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ABSTRACT 

 Synthetic hydroxyapatite (HAp, (Ca10(PO4)6(OH)2) has always been of interest in 

medical applications because of its similarities to inorganic bone matrix.  It has been used 

in biomedical applications for bone repair and substitution due to its biocompatibility.  

However, there are some differences in the stoichiometry, composition, and mechanical 

properties of human bone as compared to pure HAp.  HAp particles have been 

successfully used as drug delivery carriers which deliver the drug to the affected part of 

the body and the remaining apatite gets degraded by the physiological processes in the 

body.  In the present work, emphasis was on developing mechanically stronger HAp 

microspheres.  Calcium lithium borate glass microspheres with 40 wt% calcium were 

reacted with phosphate (K2HPO4) buffered solutions under varying conditions of 

composition of glass, time, concentration, and pH to yield solid but porous HAp 

microspheres.  DOE approach was used to analyze the effect of processing parameters on 

the reaction rate.  The starting glass microspheres had diameters ranging from 150 to 355 

µm and the reacted microspheres retained their shape and size.  The microstructures of 

the reacted microspheres were examined using scanning electron microscopy (SEM).  

Chemical characterization of the reacted microspheres was also performed by X-Ray 

Diffraction (XRD), Energy Dispersive Spectroscopy (EDS), and Differential Thermal 

Analysis (DTA) studies.  The as-reacted HAp microspheres were heat-treated at various 

temperatures which resulted in volume shrinkage of the microspheres and attributed to 

reduction in the porosity.  Mechanical strength of as-reacted microspheres and heat- 

treated microspheres was tested by compressive load on an Instron Testing machine.  The 

as-reacted microspheres had higher strength than as-reacted hollow HAp microspheres.          
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1.  INTRODUCTION 

 

1.1 OVERVIEW OF HYDROXYAPATITE  

 Calcium orthophosphate bioceramics form the basis of artificial implants used 

inside the body.  A large number of bioceramics are derived from calcium 

orthophosphate which have compositional variability based upon hydroxyapatite, α-

tricalcium phosphate (TCP), β-tricalcium phosphate, and biphasic calcium phosphate.  Of 

the several calcium phosphates, hydroxyapatite (HAp, Ca10(PO4)6(OH)2) is an obvious 

choice for bone substitute because of its biocompatibility and its resemblance in structure 

and composition to the mineral phase of the bone [1,2,3].  Also, HAp phase is very stable 

in physiological conditions due to its lower solubility and lower resorption rates.  Hence, 

HAp is the preferred choice for biological implants rather than α- and β-TCP [4,5]. 

 The inorganic structure of the HAp devices account for their higher mechanical 

strength as compared to corresponding devices obtained from biodegradable polymers.  

Chemically, HAp is an important constituent of bone and does not produce any 

immunological reactions.  However, the toxicity of fine HAp particles has been the 

subject of recent concern.  Prior research has shown that solid or particulate HAp 

produces a favorable substrate for proper adhesion and proliferation of osteoblasts 

thereby resulting in more efficient growth of new bone [6,7], whereas fine particles or 

particulates of HAp produce an adverse effect on living cells due to their high surface 

area [8,9].   

 The size, morphology, and structure of the HAp particles affect their biological 

activity inside the body.  Figure 1.1 shows both plate like elongated crystals and equiaxed 

crystals of HAp.  HAp morphology can be varied from single crystalline sheets to rods to 
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equiaxed particles by changing the temperature and pH of the solution during 

precipitation reactions.  Lower pH conditions give sufficient time for crystallization of 

HAp, which causes formation of elongated rod shaped structures, while higher pH 

conditions result in formation of equiaxed crystals.  The properties of the HAp crystals 

are influenced by their morphology to a large extent directly or indirectly [10].   

 The apatite crystals that exist in bone are Ca-deficient and have a plate-shaped 

morphology [11].  The Ca/P ratio for stoichiometric HAp is 1.67.  The biodegradability 

of the calcium phosphate ceramics depends upon the variability of Ca/P ratio between 1.5 

and 2.0 [12].  HAp crystals, present in the bone in the form of crystals or plates, have a 

length of 40-60 nm, width of 20 nm, and thickness of 1.5-5.0 nm [13,14,15]. 

 

 

 

 

 

 

 

 

 

 

 

  

  

        Figure 1.1: SEM micrographs of varying hydroxyapatite crystals processed   

        under different pH conditions at 423K. 
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 The inheritance of HAp from predecessor octacalcium phosphate (OCP) phase or 

amorphous calcium phosphate (ACP) phase is attributed as one of the reasons for the rod 

shaped morphology of HAp.  Many experimental results have shown that OCP is formed 

in the initial stages of biomineralization and is further converted to HAp [16].  Kinetic 

studies show that OCP formation is much more favorable than HAp in simulated body 

fluids as the surface energy of HAP is much higher than the OCP phase, which allows 

conversion of OCP to HAp [17,18,19].  Prior research shows that HAP is the most stable 

phase of all the calcium phosphate phases in aqueous solutions with pH > 4.2.  Also, it is 

the least soluble phase in such solutions [20]. 

 HAp ceramics obtained from natural materials such as coral or bone have some 

inherent properties of the starting raw materials such as porosity, but they have 

comparatively different physical and chemical properties [21,22].  The clinical 

applications of HAp are sometimes limited due to its inherent brittle behavior [23].  Also, 

its potential to be used as graft material is not reliable in wet environments and it cannot 

be used in heavy load bearing applications such as artificial teeth.  

  

1.2 MECHANICAL PROPERTIES OF HYDROXYAPATITE 

 HAp applications inside human body are limited due to its inherent brittle 

behavior.  The mechanical properties of bioceramic implants comprised of HAp crystals 

should match the mechanical behavior of the tissue for the clinical success of the implant.  

Hard tissue replacements should have a modulus the same as or greater than that of bone 

[24].  The HAp microspheres developed in this research work were aimed at being used 

as drug delivery carriers inside the human body.  The microspheres need to be strong 
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enough to allow sustained release of drug without them breaking apart.  The scaffolds 

made from bioactive glasses used for implants inside the body should also be 

mechanically matched with the properties of the bone.  The quantitative processing 

parameters for fabrication of artificial bone implants are largely decided by taking into 

account the mechanical properties of the hard tissues and bones at the site of implant.  

Generally, the mechanical properties of bone depend upon level of humidity, type of 

bone, direction of load application, and mode of applied load.  Increasing human age 

causes a drastic decrease in the strength and volume of the bone [25].  Hence, the bone 

implant should be fabricated accordingly. 

                Hydroxyapatite is generally classified into two categories of dense 

hydroxyapatite and porous hydroxyapatite depending upon the extent of porosity, size of 

pores, and volume of pores with respect to the sample volume.  In the case of dense HAp, 

the strength increases as the Ca/P ratio increases to the stoichiometric value of 1.67 but 

the strength decreases as the Ca/P ratio increases beyond 1.67 [26,27].  The compressive 

strength, as reported in the literature, is about 120 – 900 MPa [28,29].  The strength of 

dense HAp decreases exponentially with increasing porosity [29,30].  Dense HAp is 

generally more brittle (because of low value of its slow crack growth coefficient) so it 

cannot be used for high load bearing applications.  Its strength reduces further drastically 

when it is implanted in wet conditions inside the body.  Apart from sudden failure, HAp 

ceramics are very sensitive to slow crack growth behavior which occurs from pre-existing 

defects and have reduced lifetimes under stress.  Thus, it is very important to determine 

the mechanisms involved in crack propagation in HAp ceramics in order to predict the 

lifetime of these materials for a given application. 
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 On the other hand, porous hydroxyapatite has been widely accepted as a bone 

substitute because of its firmer mechanical fixation properties with hard tissues and 

bones.  The minimum pore size required for bone ingrowth into a HAp implant is 100 µm 

which is fulfilled by porous HAp ceramics [30,31].  The biggest advantage of a porous 

structure is that it is light in weight and the porous network provides appropriate space 

for bone ingrowth into the implant.  However, the necessity of such large pores decreases 

their strength but by changing the pore geometry, the strength of porous HAp can be 

controlled [32,33].  The difference between the elastic modulus values of HAp and bone 

accompanied by low inelastic ability of HAp attributes to greater stress concentration at 

the bone-material interface and enhances fracture [34].  The compressive strength, as 

reported in the literature, is about 2-100 MPa [35,36].  The advantage with porous HAp is 

that they are less fatigue resistant and the bone ingrowth rate is much faster in them [37].  

Porous HAp implants are gradually replaced by bone and their gradual biodegradation is 

a prerequisite for artificial implants.  Wide application of porous HAp in the medical 

industry is in the form of HAp granules and blocks.  The applications include drug 

delivery systems and filling bone defects.  In this research work, solid but porous HAp 

microspheres were used for drug delivery purposes which provide a much better 

sustained release of drug over an extended time period. 

 

1.3 DEPENDENCE OF MECHANICAL PROPERTIES OF        

            HYDROXYAPATITE ON POROSTIY 

 

 Porosity in any kind of artificial bone implant and drug delivery carrier is 

absolutely required for bone ingrowth and controlled drug release, respectively.  A 

calcium orthophosphate bioceramic‟s total volume largely consists of microporosity and 
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macroporosity (about 70%) [38].  However, any porosity also reduces the strength and 

stiffness of the HAp ceramic.  Hence, there must be a balance between the porosity 

requirements and mechanical property requirements for clinical success of artificial bone 

implants and drug delivery systems.  The range of mechanical properties listed in the 

literature show that these properties are sensitive to synthesis and testing parameters [39].  

The mechanical properties of HAp depend upon various factors like pore size and 

fraction, initial material purity, sintering temperature and time, sample volume, and 

phases present. 

 Mechanical characterization of porous HAp by conventional tensile and impact 

testing methods is unsuitable due to problems encountered in gripping test pieces which 

causes damage to the porous specimens.  However, compression testing has been 

successfully adopted for testing of porous and dense HAp [36,40].  The compressive 

strength of the HAp particles is influenced by various parameters like porosity, grain size, 

synthesis conditions, sintering time and temperature, and extent of dissociation of HAp at 

higher temperatures.  There is high degree of variability in the compressive strength of 

HAp ceramics prepared through same method [41].  

 

1.4 OVERVIEW OF BIOACTIVE GLASSES 

Controlled conversion of bioactive glasses to hydroxyapatite (HAp, Ca10 

(PO4)6(OH)2) has recently shown promise as a method of treating bone defects.  

Bioactive glass particles can potentially be used as bone fillers because they easily take 

the shape of the bone defect.  Their bonding properties are enhanced due to their high 

specific surface area and porous structure [42]. 
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The surface of the bioactive glass undergoes a gradual kinetic modification upon 

implantation in the body fluids thereby forming a biologically active hydroxycarbonate 

apatite (HCA) layer.  This layer forms an interfacial bond with living tissues.  Formation 

of HAp surface layers have been reported upon immersion of calcium borosilicate glasses 

in simulated body fluids [43].  Wojick‟s [44] proof of formation of an HAp layer on 

calcium borate glasses without silica upon immersion in 0.25 M and 1.0 M phosphate 

solutions discarded the theory that a silica gel layer was necessary as a nucleation site for 

amorphous calcium phosphate (ACP) to crystallize to HAp [45].   

