters characterizing growth on the large scales were ascertained from the passive 

scalar runs and reported. The initial conditions of the flow were modeled from the 

passive scalar runs and verified using large eddy simulation by comparison on the 

macroscopic metrics. The reactive scalar runs and the passive scalar runs were coupled to 

quantify molecular mixing detail in the flow. The molecular mixing detail was then 

compared with respect to similar measurements made in the water channel facility at 

Texan A&M and the effect of initial conditions is discussed. 

Details of the current investigation are summarized as below: 

• An experimental facility, measuring 30.5cm x 30.5cm x 63.5cm in x,y and z 

dimensions, enabling the study of evolution of high Sc RTI driven mixing layer to 

a Reh - 10000 and a late time of • = 2 is designed and established. 

• Non-intrusive, backlit imaging techniques using a Metal halide Arc lamp and a 

CMOS based high speed camera with a temporal resolution of ( 1/60 sec) and a 

spatial resolution of -0.9 mm for obtaining span averaged measurements of 

tracers over the entire test section have been established. 
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• Diagnostics developed have been calibrated for the measurement of span 

integrated concentrations of a passive scalar (Nigrosine) and a reactive scalar 

(Phenolphthalein). The range of linearity in the correlation between the amount of 

light absorbed as recorded by the CMOS and the indicator concentration has been 

isolated and the molar absorptivity coefficients for the passive and reactive scalars 

were established as 5776.9(1/Mol-cm) and 29704 (1/Mol-cm). 

• The uncertainty associated with the flow metrics were quantified using Kline and 

McClintock and tabulated. 

• Experiments were conducted with the passive scalar to and volume fraction 

evolution of the heavy fluid related by the Nigrosine concentration was used to 

quantify mixing layer growth metrics. O.b of 0.085 is reported from the current 

investigations using the Ristorcelli and Clark approach. 

• Quantitative and qualitative measurements on the wake observed with the passive 

scalar suggested a dominant 2-D perturbation at the interface. Based on a wave 

counting methodology The passive scalar runs were used to quantify the most 

dominant modes and their amplitudes in the ensemble of experiments. The 

dominant modes were modeled around modes 4-6 with a perturbation rms of 

0.007. 

• The accuracy of the modeled initial conditions was verified using LES 

simulations on the value of o.b. The consistency was also cross verified with the 

modeled perturbation in the water channel facility and the difference in the initial 

condition signature was established. 

• Reactive scalar experiments were conducted and a comparison of the 

concentration profiles exhibited at the two facilities is compared on the magnitude 

and behavior. A decrease indicator concentration is observed with the reactive 

scalar at higher equivalence ratios suggesting decreased molecular mixing. 

• The equivalent product thickness evolution is studied and similar scaling at 

Reh> 1000 is observed. The equivalent product thickness grows beyond the 

asymptotic value attained by shear jets at Re~8000-JOOOO and is continues to 

show growing trends. 
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• The passive scalar and reactive scalar runs are used to quantify the evolution of 

molecular mixing and volume fraction variance in the mixing layer. A decreased 

molecular mixing is exhibited in the current investigation while the variance 

remains at a similar strength as in the water channel facility. This suggests strong 

segregation but decreased molecular mixing attributed to the entrainment 

dynamics resulting from the initial conditions. 

• Estimates of global mixing parameter evolution are quantified. A decreased 

mixing is observed in the current investigation in comparison with measurements 

made at the water channel and gas-channel investigations. The behavior of the 

global mixing parameter has been analyzed and hints at a possible delay in mixing 

transitions as a result of the initial conditions. 

5.2. FUTURE WORK 

The current experimental investigation was performed using a manually operated 

flat plate. The diagnostics developed were based leveraging on span integrated 

measurements over the test section. However, a detailed investigation of the effect of 

initial conditions with implications towards development of turbulent models that capture 

the influence of initial condition signature accurately would require that the Fermi 

transition of specific modes be studied in detail. In this direction the following course for 

future work is suggested. 

• In order to ensure a greater degree of repeatability and to eliminate the uncertainty 

associated with manual operation of the barrier an automated withdrawal 

mechanism is suggested. 

• To study mode transition of specific wave numbers it is required that controlled 

initial conditions be imparted at the interface. This can be achieved by imposing a 

2D perturbation of the requisite wavelength on top of the perturbation that is 

imparted by pulling the barrier. This can be brought about by imposing the 

additional perturbation though the physical shape of the barrier. Figure 5.1 depicts 

a pictorial representation of the above concept. 
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Figure 5.1 Pictorial representation of the methodology for controlled variations. 

• In the interests of completely characterizing the initial conditions it is important to 

quantify the initial velocity perturbations. A particle image velocimetry study of 

the initial perturbations is suggested. 

• In-order to accurately quantify the effect of particular modes on subsequent 

evolution of the density field, planar images quantifying the evolution of the 

density field are required to study Fermi-transitions. PLIF or LIF techniques are 

suggested for the same. 

• To explicitly study the effect of initial conditions at low Schmidt numbers, the 

current facility can be modified to study gas phase flows. 



APPENDIX A. 

WAVELENGTH ESTIMATION FROM PASSIVE SCALAR RUNS 
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Withdrawing the barrier separating heavy and light fluids imposes a perturbation at the 

interface of the two fluids. The spatial structure of the perturbation is a result of 

anisotropic fluid adjustment in the void (due to finite volume removal) as the barrier is 

withdrawn, viscous boundary layers emanating from the tip and exposed strips of the 

barrier (where there is relative motion) and a Bickley jet (due to flexibility in the barrier). 

During the initial phase of removal, (till about a third of the domain length) the spatial 

structure of the perturbation is dominated by in surge of the heavy fluid (due to liquid at 

pressure being forced through a small area to fill the void) into the light and consequent 

movement of blobs of pure lighter fluid moving into the heavier (to satisfy mass 

conservation). During this phase of withdrawal, large and distinct blobs of the heavy fluid 

and light fluid can be observed moving across the interface. 

The next phase of barrier removal (the next third of the domain length) where the effect 

of adjustment of fluid does not result in an insurge of heavy fluid (due to presence of 

sizeable area for fluid adjustment in the void), the effect of Bickley Jet and the viscous 

layers dictate the spatial structure of the perturbation. Numerous small, interpenetrating 

fingers of heavy and light fluid can be observed in the wake of the barrier. 

The final phase of removal of the barrier is when the Bickley jet is weak, the effect of 

fluid down draft is small and viscous boundary layers dominate the spatial structure. 

Since the effect of the viscous boundary is same on both the top and bottom layers of the 

liquid no distinct, sizeable structures can be observed at the tail of the barrier. 



Counting Principle: 

The counting principle adopted for the first phase is straight forward as each pocket of 

pure fluid continues to grow into a structure; each pair of adjacent pure fluid blobs is 

treated as a wave and counted. 
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During the second phase the interleaving finger like structures do not continue to grow 

with the momentum they were formed but instead slow down after the barrier leaves 

rearrange and then evolve. During the period of slow down and before subsequent 

evolution, there is a merger of structures resulting from diffusion of very thin pockets of 

either fluid due to strong gradients between the pure fluids. Consequent well formed 

structures continue to evolve and so at this juncture the resulting pair of adjacent pure 

fluid fingers are treated as a wave and counted. 

The third phase of withdrawal leaves no visible, distinct structure that can be marked to 

be dominating subsequent growth in that region and so this region is divided on the basis 

of the total number of dominant bubble and spike pairs emanating from this region at a 

later time. Each bubble-spike pair is counted as a wave 

The length of the domain is then divided by the total count obtained by the procedure 

above. 

