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ABSTRACT 

Currently, many marketing and engineering tools exist to help a designer optimize 

quantitative attributes of a product, such as height, weight, volume, or cost.  However, these 

methods cannot effectively take into consideration aesthetic attributes of a product, or any other 

attributes for which there is no understood functional relationship between the attribute’s 

potential values and the consumer’s preference. 

This research has begun the work of developing this necessary functional relationship for 

the aesthetic attribute of color and has created a methodology for further research. To do this, 

colors were represented by their red, green, and blue light components, and preference 

information for each of these attributes was gathered by presenting individuals with a small 

sample of colors, applied to backpacks, in a short choice survey.  A utility function was fit to the 

preference data points using standard regression methods. 

The validity of these functions was tested by administering individual-specific follow-up 

surveys, in which each of the survey questions contained a high, a neutral, and a low utility 

backpack color, as determined by the utility functions.  Individuals chose the high utility color an 

average of 74% of the time, which is significantly better than random chance.  In addition, 

success rates as high as 87% were achieved in certain instances where greyscale preferences were 

incorporated into the overall utility function.  These results indicate that a large portion of 

individual preferences were captured by the utility functions, allowing the methodology provided 

to serve as a foundation for future research.
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1. INTRODUCTION 

With the emergence of internet retailers and competition from global suppliers, it is 

increasingly necessary for companies to design and manufacture products that meet consumers’ 

wants and needs on every level.  Tools such as the Quality Functional Deployment [1] have 

helped engineering designers to translate customer needs into product functionalities, giving 

designers a means to understand the inherent trade-offs involved in a design (for example, 

between maximizing the capacity of an aircraft and minimizing its weight) and to develop one or 

more functionally optimal products.  However, these methods cannot effectively take into 

consideration aesthetic attributes of a product, or any other attribute for which there is no 

understood mathematical relationship between the attribute’s potential values and the consumer’s 

preference.  For this reason, aesthetic design decisions are typically left up to creative experts 

who rely on a combination of design heuristics, current trends, and educated intuition when 

making decisions about a product’s aesthetics [2].  Without any kind of proof to validate these 

choices, engineers are unlikely to give aesthetic attributes fair consideration when products must 

be redesigned to reduce costs or increase manufacturability.  However, product aesthetics can 

make up 40 – 90% of a consumer’s purchase decision [3], and these aesthetic compromises can 

create failures out of functionally acceptable designs. 

These issues are particularly prevalent when it comes to determining a product’s color.  

While much research has been done on the subject of color preferences, the focus has been almost 

entirely on determining the universal preference order of colors, and how those preferences 

change for different genders, cultures, or age groups.  That is to say, research in color preferences 

has sought to understand these preferences for purely academic purposes, separate from any 

application to the design of actual products and without any intent for optimization. 

The need exists, then, for a method that can quantifiably represent consumers’ color 

preferences with respect to measurable color attributes.  This can be done using utility functions, 
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where the measurable color attributes are the red, green, and blue light components that combine 

to create colors in the visible spectrum.  Utility is a measure of satisfaction that a consumer has 

for a given product, and it can be represented as a function of the measured values of each of 

these attributes.  These attribute utility functions can be developed by obtaining preference 

information from individuals through a simple discrete choice survey.  Optimization techniques 

can then be applied to these equations to generate the product color most preferred by any given 

individual.  In other words, this method collects a limited amount of information from the 

consumer and in turn provides the designer with a consumer’s preference for any color in the 

visible spectrum, reducing the amount of time, money, and subjectivity involved in the 

determination of product colors. 
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2. REVIEW OF LITERATURE 

In order to effectively model consumer colors preferences, an introduction to the basic 

concepts and current research regarding preference modeling and utility theory is useful.  

Additionally, prior works in the field of color preferences are also discussed in the following 

sections. 

 

2.1. PREFERENCE MODELING AND UTILITY THEORY 

Identifying customer needs and preferences and accurately translating them into a 

product’s features and functionalities is essential to successful product design.  Although many 

valuable methods exist to aid the designer in this part of the process, none of the currently 

available methods is fully able to incorporate qualitative preferences (such as those for aesthetics 

or usability) due primarily to their non-numeric nature. 

For example, the widely used Quality Functional Deployment, or House of Quality [1] 

provides a means to translate customer needs to measurable technical requirements which 

designers can then attempt to maximize, minimize, or target to specific values.  In this method, 

however, customer needs such as “be visually appealing” are difficult, if not impossible, to 

incorporate into this model without measurable methods for representing factors, such as color or 

form, that contribute to visual appeal. 

The issue of translating and interpreting customer needs is further complicated when the 

needs of the customer cannot even be articulated objectively.  For example, a study performed by 

Geymonat de Destefani and Whitefield discovered that one of the main methods used by 

individuals when choosing paint colors is “affective specification,” in which individuals focus on 

emotional qualities (e.g. “comfortable” or “dramatic”) and perceptual attributes (e.g. “light,” 

“dark,” “warm”) rather than (relatively) more objective characteristics such as hue [4].  

Definitions of these types of terms can vary considerably from person to person [5], so the task of 
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determining optimal product colors from this kind of consumer feedback is reduced to educated 

guesswork at best. 

A more objective means of working with consumer preferences can be found by using 

utility functions [6].  Utility measures the “attractiveness” of a given alternative to an individual 

in the form of a single scalar quantity.  The amount of utility generated by a specific product can 

be represented as a function of the key attributes that define the product [7], making it possible to 

understand the relationship among attributes and identify worthwhile trade-offs [8].  Additionally, 

once utility functions have been determined for individual consumers, it is possible to apply 

clustering algorithms to the functional data to divide the population into market segments sharing 

similar preferences, allowing for optimal product designs to be developed for each market 

segment, thus increasing overall consumer satisfaction [9, 10]. 

