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ABSTRACT

The use of aerogels historically has been limited to extreme cases largely in part 

to the nature of their mechanical properties. Until recently many aerogels produced have 

been brittle and weak, though looking at their specific strength would suggest otherwise. 

This thesis outlines the processing and major mechanical properties of a relatively new 

type of aerogel,  polyurea aerogel,  that shows promise in a variety of fields including 

structures.

Processing polyurea aerogel begins with a liquid solution that solidifies to form a 

solid  gel  filled  with  liquid  that  is  later  removed  by  supercritical  drying.  Once  dry, 

polyurea aerogels are difficult to form by standard methods such as machining without 

damaging the surface of the material.  Because of this, methods of mold-making have 

been investigated to form the gel into an appropriate  size and shape before the solid 

structure forms. It has been found that polypropylene plastic can resist the chemicals used 

during the manufacturing process while still being inexpensive and easy to work with.

Testing  has  been  conducted  in  tension,  compression,  bending,  shear,  and 

toughness for densities of polyurea aerogels ranging from 0.12 g/cm3 to 0.31 g/cm3. In 

most cases the strength is found to be similar to other building materials of the same 

density, such as balsa wood, except in the axial compression direction. After undergoing 

strain  hardening  up  to  approximately  40-50%,  polyurea  aerogel  strength  increases 

exponentially and a specific failure point is difficult to determine.
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1. INTRODUCTION

1.1. GENERAL

An aerogel is a solid material characterized by its low density and high porosity 

and  surface  area.1,2 Although  the  term  “aerogel”  conjures  thoughts  of  modern  high 

performance materials, the truth is that they were first created in the late 1920's or early 

1930's  (the  exact  date  is  open  to  debate)  by  Kistler.3 He  wanted  to  show  that  the 

continuous solid structure found in a wet gel could be kept if the liquid in the wet gel was 

removed. Initial attempts to create aerogels involved allowing the solvent to evaporate; 

however, this led to structural failure in the material due to surface tension between the 

evaporating liquid trying to escape and the original structure. It became apparent that a 

method of manufacture was necessary in which the liquid solvent was removed all at 

once. In Kistler's own words,

Obviously, if one wishes to produce an aerogel, he must replace the liquid 
with  air  by  some  means  in  which  the  surface  of  the  liquid  is  never 
permitted to recede within the gel. If a liquid is held under pressure always 
greater than the vapor pressure, and the temperature is raised, it will be 
transformed  at  the  critical  temperature  into  a  gas  without  two  phases 
having been present at any time." 3

This process, known as supercritical drying, was first attempted using water as a 

solvent while trying to create silica aerogels.4 It was found that the supercritical water 

dissolved  the  silica  thus  destroying  the  structure.  The  process  was  then  modified  by 

replacing the water with alcohol through a series of solvent exchanges. The fix worked, 

and the first aerogels were born.
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Aerogels created from silica exhibited very low thermal,  electric,  and acoustic 

conductivity.5,6,7 One  major  drawback  of  these  aerogels  was  their  poor  mechanical 

properties including strength and toughness.8,9 Because they were so brittle their use was 

limited to applications such as in nuclear reactors or Cerenkov reactors and spacecraft 

insulation.6,5 This problem was remedied by coating the microstructure with a conformal 

polymer layer, resulting in a slight (~3x) increase in density, increased flexibility, over 

100x  increase  in  strength,  making   it  feasible  to  use  aerogels  in  structural 

applications.5,10,11 In  a  similar  vein,  aerogels  have  been  created  with  a  microstrucure 

consisting entirely of polymer, such as polyurea, which is the main topic of this paper.

The  aerogels  discussed  in  this  text  were  created  by  the  reaction  of  the 

triisocyanate Desmodur N3300a and water, catalyzed with triethylamine in a solution of 

acetone. Since aerogels created in this fashion consist of polyurea, they are referred to as 

polyurea aerogels, hereafter shortened to PUA. Three examples of PUA have been used 

in each of the tests described. Though chemically identical, the three examples have been 

created with varying density. The three densities investigated represent the upper end of 

densities that can be easily produced.  The three densities studied are 0.12 g/cm3, 0.17 

g/cm3, and 0.31 g/cm3.