     Precipitation from aqueous solutions, solid-state reactions, hydrolysis of calcium 

phosphates, and hydrothermal methods are most common chemical methods for 

preparation of HAp [1].  Depending on the type of synthesis, materials with varying 

morphology, levels of crystallinity and stoichiometry can be obtained.  Highly crystalline 

and stoichiometric HAp compositions can be obtained by solid-state reactions, but 

processing is cumbersome, involving higher temperatures and longer heat treatment 

durations [46,47].  Generally, HAp processed by precipitation from aqueous solutions 

technique is calcium-deficient (Ca(10-x)(HPO4)x(PO4)(6-x)(OH)(2-x)) and has low 

crystallinity [48].  HAp crystal morphology, as a result of the precipitation reactions, is 

generally in the form of sharp needles, rods, or equiaxed particles.  As a result of this 

precipitation technique, a layer-by-layer reaction takes place resulting in formation of 

unstable OCP phase which transforms to the ACP phase rapidly.  As the reaction 

progresses, ACP gradually transforms to amorphous calcium deficient hydroxyapatite 

which further transforms to a very crystalline calcium deficient HAp.            
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   The Ca/P molar ratio of the precipitated HAp can be closer to stoichiometric HAp 

if the pH of the phosphate solution is maintained constant during the reaction [49].  

Reaction temperature greatly influences the conversion rate from ACP to HAp.  Raising 

the temperature accelerates the formation of crystalline HAp and hence, shortens the 

reaction time [50].  The reaction temperature also affects the particle size and 

morphology of the crystalline HAp. 

 The non-uniform manner in which alkali borate glasses convert to HAp is 

advantageous for controlled drug delivery purposes and other medical applications.  The 

non–uniform reaction is advantageous because it is a novel method of forming highly 

porous gels at low temperature (< 100ºC) glass-solution reaction.  This “solid-gel” 

method is superior to the conventional method of preparing porous materials which 

involves high temperature “burn-out” steps.  In addition, the size of a microsphere does 

not change as the non-uniform reaction proceeds.  Because of its excellent 

biocompatibility, the side effects of using these microspheres in vivo are minimal.  Based 

on the starting composition of alkali borate glasses, the conversion process can yield 

hollow or solid but porous microspheres of HAp.  Hollow and porous HAp microspheres 

can be filled with a liquid drug by immersing the microspheres in the liquid and then 

evacuating the gas from the hollow core and the pores within the microshell.  The drug-

loaded microshells can further be used inside living bodies for various medical 

applications. 

 Fears [51] showed that calcium lithium borate glasses containing less than 40 

wt% calcium oxide resulted in the formation of hollow microspheres whereas glasses 

containing greater than 40 wt% calcium oxide formed solid but porous microspheres.  
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The transformation process depends upon the composition of the starting borate glass, 

temperature, and composition of the surrounding liquid [52].  The main goal of this work 

was focused on calcium lithium borate glasses containing 40 wt% calcium oxide.  The 

solid but porous microspheres have an advantage of being superior in mechanical 

strength to the hollow microspheres.  The porosity of the porous microspheres can be 

controlled by the extent of heat treatment at a chosen temperature.  By changing the 

porosity in this way, it is possible to control the rate at which drug is released from the 

microspheres. 

 

1.5 KINETICS OF BIOACTIVE GLASS CONVERSION 

 The bioactive glasses react in simulated body fluids to form bonding material 

(hydroxycarbonate apatite) which can bond to the bone and living tissues.  The non- 

uniform dissolution of glasses occurs due to a sequence of reactions starting at the surface 

of the glass when immersed in phosphate buffered solution.  The mechanism of growth of 

the HAp layer seems to be accelerated by the presence of hydrated silica in silicate 

glasses (like Na2O-CaO-SiO2).  A selective ion exchange process is responsible for the 

non-uniform dissolution of the glasses containing silica [53].  

 On the contrary, when borate glasses are immersed in phosphate buffered 

solution, a bulk reaction initiates as both the glass former and alkali oxide are released 

from the alkali borate glass thereby dissolving in the solution.  The dissolution of lithium 

borate glasses has already been supported by a thermodynamic model which is based on 

the solubility of the oxides comprising the glass [54].  Also, a model has been proposed 

which describes the three-step dissolution which occurs during any chemical dissolution 
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process [55].  When calcium lithium borate (CaLB3) glass is immersed into phosphate 

buffered solution, the H3O
+
, H2O, and OH

- 
ions react with soluble LB3 component of the 

glass [56,57].  The following reactions start when LB3 component starts dissolving in the 

solution. 

    B2O3(s) + 3H2O (liq) ↔ 2H3BO3 (aq) 

   Li2O(s) + H2O (liq) ↔ 2Li
+

(aq) + 2OH
-
(aq) 

 As a result of the above reactions, Li
+ 

and H3BO3 are released into the solution as 

a consequence of hydrolysis reactions.  The phosphate buffered solution enters the glass 

matrix thereby leading to the expansion of solute.  Simultaneously, Li
+ 

and H3BO3 mix 

with PBS solution causing expansion of the solvent [53].  The expanded stable Ca
2+ 

ions 

interact with the PO4
3-

 ions which enter the vacant volume created by leaving Li
+ 

and 

H3BO3 from the glass, immediately reacting with phosphate anions to form a calcium 

phosphate or calcium hydroxide phase.  The calcium phosphate phase formed by such 

solution processes is amorphous in nature, similar to most sol-gels prepared by 

precipitation technique [58].  The low solubility limit of CaPO4 is the reason for 

formation of amorphous CaPO4 when Ca
2+

 and PO4
2-

 ions are together in a solution. 

Fears [51] reacted various compositions of CaLB3 glass microspheres containing varying 

amounts of CaO (5 wt % through 50 wt %) in phosphate buffered solutions.  The 

following (Figure 1.2) is the schematic depiction of the non–uniform reaction that CaLB3 

microspheres (CaO wt% < 40) undergo in the phosphate buffered solution. 
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Figure 1.2: Schematic representation of reaction of CaLB3 (less than 40 wt%   

calcium content) microspheres in phosphate buffered solutions [51].      
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microshells, whereas glasses containing greater than 40 wt% CaO yielded solid but 

porous microspheres upon reaction (Figure 1.3).  When CaLB3 glasses containing less 
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reaction starts at the surface of the glass microspheres and the reacted surface acts as a 

nucleation site for further growth of solid phases [59]. 
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Figure 1.3: Schematic representation of reaction of CaLB3 (≥ 40 wt% calcium   

content) microspheres in phosphate buffered solutions.  
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formation of a void.  As the calcium content increases from 5 wt% to 40 wt%, the slower 

reaction kinetics yield weaker convection currents at the glass/gel interface, and no core 

detachment occurs for high calcium content.  As a result, solid but porous microspheres 

are obtained for CaLB3 glasses containing more than 40 wt% CaO [53].  

 

1.6 EFFECT OF SINTERING ON THE PROPERTIES OF  

            HYDROXYAPATITE 
 

 Sintering seems to play an important role in producing bioceramics with desirable 

properties.  Stea [60] showed that sintered HAp forms very tight bonds with the bone 

tissue.  Several processes occur during the sintering process which are as follows: 

1. Dehydroxylation involving removal of moisture from ACP in the form of gaseous 

products along with volatile chemicals (if any). 

2. Dense HAp ceramics are formed proceeding removal of gases accompanied by 

shrinkage of the samples until the ceramics are sintered.  

3. Concurrent reduction in the specific surface area along with increase in crystal 

size. 

 Sintering causes an increase in the toughness and mechanical strength of HAP 

ceramics [61,62,63].  The sintering temperature and duration has a significant effect on 

the density, porosity, grain size, bonding between the grains, chemical composition, and 

strength of the HAp bioceramic.  The sintering temperature is a critical factor that 

influences the densification behavior, sintered microstructure, hardness of HAp, and 

phase stability.   

 It has been found that the grains of calcium deficient HAp start coalescing at a 

temperature below 1000ºC without much densification [64].  Particle coalescence is 
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generally associated with a decrease in the specific area.  The temperature at which the 

particles begin to coalesce generally depends upon the Ca/P ratio.  As the Ca/P ratio 

decreases, the coalescing temperature also decreases and the Ca-deficient HAp 

dissociates into a biphasic mixture of stoichiometric HAp and tricalcium phosphate 

(TCP).  The final microstructure and extent of sintering in the resultant ceramic depends 

upon the proportion of HAp and TCP in the biphasic mixture [65].  Dissociation of HAp 

attributes to volume diffusion and grain boundary diffusion in the microstructure thus 

causing densification of the matrix volume [66].   

 Pressure less sintering of HAp powders can result in attainment of theoretical 

density at 1000-1200ºC [67].  Higher temperatures (~ 1250-1400ºC) result in exaggerated 

grain growth and irreversible decomposition of HAp because HAp is unstable at such 

high temperatures [68,69].  Such high temperatures cause decomposition of hydrated 

HAp to anhydrous calcium phosphates like tri-calcium phosphate (TCP) [70].  Generally, 

dehydroxylation of HAp beyond a critical point leads to its decomposition.  The critical 

point refers to a temperature value typically in the range of ~1250-1400ºC.  The actual 

value of this critical value depends upon the type of HAp material [70].  Some prior 

research in the effects of sintering on dense hydroxyapatite yielded the following results 

as listed in Table 1.1. 

          Table 1.1: Effect of sintering temperature on dehydroxylation of HAp [71] 

Sintering temperature range Effect 

< 800ºC Slower dehydroxylation 

800ºC - 1350ºC Enhanced dehydroxylation 

> 1350ºC 
Irreversible dehydroxylation leading 

to decomposition 
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 The effect of sintering temperature on the microstructure has also been elaborated 

in some prior research work.  There is quite less densification at temperatures below 

900˚C but particle coalescence starts in this range.  Majority of densification occurs in the 

temperature range of 900˚C-1150˚C.  Blowholes start appearing at a temperature of 

1200˚C and increase in number and size as the temperature is increased up to 1350˚C 

[71].  Blowholes are the isolated pores created due to exudation of some traces of gas 

trapped inside the HAp matrix.   

 The decomposition process of HAp bioceramics is a function of the partial 

pressure of water vapor in sintering atmosphere.  Sintering under vacuum causes earlier 

decomposition whereas sintering under high partial pressure of water vapor prevents the 

decomposition.  However, the presence of water in a sintering atmosphere inhibits the 

densification process of HAp and causes accelerated grain growth [72]. 

 

1.7 DIFFERENT TECHNIQUES OF SINTERING 

 Various sintering techniques have been developed until now which can be broadly 

classified into three groups, namely sintering in conventional furnaces, microwave 

sintering, and spark plasma method.  The most practical procedure of sintering is by 

using a conventional programmable furnace (used in this research work).  However, low 

heat conductivity and high shrinkage of HAp samples generate thermal and residual 

stress fields with this method.  In addition, conventional sintering can be a time 

consuming process for larger samples as they require a lower heating range which is 

achieved by using a longer sintering cycle [41].  The traditional techniques of sintering 

involve exposure of HAp ceramics to higher temperatures for longer durations for 
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consolidation of HAp particles, which often results in surface contamination and further 

degradation of the desired mechanical properties.  

 Sintering in a microwave has the advantage of uniform heating of the specimen 

across its volume which eliminates the stresses due to non–uniform shrinkage.  The 

problem with microwave sintering is measurement of the temperature of the sample. 

Prior to sintering, a thermocouple is placed as close as possible to the sample.  However, 

shrinkage of sample with time increases the initial gap between thermocouple and sample 

thereby causing interference of electric field with the thermocouple signal.  Another 

problem, with microwave sintering is dependence of sample temperature on the density 

of the samples which requires power adjustments during the sintering process [41]. 

 New techniques such as hot pressing, hot isostatic pressing, and spark plasma 

sintering decrease the temperature of the densification process, decrease the exaggerated 

grain size, and achieve higher densities, thereby leading to finer microstructures, better 

thermal stability of ceramics, and improved mechanical properties.  The problem with 

new techniques of sintering is that they produce HAp ceramics with high relative 

densities which make biocompatibility difficult and complicates the process of cell 

proliferation. 

