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ABSTRACT 

This study addresses depth-of-cut detection and tool-workpiece engagement using 

an acoustic emission monitoring system during milling machining for a deposited 

material. Online detection of depth-of-cut presents many technical difficulties. 

Researchers have used various types of sensors and methods to assess the depth-of-cut 

and surface errors. Due to the strong correlation between acoustic emission and cutting 

depth during the depth end milling process, it is useful to forecast the depth-of-cut from 

the acoustic emission signal. This work used regression analysis to model and detect the 

depth-of-cut. The experiments were carried out on a Fadal vertical 5-Axis computer 

numerical control machine using a carbide end-mill tool, and a piezoelectric sensor 

(Kistler 8152B211) was used to acquire the acoustic emission signal. A National 

Instruments real-time system, combined with a National Instruments LabVIEW graphical 

development environment, was used as a data acquisition system. A series of experiments 

were conducted to create a depth-of-cut model. The inputs were used to predict depth-of-

cut are the identified root mean square of the acoustic emission, spindle speed, feed rate, 

and tool status. The effects of these inputs were evaluated using a fractional factorial 

design-of-experiment approach. 
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NOMENCLATURE 

Symbol Description         

T   The Generated Electric Field 

C   Sensor Material's Piezoelectric Stress Constant 

E   Sensor's Young's Modulus 

L   Material Length 

ΔL   The Change in Length 

V  Voltage Across the Sensor 

RMS  Root Mean Square 

V (t)   The Signal Function 

ΔT  Time Period 

T   Engagement or Disengagement Time 

D  Tool Diameter 

F     Feed Rate 

α    Rake Angle 

∅   Shear Angle 

��   Shear Strength 

ap   Axial Depth-of-cut 

U   Cutting Velocity 

l    Chip-tool Contact Length 

l1   Length of Sticking Zone 

t1   Feed Load 
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W   Average Flank Wear Land 

N   Cutting Speed 



1. INTRODUCTION 

1.1 THE NEED FOR A DEPTH-OF-CUT DETECTION SYSTEM 

Automation of manufacturing processes has become popular because it increases 

the quality and accuracy of the parts produced and reduces both costs and production 

time. However, automated manufacturing of metallic structures has thus far been limited 

to determination of the building sequence, optimization and evaluation of the feasibility 

of direction of the machining process. 

One of the difficulties using an adaptive control and tool monitoring system is 

accurate representation of the variation in machining variables such as cutting speed, feed 

rate, and depth-of-cut. In the end-milling process, particular changes in depth-of-cut must 

be carefully considered to ensure the effectiveness of the control system. 

Previous studies on end-milling has treated depth-of-cut as a constant for 

simplicity, however, this approach is a distortion of reality. Depth-of-cut is difficult to 

control because of the irregular shape of workpieces, the imprecision of locating 

workpieces on the machine, and machining errors from prior cutting. Even if such 

elements are accurately accounted for before the final machining, the location of the 

cutter must consistently follow the change in workpiece shape, especially when a 

complex part is machined. Any effective automation method must address these issues. 

One manufacturing process that depends on depth-of-cut detection and 

monitoring is hybrid manufacturing. The approach of hybrid manufacturing addressed in 

this study uses two manufacturing processes, one process builds a metal part using laser 

deposition and the other process finishes the part using a milling process. The ability to 

produce complete functioning parts in a short time with minimal cost and energy 
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consumption has made hybrid manufacturing popular in many industries for parts repair 

and rapid prototyping.  Using an acoustic emission signal, the axial depth-of-cut can 

define a range of calculations for tool deflection and thus for depth-of-cut. This research 

focuses on detection of the depth-of-cut online during the milling process. Due to 

deposition defects and uncertainties involved in depositing the required amount of 

material [2], production of precision surfaces can be challenging. Therefore, a sensing 

system is necessary to detect the depth-of-cut and tool-workpiece engagement by using 

an acoustic emission monitoring system. 

1.2 RESEARCH OBJECTIVES 

This research had two primary objectives. First, it established a methodology to 

detect an acoustic emission signal, so that the acoustic emission characteristics of the 

milling could be analyzed. Second, it sought to relate these acoustic data to machining 

parameters to detect depth-of-cut. 
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2. BACKGROUND AND LITERATURE REVIEW 

2.1. MONITORING OF MACHINING OPERATIONS  

Various factors can indicate a change in cutting conditions such as depth-of-cut 

and tool status. These include force, temperature, and acoustic emissions. In monitoring 

the machining operations, a range of sensors has been used to evaluate these indicators, 

and a close correlation has been identified between sensor outputs and specific indicators 

[1-3, 6, 8-16]. Raw signals must be processed to extract information such as root mean 

square, amplitude, event, and rise time. Machine operators or a machine tool numerical 

controller can then use this information to suggest or execute appropriate adaptive or 

corrective actions [16]. Figure 2.1 illustrates the steps in the depth-of-cut monitoring 

process. The steps can be surmised as follows: 

1- Acquire the acoustic emission signal using a piezoelectric sensor. 

