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Abstract 

 

 Molybdenum disulfide has some of graphene’s properties but has an edge over 

graphene as this new 2D nanomaterial has a band gap in its electronic structure, which 

is absent in graphene. The purpose of this thesis is to study the electronic properties of 

the promising Molybdenum Disulfide (MoS2) material in its bulk and monolayer forms 

by undertaking a systematic theoretical approach. We will mainly study the band gap, 

the density of states and the electronic charge distribution which is considered as the 

most important electronic characteristics of semiconductors. 

In this study, the density functional theory (DFT) – implemented in WIEN2k 

and VASP- is used. The generalized gradient approximation (GGA), Modified Becke-

Johnson and Hybrid functional approximation are used for the exchange–correlation 

potential. Band structure, density of states and band gap pressure coefficients are 

calculated. WSe2 – MoS2 heterostructre and the effect of impurities are covered in this 

study.  

The study matched the experimental results, the band gap of molybdenum 

disulfide increases with decreasing the number of layers and it shifts from an indirect 

band gap to a direct band gap when a monolayer MoS2 is formed. The pressure effect 

found in this study is consistent with the experiments and supports the idea of changing 

the electrical phase of MoS2 with pressure (from semiconductor to metallic phase).  

This study shows that MoS2 is an excellent candidate in electronics industry 

along with its great applications as lubricant, Transistors and composite applications. 

 

Keywords: Molybdenum disulfide, 2D material, density functional theory, electronic 

properties. 
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Title and Abstract (in Arabic) 

 

 دراسة أثر الضغط والشوائب على الخصائص الالكترونية لثاني كبريتيد الموليبدينيوم

 الملخص

لأنه  من أكثر المواد استقطابا لاهتمام العلماء MoS)2  (يعد ثاني كبريتيد الموليبدينوم

طاقة الالكترون يشارك الجرافين بعض خصائصه ولكن يختلف عنه لوجود فجوة بين مستويات 

من هذه الأطروحة هو دراسة الخصائص الالكترونية لثاني كبيريتيد الموليبدينوم. في الذرة. الهدف 

( لفهم ودراسة Density functional theory DFTسيتم استخدام نظرية الدالة الوظيفية للكثافة )

اس لدراسة خصائص البنية والخصائص الالكترونية التي تعتبر كثافة الالكترونات هي الأس

و  (Generalized Gradient Approximation)ستعانة بتقريب الانحدار المعمم بالا المجموعة.

 –يتم حساب جهد التبادل ( س, (Modified Becke-Johnsonجونسون المعدل –تقريب بيك 

الارتباط الكامن بين الالكترونات. باستخدام التقريبات السابقة الذكر سيتم حساب فجوة الطاقة بين 

، بالإضافة إلى دراسة تأثير الضغط على (Density of statesالاكترونات و كثافة المستويات )

د الخصائص الالكترونية، بالإضافى إلى دراسة التغييرات التي قد تحصل على ثاني كبريتي

 أو عند إضافة شوائب.  2WSe الموليبدينوم عند وضعه مع تنجستن ثنائي السيلينيوم 

أظهرت الدراسة أن الفجوة الالكترونية تزيد مع تقليص عدد طبقات المادة المدروسة كما 

 Indirect bandإلى كونها غير مباشرة ) (Direct band gapأن الفجوة تتحول من كونها مباشرة )

gap عند )( الانتقال من عدة طبقاتBulk( إلى طبقة واحدة فقط )2Monolayer MoS أوضحت .)

دراسة تأثير الضغط تغيير في الخصائص الاكترونية للمادة حيث أنها تبدي خصائص مائلة إلى 

 الموصلات عند زيادة الضغط عليها. 

الوظيفية، الخصائص ثاني كبريتيد الموليبدينوم، نظرية الدالة  مفاهيم البحث الرئيسية: 

  .الالكترونية
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Chapter 1: Introduction 

 

1.1 Overview 

The interest in 2-dimensional (2D) semiconductors is largely fueled by the 

highly successful miniaturization of Si-based electronic devices for higher packing 

density, faster circuit speed, and lower power dissipation.  

The bulk form of many layered materials were found long time ago and they 

were used as dry lubricant such as graphite and Molybdenum disulfide MoS2 due to 

their layered nature. Atoms are strongly attracted to each other within the same plane 

by a strong covalent or ionic bonding but the interlayer attraction is due to a weak Van 

der Waals force, which makes it easy to extract one or few layers of the material. 

2D Materials consist of a range of distinct electronic properties. Some are 

semiconductors with a big direct band gap (5.8 eV) like boron nitride [1], transition 

metal dichalcogenides (TMIDCs) such as molybdenum disulfide (MoS2) -which we 

will be studying – and tungsten diselenide (WSe2) .Others are semi-metallic such as 

the promising 2D graphene ( single layer of graphite). 

Comparing layered materials to the known - and widely used- photonic 

materials such as gallium arsenide (GaAs) or silicon (Si) one may find that the layered 

material may be a very good alternative in electronic and photonic devices. Since the 

2D materials have a passivated surface1 that makes it easy to create heterostructures 

using two different 2D materials (say for example MoS2 – WSe2 heterostructure) 

without any problem of lattice mismatch issue since they will be attracted by Van der 

Waals forces just like their bulk sheets do. Many 2D materials interact with light very 

                                                 
1 There are no dangling bonds on the surface so it will not interact with the 

surrounding environment  
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strongly and they may cover a long range of the electromagnetic spectrum, for 

example, the semi metallic graphene interacts with the electromagnetic spectrum from 

the range of the microwave to the ultraviolet region which makes it a very good 

material for light detection applications [2]. 

The recently discovered 2D materials have gained the researchers interest for 

its promising applications in the optical and electrical industries. Graphene, with its 

high optical transparency (97.7% transmittance in the visible spectrum), good thermal 

conductivity at room temperature (3x103 W/mK) and exceptional mechanical strength 

(Young’s modulus of 1.1TPa) opened new era in the technologies of photonics and 

optoelectronics. These properties put graphene in the top of the list as a candidate for 

transparent electrodes, energy storage and solar cells industries. These outstanding 

characterizations enhanced the demand to search more in the field of 2D layered 

materials. One major disadvantage in graphene is that it lacks the existence of a band 

gap therefore it is not considered as an optimal material for light emission devices and 

it minimized its application in the electronic industry where semiconductor materials 

maybe of much use. On the contrary, single layer TMDCs such as MoS2 are considered 

as direct band gap semiconductors and they exhibit good light emitting properties [2].  

The main goal of this work is to contribute toward an accurate theoretical 

determination of the electronic properties of a monolayer and multilayer MoS2. We 

plan to investigate the effect of pressure on the band gap energies and the density of 

states of MoS2. 
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1.2 Properties of Molybdenum Disulfide 

Molybdenum disulfide (MoS2) is one of the 2D material, which offers a great 

promise for device applications especially in the optoelectronics and energy harvesting 

which requires thin semiconductors; it can also be used along with graphene where 

both materials may complement each other. MoS2 has gained a lot of interest for its 

properties, which differs if you deal with the 2D monolayer or with its 3D bulk form. 

It was widely used as a solid lubricant since its first discovery in 1960 [3]. 

MoS2 is a black / grey material (figure 1) similar to Graphite with a molar mass 

of 160.07 𝑔 𝑚𝑜𝑙𝑒⁄  and a density of 5.06 𝑔 𝑐𝑚3⁄ . It has a very high melting point just 

like the other layered materials that may exceed 1000o C and is insoluble in water. It 

has a 2H hexagonal structure with space group P63/mmc [5]. 

 

 

 

 

 

 

 

 

The MoS2 crystal consists of layers attracted by Van der Waals force, which 

explains the ease to exfoliate few layers or even one layer from the bulk form. Each 

layer is built of a sheet of Molybdenum (Mo+4) sandwiched between two sheets of 

Sulfur (S-2) as shown in (figure 2). Depending on the arrangement of S atoms, the 2D 

monolayer MoS2 may appear in two different symmetries that may affect its electronic 

Figure 1: Bulk MoS2 imaging a) An image of the bulk MoS2   b) a Close-up 

SEM image of MoS2 nano-flakes from noncentrifuged MoS2 dispersion [4] 
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structure and properties. The first is 2H, which is trigonal prismatic, acquires 

semiconducting properties. The other form is the metallic 1T, which is Octahedral Oh 

phase. Yung-Chang et.al have showed that the transition between these two phases is 

possible by intra-layer atomic plane glide [6]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similar to graphene, MoS2 has a Young’s modulus of 033 ± 0.07 TPa which 

makes it mechanically flexible [7]. 

During the early 2010, Raman Changgu Lee’s group ran spectra 

characterization on a single and few layers of MoS2. They aimed to investigate two 

peaks 𝐸2𝑔
1  and 𝐴1𝑔 to reflect the crystal structure of MoS2. 𝐸2𝑔

1  In addition, 𝐴1𝑔 are 

indicators of in-plane and out-of-plane vibrational modes of S atoms respectively. 

From bulk to monolayer, three changing parameters are collected, first, 𝐸2𝑔
1  exhibits a 

Figure 2: Three-dimensional representation of the structure of MoS2. The intre-

layer distance between two Mo atoms is 6.55 Å 
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blue shift whereas the 𝐴1𝑔 undergoes a red shift. The second note is the difference of 

frequency between the two peaks reduces proportionally with respect to the number of 

layers where it ranges from 25 cm-1 in the bulk characterization to 19 cm-1 for the 

monolayer MoS2. The third note is that the intensities of the peaks increases linearly 

with increasing the layer thickness up to four layers [8]. 

The thermal conductivity of few layers of MoS2 was estimated to be 52 

𝑤 𝑚𝐾 ⁄  [9]. Opposing the graphene that is highly sensitive to light but has low photo 

response, MoS2 has a high photo response.   

MoS2 exhibits good electrical and transport properties, and is chemically and 

thermally stable, transparent, flexible, and relatively inexpensive, which all together 

makes this material an excellent candidate for a variety of electronic and optoelectronic 

applications. The 2D form of the material was not discovered until 2011when scientists 

succeeded in producing a transistor made from this new material. 

Molybdenum disulfide looks to be a promising class of material for next-

generation electronics, as it is the only 2D material yet discovered which has an 

inherent band gap. With this feature, molybdenum disulfide paves the way for the 

development of a very new domain of electronic devices and materials, which can be 

used in heterostructures with other 2D layered materials to complement each other. 

 

1.3 MoS2 Preparation 

This work will not involve any experimental preparation but I must say that 

this material (few layers or single layer MoS2) can be prepared experimentally. The 

preparation techniques may vary from exfoliation to Chemical vapor decomposition. 
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1.3.1 Exfoliation 

Exfoliating graphene form graphite successfully opened the door to use this 

technique on other graphene-like two-dimensional materials such as MoS2. Though 

this method is useful for fundamental research, it cannot be used for large-scale 

applications because of the inaccuracy in defining the number of layers. 

Karim et al. used a technique called anodic bonding to fabricate a two-

dimensional few layers of MoS2. Anodic bonding is a process used to seal glass to 

either silicon or a metal without any intermediate layer by different techniques such as 

sputtering. Hua Zhang et al. used exfoliation based on chemical reactions through an 

electrochemical lithium discharge process. After several ultra-sonication, they were 

able to achieve a 92% high yield monolayer MoS2. 

 The last exfoliation technique to present in this thesis is the approach used by 

O’Neill et al. They exfoliated bulk MoS2 by suspending it in an organic solvent. They 

were able to control the sonication time, which improved the efficiency of this 

approach to produce a higher concentration of flakes (up to 40 mg/mL). Chemical 

exfoliation seems to be more productive with a disadvantage of creating more defects 

in the structure of the two-dimensional layered materials. The defects in structure due 

to the sonication may affect the flakes size and constrict the produced 2D material 

applications in the large-scale integrated circuits [10] . 
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1.3.2 Chemical Vapor Deposition (CVD) Synthesis 

CVD is a technique used for material processing. During CVD, a precursor2 is 

being delivered to a reaction chamber where it passes over a heated substrate under a 

critical temperature that is required for a specific reaction to take place after the 

precursor is diffused on the surface. In addition, the required products will be adsorbed 

in the substrate with the by-product being desorbed and removed from the chamber. 

At the end, you will get the substrate coated by the desired material. 