One popular means of gathering preference information for a utility function is through 

the use of a conjoint analysis study.  In conjoint studies, a product or line of products is first 

defined by a set of key measurable attributes.  A parametric range is then determined for each of 

the key attributes, and a selection of levels from each range is chosen (usually both the high and 

the low end points, as well as one or more evenly spaced points in between).  A set of products is 

created using every combination of these attribute levels and, if desired, this set of products can 

be reduced to a smaller fractional factorial subset of products (discussed in more detail in Section 

3.4) before consumer preference data is collected. 

One method of collecting this preference data is by asking each consumer to rank all of 

the potential product designs from most to least preferred, which is able to give information about 

both the desired levels for each of the attributes, as well as the importance of each attribute.  For 

example, Page and Rosenbaum [9] discuss how the company Sunbeam used rankings based 

conjoint analysis to redesign their line of food processors.  In this instance, the conjoint study first 

provided the company with information on the optimum levels for each of the 12 attributes in the 

study, but then showed that of these 12, only three were of major importance to the consumer, 
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thereby giving designers and engineers significant freedom to alter the other attributes as needed 

in the redesign of the product. 

Another popular method for collecting preference data is through ratings, in which each 

consumer will rate on a scale from 0 to 100, for example, his preference for each of the potential 

products.  Moskowitz et al. [10] have successfully used conjoint ratings in determining 

consumers’ preferences for pasta sauces.  A benefit of conjoint ratings clearly illustrated by this 

study is that no data manipulation is necessary to allow comparison of preferences among the 

various levels of each attribute; the raw data in this case are preferences, greatly simplifying 

function generation on the researcher’s end. 

While both rankings and ratings based conjoint provide a wealth of information to the 

researcher, it has been shown that the quality of data received can be greatly reduced when the 

consumer feels mentally fatigued by the complexity of the tasks being presented [11].  In 

addition, these methods have been criticized for their lack of resemblance to consumers’ actual 

behaviors while shopping [12]. 

More recently, however, Orsborn et al. [13] have developed a method for quantifying 

form preferences that uses choice based conjoint instead. Orsborn et al. were interested in 

measuring preference for vehicle forms, so the overall form of the vehicle was first “atomized,” 

or broken into as many distinct, measurable component dimensions as possible.  The seven most 

influential of these component dimensions were selected for manipulation, and an appropriate 

parametric range was identified for each.  By combining maximum, minimum, and average 

values for each of these component dimensions, a large pool of potential vehicle designs was 

created.  A selection of these vehicle designs were presented to consumers in sets of three, and 

the consumer was asked to choose his favorite from each set.  Based on the frequency with which 

individuals chose the various designs, it was possible to construct a quadratic utility function for 

each of the seven attributes.  By optimizing each equation, the most preferred component 
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dimensions for each individual were discovered.  These results were then verified through a 

follow-up choice survey with a 78% rate of success. 

   

2.2. COLOR PREFERENCES 

Research and experimentation in the area of color preferences has been going on since at 

least the 1890’s [14], however conclusive results have not been reached over 100 years later.  

According to H.J. Eyesenck [14], early research focused primarily on three questions: (1) Is there 

a universal preference order for colors, or are preferences truly individual?  (2) What are the 

differences in color preferences between men and women?  (3) Is there a universal preference for 

saturated colors over unsaturated colors (i.e. tints and shades)?  Answers to these each of these 

questions were often conflicting, and in 1940 H. J. Eyesenck attempted to resolve each of these 

issues with certainty (see [14] for a detailed list of early studies).  To do this, he created a sample 

set of 10 colored paper swatches: six fully saturated hues (red, orange, yellow, green, blue, 

violet), three tints (red, orange, and green), and one shade (yellow).  (The exact reasoning behind 

these specific choices is unknown.)  Approximately 40 adults ranked these swatches from most to 

least favorite, and Eyesenck used these preference orders to, in his mind, definitively answer the 

three questions posed above.  His research showed an objective preference order, with blue as the 

most preferred color.  The only difference he found between preferences of men and women was 

in the lowest preference colors.  Overall, men ranked the color yellow last and orange second to 

last; for women, these two rankings were reversed.  Finally, he concluded that a secondary 

preference factor exists, separating those who prefer saturated colors from those who prefer tints 

and shades.  

Unsatisfied with Eyesenck’s conclusions, Guilford and Smith [15] created a much  more 

complete work on the subject of color preferences in 1959.  This work suggests that it is possible 

to predict the average preference level for a population based on the values of the color 

appearance attributes of hue, tint, and chroma, as determined by the Munsell color system [16].  
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In their work, a number of individuals viewed a total of 300 carefully chosen color specimens and 

rated the pleasantness of each on a 0 – 10 scale.  Aggregating these responses, a set of isohedonic 

charts (what could be considered contour maps for preference) was created.  Using these charts, 

one should be able to predict the average preference level of a population of men or women for 

any of ten different hues varying with regard to saturation and brightness. 

