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ABSTRACT 

The topic of this thesis focuses on attitude determination for small satellites.  The 

method described uses only a magnetometer to resolve the three-axis attitude of the 

satellite.  The primary challenge is that magnetometers only instantaneously resolve two 

axes of a satellite’s attitude.  Typically, magnetometers are used in conjunction with other 

sensors to resolve all three axes.  However, by using a filter over an adequately long orbit 

arc, the magnetometer data can yield all the information necessary.  The magnetic field 

data are filtered to obtain the magnetic field derivative vector, which are combined with 

the magnetic field vector to fully resolve the attitude. 

Once the magnetic field vector and its derivative are calculated, the filtered 

measurement and derivative are used as pseudo-measurements for a second filter that 

estimates the attitude quaternion and the angular rates.  This estimate must meet the 

system requirements that are typically required of the attitude determination and control 

subsystem for the mission under consideration.  In this thesis research, the Missouri 

University of Science and Technology’s M-SAT mission was used as a case study to 

demonstrate the methods developed. 

Finally, the method is tested using varying initial conditions and orbit parameters.  

The inclination in particular is cautiously observed.  The method in which the magnetic 

field derivative is determined suffers a loss in accuracy for lower inclinations, suggesting 

that a parametric study with respect to orbit inclination is prudent.  Accordingly, such a 

parametric study was conducted and is presented as part of this thesis. 
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1. INTRODUCTION 

1.1. M-SAT MISSION OVERVIEW. 

The attitude determination and control (ADAC) research that is detailed in this 

thesis was developed for use on a student-built satellite at the Missouri University of 

Science and Technology.  The design needed to be low in cost and complexity but 

sufficiently versatile to accomplish the mission tasks.  This section highlights the mission 

objectives as well as the satellite design and specifications. 

1.1.1. Mission Objectives. The M-SAT (Missouri University of Science and 

Technology Satellite) project involved the creation of two satellites named MR SAT 

(Missouri Rolla Satellite) and MRS SAT (Missouri Rolla Second Satellite).  The two 

satellites will be launched in a docked configuration.  Once the satellite pair has powered 

up, detumbled, and run system diagnostics, the satellites will separate and fly in 

formation until MR SAT, the chasing satellite, fully consumes its propellant. 

MR SAT is the chase satellite, and is therefore equipped with a propulsion system 

that provides more accurate attitude control (than MRS SAT).  The MR SAT propulsion 

system will be used for orbital corrections as well as attitude corrections.  MRS SAT is 

regarded as the target satellite and, as such, needs no propulsion. Only attitude control is 

required on MRS SAT to ensure the solar panels receive sufficient exposure to sunlight 

and to prevent excessive angular velocities from interfering with inter-satellite 

communications. 

The satellite pair was developed under the strict guidelines of the Nanosat 6 

competition sponsored by the Air Force Research Laboratory (AFRL) and the Air Force 

Office of Scientific Research (AFOSR).  The competition involved eleven domestic 

universities and promoted the goal to each participant of fully developing a functional 

satellite within a two-year timeframe.  The satellite project must meet all AFRL 

requirements, as well as promote new technologies related to spaceflight by performing a 

useful function requiring a space environment to fully test. 

1.1.2. Subsystems and Specifications. The satellite project is organized with 

eleven technical subsystems that govern the various aspects of the design.  Each 

subsystem directly relevant to the design activities of the ADAC subsystem are described 
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as a lead into the development of the ADAC subsystem.  These subsystems are 

Propulsion, Communications, Command and Data Handling, Structure, and Power. 

1.1.2.1 Propulsion.  The Propulsion system on the MR SAT spacecraft provides 

the actuation necessary to effect three-axis attitude control.  This is critical during the 

formation flight when rapid response time of the propulsion system is needed in order to 

fire thrusters to provide the control acceleration requested by the control system.  The 

propulsion system is a cold gas system configured with twelve thrusters.  The system 

implements a two-phase cold gas propulsion system, using R-134a refrigerant as the 

propellant.  The R-134a will be stored in a tank as a liquid and expelled as a gas to 

maximize the amount of propellant that can be carried on-board the spacecraft while 

maintaining a 100 psi limit on pressure vessels in the satellite (as required by AFRL 

secondary-payload constraints). 

The propulsion system provides three-axis translational and rotational control.  

The ADAC controller needs to be optimized to minimize propellant consumption to 

maximize the chances for completing the mission before expending the propellant.  The 

thrusters provide approximately 60 mN thrust with a total ΔV of about two meters per 

second.  The tank and the lines will be equipped with an active thermal control system to 

manage the phase change of the liquid propellant to gaseous form. 

The propulsion system may be used in the future with a hybrid controller that 

utilizes both thruster-generated torque and torque provided by a magnetic coil. This may 

conserve propellant consumption, although likely by only a small amount.  However, 

over the life of the mission, the savings may be enough to be significant.  A combined 

attitude and orbit controller is also being considered to take advantage of the coupled 

nature of the attitude and orbit dynamics.  Unfortunately, early trials using this combined 

controller have shown no benefit.  Figure 1.1 shows an open satellite view of the partially 

constructed propulsion system.  Figure 1.2 shows a picture of the partially constructed 

MR SAT spacecraft.  Three panels are visible with the propulsion tank in the middle 

surrounded by propellant lines and thrusters. 
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Figure 1.1.  MR SAT Propulsion System Integration 

 

 

 

 

 
Figure 1.2.  MR SAT Propulsion System Integration 
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1.1.2.2 Command and data handling.  The Command and Data Handling 

(C&DH) subsystem is also vital to the performance of the ADAC subsystem.  The 

C&DH subsystem must execute the attitude determination code, process new 

measurements, and store data needed for ground analysis.  The subsystem is composed of 

a Gumstix main computer with 8051 microcontrollers with which to interface and control 

components.  Regarding the attitude subsystem, the magnetometer is connected to an 

8051 microcontroller that reads the output voltages and converts them to a three-

component magnetic field measurement in milliGauss.  The attitude determination filter 

runs on the main computer and the estimated attitude and angular velocity are used by the 

controller to reorient the satellite to the correct attitude. 

1.1.2.3 Structure.  The ADAC subsystem must be integrated into the structure of 

the satellite.  There are several concerns to the integration of the system into the structure, 

as the number of sensors required and the needed placement of the sensors are very 

important.  A magnetometer needs to be placed inside the satellite and located as far as 

possible and isolated from residual magnetic fields inside the satellite.  If another sensor 

is required, the integration of that sensor will be important as well.  Sun sensors, which 

would likely be used if the magnetometer-only system did not work, would need to be 

placed on the outside of the structure so that the devices could ―sense‖ the Sun.  This 

would displace a number of solar cells, potentially affecting the Power subsystem.  

Figure 1.3 shows the MR SAT structure.  The integration of the structure will be more 

complex if the magnetometer-only system is found to be ineffective requiring the use of 

additional sensors. 
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Figure 1.3.  MR SAT Structure 

 

 

 

1.1.2.4 Power.  The Power subsystem imposes requirements that the ADAC 

subsystem must meet.  The ADAC hardware power consumption must stay within the 

budgeted power available.  This is especially important during the detumble phase when 

the magnetic coils will be powered up for an extended period of time.  The Power 

subsystem will depend on the ADAC subsystem to rotate the satellite into orientations 

that support the maximum charging of the batteries.  The solar panel surface area oriented 

toward the Sun must be maximized at all times.  This requirement is secondary to the 

goal of pointing the spacecraft-to-ground antenna along the nadir direction.  As long as 

the communications link is maintained with the ground station, orientation of the satellite 

will depend largely on ensuring the top and bottom panels (panels that do not have solar 

panels) point away from the Sun. 
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1.2. ADAC REQUIREMENTS.  

The ADAC subsystem is constrained by the mission objectives of the M-SAT 

mission and must allow all of the mission objectives to be achieved.  The requirements 

placed on the ADAC system are based around meeting the mission objectives and goals.  

The ADAC system must keep the satellite oriented so that the communications antenna 

points toward the Earth, most critically when the spacecraft passes over the ground 

station.  This requires the satellite to slew 360 degrees per day to keep the antennas 

pointed in the nadir direction.  In order for this base requirement to be met, the spacecraft 

must be able to determine its attitude to within three degrees, and control the attitude to 

within six degrees.  If this requirement is met, the space-to-ground antenna will not move 

more than six degrees from nadir, which is within the specifications of the antenna and 

transceiver (with a conservative factor of safety included). 

It is also important to keep the satellite solar panels exposed to as much sunlight 

as possible.  This can be accomplished by keeping the two panels without solar cells 

oriented away from the Sun.  This must be done, though, while maintaining the satellite-

to-ground communication link.  These requirements drive the desired attitude and the 

spacecraft must be able to determine its attitude to within three degrees for the mission to 

be successful.  Therefore, the magnetometer-only attitude determination system can only 

be used if it can be proven through simulation that the system will determine the attitude 

of the spacecraft to within three degrees. 

1.2.1. Attitude Determination Hardware Selection. The considered attitude 

determination hardware and the chosen hardware are discussed in the following 

subsections. 

1.2.1.1 Horizon sensor. Horizon sensors use the Earth’s horizon to determine 

spacecraft attitude.  They consist of an infrared device that detects a temperature contrast 

between deep space and the Earth’s atmosphere.  Two common types of horizon sensors 

exist:  horizon crossing sensors and scanning horizon sensors.  The horizon crossing 

sensors scan the horizon by being statically attached to a spinning spacecraft.  The 

scanning horizon sensors are used on non-spinning spacecraft and employ a rotating lens 

or mirror mechanism to scan the Earth’s horizon.  The accuracy for horizon sensors 

increases for higher altitude orbits, and are most often used in GEO rather than LEO.  M-
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SAT will likely be in LEO, so the horizon sensor would probably be a poor choice for the 

attitude determination of the satellites. 

1.2.1.2 Sun sensor. Sun sensors use the Sun to determine spacecraft attitude and 

are currently the attitude determination device most commonly used.  To properly 

determine the spacecraft attitude, one sensor must be installed on each side of the 

satellite.  The foremost disadvantage to Sun sensors is the fact that when the satellite 

enters Earth’s penumbra it precludes satellite attitude measurements during that time.  

However, Sun sensors are small, lightweight, highly accurate, and require a low amount 

of power. Sun sensors would likely have been chosen if the magnetometer-only algorithm 

had not worked sufficiently. 

1.2.1.3 Global positioning system (GPS) receivers. The heart of the Global 

Positioning System is a spread-spectrum broadcast communication message that can be 

exploited using relatively low-cost receivers.  GPS receivers use signals from four or 

more different GPS satellites to simultaneously solve for the three components of the 

observer’s position and time.  Taking several readings can give position and velocity data 

which in turn allow the determination of the orbital elements. 

This GPS signal can also be used to solve for the attitude of the vehicle on which 

the receiver is located.  This is accomplished by using multiple GPS antennas which are a 

known distance apart and which are attached to a rigid element of the vehicle, and using 

the phase difference between the signals from one GPS satellite arriving at the two 

antennas.  The GPS receiver serves as an interferometer measuring the angle between the 

line-of-sight to the GPS satellite and the line joining the two antennas. 