2- Extract features, and calculate the root mean square.  

3- Process the signal to determine the relationship between the depth-of-cut and the 

root mean square. 

4- Estimate the depth-of-cut using a regression model. 

5- Compare the detected depth-of-cut to the required depth-of-cut, and take the 

appropriate action based on the results. 

2.2. ACOUSTIC EMISSIONS 

According to the American Society for Testing Materials acoustic emissions are 

elastic waves emitted from sources inside a material as a result of the sudden release of 
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energy during metal deformation [22]. Acoustic emissions have been used in many areas, 

such as tool wear detection and nondestructive testing.   

Figure 2.1.  Steps of the Depth-of-Cut Monitoring Process 

Since Joseph Kaiser’s early work in the 1950s many researchers have used the 

acoustic emission phenomena in non-distractive testing and tool monitoring. Acoustic 
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emissions have become an important tool for instrumentation and monitoring due to the 

great advances in signal classification, instrumentation, and sensors. Kaiser was the first 

to use electronic instrumentation to detect audible sounds produced by metals during 

deformation [7]. He observed that acoustic emission activity was irreversible. In other 

words, acoustic emissions do not generate during the reloading of a material until the 

stress level exceeded the previous high load.  This irreversibility has become known as 

“Kaiser’s Effect,” and it has proved to be very useful in acoustic emission studies.  Kaiser 

also proposed a distinction between burst and continuous emission, where the acoustic 

emissions are attributed to friction between grains. 

In recent years, acoustic emission sensors designed for the automated 

manufacturing environment have been very successful. Acoustic emissions occur over a 

wide frequency range, but most often from 100 kHz to 1 MHz. The main benefit of using 

acoustic emission sensors in monitoring manufacturing processes is that the vibrations of 

the machine and ambient noises have a much narrower frequency range than does the 

acoustic emission signal. Thus, the received signal is mostly free of noise unrelated to the 

cutting process. However, interpretation of the acoustic emission data requires 

considerable testing experience and background knowledge. 

2.3. THE ACOUSTIC EMISSION SENSOR  

The acoustic emission sensor is a piezoelectric transducer usually made from a 

lead zirconate titanate (PZT), or single crystal materials. These materials generate an 

electrical charge as a result of applied mechanical force and generate a mechanical force 

as a result of an applied electrical field. This phenomenon is known as the piezoelectric 
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effect. The deformation of material produces elastic stress waves which apply mechanical 

forces on the face of the sensor with very small amplitude. These waves can be detected 

by the sensor in a wide frequency range but typically from 100 kHz to 1 MHz and 

convert them into a voltage. Figure 2.2 illustrates the assembly of a piezoelectric sensor. 

The acoustic emission wave received by the sensor causes stress expressed as E (ΔL/L) 

where E is the sensor's Young's modulus, L its length, and ΔL is the change in its length 

[18]. The stress generates an electric field expressed as 

� � � � � �∆

 � �1�

where C is the sensor material's piezoelectric stress constant. The voltage across the 

sensor, is then

� � � � � � ∆
 �2�

the usual values of C and E for PZT are 24.4 x 10-3 V rn/N and 58.5 GPa, respectively. 

With an amplifier a voltage as small as 0.01 mV can be detected. 

2.4. ACOUSTIC EMISSION SIGNAL SOURCES  

During machining, the load on the material can reach the material’s yield stress 

and the machined material’s acoustic emissions are most obvious. At this point, structural
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Figure 2.2.  Assembly of an Acoustic Emission Sensor  

defects begin to move. This movement releases energy in the form of elastic waves, 

which are a naturally generated ultrasound traveling through the material. The acoustic 

response to metal cutting may be considered as a low amplitude, continuous emission, 

high amplitude, or burst. During the deformation in the end milling process, there are 

several sources of acoustic emission [4] (see Figure 2.3). 

1. Tool approach, entry, and exit. 

2. Deformation of work material during cutting. 
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3. Chipping, breakage, and fracture of cutting inserts (or fracture of coatings in the case 

of coated tools). 

4. Breakage and collision of chips. 

5. Rubbing between chips and newly formed surface due to flank wear and chip adhesion 

to tool tip after considerable tool wear. 

6. Multiple sources of acoustic emission in multitooth cutting. 

Figure 2.3.  Acoustic Emission Sources During Metal Cutting and Arrows Indicate the 

Acoustic Emissions  

The metal-cutting process generates two types of acoustic emission. Transient 

signals result from tool fracture, chip breakage, or collisions between chip and tool, and 

continuous signals are emitted by sharp or worn out tools. The continuous signals are 



9

related to the shear that occurs in the primary shear zone and tool wear progression on the 

face and flank (see Figure 2.4). 

