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ABSTRACT 

Numerical simulations of a full three-dimensional hemispherical body in 

hypersonic flow are conducted and innovative techniques involving forward injection of 

gas from the stagnation point of the sphere are investigated; techniques include annular 

(ring) and swirled injection both with and without upstream energy deposition.  

Objectives of the analysis are the assessment of 1) drag reductions achieved on the blunt 

body (including the detrimental drag effect caused by the forward-facing injection itself) 

and 2) stability characteristics of the jet.  Studies are conducted at free-stream Mach 

numbers of 10 and 6.5 at standard atmospheric conditions corresponding to 30 km 

altitude. While centered forward injection without upstream energy deposition is 

confirmed to be highly unstable either with or without swirl, annular ring injection 

exhibits a stabilizing influence on the jet.  Energy deposition upstream of the body is 

shown to significantly enhance stability and penetration of the forward injection jet for all 

techniques. 
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NOMENCLATURE 

Symbol Description         

Aj   Crosssectional Area of Jet 

Dmod  Pressure Drag on Body after Modification 

Dref  Pressure Drag on Body without Modification 

d  Diameter of hemisphere 

dj  Effective Jet Diameter Based on Crosssectional Area 

I  Number of Iterations 

l  Location of Energy Deposition Forward of Body 

Mj  Mach Number of Jet 

M∞  Free-Stream Mach Number 

jm   Mass Flow Rate of Jet 

p  Static Pressure 

ps  Stagnation Pressure 

pj  Static Pressure of Jet 

ptj  Total Pressure of Jet 

Q   Rate of Free-Stream Energy Deposition 

S  Power Effectiveness Ratio  

s  Surface Coordinate 

Tj  Jet Thrust 

Ttj  Total Temperature of Jet 

T∞  Free-Stream Static Temperature 

uj  Jet Velocity in Axial Direction 

V∞  Free-Stream Velocity 

Δ  Shock Standoff Distance



 

 

1. INTRODUCTION 

Achieving practical hypersonic flight has been a focus of research in industry, 

academia and government laboratories across the world for more than sixty years. Some 

hypersonic applications involving missile nose cones and conventional reentry vehicles 

are generally considered mature in terms of the existence of established practices and 

techniques relevant to operational vehicles.  However, despite this relatively long history 

associated with hypersonics, there remain significant challenges (and related 

opportunities) in terms of both the performance and the operability of existing and 

proposed hypersonic systems [1].  A fundamental design challenge of interest for 

hypersonic cruisers and accelerators (particularly air-breathing vehicles) is the inherently 

low thrust minus drag performance margins across the operating envelopes of such 

vehicles. The focus of the present work is on the development and assessment of 

innovative approaches for the reduction of the drag experienced by hypersonic vehicles.  

Techniques involving forward-facing injection from relatively blunt hypersonic leading 

edges, both with and without upstream energy deposition, are numerically examined for 

an axi-symmetric blunt-nosed body in hypersonic flow.  The specific objective of the 

paper is to provide an assessment of the use of forward-facing annular ring injection for 

drag reduction and jet stabilization from the blunt fore-bodies of axi-symmetric leading 

edges; also of interest is the effectiveness of swirling the forward-facing injected gas.  

These concepts will be examined with and without upstream energy deposition.  Such 

techniques are conjectured to potentially minimize the mass flow rate required to achieve 

significant drag reductions (as compared to a conventional single stream injector).  Of 

equal interest for these cases are the stability characteristics of the innovative forward 

facing ring injector concepts in terms of maintaining upstream penetration of the injected 

stream.  This then requires full three-dimensional simulations of the flow-fields (i.e. no 

assumptions of symmetry are made in the present work).   

The high drag associated with hypersonic flight has dictated that hypersonic 

cruisers and accelerators have high fineness ratios and sharp leading edges which 

minimize wave drag.  Figure 1.1 shows a comparison between a conventional hypersonic 

vehicle configuration and a new hypothetical configuration. Figure 1.1a shows a sketch 
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of a typical wave-rider/lifting body type of hypersonic air-breathing vehicle (such as the 

X-43).  The design is characterized by a highly integrated airframe and propulsion system 

and sharp leading edges.  The oblique shocks originating from the sharp vehicle nose and 

fore-body sufficiently compress the air entering the engine for supersonic or dual-mode 

combustion, but with large reduction of inlet/fore-body drag and total pressure loss as 

compared to that which would be experienced by a blunt-nosed fore-body.  This reliance 

on oblique shocks mandates a high structural/aerodynamic fineness ratio for the vehicle 

(sharp small-radius nose curvature and long inlet/fore-body lengths).   

 

 

 

Figure 1.1.  Comparison of Hypersonic Vehicle Configurations. a) Conventional 

Configuration. b) Modified Blunt Nose Configuration with Energy Deposition. 

 

 

While drag reduction and pressurization for lift on the fore-body/inlet surface are 

therefore achieved, there are a number of significant detrimental effects as well.  

Specifically, high heat transfer rates to the vehicle result due to the proximity of the 

shocks to the vehicle surface; temperature is high and thermal gradients large in such 
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layers.  In addition, for thin sharp (high structural fineness ratio) noses or leading edges, 

the small volume associated with the nose makes the design of active cooling techniques 

for the vehicle nose or leading edge a challenge and also limits the materials that can be 

used in constructing the vehicle.  Another disadvantage of the high fineness ratio non-

symmetric lifting-body/wave rider concept is the large positive (nose up) pitching 

moments generated at vehicle orientations for maximum thrust production as well as 

resultant bending stresses encountered on the vehicle.  This latter effect introduces the 

need for structural reinforcement in order to lessen flexure and to provide integrity to the 

airframe.  In addition, to counter pitching moments associated with the high aerodynamic 

fineness ratio of the vehicle, the vehicle must have sufficient control surfaces and mass 

balancing which can result in sub-optimal designs with reduced performance and 

operability capabilities. 