This method of attitude determination depends on the system of GPS satellites 

being maintained, but due to the numerous and growing applications of this technology 

on and around the world, this is guaranteed for the lifetime of the M-SAT mission.  A 

concern for using this method for attitude determination is the potential lack of 

availability of four GPS satellites for a short period due to geometrical circumstances or 

the outage of one or more satellites.  Accuracy can also be negatively affected by 

multipath effects of the same GPS signal reflecting off of the spacecraft.  Due to the 

simplicity of the MR SAT spacecraft these effects will be greatly reduced, and the other 

effects could be mitigated by using error checking filters.  Attitude determination using 
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GPS would require two antennas, one for each end of the satellites, to determine the 

attitude of both spacecraft individually.  This is important because it cannot be assumed 

that each satellite will be oriented identically. 

This method provides very high accuracy relative to the available methods and 

their costs.  GPS signals also provide independent time signals other than the spacecraft 

computer.  One GPS unit can generally handle input from several antennas, making it 

possible for each satellite to only need one receiver.  However, GPS attitude 

determination will not be used for the M-SAT mission because the minimum baseline for 

the separation of GPS antennas needs to be approximately seventy centimeters and the 

MR SAT spacecraft has no length dimension longer than fifty centimeters.  In addition, a 

deployable boom would need to be used and AFRL, the organization that hosts the 

Nanosat competition, warns against deployable items on the spacecraft. 

1.2.1.4 Magnetometers. Magnetometers can determine the attitude measured 

relative to the Earth’s local magnetic field.  The uncertainties and variability in the 

Earth’s magnetic field govern the accuracy of this method.  In spite of these uncertainties, 

sensor filters can provide attitude accuracies of 0.5 to 3 degrees.  These sensors need to 

be isolated from electromagnets, either physically or by duty-cycling the magnets.  They 

are not as accurate as star or horizon sensors; however, these lower accuracies are far 

exceeded by the simplicity, reliability, lightweight, and low-cost of this sensor.  The 

Earth’s magnetic field can be continuously monitored, allowing for partial corrections to 

be made for these variable effects through adjustments in the filters.  These variations 

tend to follow a daily cycle which can be programmed as weights into the filters.  

Magnetometers are approximately 0.3 to 1.2 kg in mass and consume less than 1 Watt of 

power. 

Magnetometers were selected as the sensors to provide the on-orbit data to the 

attitude determination method within the autonomous control system running onboard 

MR SAT.  These devices can provide an accurate value for the magnetic field vector at 

the location of the satellite.  Magnetometers have acceptable accuracy, mass, and power 

consumption given the MR SAT design constraints. 

1.2.1.5 Star-trackers (star sensors). Star sensors use observed star formations 

and compare the measurements to a database of known star formation information to 
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determine the attitude of a spacecraft.  These sensors allow for extremely accurate 

attitude measurements.  The typical accuracy of a star sensor is 0.0003 to 0.012 degrees. 

Most star sensors, however, are too slow to determine a spacecraft’s attitude 

directly.  To address this slow processing star sensors are normally complemented with 

gyroscopes for high accuracy and rapid response.  Because star sensors will sometimes be 

blinded by the Sun and Moon, complimentary sensors are necessary.  These two sensors 

work in conjunction to correct for each of their weaknesses.  Star sensors also require 

between 5 to 20 Watts of power which goes beyond the projected power allowance for 

the attitude determination system.  Star sensors are costly by themselves and incur 

additional cost because they have to be implemented with other sensors. 

1.2.1.6 Gyroscopes. Gyroscopes may be used to measure the angular velocity or 

angle of rotation of a spacecraft without any input from an external, absolute reference.  

They are inertial sensors that are most useful for precise attitude sensing between inputs 

from external sensors (i.e. star trackers, Sun sensors).  Gyroscopes may also be briefly 

used for nutation damping or to control attitude during thruster firing.  Gyroscopes use 

various technologies including spinning wheels, ring lasers, hemispherical resonating 

surfaces, and laser fiber optic bundles.  Individual gyroscopes provide one or two axes of 

information, so multiple gyroscopes are often combined to form the Inertial Reference 

Unit (or IRU) with three axes of information.  IRUs combined with accelerometers are 

capable of sensing position and velocity.  This setup is referred to as an Inertial 

Measurement Unit (or IMU).  Gyroscopes usually have a mass from 1 to 15 kilograms 

and require 10 to 200 watts of power. 

Advances in manufacturing and design allow the production of smaller 

gyroscopes that use less power.  With the advent of MEMS technology (Micro-Electro-

Mechanical Systems), manufacturers have been able to make solid state IMUs.  Solid 

state IMUs have no moving parts.  The mass and energy consumption of these new units 

combined with their ability to withstand higher shock/vibration loadings than previous 

models make them an ideal choice for attitude determination. 

Testing of the solid state IMUs for use on this mission has shown a poor 

resolution to estimate the angular rates of the spacecraft.  The IMUs will not be used and 

the subsystem has selected magnetometer-only attitude determination. 
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1.2.2. Attitude Determination Hardware Chosen. For the attitude 

determination of the MR SAT spacecraft, a magnetometer was chosen because of the 

simplicity and reliability available from the sensor.  The choice to use only the 

magnetometer was finalized when it was realized that the angular rate measurement from 

IMUs would not yield the resolution that was required.  More sensors could be added, but 

the decision was made to test if the accuracy could be achieved using only a 

magnetometer.  After a literature review, a paper by Natanson was identified 

demonstrating the feasibility of achieving the needed accuracy during post-processing of 

magnetometer data.
14

  The challenge then became in adapting the post-processing 

technique for use in a real-time attitude determination application on board the MR SAT 

spacecraft.  This forms the key contribution of this research study.  The selected 

magnetometers were provided by Billingsley Magnetics shown in Figure 1.4.   

 

 

 

 
Figure 1.4.  Billingsley Magnetics Triaxial Fluxgate Magnetometer  

 

 

 

The magnetometers needed to be space-rated and have a reasonably fast sampling 

rate, as well as provide a high accuracy measurement.  The model from Billingsley 

Magnetics meets all of these qualities with a one second sampling rate and a one degree 

angular accuracy in the magnetic field reading.  These specifications would normally be 

adequate if the magnetometer was used with other sensors to determine the attitude.  The 

task remained to determine if a magnetometer alone with these specifications could 

provide the accuracy needed for a successful mission.  The remainder of this thesis shows 

the development of the algorithm that is used onboard the MR SAT spacecraft. 
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2. LITERATURE SURVEY 

Attitude determination is a problem that has been examined in-depth over the last 

hundred years.  Determining the orientation of an object in three-dimensional space has 

been an interest in dynamics and control since long before Sputnik launched in 1957.  

The application to spacecraft, of course, began shortly after Sputnik launched.  As with 

any estimation problem, the challenge is to take the available measurements and use them 

to estimate the spacecraft attitude.  The measurements that have historically been used or 

experimented with are numerous and can be combined in different ways to achieve the 

necessary attitude estimation accuracy.  This section describes a few of the key advances 

in the field of spacecraft attitude determination. 

 

2.1. ATTITUDE DETERMINATION. 

One of the classic early works on spacecraft attitude determination was written by 

James R. Wertz.
21

  Wertz’s book on spacecraft attitude determination is still a handbook 

used by many professionals in the field.  Wertz covers many aspects of vector-based 

attitude determination as well as the basic attitude quaternion derivation that is used in 

this thesis to reduce the complexity of having a nine element attitude matrix to 

determine.
21

  Other early attitude determination studies have resulted in the TRIAD 

method, the QUEST method, and additional solutions to Wabha’s problem that are 

discussed later.
9
  

Early attitude determination algorithms used least squares methods to obtain 

estimates.  Over the years, those methods have evolved to the more complex Kalman 

filtering algorithms, and now nonlinear estimation techniques are becoming more 

common. The evolution could be because of growing estimation accuracy demand, but it 

is also likely the increase in available computing power has played a large role in the 

switch to more complex methods.  The most common attitude determination techniques 

today use the Kalman filter or some variant to estimate the spacecraft attitude.
3
  The 

typical sequential filter works well for attitude determination as well. The sequential filter 

works by taking measurements, one at a time, and updating an estimate at some time-step 
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interval. The difference in most attitude determination techniques involves the creative 

use of measurements from different sensors that allow the attitude to be calculated.
6
 

There are several deterministic methods for calculating a spacecraft attitude using 

two inertially defined, independent pointing vectors.  If two such vector measurements 

exist, the attitude can be calculated directly using a method referred to as the TRIAD 

method.
12

 There are also the QUEST and FOAM methods, which can utilize more than 

two sets of attitude vector measurements.
9
 For example, if a rigid body is able to rotate 

freely in space, knowing one pointing vector will allow for the calculation of the attitude, 

except the angle around the measurement itself. Regardless of any spacecraft motion (i.e., 

rotation) about the measurement, the sensor will always read the same value. A second 

measurement is needed to fully resolve the attitude. This can be seen through Wahba’s 

problem of minimizing a quadratic loss function.
20

  Wahba posed the attitude 

determination problem of minimizing a quadratic loss function where the measurement 

residual is minimized. Solving Wahba’s problem has been a task of great interest over the 

past forty-five years. Shuster solved the problem using Davenport’s q-method.
23

 Markley 

showed that Wahba’s problem could be solved using singular value decomposition.
9
  

Each method has a different level of accuracy and efficiency.  It becomes important, even 

if there are numerous measurements available to resolve the attitude, to find the most 

efficient way to solve the problem without losing accuracy. 

Recently, there has been a significant amount of work in the field of GPS attitude 

determination. The process requires the use of multiple antennas, which provide multiple 

position measurements. Filtering of the GPS data can then fix the spacecraft’s attitude. 

There would need to be a minimum of three antennas to lock the attitude, with more 

being heavily preferred so that there is a better chance of having each antenna in view of 

several GPS satellites.
1
  This method requires a baseline of nearly seventy centimeters 

between each antenna to provide the best accuracy.  This works well for most spacecraft, 

but for nanosatellites and small satellites, unless deployables are used, the distances 

between the antennas would not be sufficient to meet the baseline requirements.
 1
 

Although it is not necessary, a sensor that gives the angular rates of the spacecraft 

such as a gyroscope can be beneficial to the filter because the filter no longer has to rely 

on a range of data to sense that the spacecraft is rotating.  This can decrease the time that 
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is needed for the filter to reach steady-state.  There has been an abundance of work in the 

area of attitude determination without a rate sensor because the reliability of gyroscopes 

is sometimes in question. This thesis study falls in that subset—that of attitude 

determination without the benefit of rate sensor data. 