Figure 2.4. Types of Acoustic Emission in the Metal-cutting Process 

2.5. FEATURES OF THE ACOUSTIC EMISSION SIGNAL  

An accurate monitoring system depends on selection of the most appropriate features 

from sensor data and calculated characteristics for input to the system. Feature selection 
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can improve the output accuracy and reduce the number of features that must be 

collected, thus reducing costs [6]. Many features are detectable from a raw acoustic 

emission signal. Use of all features is not practical because irrelevant features add noise 

and complicate the diagnostic task. Figure 2.5 shows the parameters that can be extracted 

from the acoustic emission signal. They include: 

� Ring-Down-Count: The number of times the signal amplitude exceeds the present 

reference threshold. 

� Event: A microstructural displacement that produces elastic waves in a material 

under load or stress. 

� Rise Time: The time required to reach peak amplitude from the point at which the 

voltage first crosses the threshold. 

� Peak Amplitude: A measure related to the intensity of the source in the material 

producing an acoustic emission signal. 

� Root Mean Square Voltage: A measure of signal energy. 

� Energy Counts: The measured area under the rectified signal envelope. 

� Duration: Time elapsed from the first threshold crossing to the last. 

2.6. ROOT MEAN SQUARE SIGNAL ANALYSIS 

The root mean square is the square root of the mean value of the squared signal. It is 

the alternating current voltmeter of the signal and it is always positive.  The root mean 

square is the best way to quantify the energy created by a signal, and it is directly related 

to the amount of work done by the source that created the signal. It is defined as: 
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Figure 2.5.  Acoustic Emission Signal Feature 

(3) 
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where V (t) represents the signal function, and ΔT is the averaging time or time period. 

2.7. ACOUSTIC EMISSION SIGNAL PROCESSING  

A wide range of statistical signal processing methods allow data mining from 

discretely sampled and random acoustic emission signals. These methods include time 

domain analysis based on descriptive statistics such as low-order statistical moments, and 

frequency domain analysis based on the power spectral density (PSD) function. Such 

methods can be used to extract or characterize particular features of a signal. Ravindra [8] 

used a statistical method which is a time series modeling technique to extract parameters 

called features to represent the state of the cutting process. He studied autoregressive 

(AR) parameters and the power of the acoustic emission signal and AR residual signals 

and found them to be effective in tool condition monitoring. The power of the AR 

residual signal of the acoustic emissions increases with increases of the flank wear of the 

cutter during the turning process. Chen [9] proposed a technique based on acoustic 

emission signal wavelet analysis for tool condition monitoring. His method permits local 

characterization of the frequency band, which contains the main energy of the signals and  

depicts this band using wavelet multi resolution analysis. It represents the singularity of 

the signal using the wavelet resolution coefficient norm.  Li and Yuan [10] designed a 

device to detect acoustic emission signals from a rotating tool. The technique involves 

generating features of signals from a wavelet packet transform preprocessor, then 

associating the preprocessor outputs with the appropriate decisions using a fuzzy 

clustering method (FCM). Li and Yuan used a wavelet packet transform preprocessor to 

decompose the signals into different frequency bands in the time domain, and the root 
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mean square values extracted from the decomposed signal of each frequency band were 

used as a feature. The features most directly related to tool wear are used as final 

monitoring features.  

2.8. DEPTH-OF-CUT DETECTION 

Controlling depth-of-cut is critical to any machining process. Any shortfall in the 

required depth can affect the dimensional accuracy of the part produced. Re-machining 

increases machining time, thus increasing costs. A reliable hybrid manufacturing 

management system requires that a depth-of-cut detection system be integrated with the 

milling machine architecture. 

 Many researchers have sought to control surface errors and radial and axial 

depth-of-cut using analytical models, simulation, force sensors, and other sensors. Choi 

[11] suggested an algorithm to estimate the cutting depth based on the pattern of cutting 

force. He found that the cutting force pattern is more useful for this purpose than its 

magnitude because its pattern reflects the change in cutting depth. However, magnitude is 

affected by a number of cutting variables, but not by the depth-of-cut.  

Yang [12] suggested an analytical method to identify depth-of-cut variations 

based on cutting force profile features detected during end milling. Based on the profile 

characteristics of a single-flute, he studied end mill cutting forces and categorized them 

into three types. The same study categorized the cutting forces signals of both the single-

flute end mill cutting and the multiple-flute end mill cutting based on the cutting process.  

Wan [13] predicted the cutting forces and the surface dimensional errors using 

iteration schemes. Using the finite element method, he devolved a general method to 
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calculate static form errors in peripheral milling of thin-walled structures, and his 

simulation tool considered the complexity of the workpiece. 