Example Calculation: 

Consider the data from the run on June 03 2010, we shall proceed with our analysis as 

prescribed in the preceding paragraph. 

Phase -1: 

From the snap shot below we can see that there are 3 dominant spikes and two bubbles 

that can be seen. So the total number of waves is counted as 2.5 

Phase -2 

Below is a snap shot of the fluid interface at the instant the barrier has moved past it. It 

can be seen that there are a large number of interleaving pure fluid "fingers ". Below the 

figure is the same snap shot with the alternating structures marked. 
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It can be seen that there are eight pockets of pure fluid as marked. Now if we look at the 

same region at a later time (At the instant the barrier is completely removed) as shown in 

the snap shot below, we can see that some of the structures have disappeared and in the 

region is dominated by stronger structures (greater width at the structure base) as marked 

and so the total number of "fingers" has now reduced to five. 

In conjunction to the question that might arise as to how a particular structure was 

eliminated, the rationale used here was the intensity levels at the base of the structure. For 

example, if the intensity at the base of the light fluid (white) has darkened, it implies that 

diffusion from the surrounding heavy fluid has changed the density in comparison to the 

mass efflux pumped into that structure from its base and so it is unlikely that the structure 

would rise up than be further contaminated by the heavy fluid and coalesce with the 

surrounding heavy fluid. This can be observed with regard to the first structure and the 

vice-versa (whitening of the dark fluid) with the fifth structure of the earlier snap 

shot( counting starts from left to right). 

From the figure the total number of pure fluid structures pertaining to the phase-2 region 

is 5 and so the number waves is 2.5 . 

Phase-3: 

The figure below relates to initial configuration of phase-3 region. As it can be seen there 

are no distinguishable structures. 
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Below is a snap shot from a later time. Alternating, dominant structures of pure fluid 

have been marked using the same logic as used for determination incase of phase 2. As it 

can be observed there are two structures and so counted as one wave. 

The total number of waves is 6 (summing up regions from phase 1 ,2 and 3). 

The length of the domain is 30.5 em and so the wave length of the perturbation by this 

methodology (from this run) is 5.08 em. 

Caution:-

Care should be taken that the same structure is not counted twice . The first structure 

counted for each phase of withdrawal is supposed to be the counterpart of the structure 

counted at the end of the previous phase. 

Need for averaging across multiple runs: 

As it can be observed that the wavelength of the waves counted across the domain length 

is not the same but are treated as a unit of the count. Secondly, one of the factors that 

determine the strength of the Bickley Jet and that of the viscous boundary layer is the rate 

at which the barrier is withdrawn. Variations in the rate at which the barrier is withdrawn 

(typically 2.5 - 3.5 seconds) might result in a change in the way these two mechanisms 

operate resulting in a change in the nature of the initial perturbation. An averaging 

principle is necessary to mitigate the bias induced into the calculation by the above 

mentioned effects. 

The averaging principle adopted in this body of work averages the wavelength calculated 

by the above procedure across several runs. 



APPENDIX B. 

SCRIPTS FOR IMAGE ANALYSIS 



FUNCTION: IMPR_ VOLFRAC- Image processing routine for converting data from 

Nigrosine runs to volume fraction data. 

function 
impr_volfrac(fname,stseq,enseq,num,stl,st2,wid,hit,e1,f1,g1,h1, 
e2,f2,g2,h2,frame_rate,uid,mac) 
format long; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%£name ->Name of the first file in the sequence 
%stseq > Start position of the sequence number 
%enseq -> End position of the sequence number 
%num -> Number of files to process 
%stl,2 ->Starting point co-ordinates of the focus plane 
%wid -> width of the focus plane in pixels 
%hit -> Height of the focus plane in pixels 
%e,f,g,h ->Handles for the crop function suff 1 for top half, suff -2 
for 
9o-bot t.om 
%uid -> Unique Id for mat file generation 
%mac -> Molar absorptivity coefficent 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
base = 'baseOOl.png'; % Hard-Coded base file name 
L dom = 30.5; %Hard coded width of domain in em 
H dom = 63.5; %Hard coded the height of the domain in em 
prefix1 = 'top'; %Hardcoded prefix for top images 
prefix2 = 'bot'; ~" Bardcoded prefix for botLom i.m,'lge'~ 

A = 7. 5e-4; %.i'\Lwood nu.rnbcr 
g = 9.81; % Acceleration due to gravity 
%Generate result directory 
Cur_Dir = pwd; 
delim = getenv ( 'os') 
temp = size(delim); 
if temp(2)>6 

if (lower(delim(1:7)) 'windows') 
delim = '\'; 

end 
else 

de lim ' I ' ; 
end 
temp = size(Cur_Dir) 
for (i=temp(2) :-1:1) 

end 

if (Cur_Dir(i} de lim) 

end 

Cur_Dir = cat ( 2, Cur_Dir ( 1: i) , 'remlJ. t. ' , uid) 
j = cat(2, 'mkdir ',Cur_Dir) 
op_code = system(j); 
break; 

'!,Crop Int<:l<JC:::3 diJ p<:·J.~ tht': :J:pec.i.f ied b<.•undu 
crop_images1(fname,stseq,enseq,num,e1,f1,g1,h1,prefix1) 
crop_images1(fname,stseq,enseq,num,e2,f2,g2,h2,prefix2) 
%Crop Base images as per the specified bounds 
crop_imagesl(base,5,8,l,el,f1,g1,h1,prefixl); 
crop_imagesl(base,5,8,l,e2,f2,g2,h2,prefix2); 
%Scaling the pixel range to actual dimensions 
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dh = H_dom/hit; %-Vert:ical resolution 
dw = L_dom/wid; %Horizontal resolution 
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% Determine the Origin co-ordinates of the domain on the barrier plane 
Orx = st1; 
Ory = st2 + (hit*33/63. 5); ~; Hatio denotes t.he actual location of 

origin inrelat ion to be height: of the domain from top 
9oDet:ennine the Initial ht from which subsequnt growth is being 

calculated 
in_ht_top = (Ory -(f1+h1))*dh; 
in ht bot= -((f2- Ory)*dh); 
%Generation of z matrix i.e, z for each pizel 
z_top(h1+1) = 0; 
z_bot(h2+1) = 0; 
for (i=h1+1:-1:1) 

z_top(i) in_ht_top+(i-l)*dh; 
end 
for (i=1:h2+1) 

z_bot(i) in ht bot+ -((i-1)*dh); 
end 
hold on; 

%Caluclation of Volume fraction for the top half 
fname_top = cat(2,prefix1,fname); 
fname_base = cat(2,prefix1,base); 
b = imread(fname_base); 
a = imread(fname_top); 
% Get the Max Concentration Value Assuming the die is mixed in the top 

sz = size(b); 
% Convert t:be mat..rix to doubl<.: 

a= cast(a, 'double') 
'~AppJ ';! JmclCJC: COLT<-'Ct:ion 

for (p=l:sz(1)) 
for (q=1:sz(2)) 

a(p,q) = a(p,q)*I_O/b(p,q); 
end 

end 

b = cast(b, 'double'); 

Base_Rat = 0.0; 
for (i = 1:sz(1)) 

for (j = 1:sz(2)) 
Base Rat 
end 

Base Rat+ (-log(a(i,j)/b(i,j))); 

end 
Base Rat = Base_Rat/(sz(1)*sz(2)); 

f(sz(1),sz(2)) 
f_avg(num,sz(1)} 

matrix 

0; ~Initalize the volume fr~c:tioD matrix 
= 0; '~Jnitlalize Lhe l\vccJ:aqe ·;·oltuno::c tractiun 

posit_mat_top(num,sz(2))=0; "oJnitalize the pcy;[tj.on rt"cot·de:t rn'ltri.x 
for 959o bounds 
for (i=1:num-1) 
'6Chc<nge filE' IL11\\C' to point. to the· nt:·:~t fi1e 

1 = fname_top(stseq+1ength(prefixl) :enseq+1ength(prefix1)); 
11 = str2num(1) + 1; 
1 = num2str(11); 



sz1 = size(l); 
fname_top(enseq-sz1(2)+1+length(prefix1) :enseq+length(prefix1)) 

l(1:sz1(2)); 
% 
a imread(fname_top); 
a cast(a, 'double'); 

for ( j = 1 : s z ( 2) ) 
flag = 0; 

for (k = 1: (sz(1))) 
%Generate the Volume fraction Matrix 

f(k,j) = -log(a(k,j)/b(k,j))/Base_Rat; 
%Adjustment for back ground inten::Ji ty 
if ((f(k,j)>1) II (f(k,j)<O)) 

end 

if (f(k,j)>1) 
f (k, j) 

else 
f (k, j) 

end 

1· . 
0· . 