Work on attitude determination without a rate sensor usually includes the analysis 

of filters using measurements from magnetometers, Sun sensors, star trackers, horizon 

sensors, and so forth.  A new focus on gyro-less spacecraft attitude determination systems 

has emerged.  These studies show that it is possible to estimate both the attitude and the 

angular rates from a variety of pointing vector measurements.
2,4,6 

 

2.2. MAGNETOMETER-ONLY ATTITUDE DETERMINATION. 

The idea that the attitude of a spacecraft can be fully determined as long as two 

independent vectors are known and each expressed in two different coordinate frames 

(typically an inertial frame and the spacecraft body frame) forms the basis of the TRIAD 

algorithm. 
11,13

  From this fact, the use of several combinations of two or more sensors 

have been attempted to determine spacecraft attitude.  Most use a combination of a 

magnetometer with either a Sun sensor, star tracker, or horizon sensor.  The need for low-

cost sensors that can provide sufficiently accurate attitude determination led Gebre-

Egziabber, et al. to use an accelerometer to provide a measurement of the gravitational 

field.
2
  Santoni and Bolotti showed that the same can be achieved without the second 

sensor measurement.
4
  The study went creatively used the data that was available to the 

spacecraft, instead of adding a second sensor to obtain the second required pointing 

vector.  It was proposed that the solar panels could be used as Sun sensors, because the 

direction of the Sun can be found by analyzing the power generation by each panel.  This 

is another example of using fewer, cheaper sensors to provide the same quality attitude 

determination.   

These methods are the basis for the research described in this thesis.  However, 

the second vector measurement used in this research is obtained from manipulating the 

first measurement.  The magnetic field vector provides the first vector measurement and 

filtering that series of measurements provides the magnetic field vector derivative as the 

second vector measurement, or in this case pseudo-measurement.  The derivative, 
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however, cannot be expressed relative to an inertial frame without knowledge of the 

angular velocity of the body frame.  Therefore, the typical TRIAD algorithm does not 

apply in this particular scenario, motivating the development of the attitude filter 

described in Section 5.  Other methods have been completed that use magnetometer-only 

data for attitude determination, and are detailed in this section. 

One of the first attitude determination studies that use magnetometer-only data 

was completed when a satellite mission, the Earth Radiation Budget Experiment, became 

the victim of an attitude anomaly and was lost. The data that were able to be downlinked 

were used to try to determine the causes of the mission failure through post processing. 

Among the data were data from a magnetometer.  The magnetometer data were used with 

a method that was developed by Natanson, Challa, et al. This method was called 

DADMOD, or Deterministic Attitude Determination using Magnetometer-Only Data.
14 

 

The method solved for the attitude and angular rates from the magnetometer data by 

finite differencing the measurements to find the magnetic field derivative. The 

measurements of the magnetic field and its derivative were then used, along with the fact 

that the spacecraft angular acceleration is known, to estimate the attitude and angular 

velocities.  The equations became quadratic so that there were multiple solutions, and 

DADMOD selected which of the two solutions was most likely to be the correct 

attitude.
14

  The method worked well for post processing, but as this research discovered, 

using noisy, real-time measurements prevents an accurate solution. 

Another magnetometer-only attitude determination solution was created by 

Psiaki.  The error magnitudes achieved by Psiaki’s Kalman filtering method showed 

errors of around two-three degrees after about 100 seconds with low initial filter offset.
19

  

By using two nested Kalman filters, the method presented in this thesis is able to achieve 

better accuracy than previous Kalman filter based magnetometer-only methods. 

There have been many attempts to avoid using high power consuming, expensive, 

and fragile gyroscopes. MEMS devices have been created that allowed for the creation of 

solid-state IMUs, but most consider them to be too inaccurate and with inadequate 

resolution to give the results desired. In 1995, Lizarralde and Wen developed a controller 

without the need for angular velocity feedback. The controller made use of the passivity 

of the system, eliminating the need for a filter to directly determine the angular 
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velocities.
7
 The advantage to such a system resides in the processing requirements from 

the Command and Data Handling system. The disadvantage of the method is that there is 

no knowledge of the angular velocity of the spacecraft. The controller can stabilize the 

attitude, but the spacecraft does not know its angular velocity, which is typically 

unacceptable for autonomous systems. One of the most recent attempts at magnetometer-

only attitude determination was completed by Ma and Jiang. The authors used an 

Unscented Kalman Filter (UKF) with magnetometer measurements to estimate the 

attitude of a spacecraft and to calibrate the magnetometers.
5
 The importance of this 

method is that it included the ability to account for additional error beyond the 

specifications of the magnetometer. This calibration could be done on the ground, 

although the difficulty persists that some residual magnetic fields created by the 

spacecraft could pollute the measurements creating more noise. The UKF is much less 

computationally efficient than the EKF which presents an important drawback.
18

 The 

method presented in this thesis study, using the two-step EKF, provides the same 

magnitude errors and is quite robust, without the need to propagate several state vectors, 

or sigma points.  EMI/EMC analysis can provide calibration of the magnetometer on the 

ground before the spacecraft is launched.  The use of a Kalman filter with a calibrated 

sensor can thus provide computational efficiency over the UKF method.  

At this time there have been several attempts at magnetometer-only attitude 

determination.  Such a capability is a valuable asset for a spacecraft in case of a sensor 

failure or anomaly, or in the case of the M-SAT project, to reduce and implementation 

complexity by using only magnetometers by design.  The first methods, shown using the 

SAMPEX mission, were executed during post processing, and failed when they were 

applied in real time.  Earth’s magnetic field is very nonlinear, changes with time and 

position in space, and has different characteristics depending on the spacecraft’s orbit.  

The sensor that reads the field, however, is relatively inexpensive, easy to implement, 

accurate, and reliable.  If the proper steps are taken to mitigate minor complications with 

the magnetic field model, the outcome is a cheap and viable alternative to expensive and 

complex sensors.   

Natanson and Challa originally proposed, during post-processing, that finite 

differencing could be used to find the derivative of the magnetic field vector to provide a 
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second vector measurement.  In real-time this is not feasible because of the nonlinearity 

of the magnetic field.  Slight fluctuations with a sample time of one second cause drastic 

errors in the derivative calculation.  This work proposes a pre-filter to filter the magnetic 

field data and yield the magnetic field derivative vector.  This process works well as seen 

in Section 4.  At most orbital inclinations, the filter provides a derivative estimation that 

has better accuracy than a Sun sensor would provide.  Once the two vectors were 

available, it was assumed that the DADMOD method would be used to combine them 

and achieve an estimate of the spacecraft’s attitude, following the rest of Natanson and 

Challa’s work closely. 

When the noisy magnetic field vector and derivative vectors were used in the 

DADMOD algorithm, though, the attitude estimates were off by sixty to seventy degrees 

in most cases.  When the truth model magnetic field vector and derivative were used (i.e., 

the noise-free case), attitude was successfully determined.  It was determined that the 

DADMOD algorithm was overly sensitive to noise and inaccurate for real-time 

implementation.  The difficulty is caused by the fact that the derivative vector in the body 

coordinate frame is not referenced relative to an inertial frame.  Without accounting for 

the angular velocity of the frame, which is unknown, the TRIAD and QUEST methods 

cannot be used. 

The solution proposed in this study was conceived while exploring an analytical 

solution to the problem shown in Section 4.  When the work was being completed, an 

algorithm was developed that calculates the magnetic field vector and its derivative 

relative to the (rotating) body frame from the magnetic field vector and its derivative 

relative to the inertial frame (the spacecraft attitude and its angular rates).  By using a 

pre-filter to provide the magnetic field vector and its derivative (pseudo-measurements) 

and knowing the inertially-referenced vectors from the model, the only unknowns were 

the attitude and angular rates.  Making the attitude and angular rates the state vector for a 

Kalman filter, the equations can be differentiated to find the measurement matrix.  

Although the complex equations may someday yield an analytical solution, the Kalman 

filter, once tuned properly, yields results that match and even surpass the magnetometer-

only algorithms that have been found during the literature review and summarized 

previously in this section.  The next three sections describe the new method in detail. 
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3. MAGNETIC FIELD AND ITS BEHAVIOR 

The attitude determination system using magnetometer-only data is dependent on 

an accurate magnetic field model for the filtering method to successfully converge to an 

accurate solution. This section describes the process of modeling the Earth’s magnetic 

field and its implications on this research. The World Magnetic Model is used, and the 

derivative of the magnetic field with respect to time must be found in order to complete 

the attitude determination system. 

 

3.1. WORLD MAGNETIC MODEL. 

The model used by the attitude determination system is the World Magnetic 

Model.
 29

 The World Magnetic Model uses spherical harmonics to quantify the Earth’s 

magnetic field vector at any point in space over time.  The model requires the current 

time and the position of the spacecraft to return the magnetic field vector.
 
 

A magnetometer measures the direction and magnitude of the Earth’s magnetic 

field in space. The magnetic field changes in direction and magnitude depending on the 

position in space around Earth. Using the field as a measurement, and by knowing the 

spacecraft’s location, a filter can determine the satellite’s attitude. The measurements 

relate to the state-space through nonlinear spherical harmonics. The following sections 

describe the magnetic field model that relates the magnetic field to the Cartesian 

spacecraft position.  

The Earth’s magnetic field vector can be calculated at any point given the position 

in spherical coordinates. The magnetic field model used in this work takes the form
29
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The spherical coordinates λ, φ, and r are the longitude, latitude, and radial 

distance to the center of the Earth respectively.  The Schmidt semi-normalized associated 

Legendre polynomials are calculated using 
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The parameters g and h in Equation (2) are determined empirically and are 

available in a tabular format in the World Magnetic Model.  The parameter a is the 

geomagnetic reference radius.  The longitude, latitude and radius for spherical 

coordinates can be easily found from Cartesian coordinates (with appropriate quadrant 

checks) using 
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The magnetic field vector, expressed in Cartesian coordinates, is then found by 

taking the gradient of the potential function, using the chain rule, and substituting in for 

latitude, longitude, and radius as                 
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The above equations allow one to calculate the magnetic field vector in units of 

nanoTesla, nT.  The conversion to milliGauss, mG, is accomplished using the simple 

relationship 

 

 1 100mG nT  (11) 

 

The conversion is needed because the magnetometer used in this study measures 

in units of mG.  The coefficients ( )m

ng t  and ( )m

nh t  are calculated as 
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where t is in years and t0 = 2010.0.  The coefficients 
0( )m

ng t  , 
0( )m

nh t  and their derivatives 

were taken from the World Magnetic Model database. 

Using the equations above, the magnetic field vector can be calculated at any 

point in space and time.  This model is used to simulate the magnetic field measurements, 

as well as provide the truth model for this research.  The accuracy of this model does not 

reflect the overall accuracy of the final attitude filter because the truth model of the 

spacecraft’s attitude is what ultimately determines the accuracy achieved.  However, 

because the method depends on the magnetic field derivative, that must also be modeled.  

Because an attempt to obtain the derivative analytically did not provide useful results, the 

magnetic field derivative model is found by finite differencing of the magnetic field 

model as detailed in the next section. 