More recently, Ou et al. [5] have had moderate success in predicting color preferences, 

using both color “emotions” and color appearance factors as predictor variables.  In their study a 

total of 20 color swatches were chosen to represent a large range of hue, saturation, and lightness 

values.  For each color swatch, an observer was presented with a pair of words representing 

opposite ends of an emotional spectrum (e.g. warm/cool, heavy/light, modern/classical, 

like/dislike) and was asked to select the word that more accurately described the color in 

question.  The color samples were ranked on each of these emotional scales, based on the number 

of times they were described by the first word of each word pair, and each of these emotional 

frequency scales was compared to the overall like/dislike scale to determine if any statistical 

correlations existed [17].  In total, three different preference equations were developed, with (1) 

color emotions, (2) color-emotion factors, and (3) color appearance factors serving as the 

predictor variables.  The predictive R2 values for each of these equations ranged from 0.66 to 

0.70, which is considerably better than random chance, an indication that the equations have 

successfully captured overall color preferences to some degree. 

Overall, the prior works in preference modeling have proven the applicability of utility 

functions and choice surveys for mathematically modeling consumer preferences.  Additionally, 

the existing research regarding color preferences provides support for the notion that preferences 

for color can be mathematically modeled as a function of measurable color attributes.   
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3. METHODOLOGY 

This section will discuss the process used to create and verify utility functions for each 

individual, beginning with the selection of a product domain and proceeding through the selection 

of measurable attributes and a form for the utility function.  Additionally, the methods used to 

collect preference data are discussed in detail. 

 

3.1. SELECTING A PRODUCT DOMAIN 

As previously mentioned, one of the limitations of nearly all existing color preference 

research is that subjects are asked to evaluate colors as stand-alone entities, separate from an 

product or application.  This creates a rather significant logical problem, as one’s preference for 

colors of automobiles, for example, is unlikely to be the same as his preference for kitchen 

appliances or sweaters [18].  Because color preferences are always specific to a given product, the 

first step of this research was to choose a type of product, or product domain, to which the sample 

set of colors would be applied. 

In this case, backpacks were chosen to serve as the product domain for three reasons.  

First, backpacks can and do come in almost every conceivable color.  This broad existing design 

space eliminates external constraints that would complicate the design of experiments.   

Secondly, research has shown that color can play a more important role in purchase 

decisions when competing product choices are not considerably different from one another [18], 

as is the case with backpacks.  In addition, consumers are less likely to choose from a limited set 

of “typical” colors for these types of lower risk purchases because advertisements are unlikely to 

have created any learned color associations.  In short, a student’s choice in backpack color is 

significant enough to involve some thought and emotion, but not so significant as to be practically 

predetermined by social norms. 
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Finally, backpacks are most regularly used by students, and since this research was 

conducted on a university campus, a ready supply of product consumers was available to serve as 

research test subjects. 

 

3.2. CHOOSING A COLOR MODEL 

For this research, it was necessary to first break the color one perceives into measurable 

components.  This was done using the red, green, blue color model.  The RGB color model is an 

additive model used to generate colors on electronic devices, such as televisions or computer 

screens.  This model breaks perceived colors into red, green, and blue colored light components 

which can vary on an integer scale from 0 to 255.  This model is called additive because darkness 

(that is, black) is produced when all three components are at their lowest level.  In order to 

produce colors, light must be added, ultimately creating white when all components are at their 

highest levels (255).  A shade of grey is produced when all three components are at the same 

level, and all remaining colors are produced by other combinations of level values.   

 

3.3. SELECTING A FUNCTIONAL FORM 

Utility functions can take any form, such as linear, quadratic, or exponential, though prior 

works by Chen et al. [19] and Moskowitz [20] have suggested that a quadratic utility function 

will accurately represent individual preferences for most applications, and the work of Orsborn et 

al. have successfully used quadratic utility functions to represent preferences for aesthetic form 

[13].  A quadratic function allows for a person’s maximum preference for a given attribute to be 

at any point along the spectrum of possible values for that attribute.  This is more flexible than a 

linear function which limits the maximum preference to either the high or low end of the 

spectrum.   

However, Guilford’s work with color preferences [15] (discussed in Section 2.2) 

produced multiple local maxima for preferences regarding hue, suggesting that quadratic 
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equations might not be sufficient.  For this reason, cubic utility functions were used instead, as 

shown in Equation 1, where x is the level of a given color component and a, b, c, and d are the 

coefficients for cubic regression.   

 

! 

u(x) = ax
3

+ bx
2

+ cx + d     (1) 

 

It should be noted that this assumption will not have the effect of distorting preferences 

that are truly linear or quadratic, however, as those types of equations can simply be represented 

with zero coefficients for any unneeded higher order terms. 

 

3.4. REDUCING THE DESIGN SPACE 

Next, it was necessary to choose the specific colors for which preference data would be 

collected.  In total there are 2563=16,777,216 unique combinations of RGB values.  Since this is 

clearly an unrealistically large number of sample products for an individual to evaluate, it was 

necessary to somehow reduce the design space to a more manageable without reducing the 

statistical reliability of the data that would be collected.  To achieve this, a fractional factorial 

subset of the design space was used. 

First, a smaller subset of values needed to be chosen out of the entire 0 – 255 parametric 

range for each of the three color attributes.  In order to prevent the results from being biased in 

any way, it was necessary to choose evenly spaced values [12], the goal being to fairly represent 

the entire color space with as few samples as possible.  This could be done with five evenly 

spaced levels per attribute, for a total of 53=125 colors in this reduced set.  Thus, the levels used 

for the red, green, and blue color components were 0, 63, 127, 191, 255. 

This set of 125 colors is referred to as the “full factorial” experiment design, because it 

includes all of the possible colors that can be made using the selected attribute levels.  However, 
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asking an individual to make even 125 observations would prove to be prohibitively time 

consuming, so fractional factorial methods were used to further reduce the design space.  