This technique is very useful in preparing 2D layered materials and their 

heterostructure since it allows to control the thickness of your sample. CVD is a better 

choice than transporting layer by layer for creating a heterostructure because of its 

advantages in reducing the interfacial contamination. Since synthesizing 2D layered 

materials on a wafer scale using CVD is possible, it will give the industry the potential 

to use the produced materials in large-scale application. 

Using this technique in preparing MoS2 is possible using different kinds of precursors 

such as Mo based compounds, (NH4)2MoS4 and graphene /MoS2 composites.  

1.3.2.1 Sulfurization of Mo based compound and Mo based Oxides 

 In 2012, Lain-Jong Li et al. used Molybdenum trioxide (MoO3) and Sulfur 

powder (S) as solid reactants to synthesis large-scale monolayer MoS2 films on a 

silicon dioxide (SiO2) coated by graphene substrate. The field effect transistors (FET) 

                                                 
2 Precursors are the compounds used in chemical reactions to produce other 

compounds. 
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produced from this film have an on/off ratio of 104 with an n-type behavior (Figure 

3.a).  

 One year later, Yifei Yu et al. demonstrated that the replacement of MoO3 by 

molybdenum chloride (MoCl5) might improve the performance of the FET with a 

mobility that could reach up to 0.03 cm2 𝑉. 𝑠⁄ . 

 Yongie Zhan et al. used a different approach where they pre-deposited Mo thin 

layer on a SiO2 substrate using electron beam physical vapor deposition. The substrate 

would then be placed in furnace at 750o C to react with sulfur vapor. The result samples 

were bi-layers and tri-layers with typical mobility in the range 0.004 – 0.04  

cm2 𝑉. 𝑠 ⁄ (Figure 3. b) [11] . 

1.3.2.2 Thermal decomposition of (NH4)2MoS4 

MoS2 films created using Thermal decomposition of (NH4)2MoS4 showed an 

excellent bottom gated FE electron mobility that reached 4.7 cm2 𝑉. 𝑆⁄ . Keng Ku Liu 

et al. were able to fabricate a bi layer and a tri layer films on an insulating substrate. 

This approach should be done with extreme caution to achieve homogeneous precursor 

films on target substrate (Figure 3.c) [11]. 

1.3.2.3 Direct synthesis of graphene/MoS2 composites 

Creating heterostructures from the 2D layered materials is of a great concern 

in the optoelectronics and electronic industry. Since the graphene was the first 2D 

material to be examined and showed promising features with some limitations in 

specific applications (graphene is a gapless material) it would highly be interesting to 

study its features in heterostructures with other 2D materials. 
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 Layer by layer stacking has been the simplest way of creating the 

heterostructures with the disadvantage of interfacial contamination. So far the 

substrates used for preparing MoS2 were mainly SiO2, Mica or sapphire, but it was 

shown that graphene itself might be used as a substrate for growing MoS2. Yumen Shi 

et al. showed that hexagonal MoS2 nano-flakes with a crystal size ranging from 

hundred nanometers to few micrometers were deposited on top of a graphene layer 

with a small lattice mismatch. Recently (In 2014), Kathleen M. et al. reported growing 

a uniform monolayer MoS2 on a large area graphene with a heterostructure size up to 

centimeters which is more controllable and practical. Being able to create such 

heterostructure will allow us to use the features of both materials simultaneously  [11].  

  

b) 
a) 

c) 

Figure 3: CVD preparation of MoS2 a) sulfurization of MoO3 b) sulfurization of Mo 

films c) thermal decomposition of (NH4)2MoS4  
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1.4 Applications of Molybdenum Disulfide 

 MoS2, just like graphene, has various applications in many fields as a bulk and 

in its monolayer form. Due to its optical and electrical characterizations, and since it 

is the most abundant TMDCs, it expanded into a wide researched topic to be used in 

related applications.  

1.4.1 Lubricant Applications  

 Lubricants are materials used to protect other materials and surfaces from being 

damaged due to friction or wear. Lubricants are usually liquids or gases, but solids 

have an excellent feature in providing lubricant features as solid lubricants or dry 

lubricant. For the solid to work as a lubricant, it must acquire some preferred 

properties. First, it must be able to maintain a low and controlled friction between the 

surfaces. It should be chemically stable under a range of specified temperatures that 

are required for the designed application and adhere strongly to one of the surfaces, so 

that it does not get lost rapidly. Finally, yet importantly, it must be non-toxic with 

sufficient wear resistance. 

 Shankara. A et al. have tested phosphate steel specimens coated by MoS2 while 

applying a scratch test. They found that the average wear rate was 0.215 µm/cycle and 

the initial coefficient of friction around 0.08.They also studied the addition of 8% 

zirconia and 25% graphite on MoS2 and they found that the wear resistance increased 

to reach 0.003 µm/cycle and the initial coefficient of friction 0.06 [3]. 
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1.4.2 2D Van der Waals Heterostructures 

 MoS2 gained the researchers interest since it is one of the most abundant 

TMDCs. It can be used in many applications such as transistors, photo detectors, solar 

cells, Lubricant applications, etc. However, due to its intrinsic properties, it has some 

limitations that constrict its applications in some applications. For example, MoS2 

electron mobility is much less than graphene which makes it a bad candidate to act as 

transparent electrodes. Graphene on the other hand, shows a great mobility with 

outstanding electrical performance but since it has a zero band gap it fails in the switch 

control applications. 

 An excellent alternative to using these two materials separately is to use a 

hybrid heterostructure employing the controllable band gap of MoS2 to enhance the 

performance of the gapless graphene. 

 In 2011, Yandong Ma et al. calculated the binding energy of carbon (C) atom 

to MoS2 to be 23 eV with an interlayer spacing between graphene and MoS2 to be 3.32 

Å. This structure introduced a 2 meV band gap of graphene, which is almost negligible 

but may be tuned by varying the interlayer spacing [12].  

 Marco.B et al. have shown that  a type 2 Schotty junction  (MoS2/graphene) of 

0.9 nm thickness exhibit a high power conversion efficiency that may reach 1% and 

power density of 0.25 – 2.5 mW/Kg  which is higher than the known ultrathin solar 

cells (GaAs and Si) by 1- 3 order of magnitudes [13].  
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Chapter 2: Density Functional Theory (DFT) 

 

2.1 Introduction  

Solid state physics deals with studying the rigid materials, their 

crystallography, the electromagnetism and the electronic structure. The simplest form 

of any material is its unit cell. The unit cell may contain different atoms (many 

electrons) at different positions, which is repeated periodically to form a crystal.  

Quantum mechanics gives us the opportunity to study the electronic structure 

of any material, and helps us to understand many other properties such as phase 

transition, relative stability and electrical, mechanical, optical or magnetic properties. 

With a huge number, such as the Avogadro’s number of atoms, the problem in 

Quantum mechanics becomes very complicated to solve manually.  

One of the basic problems in theoretical physics and chemistry is the 

description of the structure and dynamics of many-electrons systems. The Density 

Functional Theory (DFT) is a modeling method to study the electronic structure 

calculations, which ranks among the most computationally intensive tasks in all 

scientific calculations. This method helps to deal with problem of N-particle 

(electrons) in 3-spatial coordinates as a problem of one main variable which is the 

electron density [14]. 

Density functional theory uses several approximations, which we will describe 

in the following sections.  
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2.2 Born-Oppenheimer Approximation 

We will consider a system of two hydrogen atoms with two nuclei A and B and 

two electrons 1 and 2 as shown in figure 4.  

 

 

 

 

 

 

The general molecular Schrödinger equation, apart from electron spin effects, is 

�̂�𝜓 =   𝐸𝜓,                                                             (1) 

where H is the Hamiltonian operator and E is the energy eigenvalue. 

Considering the kinetic energy of each electron and nuclei in the system described 

above and the electric potential energy for all possible interactions, the Hamiltonian of 

the system is [15]: 

�̂� = �̂� + �̂�              

                                    �̂� =  −
ħ2

2𝑚
∇̂𝐴

2  −
ħ2

2𝑚
∇̂𝐵

2  −
ħ2

2𝑚
∇̂1

2 −
ħ2

2𝑚
∇̂2

2    

                                               +
𝑒2

4𝜋𝜀𝑜
(

1

𝑅12
−  

1

𝑅1𝐴
−

1

𝑅𝐴2
−

1

𝑅1𝐵
−

1

𝑅𝐵2
+

1

𝑅𝐴𝐵
)                    (2)                                      

𝑅𝐴2 

 𝑅1𝐵 

 

𝑅12 

 𝑅𝐵2 

 

𝑅𝐴𝐵 

 

𝑅1𝐴 

 

Figure 4: A system of two hydrogen atoms where A & B denote the nuclei and 

1&2 denote the electrons  
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where T=−
ħ2

2𝑚
∇𝑖

2  is the Kinetic energy operator of electron i and V=
𝑒2

4𝜋𝜀𝑜

1

𝑅𝑖𝑗
 is the 

potential energy between objects i and j. 

Since the nuclear mass is much greater than the electron mass, the Born Oppenheimer 

approximation, which is the first approximation used in DFT, defines the nuclear 

position as being fixed so that the kinetic energy of the nucleus will equal to zero 

compared to the kinetic energy of the electron.   

Then, the electronic Hamiltonian can be rewritten as:  

�̂�𝑒𝑙𝑐 = −
ħ2

2𝑚
∇1

2 −
ħ2

2𝑚
∇2

2 +
𝑒2

4𝜋𝜀𝑜
(

1

𝑅12
−  

1

𝑅1𝐴
−

1

𝑅𝐴2
−

1

𝑅1𝐵
−

1

𝑅𝐵2
+

1

𝑅𝐴𝐵
),              (3)          

where 
1

4𝜋𝜀𝑜

𝑒2

𝑅 𝐴𝐵 
 is considered as a constant which we will consider later as the external 

potential  

 

2.3 The Hartree Approximation 

Hartree approximation uses the same concept that is used in variational 

method. The Hartree approximation starts with a guess of the wave function and just 

run a self-consistent cycle until we reach convergence but we will come to that later 

in more details. The Hartree approximation does not follow Pauli Exclusion Principle 

since it does not take the antisymmetry due to interchange of coordination into account, 

so correlation due to Pauli principles are ignored but one should ensure that no two 

electrons are occupying the same state.  

  Hartree theory starts with defining the wave function by equation (4). 

𝜓(𝑋) = ∏ ∅𝑖(𝑥)𝑁
𝑖=1                                                          (4) 
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where ∅𝑖(𝑥) = 𝜓𝑖(𝑟)𝜒𝑖(𝜎). 

 The Schrödinger differential equation of the system is now defined as: 

[−
1

2
∇2 + 𝑣(𝒓) + 𝑣𝑒𝑒

𝐻 (𝒓)] ∅𝑖(𝒙) =  𝜖𝑖∅𝑖(𝒙)   𝑖 = 1, … . . 𝑁                            (5) 

where 𝑣𝑒𝑒
𝐻 (𝒓)  is the local effective electron- interaction potential energy. 

𝑣(𝒓) is the external potential energy. 

𝑣𝑒𝑒
𝐻 (𝒓)  is defined as the work required to move the model fermion (electrons) due to 

the force of the conservative field, the effective Hartree field ℱ𝐻(𝑟′).   

𝑣𝑒𝑒
𝐻 (𝒓)  =  − ∫ ℱ𝐻(𝑟′). 𝑑𝑙′𝑟

∞
                                           (6) 

Where ℱ𝐻(𝑟′) is the summation of the electron interaction field 𝜀𝑒𝑒
𝐻 (𝒓) and the 

correlation kinetic field 𝒵𝑡𝑐
𝐻 (𝒓).  

ℱ𝐻(𝑟′) =  𝜀𝑒𝑒
𝐻 (𝒓) +  𝒵𝑡𝑐

𝐻 (𝒓)                                              (7) 

With ∇ × ℱ𝐻(𝑟′) = 0 so that 𝑣𝑒𝑒
𝐻 (𝒓) is path independent. 

The term 𝜀𝑒𝑒
𝐻 (𝒓) is obtained from the hartree pair correlation density 𝑔𝐻(𝒓𝒓′) via 

coulomb law.  

𝜀𝑒𝑒
𝐻 (𝒓) =  ∫

𝑔𝐻(𝒓𝒓′)(𝑟−𝑟′)

|𝑟−𝑟′|3
𝑑𝑟′                                                (8) 

The Hartree pair correlation density is a property representing the electrons correlation 

due to Pauli principles or coulomb interactions and is defined mathematically as: 

𝑔𝐻(𝒓𝒓′) =
𝑃(𝒓𝒓′)

𝜌(𝒓)
                                                           (9) 
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Where 𝜌(𝒓) is the electronic density and 𝑃(𝒓𝒓′) is the expectation value of the pair 

correlation operator �̂�(𝒓𝒓′) that gives the probability of finding the electron at 𝒓 and 

𝒓′ simultaneously. The effect of the pair correlation density is valid and necessary.  