 Li [14] presented a comprehensive time domain model for general end milling 

processes. The model measures variations in depth-of-cut using mode forms. The model 

can also consider additional general conditions such as cutting with a large axial depth-

of-cut or small discontinued radial depth-of-cut. In addition to simulating the end milling 

process this method predicts a number of results for surface profiles and chatter 

boundaries.  

Yonggang [15] examined cutting forces and categorized them into six classes 

according to a combination of cutting depths, and he proposed a finite-element model to 

study surface dimensional errors in peripheral milling of thin-walled workpieces for 

aerospace application. Such error prediction keeps the number of surface errors within 

permissible bounds.  

To forecast a surface form error with the greatest efficiency and accuracy, 

Yonggang’s model relies on a set of flexible iterative rules with a double iterative 

algorithm. Prickett [16] presented an approach that uses ultrasonic sensors for online 

monitoring of depth-of-cut during the end milling processes. The proposed monitoring 

process tried to contribute to the development of more efficient tool management 

procedures and supporting infrastructure. However, sensor resolution is an important 

factor limiting performance. 
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3.  RESEARCH METHODOLOGY 

3.1. INTRODUCTION

To achieve a reliable milling process management system, this work integrated a 

depth-of-cut detection system with the milling machine architecture using an acoustic 

emission sensor. The goal of the system is to operate in conjunction with an existing 

cutting system to provide immediate information on the current depth of the cut. The use 

of acoustic emission to detect depth-of-cut relies on the fact that the deformation of a 

material is accompanied by dissipation of energy in the form of acoustic waves, which 

can be detected by piezoelectric sensors mounted on the surface of the component or on 

the fixture. The system does not attempt to measure the dimensions of the workpiece 

online. The objective of this study is to develop a depth-of-cut detection system during an 

end-milling cutting operation.

Due to the inherent complexity and variability of machining mechanisms, the 

characteristics of the sensor signal obtained in machining processes can be complex in 

terms of both nonlinearity, and nonstationarity.  To overcome this complexity, the present 

work used the multiple regression model to represent the relationship between the 

acoustic emission signal and depth-of-cut. The output of the sensor and data of cutting 

conditions and tool status are fed to a regression model to measure operation quality 

during machining. After the model was calibrated, the inference system estimated the 

depth-of-cut in real time from the experimental sensor signal and the cutting conditions. 

The results of the monitoring algorithm can warn the operator to take the corrective 

actions to reach the required depth-of-cut. The difference between the desired depth-of-
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cut and the actual depth-of-cut may be a result of incorrect workpiece set-up, tool length 

offset change (tool wear), or irregularity of workpiece dimensions. Previous 

manufacturing processes may also lead to errors in depth-of-cut. For example, when a 

workpiece is manufactured by laser deposition, forging, or casting, the dimensions are 

not always accurate and uniform. 

3.2. ACOUSTIC EMISSION SYSTEM 

The acoustic emission system used here was made by Kistler and consists of an 

acoustic emission sensor (shown in Figure 3.1.)  and acoustic emission coupler type 

8152B111. The acoustic emission sensor is made up of the sensor housing, a 

piezoelectric sensing element, and a  built-in impedance converter. The sensing element, 

made of piezoelectric ceramic, is mounted on a thin steel diaphragm. Its construction 

determines the sensitivity and frequency response of the sensor. The coupling surface of 

the diaphragm welded onto the housing is slightly obtruded to measure the acoustic 

emission signals. Thus, a precisely defined coupling force results when the sensor is 

mounted, assuring a constant coupling for the acoustic emission transmission. The 

sensing element is acoustically isolated from the housing by design and therefore well 

protected against external noise. The Kistler acoustic emission sensors are highly 

sensitive to surface and longitudinal waves over a broad frequency range.  

The AE-Piezotron coupler shown in Figure 3.2 comprises plug-in modules that 

process the raw signal and transfer it to a root mean square. The main function of the 

coupler is to supply power to the sensor and process the sound emission signal. The gain 

factor, low and high pass filters, and integration time constant are included in one 
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electronic board, allowing the best possible adaptation to a specific monitoring function.  

The coupler provided 0–5 V root mean square voltage signals proportional to the 

measured depth-of-cut and eliminated any need for further signal processing. Figure 3.3 

shows the coupler assembly diagram.  