%Marker Logic on the image 
% if ( (flag<5)&&(f(k,j)<0.95)) 
% flag = flag + 1; 
% if flag > 4 
% posit_mat_top ( i, ~j) k-4; 
% a(l<>2,j) = 255; 
9s end 
%· end 

end 
end 

fluctuations 

9oPopu1ate Average Volume fract_j on matrix 
for(count=1:sz(1)) 

f_avg(i,count)= mean(f(sz(1)-count+1, :) ,2) 
end 

end 
hold on; 
%%%For Integral Mix width 
for (i=1:num-1) 

end 

IMW = 0; 
for (j=1:sz(1)) 

end 

%if ( L _d vg < cc 1) 
IMW = IMW + (f_avg(i,j)*(1-f_avg(i,j))*dh); 

9oend 

IMW_MAT1(i) = 6*IMW; 
TAU1(i) = (i/frame_rate)*(A*g*100/H_dom)A0.5; 

%%%~ol:i'<)r b vs l-\.gtsq 
for (i=l:num-1) 

end 

for (count=l:sz(1)) 

end 

if (f_avg(i,count) < 0.95) 
control_mat_bub(i) = count; 

end 
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% for (i=l:num-1) 
% if (control ___ mat bub(i) >1) 
% XX(i) = A*g*(i/frame_rate)A2; 
% YY(i)= z_top(control_mat bL~J(i)) 
9" end 
% end 
9o plot (XX, YY) 

%save buuble data variables 
f_avg_bub = f_avg; 
mfname = 1 ; 

mfname = cat(2 1 Cur_Dir(l 1 :) 1 delim 1 
1 Data_bubble.mat 1 }; 

save (mfname 1 1 f avg bub' 1 
1 IMW_ fvJATl' 1 

1 TAU1 1 
1 

1 controJ __ mat bub 1 
1 

1 z top'); 
%Calculation of volume fraction for the bottom half 
fname_bot = cat(2 1 prefix2 1 fname); 
fname_base = cat(2 1 prefix2 1 base); 
b = imread(fname_base); 
sz = size (b) ; 
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f(sz(l)lsz(2)) = 0; %Initalize the volume fraction matrix 
f_avg(num~sz(l)) = 0; %Initialize the Average volume fraction matrix 
posit_mat_bot (numl sz (2)) =0; %Initalize the posit:. ion recorder matri:>: for 
5% bounds 
%Convert base image to double 
b = cast(b 1 

1 dO~Jle') 

for (i=l:num) 
% 

a imread(fname_bot); 
a cast (a,' double 1 ); 

for (j = l:sz(2)) 
flag = 0; 

for (k = l:(sz(l))) 
%Generate the Volume fraction Matrix 

f(k 1 j) = -log(a(k,j}/b(k,j))/Base_Rat; 
~tl!..djustment for back ground 1nten<3it·y fJ ucLuationc; 

if ((f(klj)>l} ii(f(k,j)<O)) 
if (f(k,j}>l) 

f (k, j) 1 i 

else 
f (k, j) 0; 

end 
end 

~il\1<1 r·keL L'~'CJi c 
9c; i f t ( f J c1 SJ < ~; ) &. ~~ .. ( f ( }: , j ) ,,· 0 . 0 ~~ ) ) 
% flag = flag 1; 
% if flag > 4 

"~ E:·nd 
end 

end 

posit mat bot(i,j) 
a(k-2,j) ·~ 0; 

end 

k-4; 

%PopulatP Averaq~~ Vo1umE· frac-ti(Hl matri:c: 
for(count=l:sz(l)) 

f_avg(i,count)= mean(f(count, :) 1 2); 



end 
%Change file name to point to the next file 

l = fname_bot(stseq+length(prefix2) :enseq+length(prefix2)); 
11 = str2num(l) + 1; 
l = num2str(l1); 
sz1 = size(l); 
fname_bot(enseq-sz1(2)+1+length(prefix2) :enseq+length(prefix2)) 

l(1:sz1(2)); 
% 

end 
%Integral mix width of the spike 
for (i=2:num) 

IMW = 0; 
for (j=1:sz(1)) 

%if ( favg cc~ l) 
IMW = IMW + (f_avg(i,j)*(1-f_avg(i,j))*dh); 

96end 
end 
IMW_MAT2(i) = 6*IMW; 
TAU2(i) = (i/frame_rate)*(A*g*100/H_dom)A0.5; 

end 
plot(TAU2,IMW_MAT2) 
%%%%For h vs agtA2 
for (i=2:num) 

end 

for (count=1:sz(1)) 

end 

if (f_avg(i,count) < 0.05) 
control_mat_spike(i) = count; 

end 

%save spike data variables 
f_avg_spike = f_avg; 
mfname = ' '; 
mfname = cat(2,Cur_Dir(1, :) ,delim, 'Dat_a spjkc-'.mat'); 
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save (mfname, 'f avg ~>pike',' IM'v'J l'1J\T2', 'TAU:;',' control mat. spike',' z bot' 
) ; 

% 
End 

FUNCTION: BASEGEN- To generate the time averaged- base image. 

function basegen(fname,stseq,enseq,num) 
a = imread(fname); 
sz = size(a); 
base ( s z ( 1 ) , s z ( 2 )) = 0 ; 
for (i=l:num) 

a = imread(fname); 
a= cast(a, 'double'); 
base = base + a; 

% Set variable to read the next file 
l = fname(stseq:enseq); 
11 = str2num(l) + 1; 



% 
end 

l = num2str (11); 
szl = size(l); 
fname(enseq-sz1(2)+1:enseq) 

%Avera~1e 

base = base/num; 
base= cast(base, 'uintB'); 
imwrite(base, 'base.png'); 
end 

l(l:sz1(2)); 

FUNCTION: CROP _IMAGES- To crop a given batch of images as per specified 

handles 

function crop_imagesl( fname,stseq,enseq,num,e,f,g,h,prefix) 
%Function to process set of images to crop them as per crop handles 
%provided and save them back 
%£name - Starting filename, num- Number of files(To average on) 
%num Number of files 
%e,f,g,h- Cropping handles 
%stseq,enseq ··· St.art and end of the sequece number in the filename 
string 
for (j=l:num) 

a = imread(fname); 
a= imcrop(a, [e,f,g,h] 9oCrop image a.:.; pe.1. t.hc.· hcnlCLLe:·~ 

sl = size(fname); 
s2 = size(prefix); 
fbuff(l:s2(2)) =prefix; 
fbuff(s2(2)+ l:s2(2)+s1(2)) = fname; 
imwrite(a,fbuff); 