The sharp leading edges and high aerodynamic fineness ratio characterizing 

hypersonic cruisers and accelerators are in contrast to that seen for reentry vehicles.  For 

such vehicles blunt fore-bodies are useful for ablative/cooling subsystems, due to 

increased vehicle volumetric efficiency. Overall heating to the nose surfaces can, in fact, 

actually be less than that experienced by a long sharp-nosed fore-body due to fluid 

dynamics associated with the subsonic zone downstream of the normal shock.  Blunt 

noses and leading edges, often utilized in spacecraft launch and reentry vehicles and high 

speed missiles, are thus less susceptible than sharp noses and leading edges to some of 

the adverse effects associated with cooling requirements and system-level effects, as 

described above for hypersonic cruisers and accelerators.  Unfortunately, the strong bow 

shocks formed by a blunt body cause very high surface pressures on the forward facing 

surfaces, hence very large drags. For reentry vehicles, high drag is actually desirable in 

order to decelerate the vehicle within structural, control and heating limits.  Also, even 

for accelerative atmospheric flight systems, the large thrust to drag margins associated 

with rocket propulsion systems can generally overcome the high drag experienced by the 

blunter noses and leading edges on missiles and launch vehicles.  Nevertheless, for all 

applications, if the high drag associated with hypersonic flow over blunt noses and 

leading edges can be reduced and/or controlled utilizing innovative techniques, the 

vehicle design will require less fuel and be more intrinsically efficient.  For hypersonic 
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air-breathing vehicles which have inherently low thrust minus drag margins, advantages 

would be realized if designs could have blunter noses and leading edges than those 

currently required and yet still maintain the lower drags associated with sharp high-

fineness ratio systems.  In addition, it would be advantageous to increase volumetric 

efficiency (minimize adverse heating and structural effects from the standpoint of the 

overall system). 

Experiments and numerous numerical studies have shown that volumetric heating 

of regions of the flowfield achieved by depositing energy through microwaves, lasers, 

electron beams, electric arcs, plasmas or other means can result in significant reductions 

in shock wave drag via the mechanism of flow-field modification of those shocks [2]. 

Numerical studies indicate that energy deposition in the free-stream of a two dimensional 

blunt body at hypersonic speeds can reduce drag by up to 70 percent [3].  A sketch of a 

hypersonic vehicle which incorporates the effects and advantages of upstream deposition 

of energy is shown in Figure 1.1b.  As an example of a previous numerical study which 

focused on vehicle level performance achieved utilizing such techniques see Taylor [4].  

Studies (both experimental and numerical) have also shown that forward facing mass 

injection has the ability to significantly reduce drag on blunt bodies by increasing the 

shock standoff distance and replacing the normal shock with weaker oblique shocks [5].  

Studies have also been done which combined both upstream injection and energy 

deposition with significant improvements in drag reduction, heat transfer and jet stability 

characteristics.  This paper extends earlier work on forward-facing injection and energy 

deposition upstream of blunt bodies by analyzing the use and performance of an axi-

symmetric annular ring injector as well as imposing swirl (rotation) in the injectant.  The 

current studies utilize a three-dimensional approach without the use of any assumed 

symmetry boundaries; hence can be used to study jet instability and stabilization. 

The organization of this thesis is as follows:  Section 2 provides a survey of wave 

drag reduction techniques on blunt bodies in hypersonic flows, including structural 

spikes, forward facing injection of mass, upstream deposition of energy and combination 

of the techniques.  Section 3 discusses the computational methodology used in the present 

study and details the comparison of base-line results with experimental data for forward-

facing injection from a blunt body.    Section 4 is the discussion of results obtained in 
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which a variety of techniques involving both forward-facing injection and energy 

deposition for an axi-symmetric blunt-nosed body are numerically analyzed.  These 

techniques include both swirling injection and annular-ring injection.  Section 5 provides 

a summary of results. 
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2. SURVEY OF BLUNT BODY WAVE DRAG REDUCTION TECHNIQUES 

This section provides a survey of techniques and previous investigations focused 

on the reduction of wave drag (and heat transfer) on blunt bodies in hypersonic flows.  

Early studies of blunt body wave drag reduction began in the early 1940‟s.  The 

realization that a blunt body, as compared to a sharp, slender body, can actually result in 

relatively less heat transfer to a vehicle during reentry resulted in a paradigm shift in 

spacecraft design [1]. The prospect of utilizing blunt bodies in hypersonic flows caused 

engineers to investigate methods of reducing the drag experienced by such bodies.  In this 

section, the advantages and disadvantages of several techniques for drag reduction on 

blunt bodies, including structural spikes, forward mass injection and free-stream energy 

deposition, will be reviewed in terms of previous work. 

 

2.1. STRUCTURAL SPIKE 

One method used for wave drag reduction on blunt bodies is the structural spike 

as shown in Figure 2.1.  The spike works by creating a region of separated flow adjacent 

to the spike, just forward of the nose.  In fact, in early NACA publications, the spike was 

actually referred to as a “flow separation spike” [6, 7]. This region of flow separation is 

caused by an adverse pressure gradient in the boundary layer region of the spike.  This 

recirculation or “dead-air” region modifies the bow shock such that the shock moves 

upstream.  In addition there is a low dynamic pressure associated with the recirculation 

region which reduces the pressure on the nose of the body and hence reduces the overall 

drag (as well as the overall heat transfer to the body).  Depending on details of the flow 

conditions, blunt body shape, and spike geometry, the drag on a body at hypersonic 

speeds can be reduced from 20 to 60 percent with a structural spike [8].  Also shown in 

Figure 2.1 is a comparison of different spike geometries, one of which is the aerodome.  

The aerodome has a large amount of flow separation induced compared to a sharp or 

blunt spike.  A spike with an aerodome tip was successfully implemented on the nose 

cone of the HyCAUSE scramjet demonstration vehicle in 2007 [8]. 
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Figure 2.1.  Schematic of Flowfield Induced by Structural Spike and Comparison of 

Spike Geometries. 

 

 

Structural spikes have seen success primarily on launch vehicles and missiles. The 

spike has sufficiently low drag during launch and allows for high volumetric efficiency 

by allowing the use of a blunt body instead of a slender body.  However at higher 

velocities the spike itself suffers from excess heat and ablation due to high stagnation 

temperatures, as well as high structural loading.  The nose cone is a disposable element 

on a launch vehicle or a missile; on a cruise vehicle however, the spike would be a 

permanent element and the damage to the spike due to heating would be intolerable. For 

this reason, innovative alternatives to the structural spike have been investigated with 

specific interest for use in the design of airbreathing hypersonic vehicles.    