According to Pauli’s exclusion principle, no two electrons can be at the same quantum 

state and the repulsion due to the Coulomb force will affect the local density of the 

electrons at 𝑟′ and from this concept comes the importance of the pair correlation 

density. This change in the local density is called the Fermi coulomb hole charge 

distribution 𝜌𝑋𝐶 (𝒓𝒓′), which is a nonlocal self-interaction correlation (SIC). 

According to what we said, the pair correlation density can be rewritten as the 

summation of the local and the nonlocal densities: 

𝑔𝐻(𝒓𝒓′) = 𝜌𝑆𝐼𝐶(𝒓𝒓′) +  𝜌(𝒓′)                                      (10) 

Now substituting equation (10) in equation (8), we get: 

𝜀𝑒𝑒
𝐻 (𝒓) =  ∫

𝜌𝑆𝐼𝐶(𝒓𝒓′)(𝑟−𝑟′)

|𝑟−𝑟′|3 𝑑𝑟′ +  ∫
 𝜌(𝒓′) (𝑟−𝑟′)

|𝑟−𝑟′|3 𝑑𝑟′                                 (11) 

𝜀𝑒𝑒
𝐻 (𝒓) =  𝜀𝐻(𝒓) +  𝜀𝐻

𝑆𝐼𝐶(𝒓)                                   (12) 

Combining equation (12) and equation (7), we get: 

ℱ𝐻(𝑟′) =  𝒵𝑡𝑐
𝐻 (𝒓) +   𝜀𝐻(𝒓) + 𝜀𝐻

𝑆𝐼𝐶(𝒓)                              (13) 

In addition, from equation (6) we may find 𝑣𝑒𝑒
𝐻 (𝒓) to be: 

𝑣𝑒𝑒
𝐻 (𝒓)  =  − ∫ 𝒵𝑡𝑐

𝐻 (𝒓) +   𝜀𝐻(𝒓) +  𝜀𝐻
𝑆𝐼𝐶(𝒓). 𝑑𝑙′ 

𝑟

∞
                          (14) 

Choosing the correct symmetry such that all the above fields are conservative, we can 

simplify equation (14) as:  
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𝑣𝑒𝑒
𝐻 (𝒓)  =  𝑊𝐻(𝒓) + 𝑊𝐻

𝑆𝐼𝐶 (𝒓) +  𝑊𝑡𝑐
𝐻(𝒓)                                    (15) 

where 𝑊𝐻(𝒓), 𝑊𝐻
𝑆𝐼𝐶 (𝒓) , 𝑊𝑡𝑐

𝐻(𝒓) are the separate work done by the fields 

𝜀𝐻(𝒓), 𝜀𝐻
𝑆𝐼𝐶(𝒓), 𝒵𝑡𝑐

𝐻 (𝒓) respectively.  

Now applying Schrödinger’s equation, we may find that the total energy of Hartree 

theory written in term of the fields is:  

𝐸𝐻 =  𝑇𝑠 +  ∫ 𝜌(𝑟)𝑣(𝑟)𝑑𝑟  + 𝑇𝑐
𝐻(𝒓) +  𝐸𝐻(𝒓) +  𝐸𝐻

𝑆𝐼𝐶(𝒓)                  (16) 

Where the first term in Schrodinger equation is due to the Kinetic energy 

⟨∅𝑖(𝒓𝜎)|−
1

2
∇2|∅𝑖(𝒓𝜎)⟩ and the second term is due to the external field. The third, 

fourth and fifth terms are due to 𝑊𝑡𝑐
𝐻(𝒓), 𝑊𝐻(𝒓) and 𝑊𝐻

𝑆𝐼𝐶 (𝒓) respectively [16]. 

The difficulty in solving N particle problems is that the potential of each particle is 

related to the other N-1 particles. That is why this method is self-consistent and one 

may solve it by finding ∅𝑖(𝑥) that may be a solution to the Hartree equation. The 

following steps will summarize the approach: 

First: GUESS a set of one-particle states∅𝑖(𝑥). 

Second: Using the guessed state, Find𝑉𝐻(𝒓). 

Third: Solve the one particle Hartree equation using𝑉𝐻(𝒓). 

Fourth: If the found states are the same as the guessed states then we are done, if not, 

then use the new states as guessed ones and repeat from the first step until you reach 

convergence. To avoid any oscillations, it is better for the new guessed state to be a 

mixture of the old guessed state and the last solution obtained from step four [17]. 
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2.4 The Hartree-Fock Approximation  

The Hartree approximation is considered as a good introduction to the methods 

of solving the many particles systems. In fact, the Hartree approximation is not 

perfectly correct and it is safe to say that it is wrong since the wave functions are not 

antisymmetric. 

The Hartree-Fock (H-F) approximation follows the same procedure used in the 

Hartree approximation but by taking the antisymmetric wave function as a 

requirement. To do so, H-F approximation uses a slater determinant to define the wave 

function. 

 𝜓 =
1

√𝑁!
 ∑ 𝜖𝑛1𝑛2….(𝑛1,𝑛2,… )  𝜓𝑛1

(𝒓𝟏)𝜓𝑛2
(𝒓𝟐) ….                         (17) 

Note that; the indices indicate the single particle state and not the particle 

coordinates [18], [19]. 

The wave function can also be writes as; 

𝜓(1, … … . 𝑁) =
1

√𝑁!
 𝑑𝑒𝑡 [

𝜓1(𝟏) ⋯ 𝜓1(𝑵)
⋮ ⋱ ⋮

𝜓𝑁(𝟏) ⋯ 𝜓𝑁(𝑵)
]                    (18) 

 According to the properties of the determinant, the exchange of two columns -

that corresponds to exchanging two particles- will result on a minus sign. Moreover, 

if two rows are the same, then the determinant will be zero, which demonstrates Pauli’s 

exclusion principle. Then we may apply the same procedure used in section 2.3.  

2.5 The Hohenberg-Kohn Theorems  

As we discussed earlier in section 2.2, the Born-Oppenheimer approximation 

freezes the nuclei since they are much heavier and therefore much slower than the 
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electrons. In other words, only the electrons are kept as players in our many body 

problem. The nuclei are treated as a source of positive charge; they become ‘external’ 

to the electron cloud. After applying this approximation, we are left with a much 

simpler Schrödinger equation: 

�̂�𝜓 = [�̂� + �̂� + �̂�]𝜓 

         �̂�𝜓 =  ∑ (−
ℎ2

2𝑚𝑖
�̂�2) +  ∑ �̂�(𝒓𝑖) +  ∑ �̂�(𝒓𝑖, 𝒓𝑗)]𝑁

𝑖<𝑗
𝑁
𝑖=1

𝑁
𝑖=1 = 𝐸𝜓      (19) 

Where H is the Hamiltonian, 

           E is the energy, 

           T is the kinetic energy of the particle (electron) "𝒊" , 

 V is the external field potential energy due to a positively charge nuclei, 

 And U is the 𝑒− − 𝑒− interaction energy (since electrons are fermions, no two 

electrons of the same quantum number are allowed to stay in the same energy state) 

[20].  

There are many sophisticated methods to solve the many-particle Schrödinger 

equation. In DFT, the key variable is the particle (electron) density 𝜌(𝒓). Vice versa, 

if we have the wave function of the ground state ψo (r1, r2,…) we will be able to find 

ρo(r), which means that ψ is unique – as said above  –  . Then, we can say that the 

expectation value of the Hamiltonian (the energy) is a function of ρo. 

𝐸𝑜 = 𝐸(𝑛𝑜) = < 𝜓 (𝑛𝑜)|�̂� + �̂� + �̂� |𝜓 (𝑛𝑜) > 
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T and U are universal operators – independent of the system – whereas V is a non-

universal one; and hence the contribution of the external potential V, <

𝜓 (𝑛𝑜)|𝑽|𝜓(𝑛𝑜) > ,  can be written explicitly in terms of the ground state density no  

𝑉[𝑛𝑜] =  ∫ 𝑉(𝑟)𝜌𝑜(𝒓)𝑑3𝑟 ;                                                       (20) 

The above remark was stated by the Hohenberg-Kohn theorems (H- K theorems). The 

H-K theorems were held only for non-degenerate states neglecting any magnetic field. 

However, they have been improved to encompass these cases. I will only consider the 

non-degenerate H-K theorems. 

The first and second of (H-K) theorems suggests that the ground state of a many-

electron systems can be uniquely described by the ground state- electron density as a 

function of the 3 spatial coordinates only that if approximated correctly, we will be 

able to find our wave function that minimizes the energy.  Therefore, instead of having 

a problem with N-particle (electrons) in 3-spatial coordinates, we will have a problem 

of one (electron density) in the 3- spatial coordinates. The (H- K) theorems suggests 

that there is a one-to-one correspondence between the ground-state density n(r)of a 

many-electron system (atom, molecule, solid) and the external potential. This theorem 

can be proved by assuming two different systems A and B with two different external 

potentials, Va and Vb, having the same density of state. The two potentials Va and Vb  

corresponds to two different Hamiltonians Ha and Hb respectively. We know that the 

ground state eigenvalue E0,a corresponds to a unique ground state wave function ψ0,a, 

Where a refers to the Hamiltonian for the system A. Applying the Hamiltonian of 

system A on any other wave function other than ψ0,a  will result an energy eigenvalue 

greater than E0,a. 
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𝐸0,𝑎  <  〈𝜓0,𝑏⎸𝐻𝑎⎸𝜓0,𝑏〉                                                  (21) 

Where “a” refers to system A and “b” refers to system B. 

Now subtracting and adding  𝐻𝑏 to the operators will yield to equation 22; 

𝐸0,𝑎   < 〈𝜓0,𝑏⎸𝐻𝑎 − 𝐻𝑏 + 𝐻𝑏⎸𝜓0,𝑏〉 

𝐸0,𝑎 <  〈𝜓0,𝑏⎸𝐻𝑎 − 𝐻𝑏⎸𝜓0,𝑏〉   +   〈𝜓0,𝑏⎸𝐻𝑏⎸𝜓0,𝑏〉    

𝐸0,𝑎   <  〈𝜓0,𝑏⎸𝐻𝑎 − 𝐻𝑏⎸𝜓0,𝑏〉   +   𝐸0,𝐵                                      (22) 

Since we are assuming that the only difference in A and B is in the external potential 

Equation 22 maybe written as. 

𝐸0,𝑎  <   〈𝜓0,𝑏⎸𝑉𝑎 − 𝑉𝑏⎸𝜓0,𝑏〉   +   𝐸0,𝐵                                           (23) 

We can write equation 23 in terms of the ground state density; 

𝐸0,𝑎  < ∫[𝑉𝑎 − 𝑉𝑏]𝜌0 (𝑟)    𝑑(𝑟)   +   𝐸0,𝐵                                        (24) 

Since a and b are interchangeable indices equation 24 may be written as. 

𝐸0,𝑏 < ∫[𝑉𝑏 − 𝑉𝑎]𝜌0 (𝑟)    𝑑(𝑟)   +   𝐸0,𝑎                                         (25) 

Adding equation 25 and 24;  

 

𝐸0,𝑎  +  𝐸0,𝐵 < ∫[𝑉𝑎 − 𝑉𝑏]𝜌0 (𝑟)    𝑑(𝑟) + ∫[𝑉𝑏 − 𝑉𝑎]𝜌0 (𝑟)    𝑑(𝑟)  +   𝐸0,𝐵 + 𝐸0,𝑎     

(26) 

 

The integration terms will cancel since 𝑉𝑎 − 𝑉𝑏 = - (𝑉𝑏 − 𝑉𝑎) and equation 26 becomes;  
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𝐸0,𝑎  +  𝐸0,𝐵  < 𝐸0,𝐵 + 𝐸0,𝑎                                                     (27) 

This clear contradiction proves that our assumption was not valid and that there is a 

unique one to one correspondence between the external potentials, the wave functions 

and the electron density. H-K theorems suggest that there exists a density function ( 

theorem 1) that helps us find the optimized Hamiltonian and wave function in order to 

find the corresponding minimum eigenvalue [21]. 