 

3.2. CALCULATING THE MAGNETIC FIELD DERIVATIVE. 

When determining the magnetic field derivative (with respect to time), 

measurement noise must be considered.  The Billingsley magnetometer has a 3 

directional error of three degrees when sensing a magnetic field vector.  When attempting 

to determine the magnetic field derivative vector by finite differencing, as suggested in 

Reference 14, a noise level of three degrees can result in significant error.  This error is 

mitigated by using a Kalman filter.  The filter removes some of the effects of the noise in 

the measurements, producing a magnetic field vector estimate with less than one degree 

error, and finding derivative estimates of the magnetic field vector to within seven 

degrees, which is sufficient for the M-SAT mission.  The entire attitude determination 

process is briefly described below. 

3.2.1. Magnetic Field Derivative.  In order to use the magnetic field 

measurements to determine the satellite’s attitude, the actual magnetic field vector must 

be known.  Additionally, the Earth’s magnetic field is a highly complex, dynamic system, 

so the magnetic field varies with both location and time.  Though highly nonlinear, the 
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magnetic field can be modeled using spherical harmonics as shown in Section 3.1.  Using 

the orbital position vector obtained from the orbit determination process, the magnetic 

field vector is thereby known as a function of time and spacecraft position.   

Time derivatives of the magnetic field must also be calculated for use later in the 

attitude determination algorithm.  Finite differencing of the magnetic field model is used 

to calculate the needed magnetic field derivatives.  The finite differencing technique used 

for this thesis study was central differencing.  The magnetic field derivative can be 

calculated from the chain rule as 
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The equation can be rearranged such that 
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The gradient of the magnetic field vector is given by 
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And the spacecraft velocity vector, V, is 
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V  (16) 

 

The columns of the gradient matrix in Equation (17) are given by  
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Substituting the gradient of the magnetic field and the spacecraft velocity into 

Equation (14) yields   
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where 
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is also obtained through central finite differencing. 

Equation (18) quantifies the magnetic field derivative, where V is the spacecraft 

velocity vector in Cartesian coordinates.  An analytical solution of the magnetic field 

derivative would be more computationally efficient, however, attempts to derive the 

second derivative of the spherical harmonics potential function failed to produce useful 

results. For future work, identifying an analytic derivative would make the method more 

efficient.   

3.2.2. Magnetometer Measurement Filter.  After the actual magnetic field 

vector  and its derivative (finite differencing) are calculated with respect to the inertial 

frame (see Section 3.1-3.2.1), a Kalman filter is used to estimate the local magnetic field 

vector and its derivative using the magnetometer measurements, which are expressed in 

terms of and relative to the satellite body frame.  The Kalman filter details are given in 

Section 5.1.  The estimates of the magnetic field are then used as pseudo-measurements 

in a second filter to estimate the attitude quaternion and angular rates of the spacecraft. 

 

3.3. MAGNETIC FIELD BEHAVIOR AND EXPECTATIONS. 

Using the Earth’s magnetic field vector as the only measurement can create 

difficulties if the magnetic field vector behaves in certain ways.  The magnetic field 

needs to vary significantly throughout the orbit or the magnetic field derivative estimate 

obtained from the magnetometer measurement filter will not have sufficient accuracy.  In 

an equatorial orbit, the magnetic field vector does not vary as much as in a polar orbit. To 

study the effects of the type of orbit on the accuracy of the magnetic field derivative 

estimate, simulations were performed for both a polar and an equatorial orbit.  The 

simulations reflect the baseline case, presented in Section 6, with varying inclination. The 

results from the magnetometer measurement filter (derived in Section 5.1) for the polar 

orbit scenario are summarized below in Figures 3.1 and 3.2. 
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Figure 3.1. Magnetic Field Vector Angular Error for Polar Orbit 
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Figure 3.2. Magnetic Field Derivative Vector Angular Error for Polar Orbit 
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It can be observed from the above figures that in a polar orbit the magnetic field 

vector is estimated with an angular error of less than 0.5 degrees.  The magnetic field 

derivative vector is estimated to within seven degrees.  Comparable attitude 

determination systems typically use the magnetic field vector and a second pointing 

vector from another sensor, such as a Sun sensor.   Sun sensors typically have around ten 

degrees accuracy in their measurements.  The Kalman filtering in this study yields two 

pointing vectors with accuracies higher than that of adding an additional sensor, with the 

difficulty being that the magnetic field vector derivative is dependent on the spacecraft 

angular velocity, which is unknown (and a solution to this difficulty is shown in Section 

5).   

Because the polar orbit case shows a reasonable estimation of the magnetic field 

derivative, the equatorial orbit is now tested, as shown in Figures 3.3 and 3.4. 
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Figure 3.3. Magnetic Field Vector Angular Error for Equatorial Orbit 
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Figure 3.4. Magnetic Field Derivative Vector Angular Error for Equatorial Orbit 

 

 

 

The simulations show that the ability of the filter to estimate the magnetic field 

derivative vector is much less when the spacecraft is in an equatorial orbit in comparison 

to the polar orbit.  The initial spike at t = 0 remains, and the filter takes longer to 

converge than in the polar case.  The average error in the magnetic field derivative vector 

estimate is around ten degrees with spikes above twenty degrees for the equatorial orbit.  

The ability of the attitude filter to handle uncertainty in the pseudo-measurements from 

the magnetometer measurement filter is further analyzed in the Parametric Analysis 

section of this thesis. 
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4. ATTITUDE DYNAMICS 

4.1. RIGID BODY ATTITUDE DYNAMICS. 

This section provides an overview of the attitude dynamics used as a background 

for this thesis.  The attitude determination technique incorporates quaternions, so the 

basic attitude quaternion is developed and the relationship to Euler’s equations is given.  

The section concludes with the presentation of a semi-analytic solution to the 

magnetometer-only attitude determination problem.   

4.1.1. Euler’s Equations.  The basic rigid body attitude dynamics problem can be 

modeled using Euler’s equations.  Euler’s equations show that a rigid body’s attitude 

dynamics are dependent on the object's moment of inertia and its angular velocity.  The 

Euler equations that describe the angular velocity of a spacecraft are  
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 (20) 

 

where Ixx, Iyy, and Izz are the principal axes moments of inertia of the spacecraft and τx-z 

are the external torques applied to the satellite.
28

 

4.1.2. Attitude Representation.  The attitude of a spacecraft is often represented 

using a direction cosine matrix.  This matrix represents a rotational transformation from 

one reference frame to another. 

The spacecraft attitude matrix is used to relate the inertial frame to the body frame 

through 

 

 I bAV V  (21) 
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where VI is any vector expressed in terms of the inertial frame and Vb is the same vector, 

expressed in terms of the body frame.  The goal of attitude determination is to find this 

relationship (i.e., determine the A matrix).  The attitude matrix, A, has nine elements and 

is orthonormal.  The problem cannot be solved by knowing one vector in each frame, 

because, as can be seen from Equation (21), there are nine unknowns and only three 

scalar equations.   

 

4.2. QUATERNIONS. 

Quaternions are four-dimensional vectors that can be used to express the attitude 

of an object.  They are manipulated similarly to imaginary numbers.  The benefit of using 

quaternions for this research is the ability to represent the spacecraft attitude using four 

elements instead of the nine elements of the typical attitude matrix.  Quaternions also 

avoid the singularity issue that is commonly a problem when using Euler’s equations.
28

 

4.2.1. Quaternion Introduction.  Quaternions can be used for many applications. 

As mentioned previously, a quaternion is a four-dimensional vector that is treated 

similarly to an imaginary number.  In fact, Hamilton coined the term ―quaternion‖ to 

refer to hyper-complex numbers of rank four.
26

  The fundamental rule for quaternions is  

 

 2 2 2 1i j k ijk      (22) 

 

The above rule applies to the so-called vector part of the quaternion.  The 

quaternion is typically broken up into a scalar and a vector part as 

 

 ,o qq q ν  (23) 

 

The components of vq are usually denoted by q1, q2, and q3.  The next step is to 

define the operations necessary to utilize quaternions.  Addition is performed by simply 

adding components, analogous to adding two four-dimensional vectors.  Quaternions are 

multiplied using the relationship 
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0 0 0 0, q p p qpq p q p q p q     v v v v  (24) 

 

where p and q are quaternions whose scalar components are represented by p0 and q0 

respectively, and vector components are vp and qp respectively.  These relationships are 

important for using quaternions for attitude representation.  Another useful property 

defines the complex conjugate of the quaternion as 

 

 
0 ,c

qq q v  (25) 

 

The conjugate is the same as the inverse for the unit magnitude quaternion.  The 

next section shows how the quaternion and its properties can be used for representing 

attitude dynamics. 

4.2.2. Attitude Representation with Quaternions.  Quaternions can be used to 

describe a rotation in much the same way as the attitude matrix or direction cosine 

matrix.  The attitude quaternion has unit magnitude so the rotation does not affect the 

magnitude of the vector being rotated.  The inverse of the quaternion is the complex 

conjugate, similar to the transpose of the attitude matrix being equal to the inverse of the 

attitude matrix. 

Let q be the attitude quaternion representing the attitude of a spacecraft, and let 

the spacecraft have angular velocity ω.  The attitude matrix A in Equation (21) can be 

expressed in terms of the attitude quaternion q as 
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 (26) 

 

where q0, q1, q2, and q3 are the elements of the attitude quaternion; the latter three make 

up the vector vq.  Note that by using quaternions, the attitude matrix in Equation (26) is a 

function of only four unknowns instead of nine as before.  Only three 
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The quaternion can be used to propagate the attitude through the dynamic 

equation 

 
1

2
q q *

ω  (27) 

where ω
*
 is the quaternion representation of the spacecraft angular velocity, 0,ω .
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4.3. ATTITUDE CALCULATION FROM MAGNETIC FIELD DERIVATIVE. 

The attitude quaternion can be determined from a (somewhat complicated) 

quadratic equation shown in this section.  Several attempts were made to find the solution 

to this equation before the final solution of using a Kalman filter to estimate the attitude 

quaternion was arrived upon.  Test cases were completed that showed the algorithm could 

calculate the attitude when an optimization routine was used to find the attitude and 

angular rates that satisfy the equations.  The algorithm only found the correct solution for 

cases in which the spacecraft had no angular velocity.  When angular velocity was added 

to the simulation, the optimization routine would not converge. 

4.3.1. Attitude Derivation with Matrices.  The basic attitude rotation matrix A 

relates the magnetic field vector when expressed in inertial and body frames through 

 I bAB B  (28) 

The attitude matrix A is a three-by-three matrix with nine separate elements.  All 

elements must be determined to truly know the attitude of the spacecraft.  The known 

quantities in Equation (24) are the magnetic field vector in both frames.  The term BI is 

known from the magnetic field model after inputting the spacecraft position as provided 

from the orbit determination system.  The Bb term is the magnetic field measurement 

obtained directly from the magnetometer.  The matrix equation can be broken down from 

one matrix equation to three scalar equations with nine unknowns.  There are more 

equations relating the different elements of the attitude matrix to each other, which 

decrease the number of unknowns, but these equations are accounted for later. 

Differentiating Equation (24) with respect to time gives 

 

 I b bA A B B B  (29) 
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It should be noted that by taking the derivative, more unknowns are introduced.  