 

2.2. MASS INJECTION 

Drag reduction on blunt bodies in hypersonic flows can be achieved by the 

forward injection of fluid from the blunt body; generally the injection is centered at or 

near the stagnation point on the body surface.  In theory, the structural spike is replaced 

by a non-structural spike, consisting of the forward penetrating jet. The mass injection 

technique, if successfully implemented, would avoid issues of heating and ablation 

experienced by a physical spike while still reducing the overall drag and heat transfer to 

the body.  Note that when considering the overall drag reduction on a body employing a 

forward facing jet, the jet itself contributes to the drag.  Researchers began investigating 

forward injection of various gases on blunt bodies at supersonic speeds in the early 

1940‟s [5]. Gases used in these experiments included air, nitrogen, helium and even 



 

 

8 

combustible gases such as hydrogen. Figure 2.2 describes a typical mass injection system 

along with its typical modes of operation. Shown in Figure 2.2a is a sketch of an injection 

system on a blunt body. 

While drag reduction was one motivation for the study of mass injection, another 

motivation for such experiments was to investigate the ability of mass injection of cooler 

and/or inert gases to reduce heat transfer to blunt bodies [9, 10]. Depending on the free-

stream conditions (free-stream Mach number, total pressure, etc.) and jet conditions (gas 

injected, jet Mach number at exit of nozzle, jet total pressure and ratio of jet diameter to 

body diameter) it was found that heat transfer could be reduced by up to 40 percent [9].  

Experiments also showed that when the drag generated from the forward facing jet is 

considered, the total drag acting on a blunt body at low supersonic speeds could be 

reduced by up to 20 percent [5].  One numerical study of a two-dimensional blunt body, 

which used a symmetry boundary condition, at a free-stream Mach number of 6.4 found 

the maximum drag reduction to be 40 percent [11]. 

 

 

 

Figure 2.2.  Mass Injection System and Operation. a) Sketch of Injector Nozzle and 

Reservoir. b-d) Distinct Modes of Injection. 
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Experimental investigations of forward facing injection at hypersonic speeds have 

identified two modes of injection [12, 13].  In one mode, shown in Figure 2.2b, the ratio 

of jet total pressure to the total pressure of the free-stream is low and the jet does not 

penetrate through the bow shock formed in front of the blunt body. Instead the injection 

causes the bow shock to move forward while maintaining a similar shape as the non-

injection case. Note that while a jet in this first mode does not significantly alter the 

pressure drag, it still can have a favorable effect by increasing the size of the boundary 

layer and hence reducing heat transfer to the surface. As the ratio of total pressure of the 

jet to total pressure of the free-stream air increases, a second mode, shown in Figures 2.2c 

and 2.2d, is established.  In this mode, the jet penetrates the initial bow shock and 

decelerates, turns and mixes with the free-stream. In addition to the body induced bow 

shock, a shock is formed by the jet where it decelerates and turns such that the total 

pressure of the jet matches the total pressure of the free-stream.  This second mode 

resembles a structural spike and drag reduction similar to that obtained by a physical 

spike.  Recirculation regions form adjacent to the jet aft of the jet induced shock (regions 

A and B in Figure 2.2d).  These recirculation regions adjacent to the nose of the blunt 

body have a lower static pressure compared to the case with no jet and hence the drag 

force on the body is reduced.  Depending on the flow conditions as well as the conditions 

of the jet, the shocks due to the jet can impinge on the surface of the body creating an 

adverse region of high pressure and heat transfer on the body. 

It is important to note that the second type of forward mass injection is unstable.  

Experiments have revealed two modes of instability [12, 13].  In the first type, seen in 

Figure 2.2c, the jet penetrates through the bow shock and remains at approximately the 

same axial location.  However, the jet oscillates randomly in the lateral directions.  As the 

ratio of total pressure of the jet to the total pressure of the free-stream increases further, 

the mode of instability changes to the second type shown in Figure 2.2d.  The jet 

penetrates even farther forward but does not remain at this new axial location.  Instead it 

collapses back to the first type of instability and then penetrates forward again in a cyclic 

manner. In both cases, the instability is due to pressure variations in the recirculation 

regions on either side of the jet.  The reason for the cyclic motion in the second type of 

instability is the larger area over which the pressure acts on the jet.  This larger pressure 
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difference moves the jet farther from the centerline and resultant pressure from the free-

stream then pushes the jet back towards the body. 

2.3. ENERGY DEPOSITION 

Another method used for achieving drag reduction for blunt bodies at hypersonic 

flight Mach numbers is energy deposition.  A small volume of air forward of the vehicle 

can conceptually be heated by various means including microwaves, microwave 

generated plasma, magnetohydrodynamic effects, electron beams or localized plasma-

assisted surface combustion [14].  This heating couples with the body and transforms the 

existing shock wave formation forward of the blunt body into a system similar to that 

seen with a structural spike and mass injection.  A sketch of the flow-field resulting from 

energy deposition is shown in Figure 2.3. The volumetric heating causes a temperature 

rise and hence the Mach number in this small volume forward of the body drops; the flow 

can become subsonic. Due to this disturbance in the otherwise supersonic flow-field, the 

flow is deflected and either a conical or parabolic shock forms depending on the location 

of the deposition with respect to the body as well as the rate of heat addition [14].  The 

Mach number in the region behind the conical shock is reduced with respect to the free-

stream Mach number and hence the Mach number „observed‟ by the body is reduced.  

The end result is an increase in the shock standoff distance which leads to a reduction in 

pressure on the surface of the blunt body and hence a reduction in drag experienced by 

the blunt body [15].   

 

 

 

Figure 2.3.  Sketch of Flow-Field Induced by Energy Deposition Forward of Blunt Body. 
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Note that if the shocks originating from the energy deposition impinge on the 

body, any reduction in pressure at the nose of the body could be canceled out and an 

increase in the overall drag could occur. An important distinction in the flow-field 

resulting from energy deposition as compared to a structural spike or mass injection is 

often the lack of a recirculation zone caused by the presence of the spike or jet.  The lack 

of a deformable shear surface such as a jet causes the flow-field resulting from energy 

deposition to be much more stable.  Parameters of energy deposition include the rate of 

energy addition as well as its location and shape. One numerical study of energy 

deposition near the surface of a hypersonic vehicle revealed that the shape of the energy 

addition region had little effect on the resulting flow-field [16].  A numerical study using 

an axi-symmetric boundary condition to investigate drag reduction on a blunt body at 