Figure 3.1.Kistler 8152B111 Acoustic Emission Sensor  
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Figure 3.2. Piezotron Coupler 
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Figure 3.3. The Coupler Assembly Diagram 
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3.3. EXPERIMENTAL SETUP 

Figure 3.4 shows a schematic diagram of the experimental set-up. The milling 

process was carried out on a Fadal vertical 5-Axis computer numerical control machine 

(3016L) using a carbide flat-end mill (0.5 in) to cut deposited stainless steel 316 

workpieces. The control interface (National Instrument PXI 7240 and PXI 1250) 

provided the control and data acquisition.  An acoustic emission sensor (Kistler 

8152B211) captured a high-frequency signal. The bandwidth of the AE sensor was 10 to 

1000 kHz. The RMS signals were first fed through the data acquisition system and then 

recoded and processed using Labview software. A 500X digital microscopic camera was 

used to detect tool status without disengaging the tool from the tool holder. The tool 

condition was documented from the bottom edge radius, which was measured in place 

with the aid of the vision system.  

Figure 3.4. Experimental Setup 
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3.4 TOOL STATUS CATEGORIZATION 

This study classified tool status according to tool life or tool wear, which is 

caused by progressive loss of tool material during cutting and which thus changes the 

shape of the cutting edge. Image J software was used to convert tool wear from a pixel 

scale to micrometer scale.  Once the measuring scale was calibrated, tool wear was 

measured by counting pixels from the vision system and comparing the number with the 

scale on the reticle. Figure 3.5 shows tool wear of a four-flutes 0.5 inch end mill. 

The international organization for standardization [20] recommends that the tool 

be considered worn-out and reached its end point at 0.3 mm, or 300 µm. Here, the output 

was assigned a value of 1 (for a fresh tool with wear less than 130 µm), 2 (for an average

tool between 130 µm and 300 µm), or 3 (for a worn-out tool with wear greater than 300 

µm). Figure 3.6 shows a fresh tool with 10 µm tool wear and Figure 3.7 shows a worn-

out tool with 320 µm tool wear. In both cases, the tool has four flutes with a different 

level of wear, so the tool wear value represents an average. 

The three tool wear categories were established based on the tool life curve 

(Taylor tool life curve) which divides the tool life into three stages or regions, initial, 

progressive, and severe (see Figure 3.8). 
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Figure 3.5. Tool Wear for 0.5 Inch End Mill 



23

Figure 3.6.  Fresh Tool (The Wear = 10 µm) 
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Figure 3.7.  Worn-out Tool (The Wear = 320µm) 
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Figure 3.8. Typical Taylor Tool Wear Curve 
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4. ANALYSIS AND MODELING 

4.1. THE RAW ACOUSTIC EMISSION SIGNAL 

Figure 4.1 shows the acoustic emission signal acquired during an axial slot 

milling. The cut passes through three different regions, the engagement region, the steady 

cut region, and the disengagement region. This study considered only steady cutting in 

the analysis and molding. In the engagement and disengagement regions, the root mean 

square value was higher than the average of the signal. The engagement and 

disengagement time were calculated as follows: 

� �Sec� � � � 60 �2 � ��⁄ �4�

where D is the tool diameter (mm) and F is the Feed rate (mm/min). For example, when 

the tool diameter was 0.5” (12.7 mm), the feed rate was 100 mm/min, as in runs 1, 6 and 

7: 

� �Sec� � 12.7 � 60 �2 � 100� � 3.81 �� .⁄

Figure 4.2 shows the percent engagement against the root mean square signal, and 

the moving average.  As the engagement increased, the acoustic emission signal 

increased. This phenomenon was a result of the friction at the cutting edge and a 90° lead 

angle, which caused high radial cutting forces and high entry shock load. This dramatic 
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increase in signal was also a result of the chip thickens; when the cutter diameter 

was approximately equal to the width of the cut, as shown in Figure 4.3, the chip was 

very thin at the entrance and exit of the cut. Thin chips cannot carry away as much heat 

as thicker chips; therefore, the heat is transferred back into the insert, causing premature 

edge failure chatter. The same phenomenon occurs when the tool exits the part, 

but in reverse, as shown in Figure 4.4. 

4.2 MOVING AVERAGE AND SPIKES REMOVAL 

Transient signals, which can be seen as spikes in the oscilloscope, are a result of 

tool fracture, chip breakage, or collisions between chip and tool. These spikes should be 

removed to ensure unbiased calculations and representation of the statistical properties of 

the signal. The spikes are values in the acoustic emission signal that do not follow the 

same distribution as the majority of signal values or do not fall within an interval defined 

by upper and lower bounds. This research, assumed that the root mean square values 

follow a normal distribution, and use three standard deviations as control limits is 

effective in eliminating the spikes. The upper and lower boundary limits are defined by 

the formula �!̅ # 3σ�, where !̅ is the average of the root mean square, and σ is the 

standard division of the root mean square for n time window. Any point outside these 

limits is replaced by the preceding value, and the moving average is then used to smooth 

out short-term fluctuations and highlight long-term signal trends. Figure 4.5 shows the 

results of the algorithm and original signal. 
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Figure 4.3 Axial Slot Milling  
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(a) 