% Set variable to read the next file 

end 
end 

l = fname(stseq:enseq) 
ll = str2num(l) + 1; 
l = num2str(ll); 
szl = size(l); 
fname(enseq-sz1(2)+1:enseq) l(l:szl(2)) 

FUNCTION- IMPR_CONC- Image processing routine for converting data from 

Phenol,phthalein runs to volume fraction data. 

function 
impr_conc(fname,stseq,enseq,num,stl,st2,wid,hit,el,fl,gl,hl, 
e2,f2,g2,h2,frame rate,uid,mac,CO,fsc) 
format long; 

\Subroutine to estimate integrated concentration values 
%fname ->Name of t:he first fi.Le in the sequence 
%stseq -> Start position of the sequence number 
%enseq -> End position of the sequence number 
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%num -·>Number· of files to process 
%stl,2 -->Starting point co-ordinates of the focus plane 
%wid -> width of the focus plane in pixels 
%hit -> Height of the focus plane in pixels 
%e,f,g,h ->Handles for the crop function suff 1 for top half, suff 2 
for 
%bottom 
~ouid > Unique Id for mat file generation 
%mac > Molar absorptlvily caefficent 
%CO -> Constant on concentration 
%fsc -> Free stream concentration 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
base = 'baseOOl.png'; % Hard-Coded base file name 
L dom = 30.5; %Hard coded width of domain in em 
H dom = 63.5; %Hard coded the height of the domain in em 
prefix1 = 'top'; %Hardcoded prefix for top images 
prefix2 = 'bot'; % Hardcoded prefix for bottom images 
A= 7.5e-4; %Atwood number 
g = 9.81; %Acceleration due to gravity 
%Generate result directory 
Cur_Dir = pwd; 
delim = getenv('os'); 
temp = size(delim); 
if temp(2)>6 

if (lower(delim(l:7)) 'windows') 
delim = '\'; 

end 
else 

de lim I I I i 

end 
temp = size(Cur_Dir) 
for (i=temp(2) :-1:1) 

end 

if (Cur_Dir(i) delim) 

end 

Cur_Dir = cat(2,Cur_Dir(1:i), 're<Jult ',uid); 
j = cat ( 2, 'mkdir ' , Cur_Dir) ; 
op_code = system(j); 
break; 

%Crop Images as per the specified bounds 
crop_images1(fname,stseq,enseq,num,el,fl,gl,hl,prefixl) 
crop_imagesl(fname,stseq,enseq,num,e2,f2,g2,h2,prefix2) 
%Crop BiH1e images ac; pE'r the G})(~Cified bound;; 
crop_imagesl(base,5,8,l,el,fl,gl,hl,prefixl); 
crop_imagesl(base,5,8,l,e2,f2,g2,h2,prefix2); 
%Scaling the pixel range to actual dimensions 
dh = H_dom/hit; %Vertical resolution 
dw = L_dom/wid; %Horizontal resolution 
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96 Determine the Origin co-oJ:c:Linate~~ of t.ht.' domain on the barTier p.lane 
Orx = stl; 
Ory = st2 + (hit*33/63. 5); '~ Rat:io denotes the actua1 l.ocatiou of 

origin inrelation to he height of the domain from top 
%Determine Lhe Initial ht from which subsequnl growth is being 

calculated 
in_ht_top 
in_ht_bot 

(Ory -(f1+hl))*dh; 
-((f2- Ory)*dh); 



%Generation of z matrix i.e, z for each pixel 
z_top(h1+1) = 0; 
z_bot(h2+1) = 0; 
for (i=h1+1:-1:1) 

z_top(i) in_ht_top+(i-1)*dh; 
end 
for (i=1:h2+1) 

z_bot (i) in ht bot + - ( (i-1) *dh) 
end 
%-hold on; 

%Caluclation of Concentration for the top half 
fname_top = cat(2,prefix1,fname); 
fname_base = cat(2,prefix1,base); 
b = imread(fname_base); 
% Obtain base intensity for image correction 

sz = size (b) ; 
Y = imhist(b) 
I_O = 0; 
temp = 0; 

for Y1 130:1:256 
if (Y(Y1)>temp) 

temp = Y(Y1); 
I 0 = Y1-1; %Actual intensity 

end 
end 

b = cast(b, 'double'); %Cast base into a double 
conc(sz(1) ,sz(2)) 0; ctinit:alize t.he volumE:"- traction mat:.ri:-:. 
conc_avg (num, sz ( 1)) = 0; %Tni t: idli ze the /\verage vol umc: fract.ion 

mat:1:ix 
posit_mat_top (num, sz (2)) =0; '~ lnit:alj ze the po:d_ ti.on _: ecorder mat.~·i.x 

for· 95% bollnds 
for (i=1:num) 

a = imread(fname_top); 
a= cast(a, 'double'); 
%Apply Image cor-rect:ion 
for (p=1:sz(1)) 

for (q=1:sz(2)) 
a(p,q) = a(p,q)*I_O/b(p,q) 

end 
end 

for (j = 1:sz(2)) 
flag = 0; 

for (k = 1: (sz(1))) 
\Generate the Concentration Matrix 

conc(k,j) ( (-log(a(k,j)/I_O)/(mac*30.5*0.96*fsc) )) 
%.Z\dj lUJtment. tor back g1·ound intensi t:y f luct ua t :ions 
if ( (cone ( k, j ) > 1) I I (cone ( k, j ) < 0) ) 

end 
% 

if (cone (k, j) >1) 
conc(k,j) 1; 

else 
cone ( k, j ) 0 ; 

end 

%Marker Logic on the image 
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% if ((flag<5)&&(f(k,jl<0.95)) 
% flag = flag + 1; 
% if flag > 4 
% posit _mat _ top ( i , j l k - 4 ; 

% a(k-2,j) 255; 
9" end 
% end 

end 
end 

%Populate Average Volume fraction matrix 
for(count=l:sz(l)) 

conc_avg(i,count)= mean(conc(sz(1)-count+1, :),2) 
end 

%Change file name to point to the next file 
l = fname_top(stseq+length(prefixl) :enseq+length(prefixl)) 
11 = str2num(l) + 1; 
l = num2str(l1); 
sz1 = size(l); 
fname_top(enseq-sz1(2)+1+length(prefixl) :enseq+length(prefixl)) 

l(1:sz1(2)) 

end 
%hold on; 
%%%For Integral Mix width 
for (i=1:num-1) 

IMW = 0; 
for (j=1:sz(1)) 

9oif (f avg <= 1) 

IMW = IMW + (cone avg(i,j)*dh); 
9oer1d 

end 
IMW_MATl(i) = IMW; 
TAU1(i) (i/frame_rate)*(A*g*100/H_dom)A0.5; 

end 
%%%%For h vs Agtsq 
% for (i=l:num-1) 
% for (count=l:szlll) 

·:;; end 

'?, end 

i. f ( conc_avg ( _i_, count_ 
cont:rol llV1t: bub(-:i) 

end 

~" tvr (i-"1: num- I) 

\6 if (cont.rolrnatb"ctb(.L):,_L) 

0.05) 
connt:; 

9o XX(i) l-~.*g*(i/f:t:,'1.me __ rat:e)A2; 
% Y"Y(i)~ z .... top(con.tNro1 tna.t ... b1..1b(.i)) 

