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ABSTRACT 

The objective of this research is to develop an integrated design methodology for 

reliability and robustness. Reliability-based design (RBD) and robust design (RD) are 

important to obtain optimal design characterized by low probability of failure and 

minimum performance variations respectively. But performing both RBD and RD in a 

product design may be conflicting and time consuming. An integrated design model is 

needed to achieve both reliability and robustness simultaneously. The purpose of this 

thesis is to integrate reliability and robustness. To achieve this objective, we first study 

the general relationship between reliability and robustness. Then we perform a numerical 

study on the relationship between reliability and robustness, by combining the reliability 

based design, robust design, multi objective optimization and Taguchi’s quality loss 

function to formulate an integrated design model. This integrated model gives reliable 

and robust optimum design values by minimizing the probability of failure and quality 

loss function of the design simultaneously.  Based on the results from the numerical 

study, we propose a generalized quality loss function that considers both the safe region 

and the failure region. Taguchi’s quality loss function defines quality loss in the safe 

design region and risk function defines quality loss in the failure region. This integrated 

model achieves reliability and robustness by minimizing the general quality loss function 

of the design. Example problems show that this methodology is computationally efficient 

compared to the other optimization models. Results from the various examples suggest 

that this method can be efficiently used to minimize the probability of failure and the 

total quality loss of a design simultaneously. 
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1. INTRODUCTION 

1.1. BACKGROUND 

The objective of this research is to better understand the relationship between 

reliability and robustness and then to develop a methodology for the integration of 

reliability-based design and robust design. In today’s competitive market, engineers face 

new challenges due to the creation of complex design models and applications of new 

technology. With the demand for both reliable and quality products increasing day by 

day, it has become imperative to create a design model that accounts for both reliability 

and robustness of new products. 

 Reliability is defined as the ability of a system or component to perform its 

required functions under stated conditions for a specified period of time [1]. Another web 

definition of reliability for mechanical systems is “Mechanical reliability is the 

probability that a spare, item, or unit will perform its prescribed duty without failure for a 

given time when operated correctly in a specific environment” [2]. The likelihood of 

success or failure of a product depends on its reliability. As the number of failures of a 

product increases, its reliability decreases. The central role in reliability engineering is the 

concept of failure and efforts need to be put to reduce failure and increase the reliability 

of a product.  

Robustness is defined as the property by which a product performance is 

insensitive to variation [3]. Numerous methods have been developed to support the 

design of robust products. The majority of these focus on improving the design so that the 

variations are reduced. Variations generally occur due to the presence of noise factors. 

The central role in robust design methodology is the concept of variation and efforts need 

to be put to control variation. 

 Design is an important step in the development of a product. The design process 

has been developed and used for centuries for various different products. Designer’s 

intuition and experience play a major part in the design of systems in the various fields. A 

design process generally involves analyzing various trial systems before an optimum 

acceptable deign is obtained [4]. An optimum and acceptable design generally involves 

reliable, cost effective and durable systems. A design is transformed into objectives and 
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constraints [5-6]. Objectives are the expectations from the design and constraints are the 

requirements to be met by the design. The region delimited by constraints is known as the 

feasible region. The designer is faced with the challenge of creating the design that meets 

the set of constraints. Competitive markets forces the designers to continuously improve 

the designs. Design improvements generally comply with the same objectives but 

improve the constraints of the design. 

The main goal of an engineer is to come up with a design which is highly reliable 

and robust. Traditionally, design has been based on engineering judgments and 

experience. But with the advances in computational methods and new technology, design 

optimization has become an efficient and easier method to solve design problems. 

Optimization [7-10] is a design tool that helps designers to identify an optimum design 

from a number of possible options. Design optimization is increasingly applied in 

industry since it provides engineers a cheap, easy and flexible means to identify optimal 

designs. Engineering design focuses on optimizing the performance of the product after 

meeting all the design requirements. The basic idea in design optimization is to find a set 

of design variables that optimizes an objective function while satisfying the design 

requirements. If reliability is involved, the feasibility of the design is formulated 

probabilistically such that the probability of satisfying the constraints exceeds the desired 

limit. The main emphasis in these design optimization methods is to achieve high 

reliability and robustness.  

 Reliability-based design (RBD) deals with obtaining optimal designs 

characterized by low probability of failure. The main step in RBD is to characterize the 

important uncertain variables and the failure modes. Uncertainty is generally 

characterized using probability theory. The probabilistic distributions of random variables 

are obtained using statistical models. When designing a product with multiples failure 

modes, it is important to make the product reliable with respect to each of the failure 

modes. In a RBD formulation, these failure modes are given as constraints on 

probabilities of failure corresponding to each of the failure modes. The probability of 

failure corresponding to each failure mode can be computed by performing probabilistic 

reliability analysis.  
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Robust design (RD) optimization deals with obtaining optimal designs 

characterized by minimum performance variations. In robust design, the performance 

variations are minimized without eliminating the sources of variation [11]. RD methods 

are widely used because they can improve the quality of products and processes. Quality 

is another important factor in any design. High quality products are often desired. But 

some noise factors lead to unexpected deviations from the function of a product. Robust 

design has been developed to improve the product quality by making the products 

insensitive to these unexpected deviations. Robust design optimization is performed by 

including the robustness concept in the conventional optimization process. In RD, 

insensitiveness of the objective function is emphasized. Robustness of the objective 

function is achieved by reducing the change of the objective with respect to the changes 

in the tolerances of the design variables. Robustness of the constraints means that all the 

constraints are satisfied within the range of tolerances of the design variables. 

 A reliable and robust design is important for any system. But, any product design 

involves several important product characteristics which conflict with each other. For 

example, robust design requires a trade-off between the target and variability of the 

quality characteristics. It is also essential for these characteristics to meet the reliability 

targets. Although existing methods like RD and RBD have proven to be effective, we still 

need a better approach to address these issues simultaneously at the product design stage. 

Also performing both reliability-based design and robust design optimization is usually 

very expensive and time consuming. Therefore, an integrated multi-objective 

optimization model is needed to capture both reliability-based design and robust design 

characteristics and to resolve the trade-offs so that a balanced optimization can be carried 

out to determine optimum values of design with minimum variations and loss. 

 

1.2. LITERATURE REVIEW 

 

1.2.1. Reliability-Based Design (RBD) In engineering design, the traditional 

deterministic design optimization has been used to improve the design and quality of the 

products. The design variables are considered to be deterministic and the design is based 

on the limits of the design constraints. But the deterministic design does not include 
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uncertainties [11] in the design parameters. The uncertainties mainly include variations in 

the design parameters and need to be taken into consideration in any design optimization 

problem. Uncertainties are present everywhere and ignorance of uncertainties may lead to 

a high chance of failure of the design process. So a different optimization model is 

required which not only improves the quality of the design but also the reliability by 

taking into consideration the uncertainty. The reliability-based design takes into account 

these uncertainties and hence provide a more reliable and safe design. 

In reliability-based design optimization (RBDO) [12-17], the design parameters 

are considered as random variables with. The most important step in RBDO is to 

characterize the design variables with uncertainty and the various failure modes of the 

design. The design variables and model parameters are described as probability 

distributions. The probability distributions are generally obtained by statistical models. 

Variations are represented by the standard deviations of the probability distribution and 

they are generally considered as constants. The failure modes of the design are translated 

into constraints on probability of failure in the design optimization problem. The 

probability of failure is generally calculated using First order Second Moment method 

(FOSM), Monte Carlo Simulation (MCS) or other reliability analysis. 

A typical RBDO model is formulated as follows. 

 

T

minimize cost( )

subject to

P{g ( > 0} R

( ) 0, 1,2,...,

, 1, 2,...,

i

j

l u

k k k

h j n

d d d k n

d

d, X)

d

                                     

 

 

where 1 2( , ,..., )m= d d dd is the vector for design variables and 1 2= ( , ,..., )nX X XX  is the 

vector of random variables. The objective of this RBDO model is to minimize the cost 

which is a function of the design variables. ( )ig d are the performance functions and 

( )jh d are the inequality constraints to be considered during the design optimization. 
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These constraints should be satisfied during the optimization. 
TR is the target reliability. 

l

kd  and u

kd  are the lower bound and the upper bound of the design variables kd . The 

design variables should be within the bounds. 