 

1.8 MEDICAL APPLICATIONS OF BIOCERAMICS 

 The difference of bioceramics from other classes of materials is their ability to 

remain in a biological environment without producing any damaging effect on the 

environment and without becoming damaged themselves.  Ceramics and glasses have 

been used in a wide range of health industries namely eye glasses, tissue culture flasks, 
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thermometers, and fiber optics for endoscopy.  Insoluble porous glasses act as carriers of 

enzymes and antibodies inside bodies since they are resistant to microbial attacks, pH 

conditions, and solvent conditions [73].  Tissue bonding to bioactive ceramics is an 

evolving field that can result in the design of bioceramics for interfacial bonding with soft 

and hard tissues.  

 Conventional drug delivery systems are in the form of pills and capsules.  They 

can be effective to treat an ailment but are not very efficient as they are metabolized by 

the body very rapidly.  Hence, there is a short burst of overmedication, which is followed 

by a longer period of under-medication [74].  This necessitates the need for a controlled 

drug delivery vehicle that slowly releases a therapeutic concentration of drug at the site of 

treatment over longer durations of time.  This slow drug release increases the efficiency 

of the drug thereby decreasing the side effects of the drug and eliminates short bursts of 

overmedication prevalent in conventional drug delivery systems. 

 The biggest advantage of HAp microspheres is that they can be used as drug-

delivery carriers because of their porous or hollow microstructure.  Alkali borate glasses 

doped with rare earth element oxides have been transformed into biologically useful 

materials, which have been used as radiation delivery vehicles to treat rheumatoid 

arthritic joints [52].  Porous hydroxyapatite microspheres are appropriate for controlled 

drug delivery purposes because they can be processed with continuous porosity from 

bioactive glasses.   

 The HAp microspheres are chemically similar to human bone and have a pore 

size < 200 nm in diameter [43].  The porosity of the microspheres allows loading them 

with liquid drug by vacuum impregnation and then implanting them in the body so that 
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the sustained release of the drug from the HAp matrix can treat the diseased part over an 

extended time period.  Also, the biodegradability of these microspheres is an added 

advantage.  Since HAp is biodegradable; the physiological processes in the body would 

slowly remove the HAp microspheres from the body after the drug delivery is finished.  

HAp is an obvious choice for bone substitute because of its biocompatibility and its 

resemblance in structure and composition to the mineral phase of bone [1,2,3].  Also, use 

of HAp inside the body has been approved by Food and Drug Administration (FDA) 

[74]. 

 Another feasible medical application of porous HAp microspheres is using rare 

earth hydroxides to deliver radiation and chemotherapy to malignant tumors [53]. It 

involves reaction of dysprosium lithium borate bioactive glasses with saline solution to 

form porous microspheres of dysprosium hydroxide.  The porous microspheres are then 

neutron activated to beta emitting 
165

Dyradioisotope in a nuclear reactor.  The radioactive 

porous microspheres are further loaded with a chemotherapeutic drug and injected at the 

tumor site.  The delivery of localized radiation from a short lived 
165

Dy radioisotope 

would treat the tumor and after the radiation has decayed, the controlled release of drug 

would continue to treat the malignant tissue for extended time period.  Hence, delivery of 

radiation and drug from porous dysprosium hydroxide microspheres forms a complete 

biodegradable system.   

 Porous hydroxyapatite materials are also used for catalyst support media because 

of their high specific surface area and porosity [53].  Hollow microshells of HAp can be 

used for acoustic imaging by filling the core with gas surrounded by impermeable walls 

[76].  Other applications of bioceramics include hip and teeth replacement, spinal fusion, 



19 

 

bone fillers after tumor surgery, and augmentation and stabilization of the jawbone.  

Composites having the same toughness and elastic modulus as that of human bone are 

being developed. 
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2. EXPERIMENTAL PROCEDURE 

2.1 GLASS PREPARATION 

 Calcium lithium borate (CaLB3) glasses are a type of alkali borate glass in which 

all the elements are present in their oxide forms.  In these glasses, B2O3 acts as a glass 

former and Li2O is a flux, which helps to reduce the melting temperature.  CaO acts as a 

property modifier and modifies the chemical durability and viscosity.  All CaLB3 glasses 

prepared in this work had a Li2O:B2O3 molar ratio of 1:3, and were formed from reagent 

grade CaCO3, Li2CO3, H3BO3, and CaSO4 powders. 

 CaLB3 glasses are denoted according to the weight percentage of CaO they 

contain.  For example, CaLB3 glasses containing 40 wt% CaO are named CaLB3-40.  

Glass microspheres obtained from Mo-Sci Corporation, synthesized by Fears, and self-

prepared on campus are further labeled with the notations “-MoSci,” “-Fears,” and “-

SX,” respectively, where X represents the weight percentage of CaO coming from CaSO4 

with the balance coming from CaCO3.  Table 1 lists the sources and size ranges of glass 

microspheres used for conversion reactions in this work.  The size range in Table 2.1 

specifies the mesh openings of the sieves used to classify particles e.g. +45/-106  

indicates that 90% or more of the particles will be retained by 45 µm opening sieve and 

90% or more of the particles will pass through 106 µm opening sieve. 
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                     Table 2.1: Various starter glasses used for conversion reactions. 

Glass Identifiers Source Size Range (µm) 

CaLB3-20-MoSci Mo-Sci Corporation +45/-106 

CaLB3-40-MoSci Mo-Sci Corporation +45/-106 

CaLB3-40-Fears Prepared by Fears +106/-212 

CaLB3-40-SX       Prepared by Sandhu +150/-355 

 

 Five compositions of CaLB3-40-SX glass microspheres were prepared with 0, 25, 

50, 75, and 100 weight percentages of CaO coming from CaSO4.  Table 2.2 shows the 

weight percentages of respective oxides in CaLB3-40-SX glass identifiers.  The reagent 

grade powders used in the preparation of glass compositions listed in Table 2.2 were 

calcium carbonate (CaCO3), calcium sulfate (CaSO4), boric acid (H3BO3) and lithium 

carbonate (Li2CO3).   

 

      Table 2.2: Various compositions of CaLB3-40 glass particles prepared on campus. 

 CaO wt% 

(from 

CaCO3) 

CaO wt% 

(from 

CaSO4) 

Li2O wt% 
H3BO3 

wt% 

CaLB3-40-S0 40.00 0.00 7.50 52.50 

CaLB3-40-S25 30.00 10.00 7.50 52.50 

CaLB3-40-S50 20.00 20.00 7.50 52.50 

CaLB3-40-S75 10.00 30.00 7.50 52.50 

CaLB3-40-S100 0.00 40.00 7.50 52.50 

 

 The raw materials for each glass were mixed thoroughly with a mortar and pestle 

and melted in a platinum crucible at 1100ºC for approximately 60 minutes.  All the 

glasses except for the CaLB3-40-S0 glass formed a liquid melt after 1 hour.  The CaLB3-

Glass Composition 

Glass Identifiers 
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40-S0 glass did not form a liquid melt at all even after heating it up to 1300ºC for 1 hour.  

This may be due to large bubbles of CO2 trapped inside the glass.  When glass is melted, 

the carbonates decompose to CO2 producing a large volume of bubbles that need to be 

removed from the melt.  The bubbles can also form due to the physical entrapment of 

atmospheric gases during melting.  These bubbles can be removed by allowing them to 

physically rise to the surface of the melt or by using fining agents.  CaSO4 acts as a good 

fining agent due to the fining property of SO4
2-

 which reduces to SO2 at higher 

temperatures.  When CaSO4 is used as a reagent grade powder, it decomposes at high 

temperatures and large quantities of SO2 gas produced in the melt sweep away small 

bubbles which rapidly rise to the surface of the melt.  SO2 bubbles thus fine the liquid 

glass melt by removing the trapped CO2 from the glass network and reducing the 

crystallization tendency of the melt [79].  This indicates that CaSO4 and CaCO3 must be 

present in adequate proportions when preparing high CaO content glasses.  Some fining 

agents remove oxygen from the already present bubbles thereby reducing them below 

their critical size and hence, surface tension eliminates the smallest bubbles. 

Liquid melts of CaLB3-40-S25 through CaLB3-40-S100 glasses were quenched 

between two cold stainless steel plates at room temperature to prevent crystallization.  

The quenched glass was then ground with a mortar and pestle and the irregular glass 

particles were dry sieved to 150-355 µm.  The particles were shaped into glass 

microspheres in a drop tube furnace.  The drop tube apparatus consisted of a small dense 

mullite tube (inner mullite tube in Figure 2.1) that extended into the vertical drop tube 

furnace within a large dense mullite tube.  The top of the furnace was sealed with 

insulation to prevent particles from being entrained by the hot air.  The furnace was 
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heated to ~1130ºC and the irregular particles were dropped from a vibrating spatula into 

the small tube.            

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1:  Vertical drop tube furnace used for spheridization of glass frit. 

 

As the irregular particles passed through the hot zone of the furnace, they melted 

and surface tension pulled them into microspheres.  The particles obtained at the bottom 

of the furnace were collected in aluminum foil and allowed to cool to room temperature.  

The microspheres were then stored in small glass vials for further reaction and 

characterization. 

 

2.2 CHEMICAL REACTION OF GLASSES 

 The glass microspheres were reacted in phosphate buffered solutions at varying 

concentrations, pH values, and time durations in order to achieve complete conversion to 

HAp.  The microspheres were reacted in 1000 mL Pyrex
®

 beakers and 250 mL Kimax
® 
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flasks.  Equation (1) was used to calculate the volume of solution required to react 1 g of 

glass in a given concentration of solution: 

0.1 = M * V ------------- (1)     

where M = molarity of the phosphate solution and V = volume of the phosphate solution. 

 Equation 1 is based on 50 mL of 0.25 M K2HPO4 solution per 1 g of CaLB3-5 

glass such that the concentration of PO4
3-

 ions in the solution exceeded the concentration 

of Ca
2+ 

ions by at least 15:1 [51].  The volume of solution increased with increasing 

calcium content of the glass.  The concentration of PO4
3-

 ions in the solution was kept 

high so that the overall concentration of PO4
3-

 ions in the solution did not change 

significantly as they were consumed by the Ca in the glass.  Hence, the solubilities of 

HAp and other calcium phosphate phases formed during the reaction were not affected. 

 CaLB3-20-MoSci glass microspheres were reacted at 37°C in 0.25 M K2HPO4 

solution at pH = 9 (± 0.05) for 2 days.  CaLB3-40-MoSci glass microspheres were 

reacted under the conditions listed in Table 2.3.  The pH of the phosphate solution used to 

react CaLB3-40-MoSci microspheres was 12 (± 0.05).  The CaLB3-40-Fears glass 

microspheres were reacted in a 0.25 M K2HPO4 solution at pH = 12 (± 0.05) at 37ºC for 2 

days.   

                  Table 2.3:  Reaction scheme for CaLB3-40-MoSci glass microspheres. 

Concentration of phosphate 

solution 

Temperature 

0.25 M 4 days and 10 days 2 days and 4 days 

0.50 M 4 days and 10 days 2 days and 4 days 

 

     37˚C         70˚C 
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 The pH of the phosphate solution was adjusted using 2 M NaOH and HCl 

solutions.  The microspheres were reacted in 1000 mL Pyrex beakers placed on a heating 

plate to maintain them at a constant temperature.  The solution was continuously stirred 

with an overhead stirrer and the beaker was covered with paraffin film to prevent loss of 

solution.  An overhead thermocouple was inserted in the solution to monitor the 

temperature.   

 The main emphasis of this research was on preparing and reacting CaLB3-40-

S50 and CaLB3-40-S75 glass microspheres.  CaLB3-40-S50 glass microspheres were 

reacted in 0.25 M, 0.50 M, 0.75 M and 1.00 M K2HPO4 solutions at pH=10 (± 0.05) and 

37ºC.  The reactions were carried out for 6 days and 12 days at each concentration level.  