% e11cl 
% er1d 
9o plot (XX, YY) 
%save tnu1ble data variables 
%hold on; 
%plot(z top,conc_avg); 
conc_avg_bub = conc_avg; 
mfname = 1 ; 

mfname = cat (2, Cur_Dir (1,:), delim, I Data __ bubble. mat'); 
save (mfname, 'conc_avg_bub', 'IMW __ MATl' , 'TAUl' , 'z_top •) ; 
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%Calculation of concentration for the bottom half 
fname_bot = cat(2,prefix2,fname); 
fname_base = cat(2,prefix2,base); 
b = imread(fname_base); 
sz = size (b) ; 
% Obtain base intensity for image correction 

sz = size (b) ; 
Y = imhist(b) 
I 0 = 0; 
temp = 0; 
for Y1 130:1:256 

if (Y(Y1)>temp) 
temp = Y (Y1); 
I 0 = Y1-1; %Actual intensity 

end 
end 

conc_s(sz(1),sz(2)) 
conc_avg_s(num,sz(1)) 
matrix 

0· , 
= 0; 

%Initalize the volume fraction matri~ 
%Initialize the Average volume fraction 

81 

posit_mat_bot (num, sz (2)) =0; 9& Initalize the posit ion 1·ecorder matrix for 
5% bounds 
%Convert base image to double 
b = cast(b, 'double') 

for (i=1:num) 

% 
%· 

% 
%· 

% 

% 
a imread(fname_bot); 
a cast(a, 'double'); 

%Apply Image corr·ect ion 
for (p=1:sz(1)) 

for (q=1:sz(2)) 
a(p,q) = a(p,q)*I_O/b(p,q); 

end 
end 

for (j = 1:sz(2)) 
flag = 0; 
for (k = 1: ( sz ( 1) ) ) 

~oGeueJ:·ate the Volume f:t.:act.i on l"l<ltr i.x 
conc_s(k,j) = -log(a(k,j)/I_O)/(fsc*mac*0.96*30.5) 
9oAdjuntment. for back gt:ound intensity f:luct:uat.i.on~; 

if ((conc_s(k,j)>1) I I (conc_s(k,j)cO)) 

end 

if (conc_s(k,j)>1) 
conc_s(k,j) 

else 
conc_s(k,j) 

end 

1· , 

0; 

%Md.rker: Logic 
if ( ( f 1aq-:.. ')) && ( f ( k, j) < o. 0 ':i) ) 

flag = flag + I; 
if flag "' 4 
posit mat bot (i, j) k-4; 
a(k-2,j) = 0; 



% end 
% end 

end 
end 

%Populate Average Volume fraction matriz 
for(count=1:sz(1)) 

conc_avg_s(i 1count)= mean(conc_s(countl :) 12); 
end 
%Change file name to point to the next file 

1 = fname_bot(stseq+1ength(prefix2) :enseq+1ength(prefix2)); 
11 = str2num(1) + 1; 
1 = num2 s t r ( 11 ) ; 
sz1 = size(l); 
fname_bot(enseq-sz1(2)+1+length(prefix2) :enseq+length(prefix2)) 

l(1:sz1(2)); 
% 

end 
%Integral mix width of the spike 
for (i=2:num) 

IMW = 0; 

end 

for (j=1:sz(1)) 
%if (f_avg <~ 1) 

IMW = IMW + (conc_avg_s(ilj)*dh); 
9oend 

end 
IMW MAT2(i) = IMW; 
TAU2(i) (i/frame_rate)*(A*g*100/H_dom)A0.5; 

%· plc)t (TAlJ2, IMW fVli\'T2) 

% \%%%FOl h VS agtA2 
?s for (i=2:num) 
% for (count=l:sz(l)) 
% if (f_avg(i,count) < 0.05) 
9o control mat spike(i) count.; 
% end 
% end 
9,; end 
% 
%save spi.ke data variables 
conc_avg_spike = conc_avg_s; 
mfname = 1 ; 

mfname = cat(2 1Cur_Dir(1 1 :) 1delim 1 'D<<t.a_;opike.mat 1 ); 

save (mfname 1 
1 conc_avg_ spike 1 

1 ' IMWivJAT2' 1 'TAU2 1 
1 'z bot') 

% 
End 
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FUNCTION - TESTINTENSITY - Image processing routine for verifying the uniformity 
of the background. 

function testintensity(fname 1stseq1enseq 1nUm 1e 1f 1g 1h 1m1n 1y1,y2 1X1,x2) 
%Function t:o proce~>:o: set of im,'<<_F~fl t:o generaL.e i nt,"n':.i t y p 1 ot '" on 
% a m*n grid of lines f>paced jn tbe domain.m ,1nr:l. n c:hould be: ., . ~ 

%fname - Starting filename, num- Number of files(To ~ve1age on) 
\e,f,g,h - Cropping handles 
%stseq,enseq - Start and end of the sequece number in the filename 
string 



%yl,y2,xl,x2 - Extents of the domain along each axis 
for (j=l:num) 9o parse for all the images 

a imread(fname); 
a a(:, :,1); %Since image lS B/~ needs only one of 

R,B,G 

a imcrop(a, [e,f,g,h]) %Crop image as per the handles 
sz = size(a); 

% Intensity calcualtion in the Horizontal 
if (j ==l) %Tnitializat.ion 

hor(m,sz{2)) = 0; 
ver(n,sz(1)) = 0; 
k(2,sz(2)) 0; 
q(2,sz(1))=0; 

end 
temp = 3; 
for (i=1:m) 

k(l,:) a(temp,:); 
hor (m- i+1, : ) hor (m- i+1, : ) + k ( 1, : ) ; 
temp temp+ fix((sz(1)-10)/(m-1)); 

end 
% .Intensity calculation in the vertical 

temp = 3; 
for (i=l:n) 

q ( l, :) a (: , temp) ; 
ver ( i, :) = ver ( i, :) + q ( 1, :) ; 
temp= temp+ fix((sz(2}-10}/(n-1)) 

end 
(}l ~:.et ·vclr._i.ab1e to .t:c.::ld ilC)zt fi1e 

l = fname(stseq:enseq); 

end 

11 = str2num(l) + 1; 
l = num2str(l1); 
sz1 = size(l); 
fname(enseq-szl(2)+l:enseq) l(l:sz1(2)) 

';; Take: t-.he a.verage over all c~he phot::Oi'.' a;J j nput: 
hor hor/num; 
ver = ver/num; 

hold on; 
figure(l); 
set ( l, 1 nclme 1 , 1 lnt.E·.·u;:;i ty Alc,nq y,, J:l: ica L 1. i.ne::•' ) 
if (fix(sqrt(n))<sqrt(n)) 

vnum = fix(sqrt(n))+l; 
else 

vnum 
end 

sqrt (n); 

%Plotting the values 
u = 'Intensity Val. iat ion at'; 
for i=1:n 

subplot(vnum,vnum,i), plot(ver(i, :)) ; 
't>dx.i;:: ( [y1, y:2, SO, 250)) 

xlabel ('Vert ic<'1l Lenqtll', 'Fontr:;ize' ,12) 
ylabel ( 'lntensi t:y Va hH~', 'FQnt.s:i ;:<-'' , 12) ; 
\Title gene1ation 
u(23:26)= 1 x = 1 ; 

dns1 = num2str ( (yl+ (y2-y1) * (i-1) I (n-1)), 1 %:22. 2f') 
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u(27: (26 +length(dns1))) = dns1(1:length(dns1)); 
u(27+length(dns1) :27+length(dns1)+3) = ' in.'; 
title(u, 'FontSize',12) 
%· 

end 
figure(2); 
set(2, 'name', 'Intensity Along Horizontal lines'); 
if (fix(sqrt(m))<sqrt(m)) 

vnum = fix(sqrt(m))+1; 
else 

vnum sqrt (m); 
end 
for i=1:m 

subplot(vnum,vnum,i), plot(hor(i, :)); 
%axis( [xl,x2, 175,225]); 
xlabel('Horizontal Length', 'Fontsize' ,12); 
ylabel ('Intensity Value',' Fontsize', 12); 
%Title generation 