Some of the commonly used methods to calculate the reliability of a design are 

presented below: 

FOSM: First Order and Second Moment (FOSM) method, also called the moment 

matching method, is an efficient method to calculate the reliability of a performance 

function. It involves the first order derivative and the second moment of the function. If 

the first two moments i.e. the mean and standard deviation of the random variables X are 

known, the FOSM method can be used to estimate the mean and standard deviation of the 

performance function ( )g X . The mean and standard deviation values can then be used to 

calculate the probability of failure of the design. 

  

Monte Carlo Simulation: Monte Carlo Simulation (MCS) is a powerful statistical 

analysis tool and is widely used in engineering applications for sensitivity and 

probabilistic analysis. It is mainly used for models with high uncertainty and is 

considered as one of the methods that give accurate results for reliability. MCS is a class 

of computational algorithms that depend on repeated random sampling and performs 

large number of experiments to compute the results. MCS performs random sampling of 

the variables based on the mean value and the standard deviation of the various input 

variables and performs numerical experiments to satisfy the model objective and 

performance functions based on the model. From the output variables obtained from the 

experiments, MCS estimates the statistical characteristics and gives the output based on 

the objective functions. 
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1.2.2. Robust Design The main objective of robust design is to minimize the 

effects of variations in the design parameters. Variability [18-20] is considered as the root 

cause of the poor product performance. Variations generally occur from manufacturing, 

material properties. The general practice is to provide tolerances to the design parameters. 

But variations must be considered to obtain optimum values of the design parameters.  

Most of the design optimization models are mainly reliability based and do not include 

uncertainties or variations in the optimization process. Deterministic design optimization 

models exclude uncertainties in their design process and so, probabilistic design and 

optimization methods are developed to account for uncertainties in the design. One 

method is called the robust design optimization (RDO). It is extremely desirable that 

engineers include robustness in their design so as to reduce the variability and failure 

costs. 

A general method to represent the input variables, the factors affecting them and 

their response is using a P-diagram as shown in Figure 1.1. 

 

 

 

 

Figure 1.1. P-diagram [22] 
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The P-diagram [21] shows the functional relationship between the input signal 

factors (m) and the response (f). In an ideal condition, the response (f) is only a function 

of the signal factor (m). But in reality, it also includes the noise factors (z) and the control 

factors (b). Noise factors are the sources of variation and cannot be totally eliminated or 

controlled even though it causes variation. Some of the noise factors are variations during 

manufacturing, environmental deterioration etc. To reduce the effects of noise factors, the 

control factors (b) are used. The signal factors in a design are the performance parameters 

and the control factors are the design variables. Robust design is obtained when the signal 

to noise ratio is maximized. 

The robust design optimization method [22-26] provides an efficient and cost 

effective method to reduce the variations present in design parameters without 

eliminating the sources of variation. The main objective is to optimize the mean and 

minimize the variations by using methods which achieve the performance targets. RDO 

makes the design parameters insensitive to variations by using the inherent nonlinearity 

of the relationship between the product parameters and noise factors. 

The general form of robust design optimization model is shown below. 

 

2
,

minimize

subject to

, , 1,2,..,

, 1,2,..,

0

 
i

i i

l u
k k k

k

f ( )

( )= T i nf

d d k n

d

d

d X

d X                        

 

 

where 1 2( , , )nd d dd  is the vector for design variables , with 
l

kd and 
u

kd as its lower 

and upper limits. 2

i( )f d,X
 is the variance of a quality characteristic function ,i( )f d X , iT  

is the target value for each quality characteristic. The objective is to minimize the 

variance of the quality characteristic function subject to the constraints. 
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1.2.3. Integrated Reliable and Robust Design Integrated reliable and robust 

design combines reliability based design (RBD) and robust design (RD) into a single 

model to maximize both reliability and robustness simultaneously. RBD is a method to 

achieve the confidence in product reliability at a given probabilistic level, while RD is a 

method to improve the product quality by minimizing variability of the output 

performance function. Since both design methods make use of uncertainties in design 

variables and other parameters, it is easier for the two different methodologies to be 

integrated. In this method, both the probability of failure and the variance of the design 

are minimized. This is done using multi-objective optimization approach to bring both 

quality and reliability issues simultaneously. Multi-objective optimization is a process of 

simultaneously optimizing two or more conflicting objectives subject to certain 

constraints. The two objectives in this model are to minimize the probability of failure 

and the product quality loss. 

The general form of this model is shown below. 

 

     

2minimize ( )

subject to

{ ( , 0} R , 1,2

, 1,2,...,

f f

i i

l u

k k k

f ,

P g i = ,...,n

d d d k n

d X) >
                                    

 

 

where
2( )f ff , is the objective function, ( )d X is a design vector, X is a vector for 

random variables, 
ig is the probabilistic constraint and Ri

is the desired reliability. This 

method minimizes the mean and standard deviation of the design parameters and 

achieves reliability through the constraint function and hence generally called reliability 

based robust design optimization [27-31]. 

 Integrated design minimizes the computational effort, time and cost of performing 

the optimization. 
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1.3. RESEARCH TASKS 

This thesis investigates and develops new methodologies to better understand the 

relationship between reliability and robustness and then build a model for integrated 

reliability and robust design. The motivation for our work comes from the fact that an 

efficient model which integrates both reliability and robustness and minimizes the total 

quality loss is needed. 

  The main objective is to completely understand the relationship between 

reliability and robustness. Once a complete understanding is made, we can create a better 

design model for integrated reliable and robust design. This better design model can help 

us make more reliable decisions in terms of reliability and robustness. 

The research tasks in this thesis are shown in Figure 1.2.  

 

 

 

       

 

 

Our first task is to perform a study on the relationship between reliability and 

robustness. This involves studying the various similarities and differences between the 

two properties. Our second task involves developing an integrated reliable and robust 

1. Relationship between Reliability 

     & Robustness                                  

 Commonality 

 Difference 

2. Modeling Integrated reliable 

and robust design 

 Integrated  Reliable & Robust 

analysis model 

 Integrated  Reliable & Robust 

design model 

 IR&RD model for complex 

systems 

3. Model validation 

 Algorithms 

 Applications 
 

 

Figure 1.2. Research tasks 
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design (IR&RD) model. This IR&RD model is first analyzed based on the requirements 

and then developed into a design model. IR&RD model is also developed for complex 

systems with tougher constraints. Our final task involves performing model validation on 

our integrated reliable and robust design model. The performance of our model is tested 

on various examples to check the validity. 

 

1.4. ORGANIZATION OF THE THESIS 

Chapter 2 presents a study of reliability based design and robust design. It 

includes the definitions of reliability and robustness and their computations based on 

limit state function and Taguchi’s quality loss functions for different quality 

characteristics. 

             Chapter 3 explains the importance of numerical study of the relationship between 

reliability and robustness and gives a detailed description of the integrated reliable and 

robust design to study the relationship. Examples to validate the model are also included 

in this section. 

 Chapter 4 discusses a general model for integrated design which includes risk 

present in the design. It deals with a general loss function which includes Taguchi’s 

quality loss function and risk function to measure the total quality loss of the design. 

Detailed description of the model is presented and an example is used to show the 

efficiency of the model. 

 Chapter 5 presents the conclusions which include the summary of research work 

and the future work. 
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2. DEFINITIONS OF RELIABILITY AND ROBUSTNESS 

2.1. RELIABILITY-BASED DESIGN 

 

2.1.1. Reliability Reliability is one of the most important parameter in the design 

of any product. The success or failure of a product depends on its reliability. According 

to IEEE, reliability is defined as “the ability of a system to perform its required functions 

under stated conditions for a specific period of time [1]”. In other words, reliability is the 

probability that the random variables 
1 2( , ,... )nX X XX  is in the safe region defined 

by ( ) 0g X . Higher the reliability better the output obtained from the product. But one 

factor which reduces the reliability of a product is failure. The probability of failure is 

defined as the probability that ( ) 0g X . In other words, it is the probability that the 

random variables 
1 2( , ,... )nX X XX  are in the failure region defined by ( ) 0g X . 

Mathematically, the reliability is computed as shown in equation 1below. 

 

                                                  1 { ( ) 0}R pf P g X                                             (1) 

 

where { ( ) 0}pf P g X  

The above equation states that the reliability is equal to the probability that the 

performance function g(X) is greater than zero. 