In order to preserve the statistical validity of the experiment, the fractional factorial 

design would need to be both balanced and orthogonal [12].  In terms of experimental design, 

balance means that every level of every attribute appears in the experiment the same number of 

times.  Using this research as an example, if level 0 of the Red attribute appears in the 

experimental set five times, levels 63, 127, 191, and 255 must also appear five times for the Red 

attribute to be balanced.  Similarly, orthogonality means that every possible combination of two 

different attribute levels must appear in the experiment the same number of times.  

The SAS software suite was utilized to determine the correct size of a fractional factorial 

that would meet these requirements, as well as the specific RGB levels for the colors contained in 

that set.  The steps used are briefly summarized below, and the complete code is contained in 

Appendix A. 

First, the %MKTRUNS macro was used to determine the possible sizes of balanced and 

orthogonal fractional factorial designs that could be made from the 125 color set.  The macro 

showed that 100% D-efficient designs could be made from 25 or 50 elements.  D-efficiency is a 

widely accepted mathematical measure of the goodness of an experimental design.  In 

mathematical terms, it is a function of the geometric mean of the eigenvalues in the variance-

covariance matrix [12], but as far as its application to this work, it is only important to understand 

that balanced and orthogonal design will always be 100% D-efficient. 

The %MKTEX macro was then used to identify the 25 specific color samples that would 

be shown to consumers throughout the experiment.  The colors, along with their RGB values, are 

shown in Table 3.1, below.  (Note that RGB colors cannot be perfectly reproduced in print, so the 

color samples shown below do not appear exactly as they did in the study when they were viewed 

exclusively on computer screens.) 
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Table 3.1. Color Samples Used in Study 

Red Green Blue Swatch Red Green Blue Swatch

0 0 0 127 191 255

0 63 127 127 255 63

0 127 255 191 0 127

0 191 63 191 63 255

0 255 191 191 127 63

63 0 255 191 191 191

63 63 63 191 255 0

63 127 191 255 0 63

63 191 0 255 63 191

63 255 127 255 127 0

127 0 191 255 191 127

127 63 0 255 255 255

127 127 127  

 

 

3.5. COLLECTING PREFERENCE DATA 

After the sample set of products has been determined, the next step is to begin collecting 

preference data from consumers.  There are three main ways that this information can be 

gathered: ratings, rankings, or choices.  As explained in Section 2.1, both ratings and rankings 

provide a great deal of information to the researcher, but place a large cognitive burden on the 

consumer, increasing the probability that the data will be distorted by fatigue [11].  A discrete 

choice survey, on the other hand, repeatedly presents the consumer with small subsets of the total 

set of products, and the consumer chooses his favorite from each of these subsets.  In an efficient 

choice survey, each of the tasks is quite manageable, and results are less likely to be distorted. 

 In addition, neither rating nor ranking tasks accurately mimic the process a consumer 

typically uses when making purchase decisions.  In reality, a consumer simply purchases the most 

preferred item and does not purchase the rest of the items [12], rarely giving dedicated thought to 

the preference order of the non-chosen alternatives.  It is for these reasons that discrete choice 

surveys were used for data collection in this study. 
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In order to guarantee that the survey design remained balanced and orthogonal, the 

number of questions in the survey needed to be equal to the size of the fractional factorial used, or 

in this case, 25 questions.  This survey length is reasonable, although so many of the same type of 

question in a row can become tedious, increasing fatigue risks [21].  In response, the survey was 

distributed online to be completed by respondents in their own time, allowing them to take breaks 

as needed.  In addition, the questions in the survey were presented in a random order to each 

individual, spreading any fatigue or learning effects evenly throughout the survey. 

 

3.6. CHOICE SURVEY DEVELOPMENT 

To design the choice survey, SAS’s %CHOICEFF macro was used.  The survey 

consisted of 25 questions, each with three choices.  Because the survey was both balanced and 

orthogonal, as discussed previously, this meant that the each of the 25 colors contained in the 

fractional factorial set appeared three times throughout the survey.  The final design was 

evaluated with the %MKTEVAL macro to confirm that it was both balanced and orthogonal. 

The survey design from SAS was then translated into pictorial survey questions, like the 

one shown below in Figure 3.1 and was distributed online through commercially available 

software provided by SurveyGizmo.  The complete survey design is provided in Appendix B. 

 

 

Figure 3.1. Example Survey Question 
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3.7. GENERATING UTILITY FUNCTIONS 

In most marketing applications, these coefficients are found by using software to apply a 

logit or probit model to aggregate consumer data [12].  However, Hazelrigg [22] proved that 

while these aggregate methods can produce acceptable equations for predicting market demand, 

they are likely to generate erroneous preference models.  For this reason, it is necessary to 

evaluate utility functions on a consumer-specific basis.  However, stable partworth coefficients 

cannot be found in a choice based survey logit or probit methods without aggregating results from 

many respondents [23]. 

In order to determine partworth utilities for individuals, then, it was necessary to use 

Luce’s Choice Axiom [24].  This method is based on probability of choice, as shown by Equation 

2, which states that the probability of an object being chosen is equal to the weight of that object 

(wi) divided by the sum of the weights of all the objects from which the choice was made (wj).  In 

this case, the probability that a given color component level is chosen by an individual is equal to 

the number of times a design including that level is chosen in the survey, divided by the number 

of times it appeared. 

 

     

! 