1.2. RESEARCH OBJECTIVE

This  project  represents  the  first  stage  in  developing  an  understanding  of  the 

physical properties of PUA. With the data collected in this study it has become possible 

to propose PUA for use in engineered structures requiring a known amount of mechanical 

strength and stiffness. 
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2. FABRICATION METHODS

2.1. GENERAL

Fabrication of samples started with the knowledge that PUA is derived from the 

mixing of chemical precursors in a solvent. After reacting a wet gel  is formed, or an solid 

porous structure filled with a liquid (as opposed to the desired fill of gas). Finally, the wet 

gel is put through a process called supercritical drying. In this process the liquid solvent 

is replaced with liquid carbon dioxide, which is then converted into a supercritical fluid 

and flashed off into gas. 

Completed  PUA samples  are  somewhat  difficult  to  work  with.12 Observations 

show that the material is more likely to deform or tear when machined or cut with all but 

the sharpest tools. Because of this, it was decided to manufacture the required specimen 

shapes early on in the processing phase. A variety of molds were produced and tested in 

which the liquid PUA was poured into, thus allowing the wet gel to take the desired 

shape. Considerations had to be made due to the nature of some of the chemicals in use, 

namely acetone, and how they would react to different mold materials.

2.2. SILICONE MOLDS

The first material used for the manufacture of molds was silicone. It was hoped 

that a mold made from the flexible silicone would provide an ideal solution to removing 

the still relatively fragile PUA wet gels with minimal effort and user interaction. Like 

many epoxy resins, the silicone used for these molds was created by mixing a two part 

solution  of  viscous  silicone  with  a  hardening  catalyst  (AeroMarine  Silicone  RTV 
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Rubber). Because this material started as a flowing liquid it was necessary to create a 

mold to pour the solution into. Wax blocks were chosen due to their low cost, ease of 

machining, and availability. Figure 2.1 shows two examples of machined wax blocks that 

were used in the process. Notice that the left and lower right machined cavities have been 

filled with the silicone solution. Figure 2.2 shows the cured silicone molds just after they 

have been released from the wax blocks.

Figure 2.1. Wax Blocks Used as Molds for Pourable Silicone Solution. Wax blocks have 
been machined to create cavities in the shape of the desired molds. These cavities are 

then filled with a liquid silicone solution and left to cure overnight.
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Figure 2.2. Silicone Molds After Release from Wax Blocks. After being left to cure 
overnight the (now solid) silicone is removed from the wax blocks. The cured silicone is 

solid but flexible, allowing easy removal of delicate PUA samples.

 Notice from Figure 2.2 that the silicone molds have two open faces; one small 

opening at the top and the large open face closest to the camera. To complete the mold it 

was necessary to  attach a  polypropylene plate  to  the large open face,  thus  making a 

structure that  has  only one  small  opening at  one end through which the liquid  PUA 

solution could be poured. The finished molds can be seen in Figure 2.3.
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Figure 2.3. Finished Silicone Molds. To complete the molds a sheet of polypropylene 
plastic is fixed to the open face of the silicone molds with rubber bands. This method 

allowed quick and easy access to samples after they had formed wet gels.

During initial trials it seemed that the PUA wet gels were drying out; that is, the 

acetone solvent was escaping the molds as vapor leaving the delicate wet gels exposed to 

air which led to varying degrees of structural collapse. Upon further investigation it was 

determined that the wet gels were not drying out, but rather acetone was being absorbed 

into the silicone molds making them swell. This change in size during the gelation of the 

PUA solution led to problems with the size and quality of the samples produced. 

To remedy this problem the silicone molds were pre-soaked in acetone and then 

returned to their acetone bath after the PUA solution had been poured into them. This 

setup can be seen in Figure 2.4.
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Figure 2.4. Silicone Molds in Acetone Bath. Due to shrinking of the PUA samples within 
the silicone molds (caused by the absorbtion of acetone from the samples into the 

silicone) the entire assembly was soaked in acetone prior to and during gelation of PUA.

This setup yielded wet gels that were the correct size and shape but yellow in 

color (as opposed to the clean white color normally achieved). It was hypothesized that 

material from the rubber bands holding the polypropylene plate onto the silicone molds 

was being dissolved in the acetone and flowing into the PUA solution before gelation had 

occurred.  It  was  found  that  the  rubber  bands,  which  were  yellow  in  color,  quickly 

degraded through washing and drying cycles in acetone.  This method of constructing 

PUA samples was abandoned shortly after the creation of discolored samples for fear that 

the properties of the finished PUA would be compromised. It was decided to design new 

molds, this time entirely from polypropylene.
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2.3. POLYPROPYLENE MOLDS

Switching mold materials from silicone to polypropylene meant that a new design 

was necessary that  would easily allow the wet gels  to  be removed from their  molds 

without damage. A mold using a series of plates was imagined in which outer “face” 

plates, similar to the one used on the silicone mold, would surround one or more plates 

with cut-outs that incorporated both the filling neck and desired cavity shape. A large 

0.25 inch thick sheet of polypropylene was obtained and the University waterjet facility 

was  contacted to  make the desired cutouts.  Figures  2.5  and 2.6 show the  University 

waterjet and the polypropylene sheet shortly after being cut, respectively.