Mach 10 shows a maximum drag reduction of 70 percent with an energy deposition rate 

of 800 W compared to the baseline case with no energy addition [3].  This same study 

demonstrated a strong dependency of the observed drag reduction as a function of the 

location of energy deposition forward of the body.  The drag decreases as the deposition 

distance forward of the nose increases until at some specific location the drag reaches a 

minimum.  As the deposition location is moved further forward, the shock wave formed 

in the vicinity of the energy deposition separates from the shock system associated with 

the blunt body itself and the standoff distance of the bow shock begins to decrease with 

attendant increase in drag force experienced by the blunt body.  Flow-field modification 

using focused energy deposition, as well as a combination of energy deposition and mass 

injection, has a very promising future and for further details, the reader is referred to 

Riggins et al. [17]. 
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3. COMPUTATIONAL METHODOLOGY AND COMPARISON WITH 

EXPERIMENTAL DATA 

The primary purpose of the current investigation is to study the drag reduction 

and stability characteristics of forward mass injection on three-dimensional blunt bodies 

and to assess possible techniques for enhancing the drag reduction and the stability of the 

forward penetrating jet.  Specifically, one objective of the study is to assess the use of a 

swirl velocity component imposed on the injectant at the injection orifice plane.  This 

then demands a full three-dimensional solution as opposed to a (2-D) axi-symmetric 

solution.  The instability associated with mass injection is due to pressure variation on the 

jet from side to side as discussed earlier.  An axi-symmetric boundary condition along the 

stagnation streamline generally forces the solution to be stable (i.e. prevents side to side 

motion or movement of the jet).  In this study, the code used is the VULCAN (Viscous 

Upwind aLgorithm for Complex flow ANalysis) computational fluid dynamics solver 

developed at NASA Langley for studying high speed flows. A sketch of the 

computational model is shown in Figure 3.1. 

 

 

 

Figure 3.1.  Computational Model Developed for Study of Drag Reduction Techniques 

on Hemispherical Body. 
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3.1. DISCRETIZATION 

VULCAN supports parallel processing and requires structured, PLOT3D grids.  

The surface mesh of the hemispherical nose studied in this paper is shown in Figure 3.2.  

The mesh is referred to as a spherical cube; the x’-, y’- and z’-coordinates on the surface 

of a unit cube are generated and then appropriate equations are used to map these 

coordinates to the x-y- and z-coordinates on the surface of a unit sphere. The coordinates 

are then scaled such that the diameter of the hemisphere is 0.02 m.  This method of grid 

generation is used to avoid excessive skew at the poles of the sphere experienced with 

other sphere meshing techniques.  The maximum skew of the surface mesh, defined as 

the cosine of the acute angle between the edges at a corner of a quadrilateral element, is 

found to be only 0.83.  The three-dimensional domain in which the flow-field is to be 

solved is then generated by protruding the surface mesh out in the direction normal to the 

sphere as shown in Figure 3.3.  A total of ten grid blocks are generated and the flow-field 

in each block is then solved on a separate processor using the VULCAN parallel 

processing capability. Blocks 1 through 4 are generated from Faces 1 through 4. Blocks 6 

through 10 are generated from Face 5 and are suitably stacked on top of one another.  The 

i- and j-directions are taken to be the tangential directions on the sphere and the k-

direction is taken to be normal to the sphere.  For the base-line grid, Blocks 1 through 4 

contain 23 x 69 x 61 nodes and Blocks 4 through 10 contain 69 x 69 x 21 nodes.  The 

nodes are clustered on the surface at the center of the sphere (i.e. the stagnation region) to 

provide high grid resolution near the region of mass injection or energy deposition.  The 

nodes are also clustered at the surface of the sphere in the k-direction in order to capture 

transport phenomenon although heat transfer and viscous effects are not considered in 

this study which focuses primarily on pressure drag reduction and injection stability.    

To ensure grid independence, the solution using the base-line grid defined above 

is compared to solutions using a coarse grid with approximately half the nodes as the 

base-line grid as well as a fine grid with approximately twice the number of nodes as the 

base-line grid.  The case studied in the grid independence test is a base-line case with no 

injection or free-stream energy addition at a free-stream Mach number of 6 and free-

stream pressure and temperature corresponding to standard atmospheric conditions at 30 

km altitude.  After converging to the steady solution, the pressure drag using the base-line 
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grid was found to be 8.88 N.  The pressure drag obtained with the coarse grid was found 

to be 1.2 percent lower than the drag using the base-line grid, where as the pressure drag 

using the fine grid was only 0.4 percent higher. 

 

 

 

Figure 3.2.  Mapping of the Surface Mesh on a Half-Cube to a Hemisphere. 

 

 

 

 

Figure 3.3.  Three-Dimensional Domain Formed From Surface Grid by Protruding Out 

Normal to the Sphere Surface. 
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3.2. VALIDATION 

A study is conducted in order to ensure that the results of this numerical work are 

consistent with available experimental results.  In the first comparison, flow is simulated 

over the hemisphere with no injection or free-stream energy deposition.  The free-stream 

Mach number is 6 and the free-stream pressure and temperature are selected to match the 

experimental condition in Reference [18].  A stable solution is obtained and the resulting 

pressure trace along the surface coordinate of the body, s, is shown in Figure 3.4 for the 

CFD and experimental results [18].  The data are taken at the symmetry plane of the 

body.  In Figure 3.4, the static pressure on the surface, p, is non-dimensionalized with 

respect to the stagnation pressure, ps. Figure 3.4 reveals that the results of the experiment 

and numerical simulation are in good agreement. 

 

 

 

Figure 3.4.  Pressure Trace on Surface with No Injection or Free-stream Energy Addition 

for Experiment and CFD Results. 

 

 

A comparison between the CFD results and the experimental results in Reference 

[19], in which forward injection of air is present, is also made.  In this case, the free-

stream Mach number is 2.5 and the free-stream static temperature and pressure are again 

selected to match the conditions of the experiment. Air is injected forward from the 

stagnation point of the hemisphere at a Mach number of 1 and the ratio of the hemisphere 

diameter to the jet diameter, d/dj, is 33.3. The ratios of the jet total pressure to the total 

pressure just aft of the bow shock for the base-line case with no injection, ptj/pt2, is 9.75 
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and the ratio of the jet total temperature to the free-stream total temperature, Ttj/Tt∞, is 

1.0. The results of the experiment and numerical simulation are shown in Figure 3.5.  In 

Figure 3.5, the static pressure on the surface of the hemisphere at the symmetry plane is 

plotted verses the angle from the stagnation point and is non-dimensionalized with 

respect to pt2.  The numerical results do not converge to a steady solution; instead, the jet 

oscillates randomly in the lateral directions.  The results shown in Figure 3.5 are therefore 

an ensemble average of the unsteady jet.  The experimental and numerical results are 

sufficiently close to provide confidence in the ability of the CFD simulations to model 

such flows, particularly in terms of drag reduction and jet stabilization characteristics.  