 

2.6 The Kohn-Sham equations 

The term ∑ 𝑈(𝑟𝑖, 𝑟𝑗)]𝑁
𝑖<𝑗  in equation 19 is what makes it hard to solve the 

Schrödinger equation, since many particles are involved in the interaction. 

The Kohn-Sham (K-S) equation is the Schrödinger equation of non-interacting 

particles; that generates the same density as any given system of interacting particles. 

It is defined by a local effective fictitious external potential in which the non-

interacting particles move, typically denoted as vs(r) or veff(r). 

 One can solve the so-called Kohn–Sham equations of this auxiliary non-interacting 

system, 

[−
ħ

2𝑚
∇2 + 𝑉𝑠 ̂(𝑟)] ∅𝑖(𝑟) =  𝜖𝑖∅𝑖(𝑟)                                                     (28) 

where 𝜖𝑖 is the orbital energy of the corresponding Kohn-Sham orbital (stata) ∅𝑖(𝑟) 

and 𝑉𝑠 ̂(𝑟) is an external effective potential in which the particles are moving. 

Thus, the density for N-particle systems; 

𝜌(𝑟) =  ∑ |∅𝑖
𝑁
𝑖=1 |2                                                               (29) 
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The effective single- particle potential can be written in more details; 

𝑉𝑠(𝑟) = 𝑉(𝑟) + ∫(
𝑒2𝑛𝑠(𝑟′)

|𝑟−𝑟′|
 𝑑3𝑟′  + 𝑉𝑥𝑐[𝑛𝑠 (𝑟)]                                   (30) 

Where: ∫(
𝑒2𝑛𝑠(𝑟′)

|𝑟−𝑟′|
 𝑑3𝑟′ is the so-called Hatree term describing the 𝑒 − 𝑒  coulomb 

repulsion. 

              Vxc is called the exchange correlation potential. 

The exchange interaction is a quantum mechanical effect between identical particles. 

It is due to the wave function of indistinguishable particles being subject to exchange 

symmetry that is either remaining unchanged (symmetric) or changing its sign 

(antisymmetric) when two particles are exchanged. Whereas the electronic correlation 

is the interaction between electrons in the electronic structure of a quantum system. 

The term Vxc is the summation of the exchange potential and the correlation potential 

[22]. 

2.7 The Exchange-Correlation Approximations  

So far, we have seen the beautiful result of Kohn-Sham, which states that by 

finding a self-consistent solution to a set of single particle equations, will help us find 

the required ground state energy by minimizing the energy of an energy functional. 

 The main difficulty in solving the Kohn-Sham equation is with the exchange 

correlation (XC) term especially when dealing with an n body system, the problem 

becomes extremely complicated that needs super computers to be solved. Although 

HK theorems tells us that, there is an exchange correlation functional, it is still not 

known. For a good start, there is one system which is the uniform electron gas where 

the electron density is constant everywhere and the exchange correlation functional is 
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known. Using the uniform electron gas XC potential may not be of practical use since 

the electron density is the main feature that defines the chemical bonding. However, 

Kohn- Sham used the uniform electron gas XC potential locally which is called the 

local density approximation (LDA). The LDA allow us to completely define the Kohn-

Sham equation but one should be careful since we are not solving the actual 

Schrödinger equation as a consequence of not using the correct XC functional. 

 LDA approximation is not the only used approximation. Scientists worked and 

are still working very hard to improve these approximated functional. For example, 

one of the best known functional uses the LDA approximation along with local 

gradient in the electron density which is known as the generalized gradient 

approximation (GGA), more detailed explanation will be given in chapter 3 about 

some functional that have been used within DFT which we will be using to carry out 

our study [23].  

2.8 The Linearized Augmented Plane Wave Method 

 The Linearized augmented plane wave (LAPW) method is one of the most 

accurate methods to solve the Kohn sham equation. It is used in most of the available 

computational software including the WIEN2K that we will be using in this work. 

 The LAPW method relies on dividing space into two regions as shown in 

(Figure 5). The first one is a non-overlapping atomic sphere and the other is the 

interstitial region around these spheres. 
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Inside each atomic sphere of radius R the wave function ∅𝑘𝑛
 is a combination of radial 

functions times the spherical harmonics𝑌𝑙𝑚(𝑟). 

∅𝑘𝑛
=  ∑ [𝐴𝑙𝑚,𝑘𝑛

 𝑢𝑙(𝑟, 𝐸𝑙) + 𝐵𝑙𝑚,𝑘𝑛
 �̇�𝑙(𝑟, 𝐸𝑙)]𝑙𝑚 𝑌𝑙𝑚(�̂�)            (31) 

where 𝑢𝑙(𝑟, 𝐸𝑙) is the regular solution of the radial Schrödinger equation (at the origin) 

for energy 𝐸𝑙 taken at the center of bands with the corresponding 𝑙-like character. 

�̇�𝑙(𝑟, 𝐸𝑙) is the energy derivative of 𝑢𝑙(𝑟, 𝐸𝑙) taken at the same 𝐸𝑙. 

 Note that 𝐴𝑙𝑚,𝑘𝑛
 and 𝐵𝑙𝑚,𝑘𝑛

 are not variational constants, they are functions of 

𝑘𝑛 and are determined by requiring that the wave function is a continuous sphere’s 

boundary. 

 In the interstitial region, the wave function takes a PW form: 

∅𝑘𝑛
=

1

√𝜔
 𝑒𝑖𝒌𝒏.𝒓,                                                (32) 

where  𝒌𝒏 = 𝒌 + 𝑲𝒏 .𝑲𝒏 is the reciprocal lattice vector and k is the wave vector inside 

the first Brillouin zone.  
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Figure 5: Division of the unit cell into two regions 1) the atomic spheres and 2) 

the interstitial region 
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The solution of the Kohn Sham equation is taken to be the combination of the basis set 

of the LAPW according to the variational method. 

𝜓𝑘𝑛
=  ∑ 𝑐𝑛𝑛 ∅𝑘𝑛

                                              (33) 

where 𝑐𝑛 are determined by the Rayleigh Ritz variational principle3. 

 To improve the wave function and to increase the flexibility of the basis the 

addition of one more (𝒌𝒏 independent) term is necessary. This term is called the local 

orbital (LO) and it is used to ensure orthogonality. Local orbitals consist of two radial 

functions at two different energies that will make it possible to treat a semi core and 

valence states in one energy window consistently (for example 3s and 4s energies). 

∅𝑙𝑚
𝐿𝑂 = [𝐴𝑙𝑚 𝑢𝑙(𝑟, 𝐸1,𝑙) +  𝐵𝑙𝑚 �̇�𝑙(𝑟, 𝐸1,𝑙) + 𝐶𝑙𝑚 𝑢𝑙(𝑟, 𝐸2,𝑙)]𝑌𝑙𝑚(�̂�),           (34) 

The coefficients 𝐴𝑙𝑚, 𝐵𝑙𝑚 and 𝐶𝑙𝑚 by requiring that first: ∅𝑙𝑚
𝐿𝑂 should be normalized, 

second it should be zero at the boundaries of the sphere, third  derivative should also 

be zero at the boundaries of the sphere [24]–[26]. 

2.9 Computation on Solids: Electronic Band Structure 

 The band structure is one of the most important concepts in solid-state physics; 

it shows the available energy ranges that the electron may have in a material and the 

forbidden energies, which the electrons cannot acquire. Each electronic level in the 

                                                 
3 The Rayleigh Ritz variational principle deals with finding the Hamiltonian 

expectation value and try to minimize it. The Ritz theorem states that the expectation 

value of the Hamiltonian is stationary with respect to the neighbor space of its discrete 

eigenvalue.  
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band structure is characterized by the Bloch vector K and the band index n. The Bloch 

vector is related to the reciprocal lattice and has the dimension of (1/ Length).  

 The band structure may give indications about the Fermi energy level, the band 

gap, type of the band gap – direct band gap or indirect band gap-, width of valence and 

conduction bands, etc.  

 This shows the need to be explicit about what is meant by the band structure, 

and to make it simple, let us assume a lattice in one dimension that may be generalized 

later into two and three dimensions easily. Imagine that we have N atoms resting at 

their lattice locations 𝑟𝑛 = 𝑛𝑎, where 𝑎 is the lattice constant and 𝑛 = 1,2, … 𝑁. 

Assuming a periodic potential caused by the ions such that: 

𝑉𝑡𝑜𝑡(𝑥) =  ∑ 𝑉𝑎( 𝑥 − 𝑛𝑎)𝑁
𝑛=1                                  (35) 

 Where  𝑉𝑎( 𝑥) is the potential from an ion at the origin. Injecting this potential 

in Schrödinger’s equation, we will get: 

[−
ℎ2

2𝑚

𝑑2

𝑑𝑥2 + 𝑉𝑡𝑜𝑡(𝑥)] 𝜑(𝑥) = 𝐸 𝜑(𝑥)                        (36) 

Using periodic boundary conditions 𝜑(𝑥 + 𝑁𝑎) =  𝜑(𝑥) such that the 

probability of being in any unit cell must be the same regardless of the unit cell and 

the wave function should vary inside the unit cell, we may guess that the wave function 

would take the following form: 

𝜓𝑘(𝑥) =
1

√𝑁 
∑ 𝑒𝑖𝑘𝑅𝜑𝑘(𝑥 − 𝑅)𝑅                                        (37) 

Where 𝑢𝑘(𝑥) is periodic and 𝑘 =
2𝜋

𝑁𝑎
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It is believed that this guess works perfectly and it is known as the Bloch wave 

functions, with the only distinct solutions come in the range of 𝑘 ∈ [−
𝜋

𝑎
 ,

𝜋

𝑎
] which 

means in the first Brillouin zone. 

The expectation value of the energy now reads; 

𝐸(𝑲) =  ∫ 𝜓𝑘𝐻𝜓𝑘 𝑑𝑥                                                    (38) 

Substituting equation 37 in equation 38 will give;   

𝐸(𝑲) =  
1

𝑁 
∫ ∑ 𝑒−𝑖𝑘𝑅𝜑𝑘(𝑥 − 𝑅)𝑅 𝐻 ∑ 𝑒𝑖𝑘𝑅′

𝜑𝑘(𝑥 − 𝑅′)𝑅′ 𝑑𝑥                  (39) 

Taking 𝑥′ = 𝑥 − 𝑅 , with the fact that our Hamiltonian is periodic (unchanged 

under translation 𝐻(𝑥′) = 𝐻(𝑥)) equation (36) becomes; 

𝐸(𝑲) =  
1

𝑁 
∫ ∑ 𝜑𝑘(𝑥′)𝑅 𝐻 ∑ 𝑒𝑖𝑘𝑅′′

𝜑𝑘(𝑥′ − 𝑅′′)𝑅′′ 𝑑𝑥′                    (40) 

Where 𝑅′′ = 𝑅′ − 𝑅 is another translation vector. The summation over R will just give 

a factor of N and the final expression of the expectation value is now; 

𝐸(𝑲) =  ∑ 𝑒𝑖𝑘𝑅′′
∫ 𝜑𝑘(𝑥′)𝐻𝜑𝑘(𝑥′ − 𝑅′′)𝑅′′ 𝑑𝑥′                         (41) 

Equation 8 is valid only for 𝑅′′ very small.  Taking𝑅′′ = 0; 

𝐸𝑅′′=0(𝑲) =  ∫ 𝜑𝑘(𝑥′)𝐻𝜑𝑘(𝑥′) 𝑑𝑥′  =  𝜖𝑠                         (42) 

The subscript s stands for the s orbital since we are interested in the ground state. 

Separating the 𝑅′′ = 0 term from equation 8, we will end up with an expectation value 

of two terms;  

𝐸(𝑲) =  𝜖𝑠 +  ∑ 𝑒𝑖𝑘𝜏𝛾(|𝜏|)𝜏                                        (43) 
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Where in second term we assumed the translation vector to be 𝜏 =  ±𝑎𝑜𝑖 ̂and  𝛾(|𝜏|) =

∫ 𝜑𝑘(𝑥′)𝐻𝜑𝑘(𝑥′ − 𝜏) 𝑑𝑥 . 

𝐸(𝑲) =  𝜖𝑠 +  𝛾(|𝜏|)[ 𝑒𝑖𝑘𝑎𝑜 + 𝑒−𝑖𝑘𝑎𝑜] 

𝐸(𝑲) =  𝜖𝑠 + 2 𝛾(|𝜏|)cos (𝑘𝑎𝑜)                                   (44) 

Which shows that for an s orbital the energy varies with the k points as shown in 

(Figure 6) [27]. 