However, by using the magnetometer measurement filter, the magnetic field derivative 

with respect to the body frame can be treated as known.  Also, by finite differencing the 

magnetic field model, the magnetic field derivative with respect to the inertial frame can 

be considered known.  With these two equations, there are now six scalar equations and 

eighteen unknowns.  Although the gap between the number of equations and unknowns 

has grown, by differentiating one more time the second derivative of the attitude matrix 

appears. With an attitude model to determine the angular acceleration on the spacecraft 

due to perturbations, and knowing the control torques, the attitude second derivative can 

be considered to be known.  Also, the second derivatives of the magnetic field vector in 

each frame would need to be calculated.  If these are found, the system has nine equations 

and eighteen unknowns.  Using the fact that the attitude matrix must not affect the 

magnitude of the vector it is transforming, nine more equations are gained, and the 

attitude can be determined.
28

  However, the quaternion method, as described in the next 

section, shows that an analogous approach can be used with quaternion representation 

that does not require the second derivatives to determine the attitude. 

4.3.2. Attitude Derivation with Quaternions.  The quaternion approach uses the 

same basic steps detailed in the above subsection, with quaternion transformations used 

instead of the direction cosine matrix.  It is shown here that the number of equations 

required to solve for the attitude, with the given position and magnetic field 

measurement, is significantly reduced.   

First, start with a basic equation representing the magnetic field vector calculated 

from the measurement as 

 

 0, 0,c

b Iq qB B  (30) 

 

where q is the spacecraft attitude quaternion, and qc is the attitude quaternion conjugate, 

defined in Equation (25). 

When broken down, Equation (30) yields three scalar equations and four 

unknowns (the elements of the attitude quaternion).  Using the same approach as the 

previous section, the time derivative is taken of the magnetic field equation resulting in  
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 0, 0, 0, 0,c c c

b I I Iq q q q q q  B B B B  (31) 

 

Equation (31) represents six scalar equations and eight unknowns.  By using the fact that 

the attitude quaternion has unit magnitude, the constraint equations
26 

 

 2

0 1q qq   v v  (32) 

 

 0 0 1 1 2 2 3 32 2 2 2 0q q q q q q q q     (33) 

 

can be obtained. 

These equations show that enough information can be gathered when using 

quaternions to fully determine the attitude without the need for finding the second 

derivative of the magnetic field vector.  Due to the quaternion’s lack of ―gimbal lock‖ 

issues and the ability to resolve the attitude with fewer equations, the use of quaternions 

was selected over direction cosine matrices (and other options).  Because both of these 

systems are quadratic, however, multiple attitude and attitude rate combinations solve the 

given system, requiring a method by which to resolve the correct attitude solution 

The first attempt to address this issue was to solve the equations with an 

optimization routine.  As long as the initial guess is ―close enough‖ the correct solution 

should be found.  When implemented, however, the estimate was often not sufficiently 

close, causing the optimization routine to diverge.  The solution to this problem, 

presented in the next section, is to use Equations (30, 31, 32, and 33) as the measurement 

equations for a Kalman filter.  The equations relate the measurements Bb and their 

derivatives to the system states, q, and its derivative.  The filter uses the time history of 

the measurements to determine which attitude solution is the correct solution. 
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5. FILTER DESIGN 

This section describes the method by which the magnetometer measurement is 

used to obtain an estimate of the spacecraft attitude.  The algorithm uses two Kalman 

filters: one to estimate the measurement derivatives needed to make the system 

observable, and a second filter to estimate the attitude quaternion and rates.  This section 

describes the process in detail. 

The first step is to realize that the attitude of a spacecraft cannot be determined 

from a single magnetometer measurement alone.  A measurement taken from one attitude 

(orientation) is the exact same as a measurement that would result after rotating the 

satellite (i.e., the magnetometer) about the local magnetic field line.  In typical spacecraft 

bus designs additional sensors provide sufficient information so that a particular set of 

measurements can only lead to one attitude without ambiguity.  In order to perform 

magnetometer-only attitude determination, the time history of measurements must be 

used in some manner to allow the estimator to resolve the attitude about the local 

magnetic field line. The approach used in this study involved the development of a pre-

filter.  This pre-filter uses a Markov model to estimate the derivatives of the magnetic 

field vector. 

 

5.1. EXTENDED KALMAN FILTER. 

The Extended Kalman Filter (EKF) is used for both the pre-filter and the attitude 

filter.  The Kalman filter provides a way to account for inaccuracies in the dynamic 

model of a system by combining sensor measurements with knowledge of the system 

dynamics.  A dynamic model is used that describes the system, and measurements are 

used that can be related to the states of the system, the quantities that are being estimated.  

With knowledge of how accurate the system model is, as well as knowledge of how 

accurate the sensor measurement is, an estimate of the system states is obtained.  The 

Kalman filter propagates the state dynamics and error covariance forward in time.
25 

The EKF calculates the estimate covariance, propagates it, and then uses it to 

update the states. Consider the system 
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   x f x w   (34) 

 

 ( )y h x v   (35) 

 

where y is the measurement, w is the process noise and v is the measurement or sensor 

noise with a mean of zero, and a variance of Q and R, respectively.  A set of partial 

derivative matrices is next defined as 
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 (36) 

 

The F and H matrices in Equation (36) are the Jacobian matrices of the plant and 

measurement, respectively.  The system is numerically integrated including the states and 

the estimate covariance.   

The system dynamics in Equation (34) are used to propagate the states forward in 

time.  The f(x) function describes the system itself.  The model can be very accurate or 

inaccurate, with the process noise, w, used to account for any inaccuracies. The 

covariance propagation equation for the EKF takes the form 

 

 TP PF F P Q    (37) 

 

where P is the estimate covariance, F is the Jacobian of the system dynamics, and Q is 

the process noise covariance.  The results of the integration are known as the a priori 

state estimate and the covariance, and they are designated by a ―bar‖ above the variable.    

Posteriori estimates are designated with a ―caret‖ above them. The estimate and 

covariance are then updated using the equations 
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Results obtained from a Kalman filter are optimal for linear systems, and the 

Extended Kalman Filter is very accurate and robust in most cases.  Another benefit to the 

Extended Kalman filter is that it is very computationally efficient.  If the results in this 

thesis study were not sufficiently accurate to meet the mission requirements of the M-

SAT mission, a nonlinear filtering technique such as the Unscented Kalman Filter (UKF) 

or particle filter would be attempted.  Currently, the EKF provides acceptable accuracy 

while minimizing the impact on the Command and Data Handling subsystem.  

 

5.2. MARKOV MODEL AND PRE-FILTER. 

This section describes how the magnetic field vector is used as a measurement to 

the pre-filter in order to estimate the magnetic field derivative.  The Kalman filter uses a 

third-order Markov process to model the magnetic field.  The model is given by 
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where B is the magnetic field vector and w is white Gaussian process noise.  The filter is 

initialized by using finite differencing on the first three magnetometer measurements.  

The use of a third-order Markov process allows the filter to estimate the first and second 

derivatives of the magnetic field vector as well as the field vector itself.  The third-order 

Markov model used to estimate the magnetic field derivative is given by 
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The model in Equation (40) represents the dynamics of the pre-filter.  The 

measurement is represented by 
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The state dynamics can be represented as  
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The F matrix and measurement matrix, H, for the Kalman filter are given by 
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The Kalman Filter used for the pre-filter calculates the a priori state estimate as  
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The a priori estimate is calculated using the dynamic model.  The covariance is 

propagated using 

 

 
TP FP PF Q    (46) 

 

The update stage of the Kalman filter proceeds as  
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where K is the filter gain, R is the measurement noise covariance, and the caret represents 

a posteriori information.  The new estimate is represented by x̂ . 

The pre-filter results, shown below in Figures 5.1 and 5.2, show the estimates of 

the magnetic field vector and derivative for a simulation running 1000 seconds.  The pre-

filter is evaluated for the baseline case discussed in Section 6.1, which is an orbit with a 

400 km altitude, forty degrees inclination, and an initial spacecraft angular velocity of [2, 

5, 3] degrees per second.  The simulation shows that the magnetic field derivative can be 

accurately estimated even without knowledge of the satellite rotation in the model.  The 

estimates track very closely to the actual data.  The error in the magnetic field vector and 

derivative estimates is shown in Figures 5.3 and 5.4. 
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Figure 5.1. Estimated and Actual Magnetic Field Components 
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Figure 5.2. Estimated and Actual Magnetic Field Derivative Components 
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Figure 5.3. Magnetic Field Vector Component Estimation Error 
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Figure 5.4. Magnetic Field Derivative Vector Component Estimation Error 
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The pre-filter estimates the magnetic field derivative with sufficient accuracy to 

calculate the spacecraft attitude.  The filter can be tuned to obtain improved results 

depending on the situation, but the current initial error covariance and process noise 

covariance provide more consistent results regardless of the simulation conditions 

considered.  The filter parameters are discussed in Section 6.1. 

 

5.3. PSEUDO-MEASUREMENTS AND ATTITUDE FILTER. 

Adding the first derivative of the magnetic field measurement to the attitude filter 

gives two vectors each expressed in terms of two different frames, which from past well-

known attitude determination studies suggests that the TRIAD method may be a good 

choice to calculate the spacecraft attitude.
14

  The TRIAD method is used to determine the 

attitude rotation that results from having two different vectors expressed in two different 

coordinate frames, but if one vector is a derivative, the rotation of the body frame must be 

accounted for in the applicable kinematic equations.  However, the magnetic field 

derivative depends not only on fluctuations in the Earth’s magnetic field, but also on the 

satellite’s angular velocity, due to the magnetic field derivative being expressed in the 

rotating body frame.  The TRIAD algorithm requires all four vectors, two in each frame, 

to be inertially referenced.  This leads to a complication for this study, because the 

attitude rate is needed and there are no onboard sensors to provide the attitude rate.  This 

section shows the adjustment used to make the magnetometer-only system viable. 

The governing equations for the spacecraft attitude quaternion with respect to the 

magnetic field vector and derivative are now used to setup the filter.  Equations (30, 31, 

32, and 33) are used to relate the states, attitude quaternion and spacecraft angular rates to 

the pseudo-measurements, the magnetic field vector and its derivative.  These attitude 

equations provide a system with eight equations and eight unknowns, and this system 

could theoretically be solved.  However, the quadratic nature of the equations leads to 

multiple solutions, and the equations are difficult to solve.  Another approach uses the 

system in a filter that uses a sequence of estimates and measurements to find the best 

estimate without needing to choose between two solutions.  So the next step is to 

construct an Extended Kalman Filter using the magnetic field vector and its derivative as 

measurements and estimate the attitude quaternion and rates. 
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The attitude determination filter is configured to accept the magnetic field and its 

derivative as measurements with the states for the filter as the attitude quaternion and the 

spacecraft angular rates.  The states are related to the measurement through the H matrix 

which is contains the derivatives of the quaternion equations derived in Section 4.  Finite 

differencing is used to calculate the measurement matrix needed for the EKF filter used 

in the attitude determination code. 