Figure 2.5. Missouri University of Science and Technology Waterjet. High pressure water 
is fed through a computer controlled nozzle to machine parts a variety of materials 

including metal, wood, plastic, and stone.
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Figure 2.6. Freshly Cut Polypropylene Sheet. A computer controlled routine was created 
to cut the required mold-making parts from polypropylene plastic. These parts will be 

stacked and bolted together to form the new molds.

The  plates  cut  from polypropylene  were  stacked  together  in  layers  and  held 

together by a series of bolts placed around the perimeter of the mold. Slight differences in 

clamping  pressure  was  observed  between  the  bolts  due  to  the  ductility  of  the 

polypropylene  sheets.  This  initially  caused  a  small  amount  of  leaking,  which  was 

alleviated through the use of washers and a think layer of silicone grease applied between 

the sheets. An assembled mold can be seen in Figure 2.7.
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Figure 2.7. Assembled Polypropylene Mold. Polypropylene sheets have been stacked and 
bolted together. Openings are left at the top through which solution is poured. Here the 

outline of the mold cavity is partially visible, revealing the dogbone shape used for 
tensile testing.

The new molds constructed of polypropylene have been found to easily produce 

quality PUA samples and were used to construct all samples used for testing.

2.4. SAMPLE PREPARATION

After the wet gels are removed from the molds, they are placed in a supercritical 

dryer, which through a cycle of washes replaces the acetone in the wet gels with carbon 

dioxide. Once saturated, the pressurized dryer is heated until the liquid carbon dioxide 

was converted to a supercritical fluid, that in turn was gradually vented off slowly.
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Once  successfully  dried,  PUA samples  need  very  minimal  preparation  before 

mechanical testing. In most cases, small outcrops of material are left where the filling 

neck is located on the mold. These bits of material are easily removed on a belt sander. 

The samples are then checked for blemishes or visible imperfections (if any were found 

the sample was disposed of), labeled, measured, and weighed. The recipes used to create 

the samples have been included in Table 2.1.

Table 2.1. Polyurea Aerogel Recipes

PUA 
Recipe

N3300A 
(g)

Acetone 
(mL)

Water 
(mL)

Triethylamine 
(mL)

Linear 
Shrinkage (%)

Measured 
Density (g/cm3)

11g 11 94 1.77 0.38 1.8 0.12
16.5g 16.5 94 1.77 0.38 2.4 0.17
33g 33 94 0.88 0.19 5.2 0.31

It should be noted that the amount of triethylamine added to the mixture has a 

direct impact on the time it takes the solution to form a solid gel. For both, 0.12 and 0.17 

g/cm3 samples,  0.38  mL  of  triethylamine  was  added  to  achieve  a  gel  time  of 

approximately one hour. 33g recipes created using the same amount of triethylamine had 

a high probability of forming voids and defects within the samples. In an effort to fix this 

problem the gel time was increased to approximately four hours by halving the amount of 

triethylamine and water added. This change in formulation also reduced the amount of 

shrinkage in the samples to a level similar to that of the other two densities.
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2.5. PHYSICAL STRUCTURE OF POLYUREA AEROGEL

The physical microstructure of the three densities being studied are each unique 

and play a critical role in the strength and stiffness characteristics. Figures 2.8, 2.9, and 

2.10 show scanning electron microscope images of all three densities at magnification 

levels of 300k, 200k, and 100k, respectively.

It can be seen from the SEM images that the 0.12 g/cm3 PUA forms a network of 

fibers with large amounts of open space between the fibers. Increasing the density to 0.17 

g/cm3 shows that the structure still consists of areas of open space, though the fibers that 

were apparent in the lower density have begun to form small  particulates along their 

length. Finally, in the highest density it is apparent that the fibrous structure found in the 

lower densities has been replaced by particles, and the space between particles is much 

smaller. 