% u(23:26)=o ' y '='; 

% dnsl = num2str{(xl+(x2-xl)*(i-l)/(m-l)),'%22.2f') 
% u(27: (26+length(dnsl))) = dnsl(l:length(dnsl)); 
% u(27+length(dnsl):27+length(dni31)+3) ='in.'· 
% title(u, 'FontSize' ,12) 

end 
end 

FUNCTION - GETMAX - Image processing routine for obtaining background 
fluctuation data 

function getmax(fname,stseq,enseq,num,xmin,ymin,wid,ht) 
M 0; 
a = imread(fname); 
a= imcrop(a, [xmin ymin wid ht]); 
sz = size(a); 
tot= sz(1) * sz(2); 
Rej=O; 
fname1=fname; 
for (j=1:num) ';; pctr:~<.'' Jut d . .i.l tltc .tll\ilCJC'''; 

% Set variable to read next file 
1 = fname(stseq:enseq); 
11 = str2num(l) + 1; 
1 = num2str(ll); 
sz1 = size(l); 
fname(enseq-sz1(2)+1:enseq) 1(1:sz1(2)); 

% R.ead Next file 
b imread(fname); 
b = imcrop(b, [xmin ymin wid ht]); 

c= b-a; 
%Calculate Mean and standard deviation 
mn = mean(mean(c)); 
snd = 0.000; 

for i = 1:sz(1) 
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% 

for j = 1:sz(2) 
snd = snd+(mn- c(i,j))A2; 

end 
end 

d = max(max(c)); 
e = min(min(c)); 
if abs(e) > abs(d) 

d = abs (e) ; 
end 
if d > M 

M = d; 
end 
[counts, x] 
cnt = 0; 
for z=1:6 

imhist (c); 

cnt cnt + counts(z); 
end 
cnt 
perc= (cnt/tot)*100; 

if (perc <= 99) 
Rej = Rej + 1; 

end 
end 

M 
mn 
Rej 

% stdc~v 
End 

Script for generating derived quantities from Nigrosine runs : 

%%%Generate time step and frame info 
format long; 
for (i=1:1400) 

t(i) = (i-1)/60; 
end 
tau= t*(7.5e-4*9.81/0.6)A0.5; 

tau_req = [0.25,0.5,0.75,1,1.25,1.5,1.75,2] 
sz = size(tau req); 
t_corresp = tau_req/((7.5e-4*9.81/0.6)A0.5); 
frame_corresp = uint16(t_corresp * 60); 

9ob VE:; a\JtSCJ 

format long; 
for (j=1:1400) 
for (i=1:278) 

if (f_avg_bub_fin(j,i) > 0.95) 
h(j) = z_top(i); 

end 
end 
agtsq(j) 

break; 

7.5e-4 * 9.81 * (((j-1)/60)A2); 
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end 
%%%% Get h at 24 em 
format long; 
sz = size (h) ; 
for (i=1:sz(2)) 

end 

if (h(i) >24) 
cutoff = i-1; 
h_bkp = h; 

end 

h = h_bkp(1:cutoff); 
agtsq_bkp = agtsq; 
agtsq = agtsq_bkp(1:cutoff)*100;%100 fo:r conversion of g 
break 

%Ristocelli Alpha 
format long; 
sz = size(h); 
for (i=1:(sz(2)-1)) 

Alpha(i) = abs((h(i+1)-h(i))/(1/60))/(4*(7.5e-4)*981*h(i+1)); 
end 
Tau current = tau(1:sz(2)-1); 
% 
for(i=1:sz(2)-1) 

end 

if (Tau_current(i)> 1.67) 
start = i; 
break; 

end 

avg_arr = Alpha(i: (sz(2)-1)); 
alp = mean(avg_arr); 
%%%%~%%%%%%lnteg:ral mix width 
format long; 
dz = z_top(3) - z_top(2); 
sz = size(f_avg_bub_fin); 
for(i=1:sz(1)) 

IMW(i) = 0; 
for ( j = 1 : s z ( 2) ) 

IMW(i) = IMW(i) + (f_avg_bub_fin(i,j)*(1-
f_avg_bub_fin(i,j))*dz); 

end 
end 
IMW = 6*IMW; 

sz = size (h) ; 
IMW_bkp = IMW; 
IMW = IMW_bkp(1:sz(2)); 
Tau_IMW = tau(1:sz(2)); 
g.;lllphd R:i;;t f r·om If,l\i'J 

format 1onq; 
sz = size(IMW); 
for (i=1:(sz(2)-1)) 

Alpha_IMW(i) abs({IMW(i+1)-IMW(i))/(1/60))/(4*(7.5e-
4 ) * 9 81 * IMW ( i + 1) ) ; 
end 

for(i=1:sz(2)-1) 
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if (Tau_IMW(i)> 1.6) 
start = i; 
break; 

end 
end 
avg_arr_IMW = Alpha_IMW(i: (sz(2)-1)); 
alp_IMW mean(avg_arr_IMW); 

Script for generating theta using volume fraction and concentration profile data: 

%For generation of theta and volufraction variance profiles 
sz = size(Eq1_avg_res); 
X= [0,0.471,0.748,0.986]; 
x1 = [0,0.2411,0.471,0.758,0.986]; 
for (i=1:sz(1)) 

'0 
0 ·r;; 

~6 

r%; 

0 
·<; 

for (j=1:sz(2)) 
% 
y(1) 
y(2) 
y(3) 
y(4) 
% 

yl ( l) 

yl ( 2) 

yl ( 3) 

yl ( 4) 

2'1 ( ')) 

z) 
coeff = 

0; 
Eq3_avg_res(i,j); 
Eq2_avg_res(i,j); 
Eq1_avg_res(i,j); 

0; 

Eq4 cnrg rec> ( i, j l ; 
Eq3 avq_rec(i,j); 
Eq2 avg rec(i,j); 
F:c.Jl c1VCJ L·e;_; ( :L, j) ; 

polyfit(x,y,3); 
% coe f f 1 '" po 1 y f it ( z 1 , y 1 , 3 ) ; 
coeff2 = polyfit(x,y,2); 

'is coeff3 "" polyfit(xJ.,yl,2); 

Intconc(i,j) 
(coeff(1)/4)+(coeff(2)/3)+(coeff(3)/2)+(coeff(4)/1); 

~' Tnt L' on c l ( :i , j ) 
( C<-'< · f: f l ( l ) / l ) • ( < :< •c· f 1 l ( :.• ) l l ) 1 ( cO<:: J f_ J 1 .I ) i _' \ t 1 ':oc- J: ! .L ( ·l ) / 1 ) ; 

Intconc2(i,j) = (coeff2(1)/3)+(coeff2(2)/2)+(coeff2(3)/1); 
'),Jnt COltC.3 ( i, J) 

" ,, 
if (nigr_avg_vfrac(i,j)> 0.9 I lnigr_avg_vfrac(i,j)< 0.1) 

Theta(i,j)=O; 
·~ Thetal(i,j)-0; 

Theta2(i,j)=O; 
9o 'I'hc:ta3(i,Jlc•O; 

else 
Theta(i,j) Intconc(i,j)/(0.96*nigr_avg_vfrac(i,j)*(l­

nigr_avg_vfrac(i,j))); 
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~(, The: t ~~t 1 ( j , ·_i ) 1 :·1 t c · c• n c 1 ( .l , j ) / ( ( 1 • ll (l * n .i t~_l "I · d. \ · q ··-./ t 1 · .:1 r., ( i , J ) "'" \ l -
l\ j <j.t •.:l V q 'I f 1 , H' ( j , j ) ) ) ; 