P(i) =
wi

w j
j

"
     (2) 

 

For example, the question shown previously in Figure 3.1 is shown again in Figure 3.2, 

this time with the color component levels for each of the choices.  If a respondent chose the blue 

backpack in the middle, the totals for Red 64, Green 0, and Blue 255 would each increment by 

one. 
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Figure 3.2. Example Survey Question with Color Component Levels 

 

 

At the end of the process, a table similar to the one shown in Table 3.2 would be created.  

Dividing each of these totals by the number of times each level was seen, in this case 15, the 

partworth utilities are found, also seen in Table 3.2.  Each value represents the probability that the 

consumer will choose a design containing the corresponding level for that attribute.  As a result, 

the partworth utilities can range from 0 to 1, with higher values indicating a higher preference. 

 

 

Table 3.2. Example Choice Totals and Partworth Utilities 

 

 

 

Cubic utility functions were then fit to the scatter plots of the partworth values, as shown 

in Figure 3.3.  The maximum value of each of these functions occurs at the color component level 

R= 191 
G = 191 
B=191 

R= 64 
G = 0 
B = 255 

R= 128 
G= 255 
B= 64 
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that the individual prefers most.  The respondent shown in Figure 3.3 prefers a low value of red 

(37), a higher level of green (195), and a low value for blue (46).  

 

 

 

Figure 3.3. Utility Functions for Example Respondent 

 

 

Additionally, Luce’s Choice Axiom assumes that a consumer’s overall utility is 

represented as a summation of his utility for the each of the individual attributes, as indicated in 

Equation 3, where u(xi) is the utility of an individual color component. 

 

    

! 

U = u(x
i
)

i=1

n

"      (3) 
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The advantage of this assumption is that it allows each attribute utility function to be 

optimized individually, meaning standard derivative based optimization can be used, without the 

need for more complex computer algorithms.  However, this assumption is limited in that it 

forces the preferences for each individual attribute to be unrelated to preferences for any other 

attributes.  This assumption, and its implications for color, will be discussed in detail in Section 4. 

 

3.8. CREATING PRODUCT DESIGNS 

Finally, these equations can be used to create high utility colors for each individual.  

Under these assumptions, the highest utility color is made up of each of the most preferred color 

component levels.  For the respondent shown above, the highest utility color is shown in Figure 

3.4, below. 

 

 

      

Figure 3.4. Highest Utility Backpack Color for Example Respondent 
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4. CONSUMER STUDIES 

This section utilizes the methodology from Section 3 in two real world consumer studies.  

By studying the results of the first of these studies, several potential improvements to the 

methodology were identified.  In the second study, these changes were implemented alongside 

the original methodology, allowing for a comparison of results. 

 

4.1. INITIAL STUDY 

4.1.1. Data Collection.  Using the methods described in Sections 3.1 – 3.6, a 25 question 

choice survey was developed regarding preferences for backpack colors.  The survey was 

distributed online to 78 students in a freshmen-level engineering class.  The pool of respondents 

consisted of 64 men and 14 women, ranging in age from 18 to 32, with more than 50% of the 

respondents being either 18 or 19 years old. 

After the surveys had been completed, a utility function was developed for each 

individual, as explained in Section 3.7.  To test the validity of these utility functions, a two 

question follow-up survey was created for each individual.  In the first question, the individual 

was given a choice among three different backpack colors, all generated using his specific utility 

function.  Of the three colors, one was the individual’s highest utility color, one was his lowest 

utility color, and one had an average, or neutral, utility value.  If the utility function accurately 

captured color preferences, it would be expected that individuals would choose the highest utility 

color an overwhelming majority of the time and the lowest utility color very infrequently. 

The second question in the follow-up survey asked whether the choice that was made in 

Question 1 was the individual’s (a) favorite backpack color, (b) favorite backpack color out of the 

three colors that were shown, or (c) a random choice because none of the color choices were 

appealing. This question was included to better understand the degree of success of the utility 

functions.  For example, if many of the respondents chose randomly, it would be erroneous to 
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conclude the model was an accurate predictor of preference, even if all of them chose the highest 

utility color. 

4.1.2. Results.  Of the 78 students who completed the initial survey, 55 also completed 

the follow-up.  The breakdown of their responses can be seen in Figure 4.1, below. 

 

 

 

Figure 4.1. Summary of Follow-Up Responses to Initial Survey 

 

 

The majority of individuals (76.4%) chose the highest utility color.  The remaining 23.6% 

of individuals chose the neutral utility color, and no one chose the lowest utility color.  However, 

the majority of respondents also indicated that the chosen color was only their favorite of the 

three colors that were shown, and not their overall favorite color.  This information suggests that, 

though the utility functions are correlating higher utilities with higher preferences quite 

successfully, the methodology is not completely capturing preferences with the present form of 

the utility function, so it was necessary to explore other potential forms of the utility function. 
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4.2. ATTRIBUTE UTILITY FUNCTIONS 

The overall form of a utility function consists of two parts: 1) the functional form of the 

individual attribute utilities and 2) the method with which those attribute utility functions are 

combined to form the overall utility.  The data gathered in the initial survey was used to look 

deeper into both of these facets of the overall utility function. 

As explained previously, the utility functions for the red, green, and blue color attributes 

were developed by fitting a cubic curve to the partworth utilities that were determined by Luce’s 

Choice Axiom.  While acceptable results were achieved with this functional form, the possibility 

remained that a simpler functional form could fit the data just as well, or that another form could 

fit the data even better. 