 

2.1.2. Limit state function The reliability of a design is generally determined by 

knowing the area of the target distribution lying in the safe design space. Safe design 

space is a region consisting of all the feasible design points. Feasible design represents 

the design which satisfies all the constraints. If 99% of the target distribution lies in the 

safe design space, the reliability of the system is 0.99. So knowing the amount of 

distribution lying in the different design regions is very important. In order to separate the 

safe design region from the unsafe region, we need a boundary, often called the constraint 

boundary. The design space is generally defined as a performance function. The 

performance function ( )g X  is an important factor in determining the probability of 
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failure of a design. The value of the performance function determines whether a design is 

in the safe region or not. The constraint boundary defined in terms of the performance 

function ( ( ) 0)g X  is generally referred to as a limit state function [32]. The limit state 

function ( ( ) 0)g X  separates the safe design space ( ( ) 0g X ) from the failure space 

( ( ) 0g X ). Figure 2.1. shows the idea of limit state function for a two dimensional plane 

X1-X2.  

 

 

 

 

      Figure 2.1. Limit state function 

 

 

 

( ) 0g X separates the safe region ( ( ) 0g X ) from the failure region ( ( ) 0g X ). 

Reliability for this case is computed as the area of the probability density function of the 

performance function g lying in the safe design region ( ) 0g X . Because of the 

uncertainties present in the random variables defined, the limit state function is a random 

variable itself. As a result, before the design it is uncertain if g falls into the safe region or 

the failure region. 
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2.1.3. Reliability computed with limit state function Limit state function is very 

important in computing the reliability of a design. The most widely used reliability based 

design optimization method is the performance level (G-level) method. The G-level 

method [33] is mainly used in design problems. The key to this method is the concept of 

limit state function ( 0g ) which divides the design space into safe region ( 0g ) and 

failure region ( 0g ). But the limit state function need not always be ( ) 0g X . Different 

reliability types may have different limit state functions. The various reliability types and 

their limit state functions are explained below. 

The most common reliability type is the one sided reliability as shown in equation 2. 

 

 

                                                            { ( ) }R P g CX                                                   (2) 

 

where C is a constant. 

The above equation states that reliability is equal to the probability that the 

performance function ( )g X is lesser than a constant valueC . 

This type of reliability is called the one sided reliability as the design space has just one 

constraint boundary. For this condition, the limit state function is given by ( )g CX . 

( )g CX defines the safe design space and ( )g CX  defines the failure design space. 

Design parameter with a value lesser than C is desired for this type of design. Smaller the 

value of the design parameter, better the reliability. Since smaller values of the design 

parameter are more optimal, this condition is called the smaller-the-better (STB) 

condition.  This is the most common reliability type because most of the design 

parameters fall under smaller-the-better condition. 

The other type of one sided reliability condition is shown in the equation 3 below. 

 

                                                     { ( ) }R P g CX                                                        (3) 

 

where C is a constant. 
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The above equation states that reliability is equal to the probability that the 

performance function ( )g X is greater than a constant valueC . 

The limit state function is the same for this condition as the previous one and is 

given by ( )g CX . The difference occurs in the safe and failure regions. The safe region 

for this condition is defined by ( )g CX  and failure region is defined by ( )g CX . This 

means that the design parameter with a value greater than C is desired for this type of 

design. Higher the value of the design parameter, better the reliability. Since large values 

of the design parameter are desired for this particular design condition, it is called the 

larger-the-better (LTB) condition. 

The reliability can also be double sided, i.e. the design space may have two 

constraint boundaries. Double sided reliability is shown in the equation below. 

 

                                                      
1 2{ ( ) }R P C g CX                                              (4) 

 

where 
1C and 

2C are constants. 

The above equation states that the reliability is equal to the probability that the 

performance function ( )g X is greater than a constant value 
1C but lesser than a constant 

value
2C . 

This double sided reliability condition has two limit state functions, 
1( )g CX  

and 2( )g CX . The design values falling between the values 
1C and 

2C are safe.  

1 2( )C g CX  defines the safe design region and
1( )g CX , 

2( )g CX  define the 

failure design region. Since the optimal values are around the nominal value, this 

condition is called the nominal-the-best (NTB) condition. 

  

2.2. ROBUST DESIGN 

 

2.2.1. Robustness Robustness is a property where a product or a process or any 

design parameter is insensitive to variation. Robust design is an engineering methodology 

for improving the productivity during research and development so that high-quality 
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products can be produced quickly and at low cost. Robust design satisfies the functional 

requirements of a design parameter even though they have large tolerances for ease of 

manufacturing and assembly. The main aim of robust design is to minimize the product’s 

sensitivity to variation.  

 

2.2.2. Measuring Robustness and Quality Loss Function One of the main ways 

to improve the robustness of a design is to reduce the variation of the design parameters. 

Some of the concepts used to describe ways to reduce the variation are robust design 

methodology, Taguchi methods, quality engineering [34]. According to Taguchi, “quality 

engineering is not intended to reduce the sources of variation in products directly. 

Instead, one needs to make the systems of products or production processes less sensitive 

to sources of uncontrollable noise, or outside influences, through parameter design (off-

line quality control) methods.” Noise factors are very difficult, expensive or impossible to 

control as they are so unpredictable. So in order to achieve a robust design, insensitivity 

to noise factors is a better option than elimination of noise factors. Taguchi came up with 

a three step procedure based on quality engineering to achieve a robust design [20] – 

system design, parameter design and tolerance design. 

System design is a stage where the different designs are considered involving 

creativity and innovation. During parameter design [35], the optimum values for the 

various design parameters are decided. The exact choice of values for the parameters is 

arrived at based on the noise factors involved with those parameters. This is considered 

as the major phase to achieve robustness. Finally, during tolerance design, tolerance 

values are given to each design parameter so as to minimize the effect of variations. 

The idea of robust design is to improve the quality of a product by reducing the effects of 

variation. Higher the quality of a product, better the robustness. Taguchi’s methods 

define a quality loss function (QLF) [36-39] to measure the quality of a product. This 

method is an off-line quality control method applied at both product and process design 

stage to improve the product reliability by making the products insensitive to component 

variations. The quality loss function approximates the financial loss for any particular 

variation of a product parameter based on the target value of that particular design 

parameter. QLF states that there is an increasing loss which is a function of the variability 
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of the design parameter from the target value. The higher the variation from the target 

value, the higher the loss. Taguchi’s expected quality loss function [40] can be expressed 

in terms of the quadratic relationship 

 

 

                                                     2 2[( ) ]y yL k m                                                (5) 

 

 

where   y is the mean value of the design parameter y 

m is the target value of the parameter y 

y is the standard deviation of the design parameter y 

k is a constant defined as 

 

                                                              0

2

0

A
k                                                              (6) 

 

where  
0A is the consumer loss (in dollars) 

0
is the maximum deviation from the target value 

 

This function penalizes the deviation from the target value of a parameter which 

accounts for the lower performance of a product resulting in loss to the customer. The 

loss function shown in equation is referred to as the “nominal-the-best” condition as the 

design parameter has to achieve a nominal value. 

The second characteristic is the “smaller-the-better” condition. In this case, the 

ideal target value is zero. The equation that describes the loss function L  for this 

characteristic is 

 

                                                      
2 2( )y yL k                                                        (7) 
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where   y is the mean value of the design parameter y 

y is the standard deviation of the design parameter y 

k is a constant defined as 

                                                                 0

2

0

A
k

y
                                                           (8) 

 

where  
0A is the consumer loss (in dollars) 

0y is the maximum tolerated output value of y 

 

The third characteristic is the “larger-the-better” condition. For this characteristic, 

it is preferred to maximize the result. The ideal target value is infinity. The equation [41] 

that describes the loss function L for this characteristic is 

 

                                                    

2

2 2

3
1

y

y y

k
L                                                       (9) 

 

where   y is the mean value of the design parameter y 

y is the standard deviation of the design parameter y 

k is a constant defined as 

 

                                                         2

0 0k A y                                                                 (10) 

 

where  
0A is the consumer loss (in dollars) 

0y is the minimum output value of y 

 

Using Taguchi’s approach, the loss is minimized only by reducing the variation of 

the design parameters. QLF is mainly used to reduce the variability and move the average 

of a distribution closer to the target value. 
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2.3. GENERAL RELATIONSHIP BETWEEN RELIABILITY AND 

       ROBUSTNESS 

Reliability is the ability of a product to realize its intended function. If design 

variables (controllable) and the design parameters (uncontrollable) are denoted by vector 

X, and the safety region is  then reliability is defined by { }R P X . For a 

component with a single failure mode, if its performance ( ) 0y g X  reflects safety, 

then safe region is { ( ) 0}gX X , and reliability is { } { ( ) 0}R P P gX X . 