It will be shown later in this thesis that for a given increase in density, the increase 

in  strength  and  stiffness  (especially  in  shear  and  compression)  is  not  linear  but 

exponential.  This  may be  attributed  to  the  decrease in  open space  between particles, 

leaving less room for the structure to move from its original location.



13

Figure 2.8. SEM Image, 300k x Zoom. Scanning electron microscope pictures have been 
taken of PUA at a zoom level of 300k times. The top photo shows the microstrucure of 

0.12 g/cm3 PUA, the middle 0.17 g/cm3, and 0.31 g/cm3 is on the bottom.

0.12 g/cm3

0.17 g/cm3

0.31 g/cm3
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Figure 2.9. SEM Image, 200k x Zoom. Scanning electron microscope pictures have been 
taken of PUA at a zoom level of 200k times. The top photo shows the microstrucure of 

0.12 g/cm3 PUA, the middle 0.17 g/cm3, and 0.31 g/cm3 is on the bottom.

0.12 g/cm3

0.17 g/cm3

0.31 g/cm3
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Figure 2.10. SEM Image, 100k x Zoom. Scanning electron microscope pictures have 
been taken of PUA at a zoom level of 100k times. The top photo shows the microstrucure 

0.12 g/cm3 PUA, the middle 0.17 g/cm3, and 0.31 g/cm3 is on the bottom.

0.12 g/cm3

0.17 g/cm3

0.31 g/cm3
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3. TESTING

Testing  proceeded  with  the  knowledge  that  mechanical  strength  needed  to  be 

quantified in the tensile, compressive, and shear directions. Determination of the strength 

in  tension  and compression was fairly straightforward.  Tensile  properties  were easily 

determined  by  pulling  a  sample  apart.  Compressive  properties  were  found  by 

compressing a sample. Properties in shear, however, proved more difficult to determine.

Three  point  bend  tests  are  common  and  samples  are  subjected  to  combined 

tensile, compressive, and shear forces, though extracting data for properties in any of 

these directions is difficult due to the ductility and bi-modular characteristics exhibited by 

PUA. Because of this, a new test was created to put a specimen in pure shear.

With properties in the three main direction known a Charpy impact test was added 

in an effort to measure the toughness, or the ability to resist a fracture from propagating, 

of PUA. 

3.1. TENSION

ASTM D638 outlines the methods and procedures standardized for testing plastic 

specimens in tension and has been chosen as a guideline obtaining the tensile properties 

of PUA. This test specifies the appropriate dimensions of the “dog bone” specimen shape, 

shown in Figure 3.1. Additionally, five specimens of each density have been tested at a 

strain rate of two mm/min.   All  testing has been completed  in ambient temperature, 

pressure, and humidity on an Instron 4469 material testing machine. Figure 3.2 shows a 

tension dog bone loaded into the machine, ready to test.
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Figure 3.1. Isometric View of Tension Dog Bone. The major dimensions of the dogbone 
specimen used for tensile testing are shown.

Figure 3.2. Tensile Test Setup. A dogbone specimen is loaded into the Instron material 
testing machine via two clamps. The lower clamp is stationary and the top clamp is fixed 

to a load cell mounted on a computer actuated beam. This beam raises and lowers 
depending on the type of test being conducted.
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The results  from testing 0.12 g/cm3,  0.17 g/cm3,  and 0.31 g/cm3 samples have 

been analyzed and plotted.  Figure 3.3 shows stress-strain  curves comparing the three 

densities  of  PUA,  tested  to  failure.  Figure  3.4  shows  stress-strain  curves  comparing 

stiffness (low strain, linear elastic region) of the three densities of PUA. Perfectly linear 

regions of elastic deformation were not present in all tests so stiffness has been calculated 

using the secant method rather than the more standard 2% yield offset..

It can be seen from the results that as the density increases so does the both the 

strength  and  stiffness.  This  relationship  appears  to  be  linear  between  the  two  lower 

densities, meaning that a 50% increase in density results in approximately 50% increase 

in strength and stiffness, though the relationship becomes exponential when the density is 

increased to 0.31 g/cm3. All three densities saw a yield in strength at approximately 3.5% 

strain, and the 0.12 g/ cm3 and 0.17 g/ cm3 densities both failed at around 13%. It should 

be noted that the 0.31 g/ cm3 density had an ultimate failure at  a much lower strain, 

approximately 6%. This can most likely be attributed to the differences in microstrucure 

between  the  densities  (fibrous  vs  particulate).  The  results  from  testing  have  been 

tabulated and can be seen in Table 4.1.