Note that no information regarding experimental errors is given in Reference [19].  For 

both experiment and simulation, the pressure in the region adjacent to the jet decreases, 

compared to the base-line case with no injection, and hence the drag force decreases.  

The pressure then increases as the location from the jet increases until the pressure 

matches the base-line case.   

 

 

 

Figure 3.5.  Pressure Trace on Surface with Forward Mass Injection of Air for 

Experiment and CFD Results. 
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4. RESULTS AND DISCUSSION 

In this study, a series of numerical simulations were conducted in order to study 

innovative techniques for drag reduction and stability enhancement of upstream-directed 

injection.  This section provides a summary of the techniques and conditions along with a 

discussion of the results in terms of flow-fields, drag reduction and stability.  For 

comparison in terms of performance, a base-line case with no forward injection or energy 

deposition is first presented.  Energy deposition with no forward injection is then 

investigated and the results of this full three-dimensional study are compared to a 

previous two-dimensional axi-symmetric study.  Next, a study with forward injection 

alone is conducted and the unstable nature of injection is shown and discussed.  

Subsequently, a series of cases with swirled centered injection and swirled and non-

swirled ring injection are conducted and the effects of these injection techniques on jet 

stability are presented.  Lastly, the effects of coupling forward injection with free-stream 

energy deposition are examined. 

 

4.1. BLUNT BODY WITH NO MASS INJECTION OR ENERGY DEPOSITION 

Initially, a reference case with neither injection nor energy deposition is 

simulated.  This reference case can be used as a base-line comparison when studying the 

effects of straight (non-swirled) gas injection, swirled gas injection, forward energy 

deposition, or a combination of techniques. Figure 4.1 shows a comparison between 

results obtained using an inviscid treatment of solid boundaries and results obtained for a 

full viscous and turbulent (Menter SST model) simulation. The two flow-fields are 

generated utilizing the same grid.  The grid is generated in the same fashion as described 

before and the grid spacing is similar.  However, the solutions shown in Figure 4.1 are 

obtained using a symmetry boundary condition on the y-plane (see Figure 3.2) which 

intersects the geometric center of the sphere.  Each solution is taken to 40,000 iterations 

at which point the solution residual reduction reaches two orders of magnitude. The two 

cases compare well to each other, as well as to available experimental data.  The data 

from the pressure contours are integrated over the surface of the sphere.  The x-

component of the integrated pressure is then taken as the pressure drag.  Note that the 
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method for integration assumes that the surface elements have small skew. The drag 

forces obtained from the two flow-fields (inviscid and turbulent) are shown in Figure 4.1.  

There is a two percent difference between the drag forces, with the drag from the viscous 

turbulent solution being slightly larger than that of the inviscid flow-field.  The Mach 

contours are also used to measure the shock standoff distance, ∆.  For both solutions, the 

standoff distance is 0.0016 m.  Note that the relatively course grid resolution in the axial 

direction prevents a precise measurement of this quantity.  Based on experiments by 

Billig [20], the shock standoff distance for a sphere of diameter 0.02 m at Mach 6 should 

be 0.00147 m; the numerical results for standoff distance agree closely with this number. 

Similar comparisons are also made for the full three dimensional mesh as described in the 

discretization section of this report.  In all cases, the results for the numerical simulation 

agree closely with published experimental results. 

 

 

 

Figure 4.1.  Pressure and Mach Contours Comparing Viscous, Turbulent Solution to 

Euler Solution. 

 

 

4.2. EFFECT OF ENERGY DEPOSITION ON WAVE DRAG REDUCTION 

As noted before, mass injection without energy deposition is unstable and hence 

the drag reduction results for a (2-D) axi-symmetric solution with mass injection (and no 

energy) will be inconsistent with the results of a full three-dimensional solution.  

Conversely energy deposition (and no injection) is stable and hence past studies of (2-D) 

axi-symmetric flow with energy deposition should predict the full three-dimensional 
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solutions studied in this work.  Mach 10 flow over the hemispherical body at free-stream 

pressure and temperature of 1185.5 Pa and 231.24 K, respectively, (standard atmospheric 

conditions at 30 km altitude) is studied.  A series of tests are conducted where energy is 

added to the free-stream at a fixed rate of 800 W and the location of the energy 

deposition forward of the nose of the body, l, is varied.  The energy deposition location is 

non-dimensionalized with respect to the body diameter d and the resulting value, l/d, is 

varied from 0.5 to 2.5.  Figure 4.2 shows the resulting Mach contour plots on the 

symmetry plane of the hemisphere for l/d of 1.0 and 2.0.  As expected, the Mach number 

goes to zero at the region of energy deposition and the disturbance results in a conical 

shock.  The Mach number in the region aft of the conical shock is reduced and the shock 

standoff distance increases.  The pressure is integrated over the surface of the body and 

the resulting wave drag is obtained.  The drag reduction is characterized by the drag ratio 

R: 

 

 mod

ref

D
R

D
  (1) 

where Dmod is the resulting drag after modifications including energy deposition and 

forward injection and Dref is drag of the reference case with no injection or energy 

deposition.  A drag ratio of R = 1 indicates zero drag reduction, where as a drag ratio of R 

= 0.1 indicates a 90% drag reduction from the base-line case. Another characterization of 

the effectiveness of energy deposition is the power effectiveness ratio S: 

 

               
mod( )ref jD D T V

S
Q

 
  (2) 

where Tj is the thrust from the jet (which adds to the drag force), V∞ is the free-stream 

velocity and Q  is the rate of energy addition.  The power effectiveness is a ratio of the 

propulsive power saved to the power required to modify the flow and a large value is 

desired.  The jet thrust Tj is calculated as: 

 

             j j j j jT p A m u   (3) 
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where pj is the static pressure of the jet, Aj is the area of the jet, 
jm  is the mass flow rate 

of the jet and uj is the x-component of the jet velocity, all at the surface of the body where 

the jet is expelled from the body. Tj accounts for the reverse thrust due to the forward 

facing jet.  For cases with energy deposition only, Tj is zero.  The values of R and S are 

shown in Figure 4.2.  For l/d = 2.0, R = 0.33 which indicates a 67% reduction in drag and 

S = 40.1 which indicates that for each unit of power deposited in the free-stream, 

approximately 40 units of power that would otherwise be used by the propulsion system 

to overcome the drag are saved. 