 (b) 

Figure 4.5 Acoustic Emission Signal (a) Original (b) after Removal of Spikes 
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4.3 THE ACOUSTIC EMISSION SIGNAL SENSITIVITY TO DEPTH-OF-CUT 

CHANGES 

Figure 4.6 shows the change in the acoustic emission signal caused by a change in 

the depth-of-cut. It denotes a sequence of three cuts through the workpiece performed at 

three different depths (0.5, 1.5, and 2.0 mm) at a feed rate 70 mm/min and a cutting speed 

3000 RPM with fresh tool. The signals were acquired separately for each depth-of-cut; 

they are presented in one figure to show the sensitivity of the acoustic signal to the 

changes in depth-of-cut. The transition between the depths divides the figure into three 

zones. The x-axis represents the cutting time, and the y-axis represents the signal voltage. 

There is excellent correlation between the acoustic emission signal and the changes in 

depth-of-cut, as the depth-of-cut increases as the root mean square of the signal increases. 

4.4. DESIGN OF EXPERIMENTS  

Most research has focused on the use of a force signal to detect, model, and 

control radial depth-of-cut and chip thickness [11-15], but no study has used an acoustic 

emission sensor to predict axial depth-of-cut during end milling. The experiments 

described here were designed to identify the most significant factors affecting the 

acoustic emission signal during the end milling process. Therefore, their outcomes are 

significant for the computation of depth-of-cut, and the model considers the cutting tool 

condition and the cutting variables.  

The factors were selected based on work done by Dornfeld [21], who developed a model 

describing acoustic emission based on the assumption that the power of acoustic emission 

signal is related to the power that produces plastic deformation. Most cutting operations 
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Figure 4.6 Acoustic Emission Sensitivity to the Depth-of-cut Changes 

are three-dimensional and orthogonal cases are often encountered, including surface 

broaching and certain turning and milling operations. The model is limited to the 

orthogonal cutting process and can be expressed as  

����� � �� 	sin 	 
���� � ��	


	�� ∅��	�∅�
�
�� �

������� 	��∅

� ��	�∅�
�
� �� ���

�

� �5�
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where &���� is the root mean square of the acoustic emission signal, α is the rake angle, 

∅ is the shear angle, �� is the shear strength of the workpiece material, ap is the width of 

cut (axial depth-of-cut), U is cutting velocity, l is chip-tool contact length, l1 is the length 

of the sticking zone, t1 is the feed load, W is the average flank wear and C1 and C2 are 

signal attenuation. Here, the root mean square is proportional to the square root of the 

cutting speed. 

Dornfeld assumed that αand ��  are constant. The value of l1 is approximately 

one-half the measured contact length, and ∅ must be determined experimentally; it can be 

assumed to be constant for the same tool geometry. Thus, equation 5 can be simplified as  

�����
� � ����� � ����� � ����� �                 (6) 

where N is the cutting speed, which is equal to U/ (π × tool diameter), and F is the feed 

rate (t1× N × number of flutes). The constants K1, K2, and K3 depend on the tool 

geometry and workpiece material; they were identified by applying factorial design to the 

main factors affecting the acoustic emission signal at various cutting depths (see Table 

4.1). These factors include depth-of-cut, spindle speed, feed rate, and tool status 

Using the Taguchi L9 (3
4
) experimental design with three replications, a total of 

27 cutting tests were run randomly, and a range of cutting variables was collected, as 

shown in Table 4.2.  
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Table 4.1 Factors and Levels Defined for Experimentation 

Table 4.2. Taguchi L9 (3
4
) Experimental Design 

Experiment Depth of 

Cut (mm) 

Cutting 

Speed 

(RPM) 

Feed 

Rate 

(mm/min)

Tool 

Status 

Average 

RMS 

1 1 1 1 1 0.556422

2 1 2 2 2 0.102253 

3 1 3 3 3 0.304408 

4 2 1 2 3 0.153831

5 2 2 3 1 0.300762 

6 2 3 1 2 0.321306

7 3 1 3 2 0.088805 

8 3 2 1 3 0.211103

9 3 3 2 1 0.117241 

Depth of Cut(mm) Cutting Speed (RPM) Feed Rate (mm/min) Tool Status 

0.5 1500 40 ≤130 µm 

1.0 3000 70 > 130 µm and ≤300 µm 

2.0 5000 100 > 300 
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This model was developed using MINTAB statistical software, with four 

independent variables: feed rate, cutting speed, tool status, and the depth-of-cut. The 

dependent variable was the squared root mean square of acoustic emission signal. 

Although this research is sought to estimate depth-of-cut, the data were used to model the 

squared root mean square.  