Table 4.1. Tensile Testing Results

PUA 
Density

Young's Modulus 
(MPa)

Yield Stress 
(MPa)

Failure Stress 
(MPa)

Failure Strain 
(%)

0.12 g/cm3 24.1 ± 0.5 0.7 ± 0.03 1.1 ± 0.08 12.5 ± 2.3

0.17 g/cm3 37.2 ± 1.3 1.0 ± 0.2 1.7 ± 0.1 13.5 ± 3.0

0.31 g/cm3 102 ±7.2 2.93 ± 0.4 3.9 ± 0.2 6.0 ± 0.6
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Figure 3.3. Tensile Testing Results. The top (blue) line represents the 0.31 g/cm3 PUA, 
the middle (orange) line represents 0.17 g/cm3, and the bottom (yellow) line represents 

0.12 g/cm3. The strength and stiffness of the 0.31 g/cm3 PUA is significantly higher than 
the 0.12 g/cm3 and 0.17 g/cm3, though it failed at approximately half of the strain.

Figure 3.4. Stiffness in Tension Results. The top (blue) line represents 0.31 g/cm3 PUA, 
the middle (orange) line 0.17 g/cm3, and the bottom (yellow) line 0.12 g/cm3.

0 0.01 0.02
0

0.5

1

1.5

2

2.5

Strain (mm/mm)

S
tre

ss
 (M

P
a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.5

1

1.5

2

2.5

3

3.5

4

Stress vs Strain

Strain (mm/mm)

S
tre

ss
 (M

P
a)

0.12 g/cm3

0.17 g/cm3

0.31 g/cm3

0.12 g/cm3

0.17 g/cm3

0.31 g/cm3



20

3.2. COMPRESSION

ASTM D695 outlines the standardized testing methods for testing rigid plastics in 

compression and has been used as a guideline for determining the compressive properties 

of PUA. The rate of testing used is 1.3 mm/min, and is prescribed by the test method. As 

in the tensile tests, five test specimens have been used to ensure accuracy of the results. 

The Instron 4469 material testing machine previously shown has been utilized for these 

tests,  which  have  been  conducted  at  room temperature,  pressure,  and  humidity.  The 

dimensions of the test specimens used for this test are shown in Figure 3.5. Figure 3.6 

shows test setup with a sample loaded into the Instron machine.

The results  from testing 0.12 g/cm3,  0.17 g/cm3,  and 0.31 g/cm3 samples have 

been plotted and analyzed. Figure 3.7 shows the stress-strain curves for all densities of 

PUA up to their yield stress, whereas Figure 3.8 focuses on the stiffness. It can be seen 

that the increase in density affects strength in a similar fashion to what was observed in 

the tensile testing. Also similar to the tensile testing, all three densities began to yield at 

approximately  3-4%.  What  is  interesting  to  note  is  that  none  of  the  densities  tested 

experienced a failure at these strain levels. In search of this failure point the compression 

tests were continued to higher strain values. Figure 3.9 shows the results for compression 

testing at these high strain values (50-100%).
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Figure 3.5. Isometric View of Compression Test Sample. The dimensions of the 
compression test specimen listed in the test method are represented above.

Figure 3.6. Compression Test Setup. The Instron testing machine has been fitted with two 
plates, one being fixed to a load cell, for the compression tests.
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Figure 3.7. Compressive Test Results. The plot above shows the stress-strain curves for 
PUA. 0.31 g/cm3 PUA is on top (blue), 0.17 g/cm3 in the middle (orange), and 0.12 g/cm3 

on the bottom (yellow). Yielding for all densities occurred at approximately 3-4% strain, 
after which the stress values plateaued.

Figure 3.8. Stiffness in Compression Results. 0.31 g/cm3 results are on top (blue), 0.17 
g/cm3 in the middle (orange), and 0.12 g/cm3 on bottom (yellow).  It can be seen that the 

increase in density has a very large (positive) effect on material stiffness.
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Figure 3.9. High Strain Compression Test Results. Top line (blue) is 0.17 g/cm3, middle 
(orange) is 0.17 g/cm3, and bottom (yellow) is 0.12 g/cm3. Both lower densities began to 

increase in strength at approximately the same strain, while the 0.31 g/cm3 increased 
significantly earlier.