 

 

 

Figure 4.2.  Mach Contour of Flow-Field Resulting from 800 W Energy Addition Rate at 

l/d = 1.0 and l/d = 2.0. 

 

 

A similar axi-symmetric study was conducted by Riggins et al. [3]. Figure 4.3 

compares this axi-symmetric solution to the full three-dimensional solution.  The three-

dimensional solution compares well to the axi-symmetric solution.  The slight 

discrepancy can be accounted for by differences in the size and shape of the energy 

deposition.  Both solutions indicate that as the location of the energy deposition forward 
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of the body increases, the resulting drag decreases until about l/d = 2.0.  As l/d is 

increased further, the modified drag begins to increase from a minimum value. 

 

 

 

Figure 4.3.  Comparison of Drag Reduction Ratio R vs. Energy Deposition Location, l/d. 

 

 

4.3. EFFECT OF FORWARD INJECTION ON WAVE DRAG REDUCTION 

One advantage of drag reduction on blunt bodies using forward injection alone, as 

opposed to energy deposition or a combination of energy deposition and injection is that 

the technology for forward mass injection is mature and can be implemented on systems 

today.  Past numerical studies of forward injection have been two-dimensional and have 

either assumed a symmetry boundary condition [11] or have combined injection with 

energy deposition to increase the jet stability [19].  In this work, the stability of injection 

and the resulting drag reduction is investigated and the results are compared to a similar 

study employing a symmetry boundary condition.   Using a similar mesh generating 

technique described above, VULCAN is used to obtain the solution of the flow over a 

half-hemisphere.  The free-stream Mach number is 6.5 and the free-stream static pressure 

and temperature correspond to standard atmospheric conditions at a 30 km altitude.  After 

flow is developed over the body, air is injected forward into the free-stream and the 

resulting flow-field is observed.  The jet is characterized by several parameters including 

the Mach number Mj, the total pressure ptj and temperature Ttj, and the ratio of the 
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diameter of the hemisphere to the diameter of the jet d/dj.  For this case, Mj = 2, ptj = 375 

kPa,  Ttj = 294 K and d/dj = 46.  Note that mass is injected forward through a rectangular 

cross sectional area and the jet diameter is an equivalent diameter based on this cross 

sectional area.  

Using the relations for isentropic nozzle flow, the mass flow rate of the injectant 

jm  as well as the static pressure of the injectant at the surface of the body pj  are 

calculated and the jet thrust is found to be Tj = 0.047 N.  When calculating the modified 

drag on the body, the jet thrust is added to the axial component of the pressure integrated 

over the body surface. The reference drag (i.e. the drag force with no injection) is Dref = 

10.34 N.  The drag penalty due to the forward injection is insignificant compared to the 

reference drag as well as to the modified drag.   

 

 

 

Figure 4.4.  Mach Contours at Symmetry Plane Indicating Jet Instability. 

 

 

Mach contours of the flow-field resulting from forward injection are shown in 

Figure 4.4.  The contours are at the symmetry plane of the body and are shown for 

several iterations ranging from I = 50,000 to I = 66,000.  The solution is not time accurate 

and exact details of the transient behavior are not predicted.  However, by observing the 

solutions over several iterations, the instabilities associated with the jet can be seen. As 

predicted, the jet oscillates laterally and collapses back onto itself.  What initially disturbs 

the jet and causes it to go unstable are the numerical oscillations which are inherent in 

any numerical discretization scheme. Once the jet becomes unstable however, the 

oscillations observed where those expected based on similar experimental tests, 

indicating that computational results are predicting actual physical oscillations. The drag 
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ratios ranged from 1.0 (zero drag reduction) to 0.9.  Meyer et al. [11] conducted a 

numerical study with identical free-stream conditions as well as jet conditions.  Meyer‟s 

study was two-dimensional and assumed a symmetry boundary condition. A steady 

solution was obtained in that study and the resulting drag ratio was 0.5.  While Meyer‟s 

work was two-dimensional and the current work is three-dimensional, this alone does not 

account for the large discrepancies in drag reduction.  The assumption of symmetry, for 

the case of a single jet injection out of the center of a body, is not valid and results in 

overly optimistic drag reduction. 

 

4.4. EFFECTS OF ENERGY DEPOSITION ON STABILITY OF JET 

Past studies have shown that the coupling of energy deposition with forward mass 

injection partially stabilized the jet.   Khamooshi [21] studied this phenomenon for two-

dimensional flows.   Khamooshi‟s study did not assume a symmetry condition. The study 

observed the instability of a forward facing jet in a flow-field without energy deposition 

and then observed the improved stabilization of the jet after energy was added.  This 

work studies similar effects for a three dimensional flow.  The free-stream conditions as 

well as the parameters of the jet are identical to the flow-field studied in the previous 

section. Energy is deposited at a rate of 400 W into a small region two diameters forward 

of the nose.  Mach contours of the resulting flow-field are shown in Figure 4.5 for several 

iterations.  As noted before, while the exact transient behavior is not observed, the results 

at several different iterations give indications of the jet behavior.  With the addition of 

energy deposition, the jet stability increases noticeably.  The results are similar to the 

Khamooshi‟s two-dimensional study. A slight lateral instability remains but the 

instability in the axial direction where the jet collapse back onto itself in a cyclic pattern 

is eliminated.   
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Figure 4.5.  Mach Contours at Symmetry Plane Showing Effects of Energy Deposition on 

Jet Stability. 

 

 

4.5. CENTERED INJECTION WITH SWIRL 

As noted before, while energy deposition does provide a partial stabilization of 

the jet, it is desirable to stabilize the jet without energy addition.  One method 

investigated for its potential to produce stable forward injection is to add a swirl 

component to the velocity.  The motivation behind swirl injection is to gyroscopically 

stabilize the mass as it is injected forward, similar to a rifled bullet.  The jet used to study 

forward, swirled injection has a Mach number of 2, a total pressure and temperature of 

750 kPa and 294 K respectively and d/dj = 63. Assuming isentropic flow in the injector 

system, the x-component of the velocity (i.e. the u-velocity or the axial velocity) of the jet 

at the body surface is 731 m/s in the negative x-direction.  A velocity component normal 

to the surface (i.e. the lateral or swirl velocity) was added.  Figure 4.6 shows a contour of 

the axial velocity of the jet as well as streamlines showing the lateral components of the 

jet.  The swirl flow is injected at an angle of 12 degrees and the swirl-velocity component 

is 150 m/s at the surface of the body. 
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Figure 4.6.  Contour of Axial Velocity of Jet and Streamlines Showing Lateral Velocity 

Components of Jet. 