In addition, the CaLB3-40-S75 glass microspheres were reacted in K2HPO4 solution 

pH=10 at 37ºC at 0.5 M and 1.0 M concentrations for 6 days and 12 days at each 

concentration.  In order to conclude the effect of pH on the microstructure, CaLB3-40-

S75 glass microspheres were reacted in 1.0 M K2HPO4 solution at pH=8 and 12 (± 0.05) 

for 6 days at 37°C.  The CaLB3-40-S50 and CaLB3-40-S75 glass microspheres were 

reacted in 250 mL Kimax
® 

beakers.  The beakers were placed in a sand bath mixer which 

was maintained at 37ºC and continuously shaken. 

 After the completion of all the reactions listed above, the solution was decanted 

and the microspheres were rinsed in three stages.  The first stage involved thorough 

rinsing of the microspheres three to four times with deionized water.  The second stage 

involved rinsing the particles in an equal volume mixture of ethyl alcohol and de-ionized 

water three times.  The third stage involved washing the microspheres with pure ethanol 



26 

 

twice to dehydrate the rinsed microspheres.  The washed microspheres were dried in an 

oven at 90ºC for approximately 48 hours and stored in glass vials until needed. 

  

2.3 HEAT-TREATMENT OF REACTED MICROSPHERES 

 Completely converted CaLB3-40-S50 microspheres were heat-treated in a 

Barnstead Thermolyne furnace.  Approximately 100 mg of microspheres were placed in a 

platinum crucible and heat-treated at 300
o
C, 600

o
C, 900

o
C, and 1200

o
C for 1 hour.  A 

heat ramp rate of 10
o
C/min was used.   

 

2.4 MICROSTRUCTURAL ANALYSIS 

The as-reacted microspheres and heat-treated microspheres were imaged using a 

Hitachi S570 scanning electron microscope (SEM) equipped with a LaB6 filament and 

Hitachi Field Emission S4700 SEM.  Carbon tape was placed on metal SEM mounts and 

the particles were sprinkled onto the mount with a spatula.  The mount was placed under 

a Carl Zeiss optical microscope and X-ACTO blades were used to cut open the 

microspheres to look at the cross-section under SEM.  After cutting the microspheres, the 

sample mounts were sputter-coated with gold/palladium and carbon to form a conductive 

layer and prevent charging of samples when put inside the scope.  The samples were 

analyzed on the Hitachi S-570 SEM at magnifications up to 8000X.  The S-570 SEM was 

equipped with the Revolution
®

 software which was used to capture images.  The high 

magnification images were taken on an S-4700 SEM at magnifications up to 100,000X. 
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2.5 CHARACTERIZATION OF REACTED MICROSPHERES 

 2.5.1 Energy Dispersive Spectroscopy Analysis and X-ray Mapping.  Energy 

Dispersive Spectroscopy (EDS) is an analytical technique that helps in identification of 

the elements present in the sample thereby providing information about the elemental 

composition.  EDS systems are most commonly attached to SEM probes and are based on 

the operating principle that emittance of X-rays from an element are characteristic of the 

atomic structure of that particular element.  The emitted X-rays vary for different 

elements due to the variations in the atomic structure.  During their operation, the sample 

interacts with a focused beam of electrons, and X-rays emitted from the sample are 

analyzed by the EDS detector.  Generally, the atom in an element is in an unexcited state 

and the electrons in various shells are in their ground states.  Once an atom is hit by an 

electron beam, the electron from an inner lower energy shell of the atom is ejected and an 

electron from an outer higher energy shell fills the empty hole created by the outgoing 

electron.  Hence, the X-rays are emitted from the atom that are characteristic of the 

difference in the energy between high-energy shell and lower-energy shell.  This X-ray 

signal is then converted to a voltage signal within the detector, which is further sent to a 

pulse processor and the data are displayed on the monitor for analysis.  

Figure 2.2 shows a representative EDS spectrum.  The EDS spectrum 

demonstrates elemental peaks with X-ray energy levels on the horizontal axis and counts 

per second on the vertical axis.  The EDS spectrum of a single element exhibits series of 

peaks due to large number of electrons in the atom that can jump between various energy 

levels.  The peaks in the EDS spectrum refer to the electron orbital shells they represent 

and are denoted as K, L, and M peaks.  Higher atomic number elements appear on the 
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right hand side of the plot whereas elements with lower atomic numbers appear on the 

left hand side of the plot.  The EDS spectrum can be interpreted as follows: 

1. The presence of a peak corresponding to an element confirms the presence of that 

element in the sample. 

2. Elements present in greater concentration are represented by higher peaks and 

presence of more than one peak corresponding to an element is possible. 

3.  Quantitative analysis can provide weight and atomic percentages of the elements 

present. 

 

  
               Figure 2.2: EDS spectrum showing calcium and phosphorus elemental peaks. 

 

The Hitachi S-4700 SEM is equipped with an EDAX Phoenix system for the EDS 

analysis and the Hitachi S-570 SEM is equipped with a Silicon Drift Detector (SDD). 

The advantages of using SDD include: 

1. Requiring less acquisition times accompanied by higher count rates (> 100,000 

counts per second) that are due to higher X-ray signals from the sample. 
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2. No requirement of liquid nitrogen for cooling. 

3. Higher resolution of elemental peaks. 

4. No problem of peak broadening with change in count rate. 

5. Highly precise X-ray maps. 

6. Able to detect lighter elements up to Be. 

Phase maps (or X-ray maps) and elemental maps are colored maps retrieved for 

the elements obtained in the EDS spectrum.  These maps are evidence of the extent of 

reaction in this work.  Color codes can be designated to the corresponding elements and 

hence colored X-ray maps are obtained for different frame sizes as per choice (64x64, 

128x128).  A bigger frame size will give X-ray maps with higher resolution.  An example 

of an X-ray map is illustrated in Figure 2.3: 

 

 
       Figure 2.3:  X-ray maps showing extent of reaction for reacted CaLB3-40-Fears  

       microspheres. 

 

 

  Boron 

  Phosphorus   Calcium 
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 Reacted CaLB3-40-Fears microspheres were mounted in epoxy resin and allowed 

to dry at room temperature for two days.  The dried epoxy samples were mechanically 

polished with different SiC grit papers, beginning with 240 grit (53 microns) and 

finishing with a 3 microns fine diamond polishing suspension.  The X-ray map in Figure 

6 shows reacted CaLB3-40-Fears epoxy mounted microspheres.  The mechanical 

polishing of the epoxy samples yielded a flat cross-section for which X-ray maps could 

be easily retrieved.  The S-570 SEM was used to obtain X-ray maps for reacted CaLB3-

40-Fears microspheres, and the S-4700 SEM was used to obtain EDS results and X-ray 

maps for reacted CaLB3-40-SX microspheres. 

 2.5.2 X-ray Diffraction and Differential Thermal Analysis.  Crystalline 

phases in the reacted microspheres were identified with a Phillips X-ray diffractometer.  

X-ray diffraction measurements were obtained with a PANalytical X‟Pert Multipurpose 

diffractometer utilizing Cu Kα radiation (0.15418 nm) and a PIXcel detector consisting of 

255 active channels and an active length of 3.347
o
.  Data acquisition was obtained with a 

counting time of 150 seconds and a step size of 0.0263 degrees.  XRD analyses for the 

reacted microspheres were compared with the standard XRD pattern for stoichiometric 

HAp. 

 Reacted CaLB3-40-S50 microspheres were heat-treated in a Netzsch STA 409 

simultaneous thermal analyzer to determine any phase changes of HAp upon heating.  

Weight loss of the reacted microspheres was measured by thermo gravimetric analysis 

(TGA).  Approximately 70 mg of reacted microspheres were heated in an Al2O3 crucible 

to a temperature of 1250°C in air at 10°C/min.   
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2.5.3 Compressive Strength of Reacted Microspheres.  The rupture strength 

of the microspheres was first measured by using an Agilent Technologies
® 

Nano-Bionix 

Universal Testing Machine (UTM).  A schematic of the important functional elements of 

the instrument is shown in Figure 2.4.  The two significant components of the instrument 

are the crosshead and the Nano Mechanical Actuating Transducer (NMAT column), both 

of which are controlled by a proprietary computer program named Test Works 4.0
®
.  The 

crosshead is driven by a precision lead screw.  It has relatively large range of motion of 

150 mm with a resolution of 35 nm.  However, most of the system‟s reliable and flexible 

functions are performed by the versatile NMAT column.  The NMAT head is the most 

sensitive part of the UTM as it is capable of sensing high resolution displacements as 

well as the ability to impart a small force on the NMAT column through electromagnetic 

actuation.  The NMAT housing has a NMAT column that is attached to a center plate.  

The center plate is housed between a set of four charged capacitor plates (Figure 2.5).  

The up and down movement of the center plate causes the movement of the NMAT 

column.  The NMAT column has a maximum displacement range of approximately 750 

µm with a displacement resolution of less than 1 nm.   
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                   Figure 2.5:  Schematic of the key components of the NMAT head [76]. 

 

The maximum load applied by the NMAT head is 500 mN with a force resolution 

of 50 nN.  During operation, the computer continuously records the elapsed time, 

crosshead position, and raw electromechanical force on the NMAT column, raw position 

of the NMAT column, effective spring stiffness, and slope of the raw electromechanical 

NMAT column

Spring

Capacitor plates

Crosshead

Z

Z axis crosshead motion
actuated by a precision
lead screw

Microsphere

Housing

NMAT column

+++++++

- - - - - - -

Charged capacitor 

plates 

Center plate 

Figure 2.4: Schematic of the functional elements of the Nano-Bionix Universal            

Testing Machine [76]. 
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force signal versus the raw NMAT column position signal.  This information can then be 

downloaded into a text file for post-processing and analysis. 

 The mechanical strength of the as-prepared CaLB3-40-S50 microspheres was 

tested by writing a stepwise program in the Test Works 4.0
®

.  The following steps list the 

procedure for operation: 

Step 1: A single microsphere was placed on the compression platen (1” diameter 

and 0.5” thick) screwed to the NMAT column. 

Step 2:  The crosshead was moved downward to make sure that it did not touch 

the microsphere but was positioned as close as possible to the microsphere. 

Step 3:  The crosshead was then moved toward the microsphere at 1 µm/s until 

the NMAT head was negatively displaced (displaced downward) by 1 µm.  This was 

done to have coarse contact with the microsphere. 

Step 4:  The crosshead was then raised 16 µm to separate the surface of the 

microsphere and the crosshead. 

Fine Approach and Contact 

Step 5:  The NMAT column was moved in the unloading direction toward the 

crosshead at 50 nm/s.  The slope of NMAT column displacement versus raw 

electromechanical force was recorded.  Intimate contact was assumed to be achieved 

between the microsphere and the NMAT column when the slope reached a threshold 

value of 250 N/m.  At this point, the compressive load began acting on the microsphere 

and the crushing load exerted by the NMAT column increased at 2 mN/s.  

Step 6:  The rupturing force increased until the raw force showed an instantaneous 

drop indicating the rupture of the microsphere [76].   
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After writing down the stepwise procedure, the test was run by opening the test 

window (Figure 2.6).  Parameters such as raw displacement (NMAT column 

displacement), raw load, center plate position, and the load versus displacement slope 

were recorded.  As the test started, a real time graph showing variation of raw load 

(Figure 2.7) was recorded.     

 

 

                  
              

             Figure 2.6:  Test window showing various recorded parameters during operation. 
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                                 Figure 2.7:  Variation of raw load with passage of time. 

 

 

 The following procedure describes the sequential movement of the NMAT 

column with reference to Figure 2.8. 

 

        

                Figure 2.8: Typical NMAT column displacement graph [76]. 
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 I – The crosshead approached the NMAT column at 1 µm/s.  During this time, the 

NMAT column was at its zero reference position.   