On the other hand, robustness is the ability that the performance of a product is 

not sensitive to uncertainties (or noises). Suppose the performance of the product 

is ( )y g X , the robustness of the product is described by the standard deviation,  of y . 

Although it is thought that both reliability and robustness promote each other, 

they are essentially different. As shown in Figure. 2.2., reliability is targeted to small 

likelihood events while robustness is suitable for large likelihood events.  

 

 

 

 

 

          

y 

Robustness 

Reliability Reliability 

PDF of y 

Figure 2.2. Relationship between reliability and robustness 
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The applications of reliability-based design (RBD) and robust design (RD) are 

also distinct as illustrated in Figure. 2.3. RBD is primarily used for small likelihood 

events with but high consequences (zones 1 and 2) while RD is applied to large 

likelihood (every fluctuation) events with less critical consequences (quality losses) (zone 

3). There are no engineering applications where everyday fluctuation leads to critical 

consequences (zone 4).  

 

 

 

 

                 

 

 

 

Reliability and robustness can promote each other, but high reliability does not 

mean high robustness, and vice versa. This can be explained as follows. 

Design 1 and design 2 are two arbitrary distributions [22] as shown in Figure 2.4.  
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The design range is equal to the allowable range and the means of the two 

distributions coincide with the target value m, i.e. the performance of both design 1 and 2 

are on the target m. A small part of design 1 is outside the design range whereas none of 

the design 2 is outside the range. But if any unexpected noise factor becomes active, the 

distribution of design 2 has a larger probability to be outside the design range than 

design1.This shows that design 1 is more robust than design 2 as the standard deviation 

of design 1, 
1y
 is less than the standard deviation of design 2, 2y . The probability of 

failure is generally calculated from the area of the probability density function (PDF) 

curve in the failure region. From the figure, since the PDF curve in the failure region of 

design 2 is smaller than that of design 1, the probability of failure of design 2 is lesser 

than the probability of failure of design 1. So, design 2 is more reliable than design 1. 

Since neither design 1 nor design 2 is both reliable and robust, reliability and robustness 

do not mean the same thing.  

 

Failure Target  

   :  

 

PDF of  Design 1 Design2 

Failure 

: Design 2 is more reliable 

than design 1 

1 2y y
: Design 1 is more robust 

than design 2 

Figure 2.4. The distinction between reliability and robustness 
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3. NUMERICAL STUDY ON THE RELATIONSHIP BETWEEN RELIABILITY 

AND ROBUSTNESS 

3.1. INTRODUCTION 

 The objective of this chapter is to discuss an innovative approach to study the 

relationship between reliability and robustness and to maximize both simultaneously. A 

reliable design helps us to reduce the probability of failure of the design. A robust design 

helps us to reduce the variations of the design parameters. Reliability-based design 

(RBD) and robust design (RD) are two distinct procedures and do not always promote 

each other. RBD is mainly used for components where reliability is foremost important 

and it compromises on the quality of the design. Similarly, RD focuses only on reducing 

the variations of the parameters and do not give importance to the reliability. Neither 

RBD nor RD, if used individually, could ensure both reliability and quality 

simultaneously in a product. Therefore, RBD and RD must be integrated into a single 

model [28] in order to ensure that a product is robust against the noise factors and reliable 

over a specified time period.  

 The objective of our work is to develop an integrated reliable and robust design 

model which gives us the design with high reliability and robustness. The problems are 

formulated to minimizing the probability of failure of the design and the failure cost 

associated with variations. It is not possible to solve this problem accurately and hence 

only an approximation can be made. 

 Some approaches [27-31] have been made to integrate both RBD and RD into a 

single model. But a systematic approach to integrate them into a multi-objective 

environment is needed. 

 The robustness of a design is generally increased by reducing the standard 

deviation of the design parameter. As the standard deviation is reduced, the variation of 

the parameter from the target value is minimized, thereby increasing the quality. But 

minimizing the standard deviation may also lead to reducing the probability density 

function of the design which would reduce the reliability of the design. Therefore, a 

multi-objective optimization model [28, 30] should be used to combine both reliability 

and robustness. The reliability is generally measured by the probability that the design 

will fail to meet the expected values. Robustness can be measured from the standard 
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deviation of the design performance. Since standard deviation and reliability have a 

positive relationship, measuring robustness from standard deviation may not be the best 

method. This brings us to the consideration of Taguchi’s quality loss function [36] to 

measure robustness. According to Taguchi, quality is defined as “the losses a product 

imparts to the society from the time the product is shipped. [20]” These losses are mainly 

due to the functional variations. Minimizing the variation is the main goal in robust 

design. The main illustration of this loss in Taguchi’s methods is the quality loss 

function. Taguchi’s quality loss function measures these variations as a function of 

quality loss and provides expressions to measure quality loss for any kind of design with 

high accuracy. Therefore, Taguchi’s quality loss function is used in our design model to 

maximize the robustness of the design. 

This section presents a multi-objective optimization approach to bring both 

quality and reliability issues simultaneously in a multi-objective environment. The 

concepts of variability optimization, robust design, reliability based design, multi 

objective optimization, and Taguchi’s quality loss functions are brought together to build 

the proposed model. The proposed approach ensures reliable, robust, and concurrently 

cost-effective product design by satisfying all the desired quality characteristics.  

 

 

3.2. PROCEDURE 

 The integrated reliable and robust design consists of two basic steps. The first step 

is to formulate the design problem in terms of reliability and robustness and the second 

step is to use computational methods to find the relationship between reliability and 

robustness. 

 The first step in formulating the design problem is to identify the performance 

functions. The performance functions define the design problem. They distinguish the 

safe design from the failure design. The expressions for the design parameters along with 

their design boundaries are defined. Reliability is calculated as the probability that the 

performance function lies within the design range. 

Any design has a number of characteristics with their design variables falling into 

a design range. Some characteristics play an important role in the final outcome of the 
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design and are controllable. These characteristics generally have an ideal value with some 

allowable tolerances. Those characteristics with dimensions within the tolerance range 

constitute feasible design. They are treated as design variables with lower and upper 

bounds. These design variables are the essence of the design. Different combinations of 

design variables constitute different designs. The important step of any design problem is 

to identify the design variables with their lower and upper bounds as shown in the 

equation below. 

 

                                                 , 1,2,....l u
k k kd d d k n                                                (11) 

 

 

where kd are the design variables with l
kd and u

kd as their lower and upper bounds. 

The next step is to identify the random variables in the performance function.  

The consideration of design parameters as random variables provides an optimum design 

in the presence of variability among the design parameters. Most of the random variables 

used in our examples are normally distributed with the mean value and standard deviation 

as shown in the equation below. 

 

 

                                                     ~ ( , )X XX N                                                           (12) 

 

 

where   
X   and X are the mean and standard deviation values value of X . 

First Order and Second Moment (FOSM) method is used to calculate the 

probability of failure of the performance function ( )g X  as shown in the equation below.  
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where  g and g are the mean and standard deviations of the function ( )g X  

 
g

g

 is the cumulative distributive function of ( )g X  

  

Our objective is to maximize both the reliability and robustness of the design. 

Reliability is maximized by minimizing the probability of failure ( pf ) of the 

performance function i.e. the probability that the performance function falls outside the 

design space. Robustness in our design is defined by Taguchi’s quality loss function 

based on the quality characteristic. Robustness is maximized by minimizing the expected 

quality loss function ( L ) of the design parameter. To define both reliability and 

robustness into a single objective function, weights (
1w ,

2w ) are used. These weights can 

vary from zero to one and define the relationship between the probability of failure and 

the loss function. The minimizing function used in our design problem is shown in the 

equation 14 below. 

 

                                                 
1 2min( )v w pf w L                                                       (14) 

 

 

Design constraints are added in the optimization model. Constraints are 

requirements or properties in the design to ensure that the design meets the performance 

goals. A constraint function can be an inequality constraint 
1 2( , ,..., ) 0i nh d d d or an 

equality constraint
1 2( , ,..., ) 0j nc d d d . 