 

 

Results of the swirl injection are compared to non-swirled injection as shown in 

Figure 4.7.  Swirl appears to have minimal effect on jet stability.  The drag reduction 

ratio is calculated every ten thousand iterations up to forty thousand iterations total.  The 

drag reduction for non-swirled injection ranges from 20% to 3% less than the reference 

drag while the drag reduction for the swirled injection range from 24% to 1% less.  While 

the swirl might provide slight gyroscopic stability to the jet itself, the effects of the swirl 

on the surrounding flow-field must be considered.  Swirl induces asymmetric flow 

around the jet and hence pressure variations on either side of the jet triggering the 

instability mechanism previously described.  For the particular parameters of this study, 

swirl does not improve jet stability and might in fact have a detrimental effect. However, 

the results of swirl on jet stability need to be tested for a range of jet parameters and swirl 

intensities before final conclusions can be made on effects of swirl in general.   
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Figure 4.7.  Comparison of Swirled and Non-Swirled Centered Injection. 

 

 

4.6. EFFECTS OF RING INJECTION ON JET STABILITY 

Another method investigated in the present work for increasing jet stability and 

improving drag reduction is annular-ring injection.  The results of the ring injection 

technique are shown in Figure 4.8. The mass is injected forward in a ring pattern as 

shown in Figure 4.8a.  A solution is obtained for the same free-stream conditions as the 

previous study of swirled and non-swirled centered injection: M∞ = 6.5, P∞ = 1185.5 Pa 

and T∞ = 231.24 K.  The jet parameters are also similar with Mj = 2, Ptj = 750 kPa and Ttj 

= 294 K.  The ratio of the jet diameter to the diameter of the body d/dj is 23.  The jet 

diameter dj is the effective diameter of the jet based on the cross sectional area of the 

ring.  The cross sectional area is larger in the case of the ring injection compared to the 

centered injection and hence the mass flow rate of the injectant is greater, resulting in a 

larger drag penalty from the jet thrust. 

The ring injection results in a stable jet with a constant drag of 10% less than the 

baseline drag.  A Mach contour of the flow-field resulting from ring injection is shown in 

Figure 4.8b.  The Mach contour shown is at the symmetry plane of the hemisphere.  The 

ring injection creates an effective jet diameter which is larger than in the case of centered 

injection and the increased effective diameter might contribute to the jet stabilization.   
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Figure 4.8.  Ring Injection and the Resulting Flow-Field. a) Sketch of Ring Injection. b) 

Mach Contour of Modified Flow Resulting From Ring Injection. 

 

 

Another explanation for the jet stabilization is that the flow on one side of the jet 

is isolated from the flow on the opposite side due to the void in the center of the ring in 

which no mass is injected.  As discussed before, the jet destabilization results from a 

slight pressure variation on either side of the jet.  A slight pressure decrease in one region 

of the flow creates an asymmetric distortion of the bow shock formed by the jet.  This 

asymmetric distortion is such that the pressure decreases further in the said region and at 

the same time the pressure increases in the region opposite of the said region.  With the 

ring injection, a reduction in pressure on one side of the jet with respect to the other does 

not result in an asymmetric bow shock which leads to an unstable jet.  The ring injection 

case studied is at one particular set of jet parameters and free-stream conditions.  The 

stabilization effects of the ring injection suggest that an axi-symmetric solution, which 

lends itself to parametric study, would reasonably predict the full three-dimensional 

solution.  

To eliminate the increased injectant mass flow rate as the cause of the jet 

stabilization observed in the ring injection case, the centered, non-swirled injection case 

was repeated with and increase jet cross sectional area such that the injectant mass flow 
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rates of the two cases were identical. The centered, non-swirled injection, even with this 

increased injectant mass flow rate, still showed the unstable behavior where the jet 

oscillates and then collapses back onto itself. 

 

4.7. EFFECTS OF SWIRLED RING INJECTION ON DRAG REDUCTION 

Also studied are the effects of swirled ring injection on drag reduction.  The 

motivation for swirled ring injection is the same as before; the rotation of the injectant 

could provide gyroscopic stabilization of the mass of the jet and prevent the jet from 

moving off centerline.  Similarly to the study of centered swirl injection, a lateral velocity 

component is added to the jet by angling it 12 degrees.  The results of the swirled ring 

injection technique are shown in Figure 4.9. Figure 4.9a shows a velocity contour of the 

axial component of swirled ring injection with streamlines showing the lateral velocity 

components.  The axial velocity of the jet is 731 m/s and the lateral, or swirl, velocity is 

150 m/s.  The remaining parameters of the swirled ring injection are identical to the non-

swirled ring injection, including the free-stream conditions:  M∞ = 6.5, P∞ = 1185.5 Pa 

and T∞ = 231.24 K and the jet parameters: Mj = 2, Ptj = 750 kPa, Ttj = 294 K and d/dj = 

23.  A Mach contour of the resulting flow-field due to swirled ring injection at the 

symmetry plane of the hemisphere is shown in Figure 4.9b.  The resulting flow is stable 

with a near constant drag reduction of 8%. Shown in Figure 4.10 is a comparison 

between the swirled and non-swirled ring injection.  Based on the previous study of 

swirled and non-swirled centered injection and the conclusion that the swirl provides no 

stabilization, together with the fact that the flow conditions for both the centered and ring 

injection cases are similar, it is concluded that the reason for stabilization of the swirled 

ring injection is the ring injection pattern and not the swirl.  The asymmetry of the 

swirled jet is evident in both Figure 4.9b. and Figure 4.10.  This asymmetry results in 

pressure variations on the sides of the jet and could result in a slight destabilization of 

swirled ring jet compared to the non-swirled ring jet.  The asymmetry of the swirled ring 

injection also causes a distortion of the bow shock formed at the end of the jet.  By 

comparing the non-swirled and swirled injection results in Figure 4.10, it can be seen that 

the distorted bow shock of the swirled jet impinges the body to a greater extent compared 
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to the non-swirled injection.  This fact can explain the higher drag observed in the swirled 

injection compared to non-swirled injection. 