 II – The crosshead had coarse contact with the microsphere and kept displacing 

the NMAT column until it was displaced by 1 µm in the negative direction. 

 III – After the coarse contact was made, the crosshead was retracted by a distance 

of 16 µm.  Also, the NMAT column followed the crosshead to its original reference 

position. 

 IV – The NMAT column began approaching the crosshead at 50 nm/s. 

 V – As soon as the NMAT column started making a fine contact with the 

asperities on the surface of the microsphere, the curve became discontinuous.  The tips of 

the asperities started breaking apart as the contact increased between the NMAT column 

and microsphere.  The contact stiffness i.e. slope of the raw force/NMAT displacement 

graph kept on varying between ± 100 N/m due to unavoidable background noise.  The 

crushing of the microsphere began when the contact stiffness reached a threshold value of 

250 N/m.   

CaLB3-40-S50 reacted microspheres (+150/-355µm) were tested on the Nano-

Bionix UTM to calculate the rupture force.  The maximum nominal load applied by the 

UTM was approximately 500 mN, and hence the as-reacted microspheres did not show a 

decrease in load when tested on the UTM even after reaching the capacity load.  

Henceforth, as-prepared CaLB3-40-S50 and heat-treated reacted microspheres (heat-

treated for 1 hour at 600ºC, 900ºC, and 1200ºC) were tested for their mechanical strength 

at Mo-Sci Corporation, Rolla, MO.  An Instron testing machine having a ± 50 N static 
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load cell (Figure 2.9) was used to test the rupture strength of the as-prepared CaLB3-40-

S50 microspheres and heat-treated CaLB3-40-S50 reacted microspheres. 

 

                              

    

A single microsphere was first placed under a Keyence
®

 optical microscope on a 

flat surface of the stainless steel anvil to measure the diameter of the microsphere.  The 

stainless steel anvil (Figure 2.10) was placed in the Instron press and unidirectional 

compression was applied to the microsphere through the force rod (Figure 2.10) with a 

crosshead speed of 0.02 mm/min.  Microscopic images were taken of the same 

microsphere after testing to determine whether it had ruptured.  The diameters of the 

microspheres were measured to determine the crushing force as a function of particle 

diameter.  The extension of the force rod was recorded and later used to calculate the 

contact area at the rupture point of the microspheres. 

              

       Figure 2.9: Instron machine used to measure mechanical strength of    

       microspheres.  
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  Figure 2.10: Steel anvil (on which microsphere was placed) and force rod (through 

which force was applied to the microsphere).   

Steel 

Anvil 

Force 

Rod 
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3. RESULTS AND DISCUSSIONS 

3.1.  CONVERSION OF CaLB3 MICROSPHERES 

 3.1.1. Comparison of CaLB3-20-MoSci Glass Microspheres with CaLB3-20- 

Fears Glass Microspheres.  CaLB3-20-MoSci glass microspheres were reacted at 37°C 

in 0.25 M K2HPO4 solution at pH = 9 (± 0.05) for 2 days, and results were qualitatively 

compared with those obtained by Fears [51] for his self-prepared CaLB3-20 

microspheres.  CaLB3-20-MoSci glass particles formed hollow microspheres after non-

uniform reaction, which was in conformance with Fears‟s results that CaO ≤ 20 wt% 

yields hollow microspheres [51].  Figure 3.1 shows the hollow microstructures for 

reacted CaLB3-20-MoSci microspheres and Figure 3.2 shows hollow CaLB3-20-Fears 

microspheres.  Hence it was concluded that CaLB3-20 glass microspheres yielded hollow 

microspheres irrespective of the source of preparation.   

 

.   

 

 

 

             Figure 3.1: Reacted hollow microstructure of CaLB3-20-MoSci microspheres 

             (0.25 M K2HPO4, pH=9, 37˚C, 2 days). 
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After reaction, the external surface of the reacted microspheres exhibited needle-

like particles (Figure 3.3), which are characteristic of microstructure present in natural 

bone [1].  However, the internal microstructure of the reacted microspheres varied from 

the surface, as shown in Figure 3.4.  The reacted CaLB3-20-MoSci microspheres had a 

closely packed dense layer approximately 1.5-2.0 µm thick consisting of needle-like HAp 

particles (Figure 3.4).  As Ca-P precipitate starts forming from surface towards the center 

of the microsphere, the preceding reacted layers start consolidating to form a dense HAp 

layer with reduced porosity.  This dense layer is prominent in CaLB3-20 microspheres 

due to low CaO content.   

In order to look at the cross-section of the reacted CaLB3-20-MoSci 

microspheres, mechanically polished epoxy embedded samples were observed with SEM.  

The reacted layer was approximately 16-20 µm thick (Figure 3.5) for a microsphere 

approximately 100 µm in diameter.  The average value of thickness was based on 

readings for 3-4 microspheres with five readings for each microsphere.  The hollow 

volume percentage in the reacted microspheres was measured to be approximately 44%.  

This implies that CaLB3-20-MoSci microspheres were converted into hollow HAp 

             Figure 3.2: Reacted hollow microstructure of CaLB3-20-Fears microsphere  

             (0.25 M K2HPO4, pH=9, 37˚C, 2 days). [51] 

. 



41 

 

microspheres consisting of a dense layer of HAp on the periphery.  This dense layer was 

not present in glass microspheres with higher CaO content (as discussed in proceeding 

sections). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Grain-like surface 

microstructure of the reacted microspheres 

(0.25 M K2HPO4, pH=9, 37˚C, 2 days). 

Figure 3.4: Closely packed dense layer 

of HAp particles (0.25 M K2HPO4, 

pH=9, 37˚C, 2 days). 

 

            Figure 3.5: Cross-section of polished reacted CaLB3-20-MoSci microsphere 

            (0.25 M K2HPO4, pH=9, 37˚C, 2 days). 

Dense layer 
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3.1.2. Comparison of CaLB3-40-Fears Glass Microspheres with CaLB3-20 

Fears Glass Microspheres and Validation of Fears’s Results.  CaLB3-40-Fears glass 

microspheres were reacted in a 0.25 M K2HPO4 solution at pH = 12 (± 0.05) at 37ºC for 2 

days.  The results were analyzed to validate Fears‟s conclusion according to which CaO ≥ 

40 wt% yielded solid but porous microspheres.  The SEM analysis of the partially reacted 

CaLB3-40-Fears microspheres revealed signs of conversion to amorphous calcium 

phosphate by presence of reacted shells (confirmed by X-ray mapping) which came off 

the unreacted core once the partially reacted microspheres were fractured (Figure 3.6). 

 

                                         

 

      

 

 

 

For the same number of days (2 days); CaLB3-20-Fears microspheres had 

converted to hollow microshells whereas CaLB3-40 microspheres still had unreacted 

Reacted  

layer       

core 

                    Figure 3.6: SEM images of partially reacted CaLB3-40-Fears microspheres 

                    (0.25 M K2HPO4, pH=12, 37˚C, 2 days). 

 Unreacted glass       

core 
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glass cores intact.  In order to look at the cross-section of the reacted CaLB3-40-Fears 

microspheres, mechanically polished epoxy embedded samples were observed under 

SEM.  The reacted layer was approximately 26-30 µm thick (Figure 3.7) for a 

microsphere approximately 100 µm in diameter.  The average value of thickness was 

based on readings for 3 to 4 microspheres with five readings for each microsphere.  There 

was an increase in the thickness of the reacted layer by 55% as compared to reacted 

CaLB3-20-Fears microspheres which shows that calcium content has an effect on the 

thickness of the reacted layer.  

 

         

  

 

 

 

 

  

  

 X-ray mapping confirmed the formation of a calcium-phosphorus precipitate (Ca-

P) layer surrounding the unreacted glass core at the center.  EDS analysis for the polished 

particles showed presence of phosphorus peaks in the reacted layer.  EDS analysis of the 

reacted layer gave a Ca/P atomic ratio of approximately 1.44, which implies that calcium 

deficient HAp was formed.  Generally, HAp formed by precipitation reactions is calcium 

deficient and has poor crystallinity [48].  Figure 3.8 shows the X-ray maps and Figures 

Figure 3.7: Cross-section of partially reacted CaLB3-40-Fears microspheres (0.25 M 

K2HPO4, pH=12, 37˚C, 2 days). 
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3.9 and 3.10 show EDS analyses for the cross sections of reacted CaLB3-40-Fears 

microspheres respectively.  Hence, CaLB3-40-Fears glass microspheres began 

transforming into solid but porous calcium deficient HAp microspheres.  However, a 

dense layer of HAp was missing in these partially reacted microspheres. 

 

 

 

  

 

 

 

           

 

 

 

  Calcium   Phosphorus 

  Boron 

Figure 3.8: X-ray maps for partially reacted CaLB3-40-Fears microspheres (0.25 M 

K2HPO4, pH=12, 37˚C, 2 days) showing presence of calcium, phosphorus, and boron. 

  Boron 
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Figure 3.9: EDS analysis for partially reacted CaLB3-40-Fears microspheres (0.25 M 

K2HPO4, pH=12, 37˚C, 2 days) showing presence of major calcium peak. 

 Figure 3.10: EDS analysis for partially reacted CaLB3-40-Fears microspheres. 

It shows presence of major calcium and phosphorus peaks in the 

reacted layer confirming the formation of an amorphous calcium 

phosphate layer which later recrystallizes into calcium deficient 

HAp. 
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 3.1.3. Comparison of CaLB3-40-MoSci Glass Microspheres with CaLB3-20- 

MoSci Glass Microspheres.  Conversion of CaLB3-40-Fears microspheres validated the 

conclusions proposed by Fears of formation of solid but porous microspheres.  The main 

emphasis of this research was to convert CaLB3-40 microspheres to HAp and 

characterize them.  The advantage of the CaLB3-40 glass microspheres is that they are 

quite mechanically strong as compared to the hollow microshells yielded by conversion 

of CaLB3-20 glass microspheres.  Furthermore, CaLB3-40-MoSci glass microspheres 

were reacted as per the conditions mentioned in the experimental procedure.  Figure 3.11 

confirmed unreacted glass core at the center whereas CaLB3-20-MoSci converted to 

hollow microshells for the same number of days of reaction.  Also, the surface of the 

reacted microspheres had a needle-like microstructure similar to that of natural bone.  

Hence, glass microspheres from Mo-Sci Corporation (with different compositions) also 

reacted in the same way as proposed by Fears.   

 

 

 

 

 

 

 

 

  

 3.1.4. Problem with conversion of CaLB-40-MoSci glass microspheres. 

                    Figure 3.11: SEM image of partially reacted CaLB3-40-MoSci   

                    microsphere (0.25 M K2HPO4, pH=12, 37˚C, 2 days). 
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3.1.4. Problem with Conversion of CaLB3-40-MoSci Glass Microspheres.  

SEM microstructural analysis of reacted CaLB3-40-MoSci microspheres revealed no 

promising signs of conversion to HAp even at longer durations of reaction at higher 

concentrations and at higher temperatures.  Figure 3.12 (a) shows the cut section of a 

deliberately broken partially reacted CaLB3-40-MoSci  glass microsphere.  Figure 3.12 

(b) showed that the reacted layer was only about 3 µm thick even after reaction at 0.5 M 

concentration and 70
o
C reaction temperature.  Figure 3.13 shows the reacted layer 

consisting of a grain-like microstructure.  The reacted layer was confirmed by X-ray 

mapping (Figure 3.14).  The duration of reaction was increased up to 4 days and 10 days 

but nothing significant was achieved.  The XRD pattern (Figure 3.15) for the reacted 

CaLB3-40-MoSci microspheres finally confirmed that they did not convert to HAp.  The 

following SEM images show the reaction extent for the listed conditions: 

 

 

   

 
 

  a 

     (a)       (b)  

Figure 3.12: (a) SEM images of CaLB3-40-MoSci microspheres reacted at 70°C 

in 0.5 M phosphate solution (pH=12) for 2 days. (b) Magnified image of area (a). 