In order to explore these possibilities, various potential functional forms were fit to the 

data and the resulting R2 values were compared.  Statistically, R2 is a measure of the amount of 

variance that is removed when a given function is used to relate the predictor variables to the 

output variable.  R2 values can range from 0 to 1, with 1 meaning the function fit the data 

perfectly and 0 indicating a complete lack of fit.  In other words, a higher R2 value indicates a 

stronger relationship between the individual’s stated preferences and the function being used to 

approximate those preferences. 

Another factor to consider is the fact that increasing the order of a polynomial regression 

will never cause R2 to decrease.  If the addition of extra terms provides only a minimal reduction 

in variance, however, they are typically not included in the final form of the equation.  For 

example, if a cubic utility function fits the data only marginally better than a quadratic, it would 

be advisable to switch to the less complex functional form. 

Table 4.1 shows the R2 values achieved using cubic, quadratic, and linear functional 

forms.  As can be seen, the cubic functions did fit the data substantially better than either of the 

other more simple functional forms.  For that reason, the cubic functional form was maintained 

throughout the rest of the studies. 
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Table 4.1. Variance Reduction Using Various Attribute Level Utility Functions 

 

 

 

4.3. COMBINATION OF ATTRIBUTE UTILITIES 

One key area for improvement in the current model is to take interaction effects into 

account when determining overall color preferences.  Interaction effects refer to the effect that 

combinations of two or more different color component levels appearing together has on the 

overall utility function.  This is most clearly seen in the following example.  Shades of grey are 

represented in the RGB color scale by all three color components having equal levels (e.g. 

R=100, G=100, and B=100).  If an individual has a strong preference for the color grey, but not 

necessarily for a certain shade of grey, their preference would not be for any specific color 

component levels, as long as the levels are all equal to one another.  This interaction has no way 

of being captured in the current model because each color components are considered 

independently without consideration for the possible effects of such interactions. 

Ideally, the utility function would be able to fully incorporate all possible interaction 

effects.  However, predicting coefficients for interaction variables would first require that a larger 

fractional factorial, and therefore larger survey, be used [12], further increasing the risk of 

erroneous results due to fatigue.  Additionally, a method other than Luce’s Choice Axiom would 

need to be used to develop the utility functions.  As explained in Section 3.5, this would require 

that preference data be gathered from ratings or rankings based conjoint, rather than a discrete 

choice survey, or that utility functions be developed for an aggregate sample of consumers 

instead of for individuals.  Since both of these options were undesirable for reasons previously 

discussed, two hypothetical solutions were proposed.  
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4.3.1. Multiplicative Utility.  The first potential solution to this problem was to consider 

the overall utility function to be a product of the attribute level utilities, rather than a sum, as 

shown in Equation 4, below.  When this multiplication is carried out for the three attribute utility 

functions, interaction terms, and the corresponding coefficients, are created.  A partial example of 

this new equation is shown for the domain of RGB color in Equation 5, below, where a1 – an are 

the coefficients, and R, G, and B are the numeric values of the red, green, and blue attributes 

levels. 

 

! 

U = u(x
i
)

i=1

n

"      (4) 

 

  

! 

U = a
1
R + a

2
G + a

3
B + a

4
RG +L+ a

n
R
3
G
3
B
3   (5) 

 

4.3.2. Utility of Greys.  For the second potential solution, the attempt was made to  

capture preferences for one of the more significant interactions, the one that results in shades of 

grey, in its own utility function.  This interaction was chosen based on discussions with 

respondents which indicated that these preferences make up a significant portion of backpack 

color preferences.  Essentially, an additional “grey” utility function would be developed using the 

same method as the utility functions for the red, green, and blue color attributes.  The partworth 

utilities for each of the five shades of grey contained in the survey would be found using Luce’s 

method, simply the number of times the grey was chosen, divided by the number of times it 

appeared in the survey.  To complete the utility function, a cubic curve would then be fit to the 

data points. 

This new function would not be summed or multiplied with the other three to determine 

the overall utility of a color, however.  Instead, overall utility would now be a piecewise defined 

function, as seen in the additive form in Equation 6, and in the multiplicative form in Equation 7.  
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It should be noted that in the additive form of the equation, the grey utility is multiplied by 3 to 

account for the fact that it is taking the place of all three color components and must therefore be 

weighted accordingly.  For the same reason, the grey utility is cubed in the multiplicative form of 

the equation. 

 

! 

U =
3* u(grey) if red = green = blue

u(red) + u(green) + u(blue) all else

" 
# 
$ 

  (6) 

 

! 

U =
u(grey)

3
if red = green = blue

u(red) * u(green) * u(blue) all else

" 
# 
$ 

  (7) 

 

To develop the grey utility function, choices for greys could be accounted for in one of 

two ways.  In Grey Method 1, these choices would be counted in addition to the regular choices 

for the red, green, and blue attributes.  In other words, the red, green, and blue utility functions 

would be unchanged, and a separate function would be used to calculate the utility in the specific 

instance when all three color attributes existed at the same level. 

In Grey Method 2, however, each choice in the survey is considered as a choice for a 

color or a choice for grey.  This change in the way choices are counted affects the choice totals 

for each individual, and therefore results in different utility functions for all four of the attributes.  