Our proposed method studies the relationship between reliability and robustness 

using a different method. The minimum and maximum values of reliability of the design 

are calculated first from the above equation using appropriate weights. This reliability 

region defined between the minimum and maximum values of reliability is divided into a 

number of equal divisions and the expected quality loss function values are calculated for 

each corresponding reliability value. 
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Most of the design models achieve robustness by minimizing the standard 

deviation of the performance function ( g ). This method is also used in our design 

problems so as to compare the results with that from our proposed method. The objective 

function used for this case is shown in equation 15. 

 

                                                
1 2min( )gv w pf w                                                      (15) 

 

The general form of our multi-objective optimization model is shown below. 
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i
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C g C i n

h j n

d d d k n

d X

d X

                                            (16) 

 

 

where   g is the performance function 

 C1 and C2 are the lower and upper design boundaries for the performance function 

 h is the inequality constraint function 

 

Matlab software is used to perform the optimization. The fmincon function in 

Matlab is used to minimize the objective function by taking into account the lower and 

upper bounds of the design variables and the design constraints. The fmincon function 

finds a constrained minimum of a scalar function of several variables starting at an initial 

estimate.  

To better understand the proposed method, a few engineering problems are taken 

as examples and are presented in the next section. 

 Figure 3.1. shows a summary of this procedure in a flowchart. 
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These steps are repeated n times for    

different sets of design variables 
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Figure 3.1. Flowchart of the proposed method 
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Calculate the expected loss function iL values at various steps 

Calculate the probability of failure values, 1i ipf R  

 

 
Maximize the reliability and robustness using the minimizing function 

1 2min( )i iv w Pf w L  

Optimum 

design 

point is 

obtained 

 

Design point 

minR is calculated using the minimizing function min( )v pf  

maxR  is calculated using the minimizing function min( )v pf  

max min
step

R R
R

n
; mini stepR R iR , n is the number of reliability steps, i=1 to n 

 

Calculate the loss function for each corresponding reliability value to 

study the relationship between reliability and robustness 
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3.3. NUMERICAL EXAMPLES 

This section presents the study of the proposed design model on design problems 

with different quality characteristics along with some examples. Design problems would 

fall under one of the quality characteristics presented below. 

 

3.3.1. Smaller-the-better condition For this case, the reliability increases as the 

output performance value decreases. The ideal target value is zero. Most of the design 

problems fall under this category. One sided reliability equation is used for this condition 

as shown in the equation below. 

 

                                                     { ( ) }R P g CX                                                        (17) 

 

where C is the maximum tolerated output value. 

 

3.3.1.1. Quality loss function The main objective is to minimize the probability 

of failure of the performance function and its loss function. The expected quality loss 

function used for this case is shown in the equation below. 

 

                                                    
2 2( )g gL k                                                          (18) 

 

 

where  g is the mean value of the performance function g 

g is the standard deviation of the performance function g 

k is a constant and is defined as 0

2

0

A
k

y
 

0A  is the consumer loss (in dollars) 

0y is the maximum tolerated output value.  
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3.3.1.2. Example: Cantilever beam with one design performance A cantilever 

beam as shown in Figure 3.2. is to be designed. 

The objective is to maximize both the reliability and robustness of the design. 

 

 

 

       Figure 3.2. Cantilever Beam 

 

 

L, b and h are the length, width and height of the cantilever beam respectively. These are 

our design variables. Px and Py are the external loads acting on the cantilever beam in the 

horizontal and vertical directions respectively and they are the random variables. 

The performance function used for this example is shown in the equation below. 

 

 

                   [( / 2 ) ( / 2 ) ] 0,  MPag Y S Y Lb Iy Px Lh Iy Py                            (19) 

 

 

where   g is the performance function for bending stress, 

Y is the yield stress of the material and is given by, 200MPa,Y  

 S is the stress that occurs due to the loads Px and ,Py  

3

12

bh
Ix  and 

3

12

b h
Iy  are the moments of inertia of the cantilever beam. 
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The above equation states that the difference between the yield stress of the 

material and the design stress should be greater than zero. The design stress should not 

exceed the yield stress of the material. 

The various distributions are shown in Table 3.1. 

 

 

 

Table 3.1. Distribution of random variables for cantilever beam with one design       

parameter 

Variable Mean Standard Deviation Distribution 

Px 2200N 100N Normal 

Py 4400N 220N Normal 

 

 

 

The dimension bounds for the design variables (in mm) are given below. 
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L

b

h

 

 

 

Other values used in this problem are: 

 

Consumer loss (in dollars), A0=$10 

Maximum tolerated output value, y0=200MPa.  

 

Results: 

 The values of expected quality loss function are calculated for the different 

reliability values and the results are plotted as shown in the Figure 3.3. 
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Figure 3.3. Reliability Vs Loss function for cantilever beam with one design parameter 

 

Using standard deviation: 

In this case, the robustness is achieved by minimizing the standard deviation of 

the performance function g. The values of standard deviation are calculated for the 

different reliability values and the results are plotted as shown in Figure 3.4. 
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Figure 3.4. Reliability Vs Standard Deviation for cantilever beam with one design   

parameter 
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Figure 3.3. shows that as the reliability of the design increases, its quality loss 

function decreases. Figure 3.4. shows that as reliability of the design increases, its 

standard deviation decreases. From the above two plots, we find that both the reliability 

of the bending stress of the design and its robustness increase or decrease simultaneously. 

Reliability and robustness of the design have a positive relationship. These results clearly 

demonstrate that the proposed method gives optimum results for Taguchi’s smaller the 

better quality characteristic with one design parameter. 

  

3.3.1.3. Example: Cantilever beam with two design performances 

In the previous example, both the reliability and robustness were calculated for the same 

performance function. In this example, the reliability and robustness are calculated for 

different design parameters to find the effect of robustness of one parameter on the 

reliability of the other design parameter. 

The two performance functions used for this case are shown below. 

 

                                     1

6
0,  MPa

L Px Py
g Y S Y

bh b h
                               (20) 

 

 

                                        

2 23

2 3 3

4
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L Px Py
g

E b h bh
                                          (21) 

 

 

where   
1g is the performance function for bending stress, 

2g is the performance function for tip displacement that occurs due to the loading, 

E is the Young’s modulus of the material and is given as, 200000MPaE . 

 

The design stress should not exceed the yield stress of the material and the tip 

displacement during loading should not exceed the allowable displacement. 

The performance of the beam is better when the tip displacement of the beam is 

less. But the maximum tolerated output value of this design is the maximum allowable 
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deflection of the beam given by, y0=58mm. The consumer loss for this problem is given 

by, A0=$10. 

The various distributions are shown in Table 3.2. 

 

 

 

Table 3.2. Distribution of random variables for cantilever beam with two design 

parameters 

Variable Mean Standard Deviation Distribution 

Px 2200N 100N Normal 

Py 4400N 220N Normal 

 

 

 

 

The dimension bounds for the design variables (in mm) are given below. 
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Results: 

 The values of loss function are calculated for the various values of reliability and 

the results are plotted as shown in Figure 3.5. 
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Figure 3.5. Reliability Vs Loss function for cantilever beam with two design parameters 

 

Using standard deviation: 

 For this case, the robustness of the deflection performance function is maximized 

by reducing its standard deviation. The values of standard deviation are calculated for the 

various values of reliability and the results are plotted as shown in Figure 3.6. 
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Figure 3.6. Reliability Vs Standard Deviation for cantilever beam with two design 

parameters 
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Figure 3.5. shows that as reliability of the design stress increases, the loss function 

of the deflection decreases. Figure 3.6. shows that as reliability of the design stress 

increases, the standard deviation of the deflection due the loading decreases. From the 

above two plots, we find that the reliability of the bending stress of the design and the 

robustness of the deflection increase or decrease simultaneously. Reliability and 

robustness of two different performance functions of the design follow a positive 

relationship. These results clearly demonstrate that the proposed method gives optimum 

results for Taguchi’s smaller the better quality characteristic with two design parameters. 

 

3.3.2. Nominal-the-best condition In some cases, for a characteristic, there is a 

specified target value. There are also specified upper and lower limits with the target 

value being the middle point. The optimal value of the design parameter is the target 

value but any value lying within the limits would be safe. Double sided reliability 

equation is used for this condition as shown in the equation below. 