Even at these increased strain values a failure was difficult to identify. It can be 

seen from the plots that after reaching a yield point the stress within the PUA samples 

leveled out until strain values of approximately 50% for the 0.31 g/cm3 and 70% for 0.12 

g/cm3 and  0.17  g/cm3 had  been  reached.  It  was  observed  during  these  tests  that  the 

material  had  minimal  transverse  deflection  during  this  plateau,  and  only  began  to 

noticeably increase after the stress values had begun to rise. It was hypothesized that the 

microstructure of the PUA had started to collapse at the yield stress and continued to 

collapse  until  the  porosity  of  the  material  had  been  reduced  to  near  zero,  which  is 

supported by the SEM images in Figure 3.10 taken after testing the material. Specimens 

were examined after testing and it was noted that they had become semi-translucent and 

spiderweb-like cracks were evident in the 0.31 g/cm3 samples, as seen in Figure 3.11. 

Results from testing have been tabulated and can be seen in Table 3.2.
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Figure 3.10. SEM Images Before and After Compression. The left column above shows 
the SEM images of PUA samples prior to testing and the adjacent pictures on the right 

show the same density samples after testing had been conducted. The top row shows 0.12 
g/cm3 PUA, middle shows 0.17 g/cm3, and bottom shows 0.31 g/cm3. The gaps between 

fibers and particles apparent before testing have been completely collapsed.
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Figure 3.11. Compressive Test Specimen After Testing. The specimen has been 
compacted to approximately 10% of its original height. Plastic deformation to this extent 

has reduced the size of the gaps between adjacent microstructures leaving the material 
semi-translucent. A few cracks are evident, though the specimen remains intact.

Table 3.2. Compressive Testing Results

11.7 ± 4.4 0.4 ± 0.01

19.3 ± 4.2 0.7 ± 0.1

69.0 ± 17.9 2.4 ± 0.3

PUA 
Density

Young's Modulus 
(MPa)

Yield Stress 
(MPa)

0.12 g/cm 3

0.17 g/cm 3

0.31 g/cm 3
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3.3. BENDING

ASTM D790 is  the standard test  method for testing the flexural  properties  of 

reinforced  and  unreinforced  plastics  and  has  been  chosen  as  the  guideline  for 

determining flexural properties of PUA. The dimensions of the test specimens given in 

the test  method are shown in Figure 3.12 below. Five specimens have been tested at 

ambient conditions and the recommended strain rate of 1 mm/mm/min was used. Figure 

3.13 shows the three point bend test setup with a sample loaded into the Instron material 

testing machine.

The results for three point bend testing have been analyzed and plotted on stress-

strain curves. Figure 3.14 shows the results of testing plotted up to 5% strain, which is the 

prescribed stopping criteria listed in the test method. Figure 3.15 shows the same curves 

up to 2% strain to better observe the differences in stiffness.

Figure 3.12. Three Point Bend Test Specimen Dimensions. The dimension of the flexural 
test specimens listed in the test method are indicated above.
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Figure 3.13. Three Point Bend Test Setup. The Instron machine has been fitted with two 
stationary supports with a specified span between them. The specimen is loaded by a 

third member attached to a load cell.

Figure 3.14. Three Point Bend Results. Above are the stress-strain results from flexural 
testing  PUA. The top line (blue) represents the 0.31 g/cm3 density, the middle (orange) 

line represents 0.17 g/cm3, and the bottom (yellow) line is 0.12 g/cm3.
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Figure 3.15. Stiffness in Flexural Results. The top line (blue) represents 0.31 g/cm3 PUA, 
the middle (orange) line is 0.17 g/cm3, and the bottom (yellow) line is 0.12 g/cm3.

Three point bend results show that the material gains strength faster than it gains 

density  in  all  cases.  As  in  tensile  and  compression  tests,  yielding  takes  place  at 

approximately  3.5%  strain.  None  of  the  densities  failed  before  5%  strain,  and  in 

accordance with the test method the results should regarded as informational only and not 

used  for strength or stiffness calculations during the design phase of a product or part. 

Regardless, the results from testing have been tabulated and presented in Table 3.3.

Table 3.3. Flexural Testing Results
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33.1 ± 2.5 1.03 ± 0.1

62.7 ± 6.4 1.9 ± 0.1

137.9 ± 13.1 4.65 ± 0.4

PUA 
Density

Young's Modulus 
(MPa)

Yield Stress 
(MPa)

0.12 g/cm 3

0.17 g/cm 3

0.31 g/cm 3

0.12 g/cm3

0.17 g/cm3

0.31 g/cm3



29

3.4. SHEAR

Due  to  the  recommendation  listed  in  the  ASTM  test  method  for  bending  to 

disregard values determined from samples that showed no failure before 5% strain more 

testing was needed. Bending strength can be calculated if values are known for tension, 

compression,  and  shear  strength.  Tension  and  compression  have  been  successfully 

investigated so it became necessary to test the properties in shear. Unlike the previous 

tests no ASTM standard was found for the determination of material properties in shear, 

thus an appropriate test had to be developed.