Theta2(i,j) Intconc2(i,j)/(0.96*nigr_avg_vfrac(i,j)*(1-
nigr_avg_vfrac(i,j))); 



%Theta3(i,j) 
njg:r_ avg_vfrac (i, j))); 

end 

Intconc3(i,j)/(0.96*nigr_avg~vfrac(i,jl*(l-

if (nigr_avg_vfrac(i,j)> 0.9 I lnigr_avg_vfrac(i,j)< 0.1) 
vfrac_var(i,j)=O; 

%vfrac_varl(i,j)=O; 
vfrac_var2(i,j)=O; 
%vfrac_var3 ( i, j) ,=0; 

else 
vfrac_var(i,j) = (1-Theta(i,j))*nigr_avg_vfrac(i,j)*(1-

nigr_avg_vfrac(i,j)); 
%vfrac __ varl ( i, j) 

Int.concl (i, j) / (0. 96*nigr avg_vfrac (i, j) * ( ]_-nigT a'v·g __ vfrac (i, j))); 
vfrac_var2(i,j) = (1-Theta2(i,j))*nigr_avg_vfrac(i,j)*(1-

nigr_avg_vfrac(i,j)); 
%vfrac_var3(i,j) 

Intconc3(i,j)/(0.96*nigr_av~ vfrac(i,jl*(l nigr avg vfrac(i,j)l) 
end 

% vfrac __ var(i,j) 
% vfrac_var1(i,j) 
nigr __ avg_vfrac ( i, j) ) ; 
% vfrac_var2 ( i, j) 
% 
% vfrac_var3(i,j) 
nigr_ avg_vfrac(i,j)); 

end 
end 

(l-Theta1 (i, j)) *nigr avg _vfrac (i, j) * (1-

(1-Theta3(i,j))*nigr~avg vfrac(l,j)*(l 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for (i = 1:sz(1)) 

for (j=1:sz(2)) 
if Theta(i,j) ==0; 

ind_theta(i) j-1; 

end 
end 

break; 

% for {j:.-~l:rJz(2)) 

% if Thetal(i,j) ==0; 
% ind thetal(i) j-1; 
% break; 
% end 
~; end 

for (j=1:sz(2)) 
if Theta2(i,j) ==0; 

ind_theta2(i) j-1; 

end 
end 

break; 

% for (j=l:sz(2)) 
% if Theta3(i,j) ==0; 

% ind theta3(i) j-1; 
1> lJreak; 
~s end 
% end 
end 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for (i = 1:sz(1)) 

for (j=1:sz(2)) 
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if vfrac_var(i,j) ==0; 

end 
end 

ind_vfrac_var(i) j-1; 
break; 

% for (j=l:sz(2)) 
% if vfrac~varl(i,j) ==0; 
% ind vfrac varl(i) j-1; 
% b:r-eak; 
% end 
% end 

for (j=1:sz(2)) 
if vfrac_var2(i,j) ==0; 

end 
end 

ind_vfrac_var2(i) j-1; 
break; 

9.;- for (j=l:sz(2)) 
% if vfrac_var3(i,j) ==0; 
% ind vfrac var3(i) j-1; 
% break; 
?" end 
% end 
end 

FUNCTION - CAL WEDGE_ WITHCORR - Image processing routine for dye 
calibration usogm the wedge. 

function calwedge_withcorr(fname,stseq,enseq,num,e,f,g,h,conc) 
%Function to pt:·oce~:;s set of imagEoo3 tc qenerat''' Ca.libration plots 
%fname ··· St.art~inq filename, num-· Number of fiJes(To aver;:;qe on) 
%e, L, g, h - Cropping hdndle~3 for t_he J:eq.ion of i.nterer;c. 
%stseq,enseq - Start and end of the sequece number in the filename 
strinq 
7onum -- Numbe.r of files 
'%>ht - .lleight: of the wedc;e in em (end Lo errd) 
ht = 58.5; 
'htoL t:op,to1 tJot: 
h<',iqht 
tol_top = 1.5; 
tol bot = 0.5; 
%Lenqth of domain 
L dom = 32.7; 
%Cone - Concentration of Indicator 
% take base mid coumn 
basel= imread('base.png'); %Enforced 
dom_ext=size (basel); ~' Duma.i.n Extents 
basel = imcrop(basel, [e f g h]); 
%Logic Lo pi.ck max value~> of the ba::;c: ·itnaqe hJ.~>t:O'Jl'd\11 

Y = imhist(basel); 
I_O = 0; 
temp = 0; 
for Yl = 130:1:256 

if {Y(Yl)>temp) 
temp = Y(Yl); 
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I 0 Y1-1; %Actual intensity 
end 

end 
%Initialization 
sz = size(basel); 
colno fix((sz(2))/2); 
baseV(1,sz(1))=0; %matrix to record base intensities 
ratV(1,sz(1))=0; %matrix to record ratios 
vert(1,sz(l)) = 0; %matrix to record intensity from wedge image 
temp(1,sz(1))=0; 
baseV(1, :) = base1(:,colno) 
% 
for (j=1:num) !~ parse for all the images 

a = imread(fname); 
a = imcrop(a, [e f g h]); %Crop image as per the handles 
sz = size (a) ; 

%Correct intensity of the image 
for (xa = 1:sz(1)) 

for (xb = 1:sz(2)) 
I corr(xa,xb) (I O/base1(xa,xb))*a(xa,xb) 

end 
end 
a = I_corr; 
a= cast(a, 'double'); %Case unsigned integer to double 

%Note: Only one of the two averaging schemes below should be active 
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%%%%%%%%%%%%%%%%%%%%%%%%%\%%%%%%%%%%%%%%%%%%%%\%%%%%%%%%%%%%%%%%%%%%%%% 
"oAve:r.·aging Scheme-l- AveLage of Log(I/T 0) 

%Tnterwi t:y calculation in t.he vertical 
vert ( 1, : ) a ( : , col no) ; 

for i=l:sz(1) 
%ratV(l,i) = ratV(l,i) -log(veLt(l,i)/baseV(l,i)); %-without 

correction 
ratV(1,i) =ratV(1,i) -log(vert(l,i)/I 0); 'o~Jith con:ecLion 
end 

% Set variable to read next file 

end 

l = fname(stseq:enseq) 
11 = str2num(l) + 1; 
l = num2str(l1); 
sz1 = size (1); 

fname(enseq-sz1(2)+l:enseq) l(1:szl(2)) 

'i; T<ike the averaqe over et.ll tht:' photo~~ as inpuL 
ratV = ratV/num; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%\%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%~%%%%%%%%%\% 
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'!> %Ave.raqing Scheme -2 -- 1\verqage of int<:"IH.>.i.t.y t.hE.'n t.i,ke the t,t~_jo 

% % Intensit:y· calculation in t:he ve:t:t.ical 
'?r; temr) ( 1, :) :"-~a (:I colno) ; 
9o ver:t(l, :) ::::: vert.(·l, :) + ten1l)(l., :) ; 

%: 9a Set va1':ial)1e to 1·<~ad next filE:: 
% 1 = fname(sLseg:enseq) 
't 11 ~ st.·r·2num(l) + 1; 

% 1 = num2str (11); 



% szl size(l); 
% fname(enseq-szl(2)+l:enseqJ l(l:szl(2)) 
% % 
% end 
% vert = vert/nwn; %Average vertical intensity 
% for i=l:sz(l) 
% %ratV(l,i) = -log(ver(l,i)/baseV(l,i)); %-without correction 
% ratV(l,i) = -log(vert(l,i)/I_O); %With correction 

%end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%PLot 
hold on; 

%For x-axis calibration 
% Calibration of the x-axis 
ht_dom_pix = dom_ext (1); 9a height of the domain in pixels 
strt_pt = f; %Start point of solution 
for q1 = 1:sz(1) 
ht_dom_act = (strt_pt*ht/ht_dom_pix) tol_top; 
%len __ act(l,q1)=(ht_dom_act- * 103/179)* conc*lOe--6/13;-for Nigrosine 
len_act(1,q1)=(ht_dom_act * L_dom/(ht-tol_top-tol_bot)) * conc*1e-6; 
strt_pt = strt_pt + 1; 
end 
% 
plot(len act,ratV); 

end 



APPENDIX C. 