Reacted phase 

confirmed by X-ray 

mapping 
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Figure 3.14: X-ray map of area in Figure 25(a) showing presence of (a) calcium 

throughout the microstructure, and (b) phosphorus on the periphery.     

  a 

     (a)       (b)  

Figure 3.13: (a) SEM images of CaLB3-40-MoSci microspheres reacted at 

70°C in 0.5 M phosphate solution (pH=12) for 4 days. (b) Magnified image of 

area (a).  The reacted layer is approximately 5 µm thick. 

        (a)          (b)  
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 The CaLB3-40-MoSci glass microspheres were spheridized using a propane torch 

flame whereas CaLB3-40-Fears glass microspheres were spheridized using a drop tube 

furnace.  The difference in the spheridization technique was supposed to be the reason for 

the variation in reaction product.  A propane torch flame was assumed to be the reason 

for creating high levels of crystallinity in glass microspheres but this reason was not very 

concrete to attribute to the failure of conversion of CaLB3-40-MoSci glass microspheres.  

Henceforth, CaLB3-40 glass frit was obtained from Mo-Sci Corporation and spheridized 

in the drop tube furnace.  The resultant glass microspheres were reacted in 0.5 M 

phosphate solution at 37˚C (pH = 10) for 16 days.  SEM analysis still did not show 

complete conversion of the particles.  Finally it was concluded that CaLB3-40-MoSci 

glass microspheres would take up to 10 weeks for complete conversion.  Ultimately, 

CaLB3-40-SX glass microspheres were prepared and reacted.  

Figure 3.15:  XRD pattern showing crystal structure of reacted CaLB3-40-MoSci 

microspheres (at 70˚C in 0.5 M phosphate solution for 4 days) with commercial 

HAp pattern overlaid.    
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 3.1.5. Conversion of CaLB3-40-SX Glass Microspheres. 

 3.1.5.1. Emphasis on CaLB3-40-S50 and CaL3-40-S75 Glass Microspheres.  

The main emphasis was on reacting CaLB3-40-S50 and CaLB3-40-S75 glass 

microspheres as they were completely amorphous in form when prepared.  The level of 

crystallinity was the highest for CaLB3-40-S100 glass microspheres and could be due to 

the huge amount of trapped SO2 gas trapped inside glass network that is formed by the 

decomposition of CaSO4.  In order to elucidate the effect of sulfur on the conversion 

rates, CaLB3-40-S25 through CaLB3-40-S100 glass microspheres were reacted in 1 M 

phosphate solution at 37˚C (pH = 10) for 6 days.  The XRD pattern showed that CaLB3-

40-S75 glass microspheres were completely converted to HAp microspheres in 6 days 

(Figure 3.16). 

 

 

 

S-25 

    S-100 

Figure 3.16: XRD patterns for reacted CaLB3-40-S25 through CaLB3-40-S100 glass 

microspheres reacted in 1.0 M phosphate solution; pH=10; 37˚C; 6 days. 

S-50 

S-75 
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 The XRD pattern for reacted CaLB3-40-S25 glass microspheres contained some 

peaks corresponding to calcium borate.  Also, reacted CaLB3-40-S100 glass 

microspheres consisted of crystalline CaSO4 peaks.  Hence, further characterization was 

done for CaLB3-40-S50 and CaLB3-40-S75 glass microspheres.   

  

 3.1.5.2. CaLB3-40-S50 glass microspheres.      

 3.1.5.2.1. SEM characterization and effect of concentration of phosphate  

solution.  CaLB3-40-S50 glass microspheres were reacted at 37°C in K2HPO4 solution 

(pH=12 ± 0.05) at 0.25 M, 0.50 M, 0.75 M, 1.00 M, and 1.50 M concentrations for 6 days 

and 12 days at each concentration level.  The walls of the partially reacted microspheres 

were examined by SEM and showed signs of layer by layer reaction (Figure 3.17).  The 

reason for this surface layer formation is compositional variability of HAp which ranges 

from stoichiometric HAp (Ca/P = 1.66) to fully calcium-deficient HAp [77].  The 

composition of the surface layers is generally different from the bulk composition.   

The morphology of the partially reacted CaLB3-40-S50 microspheres confirmed 

the formation of various phases during dissolution of glass microspheres (Figure 3.18).  

Literature review shows that initially, an unstable phase of amorphous calcium phosphate 

(ACP) is formed which transforms to amorphous calcium-deficient HAp and further 

changes to crystalline calcium-deficient HAp.  The transformation of ACP to HAp 

continues until all the calcium in the glass network is consumed [77].  HAp starts forming 

on the surface and continues crystallizing on the inner wall as shown in Figure 3.18.  

CaLB3-40-S50 glass microspheres reacted in the same way as the CaLB3-40-Fears glass 

microspheres.  The partially reacted microspheres still had an unreacted glass core intact 
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at the center but the reacted layer was much thicker than partially reacted CaLB3-40-

MoSci glass microspheres.    

 

   

    

  

 

 

 

 

 

 

 

 

 

  

 The reacted CaLB3-40-S50 glass microspheres under different conditions were 

analyzed for the reacted layers.  The thickness of the reacted layers was calculated using 

Image J software.  The average value of thickness was based on readings for 5 

Figure 3.17: SEM images of the wall of partially reacted CaLB3-40-S50 

microsphere in 0.5 M phosphate solution (pH=10) at 37˚C for 2 days showing layer 

by layer reaction.   

 

 

 

 

Unstable 

ACP phase 

Transition 

region 

Dense 

HAp layer 

Figure 3.18: SEM image of the wall of partially reacted CaLB3-40-S50 microsphere 

in 0.5 M phosphate solution (pH=10) at 37˚C for 2 days.   



53 

 

microspheres with five readings for each microsphere.  The d/D ratios were calculated 

where,  

                d = 2 * thickness measured by Image J software and  

                D = Diameter of the microsphere. 

The following SEM images (Figure 3.19 through Figure 3.23) show the reacted 

layer for different concentrations.  Table 3.1 lists the d/D values for the reacted 

microspheres.  The SEM images and the measured d/D ratios revealed that the 

microspheres were completely reacted within 6 days at 1.5 M concentration and 12 days 

at 1.0 M concentration.  Small voids were evident in the cross sections of the fractured 

reacted microspheres in some cases due to a gas bubble trapped inside the initial glass. 

 

 

 

 

 

 

 

 

     (a)       (b)  

Figure 3.19: SEM images of CaLB3-40-S50 microspheres reacted at 37°C in 0.25 

M phosphate solution (pH=10) for (a) 6 days and (b) 12 days.  

Reacted 

layer       

core 

Unreacted 

glass core 
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     (b)       (a)  

Figure 3.20: SEM images of CaLB3-40-S50 microspheres reacted at 37°C in 0.50 

M phosphate solution (pH=10) for (a) 6 days and (b) 12 days.  

     (a)          (b)  

Figure 3.21: SEM images of CaLB3-40-S50 microspheres reacted at 37°C in 

0.75 M phosphate solution (pH=10) for (a) 6 days and (b) 12 days.  

Small void 
Unreacted 

glass core 
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Table 3.1: Effect of concentration of phosphate solution on d/D ratio of reacted CaLB3-

40-S50 microspheres. 

 
6 days 12 days 

0.25 M 0.16 0.21 

0.50 M 0.58 0.64 

0.75 M 0.78 ~ 1.00 

1.00 M 0.86 1.00 

1.50 M 1.00 NA 

 

Concentration 

         (b)       (a)  

Figure 3.22: SEM images of CaLB3-40-S50 microspheres reacted at 37°C in 1.00  

M phosphate solution (pH=10) for (a) 6 days and (b) 12 days.  

Figure 3.23: SEM image of CaLB3-40-S50 microspheres reacted at 37°C in 1.50 

M phosphate solution (pH=10) for 6 days.  

Time 
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 3.1.5.2.2. EDS characterization.  A standardless quantitative analysis was 

performed on reacted CaLB3-40-S50 microspheres to calculate the Ca to P molar ratio.  

The results confirmed the formation of calcium-deficient HAp.  HAp compositions 

formed by precipitation from solution are generally calcium-deficient and have poor 

crystallinity [48].  The composition of stoichiometric HAp is Ca10(PO4)6OH2 with Ca/P = 

1.67 whereas calcium-deficient HAp is denoted by Ca(10-x)(HPO4)x(PO4)(6-x)OH(2-x) where 

x ranges from 0 to 1 [51].  There has been no limit on the Ca to P value as some literature 

describes the formation of calcium deficient HAp with Ca/P = 1.33 [77].  Figures 3.24 

and 3.25 show the quantitative results that were used to calculate the Ca/P ratio.   

  

                              

 

 

 

          Figure 3.24: Quantified results of standardless EDS analysis on S-4700 

scope for reacted CaLB3-40-S50 microspheres showing atomic and weight 

percentages of constituent elements. 

 

Ca/P 
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 The following SEM images (Figure 3.26 and 3.27) show the Ca/P values for 

CaLB3-40-S50 glass micropsheres calculated by EDS analysis.  The values of Ca/P 

varied over a range from 1.36 to 1.53.  The unreacted glass core had a much higher Ca/P 

value as compared to the reacted shell.    

 

   

          Figure 3.25: Quantified results of standardless EDS analysis on S-570 

scope for reacted CaLB3-40-S50 microspheres showing atomic and 

weight percentages of constituent elements. 

 

Ca/P 

value 

calculated 

from here 

Figure 3.26: Partially reacted CaLB3-40-S50 microspheres in 0.5 M phosphate 

solution at 37°C for 6 days. The reacted shell has a Ca/P value of 1.43, 1.53, 1.41, and 

1.36.  The Ca/P value for the unreacted glass core is 4.41.       
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 3.1.5.2.3. X-ray mapping characterization.  Reacted CaLB3-40-S50 

microspheres were analyzed by X-ray mapping to confirm the extent of reacted Ca-P 

layer (Figure 3.28).  Colored X-ray maps were retrieved for the elements after the EDS 

analysis.  The X-ray maps clearly showed that the unreacted glass core comprised of 

sulfur (Figure 3.29).  As the reaction progressed, the sulfur present in the glass diffused 

into the solution.  Sulfur was traced in the unreacted glass core (Figure 3.30).  The sulfur 

Figure 3.26: Partially reacted CaLB3-40-S50 microspheres in 0.5 M phosphate 

solution at 37°C for 6 days. The reacted shell has a Ca/P value of 1.43, 1.53, 1.41, and 

1.36.  The Ca/P value for the unreacted glass core is 4.41 (Contd.).       

 

Figure 3.27: Completely reacted CaLB3-40-S50 microspheres in 1.0 M phosphate 

solution at 37°C for 12 days.  
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present in the glass in the form of SO2 or SO3 bubbles (formed due to decomposition of 

CaSO4 during glass preparation) left behind small voids after popping during the 

reaction.  

  Some studies were done on the effect of melting duration on the sulfur 

composition in the glass.  Longer durations of melting the reagent grade powders in the 

furnace resulted in less sulfur content in the glass.  The CaLB3-40-S50 glass 

microspheres used for reaction were melted at 1100°C for 1 hour in the furnace. 

 

                                      

 

 

 

 

 

       (b)       (a)  

   a 

Figure 3.28: (a) CaLB3-40-S50 microspheres reacted in 0.75 M phosphate 

solution (pH=10) at 37°C for 8 days.  (b) Magnified view of area (a). The region 

in Figure 41 (b) was mapped by x-rays. 
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 Ca  S   P 

  K   O 

Figure 3.29: X-ray maps for region in Figure 41(b).  The unreacted glass core at the 

center was confirmed by presence of sulfur.  The reacted shell comprised of calcium 

and phosphorus confirming the presence of some form of ACP. 