The measurements for the attitude filter are  
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By substituting Equations (27, 30, and 31) into Equation (48), the measurements can be 

related to the states as 
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Note that in the above equation, the multiplications are quaternion multiplications and the 

brackets around the magnetic field values add a zero as the first element so that the vector 

becomes a four element vector that can be multiplied with quaternions.  It is also assumed 

that the first element (which is always zero) of each resultant four-element vector is 

removed after the multiplications (in order to preserve the dimension of y having six 

elements instead of eight). 

The system dynamics are represented using quaternion dynamics and Euler’s 

equations as 
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The filter matrices become
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The H matrix for the EKF filter is calculated using finite differencing on the equations 

that represent the measurements in terms of the states as shown in Equation (49). 

To analyze the filter’s performance, a simulation was performed using an orbit 

with a 400 km altitude, zero eccentricity, and a 40 degrees inclination.  This baseline case 

is described in more detail in Section 6.1.  Figure 5.5 shows the attitude angular 

estimation error for the simulation.  The requirement for the ADAC subsystem is that the 

attitude be determined within three degrees with a goal of determination within one 

degree.  Figure 5.5 shows that the requirement for this case would be met, and the goal is 

very close to being met as well.  The error drops to about one degree within about 800 

seconds which corresponds to about one sixth of an orbit. 
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Figure 5.5. Attitude Angular Estimation Error, in Degrees 

 

 

 

The error in the filter states, the attitude quaternion and the angular velocity, are 

shown in Figures 5.6 and 5.7.  The seven states composed of the four elements of the 

attitude quaternion and the three angular rates are both estimated accurately.  The 

components of the attitude quaternion are estimated to within about 0.01, and the angular 

velocity components to within 0.03 degrees per second.  This helps understand why the 

error covariance matrix needs to be small.  When simulating this scenario for the first 

time, the initial error covariance was set relatively high.  An initial spike in the state error 

was exacerbated by a high initial error covariance matrix, and in response the matrix 

diagonals were reduced until the spike was diminished. 
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Figure 5.6. Attitude Quaternion Estimation Error 
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Figure 5.7. Angular Rate Estimation Error in Degrees/Second 
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The histories of the diagonal elements of the error covariance matrix are shown in 

Figure 5.8.  The diagonals start small, and remain small.  The elements corresponding to 

the quaternion show an oscillatory behavior similar to the magnetic field vector 

estimates.  Typically, when using the EKF filter, the diagonal elements of the covariance 

matrix start high, then fall to a fairly constant steady state value.  For this simulation, 

although the behavior is not typical, the matrix diagonal elements stay small and 

bounded, without any signs of divergence.    
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Figure 5.8. A Posteriori State Estimate Covariance Diagonals 

 

 

 

The baseline simulation shows very promising results.  These results are 

dependent on the spacecraft orbit parameters, the mass properties, the spacecraft angular 

velocity, and the filter tuning parameters.  With so many variables, a parametric study is 

needed to evaluate the performance under many different conditions.  Section 6 

summarizes a number of simulations subjecting the filter to a more rigorous test under 

varying conditions. 
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5.4. TUNING AND COVARIANCE. 

The first consideration with tuning addressed the pre-filter.  The estimates for the 

magnetic field derivative must be accurate in order for the method in this study to 

converge to a suitable solution.  Using a Markov model as the model for the filter creates 

some errors.  The Markov model assumes the derivative of one state is the next state, and 

chains the states together until some higher order derivative is assumed to be zero.  Some 

higher-order derivative must be modeled to zero (in this case, the third derivative of the 

magnetic field was set to zero, so the method uses a third order Markov model). 

The method of using a pre-filter to calculate pseudo measurements raises some 

issues regarding how to address the pseudo-measurement noise covariance.  The first 

attempts at creating a working, magnetometer-only attitude algorithm were done by using 

the error covariance of the pre filter to feed directly in as the measurement covariance of 

the attitude filter.  This was unsuccessful, because the propagated error covariance for the 

states of the pre-filter are simply estimates of the true error covariance.  The second 

attempt used the actual error from the pre-filter (note this will not be available in a real-

time on-orbit scenario!) to determine the magnitude of the actual error covariance.  The 

error for the state being used as a pseudo-measurement was then used; however, the 

attitude filter still did not work (no relevant data could be obtained from the estimate).  A 

large oscillation showed spikes of up to 40 degrees error in the attitude estimate at the 

beginning of the simulation, and estimates diverged because the error spike was overly 

excessive from the onset.  To mitigate the effects of the initial spike, the initial error 

covariance matrix was manipulated so that each element had a lower magnitude.  After 

some trial-and-error, it was determined that the initial covariance for this simulation 

needed to be very small relative to most applications.  When the initial covariance was 

lowered, the attitude error was bounded, usually to around ten to fifteen degrees of error 

in the attitude.  Further tuning showed that in order to obtain the accuracy needed from 

the algorithm; the filter must ―believe‖ that the pseudo-measurement is not as good as the 

pre-filter error plots show.  By raising the measurement covariance corresponding to the 

pseudo-measurement, the estimation errors in the attitude filter dropped to very 

acceptable levels.  
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6. SIMULATION RESULTS 

6.1. BASELINE INITIAL CONDITIONS AND RESULTS. 

In order to properly perform a parametric analysis, a baseline set of conditions 

must be set and the performance analyzed for comparison.  A baseline case was defined 

using a circular, 400 km altitude orbit.  The orbital inclination is set to forty degrees 

because that is the minimum inclination MR SAT can be placed in and still communicate 

with the Missouri S&T ground station, and it falls conveniently near the middle of the 

range between polar and equatorial.  The right ascension is arbitrarily set to ten degrees.  

Because of the time dependence of the magnetic field, a simulation start date must be 

given.  The simulations in this thesis assume the epoch time is March 28, 2011.  The 

initial conditions for the attitude quaternion and angular rates are arbitrarily selected as 
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The model is propagated for 1000 seconds.  The attitude rates change slowly over 

time due to the asymmetries in the spacecraft resulting in unequal principle moments of 

inertia.  The principle moments of inertia for the MR SAT spacecraft are 
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The measurements, which consist of the Earth’s magnetic field vector 

components, are generated by adding Gaussian noise to the magnetic field truth model.  

The noise is assumed to be white noise with a norm of zero and a mean of three degrees.  

The noise is added in an angular manner because the magnetometer specifications state a 

one degree error in the magnetic field measurement.  The measurement is assumed to be 

random within a three degree cone of the true vector. With the simulation of the truth 

model, described in Section 4, complete, the next step is to initialize the filter and run the 

attitude determination algorithm.  The pre-filter is initialized exactly as it was for the 

results in Section 5.  The pre-filter does not need to be adjusted for each individual 

simulation, and is not for the results presented in this thesis.  There is the possibility, 

however, that in certain orbits, adjusting the weights on the Markov model or the 

measurements could improve the results because the pre-filter could be subject to 

sensitivities in the magnetic field fluctuations.  In this research, it is assumed that the pre-

filter is a standalone add-on to the attitude filter that does not need to be adjusted. 

The filter states are the attitude quaternion and the angular rates.  The initial 

estimates for each of the simulations in the parametric analysis (unless otherwise noted) 

are assumed as 
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These filter initial conditions reflect an 11.48 degree attitude error and a 10% 

error in the initial angular velocity estimate.  These estimates can be updated by using 

data available from the launch vehicle provider on expected tip off rates when the 

spacecraft is ejected onto orbit. 
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The pre-filter initial error covariance matrix for the simulation is set to  
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The pre-filter measurement noise covariance is 
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The pre filter process noise covariance is  
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 The weights for the magnetic field pre-filter were set by trial and error, but with a 

logical approach. The tuning process incorporated the fact that the angular velocity of the 

spacecraft is not present in the model, which means a higher weight on the measurement 

is preferred when the angular velocity is high.  By weighting the measurement more than 

the process noise, the filter will ―trust‖ the measurements more, and it was clear from 

simulations that if the process noise covariance was raised, the estimate of the magnetic 

field vector shifted out of phase from the true direction when the angular velocity is 

increased. 

The attitude filter initial error covariance matrix was required to be set low in 

order for the filter to function.  The error covariance matrix for these simulations is 

 

 
3

4 4

4

3 3

1 10 0

0 1 10

x

x

I
P

I





 
  

 
 (60) 

  



 

 

50 

The attitude filter measurement noise covariance matrix, R, and process noise 

covariance matrix, Q, were chosen as 
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The weight selection for the attitude filter was also chosen through trial and error.  

The error covariance matrix needed to be set very low.  If it were too high, the attitude 

estimate would diverge.  The estimation error spiked at the beginning of the simulation, 

and if the error covariance matrix was not set sufficiently low to lower the spike, the 

estimate diverged.  The first attempts at selecting a measurement noise covariance matrix 

for the attitude filter involved using the error covariance estimates from the pre-filter in 

the attitude filter.  The results produced were not acceptable.  The measurement 

covariance matrix elements needed to be increased for the filter to work properly. 

The pre-filter produces a magnetic field vector and derivative estimate that is 

adequate to drive the attitude filter.  The results (in Figures 6.1 - 6.8) show that the 

magnetic field vector is tracked very well, and the magnetic field derivative is tracked, 

but shows much more noise than the magnetic field vector estimate. 
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Figure 6.1.  Magnetic Field Vector Baseline Estimation 
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Figure 6.2.  Magnetic Field Vector Baseline Estimation Error 
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Figure 6.3.  Magnetic Field Vector Derivative Baseline Estimation 
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Figure 6.4.  Magnetic Field Vector Derivative Baseline Estimation Error 
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Figure 6.5.  Angular Error in Spacecraft Attitude, in Degrees 
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Figure 6.6.  Attitude Quaternion Error 
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Figure 6.7.  Angular Rate Estimation Error in Degrees/Second 
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Figure 6.8.  Diagonal Elements of A Posteriori Covariance Matrix 

 



 

 

55 

The plot of the magnetic field vector components show the oscillations in the 

magnetic field vector are mostly due to the spacecraft rotation.  Comparisons between the 

baseline case and the low and high angular velocity cases show the oscillations increase 

from very low to very high as the angular velocity increases.  The error covariance matrix 

diagonal elements are initialized very low because of the error spike at the beginning of 

the simulation.  This causes the covariance diagonal elements to actually increase from 

the initial condition, unlike the typical filter setup.  Though the error covariance 

diagonals, shown in Figure 6.8, remain low and bounded (simulations that have been run 

over longer time frames show the bounded nature), the noise and nonlinearities cause 

fluctuations in the value.  The next subsection shows how the filter simulation responds 

to changes in orbit and initial conditions. 

 

6.2. PARAMETRIC ANALYSIS. 

With the attitude determination algorithm working for baseline cases, the system 

must be tested for robustness and reliability by varying mission parameters to identify 

any ambiguities or singularities, if any.  The simulations in this section use the same 

initial conditions as the baseline case, only varying the parameter of interest to be 

analyzed. 