UNCERTAINTY QUANTIFICATION 
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The uncertainty associated with the experimental measurements was calculated 

using Kline and McClintock analysis methodology. The method essentially describes the 

uncertainty in the measurement of a physical quantity R, which is a function of the 

independent variables (x1, x2, x 3, .. o ooXn), then R = R(x1, x2, x 3, Oooooxn)o Let the uncertainties 

in each of the independent variables be (w 1, w 2, w3, 000 00 wn). Then the uncertainty in the 

measurement ofR, WR is given by: 

(A. I) 

This quantification methodology determines the uncertainty associated with single 

sample measurements. The table below gives a listing of the physical quantities 

associated with the measurement and their relation to the derived quantities. 

The most important primary metrics that are measured directly from the experiment are 

the concentration values of the fluid in the mixing layer. The value of the normalized, 

span-integrated concentration is related to the intensity readings from the camera by the 

Beer-Lambert law (refer section 3 for detailed discussion) as per the relation: 

C = a ln(l0 I I) 
eL[In] 2 eL[In] 2 

(A.2) 

The above relation is used for the determination of the normalized concentration in case 

of the reactive scalar runs and therefore its necessary to evaluate the uncertainty 

associated with each term in the reactive scalar case. In case of the passive scalar runs the 

volume fraction, which is normalized by the heavy fluid is directly obtained from the 

relation: 

(A.3) 

Where I heavyfluid is the intensity in the top half of the test section before the start of the 

experiment and therefore does not involve quantities derived directly from the calibration 

as they cancel out. The nature ofthe indicator in this case enables us to evaluate the 

concentration of the dye heavy fluid from direct intensity measurement which cannot be 

done in case of the reactive scalar. Therefore the two cases will be dealt separately. 
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UNCERTAINTIY IN THE REACTIVE SCALAR CONCENTRATION 

The uncertainty in the normalized concentration (we) is given by: 

( 2 ( ]2 2 2 2 ac ac ac ac ac 
w = -w + -w + -w + -w + w " a10 

1"J a1 1 (as •. ) (aL ~.) (a[1n] 2 [lnlzJ (A.4) 

Uncertainty in the background intensity ( w 1" t 

The uncertainty in the background intensity is taken by measuring the standard deviation 

of 500 images. The value has been ascertained to be 1.56 intensity units on a scale of 0-

255, with the mean background intensity maintained at a value of 200 units. The 

uncertainty in the background intensity is therefore ±0. 78%. 

Uncertainty in the measured intensity ( w1 ) ,;, 

We assume no uncertainty in the measured intensity and that the CMOS sensor scaling of 

the photons is absolute with repeatable sensitivity to the incident photons for a given 

scaling range, so w1 = 0. 

Uncertainty in the Molar absorptivity coefficient ( w1_),;, 

The uncertainty in the width of the test section is ± 1 mm and for test section width of 305 

mm, , the uncertainty assumes a value of ±0.327%. 

Uncertainty in the Indicator concentration ( w(In],),;, 

The concentration of the chemical indicator is given by the formula: 

[In] 2 = NV2 IV0 (A.S) 

Where N is the normality ofthe indicator solution which is added to the lower halfofthe 

tank, V 2 is the volume of the indicator added and V o is the volume of the fluid in the 

lower half of the tank. The uncertainty in the concentration of phenolphthalein is derived 

by applying the Kline-McClintock formula as follows: 

w = (a[1n]z w )2 +(a[1n]2 w. J2 +(a[In]z w. J2 
[In], aN N avo 1" av2 1' 

(A.6) 

The uncertainty in the normality of the solution as provided by the manufacturer is 

considered to be 0. The uncertainty in the measurement ofV2 is± 0.6% as provided by 



the manufacturer of the micropipette (Fischer). The uncertainty in the volume of the 

water in the lower tank is 93 ml and so from the above formula the uncertainty in the 

concentration of phenolphthalein translates to ±0.67%. 

Uncertainty in the Molar absorptivity coefficient ( w") _;_ 

The molar absorptivity coefficient is ascertained from the absorptivity calibration 

performed in the tank (refer section 3 for the specifics). The molar absorptivity is 

estimated in the calibration using the relation: 

ln(J0 I I ) 
&=----

L[In] 
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(A.7) 

where [In] is the concentration of the solution as measured. The uncertainty in the molar 

absorptivity coefficient w" is given by applying Kline-McClintock to equation A.7 we 

have 

The uncertainties in all the constituent quantities of the above equation have been 

mentioned earlier. The resulting uncertainty in E is found to be± 1.23% for 

phenolphthalein and ±1.5% for Nigrosine. 

UNCERTAINTIY IN THE PASSIVE SCALAR CONCENTRATION 

(A.8) 

The uncertainty in the span averaged volume fraction ( w 1, ) measured from the passive 

scalar absorptions is given by : 

2 ( J2 ( J2 8J; 8[., 8J; 
W - - 1 W + _._! W + I W 

/i - ( 8I 1" J 8I 1 8I l,,..,..,p .... J 
0 heavyf/wd 

(A.9) 

Here the uncertainties of the measured intensities are assumed to be zero and so the only 

standing term driving the uncertainty corresponds to the uncertainty in the background 

intensity. The resulting uncertainty corresponding to volume fraction is 1.15%. 
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UNCERTAINTIY IN THE ATWOOD NUMBER 

Uncertainty in the Atwood number(At) which is a very important flow defining property 

becomes a very important measurement at low Atwood number due limitations in the 

precision of the instruments associated with gravimetric measurements of the salt needed 

to produce the desired density difference. At is given by equation 1.3. The corresponding 

uncertainty is given by: 

w - --w + --w ( aA, J (aA, J 
A, - apl P1 ap2 P2 

(A.lO) 

The measurement of density was performed using electronic balance corrected with a 

chrome calibration weight. The uncertainty associated with the balance reading is ±0.005 

grams. The density difference is attained by adding the weight of salt required to produce 

the necessary difference for the entire volume of water in the tank and corrected to the 

required Atwood number by iterating with the mass of salt added. The density is 

ascertained from measuring lOOml samples ofthe liquid from the tanks. The uncertainty 

in the density of both the fluids is ±0.005%. The uncertainty in the A1 measured is ±0.35 

xl0-4 which translates to 4.67% for an operating At of 7.5 xl0-4 . 

UNCERTAINTIY IN THE SELF-SIMILAR GROWTH CONSTANT (a/J 

The self-similar growth constant reported in the current investigation is calculated using 

the Ristorcelli and Clark definition given by equation 4.2. The uncertainty ( wa, ) is given 

by: 

(A.ll) 

The value of g is assumed to be 9.81 without any uncertainty. The uncertainty associated 

with the calculation ofh is the same as that associate with the calculation of volume 

fraction as it is ascertained from fiducial limits on the volume fraction and so is the 

uncertainty associated with the velocity ofthe rising bubble. The uncertainty associated 

with each is therefore ± 1.15%. The uncertainty associated with ab is computed to be 

±0.0035 at an A 1 of0.085 which translates to 4.18%. 
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