 

                                                   
1 2{ ( ) }R P C g CX                                                 (22) 

 

where C1 and C2 are the lower and upper bounds of the performance function. 

 

 3.3.2.1 Quality loss function The expected quality loss function used for this 

case is shown in the equation below. 

 

                                                 
2 2[( ) ]g gL k m                                                    (23) 

 

where   m is the target value 

 k is a constant and is defined as 0

2

0

A
k  

0A is the consumer loss (in dollars) 

0 is the maximum deviation from the target value.  
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3.3.2.2. Example: Double cantilever beam A double cantilever beam (DCB) is 

shown in Figure 3.7. [42]. A DCB with an initial crack is used to measure the fracture 

toughness at the interface, when it is subjected to loads on both sides. The main objective 

of this problem is to maximize both the reliability and robustness of the design fracture 

toughness value. 

 

 

Figure 3.7. Double Cantilever Beam 

 

b is the width of the beam. h1 and h2  are the heights of the beam 1 and beam 2, 

respectively. a is the initial crack length present at the interface of the double cantilever 

beam. P is the load acting on the DCB on both sides. 

The performance function used for this case is shown in the equation below. 
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g

b bE h bE h
                         (24) 

 

 

where    g is the fracture toughness of the double cantilever beam 

1E is the Young’s modulus of material 1 and is given by, 1E =30000ksi 

 2E is the Young’s modulus of material 2 and is given by, 2E =10000ksi 

 1 is the Poisson’s ratio of material 1 and is given by 1 0.28  

 2 is the Poisson’s ratio of material 2 and is given by, 2 0.30  
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  The above equation states that the performance function should be greater than 

225 but lesser than 265. The ideal value for the performance function is 245. 

The various distributions are shown in Table 3.3. 

 

 

Table 3.3. Distribution of random variables for double cantilever beam 

Variable Mean Standard Deviation Distribution 

P 230lb 5lb Normal 

 

 

 

The dimension bounds for the design variables (in inch) are given below. 

 

 

1

2

0.47 0.7

0.125 0.15

0.25 0.35

b

h

h

 

 

 

The probability of failure of the design is calculated as the probability that the 

fracture toughness value falls outside the range. The ideal value of the fracture toughness 

is 245. But any value falling between 225 and 265 is acceptable. The maximum deviation 

of the output value is given by, 
0
=20. The consumer loss for this problem is given by, 

A0=$10. 

 

Results: 

 The values of loss function are calculated for the various values of reliability and 

the results are plotted as shown in Figure 3.8. 
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Figure 3.8. Reliability Vs Loss Function for double cantilever beam 

 

 

Using standard deviation: 

In this case, the robustness is maximized by minimizing the standard deviation of 

the performance function. The values of standard deviation are calculated for the various 

values of reliability and the results are plotted as shown in Figure 3.9.  
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Figure 3.9. Reliability Vs Standard Deviation for double cantilever beam 



 

 

38 

Figure 3.8. shows that as reliability of the design fracture toughness value of the 

DCB increases, its quality loss function decreases. Figure 3.9. shows that as reliability of 

the fracture toughness increases, its standard deviation decreases. From the above two 

plots, we find that the reliability and robustness of the fracture toughness value of the 

design increase or decrease simultaneously. Reliability and robustness of the design 

follow a positive relationship. These results clearly demonstrate that the proposed method 

gives optimum results for Taguchi’s nominal the better quality characteristic. 

 

3.3.3. Larger-the-better condition For this case, the reliability increases as the 

output performance value increases. The ideal target value is infinity. One sided 

reliability equation is used for this condition as shown in the equation below. 

 

                                                          { ( ) }R P g CX                                                   (25) 

 

where C is the minimum tolerated output value. 

 

 3.3.3.1 Quality loss function The main objective is to minimize the probability of 

failure of the performance function and its loss function. The expected quality loss 

function used for this case is shown in the equation below. 

 

                                                        

2

2 2

3
1

g

g g

k
L                                                  (26) 

 

 

where    k is a constant and is defined as 2

0 0k A y  

0A  is the consumer loss (in dollars) 

0y is the minimum tolerated output value.  
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3.3.3.2. Example: Engine An engine [43] is shown in the Figure below. 

 

 

Figure 3.10. Engine 

   

   

The main objective of this problem is to maximize both the reliability and robustness of 

the design compression ratio (CR) values of the engine. 

 The performance function used is shown in the Equation below. 

 

                                                          9
Vs Vc

g
Vc

                                                      (27) 

 

where   g is the compression ratio 

 Vs and Vc are the swept volume and clearance volume of the engine  

  

The above equation states that the compression ratio value of the design should be greater 

than 9. 
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The equations related to this problem are shown below. 

 

                                     

2

2

2

Swept volume, ,cc
4

Gasket volume, ,cc
4

Depression volume, ,cc
4

Net piston head volume, ,cc

Clearance volume, ,cc

Vs B S

Vg Gb Gt

Vdp B Pd

Vph Vphg Vdp

Vc Vcc Vg Vph

                          (28) 

 

where  B is the bore diameter of the piston 

 S is the stroke of the piston 

 Gb is the bore of the gasket 

 Gt is the compressed gasket thickness 

Vphg is the gross piston head volume 

 Pd is the piston depression. For this problem Pd =1.27 cm 

Vcc is the volume of the combustion chamber in the cylinder head 

  

Vcc and Vphg are the random variables used in this design problem. 

The distributions are shown in Table 3.4. 

 

 

 

Table 3.4. Distribution of random variables for engine 

Variable Mean Standard Deviation Distribution 

Vcc  39cc 3cc Normal 

Vphg  65.7cc 4cc Normal 
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The design variables used in this problem are the bore of the cylinder ( B ), stroke 

of the cylinder ( S ), compressed gasket thickness ( Gt ) and the bore of the gasket (Gb ). 

The dimension bounds for the design variables (in cm) are given below. 

 

 

4 9

5 15

0.1 0.4

5 12

B

S

Gt

Gb

 

 

 

The reliability is maximized by minimizing the probability of failure of the design 

i.e. the probability that the compression ratio value falls below the least tolerated value.  

As the value of the compression ratio increases, the performance of the engine gets better. 

But the least tolerated value of the compression ratio from the design is 9. Any CR value 

lesser than 9 is not desired for this problem. The consumer loss for this problem is given 

by, A0=$40. 

 

Results: 

 The values of loss functions are calculated for the various values of reliability and 

the results are plotted as shown in Figure 3.11. 
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Figure 3.11. Reliability Vs Loss Function for engine 

 

 

Using standard deviation: 

In this case, the robustness is maximized by minimizing the standard deviation of 

the performance function. The values of standard deviation are calculated for the various 

reliability values and the results are plotted as shown in Figure 3.12. 
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Figure 3.12. Reliability Vs Standard Deviation for engine 
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Figure 3.11. shows that as reliability of the design compression ratio value 

increases, its quality loss function decreases. Figure 3.12. shows that as reliability of the 

performance function increases, its standard deviation also increases. This means that as 

the reliability increases, robustness decreases. The above two plots give different results. 

Reliability and robustness follow a positive relationship when we use the proposed 

method and they follow a negative relationship when we measure robustness from the 

standard deviation of the design. These results clearly demonstrate that the proposed 

method gives optimum results for Taguchi’s larger the better quality characteristic. 

   

3.4. CONCLUSIONS 

This chapter presents a methodology to perform a numerical study on the 

relationship between reliability and robustness. The various conclusions from the above 

examples are presented below. 

Reliability and robustness may not always change in the same direction. High 

reliability and robustness are required for every design and a positive relationship 

between them is often desired. But in some cases, reliability and robustness may not 

increase simultaneously. 

Achieving robustness by minimizing only the standard deviation of the design 

parameter may not be good for robust design. 

Taguchi’s quality loss functions provide a better method of measuring robustness 

compared to standard deviation of the design. The quality loss function involves the 

failure cost, mean value and standard deviation of the design parameter and hence it 

provides a better and efficient method to achieve robustness.  