6.2.1. Altitude.  The first parameter varied in the magnetometer-only attitude 

determination algorithm is the altitude.  The spacecraft orbital altitude is important 

because the magnetic field decreases in intensity as altitude increases.  It is important to 

determine if there is a limit as to how high in orbital altitude the algorithm will perform 

adequately.  Common sense suggests that the algorithm should work better at lower 

altitudes because of the higher magnitudes of the magnetic field vector and because the 

derivative is likely changing more rapidly.  

The first simulation is performed with an altitude of 3,000 km.  The baseline 

altitude of 400 km is sufficiently low to define the minimum altitude considered.  The 

only change in the simulation of the baseline case and the results shown below is the 

altitude increase.  The new altitude of 3000 km was chosen because it was the next 

lowest altitude considered that showed a significant change in the results.  The results in 

Figures 6.9-6.16 show an increase in accuracy as the altitude increases. 
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Figure 6.9.  Magnetic Field Vector Estimation for 3,000 km Altitude 
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Figure 6.10.  Magnetic Field Vector Estimation Error for 3,000 km Altitude 
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Figure 6.11.  Magnetic Field Vector Derivative Estimation for 3,000 km Altitude 
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Figure 6.12.  Magnetic Field Vector Derivative Estimation Error for 3,000 km Altitude 
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Figure 6.13.  Angular Error in Spacecraft Attitude, in Degrees, for 3,000 km Altitude 
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Figure 6.14.  Attitude Quaternion Estimation Error for 3,000 km Altitude 
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Figure 6.15.  Angular Velocity Estimation Error in Degrees/Second for 3,000 km 

Altitude 
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Figure 6.16.  A Posteriori Error Covariance Estimation for 3,000 km Altitude 
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The results of the 3,000 km simulation show that the estimation error of the pre-

filter is decreased with the large increase in altitude.  There is marginal change in the 

overall attitude error for the simulations.  It is important to now examine a simulation at a 

much higher altitude to determine if the accuracy trend continues.  Figures 6.17-6.24 

show the results of such a simulation with the altitude increased to 10,000 km. 
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Figure 6.17.  Magnetic Field Vector Estimation for 10,000 km Altitude 
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Figure 6.18.  Magnetic Field Vector Estimation Error for 10,000 km Altitude 
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Figure 6.19.  Magnetic Field Vector Derivative Estimation for 10,000 km Altitude 
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Figure 6.20.  Magnetic Field Vector Derivative Estimation Error for 10,000 km Altitude 
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Figure 6.21.  Angular Error in Spacecraft Attitude, in Degrees, for 10,000 km Altitude 
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Figure 6.22.  Attitude Quaternion Estimation Error for 10,000 km Altitude 

 

 

 

0 100 200 300 400 500 600 700 800 900 1000
-1

0

1

w
x
 e

rr
o
r

0 100 200 300 400 500 600 700 800 900 1000
-1

0

1

w
y
 e

rr
o
r

0 100 200 300 400 500 600 700 800 900 1000
-0.5

0

0.5

w
z
 e

rr
o
r

time, sec

 
Figure 6.23.  Angular Velocity Estimation Error in Degrees/Second for 10,000 km 

Altitude 
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Figure 6.24.  A Posteriori Error Covariance Estimation for 10,000 km Altitude 

 

 

 

The results of the 10,000 km simulation show that the accuracy increase of the 

pre-filter continues as the altitude is increased.  The attitude angular error reflects the 

increased pseudo-measurement accuracy for this case.  The error decreases faster from 

the initial offset and is lower than the lower altitude simulations.  This confirms that the 

algorithm accuracy does indeed improve for higher altitudes.  The algorithm should 

eventually break down when there is no longer a magnetic field to measure.  There is an 

explanation for the improvement with altitude.  The Billingsley magnetometer data sheet 

declares one degree accuracy in the direction of the magnetic field, so the attitude code 

adds three degrees (three sigma) of normally distributed noise to the pointing direction of 

the ―true‖ magnetic field vector without changing its magnitude.  Officially, the filter 

uses only the vector elements for the attitude calculation.  Adding three degree noise at a 

higher altitude, when the magnetic field vector magnitude is lower, changes the magnetic 

field vector elements less than adding three degrees at a lower altitude where the 

magnetic field vector magnitude is higher.  Essentially the higher altitude case has higher 
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accuracy measurements of the magnetic field components.  In reality, this would 

probably not be the case, but there is no data from Billingsley on the sensor performance 

for varying altitudes. 

6.2.2. Inclination.  Inclination change is the orbit parameter that most drastically 

affects the variance of the value of the magnetic field vector during orbit.  The local 

magnetic field changes significantly as the position of the satellite moves over the poles.  

In contrast, the magnetic field at the equator is fairly constant as a spacecraft moves along 

an equatorial orbit.  It is very important to test the effect of inclination on the attitude 

determination algorithm.  This section shows the results of two more simulations: a polar 

orbit and an equatorial orbit. 

The polar orbit is expected to perform better because the magnetic field vector is 

more dynamic, theoretically making the problem more observable.  Figures 6.25-6.32 

show the results of this simulation, with the altitude returned to the baseline value of 400 

km. 
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Figure 6.25.  Magnetic Field Vector Estimation for Polar Orbit 
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Figure 6.26.  Magnetic Field Vector Estimation Error for Polar Orbit 

 

 

 

0 100 200 300 400 500 600 700 800 900 1000
-100

0

100

B
d
o
tx

, 
m

G
/s

 

 

Estimate

Actual

0 100 200 300 400 500 600 700 800 900 1000
-100

0

100

B
d
o
ty

, 
m

G
/s

0 100 200 300 400 500 600 700 800 900 1000
-100

0

100

B
d
o
tz

, 
m

G
/s

time, s

 
Figure 6.27.  Magnetic Field Vector Derivative Estimation for Polar Orbit 
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Figure 6.28.  Magnetic Field Vector Derivative Estimation Error for Polar Orbit 
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Figure 6.29.  Angular Error in Spacecraft Attitude, in Degrees, for Polar Orbit 
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Figure 6.30.  Attitude Quaternion Estimation Error for Polar Orbit 

 

 

 

0 100 200 300 400 500 600 700 800 900 1000
-0.5

0

0.5

w
x
 e

rr
o
r

0 100 200 300 400 500 600 700 800 900 1000
-1

0

1

w
y
 e

rr
o
r

0 100 200 300 400 500 600 700 800 900 1000
-0.5

0

0.5

w
z
 e

rr
o
r

time, sec

 
Figure 6.31.  Angular Velocity Estimation Error in Degrees/Second for Polar Orbit 
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Figure 6.32.  A Posteriori Error Covariance Estimation for Polar Orbit 

 

 

 

The results for a polar orbit at 3000 km altitude are very similar to the results of 

the forty degree inclination baseline case.  There is little difference in convergence time 

or steady state error. 

Figures 6.33-6.40 show the baseline simulation with the inclination lowered such 

that the orbit is now an equatorial orbit.  This is one of cases of concern for testing the 

limits of the new algorithm, because the magnetic field does not change as rapidly in an 

equatorial orbit.  The spacecraft attitude rotation should be helpful to the estimation; 

however, if the spacecraft happens to be rotating about an axis nearly aligned with the 

magnetic field vector (which is more likely to occur in an equatorial orbit, but still 

unlikely) the problem is unobservable. 
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Figure 6.33.  Magnetic Field Vector Estimation for Equatorial Orbit 
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Figure 6.34.  Magnetic Field Vector Estimation Error for Equatorial Orbit 
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Figure 6.35.  Magnetic Field Vector Derivative Estimation for Equatorial Orbit 
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Figure 6.36.  Magnetic Field Vector Derivative Estimation Error for Equatorial Orbit 
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Figure 6.37.  Angular Error in Spacecraft Attitude, in Degrees, for Equatorial Orbit 
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Figure 6.38.  Attitude Quaternion Estimation Error for Equatorial Orbit 
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Figure 6.39.  Angular Velocity Estimation Error in Degrees/Second for Equatorial Orbit 
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Figure 6.40.  A Posteriori Error Covariance Estimation for Equatorial Orbit 
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The equatorial orbit inclination does have a significant effect on the estimation of 

the attitude.  By examining the magnetic field derivative plot (Figure 6.35), it can be seen 

that the rate of change of the magnetic field vector is about half of the previous, polar 

orbit simulation.  Even though the error plot shows that the magnetic field is estimated to 

roughly the same error level, the lower magnitude means that the amount of error will 

have more significant impact.  The angular error is still decreasing at the end of the 

simulation, so an additional simulation was run to see if the steady state drops below five 

degrees estimation error.  A simulation was run for 6000 seconds instead of 1000 to show 

the steady state error, as shown in Figure 6.41.  The error eventually converges to around 

the same as all of the other simulations, taking approximately ten times longer to reach 

steady-state.  The algorithm appears to be sufficiently robust to successfully converge to 

the proper attitude when faced with the observability challenges from equatorial orbits 

(given a longer period of time).  The algorithm appears to require a longer time history of 

the magnetic field data in order to converge to an estimate. 
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Figure 6.41.  Angular Error in Spacecraft Attitude, in Degrees, for Equatorial Orbit at 

6000 s 

 



 

 

75 

6.2.3. Spacecraft Angular Velocity.  The spacecraft angular velocity is a critical 

parameter in this algorithm.  Because there is no measurement of the angular rates, and 

the measurements of the magnetic field and its derivative vary largely with angular 

velocity, there is the potential for difficulties with certain angular velocities.  There are 

two expected issues with the angular velocity. It has been determined through previous 

simulations that a more rapid change in the magnetic field vector leads to better accuracy. 

It can thus be assumed that as the spacecraft rotates faster the attitude determination 

accuracy will increase.  A low rotation rate lowers the amount that the magnetic field 

vector changes between each measurement and should lower the observability. 

The second issue is with high angular velocity.  The higher the angular velocity, 

the faster filter response time required.  Tuning the filter earlier, the response time of the 

filter was purposefully slowed minimize over corrections.  This could pose a concern, 

and a case with angular velocity much higher than anticipated for the M-SAT mission is 

included in this study. 

The simulation results shown in Figures 6.42-6.49 reflect a decrease in the 

angular velocity to values that have been determined by trial-and-error to be at the lower 

limit at which the algorithm can successfully converge.  The attitude estimate diverges 

for zero angular velocity.  This failure could be avoided by inducing a spin about an axis 

that is unimportant for the mission success criteria.  It is also possible that further tuning 

of the Kalman filters could allow for the solution to be found in this case.  It was found 

that by varying the weights, the performance in the zero angular velocity case could be 

improved; however, the performance in cases with nonzero angular velocity was then 

decreased.  The attitude filter estimate has a bias in the zero angular velocity case that 

causes the algorithm to ―believe‖ the spacecraft is rotating slowly.  In this thesis study, 

the low spacecraft angular velocity case has the initial value 
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The MR SAT spacecraft nominal attitude requires a rotation of 360 degrees per 

orbit, which leads to an angular velocity of approximately 0.06 degrees per second.  The 

algorithm at this time will not converge to a proper estimate unless there is about a tenth 

of a degree per second or more along one axis.  For the method presented here to work, a 

slight spin will need to be induced.  The results for the low angular velocity case show 

that the attitude error drops to less than one degree but requires more time to reach steady 

state. 