 

Figure 3.30: EDS spectrum showing presence of sulfur and absence of phosphorus in 

the glass core.     
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 3.1.5.2.4. XRD characterization.  Reacted CaLB3-40-S50 microspheres were 

characterized by XRD to observe the crystalline phases present.  XRD peaks for the as-

reacted microspheres contained sharp peaks indicating high crystallinity.  The peaks 

matched the predominant peaks for the stoichiometric HAp and no other crystalline 

phases were detected in the as-reacted CaLB3-40-S50 microspheres.  The XRD patterns 

for the as-reacted CaLB3-40-S50 microspheres were much more promising than the XRD 

patterns for as-reacted CaLB3-40-Fears microspheres as the latter one contained broad 

peaks.  In Figure 3.31, both red and blue dots correspond to the crystalline peaks of 

reacted CaLB3-40-S50 glass microspheres which matched the predominant synthetic 

HAp peaks.      

   

 

 

Figure 3.31: XRD pattern showing crystal structure of reacted CaLB3-40-S50 

glass microspheres (at 37˚C in 1.0 M phosphate solution for 12 days) with 

commercial HAp pattern overlaid.    
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 The red dots correspond to the peaks which were earlier matched to confirm the 

formation of HAp [80].  For reacted CaLB3-40-S50 glass microspheres, even the peaks 

corresponding to blue dots matched with synthetic HAp peaks which confirmed the 

formation of more crystalline HAp as compared to HAp formulations in previous 

research work.  

 3.1.5.2.5. DTA characterization.  DTA analysis of reacted CaLB3-40-S50 glass 

microspheres revealed the phase transition as they were heat-treated up to 1250˚C in air 

at a rate of 10˚C/min.  Significant dehydration was observed by a broad endothermic 

peak (Figure 3.32) which signified loss of physically absorbed H2O.  The loss of water 

was evidenced by the weight loss in the TGA curve.  The as-reacted CaLB3-40-S50 glass 

microspheres lost about 8.5 wt%     

       

 

 

Figure 3.32: DTA and TGA curves measured for as-reacted CaLB3-40-S50 glass 

microspheres (1.0 M phosphate solution; pH=10; 37˚C; 12 days) heated up to 1250˚C at 

10˚C/min.   

Endothermic peak 

Exothermic peak 
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until a temperature of ~690˚C where the dehydration was completed.  An exothermic 

peak appeared in the DTA curve at around 690˚C, with no corresponding weight change 

in the TGA curve.  This exothermic peak signified that as-reacted CaLB3-40-S50 glass 

microspheres could have undergone a phase transition as HAp transformed to TCP by 

loss of H2O from HAp.  Literature supports the phase transition of fully calcium-deficient 

HAp (Ca/P = 1.5) to TCP when heated above 700˚C (Eq. 2) [77] whereas commercial 

HAp powders decompose into a mixture of tetra tricalcium phosphate (TTCP) and α-TCP 

at temperatures above 1360˚C [78].  The low decomposition temperature of as-reacted 

CaLB3-40-S50 glass microspheres suggest that non-stoichiometric HAp was formed as a 

result of the precipitation reaction.  

  Ca9(HPO4)(PO4)5(OH)(s)                3Ca3(PO4)2 + H2O(g)           (2)  

 

 3.1.5.3. CaLB3-40-S75 glass microspheres. 

 3.1.5.3.1. Effect of concentration of phosphate solution.  CaLB3-40-S75 glass 

microspheres were reacted in K2HPO4 solution pH=10 at 37ºC at 0.5 M and 1.0 M 

concentrations for 6 days and 12 days at each concentration.  Table 3.2 lists the d/D 

values for the reacted microspheres.  The readings were taken using Image J software 

with average value of thickness based on readings for 5 microspheres with five readings 

for each microsphere.     

 

Table 3.2: Effect of concentration of phosphate solution on d/D ratio of reacted CaLB3-

40-S75 microspheres. 

  
6 days 12 days 

0.50 M 0.64 0.69 

1.00 M 1.00 1.00 

Concentration 
Time 
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Table 3.2 shows that CaLB3-40-S75 glass microspheres completely reacted at 

1.00 M concentration within 6 days.  Figure 3.33 shows cross-sections of reacted CaLB3-

40-S75 glass microspheres.  The reacted microstructures have more prominent voids as 

compared to CaLB3-40-S50 microspheres caused by the gas bubbles leaving the 

particles.  The larger sulfur concentration caused more frequent formation of SO2 bubbles 

during glass formation. 

 

  

 

                              

 

 

     (c)  

     (b)       (a)  

Figure 3.33: SEM images of CaLB3-40-S75 microspheres reacted at 37°C in (a) 

0.5 M phosphate solution (pH=10) for 6 days, (b) 12 days, and (c) 1.0 M 

phosphate solution (pH=10) for 6 days.  

Small 

voids 
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 3.1.5.3.2. Effect of pH of phosphate solution.  In order to conclude the effect of 

pH on the microstructure, CaLB3-40-S75 glass microspheres were reacted in 1.0 M 

K2HPO4 solution at pH=8 and 12 (± 0.05) for 6 days at 37°C.  No significant difference 

was observed in the microstructure (Figure 3.34).  The reacted microstructures had the 

same equiaxed grain morphology for different pH values.  The quantitative EDS analysis 

also gave the values of Ca/P ratio ranging from 1.33 to 1.56.     

 

  

                            

                                   

 

 

  

      (a)  

      (c)  

       (b)  

Figure 3.34: SEM images of CaLB3-40-S75 microspheres reacted at 37°C in 1.0 

M phosphate solution for 6 days at (a) pH=8, (b) pH=10, and (c) pH=12.  
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 3.1.5.4. Effect of glass composition, potassium phosphate solution 

concentration and reaction days on the reacted layer thickness. 

 3.1.5.4.1. Choice of design of experiments.  Various approaches can be used to 

analyze the effects of numerous factors involved in an experiment.  This experiment 

involved three factors whose effect on the response variable was analyzed by using full 

factorial design of experiments.  The full factorial design is most efficient for this 

experiment because all the possible treatment combinations of the levels of the factors are 

investigated in a complete trial.  Also, only one factor is changed at a time in a single trial 

run.  The full factorial designs are quite advantageous.  They take into account the 

interactions present amongst the various factors and don‟t provide any misleading 

conclusions.  Also, factorial designs provide estimation of effects of a factor at varied 

levels of other factors which are valid over entire range of actual experimental conditions.  

The change in the response variable, which in this case is the thickness of reacted layer, is 

attributed to the change in the levels of the three factors, namely: 

Factor A = Glass composition (Comp.) 

Factor B= Concentration of K2HPO4 solution (Conc.) 

Factor C = Reaction days (Days) 

This is a three-factor factorial experiment with two levels for each factor i.e. 2
3
 factorial 

design. 
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                            A1 = 50% of CaO coming from CaSO4 and 50% of CaO coming from      

Levels of A                 CaCO3   (denoted with -1 being the lower level)  

    

    A2 = 75% of CaO coming from CaSo4 and 25% of CaO coming from    

                                     CaCO3 (denoted with +1 being the higher level) 

  

                            B1 = 0.5 M concentration (denoted with -1 being the lower level)   

 Levels of B        

                            B2 = 1.0 M concentration (denoted with +1 being the higher level) 

 

 

                            C1 = 6 days (denoted with -1 being the lower level)    

Levels of C    

                            C2 = 12 days (denoted with +1 being the higher level) 

 

 

 3.1.5.4.2. Experimental procedure.  CaLB3-40-S50 and CaLB3-40-S75 glass 

microspheres were reacted in 0.5 M and 1.0 M K2HPO4 solution (pH=10) at 37˚C for 6 

days and 12 days.  The reaction procedure has been described before in Section 2.2.  The 

response variable i.e. thickness of the reacted HAp layer was measured using Image J 

software.  About 10 measurements were done for each trial run which was further 

averaged out.  Figure 3.35 shows the experimental structure for this experiment.   

            
            

                  Figure 3.35:  Description of experimental variables and response variable.  
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 3.1.5.4.3. Treatment and design structures.  Table 3.3 shows all possible 

treatment combinations in this experiment.  The measurand value MA1B1C1 was replicated 

three times by three experimental runs.  For the remaining seven treatment combinations, 

a single replication was carried out due to time constraints.  Three values were obtained 

for the first treatment combination denoted by (1).  These three replicated values were 

then used to generate 14 random numbers based on the standard error obtained from three 

experimental runs for (1) treatment combination.  SAS was used to obtain 14 normally-

distributed random numbers from three replications.  Hence, 14 replications were 

generated for remaining seven treatment combinations thereby giving a total of 24 

replications for the 8 treatment combinations. 

 

                               Table 3.3: Treatment combinations for the three factors 

 A1 = 50% - 50% A2 = 75% - 25% 

C1 = 6 days 
(1) 

MA1B1C1 

b 

MA1B2C1 

a 

MA2B1C1 

ab 

MA2B2C1 

C2 = 12 days 
c 

MA1B1C2 

bc 

MA1B2C2 

ac 

MA2B1C2 

abc 

MA2B2C2 

 

            M = Measurand = Thickness of the reacted layer (microns) 

(1) = Treatment combination with A, B, and C at lower levels. 

           a = Treatment combination with A at higher level; B and C at lower levels. 

           b = Treatment combination with B at higher level; A and C at lower levels. 

           c = Treatment combination with C at higher level; A and C at lower levels. 

B1 = 0.5 M  B2 = 1.0 M B1 = 0.5 M

 

 

 B2 = 1.0 M 
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           ab = Treatment combination with A and B at higher levels; C at lower level. 

            bc = Treatment combination with B and C at higher levels; A at lower level. 

            ac = Treatment combination with A and C at higher levels; B at lower level. 

            abc = Treatment combination with A, B, and C at higher levels. 

 

Table 3.4 lists the values of the response variable.  

                       Table 3.4: Replications of the response variable (microns).      

 A1 = 50% - 50% A2 = 75% - 25% 

C1 = 6 days 

70.44 

64.99 

68.39 

101.41 

98.95 

99.45 

75.46 

75.24 

75.43 

117.92 

120.56 

122.76 

C2 = 12 days 

75.46 

66.80 

80.81 

117.92 

119.34 

122.36 

81.36 

82.53 

79.75 

117.92 

124.77 

116.69 

 

This experiment was conducted using a completely randomized design.  Eight 

possible treatment combinations were obtained for a 2
3 

factorial experiment and after 

three replications for each treatment combination, 24 observations were obtained in all. 

After obtaining 24 values for the response variable, the values were randomly picked and 

input in the SAS for statistical analysis.  Table 3.5 lists the randomized design structure 

for the values of the response variables.  The order in which values were input in the SAS 

software is same as given in Table 3.5. 

 

 

B1 = 0.5 M B2 = 1.0 M B1 = 0.5 M

 

 

B2 = 1.0 M 
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Table 3.5: Randomized treatment combinations table which was entered in SAS for 

analysis and effects of the different factors. 