 

 

 

 

 

 

  

Generalizing equation 44 to three dimension is now an easy task, it just requires a little 

algebra with 𝜏 =
𝑎

√2
 the distance between two nearest neighbors in a face centered cube 

and 𝑘 → (𝑘𝑥, 𝑘𝑦, 𝑘𝑧). It will become:  

𝐸(𝑲) =  𝜖𝑠 + 4 𝛾(|𝜏|) (cos (
𝑘𝑥𝑎

2
) cos (

𝑘𝑦𝑎

2
) +

                            cos (
𝑘𝑦𝑎

2
) cos (

𝑘𝑧𝑎

2
) +cos (

𝑘𝑧𝑎

2
) cos (

𝑘𝑥𝑎

2
))                                          (45) 

Figure 6: The E(K) relation for an S orbital, K in the range [0,2𝜋𝑎𝑜] with a band 

width of 4γ 
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The bands of the different state orbitals of the electrons inside a crystal of an N atom 

will have N degenerate levels of each atomic state due to the interactions between the 

atoms and that is what creates the bands [28], [29].  

2.10 Density of States 

In solid state physics and condensed matter physics, the density of state of a 

system describes the number of states per interval of energy at each energy level that 

are available to be occupied by electrons. The task of calculating every possible carrier 

wave function as well as its corresponding energy is impractical. Fortunately, rather 

than solving the Schrödinger equation multiple times, we can instead find what is 

referred to as a density of states. This is when multiplied by an interval of energy, 

provides the total concentration of available states in that energy range. The Density 

of state is a very critical variable in the density functional theory. 

Namely, 

𝑁(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) =  𝜌(𝐸)𝑑𝐸                                                   (46)  

where N is the total concentration of available states in the energy range dE, and 𝜌(𝐸) 

is the desired density of state. We consider the case of a particle in a 3-D infinite 

potential box with V(x,y,z)= 0 inside the box as shown in figure 7. 

 

 

 

 

 

 

 

 

 

 

(0,L,0) 

 
(L,0,0) 

 

(0,0,L) 

 

(0,0,0) 

 

Figure 7: Electron in a box of length L.  With V(x,y,z) = 0 inside the box 

and ∞ outside 
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The wave function and the energies obtained using Schrödinger equation is;  

𝐸(3𝐷 − 𝑏𝑜𝑥) =
ħ2𝐾2

2𝑚
 ,                                                            (47) 

where 𝐾2 =
𝑛2𝜋2

𝐿2
  and n2 = nx

2 + ny
2 + nz

2   are positive integers and L is the radius of 

the box. 

Now, to find the density of state (DOS) we will work in the K-space where we will 

represent each quantum state as a dot as shown in figure 8. 

 

 

 

 

 

 

To calculate the volume of one quantum state, one needs to find the spacing between 

two quantum states (Kx+1  and Kx) as shown in figure 7. 

𝐾𝑥+1 − 𝐾𝑥 = (𝑛𝑥 + 1) (
𝜋

𝐿
) − 𝑛𝑥 (

𝜋

𝐿
) =

𝜋

𝐿
                                    (48) 

Using equation (48) to find the volume of one quantum state leads to: 

𝑉𝑄𝑆 = (
𝜋

𝐿
)

3

                                                                             (49) 

 Dividing the volume of spherical shell of radius dK as shown in figure 8. by the 

volume of one quantum state will give the total number of available states; 

Figure 8: Two-dimensional array of allowed quantum states represented by the 

dots 
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𝑁(𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ) = 2
4𝜋𝐾2𝑑𝐾

8 (
𝜋

𝐿
)

3                                                              (50) 

where the factor 2 takes into account the two spin states allowed for each quantum 

state, the factor 
1

8
 deals with taking the octant of the sphere since we consider only 

positive values for K, 4𝜋𝐾2𝑑𝐾 is the volume of the shell  as shown in figure 9 and 

(
𝜋

𝐿
)

3

  is the volume of the quantum state. 

 

 

 

 

 

 

 

Comparing equation (50) to equation (46), we get. 

𝜌(𝐾)𝑑𝐾 =  
𝐿3𝐾2𝑑𝐾

(𝜋)2                                                                     (51) 

K and E are related; since we have  

𝐸(3𝐷 − 𝑏𝑜𝑥) =
ħ2𝐾2

2𝑚
 

2𝑚𝐸

ħ2
= 𝐾2        𝑎𝑛𝑑           𝑑𝑘 = (

𝑚

ħ√2𝑚𝐸
) 𝑑𝐸                                   (52) 

Figure 9: Positive octant part of the sphere for Kx, Ky, Kz > 0 
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Equation (51) becomes: 

𝜌(𝐸)𝑑𝐸 =  
𝐿3

(𝜋)2
 (

2𝑚𝐸

ħ2
) (

𝑚

ħ√2𝑚𝐸
) 𝑑𝐸                                        (53) 

Arranging equation (53):  

𝜌(𝐸)𝑑𝐸 =
4𝜋𝐿3

ℎ3  (2𝑚)
3

2  √𝐸 𝑑𝐸                                                (54) 

where equation (54) gives the total number of quantum states in the region between E 

and dE . Dividing equation (54) by 𝐿3 we will get the density of quantum states per 

unit volume of the crystal as shown in equation (55). 

𝑔(𝐸)  =
4𝜋

ℎ3  (2𝑚)
3

2  √𝐸                                            (55) 

The case of a particle in a 3-D infinite potential box is the simplest example 

that is used to explain the density of states. Different potential systems would have 

different density of states and this proportionality relation between 𝑔(𝐸) and E would 

change as well [30], [31].  
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Chapter 3: Exchange Correlation Potential 

 

 The difficulty in solving the Kohn Sham equation lies in the complication of 

defining the exchange-correlation potential. Density functional theory, in practical 

applications, is simple and accurate when compared to the experimental results. DFT 

approximations have shown excellent results in solving the Kohn sham equation. In 

this chapter, we will list some of these approximations.  

3.1 The Generalized Gradient Approximation  

3.1.1 Introduction 

 So far, we referred to solving the Kohn Sham equation for N particles system 

by using the electron density as the main factor but can we do that in real systems. 

Using the density only was the approach used in local spin density approximation 

(LSD was the main approach to study the electronic structure for many years) which 

cannot be used in system of varying densities. John P. Perdew proposed a new 

approach in approximating the exchange-correlation potential by using the local 

density along with its gradient, so instead of using equation 56-a in the LSD 

approximation we can use equation 56-b: 

𝐸𝑥𝑐
𝐿𝑆𝐷[𝑛↓, 𝑛↑] =  ∫ 𝑑3𝒓 𝑛(𝒓) 𝜀𝑥𝑐(𝑛↓, 𝑛↑)                                 (56-a) 

where (𝒓) =  𝑛↓ + 𝑛↑ and  𝜀𝑥𝑐(𝑛↓, 𝑛↑) is the exchange correlation energy per particle. 

𝐸𝑥𝑐
𝐺𝐺𝐴[𝑛↓, 𝑛↑] =  ∫ 𝑑3𝒓 𝑓( 𝑛↓, 𝑛↑, ∇𝑛↓, ∇𝑛↑)                                  (56-b) 

From this point, researchers have been working to improve this approximation to be 

practical to solve a real N particles problem. The literature of density functional theory 

contains many approximations for the functional 𝑓( 𝑛↓, 𝑛↑, ∇𝑛↓, ∇𝑛↑), one of the most 
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important  approximation is Perdew-Wang 1991(PW91)[32] which we will be using 

for calculating the potential  via Vienna ab-initio simulation package, the other one is 

PBE that we will be using under GGA approximation within WIEN2k package. 

3.1.2 Theory  

 The form that the exchange correlation energy per particle always starts from 

the uniform electron gas. The exchange correlation energy can be written in terms of 

the exchange correlation hole 4 as shown in equation 57. 

𝐸𝑥𝑐 =  ∫ 𝑑𝜆
𝜆

0
∫ 𝑑3𝑟 ∫ 𝑑3𝑟′ 𝑛(𝒓)𝑛𝑥𝑐,𝜆(𝒓,𝒓′)

2|𝒓−𝒓′|
                                     (57) 

where 𝑛𝑥𝑐,𝜆(𝒓, 𝒓′) is the exchange-correlation hole at coupling strength 𝜆. 

 Using LSD, the exchange correlation hole is well approximated as using a 

uniform electron gas: 

𝑛𝑥𝑐,𝜆(𝒓, 𝒓) ≈  𝑛𝑥𝑐
𝑢𝑛𝑖𝑓

[𝑛↓, 𝑛↑;  |𝒓 − 𝒓′| = 0]                            (58) 

Since LSD works best locally, in the regions around the electrons vicinity [33]. The 

definition of the uniform electron gas density and exchange correlation energy are well 

established but researchers were interested to improve the notion of a gradient 

dependent functional 𝑓( 𝑛↓, 𝑛↑, ∇𝑛↓, ∇𝑛↑). 

 One major approximation of the gradient dependent functional uses the second 

order density gradient expansion of the exchange correlation hole, which was used by 

Perdew-Wang 1991. This approximation has a problem since it describes systems of 

slowly varying density, it does not describe the uniform electron gas as satisfactory as 

                                                 
4 Exchange-correlation hole is the region of space around an electron where the 

probability to find another electron approaches zero due to coulomb repulsion and 

Pauli Exclusion Principle. 
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the LSD does, and restrictions must be considered when dealing with semi local form 

of equation 56. PW91 has many other problems regarding the 

approximated𝑓( 𝑛↓, 𝑛↑, ∇𝑛↓, ∇𝑛↑), the derivation of the functional is very tedious, 

complicated and over parameterized. In 1996, Perdew, Burke and Ernzerhof (PBE) 

developed new approach to find the exchange correlation energy. They started with 

GGA for correlation energy only:  

𝐸𝐶
𝐺𝐺𝐴[𝑛↓, 𝑛↑] =  ∫ 𝑑3𝑟 𝑛[𝜖𝐶

𝑢𝑛𝑖𝑓
(𝑟𝑠 , 𝜉) + 𝐻(𝑟𝑠 , 𝜉 , 𝑡)]                   (59) 

where 𝑟𝑠 is the local Seitz radius5 (𝑟𝑠 = (
3

4𝜋𝑛
)

1
3⁄

), 𝜉 =
𝑛↑−𝑛↓

𝑛
  is the relative spin 

polarization, and 𝑡 =
|∇𝑛|

2∅𝑘𝑠𝑛
 is a dimensionless density gradient. In the definition of the 

parameter𝑡, ∅ (𝜉) =
[(1+𝜉)

2
3⁄ +(1−𝜉)

2
3 ⁄ ]

2
 is a spin scaling factor, 𝑘𝑠 = √4𝑘𝐹 𝜋𝑎𝑜⁄  is the 

Thomas-Fermi screening wave number and 𝑎𝑜 is Bohr radius. 

 The construction of the H contribution is done under several assumptions. 

1. In the limit 𝑡 → 0 (the slowly varying limit), 𝐻 → (𝑒2 𝑎𝑜⁄ )𝛽∅3𝑡2 where 𝛽 =

0.066725. This assumption was studied by SHANG-kENG MA et al. by 

subtracting the Hartree-Fock energy from the exact energy [34].  

2. In the limit 𝑡 → ∞ (the rapidly varying limit), 𝐻 →  −𝜖𝐶
𝑢𝑛𝑖𝑓

 where the 

correlation term (equation 59) vanishes and the exchange density dominates. 

These two assumptions (mainly) can be satisfied by the following ansatz: 

                                                 
5 Local Seitz radius or Wigner- Seitz radius, the radius of the sphere with a volume 

equivalent to the mean volume per atom in the solid. 
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𝐻 = (𝑒2 𝑎𝑜)𝛾∅3×ln {1 +
𝛽

𝛾
𝑡2[

1+𝐴𝑡2

1+𝐴𝑡2+𝐴2𝑡4
]⁄ }                                     (60) 

where =
𝛽

𝛾
[exp {−

𝜖𝐶
𝑢𝑛𝑖𝑓

𝛾∅3𝑒2 𝑎𝑜⁄
} − 1]

−1

 . 