For the sake of comparison, Table 4.2 contains the partworth utilities for one individual using the 

original method, as well as both forms of grey handling. 
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Table 4.2. Comparison of Partworth Utilities Using Different Grey Handling Methods 

 

 

 

 

4.4. FURTHER DATA ANALYSIS 

The two new potentially beneficial changes to the functional form can be combined into a 

total of six different new utility functions, as follows: 

1. Addition 

2. Multiplication 

3. Addition (Grey Method 1) 

4. Multiplication (Grey Method 1) 

5. Addition (Grey Method 2) 

6. Multiplication (Grey Method 2) 

While these various methods make sense in theory, a preliminary test of validity was 

performed on the existing data from the initial study.  To do this, the utility of each of the choices 

in the original survey was calculated for each individual using each of the six different utility 

functions, above.  Next, the highest utility color for each question was compared with the color 

the individual actually chose.  A utility function that is accurately representing an individual’s 

preference should be able to successfully recreate the choices in the original survey.  In an ideal 
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situation, a second set of data would have been used for verification, however this method was 

deemed to serve as an acceptable preliminary filter. 

The overall results of this test, by percentage of choices modeled correctly, can be seen 

below in Table 4.3.  The simplest form of the utility function, addition with no grey handling, was 

used as a benchmark, and only functional forms that performed as well or better, as determined 

through a difference of means hypothesis test, were considered for further evaluation.  This 

filtering method removed addition, using grey handling method 1, but passed through the 

remaining 5 forms. 

 

 

Table 4.3. Preliminary Rates of Success for Different Utility Function Forms 

 

  

 

4.5. EXPANDED STUDY 

4.5.1. Survey Distribution.  Finally, in order to test the validity of these five potentially 

 useful functional forms, a new study was performed.  The first part of the survey, in which 

consumer preferences were gathered, was unchanged from the previous version.  A total of 291 

students in a freshman-level engineering class participated in this research, and the demographic 

breakdown of this sample was similar to that in the initial study.  This sample of respondents 

consisted of 215 men and 76 women, ranging in age from 18 to 40.  Again, more than 90% of the 

respondents were 21 or younger, and half were ages 18 and 19. 



 

 

26 

4.5.2. Follow-Up Questions.  The key difference in this study, however, is the follow-up  

survey.  In the initial study, one form of the utility function (a simple linear function of the cubic 

attribute utilities) was used to generate one multiple choice question for each individual, in which 

the highest, lowest, and neutral utility backpack colors were compared.  The expanded study, on 

the other hand, tested all five potential forms of the utility function (as identified in the previous 

section), using not one, but five questions for each, for a total of 25 questions.  Using multiple 

questions for each method would decrease the impact of “false positive” responses (that is, 

responses in which the highest utility color was chosen randomly by an indifferent respondent) 

and serve to better reveal the true success of each of the methods. 

The method for developing the colors for these follow-up questions was more 

complicated for two reasons.  First, to find the maximum or minimum utility color meant 

optimizing each of the attribute utility functions individually, then combining each of those 

optimal attribute values into one color.  In other words, there is only one maximum and one 

minimum utility color.  However, as soon as the search extends beyond either pole of the utility 

spectrum, there can be several different sets of RGB values that generate the same utility for the 

individual.  Standard stochastic search optimization methods can get stuck in local optima, 

reducing the likelihood that they will find a diverse variety of solutions.  Additionally, all of the 

utility functions that incorporated some sort of grey preference handling were piecewise defined 

and discontinuous, meaning that no standard search-based optimization methods could be used. 

For these reasons, exhaustive enumeration was used to generate the colors for the follow-

up surveys.  The outputs are then sorted by value, making it easy to find multiple solutions within 

any given range of utilities.  This method is beneficial for the fact that it works exactly the same 

way for any type of utility function, no matter how complex.  The drawback, however, is that 

exhaustive enumeration is very computationally intensive and can become quite time consuming, 

even with modern computing capabilities.  Due to the discontinuous nature of the utility functions 
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being considered, this was the only option that could guarantee that no optimal (or non-optimal) 

solutions were missed.   

In practice, high utility colors were those that ranked within the top 10% of all colors 

generated.  In other words, these colors had a utility of 90 – 100% of the maximum possible 

utility.  Neutral utility colors were those with 45 – 55% of the maximum utility, and low utility 

colors had only 0 – 10% of the maximum utility.  The range of 10% was chosen because it was a 

large enough window that it actually generated five non –identical colors within each range, but 

small enough that each of the three colors in a given question had distinctly different utilities. 

As illustrated in Figure 4.2, five colors were chosen at even intervals from within each of 

these categories.  Additionally, the colors shown in each question were pulled from the same 

“slot” within each category, as indicated by the circled elements in Figure 4.2. 

 

 

 

Figure 4.2. Utility Relationship of Colors Used in Follow-Up Questions 

 

 

4.5.3. Results of Follow-Up Surveys.  The individual-specific follow-up surveys were 

also distributed online and were completed by 256 of the original 291 respondents.  The results of 

the survey are summarized in Table 4.4.   
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Table 4.4. Percentage of Choices, by Utility Method 

 

  

 

As the table shows, both of the methods that did not incorporate grey handling performed 

essentially the same as one another, and superior to the methods that did attempt to take grey 

preferences into account.  Figures 4.3 – 4.7 contain this data graphically, including standard 

deviations.  As seen in the graphs, below, only the values for the high utility choice are 

statistically significantly, as the standard deviation bars overlap for the neutral and low choice 

percentages in all of the methods.  