Serial No. Pattern a b c Reacted 
Layer 

1 ab 1 1 -1 117.92 

2 bc -1 1 1 117.92 

3 ab 1 1 -1 120.56 

4 (1) -1 -1 -1 70.44 

5 ab 1 1 -1 122.76 

6 ac 1 -1 1 81.36 

7 abc 1 1 1 117.92 

8 a 1 -1 -1 75.46 

9 c -1 -1 1 75.46 

10 abc 1 1 1 124.77 

11 b -1 1 -1 101.41 

12 (1) -1 -1 -1 64.99 

13 bc -1 1 1 119.34 

14 b -1 1 -1 98.95 

15 a 1 -1 -1 75.43 

16 c -1 -1 1 66.80 

17 bc -1 1 1 122.36 

18 ac 1 -1 1 82.53 

19 c -1 -1 1 80.81 

20 b -1 1 -1 99.45 

21 ac 1 -1 1 79.75 

22 (1) -1 -1 -1 68.39 

23 abc 1 1 1 116.69 

24 a 1 1 -1 75.24 
  

 3.1.5.4.4. Analysis. 

 3.1.5.4.4.1. ANOVA.  Analysis of Variance (ANOVA) is used to evaluate the 

significant differences between the means for each factor in an experiment.  ANOVA 

uses estimation of variance to compare the means and can determine if the variation is 

due to some random error or due to change in the levels of each factor.  Sum of squares 

(SS) of variation are analyzed to account for the variance in the response variable.  SS of 

variation are separated into SS due to variance in the response variable accounted by 

model and SS due to error.  Further, variance ratio (F-value) for main effects and 
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interactions is obtained by dividing the respective mean square effects with mean square 

errors (Figure 49).  The significance level of the experiment is generally set at 0.05 (α = 

0.05).  The probability (p-value) of obtaining the F-value being less than 0.05 will lead to 

the significance of that particular factor or interaction term.  The significance of the 

factors increases if the variance ratio is larger.  

 

 3.1.5.4.4.2. Pareto chart.  Pareto chart of standardized effects is a graphical 

representation of the main effects and interactions showing the significance of each factor 

in the form of horizontal shaded columns.  These shaded columns are listed in the order 

of significance of each effect.  The columns exceeding the dotted line are accounted for 

as significant.  In this experiment, there were only two factors involved so linear effects 

were interpreted.  The linear main effects are analyzed as the difference between the 

average response variable of each factor at high and low levels.  Also, two-way linear 

interaction effects are analyzed as half the difference between the high/low level of one 

factor and high/low level of another factor.  

 

 3.1.5.4.5. Results.  From the ANOVA table above (Figure 3.36), it was concluded 

that the p-value of three factor interaction term (0.0023) was less than 0.05.  Hence, it is 

significant.  Further, the two way interaction terms were analyzed and interaction of 

composition of glass and number of days of reaction is quite significant as its p-value 

(0.0015) is less than the significance level.  Finally the main effects were looked at and it 

was clearly evident that the p-values for each of the main factors were less than 0.05.  

Hence, the main factors are quite significant. 
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Figure 3.36: ANOVA table showing significance of the main effects and interaction 

terms. 

 

The standardized effects chart (Figure 3.37) shows that concentration of the 

solution has the most significant effect on the thickness of reacted layer (conversion rate) 

amongst all the factors, followed by composition of glass; number of days of reaction; 

two-way interaction of composition of glass and duration of reaction; and three way 

interaction between the factors. 
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Figure 3.38 shows the variation of the main effects and their corresponding 

significance.  High variation is seen for the concentration effect which supports the 

highest significance of concentration of solution on the conversion rate (thickness of 

reacted layer).  Composition of glass and number of days of reaction do not show much 

variation between high and low levels but they are still significant. 
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               Figure 3.37: Standardized effects showing the significance of the 

factors.  

                Figure 3.38: Plot of main effects for the reacted layer.  
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Figure 3.39 shows the two-way interaction of the three factors.  Composition of 

glass * number of days interaction shows more variation comparatively to the other two 

graphs which proves its significance on the conversion rate (reacted layer thickness).  The 

lines corresponding to the interaction of concentration of solution* number of days of 

reaction and composition of glass* concentration of solution are approximately parallel, 

indicating lack of interaction. 
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 3.1.6. Heat-Treatment of As-Reacted CaLB3-40-S50 Microspheres. 

 3.1.6.1. Effect on the microstructure.  The as-reacted CaLB3-40-S50 

microspheres were heat-treated at 300°C, 600°C, 900°C, and 1200°C for 1 hour at each 

temperature value.  The heat-treatment temperature had a considerable effect on the 

microstructure of HAp grains and the porosity of the microspheres.  Figure 3.40 shows 

the internal microstructure of the as-reacted microspheres.  Heat-treatment at 300°C did 

not cause any significant change in the morphology of the grains (Figure 3.41).   

                 Figure 3.39: Plot of interactions for the reacted layer.  
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Heat treatment at 600°C for 1 hour caused coarsening of grains with increase in 

the pore size and initiated the process of grain growth (Figure 3.42).   

Figure 3.41: Internal microstructure of as-reacted CaLB3-40-S50 microspheres heat 

treated at 300°C for 1 hour.  No significant change could be seen in the microstructure. 

   Figure 3.40: Internal microstructure of as-reacted CaLB3-40-S50 microspheres.    

   Equiaxed grains can be seen in the microstructure. 
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Further heat treatment at 900°C for 1 hour caused the grains to start coalescing 

with decrease in the specific area (Figure 3.43).  The coalescence temperature for Ca-

deficient HAp is generally below 1000°C [65].  

 

  

 

 

Further sintering at 1200°C for 1 hour completely closed all open porosity 

resulting in formation of an impermeable solid microsphere (Figure 3.44). 

Figure 3.42: Internal microstructure of as-reacted CaLB3-40-S50 microspheres heat 

treated at 600°C for 1 hour resulting in normal grain growth.  

Figure 3.43: Internal microstructure of as-reacted CaLB3-40-S50 microspheres heat 

treated at 900°C for 1 hour.  
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 3.1.6.2. Effect on the volume of as-reacted microspheres.  The as-reacted 

CaLB3-40-S50 glass microspheres shrunk in the volume as they were heat-treated at 

600˚C and 900˚C.  No significant reduction was observed in the diameter as the reacted 

microspheres were heat-treated at 300˚C.  The diameter of the microspheres was 

measured on a Keyence
®

 optical microscope (Figure 3.45).  The average diameter of the 

as-reacted microspheres was about 265 µm.  The average diameter of the microspheres 

reduced to about 215 µm when heat-treated at 600˚C and further reduced to 185 µm at 

900˚C.  The size distribution for various batches of microspheres is shown in Figure 3.46.  

The average volume percent shrinkage (as compared to initial volume of as-reacted 

microspheres) was about 80% (at 600˚C) and increased to about 86% (at 900˚C).  Heat-

treatment at 1200˚C did not cause much shrinkage in the volume.  Figure 3.47 shows the 

decrease in the average volume percentage when the as-reacted CaLB3-40-S50 

microspheres were heat-treated at 600˚C, 900˚C, and 1200˚C.  Each data point in this 

graph has been averaged for at least 50 microspheres.   

Figure 3.44: Internal microstructure of as-reacted CaLB3-40-S50 microspheres 

heat treated at 1200°C for 1 hour.  
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       Figure 3.45: Diameter of the microspheres from each batch measured under   

       Keyence
®
 optical microscope   

Figure 3.46: Size distribution of as-prepared CaLB3-40-S50 microspheres heat-treated 

at various temperatures. 
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Figure 3.46: Size distribution of as-prepared CaLB3-40-S50 microspheres heat-

treated at various temperatures (Contd.). 
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 3.1.7. Compressive Strength.  The as-reacted CaLB3-40-S50 microspheres and 

as-reacted CaLB3-40-S50 microspheres heat-treated at 600˚C, 900˚C, and 1200˚C were 

ruptured on an Instron press using a ± 50 N static load cell to calculate the crushing force.  

The crushing force did not increase as the microspheres were heat-treated at 600˚C and 

900˚C.  There was significant increase in the crushing force for the as-reacted 

microspheres heat-treated at 1200˚C due to enhanced densification and coalescence of the 

grains (Figure 3.48).  Also, the crushing force increased with increase in diameter of the 

microspheres for a given batch of microspheres.  About 25-30 microspheres were 

measured from each batch for calculating the crushing force. Figure 3.49 shows the 

ruptured microspheres after the compression testing.  For a single batch of microspheres 
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Figure 3.47: Volume percentage shrinkage of HAp microspheres with heat-

treatment temperature. 
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(e.g. as-reacted microspheres), the values of crushing force varied for two quite similar 

values of diameter.  The reason for this scattered data is influence of remaining 

microporosity, inherent defects, variations in grain size, impurities, etc.  It has been 

reported before that grain size and porosity have an influence on the fracture path [29].  

 The reason for calculating the crushing force and not calculating the mechanical 

strength is because of non-uniform cross sections of the microspheres.  The exact contact 

area at which fracture occurs cannot be determined.  Due to variation in the cross-

sections across the microspheres, there will be tri-axial stress distribution.  Hence, the 

value of compressive load acting at the point when contact occurs between the force rod 

and microsphere would not be equal to the compressive load acting at the instant of 

rupture. 
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 However, the mechanical strength of the as-reacted CaLB3-40-S50 microspheres 

was calculated in accordance with previous approach [76].  The average diameter of the 

as-reacted microspheres was about 265 µm.  The extension of the force rod was 

calculated which gave the value of contact area corresponding to the point of rupture.  

The mechanical strength of as-reacted microspheres was 85 ± 5 MPa which was quite 

high as compared to mechanical strength of hollow CaLB3 microspheres [76].  Utmost 

care was taken in testing a complete spherical microsphere as deviation from perfect 

spherical geometry could affect the mechanical strength.  However, the possibility of 

such deviation cannot be ruled out. 

 

 

 

 

 

 

 

       Figure 3.49: Ruptured as-reacted CaLB3-40-S50 microspheres after the test. 
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4. CONCLUSIONS 

 The following conclusions could be made from the results of this research:  

1.  Successful conversion of CaLB3-40-S50 and CaLB3-40-S75 bioactive glass  

microspheres to solid but porous HAp microspheres. 

2.   Fears‟s conclusions validated for conversion of CaLB3-MoSci bioactive glass 

microspheres according to which CaLB3 glasses containing CaO < 40 wt% yield hollow 

microstructures whereas CaLB3 glasses containing CaO ≥ 40 wt% yield solid but porous 

microstructures.  

3.   Presence of sulfur has an effect on the conversion rate of the bioactive glass  

microspheres. 

4.      EDS and DTA analysis evidenced the formation of calcium-deficient HAp. 

5.      XRD patterns revealed formation of a comparatively better crystalline form of 

HAp. 

6.      No change in the microstructure of HAp due to change in the pH of the phosphate  

solution.  

7.     Statistical analysis performed for the effect of composition of glass, concentration 

of potassium phosphate solution, and number of days of reaction on the reaction rate 

yielded the following conclusions: 

 The concentration of the potassium phosphate solution has the most significant 

effect on the reacted layer thickness (conversion rate) followed by composition of the 

bioactive glass and number of days of reaction.  This implies that 1.0 M phosphate 

solution will produce much thicker reacted layer and consequently the reaction rate will 

increase. 
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 The two-way interaction of composition of glass and number of days of reaction 

has also significant effect on the reaction which implies that CaLB3-40-S75 glass 

microspheres require less number of days of reaction to get completely converted. 

 The three-way interaction of composition of glass, concentration of solution and 

reaction days is also significant.  Hence, the combination which gives best reaction 

outcome is CaLB3-40-S75 glass microspheres reacted in 1.0 M potassium phosphate 

solution for 6 days. 

8. Heat-treatment at 600˚C, 900˚C, and 1200˚C caused a change in the 

microstructure closing off all open porosity at 1200˚C. 

9. Volume shrinkage occurred as the HAp microspheres were heat-treated to 600˚C 

and 900˚C.  

10. Solid but porous HAp microspheres were mechanically stronger (85 ± 5 MPa) as 

compared to hollow HAp microspheres.  

11. Crushing force of HAp microspheres increased with increase in the diameter of 

the microspheres. The increase was faster at the highest temperature of heat-treatment  of 

1200˚C.   
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