Figure 6.42 shows that the magnetic field vector does not oscillate as in the other 

simulations, because most of the variance in the magnetic field vector is due to the 

spinning of the spacecraft and the angular velocity is greatly reduced for this simulation. 
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Figure 6.42.  Magnetic Field Vector Estimation for Low Angular Velocity 
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Figure 6.43.  Magnetic Field Vector Estimation Error for Low Angular Velocity 
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Figure 6.44.  Magnetic Field Vector Derivative Estimation for Low Angular Velocity 
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Figure 6.45 shows that the error in the estimation of the magnetic field derivative 

is of the same order of magnitude as those in previous simulations.  It would be easier to 

rationalize if the error in the magnetic field estimate were increased.  With a reasonable 

estimate of the magnetic field and derivative the filter should be able to find an accurate 

estimate for the attitude, but yet the algorithm fails.  This leads to the assumption that the 

problem is in the attitude filter itself.  The problem may be as simple as tuning the filter, 

but the evidence appears to show that the pre-filter is not at fault. 
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Figure 6.45.  Magnetic Field Vector Derivative Estimation Error for Low Angular 

Velocity 
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Figure 6.46.  Angular Error in Spacecraft Attitude, in Degrees, for Low Angular Velocity 
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Figure 6.47.  Attitude Quaternion Estimation Error for Low Angular Velocity 
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Figure 6.48.  Angular Velocity Estimation Error in Degrees/Second for Low Angular 

Velocity 
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Figure 6.49.  A Posteriori Error Covariance Estimation for Low Angular Velocity 
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The simulation showed that orbits with low angular velocity are more difficult to 

solve using magnetometer-only determination.  The convergence time of the algorithm 

was much higher in the zero angular velocity case than for the nonzero cases.  It is 

important to note the other differences in this simulation compared to the others 

presented.  The quaternion and angular velocity estimation errors show a bias, or a lack 

of convergence.  The errors in previous simulations quickly converge and oscillate 

slightly around zero.  The covariance diagonal elements also behave differently than the 

other simulations.  The diagonal elements vary more slowly, and do not show the 

bounded behavior seen earlier. 

The simulation results shown in Figures 6.50-6.57 are for the case where the MR 

SAT spacecraft rotates at 20 degrees per second along each axis.  The results show an 

improvement over the baseline case.  The maximum tip-off angular velocity expected to 

be experienced by MR SAT is five degrees per second (even after a factor of safety), so 

this case should effectively test the viability of using the algorithm in this situation. 
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Figure 6.50.  Magnetic Field Vector Estimation for 20 Degrees/Second Angular Velocity 
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Figure 6.51.  Magnetic Field Vector Estimation Error for 20 Degrees/Second Angular 

Velocity 
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Figure 6.52.  Magnetic Field Vector Derivative Estimation for 20 Degrees/Second 

Angular Velocity 
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Figure 6.53.  Magnetic Field Vector Derivative Estimation Error for 20 Degrees/Second 

Angular Velocity 
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Figure 6.54.  Angular Error in Spacecraft Attitude, in Degrees, for 20 Degrees/Second 

Angular Velocity 



 

 

84 

0 500 1000
-0.2

-0.1

0

0.1

0.2

q
0
 e

rr
o
r

time, s

0 500 1000
-0.1

-0.05

0

0.05

0.1

q
1
 e

rr
o
r

time, s

0 500 1000
-0.1

-0.05

0

0.05

0.1

q
2
 e

rr
o
r

time, s

0 500 1000
-0.2

-0.1

0

0.1

0.2

q
3
 e

rr
o
r

time, s
 

Figure 6.55.  Attitude Quaternion Estimation Error for 20 Degrees/Second Angular 

Velocity 
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Figure 6.56.  Angular Velocity Estimation Error in Degrees/Second for 20 

Degrees/Second Angular Velocity 
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Figure 6.57.  A Posteriori Error Covariance Estimation for 20 Degrees/Second Angular 

Velocity 

 

 

 

The simulation with twenty degrees per second angular velocity along each axis 

shows that the results improve with increasing angular velocity.  This can be explained 

by considering the dynamics of the problem.  As the magnetic field vector changes more 

rapidly, the derivative vector magnitude increases, and will be easier to estimate.  The 

angular velocity is thus important to consider when using this algorithm.  Spacecraft that 

do not rotate may encounter difficulty in obtaining an accurate attitude estimate, 

especially near an equatorial orbit. 

6.2.4. Error in GPS Measurements.  The last parameter to be examined for the 

parametric analysis is error in the GPS measurement.  The magnetometer-only algorithm 

relies on the position of the satellite being known so that the model can calculate the 

magnetic field vector and its derivative to use in the calculation of the estimated magnetic 

field in the body frame.  The attitude determination filter performance could be degraded 

by inaccuracies in the spacecraft position estimation.  In this study, a simulation was 

conducted in which half a kilometer of normally distributed, zero mean noise was added 

to the spacecraft position and the simulation converged to a solution without any apparent 

difficulties.  The results for the simulation are shown in Figures 6.58-6.65. 
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Figure 6.58.  Magnetic Field Vector Estimation for 0.5 km Position Error 

 

 

 

0 100 200 300 400 500 600 700 800 900 1000
-50

0

50

B
x
 E

rr
o
r,

 m
G

0 100 200 300 400 500 600 700 800 900 1000
-20

0

20

B
y
 E

rr
o
r,

 m
G

0 100 200 300 400 500 600 700 800 900 1000
-20

0

20

B
z
 E

rr
o
r,

 m
G

time, s

 
Figure 6.59.  Magnetic Field Vector Estimation Error for 0.5 km Position Error 
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Figure 6.60.  Magnetic Field Vector Derivative Estimation for 0.5 km Position Error 
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Figure 6.61.  Magnetic Field Vector Derivative Estimation Error for 0.5 km Position 

Error 
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Figure 6.62.  Angular Error in Spacecraft Attitude, in Degrees, for 0.5 km Position Error 
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Figure 6.63.  Attitude Quaternion Estimation Error for 0.5 km Position Error 
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Figure 6.64.  Angular Velocity Estimation Error in Degrees/Second for 0.5 km Position 

Error 
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Figure 6.65.  A Posteriori Error Covariance Estimation for 0.5 km Position Error 
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The half kilometer of position error added to the simulation shows that the 

relatively small change in the magnetic field is not enough to significantly affect the 

attitude determination algorithm.  The spinning of the spacecraft would cause a much 

larger change in the magnetic field vector than the position of the spacecraft.  Extremely 

accurate position information is not vital for the attitude algorithm to provide a suitable 

attitude estimate. 
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7. CONCLUSIONS 

7.1. COMPLETED WORK. 

This thesis describes the development of an attitude determination algorithm that 

can rely solely on magnetometer measurements and achieve accuracies of less than one 

degree.  The algorithm was tested through a rigorous parametric study, and conclusions 

were drawn about the performance of the attitude determination system.  The algorithm 

can be used for low-cost satellites where only a single sensor can be procured, or as a 

contingency to a more accurate system that may experience a system failure or gap in 

measurements.  The software has been tuned to run efficiently, though there are some 

improvements suggested in the Future Work section. 

The method developed is effective when the angular velocity along at least one 

axis is higher than one tenth of a degree per second.  Unfortunately, this is higher than the 

ideal, normal operating conditions for MR SAT.  A solution to the problem could be to 

induce a slight rotation about a non-essential axis.  The problem seems to be caused by an 

observability issue with the EKF filter formulation when the angular velocity is zero.  

However, future modifications or tuning may alleviate the problem.  From the 

simulations conducted, it was observed that increasing the initial covariance diagonals 

slowed or stopped the divergence of the algorithm.  Raising the covariance diagonals, 

however, causes divergence in cases with nonzero angular velocity.  The results 

presented in this thesis study are meant to show how robust the algorithm is to varying 

conditions, as well as find its flaws.      

It is important to note that this system was developed for the MR SAT spacecraft 

and although the system is portable to other spacecraft, the system seems to fail for any 

fully symmetric satellite.  The algorithm has some complications that may need to be 

resolved with additional tuning if the spacecraft has zero angular velocity as well.  And 

lastly, the algorithm has occasional convergence difficulties if the spacecraft is in an 

equatorial orbit.  The tuning of the two nested Kalman filters was a very important factor 

in ensuring convergence of the algorithm to a suitable attitude solution.  One issue 

noticed was when the initial covariance matrix is too large.  The correction at the 

beginning of the simulation causes the estimates to diverge if the initial covariance matrix 
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is too large.  Also, if the weights on the pseudomeasurements are too low, the system will 

perform less accurately.  Determining the weights on the pseudomeasurements was a 

difficult task because there are no sensor data to determine the noise covariance.  The 

first attempt was to use the error covariance of the pre-filter as the measurement noise 

covariance of the attitude filter, but the values were too low for the filter to succeed. 

 

7.2. FUTURE WORK. 

There are a few aspects that can be completed in order to improve the algorithm, 

either in accuracy or in computational efficiency.  The first item that should be addressed 

is that the derivative of the magnetic field should be able to be analytically determined.   

A program was written to solve this problem, but it was never fully debugged.  The 

alternative was to use finite differencing on the magnetic field model to find the 

derivative.  Although this has proven to be effective, the analytical solution would be 

much more computationally efficient. 

A second improvement to would be to add attitude perturbations and control to 

the system.  There should be no difficulties with the algorithm when encountering a 

changing angular velocity (the asymmetries cause this effect anyway).  The algorithm is 

improved in situations where the magnetic field body frame measurement is more 

dynamic, so adding an actual attitude model to the system dynamics should improve the 

results.  Such a model would include solar radiation pressure effects, drag, and gravity 

gradient effects.  These can easily be modeled and added to the attitude model that the 

filter uses to predict the future attitude. 

Magnetometer calibration is also a concern for this type of attitude system.  The 

spacecraft will produce residual magnetic fields from electronic components.   Also, 

some missions (including MR SAT) have magnetic torque coils or rods.  These attitude 

control devices cause control torques by creating a magnetic field that reacts with Earth’s 

magnetic field.  The magnetic field vector created by the torque coils will interfere with 

the measurement from the magnetometer.  There are a couple of approaches to mitigate 

these effects.  The first method would be to determine the Earth’s magnetic field vector 

from the measurement by using the known magnetic field vector generated by the coils.  

This would require calibration of the magnetometer inside the completed satellite with 
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the coils activated.  Using the known values before the coil is activated, and the 

measurements after they are activated, will allow for the disturbance to be accounted for 

and removed.  The same process can be used for the residual magnetic field created by 

the electronic components.  The amount of interference may also depend on the operating 

mode of the spacecraft.  Another solution is to add states to the pre-filter to calculate and 

remove the interference.  This is only necessary if the filter is unable to filter out the 

residual magnetic field when it filters the measurement, but only full-scale, fully 

integrated testing will determine what is necessary.  
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