 

 

 

Figure 4.3. Follow-Up Results – Addition 
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Figure 4.4. Follow-Up Results – Multiplication 

 

 

Figure 4.5. Follow-Up Results – Multiplication (Grey Method 1) 

 

 

Figure 4.6. Follow-Up Results – Addition (Grey Method 2) 
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Figure 4.7. Follow-Up Results – Multiplication (Grey Method 2) 

 

 

While none of the utility functions that incorporated grey handling methods performed 

better than the benchmark method, there was substantial variance in the performance of these 

methods from question to question.  In particular, each of these methods performed exceptionally 

well in the questions where the highest utility color was one of the three options (i.e. the question 

that would be produced with the circled elements in Figure 4.2).  A comparison of these results 

can be seen in Figure 4.8 below. 
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Figure 4.8. Comparison of Results for Questions Containing the Highest Utility Color 

 

 

In particular, the addition functional form, using grey handling method 2 had the largest 

percentage of individuals choosing the highest utility option, as well as the smallest percentage of 

individuals choosing the low utility option.  Why these methods failed to maintain this high rate 

of success in questions offering lower high utility options is unknown, but their success in this 

specific instance is not without merit.  These results indicate that when it comes to determining 

the optimum color, a method that accounts for grey preferences is essential.  On the other hand, 

when a range of very good options is required instead, a method without grey handling is 

preferable. 
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5. CONCLUSIONS AND FUTURE WORK 

While this study has developed a foundational methodology for representing colors with 

utility functions, this body of research can be enriched with additional work in any of several 

areas. 

A valuable first step in future work would be to test this method using a different product 

space.  It is possible that while backpack color preferences can be somewhat successfully 

represented by their red, green, and blue color components, preferences for other products might 

not follow suit.  Additionally, the methodology has only been verified using a sample drawn from 

a relatively young, predominantly male population of engineering college students.  It would be 

interesting to see if similar results are obtained using a more broadly representative sample of 

individuals. 

Next, it will be necessary to accurately and fully account for all interaction effects in one 

continuous function.  The partial success of the grey handling methods employed in this research 

indicates that interactions are important.  However, these methods failed to produce superior 

results in any situation where the maximum utility option was not one of the available choices.  A 

more reliable functional form must be developed, which will likely require that individual 

preferences be gathered through either a ratings or rankings based conjoint method, which have 

been successfully used for these purposes elsewhere [9, 10, 20].  In addition, the final utility form 

should be continuous, such that optimization methods can be applied for more efficient 

evaluation.  Exhaustive enumeration is an acceptable academic approach, but it is too time 

consuming and computationally intensive to be used in real-world applications. 

Finally, after these problems have been solved to some degree of completion, it would be 

pertinent to address product designs that involve multiple colors.  In the fairly simple product 

space of backpacks, individuals repeatedly commented that their actual favorite product color 

would be “red with black accents” or “black with blue and green stripes.”  Prior research [17] 
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suggests that preferences for color pairings cannot easily be associated to preferences for 

individual colors, however it makes sense to resolve the simpler task before moving forward.  

Though the problem is different, the methods developed in this research on single color 

preferences could certainly be adapted to multi-color situations, and perhaps even combined with 

previously discussed form-preference work [13] to incorporate pattern preferences as well. 

In conclusion, the translation of aesthetic preferences to objective functions is a complex 

task, and this research has responded by outlining a methodology and providing substantial 

preliminary verification to guide future researchers as they seek to refine and build upon the 

existing body of research. 



 

 

34 

 

 

 

 

 

 

 

 

 

 

APPENDIX A 

COMPLETE SAS CODE FOR SURVEY GENERATION 
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/*Generates a fractional factorial experiment with 25 designs for  

/*an experiment with three attributes, each at five levels. 

 
%mktex(5 5 5, n=25); 
proc print; run; 

 
 
/*Evaluates fractional factorial design to confirm balance and 
/*orthogonality. 
 

%mkteval; 
 
 
/*Creates a 25 question choice survey. 
 

%mktlab(data=design, int=f1-f3); 
proc print; run; 

 
%choiceff(data=final, bestout=sasuser.survey25,  
model=class(x1-x3), nsets=25, maxiter=10, flags=f1-f3, 
options=nodups, beta=zero); 

 
proc print; by set; id set; run; 

 
 
/*Evaluates survey design to confirm balance and orthogonality. 

%mkteval; 
proc print;  run; 
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APPENDIX B 

COMPLETE SURVEY DESIGN 
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Attribute Levels 
Question Red Green Blue 

191 191 191 
64 0 255 1 
128 255 64 

0 0 0 
191 64 255 2 
64 128 191 
0 64 128 

255 255 255 3 
191 128 64 
64 0 255 
0 64 128 4 

191 191 191 
255 128 0 
191 64 255 5 

0 255 191 
191 255 0 
64 64 64 6 
128 191 255 
64 255 128 
191 128 64 7 
128 64 0 
255 255 255 
191 0 128 8 
128 64 0 
128 255 64 
64 191 0 9 
255 64 191 
191 0 128 
255 64 191 10 
128 191 255 
191 128 64 

0 64 128 11 
128 0 191 
255 255 255 
64 128 191 12 
128 64 0 

0 255 191 
255 0 64 13 
128 191 255 
64 64 64 
255 128 0 14 
128 0 191 
255 191 128 
191 255 0 15 
128 0 191 
64 255 128 
191 191 191 16 

0 0 0 
 



 

 

38 

Attribute Levels 
Question Red Green Blue 

128 128 128 
64 191 0 17 
0 255 191 

64 128 191 
191 64 255 18 
255 191 128 

0 191 64 
191 255 0 19 
128 128 128 
255 0 64 
64 255 128 20 
0 128 255 

128 255 64 
0 128 255 21 

191 0 128 
0 191 64 

255 128 0 22 
64 0 255 
64 191 0 
0 128 255 23 

255 0 64 
0 0 0 

255 191 128 24 
64 64 64 
0 191 64 

255 64 191 25 
128 128 128 
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