Under the uniform high density scaling (𝑡 → 0) 𝐸𝐶
𝐺𝐺𝐴[𝑛↓, 𝑛↑] becomes: 

𝐸𝐶
𝐺𝐺𝐴 =  −

𝑒2

𝑎𝑜
∫ 𝑑3𝑟 𝑛 𝛾∅3 ×ln [1 + 

1

𝜒𝑠2 ∅2+(𝜒𝑠2 ∅2)⁄
2

⁄
]                   (61) 

where 𝑠 = |∇𝑛|/2𝑘𝐹𝑛. For 𝑠 = 0 we recover the uniform gas LSD and 𝐸𝐶
𝐺𝐺𝐴 reduces 

to -∞. 

 On the other hand, the exchange energy is expressed as: 

𝐸𝑋
𝐺𝐺𝐴 =  ∫ 𝑑3𝑟 𝑛 𝜖𝑥

𝑢𝑛𝑖𝑓
𝐹𝑋(𝑠)                                        (62) 

Such that we recover the uniform gas limit 𝐹𝑋(0) = 1. The exact exchange energy 

follows the spin scaling relationship: 

𝐸𝑋[𝑛↑, 𝑛↓] =
𝐸𝑋[2𝑛↑]+𝐸𝑋[2𝑛↓] 

2
                                        (63) 

For a small density variation, the LSD does better job than the gradient approximation 

and to recover the LSD we must have for 𝐹𝑋(𝑠) → 1 + 𝜇𝑠2 as s approaches zero 

and𝐹𝑋𝐶(𝑟𝑠, 𝜉, 𝑠) → 𝐹𝑋(𝑟𝑠 → 0, 𝜉). 

 PBE also discussed the importance of the Lieb-Osford bound: 

𝐸𝑋[𝑛↑, 𝑛↓] ≥ 𝐸𝑋𝐶[𝑛↑, 𝑛↓]                                       (64) 

They assumed 𝐹𝑋(𝑠) = 1 + 𝜿 −
𝜅

(1+
𝜇𝑠2

𝜅
)
 with 𝜅=0.804. PBE approximation shows very 

satisfying results compared to the PW91, as shown in table 1 they both give same 
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results however PBE is much easier to prove. PBE gives the researchers the chance of 

improving the GGA by adjusting the value of κ, which was done in 1998 by Zhang et 

al [35]. Where they used 𝜅= 1.245 and they compared their results with the original 

PBE as shown in (table 1) (revPBE represenet Zhang et al work) and the adjustment 

showed better results. 

Table 1: Atomization energy of some molecules in Kcal/mol ( 1eV = 23.06 

Kcal/mol) using different approximations [35], [36] 

 

Molecult 

Molecular atomization energy (kcal/mol) 

PW91 PBE revPBE Exact 

H2 105 104.5 105.3 109.2 

CH4 421 419.2 410.9 419.3 

NH3 303 301.0 293.4 297.4 

OH 101 109.5 106.3 106.4 

H2O 235 233.8 227.2 232.2 

HF 143 141.7 137.8 140.8 

Li2 20 19.7 19 24.4 

N2 242 241 231.8 228.6 

O2 143 141.7 132.6 120.5 

Mean absolute error 8 8.1 4.9  
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Later from the same year Perdew, Burke and Ernzerhof replied to the adjustment done 

by Zhang et al. and they justified that the improvement of the parameter 𝜅 will improve 

the energy calculations only but no other factors such as the bond length (table 2). 

They suggested that users may employ LSD as a simple and of wide applicability 

density functional and at higher level use GGA (U =0.804) since their approximation 

is valid for both Quantum chemistry and condensed matter physics. 

Table 2: Bond length in Bohr for some molecules using different approximations 

[37] 

Molecule LSD PBE revPBE Experimental 

H2 1.447 1.418 1.413 1.401 

CH4 2.074 2.071 2.073 2.052 

N2 2.071 2.084 2.089 2.072 

NO 2.169 2.189 2.196 2.175 

O2 2.279 2.306 2.313 2.281 

F2 2.618 2.672 2.685 2.678 

 

3.2 Modified Becke-Johnson Scheme  

3.2.1 Introduction 

Despite the success of the local density approximation and the generalized 

gradient approximation discussed earlier, the problem with these two approximations 

is that they neglected the derivative discontinuity of the exchange correlation energy. 
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GGA set all the parameters other than those that appear in the LDA to be constant. 

Becke-Johnson potential is a semi-local method, which leads the KS states with results 

that are considered accurate compared to the experimental results. 

The work done on this approximation started in 1983, A.D. Becke examined 

the short range variation of the Hartree Fock exchange density by performing taylor 

expansion[38]. In 1989, A.D.Becke and M.R.Roussel introduced a new exchange hole 

model (locally) 𝑣𝑥,𝜎
𝐵𝑅, where: 

𝑣𝑥,𝜎
𝐵𝑅(𝒓) =  

−(1−𝑒−𝑥−
1

2
𝑥𝑒−𝑥)

𝑏𝜎(𝒓)
                                               (65) 

Where 𝑥 = 𝑎𝑏𝜎 for an arbitrary a , 𝑏𝜎(𝒓) = [
𝑥𝜎

3𝑒−𝑥𝜎

8𝜋𝜌𝜎
]

𝟏

𝟑
. Which was the starting 

point that the scientists tried to improve [39]. 

3.2.2 Theory 

The Hartree Fock equation may be expressed as [40]: 

 

−
1

2
∆𝜓𝑖𝜎 + [𝑽𝑛𝑢𝑐 + 𝑽𝑒𝑙 + 𝑽𝑋𝜎

(𝑖)
]𝜓𝑖𝜎 =  𝜖𝑖𝜎𝜓𝑖𝜎                                (66) 

 

where  𝑽𝑛𝑢𝑐 is the nuclear attraction potential, 𝑽𝑒𝑙(𝒓1) = ∑ ∫
𝜌𝜎

𝑟12
 𝑑3𝒓2𝜎  is coulomb 

repulsion interaction and the exchange potential 𝑽𝑋𝜎
(𝑖)

 is written as; 

 

  𝑽𝑋𝜎
(𝑖)

(𝒓1) =  −
1

𝜓𝑖𝜎
∗ (𝒓1)𝜓𝑖𝜎(𝒓1)

 × ∑
∫ 𝜓𝑖𝜎

∗ (𝒓1)𝜓𝑗𝜎  
∗ (𝒓2)𝜓𝑗𝜎(𝒓1)𝜓𝑖𝜎(𝒓2)

𝑟12
𝑗                 (67) 
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 The first attempt to simplify equation (67) was to replace the orbital 𝜓𝑖𝜎(𝑟1) 

dependent by the density 𝜌𝑖𝜎 =  |𝜓𝑖𝜎|2 which was introduced by Slater [41]. 

Equation (67) may be written as: 

𝑽𝑋𝜎
(𝑆𝑙𝑎𝑡𝑡𝑒𝑟)

(𝒓1) =  −
1

𝜌𝜎(𝒓𝟏)
 × ∑ ∫  

𝜓𝑖𝜎
∗ (𝒓1)𝜓𝑗𝜎  

∗ (𝒓𝟐)𝜓𝑗𝜎(𝒓𝟏)𝜓𝑖𝜎(𝒓𝟐)

𝑟12
𝑗                    (68) 

Another term can be defined now which is the exchange charge or the 

exchange hole: 

𝜌𝑋𝜎(𝒓1, 𝒓2) =  
1

𝜌𝜎(𝒓𝟏)
|∑ 𝜓𝑖𝜎

∗ (𝒓1)𝜓𝑖𝜎(𝒓2)𝑖 |2                            (69) 

Therefore,  𝑽𝑋𝜎
(𝑆𝑙𝑎𝑡𝑡𝑒𝑟)

 can be: 

𝑽𝑋𝜎
(𝑆𝑙𝑎𝑡𝑡𝑒𝑟)(𝒓1) =  − ∫

𝜌𝑋𝜎(𝒓1,𝒓2)

𝒓12
𝑑3𝒓𝟐                                    (70) 

 

The task now is to find a unique local potential that minimizes the total energy 

of the slater determinant proposed by Hartree Fock (this is known as the optimized 

effective potential). In 2006, A.D. Becke and E.R. Johnson found an approximation of 

the exchange potential that depends on the total density only. They found that the 

exchange potential is expressed as: 

𝑽𝑋
𝐵𝐽(𝒓) =  𝑽𝑋

𝐵𝑅(𝒓) +
1

𝜋
√

5

6
 √

𝑡𝜎(𝒓)

𝜌𝜎(𝒓)
                                                (71) 

where 𝑽𝑋
𝐵𝑅(𝒓) is the Becke- Roussel potential defined earlier, 𝑡𝜎(𝒓) =

𝟏

𝟐
∑ ∇𝜓𝑖,𝜎

∗𝑁
𝑖=1 . ∇𝜓𝑖,𝜎  and 𝜌𝜎(𝒓) =  ∑ |𝜓𝑖,𝜎|𝑁

𝑖=1

2
 is the electron density [40]. 

 In 2009, Tran and Blaha [42] proposed a modification on equation (71), as 

shown in equation (72). This was more accurate as shown in (table 3) when calculating 

the band gap of different solids.  
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𝑽𝑋𝜎
𝑀𝐵𝐽(𝒓) =  𝑐𝑽𝑋𝜎

𝐵𝑅(𝒓) + (3𝑐 − 2)
1

𝜋
√

5

12
 √

2𝑡𝜎(𝒓)

𝜌𝜎(𝒓)
                                   (72) 

where: 

 𝑐 =  𝛼 + 𝛽(
1

𝑉𝑐𝑒𝑙𝑙
 ∫

|∇𝜌(𝒓′)|

𝜌(𝒓′)
𝑑3𝒓)

𝑐𝑒𝑙𝑙

1

2
                                    (73) 

 𝑉𝑐𝑒𝑙𝑙 is the unit cell volume. α and β are two free parameters which were found 

according to experimental results, fitting to be -0.012 and 1.023 respectively while the 

band gap increases proportionally  to the value of c [39]. 

 

Table 3: The value of the band gaps for several solids using different approximations 

along with the value of c calculated using equation (73) 

 

Solid PBE MBJ Experiment C 

HfO2 4.09 5.83 5.7 1.44 

ZnS 2.10 3.68 3.91 1.28 

ZnO 0.82 2.71 3.44 1.42 

SiO2 6.01 8.89 10.30 1.47 

SrTiO3 1.88 2.7 3.25 1.41 

TiO2 1.89 2.57 3.3 1.44 

ZrO2 3.66 4.73 5.5 1.42 

Cu2O 0.53 0.82 2.17 1.32 

 

Table 3 shows that MBJ improves the calculated band gap except for Cu2O 

case where the band gap is underestimated. The value of c may affect the calculated 

band gap and it may be adjusted be hand to reach an optimized value that results a 

band gap that meets the experiment but that means equation (73) is not general enough, 
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though still the value obtained from equation (73) is not too far from the experimental 

values. 

 

3.3 LDA+U 

 One major failure of the density functional theory and its exchange- correlation 

approximation is represented in the Mott insulators calculations. Other approximations 

were necessary to fit real problems of such materials. 

In the Mott insulators systems, the repulsion force between the electrons is 

large enough to create a gap and change the conductivity features of the system as 

shown in figure 10. When the electron coulomb repulsion U is large enough (larger 

than the overlap W), the electrons are forced to localize on atomic like orbitals (Mott 

localization).   
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 This phenomenon requires a full knowledge of the multi determinant nature of 

the electron’s wave function not the single determinant proposed by Hartree-Fock. 

Most of the known approximations (such as LDA and GGA) fail to represent the 

insulating nature of these systems. The main problem with analyzing these systems 

using the DFT approximation lies in the definition of the exchange – correlation 

potential, which aims to delocalize the electrons by the incomplete cancellation of the 

self- interaction between electrons in the coulomb integrals [43]. 