 The comparison of the results demonstrates that the proposed model provides an 

efficient and a better method to study the relationship between reliability and robustness 

of a design. 
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4. INTEGRATED DESIGN FOR RELIABILITY AND ROBUSTNESS 

4.1. INTRODUCTION 

 The objective of this chapter is to discuss a methodology to formulate a general 

model of integrated design for reliability and robustness. Most of the current optimization 

models are only concerned about the safe design space and do not consider the failure 

region to calculate the loss function. The failure design space is only being used to 

calculate the reliability of the design. The design values that fall outside the safe region 

should also be taken into account in the quality loss function. The deviation of one or 

more results from their expected range is generally considered risk. The objective of our 

work is to develop a model which minimizes the general loss function of a design. This 

general loss function includes the losses due to variation of the design parameters from 

the target value and the losses due to the design parameters falling outside the design 

range. 

Risk is generally defined as the probability that the design values fall outside the 

design range [44]. Webster’s dictionary defines risk as the possibility of loss, injury, 

disease or death [45]. Another web definition for risk is “Risk is defined as the exposure 

to the chance of injury or loss.” At the most basic level, designers and manufacturers seek 

to reduce the risk of failure of a product. Since risk is associated with the failure space, 

risk function is defined as a function of the probability of failure of the design. 

 The concept of quality loss function (QLF) is important for measuring quality of 

the design. QLF measures the variation of the design parameters from their target value 

and calculates the monetary loss associated with the variations. But it does not 

completely measure the quality of the product. Failure region should also be included 

when calculating the quality losses as they also contribute to the monetary losses for the 

design due to loss of quality. This failure region is defined by the risk function which 

gives the expected value of loss function. Risk provides an appropriate basis for the 

measurement of the product quality. Risk based quality [46-48] assessment provides a 

better way of weighing quality expenditures. Therefore, the objective of the product 

design should also be to minimize the risk associated with the design. The total loss 

function of a product design should include risk function apart from the quality loss 
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function. This general loss function measures the total cost of quality of the design. 

Minimizing this loss function maximizes both the reliability and robustness of the design. 

The safe design region is defined by Taguchi’s quality loss function and the 

failure region is defined by the risk function [49-51]. Risk is defined in terms of failure 

cost i.e. the total cost of rework due to the failure of the product. Taguchi’s quality loss 

function measures the variation of the output value from the target and is defined in terms 

of cost i.e. losses due to the variation of target values. Since both the Taguchi’s quality 

loss function and risk function are measured in terms of cost, it is easier to combine both 

to define robustness for the entire design space. 

Most of the existing multi-objective optimization models allow the use of just one 

or two performance functions simultaneously to calculate the reliability and robustness of 

the design. But in reality, any design may have a number of performance functions and 

all these functions need to be considered when calculating the reliability and robustness 

of the product. The proposed method can include any number of performance functions 

as the general loss function of the entire design is calculated as the sum of loss functions 

from the individual performance functions. 

 Multi-objective optimization process used in integrated design simultaneously 

optimizes two conflicting objectives i.e. minimizing the probability of failure and 

Taguchi’s quality loss function of the design subject to certain constraints. Even though 

the method is very efficient, some trade-offs need to be made to arrive at an optimal 

solution. Also, in some cases, there may be more than one optimal solution since the 

objectives have different units. The efficiency of the method is more when both the 

objectives are defined in the same units. Since both the objectives in our general loss 

function are defined in terms of the cost, this proposed method is efficient and gives more 

accurate solutions. 

 This section presents a general model for integrated design and the procedure for 

minimizing the general loss function of a design thereby achieving high reliability and 

robustness. 
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4.2. GENERAL MODEL 

 The general loss function used in the model for Taguchi’s nominal-the-best- 

condition is defined in Equation [29]. 

 

                                      

2

2

       

               

        otherwise

G

k(y - m) l y u

L

k(y - m) C

                                 (29) 

 

 

The general loss function 
GL  is equal to Taguchi’s quality loss function 

2( )L k y m when the design values are within the design bounds l and u. When the 

design values are outside the design range, the general loss function assumes risk which 

is defined by an additional failure costC . 

The expected general loss function combines all the design values obtained during 

optimization as shown in the equation below. 

 

 

     
2( ) ( ) ( ) ( ) ( )G

l

y y y yG

u

L L f y dy k y m f y dy Cf y dy Cf y dy              (30) 

 

 

y l  and u y  define the failure region and y defines the entire 

region. 

( ) ( )
l

y y

u

Cf y dy Cf y dy  defines the additional loss function for the failure region and 

2( ) ( )yk y m f y dy defines the quality loss function for the entire region. 

We know that the integration of the quality loss function 2( )k y m over the entire 

region ( , )gives the expected value of the loss function as shown in the equation 

below. 
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                              2 2 2( )( ) ( ) y yy k mk y m f y dy                                        (31) 

 

 

In general, the integration of quality loss function ( )yLf y dy  over the region ( , ) for 

all the quality characteristics gives the expected quality loss function as shown below. 

 

                                                       ( )yL Lf y dy                                                        (32) 

 

 

[ , ]l and [ , ]u define the failure regions and integration of the function ( )yf y over 

these regions give the probability of failure of the performance function. The general loss 

function of the failure region is defined as shown in the equation below. 

 

 

              ( ) ( ) [ ( ) ( ) ]
l l

y y y y

u u

Cf y dy Cf y dy C f y dy f y dy CPf                  (33) 

 

 

 

The expected general loss function for our model is the combination of the above two 

equations and is shown in Equation [34]. 

 

 

                                                      (1 )GL L R C                                                   (34) 
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For multiple performance functions, the general loss function is defined as below. 

 

 

                                            
1 1

(1 )
i

p p

i i i

i i

G GL L L R C                                   (35) 

 

 

p is the number of performance functions in a design. 

Since the general loss function combines both reliability and robustness, our objective is 

to minimize the general loss function. 

The general form of our integrated model is shown below. 
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                                        (36) 

 

 

 

where   d and X are the vectors for design variables and random variables 

C1 and C2 are the lower and upper boundaries for the performance function g 

 h is the inequality constraint function 

 l
kd and u

kd are the lower and upper bounds of the design variables kd  

 
TR is the target reliability for the design 
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4.3. PROCEDURE 

  Below is the list of steps involved in our integrated design method. 

 

Step1:  The first step is to define the various performance functions in the design, the 

various design variables and random variables. Design constraints are the conditions that 

need to be satisfied and they are also defined. 

 

Step 2:  The lower and upper bounds of the design variables are defined based on the 

design requirements and the random variables are defined with the mean and standard 

deviation values.  

 

Step 3:  Initially a starting point of the design is defined so that the optimization process 

starts from there. The solution obtained from this iteration is used as the design point for 

the next iteration. This procedure is followed until an optimum design solution is 

reached. 

Within the optimization loop, the following sub-steps are followed. 

 

Step 3-1: The reliability of the various performance functions are calculated using the 

first order second moment (FOSM) method as shown in the equation below. 

 

 

2

2

1

1
( )

1 { ( ) 0} 1 1 ( )
n

g

i

i ig

g
R pf P g g

X

X
X       (37) 

 

Step 3-2:  The expected quality loss function L is calculated for the various performance 

functions based on their quality characteristic i.e. smaller the better, nominal the better or 

larger the better conditions. The various constants used to calculate the loss function are 

initially defined. 

 

Step 3-3:  After calculating the reliability and quality loss function, the general loss 

function is calculated for each performance function. The cumulative general loss 
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function is calculated as the sum of the general loss functions of each performance 

function. The equation for the cumulative general loss function of the design is shown 

below. 

 

                                             
1 1

(1 )
i

n n

i i i

i i

G GL L L R C                                  (38) 

 

 

Step 3-4:  The objective of this design model is to minimize the general loss function of 

the design. The minimizing function used in this optimization process is shown below. 

 

                                                      
1

v = min
i

n

i

G GL L                                               (39) 

 

Matlab software is used to perform the optimization. Fmincon function in matlab is used 

to minimize the objective function by taking into account the lower and upper bounds of 

the design variables and the design constraints. Fmincon finds a constrained minimum of 

a scalar function of several variables starting at an initial estimate. 

 The results obtained from this method are compared with those obtained from 

other optimization models like reliability based design optimization and robust design 

optimization. 

 Figure 4.1. summarizes this procedure in a flowchart. 
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    Figure 4.1. Flowchart of the integrated design method 
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4.4. EXAMPLE: COIL SPRING 

 A coil spring [10] is shown in Figure 4.2. 