The dimensions of the workpiece were 2x2x4 in; they were designed to allow the 

machining of three replicates, each 4 inches long. Figure 4.7 shows the geometry of the 

workpiece. The design of experiments included the following steps: 

1. Run a set of experiments with a fresh cutting tool, and record the acoustic 

emission signal. 

2. Wear the cutting tool until it reaches an average tool wear (just above 130 µm) 

consistent with the predetermined tool status criteria. 

3. Run a second set of experiments with a tool with average wear, and record the 

acoustic emission signal. 

4. Wear the cutting tool until it is a worn-out (just above 300 µm). 

5. Run the last set of experiments with a worn-out tool, and record the acoustic 

emission signal. 
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Figure 4.7. Workpiece Geometry 
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5. RESULTS AND DISCUSSION 

5.1. STATISTICAL RESULTS OF EXPERIMENTAL DATA 

To assess linearity, figure 5.1 plots the residuals on the vertical axis against the 

corresponding squared root mean square values on the horizontal axis. The fitted model is 

appropriate for representing the data because there is no obvious pattern in the plot, and 

the residuals are spread fairly evenly above and below 0 for the differing values of 

squared root mean square, indicating random variation of the residuals around the mean 

value. 

Figure 5.1. Residual Plot for the RMS
2
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Figure 5.2 evaluates the assumption of that the errors are independent by plotting 

the residuals in the order in which the data were collected. Data collected during the 

experiment do not exhibit an autocorrelation effect among successive residuals. If this 

relationship existed (which would violate the assumption of independence), it would be 

apparent in the plot of the residuals versus the order of data collected. 

Figure 5.2. Order Plot of the Residuals  
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The normal probability plot in figure 5.3 determines whether the residuals follow 

a normal distribution. The data skew neither to the left nor to the right, and the residuals 

are identically and independently normally distributed. 

Figure 5.3. Normal Probability Plot of the Residuals 

The analysis of variance shows that the coefficient of determination is equal to 

0.8716, therefor, 87.16 %  of the variation in RMS
2
 is explained by the variability in the 

regression model, and the  interaction among axial depth-of-cut, cutting speed, and tool 
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status is significantly greater than the other two interactions, in where the P-value in zero. 

However, the interaction between axial depth-of-cut and feed rate is less significant, with 

a P-value 0.358. 

5.2. ESTIMATED RMS
2

Using regression analysis, the constants K1, K2, and K3 deposited stainless steel 

316 were determined to be 0.00590, 0.000583, and 0.000192, respectively. Figure 5.4 

shows the actual outputs (RMS
2
) versus the outputs obtained from the regression model. 

There is close agreement between the actual and the estimated values. 

Figure 5.4. Estimated RMS
2
 vs. Actual Values 



43

5.3. ESTIMATION OF DEPTH-OF-CUT 

Depth-of-cut can be estimated from the model in equation 6 as follows: 

�� �
�����

�

������������
                (7) 

thus, the depth-of-cut of deposited stainless steel 316 can be calculated as follows: 

�� �
�����

�

�.����� �	�.����
��	�.������ �
. 

 Figure 5.5 shows the depth-of-cut estimated at 2 mm, 1 mm, and 0.5 mm with a 

feed rate of 40 mm/min and a cutting speed of 5000 rpm. Clearly, the system can detect 

the depth-of-cut with a maximum acceptable error of approximately 0.25 mm. The 

accuracy of depth-of-cut estimation depends on the quality of the acquired signal.  

This work tested the efficiency of the model in estimating depth-of-cut in an 

interrupted cutting process. As shown in Figure 5.6, a 25.2 mm slot was made in the 

workpiece perpendicular to the machining direction. The depth-of-cut was 1 mm, the 

cutting speed was 4000 rpm, the feed rate was 30 mm/min, and the tool was fresh. 51 

second is the time required for the tool to cross the gap (25.2/30), and 25 second is both 

engagement and disengagement time subtracted from 51 seconds. Figure 5.6 shows that 

the model is able to distinguish the slot; thus the system is capable of detecting the 
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engagement and the disengagement of the tool with the workpiece as well as the depth-

of-cut. 

Figure 5.5. Depth-of-cut Estimation  

Figure 5.7 shows both the nominal and estimated depth of cut for inclined surface 

cutting. A 10 mm ramp was created at the end of 60 mm cutting with 2 mm height as 

shown in the cutting geometry in the figure. The cutting speed was 4000 rpm, the feed 

rate was 30 mm/min, and the tool was fresh. 
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Figure 5.6 Interrupted Cutting (a) Nominal/Estimated Depth-of-cut (b) Cutting Geometry  
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Figure 5.7 Inclined Surface Cutting (a) Nominal/Estimated Depth-of-cut (b) Cutting 

Geometry 
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 As final test for the efficiency of the depth-of-cut detecting system, a free form 

surface was made from stainless steel 316 using laser deposition. The deposited part was 

first scanned using a 3D scanner, then the part was machined and scanned again as shown 

in figure 5.8.  