The method devised to exert a shear force on the PUA being tested was chosen for 

its simplicity A square piece of material in placed in an apparatus such that one edge has 

a surface traction pulling in one direction and the opposite edge has a surface traction 

pulling in the opposite direction. Figure 3.16 depicts the specimen and the location and 

direction of the forces being applied. To accomplish this aluminum tabs were glued to 

opposite sides of the PUA specimens. Assembled samples are shown in Figure 3.17, and 

Figure 3.18 shows the specimen loaded into the Instron test machine.

Figure 3.16. Shear Test Specimen and Force Vectors. The arrows on either side of the 
specimen show a surface traction on opposite sides pulling in opposite directions.



30

Figure 3.17. Assembled Shear Samples. Aluminum L brackets were machined using the 
University waterjet and adhesively bonded to the PUA samples in the center.

3.18. Shear Test Setup. The aluminum L brackets are clamped into the grips used for 
tensile testing.
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The results for shear testing have been analyzed and plotted. Figures 3.19 shows 

the stress-strain curves for PUA in shear up to failure, and Figure 3.20 shows stress-strain 

plots for PUA up to 2% strain to better see the differences in stiffness.

Similar to the results found for tensile and compressive properties, the gain in 

strength  and  stiffness  versus  the  gain  in  density  appears  to  be  a  linear  relationship 

between the lower two densities, whereas the increase to 0.31 g/cm3 density yielded an 

exponential gain. Testing was carried out until the specimens failed, which occurred just 

past  10% strain  for  all  samples.  In  all  cases  fracture  occurred  at  the  corners  of  the 

specimen in which the deflection would cause the right angle of the corner to decrease, an 

example of such failure is shown in Figure 3.21. To determine if this type of failure was 

valid, as opposed to being caused by manufacturing or other error, a finite element model 

was constructed of a generic material in which the same boundary conditions and loads 

found in the real test were applied. The results of this study showed that the fracture in 

question occurred at the point of highest stress, showing that the actual specimens failed 

as they should have. Figure 3.22 shows the finite element model used. The results of 

shear testing have been tabulated and are presented in Table 3.4.

Table 3.4. Shear Testing Results

8.3 ± 0.6 0.2 ± 0.02 0.4 ± 0.03

11.7 ± 0.7 0.4 ± 0.04 0.7 ± 0.08

37.9 ± 2.5 1.2 ± 0.2 1.6 ± 0.3

PUA 
Density

Shear Modulus 
(MPa)

Yield Stress 
(MPa)

Failure Stress 
(MPa)

0.12 g/cm3

0.17 g/cm3

0.31 g/cm3
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Figure 3.19. Shear Test Results. The stress-strain curves for shear testing are shown 
above. The top (blue) line represents the 0.31 g/cm3 density, the middle (orange) line 0.17 
g/cm3, and the bottom (yellow) 0.12 g/cm3. Failure of all three samples occurred just past 

10% strain.

Figure 3.20. Stiffness in Shear Results. The above stress-strain curves show the 
difference in stiffness between the three densities. The top (blue) line represents 0.31 
g/cm3, the middle (orange) line 0.17 g/cm3, and the bottom (yellow) line 0.12 g/cm3.
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Figure 3.21. Failed Shear Sample. The above figure shows the fractures in the sample 
(circled in red) shortly after testing.

Figure 3.22. Finite Element Model of Shear Test Specimen. Finite element analysis was 
used to determine the areas of highest stress within the PUA samples. The red corners 
(upper right and lower left) show areas of particularly high stress which supports the 

observations made during testing.
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3.5. CHARPY IMPACT

The previous four tests represent much of what is needed to design a structural 

part in terms of strength and stiffness. They, however, only deal with said part in a quasi-

static  environment.  Impact  testing  was  chosen  to  investigate  the  toughness  of  PUA. 

ASTM D6110 prescribes the standard test method for the determination of Charpy impact 

resistance for notched specimens of plastic and has been used as a guide for PUA testing. 

Test setup and specimen dimensions are prescribed by the test method and have been 

adhered to. Figure 3.23 shows the specimen dimensions used for this test. Figure 3.24 

shows the Charpy impact machine used for testing.