The objective is to minimize the general loss function of the coil spring. 

 

 

 

 

Figure 4.2. Coil Spring 

 

    

D is the mean coil diameter, d is the wire diameter and N is the number of active coils 

and these are our design variables. P is the load applied on both sides of the spring and δ 

is the deflection along the axis of the spring. 

There are two performance functions for this spring under load P as shown in the 

equations below.  

 

                                2

1 3

8 4 0.615
,  lb/in

4 4
a

PD D d d
g

d D d D
                                    (40) 

 

                                                 
3

2 4

8
in

PD N
g

d G
                                                       (41) 

 

 

where  a  is the allowable shear stress of the spring and is given by, 
280000 lb / in ,a  

 G is the shear modulus and is given by, 7 21.15 x 10 lb / in ,G  

 is the minimum spring deflection and is given by, 0.3 in . 
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The first performance function 
1g  states that the shear stress in the wire should not 

exceed the allowable stress 
a
 and the second performance function 

2g states that the 

deflection of the spring should be greater than the minimum spring deflection . 

The various distributions are shown in Table 4.1. 

 

 

Table 4.1. Distribution of random variables for spring 

Variable Mean Standard Deviation Distribution 

P 10lb 0.5lb Normal 

 

 

The dimension bounds for the design variables (in inch) are given below. 
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The constraint function used in this example is shown in equation 42. 

 

 

                                                    0 2
0

2 2

d G

D N
                                                (42) 

 

 

where  
0
is the lower limit on surge wave frequency and is given by, 

0 100 Hz,  

  is the mass density of the material, 4 2 47.38342 x 10 lb s / in . 

 



 

 

54 

The above equation states that the frequency of surge waves should be greater than the 

lower limit of frequency. The desired reliability of both the performance functions is 

0.9999 and they are also given as constraints in the optimization. 

 The main objective is to minimize the general loss function of the spring for its 

various failure modes. The first failure mode is that the shear stress exceeds its allowable 

limit and the second failure mode is that the deflection of the spring falls below its 

minimum desired value. The expected general loss function for this example is calculated 

using the equation below. 

 

                                                   
2

1

(1 )G i i i

i

L L R C                                            (43) 

 

 

where  iL is Taguchi’s expected quality loss function 

 
iC is the failure cost 

  

 

Taguchi’s smaller the better quality loss function is used for the shear stress performance 

function 
1g and larger the better quality loss function is used for the deflection 

performance function 2g  as shown in the equation below. 
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The various constants used in this example are shown below. 
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The optimization model used for this example is shown below. 
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The reliability, standard deviation, loss function and the general loss function are 

calculated for the two performance functions using first order second moment (FOSM) 

reliability method, Taguchi’s quality loss functions and the general loss function equation 

and the results are shown in Table 4.2. 



 

 

56 

Table 4.2. Results for the spring example using integrated reliable and robust design 

Property Shear Stress Deflection 

Reliability 0.9999 1 

Standard Deviation 3372.8224MPa 0.11898MPa 

General Loss Function $2.1683 $3.9538 

 

 

The same problem is solved using robust design (RD) optimization and reliability 

based design (RBD) optimization to compare the results with those in the table above. 

For the RD, we minimize the standard deviation of both the shear stress and deflection as 

shown in the equation below. 

 

 

                                         

1 2g g

3

3

4

0 2

1 1

2 2

minimize ( )

subject to

8 4 0.615
0

4 4

8
0

0
2 2

{ ( )} 0.999

{ ( )} 0.999

a

a

PD D d d

d D d D

PD N

d G

d G

D N

R P g

R P g

                                      (47) 

 

 

 

For the RBD, we minimize the cost of the spring calculated from its mass as shown in the 

equation below. 
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Results: 

The various results obtained are shown in Table 4.3. 

 

 

 

Table 4.3. Comparison of results 

Property 
Integrated reliable 

and robust design 
Robust design 

Reliability based 

design 

Probability of 

failure-shear stress 
0.0001 0 0.0001 

Probability of 

failure-deflection 
1.042E-68 0.001 0.00010009 

Standard deviation-

shear stress 
3372.8224 MPa 541.775 MPa 3372.821 MPa 

Standard deviation-

deflection 
0.11898 MPa 0.017741 MPa 0.018426 MPa 

General Loss 

Function 
$6.1221 $178.0853 $167.0437 
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Table 4.3. shows the probability of failure, standard deviation and general loss 

function values calculated from integrated reliable and robust design (IR&RD), robust 

design (RD) and reliability based design (RBD) models. 

The results show the efficiency of the integrated reliable and robust design 

(IR&RD) model. The general loss function obtained using the IR&RD model is much 

lesser than that obtained using the other two methods. The required reliability for this 

example is 0.9999. Our model achieves this reliability value. The inclusion of the 

reliability target constraint ensures that the model satisfies the specified reliability target 

while achieving appropriate trade-off among other quality characteristics. Even though 

the standard deviation values are high compared to robust design model, the robustness is 

achieved by minimizing the general loss function which gives exceptional results 

compared to the other two methods. Since high reliability and robustness are achieved, 

IR&RD proves to be an efficient method for design optimization.  

 

4.5. CONCLUSIONS 

 This chapter presents a methodology to formulate a general model of integrated 

design for reliability and robustness. The various conclusions are presented below. 

 The total quality loss obtained is much lesser when we use the proposed 

integrated reliable and robust design model than when we use the other optimization 

models. 

High reliability and robustness are achieved by minimizing the general loss 

function of the design parameters. 

The results demonstrate that the integration of the two models achieves a better 

trade-off among conflicting characteristics and thus provides a better solution. 



 

 

59 

5. CONCLUSIONS AND FUTURE WORK 

5.1. CONCLUSIONS 

This thesis presents two methodologies for integrated reliable and robust design. 

The first work is to perform a numerical study on the relationship between reliability and 

robustness and the second work is to formulate a general model of integrated design for 

reliability and robustness. Examples have been shown to show the efficiency of the 

proposed methods. 

 The approach for numerical study on relationship between reliability and 

robustness combines reliability-based design and robust design optimization to formulate 

an integrated design model which maximizes both reliability and robustness 

simultaneously in a multi-objective environment. The reliability is measured by the 

probability of failure of the design and the robustness is measured by Taguchi’s quality 

loss function for different quality characteristics or the standard deviation of the 

performance function. To achieve both reliability and robustness simultaneously, it is 

shown in the work that the probability of failure of the performance function and 

Taguchi’s quality loss function are minimized using a multi-objective optimization 

model. It has been shown that this model gives accurate results for Taguchi’s smaller-the-

better, nominal-the-best and larger-the-better quality characteristics with less 

computational effort and time. It is also shown that minimizing loss function is a better 

method to achieve robustness than minimizing the standard deviation of the performance 

function. 

 Another methodology presented in this work is the general model of integrated 

design for reliability and robustness. Existing methods do not include risk in their 

optimization models. This general model defines a general loss function which includes 

both Taguchi’s quality loss function and risk defined as a function of cost. It is easier to 

integrate the above two functions into a general loss function which takes into account 

both reliability and robustness. Also, large number of performance functions can be used 

in this model since the general loss function of the design is the sum of the loss functions 

from the various performance functions. It has been shown that this method described in 

the thesis gives a quick feasible design compared to other optimization models and 
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satisfies the reliability requirements and minimizes the total failure cost of the system and 

thereby achieves high reliability and robustness simultaneously. 

 

5.2. FUTURE WORK 

The proposed method to study the relationship between reliability and robustness 

is efficient for design problems with one or two performance functions. This method 

cannot be used for multiple performance functions. Future work with this method can be 

to modify the design model so that it can consider multiple performance functions to 

achieve reliability and robustness. Also, this method can be modified for other reliability 

methods like Monte Carlo Simulation (MCS), first order and second order reliability 

methods (FORM and SORM). 

 The integrated design model used in this research provides an efficient method to 

calculate the component reliability. But in large systems, there may be large number of 

components and using this model to calculate the reliability of each component can be 

computationally expensive and time consuming. Also, reliability is generally time-

dependent and it deteriorates with time. So, another future work can be to modify this 

general model so that it can consider the entire system and can be used for other 

reliability types like system reliability and time-dependent reliability. 
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