 

 

Figure 4.9.  Swirled Ring Injection and the Resulting Flow-Field. a) Velocity Contour of 

Ring Injection with Streamlines Showing Swirl Component. b) Mach Contour of 

Modified Flow Resulting from Swirled Ring Injection. 

 

 

 

Figure 4.10.  Comparison of Swirled and Non-Swirled Ring Injection. 
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4.8. COUPLED ENERGY DEPOSITION AND SWIRLED INJECTION 

Earlier in this work, it was shown that free-stream energy deposition has a partial 

stabilizing effect on a centered non-swirled jet.  The axial instability is minimized but the 

random lateral oscillation remains.  Also investigated are the effects of energy deposition 

on the stability of a swirled centered injection.  A simulation is conducted where a 

swirled centered jet is injected forward from the body while at the same time, energy is 

deposited in a small region forward of the nose at an l/d of 2 at a rate of 800 W. The 

parameters of the swirled jet are identical to the previous case of swirled centered 

injection: Mj = 2, Ptj = 750 kPa, Ttj = 294 K and d/dj = 63.  The free-stream conditions are 

also identical with a free-stream Mach number of 2 at standard atmospheric conditions 

corresponding to 30 km altitude. Shown in Figure 4.11 are Mach contours of the resulting 

flow-field due to swirled centered injection and energy deposition.  The contours are at 

the symmetry plane of the hemisphere and are shown at several iterations.  As in the case 

of non-swirled centered injection, the energy deposition provides a partial stabilization of 

the jet.  Comparing the results for swirled and non-swirled centered injection coupled 

with energy deposition, it appears swirl has no significant effects.  However, a range of 

swirl intensities must be tested before a conclusion can be made. 

 

 

 

Figure 4.11.  Mach Contours at Symmetry Plane Showing Effects of Energy Deposition 

on Stability of Swirled Centered Injection. 
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4.9. ENERGY DEPOSITION AND NON-SWIRLED RING INJECTION 

The effects of free-stream energy deposition on non-swirled ring injection are 

presented in this section.  A simulation is conducted at identical conditions to the case of 

non-swirled ring injection with no energy deposition, including the free-stream 

conditions:  M∞ = 6.5, P∞ = 1185.5 Pa and T∞ = 231.24 K and the jet parameters: Mj = 2, 

Ptj = 750 kPa, Ttj = 294 K and d/dj = 23.  The energy is deposited in a small region 2 

diameters forward of the nose at a rate of 400 W.  Shown in Figure 4.12 are Mach 

counters of the resulting flow-field due to energy deposition and non-swirled ring 

injection.  The Mach contours are at the symmetry plane of the sphere and are shown 

over a range of iterations.  As is evident in Figure 4.12, the jet exhibits unstable 

characteristics including random lateral oscillation.  Also, the conical shock formed by 

the energy deposition does not impinge on the surface of the hemisphere as in the case of 

centered injection shown in Figure 4.11.  The ring injection creates a larger effective jet 

diameter compared to centered injection which helps to deflect the conical shock away 

from the body.  Shock impingement creates a region of high pressure on the surface and 

hence contributes to the drag.  Ring injection potentially results in relatively lower drag 

compared to centered injection due to this deflection of the conical shock. 

 

 

Figure 4.12.  Mach Contours at Symmetry Plane Showing Effects of Coupled Energy 

Deposition and Non-Swirled Ring Injection. 
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5. CONCLUSIONS 

Designing a hypersonic vehicle with a bunt nose, as opposed to the conventional 

vehicle configuration with high fineness ratio, mitigates the adverse effects associated 

with a sharp thin nose including excess heating, limited material selection and high 

bending stresses.  Several methods of wave drag reduction on hypersonic blunt bodies 

were documented including the structural spike, forward mass injection and energy 

deposition.  It was noted that a structural spike suffers from ablation which eliminates 

possible usage on long duration hypersonic cruise vehicles.  It was also noted that, while 

energy deposition provides large drag reduction, the method increases heat transfer to the 

body.  Also, energy deposition can only be implanted today in laboratories.  These two 

considerations provided motivation for studying forward mass injection.  Unfortunately, 

forward injection suffers from instability of the forward penetrating jet.  This study then 

investigated methods for increasing the stability of forward mass injection. 

A full three-dimensional computational fluid dynamic simulation of flow over a 

hemispherical body at hypersonic speeds was conducted.  It was shown that previous 

numerical studies of forward injection, which assumed a symmetry boundary condition or 

an axi-symmetric condition, produce overly optimistic drag reduction results by 

eliminating the instability mechanism. It was also shown that the method of drag 

reduction by depositing energy in the free-stream is stable and that past axi-symmetric 

solutions predict the full three-dimensional solution.  One method of increasing the 

stability of forward injection proposed in past work and studied using two-dimensional 

simulations was coupling forward injection with free-stream energy deposition.  The 

same method was studied in this work for a full three-dimensional simulation and the 

results of both the two- and three-dimensional simulations were shown to be similar; the 

energy deposition partially stabilizes the jet by mitigating the axial instability while the 

lateral oscillation remains. 

Methods for increasing jet stability without energy deposition were investigated 

including swirl injection and ring injection.  The idea behind using swirl to increase jet 

stability was to provide gyroscopic stability to the jet and prevent it from moving off 

centerline.  It was shown however that the swirl induces an asymmetric flow pattern 
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which triggers the jet instability mechanism.  While swirl might cause gyroscopic 

stabilization of the jet, the asymmetric flow results in the effects of swirl on jet stability 

being negligible.  On the other hand, it was shown that ring injection results in a stable jet 

with a constant drag reduction.  The increased stability of the jet is due to one side of the 

jet being shielded from the other side.  In the case of the centered jet, a small pressure 

variation on one side of the jet distorts the bow shock formed by the jet in such a way that 

the pressure on the other side of the jet increases.  With the ring injection however, a 

small pressure disturbance on one side of the jet has minimal effect on the pressure on the 

opposite side.  Also studied was the effect of combining swirled centered injection with 

energy deposition and it was found that the effects of swirl were again negligible.  Lastly, 

upstream energy deposition was coupled with non-swirled ring injection.  This study 

found that the ring injection, by creating a larger effective diameter, deflects the shock 

formed by the energy deposition and prevents the shock from impinging the body.  The 

shock impingent creates a high pressure region on the surface and, by deflecting the 

shock, an even greater drag reduction can then be obtained. 
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