Figure 5.8 Scanned Deposited Material (a) Machined (b) Original (c) Removed 
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The difference between the two scans is the machined material. The machined 

material was sliced to fifty sections as shown in figure 5.9 and the area of each section 

was calculated. In order to calculate the depth-of-cut, the area of each section was divided 

by the tool diameter (12.7 mm) as show in table 5.1.  

Figure 5.9 Machined Material Slicing (a) First Section. (b) Fifteenth Section.  

Figure 5.10 shows the measured depth-of-cut from the sections and detected 

depth-of-cut by the acoustic emission sensor. The feed rate was 60 mm/min, cutting 

speed 4000 rpm, cutting length about 52 mm and the tool was worn-out. There is some 

deference between the measured and detected depth-of-cut in several points. This error 

might be caused by the change in the shear strength of the deposited material where the 

depth-of-cut detection model was made with material deposited at 800 W laser energy 

and the material tested now was made at 1000 W laser enegy.  
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Figure 5.10 Measured and Detected Depth-of-cut for a Deposited Material 

Table 5.1 The Area and Depth-of-cut of the Section 

Section Area  Depthofcut 

1 4.239 0.333779528

2 16.257 1.28007874 

3 28.94 2.278740157

4 39.072 3.076535433

5 49.302 3.882047244

6 58.481 4.60480315 

7 58.81 4.630708661

8 50.586 3.983149606

9 46.573 3.667165354

10 41.807 3.291889764

11 41.096 3.235905512

12 37.481 2.951259843

13 36.036 2.837480315

14 35.521 2.796929134

15 35.394 2.786929134
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Table 5.1 (Continued) 

16 35.457 2.791889764

17 34.503 2.716771654

18 36.215 2.851574803

19 36.279 2.856614173

20 38.754 3.051496063

21 38.233 3.010472441

22 35.307 2.78007874 

23 36.747 2.893464567

24 35.619 2.804645669

25 35.55 2.799212598

26 35.203 2.771889764

27 35.295 2.779133858

28 35.359 2.784173228

29 35.96 2.831496063

30 36.741 2.892992126

31 37.707 2.969055118

32 36.707 2.890314961

33 36.412 2.867086614

34 33.346 2.625669291

35 31.045 2.444488189

36 30.998 2.440787402

37 32.051 2.523700787

38 30.622 2.411181102

39 34.798 2.74 

40 38.042 2.995433071

41 37.695 2.968110236

42 36.73 2.892125984

43 35.932 2.829291339

44 42.172 3.320629921

45 53.388 4.203779528

46 47.834 3.766456693

47 39.91 3.142519685

48 27.615 2.174409449

49 18.917 1.489527559

50 4.632 0.364724409
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6. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

6.1. CONCLUSIONS 

This research investigated experimentally the depth-of-cut and the acoustic 

emission variations during end-milling of deposited stainless steel 316 with an uncoated 

tungsten carbide tool under dry conditions, and it studied the correlation between the 

acoustic emission variation and the depth-of-cut. Design of experiments was used to 

conduct experiments. As a result of this work, as innovative regression model was 

developed to predict depth-of-cut in end milling.  

The experimental values were used to develop the regression model. The 

experimentally determined depth-of-cut values were compared with values predicted by 

the model, and the model is proved to be capable of predicting depth-of-cut with the 

acceptable margin of error. The results indicate that this model is robust and accurate.  

The proposed depth-of-cut prediction method demonstrates how depth-of-cut can 

be controlled by adjusting machining parameters within the constraints for specific 

machining conditions. This study provides a depth-of-cut monitoring system for more 

efficient manufacturing in the future. 

6.2. FUTURE WORK 

Future work will investigate signal processing and feature extraction since the 

root mean square is provided by the coupler and there is no control on low-pass and high-

pass filters. A raw signal can be acquired from the coupler, and this signal contains more 

information than the root mean square signal, which was already processed inside the 
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coupler. Also, the model in equation 6 can also be used to estimate feed rate, cutting 

speed or tool wear when the other cutting parameters are given. 

More experimental work is needed to improve the prediction of depth-of-cut for 

inclined and curved surfaces, but since the vast majority of end-milling operations result 

in parallel surfaces, the inaccuracy of such predictions are unlikely to limit the use of the 

system under normal circumstances. 

In the future, more detailed experiments will permit the construction of 

mathematical relationships between the change depth-of-cut and the change in workpiece 

dimensions and tool offset. This mathematical model will be used to predict depth-of-cut 

and optimization of the cutting process for new combinations of tool and workpiece 

materials, tool geometries, and cutting conditions. 
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