 One way to solve the problem of a strongly correlated materials (such as the 

simple transition metal oxides) is by using the Hubbard model. This model strongly 

depends on the localized orbitals definition and determining the interaction 

parameters. The main assumption is that electrons of d and f orbitals, which are 

strongly correlated, are subject to a quasi-atomic interaction. Anisimov et al. defined 

the coulomb energy required to place two electrons on same site U and they corrected 

the known functional by adding a term which is called the Hubbard-like 

interaction𝐸ℎ𝑢𝑏: 

𝐸𝐿𝐷𝐴+𝑈[𝑛(𝒓)] =  𝐸𝐿𝐷𝐴[𝑛(𝒓)] + 𝐸𝐻𝑢𝑏[{𝑛𝑚
𝐼𝜎}] −  𝐸𝐷𝐶[{𝑛𝑚

𝐼𝜎}]                 (74) 

where  𝑛(𝒓) is the electronic density, 𝑛𝑚
𝐼𝜎 are the atomic orbital occupations for the 

atom experiencing the Hubbard term and the last term is used to avoid double counting 

of the interaction in both 𝐸𝐿𝐷𝐴 and 𝐸𝐻𝑢𝑏. On the other hand, they defined the Hubbard 

term with respect to the electron – electron repulsion potential as shown in equation 

(75): 
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𝐸𝐻𝑢𝑏[{𝑛𝑚𝑚′
𝐼 }] =

1

2
∑ {⟨𝑚, 𝑚′′|𝑽𝒆𝒆|𝑚′𝑚′′′⟩

{𝑚},𝜎,𝐼

𝑛𝑚𝑚′
𝐼𝜎 𝑛𝑚′′𝑚′′′ 

𝐼−𝜎  

+ (⟨𝑚, 𝑚′′|𝑽𝒆𝒆|𝑚′𝑚′′′⟩ − ⟨𝑚, 𝑚′′|𝑽𝒆𝒆|𝑚′′′𝑚′⟩)𝑛𝑚𝑚′
𝐼𝜎 𝑛𝑚′′𝑚′′′ 

𝐼𝜎                 (75) 

With:  

⟨𝑚, 𝑚′′|𝑽𝒆𝒆|𝑚′𝑚′′′⟩ =  ∑
4𝜋

2𝑘+1
𝐹𝐾 ∑ ⟨𝑙𝑚|𝑌𝑘𝑞|𝑙𝑚′⟩⟨𝑙𝑚′′|𝑌𝑘𝑞

∗ |𝑙𝑚′′′⟩𝑘
𝑞=−𝑘

2𝑙
𝑘=0           (76) 

where 𝑙 is the angular momentum, 𝐹𝐾 are the radial slater integrals which are 

considered as the model parameters (𝑘 = 0,1&2  corresponds to the d orbital, while 

k= 6 is necessary when studying the f orbital. These parameters were redefined with 

respect to the coulomb energy U and the exchange interaction J as follows: 

𝑈 =
1

(2𝑙+1)2
∑ ⟨𝑚, 𝑚′|𝑽𝒆𝒆|𝑚, 𝑚′⟩ =  𝐹0

𝑚,𝑚′                                   (77) 

𝐽 =  
1

2𝑙(2𝑙+1)
∑ ⟨𝑚, 𝑚′|𝑽𝒆𝒆|𝑚′, 𝑚⟩ =  

𝐹2+𝐹4

14𝑚≠𝑚′,𝑚′                        (78) 

So that the double counting term will be expressed with respect to U and J:  

𝐸𝐷𝐶[{𝑛𝑚
𝐼𝜎}] =  ∑

𝑈

2
𝑛𝐼(𝑛𝐼 − 1) − ∑

𝐽

2
[𝑛𝐼↑(𝐼𝐼 𝑛𝐼↑ − 1) + 𝑛𝐼↓(𝑛𝐼↓ − 1)]             (79) 

Anisimov et al. proposed that the linearized muffin tin  orbitals (LMTO’s)6 

calculations can be performed on super-cells where the occupation of the localized 

                                                 
6 LMTO’s is an approximation used in LAPW where for LMTO’s the potential has a 

spherical symmetric feature inside the muffin tin and constant in the interstitial 

region.  
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orbitals of one atom are restricted and limited as a start to run the calculations by 

dealing with atomic like problem [44]. 

In 1991, Anisimov et al. ran some calculations and compared the results of 

LSD with the results of LSD+U for the 3-d transition metal monoxides as shown in 

table 4 which shows clearly how the insulating feature using LSD+U.  

Table 4: Band gap calculations for 3-d transition metal monoxides [14] 

 

Material ELSD ELSD+U Eexp 

CaCuO2 0 2.1 1.5 

CuO 0 1.9 1.4 

NiO 0.2 3.1 4.3 

CoO 0 3.2 2.4 

FeO 0 3.2 2.4 

MnO 0.8 3.5 3.6 

 

3.4 Hybrid Functional  

The hybrid functional approach is a very successful in describing the molecular 

properties of large molecules and solids (especially metals). It depends on mixing part 

of the exact H-F exchange potential with the exchange- correlation potential from other 

sources (approximations). One approach was derived by Heyd and Scuseria in 2003, 

they developed a hybrid density functional based on a screened coulomb potential. 
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They split the coulomb operator into long range and short range (to avoid the 

divergence of the coulomb potential
1

𝑟
|

𝑟=0
) using the error function:  

1

𝑟
=  

𝑒𝑟𝑓𝑐(𝜔𝑟)

𝑟
+

erf (𝜔𝑟)

𝑟
                                                  (80) 

where  
𝑒𝑟𝑓𝑐(𝜔𝑟)

𝑟
 indicates the short-range component and  

erf (𝜔𝑟)

𝑟
 for the long-

range component. 𝑒𝑟𝑓𝑐(𝜔𝑟) = 1 −  𝑒𝑟𝑓(𝜔𝑟) and 𝜔 is an adjustable parameter. For 

𝜔 = 0 the long-range component vanishes and the short-range component is 

equivalent to 
1

𝑟
 (the coulomb potential). Figure 11 [45] shows how this approximation 

( with 𝜔 = 0) let the exchange correlation energy decays exponentially with distance 

from the center of cell ( just like the case for insulators where the exchange correlation 

potential decays exponentially as a function of the band gap [45])  

 

 

 

 

  

Figure 11: The decay properties of the screened coulomb potential (SR-HF) and 

the Hartree Fock potential. SR-HF decays exponentially with distance from center 

cell for carbon nanotube 
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They used the hybrid functional results obtained by Perdew, Ernzerhof and 

Burke who used their original GGA approximation PBE to determine a hybrid 

exchange-correlation energy 𝐸𝑋𝐶
𝑃𝐵𝐸0[46]: 

 

𝐸𝑋𝐶
𝑃𝐵𝐸0 = 𝑎𝐸𝑋

𝐻𝐹 + (1 − 𝑎)𝐸𝑋
𝑃𝐵𝐸 + 𝐸𝐶

𝑃𝐵𝐸                        (81) 

Where 𝑎 =
1

4
 using perturbation theory.  

Using the definition in equation (80) (splitting each term of the exchange 

potential in equation (81) to short range and long range) equation 81 becomes: 

 

𝐸𝑋𝐶
𝜔𝑃𝐵𝐸ℎ = 𝑎𝐸𝑋

𝐻𝐹,𝑆𝑅(𝜔) + (1 − 𝑎)𝐸𝑋
𝑃𝐵𝐸,𝑆𝑅(𝜔) + 𝐸𝑋

𝑃𝐵𝐸,𝐿𝑅(𝜔) + 𝐸𝐶
𝑃𝐵𝐸     (82) 

 Numerical calculations shows that the H-F and the PBE long range terms are 

very small for realistic values of 𝜔, so they cancelled [45]. 

 In 2004, Heyd et al. assessed the Heyd-Scuseria-Ernzerhof (HSE) screened 

coulomb hybrid functional and calculated the band gap for several semiconductors and 

compared it with other approximations as shown in table  [47]. 

Table 5: Band gaps in [eV] for four semiconductors with three different numerical 

approximations and experimental results 

 

Material LDA PBE HSE Experiment 

C 4.13 4.1 4.16 5.48 

Si 0.52 0.71 0.78 1.17 

BN 4.38 4.45 4.47 6.4 

BP 1.23 1.35 1.41 2.4 

MAEa 1.3 1.32 1.27  

 a: means absolute error 

 

Figure 25 a) the crystal structure of Monolayer MoS2, the hexagonal lattice is 

cleara:mean absolute error 
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 Chapter 4: Methodology 

 

During the past, decades computer simulations based on density functional 

theory and other quantum mechanical theories improved the material study field. The 

development of such packages that manage to solve the Kohn Sham equation with high 

efficiency and accuracy is not an easy task. In 1998, Walter Kohn shared the Nobel 

Prize for chemistry, in recognition of his work in developing DFT, with John Pople 

for developing the GAUSSIAN program package. The GAUSSIAN package is very 

important to perform accurate DFT calculations for complex molecular systems until 

today and the work on developing an equivalent package for solid state and material 

science is an active field. 

 In this work, we have used the density functional theory implemented in 

WIEN2k package (Version 14.2) and the Vienna ab-initio simulation package VASP 

(Version 5.3).  

4.1 WIEN2k Package 

 WIEN2k is a Fortran program that uses the full potential linearized augmented 

plane wave to solve the Kohn-Sham equation and allows you to study various 

properties of the material under study such as density of state, electron density, band 

structure, optical properties, etc. Calculations with WIEN2k takes several steps 

starting with building your structure, then initializing the calculations to guess an 

initial density of electrons using a specific exchange correlation approximation, after 

that we run the self-consistent cycle until we reach convergence so that at the end we 

may run the desired study. 
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 In this work, we have used the parameters in table 6 to build our structure as 

shown in figure 9. The geometric optimization was performed with the generalized 

gradient approximation (PBEsol-GGA) developed by Perdew, Burke and Ernzerhof 

in 1998  [35], [36]. 

Using equation (83) for the volume of the unit cell, the optimized lattice 

constants were found.  

𝑉 = 𝑎2𝑐 𝑠𝑖𝑛60 

𝑉 = 𝑎𝑟 𝑠𝑖𝑛60                                                    (83) 

where =
𝑐

𝑎
 . 

Table 6: The parameters used to build the molybdenum disulfide structure 

 

Parameter Value 

Title MoS2 

Space group P63/mmc, No 194 (2H) 

Lattice constants a=b=3.16 Å ,  c=12.29Å 

Angles Α=β=90o          γ = 120o 

Position of atoms 

Mo: x= 32   y= 31       z= 41  

S: x= 31      y= 32      

z=0.1215 
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After rebuilding the structure with the optimized lattice constants, the exchange 

correlation function we calculated using different approximations including the 

generalized gradient approximation (PBEsol-GGA, Perdew08), The modified Becke-

Johnson, GGA+U and the onsite Hybrid functional to test their performance.  After 

running the self-consistent cycle for each approximation, the density of state and the 

band structure were plotted and calculated for the following structures: 

1. Bulk Molybdenum disulfide [MoS2] (Figure 12.b). 

2. Monolayer Molybdenum disulfide [ ML_MoS2] (Figure 12.a). 

3. MoS2 with certain impurities including H, N and B (Figure13.a.b.c 

respectively). 

4. Study the effect of pressure on the band gap.  

  

a) 

 

a) 

 

a) 

 

a) 

 

a) 

 

a) 

 

a) 

 

a) 

b) 

 

b) 

 

b) 

 

b) 

 

b) 

 

b) 

 

b) 

 

b) 

Figure 12: The crystal structure of a) Monolayer MoS2 b) Bulk MoS2, the 

hexagonal lattice is clear 



52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 VASP 

VASP is a computer simulation for electronic structure calculation in the 

atomic scale based on LAPW and pseudo potentials (projector augmented wave 

method PAW)7. It approximates the solution of the Schrödinger equation within 

DFT by iterative matrix diagonalization technique. VASP is a very efficient 

software package for materials simulations, it was used to treat a system of 2744 

                                                 
7 PAW is a technique used in ab initio electronic structure to generalize LAPW and 

the pseudopotential (effective potential). 
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Figure 13 Interstitial substitution crystallography a) Hydrogen atom substitution 

in Sulfur vacancy b) Nitrogen substitution in Sulfur vacancy c) Boron substitution 

in Sulfur vacancy 
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(which is an extremely large supercell) atoms for simulating C defect in group 3 

nitrides [48]. 

The most useful feature of this package is that it allows answering questions 

that are not applicable using the laboratory experiments. One major example is the 

study of the magnetic ordering in a nanostructured material (Nano-structured 

material has different magnetic properties than their bulk) sine the information on 

the local magnetic moment cannot be achieved experimentally [49]. 

 There are many exchange-correlations functional that are implemented 

in VASP such as GGA, LDA+U, HF, meta-GGAs, etc. In this thesis, we will be 

using the first three approximations to perform our calculations. It requires four 

input files to start the calculations, which are: 

1) INCAR, it is the most important file during the calculations and it contains 

many parameters that are adjusted to meet the study objectives either for 

calculating the band structure, DOS or other features (usually kept as 

default for the complexity of this file). 