Figure 3.23. Charpy Test Specimen Dimensions. The major dimensions of the specimens 
used for Charpy impact testing are shown above.
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Figure 3.24. Charpy Impact Test Setup. Specimens to be used for Charpy impact testing 
are placed between the two steel uprights seen in the center of the base of the machine. 

The striking hammer (white, center of figure) is then raised and swung through the 
specimen. Energy absorbed during the impact is displayed on a digital readout.

The results from Charpy impact testing show that the highest density tested, 0.31 

g/cm3, was able to absorb more energy that either of the two lower densities, though it 

was unable to register a value higher than the error tolerance of the machine. The output 

of the test are in units of foot-pounds, and the testing machine's error tolerance is  ± 1 

foot-pound. Testing 0.31 g/cm3 samples yielded an average result of 0.1 ft-lbs, while the 

0.12  g/cm3 and 0.17  g/cm3 samples both averaged 0.05 ft-lbs. Because the results are 

lower  than  the  error  tolerance  of  the  testing  machine  they  should  only  be  used  for 

comparison to each other and not for calculations regarding toughness.
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4. DISCUSSION OF RESULTS AND CONCLUSIONS

The results from testing have been compiled and are presented in Table 4.1. As it 

was noted in Section 3.3, the results from bending are informational only and should not 

be used in calculations for strength or stiffness, although with the combined results from 

tension,  compression,  and  shear  testing  the  bending  strength  and  stiffness  can  be 

calculated.

Table 4.1. Compiled Results

Tension

24.1 ± 0.5 0.7 ± 0.03 1.1 ± 0.08 12.5 ± 2.3

37.2 ± 1.3 1.0 ± 0.2 1.7 ± 0.1 13.5 ± 3.0

102 ± 7.2 2.9 ± 0.4 3.9 ± 0.2 6 ± 0.6

Compression
0.12 g/cm3 11.7 ± 4.4 0.4 ± 0.01
0.17 g/cm3 19.3 ± 4.2 0.7 ± 0.1
0.31 g/cm3 69.0 ± 17.9 2.4 ± 0.3

Bending
0.12 g/cm3 33.1 ± 2.5 1.03 ± 0.1
0.17 g/cm3 62.7 ± 6.4 1.9 ± 0.1
0.31 g/cm3 137.9 ± 13.1 4.65 ± 0.4

Shear
0.12 g/cm3 8.3 ± 0.6 0.2 ± 0.02 0.4 ± 0.03
0.17 g/cm3 11.7 ± 0.7 0.4 ± 0.04 0.7 ± 0.08
0.31 g/cm3 37.9 ± 2.5 1.2 ± 0.2 1.6 ± 0.3

PUA 
Density

Young's Modulus 
(MPa)

Yield Stress 
(MPa)

Failure Stress 
(MPa)

Failure Strain 
(%)

0.12 g/cm3

0.17 g/cm3

0.31 g/cm3
PUA 

Density
Young's Modulus 

(MPa)
Yield Stress 

(MPa)

PUA 
Density

Young's Modulus 
(MPa)

Yield Stress 
(MPa)

PUA 
Density

Shear Modulus 
(MPa)

Yield Stress 
(MPa)

Failure Stress 
(MPa)
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The above results  will  prove useful for preliminary design of structures under 

static loads with stresses less then the material's yield stress. Structures under dynamic 

loads or in extreme environments (very hot/cold,  moist,  etc)  would require additional 

testing.  Some of  such tests  include fatigue and creep testing to  determine  how PUA 

would react under various long term conditions. Dynamic mechanical analysis will also 

prove  useful  for  determining  strength  and  stiffness  at  varying  strain  rates  and 

temperatures.

PUA has proven to  be mechanically strong, especially in  terms of  strength to 

weight, though its true strength is in its ability to take extreme loads in compression. 0.31 

g/cm3 PUA was able to support forty thousand times its own weight in compression at its 

yield and over three million times its own weight at its highest strain values. It appears 

that PUA is well suited to applications that require low weight, high strength, and high 

strain,  as  long  as  it  is  only  necessary  to  perform  once.  An  application  that  comes 

immediately to mind is any variety of impact absorbing structures such as those found in 

automobiles or race cars. Assuming processes could be developed to keep production and 

manufacturing costs to a minimum, PUA could prove to be an incredibly useful new 

material used to advance a wide variety of engineered structures.
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