2) POTCAR, this file contains the pseudo potential of each atom in the 

structure. In this study, pseudo potential is calculated using 

potPAW_PW91). 

3) KPOINT, it contains the K points coordination and the mesh size 

(Monkhorst-Pack MP). I used 5x5x1 and 10x10x2 for geometry 

optimization and DOS calculations respectively. 

4) POSCAR, this file contains the geometry and the atomic positions; I used 

Materials studio program to create the POSCAR files for my structure 

shown in figures12 and 14. 
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Before running any calculations, We calculated the equilibrium (optimized) 

lattice constants just like I did using WIEN2k, the optimized K points (mesh size) and 

we used the default cutoff energy of 400 [50].  

 We used VASP to study the electronic properties of Bulk MoS2, Mololayer 

MoS2 and MoS2-WSe2 heterostructure figure 14. 

 

  

Figure 14: MoS2 - WSe2 Heterostructure 
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Chapter 5: Results and Discussion 

 

5.1 Optimization 

The first step of this study is to find the equilibrium optimized lattice constants 

of our structure to build our cells (in both Wien2k and VASP). Using the experimental 

values of the lattice constants (a and c) [51], energy versus c/a  was plotted to find the 

optimum value that corresponds to the minimum energy for WIEN2k calculations and 

energy versus volume was plotted to find the optimized volume for the VASP 

calculations (Figure 15). The constants were calculated using equation 83 as shown in 

table 6.  
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b) 

Figure 15: Optimization a) Energy in Rydberg [Ry] versus c/a % using WIEN2k 

to find the optimized lattice constants b) Energy versus volume using VASP to 

find the optimized volume and lattice constants 
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Table 7: The lattice parameters (a,b and c) using WIEN2k and VASP with the mean 

absolute error 

Parameter  WIEN2k VASP Experiment [52]. 

a=b 3.07 (Å) 3.178(Å) 3.16(Å) 

C 13.317(Å) 12.62(Å) 12.294(Å) 

c/a 4.338 3.971 3.890 

Vo 108.696 (Å3) 110.381(Å3) 106.316(Å3) 

MAE 0.985 1.1225 - 

 

  

 

An extra optimization using VASP have been used to find the optimum mesh 

size as shown in figure 16. The saturated mesh size to be 5×5×1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

We used the default cut off energy, which was 400 eV. Using these optimized 

parameters, we rebuilt our structures and used the new files to run our calculations in 

sections 5.2 – 5.4.  

  

Figure 16: Energy versus K-mesh points to find the optimized k-mesh. K 

mesh saturates at 3×3×1 
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5.2 Electronic Structure Calculations 

 Electronic structure calculations were performed by the two simulations 

(WIEN2k and VASP) using  different approximations (GGA, MBJ, LDA +U and On-

site Hybrid functional. 

5.2.1 Bulk MoS2 Calculations 

 The electron density along the plane (110) is displayed in Figure 17, which 

shows that the electrons are more concentrated along the molybdenum atom than the 

Sulfur atom.  

  

Figure 17:  Electron Density around MoS2 along the plane (110). The 

density of the lines indicates the electrons density 

Mo 

S S 

S 

S 

S 

Mo 

file:///C:/Users/Administrator/Desktop/THESIS_28_MAR.docx%23_Toc478561982
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Four approximations were used to find the band gap of the bulk MoS2 which 

are GGA, LDA+U, on-site hybrid functional and MBJ implemented in the WIEN2k 

package as shown in Figure 18 and 19. However, only three approximations were used 

(GGA, LDA+U and onsite hybrid functional) implemented in VASP as shown in 

figure 20.  

The band gap of the bulk MoS2 shows a clear indirect band gap semiconductor 

( 𝛤 → 𝐾). The results are close to the experimental values obtained by  Mak.K.F  et al 

[53] where they found that the bulk MoS2 has an indirect band gap of 1.23 eV. While 

MBJ approximation shows the most accurate results in WIEN2k package, the on-site 

hybrid functional shows the most accurate result in VASP package as shown in table 

8. The failure of GGA to produce an accurate result was predicted because, as we 

mentioned earlier, GGA fails with TMID’s due to Mott localization and it 

underestimates the band gap.  

VASP produces more accurate results than the WIEN2k package does 

comparing the percentage differences with respect to the experimental value with 

12.03 % more accuracy in the GGA approximation. 
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Table 8: The band gap of the bulk MoS2 using different approximations implemented 

in both VASP and WIEN2k package 

 

Approximation WIEN2K VASP 

% difference 

(WIEN2K) 

% difference 

(VASP) 

GGA 0.898 1.015 31.99 19.96 

LDA+U 0.999 1.024 21.52 19.1 

On-site Hybrid 

functional 

0.986 1.501 22.8 18.98 

MBJ 1.176 - 5.29 - 
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Figure 18: The band structure (left) and DOS (right) of bulk MoS2 using a) GGA 

b) MBJ  
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Figure 19: The band structure (left) and DOS (right) of bulk MoS2 using a) 

LDA+U  b) On Site Hybrid functional  
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Figure 20: The band structure (left) and DOS (right) of bulk MoS2 using a) GGA 

b) LDA+U c) on-site hybrid functional implemented in VASP which shows an 

indirect band gap 
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5.2.2 Monolayer MoS2 Calculations 

 We used monolayer MoS2 super-cell of size 2×2×1 to run my calculations with 

lateral size of 6.14x6.14 and 6.36x6.36 for WIEN2k and VASP respectively (4 Mo 

atoms and 8 S atoms). I found that the band gap changes from an indirect band gap 

(the case of the bulk) to a direct band gap and it widens. Figure 21 shows the band 

structure obtained by WIEN2K using different approximations while figure 22 shows 

the VASP results. VASP shows less percentage difference compared to the WIEN2k 

results where the difference was approximately 5% using the VASP simulation with 

respect to the experimental value of 1.8 eV[53]. 

 Fermi level was also calculated using VASP simulation. Comparing Fermi 

levels of the monolayer MoS2 with the bulk, a major reduction in the highest occupied 

state occurs (from 6.19 to 1.709 eV using GGA) [54]. 

 

Table 9: Band gap and fermi energy level for monolayer MoS2 using different 

approximations 

  

Approximation WIEN2k VASP % difference 

(WIEN2k) 

% difference 

(VASP)  

GGA 1.325 1.7096 30.4% 5.19% 

LDA+U 1.2903 1.711 33% 5.07% 

On-site hybrid 

functional. 

1.31 - 31.51% - 
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Figure 21: The band structure (left) and DOS (right) of monolayer MoS2 using a) 

GGA b) LDA+U c) onsite Hybrid functional implemented in WIEN2k, which shows 

a direct band gap 
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Figure 22: The band structure (left) and DOS (right) of monolayer MoS2 

using a) GGA b) LDA+U implemented in VASP, which shows a direct band 

gap 
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5.2.3 Partial Density of States 
 

 

Plotting the partial density of states for the valence orbitals of the molybdenum 

and the sulfur atoms (Figure 23) shows the contribution of each orbital in the density 

of states. Equations 84 and 85 shows the orbitals of the valence band for the atoms. As 

predicted, the d orbital has the most contribution in the density of states and the s 

orbital is barely showing. Comparing the different approximations there is a band 

missing in the GGA+U approximation (beyond 5 [eV]) and is showing clearly in the 

other approximations which may be due to the localization and the repulsion from 

coulomb interaction (U) of the LDA+U approximation.  

Figure 23: Partial density of states for the molybdenum atom and its s and d 

orbitals using a) GGA08 b) GGA+U c) onsite hybrid functional d) MBJ 
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 The partial density of states for the sulfur atom are shown in figure 24. The 

contribution of the sulfur atom is less than the contribution of the molybdenum atom 

but the same feature appears in the GGA+U with the missing band beyond 5 eV. For 

the sulfur atom, the p orbital contributes more than the s orbital. For both atoms, GGA 

and MBJ shows more states than does the other two approximations and it may be due 

to the delocalization of inherent these approximations. 

[𝑀𝑜] → [𝐾𝑟]4𝑑55𝑆1                                                       (84) 

[ 𝑆 ] → [𝑁𝑒]3𝑆23𝑝4                                                       (85) 

 

 

 

  

Figure 24: Partial density of states for the Sulfur atom and its s and p orbitals 

using a) GGA08 b) GGA+U c) onsite hybrid functional d) MBJ 
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5.3 Effect of Interstitial Substitution and Heterostructure on the Electronic 

Properties 

 Previous studies have shown that adsorption of non-metal (insulators and 

semiconductors) material on a small system (dimensionally small such as the 2D 

MoS2) will induce a magnetic moment. In 2010, He and his coworkers calculated the 

magnetic moment for several non-metal atoms adsorbed monolayer MoS2. They found 

that the magnetic moment of H-, B-, N- adsorbed Monolayer MoS2 are 1.0, 1.0,1.0 per 

4x4 super cell respectively. In this study, I will investigate the effect of these dopants 

on the band gap of Monolayer MoS2 will be investigated. The electronic configuration 

of the Hydrogen, Boron and Nitrogen are shown in equation (86). 

[𝐻] → 1𝑆1 ,            [𝐵] → [𝐻𝑒]2𝑆22𝑝1 ,               [𝑁] → 1𝑆22𝑆22𝑝3          (86) 

 As shown in figures 25, 26 and 27, the substitution of boron in sulfur vacancy 

(done initially using no spin polarization within GGA), The bands retain their band 

gap but other bands were created inside the gap itself which is consistent with the 

previous results of Yue. et al. and He. et al.[50], [55]. The substitution of boron caused 

a transition to the metallic phase, as Yue proposed, this may give a chance for spin 

separations or filtering, so a second calculation was done taking the spin polarization 

into account and performing the LDA+U approximation for the exchange - correlation 

potential. The results show that for the up spin channel a direct band gap is detected 

just like Yue’s results but with an extra band which is due to the Hubbard potential 

and the repulsion coulomb interaction that is absent in GGA used by Yue.  However, 

the down spin channel shows bands in the middle of the gap shifting the semiconductor 

behavior to a metallic behavior.  
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The Nitrogen substitution in a Sulfur vacancy shows a clear direct band gap 

just like the pure monolayer MoS2 with a reduction in the band to reach 1.3 eV. While 

the Hydrogen atom was substituted in S vacancy and its band structure shows a 

metallic behavior just like the Boron substitution, so a spin polarized calculations using 

LDA+U was performed. The up-spin channel shows a direct band gap of 0.71 eV 

which is less than half the monolayer band gap with a valance band maximum of              

-0.68566 [eV] and a conduction band minimum of 0.028 [eV]. The down spin channel 

showed a similar direct semiconductor behavior with a band gap equals 0.709 [eV].  

In both channels, new bands were created deep inside the MoS2 band gap            

(between -0.02 and 0.48 [eV]) these new bands are responsible of the metallic behavior 

after the substitution. 

Lastly, since the two-dimensional materials may be formed in heterostructures 

with no mismatch as discussed earlier. WSe2 – MoS2 (WSe2 is another TMID’s layered 

2D material) heterostucture was investigated using LDA+U implemented in VASP, 

the band structure is shown in figure 28. The valence band maximum (VBM)  was 

found to be 0.73 eV while the conduction band minimum (CBM)  was 0.83 eV which 

is in agreement with the previous reported by Chiu et el.[56]. They found the VBM 

0.76 and the CBM 0.83 eV. The band structure of MoS2 was packed by bands, which 

I had to remove some to be able to interpret the structure.  
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a) 

b) 

c) 

Figure 25: Band structure of ML MoS2 with B substitution in Sulfur vacancy 

using a) GGA b) up spin channel c) down spin channel 
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a) 

b) 

Figure 26: Band structure of ML MoS2 with Hydrogen substitution in Sulfur 

vacancy using a) GGA b) up spin channel c) down spin channel 
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Figure 28: The band structure of MoS2-WSe2 using LDA+U 

Figure 27: Band structure of monolayer MoS2 with Nitrogen substitution in 

Sulfur vacancy  
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5.4 Effect of Pressure on the Electronic Properties 

 Pressure investigation is essential to improve our understanding about many 

physical properties of the materials. In 2013 Bandaru et al. investigated the effect of 

pressure up to 51 GPa using Raman spectroscopy [57]. They showed that the 

diffraction pattern stays the same up to 23 GPa but at 26 GPa, the intensity of certain 

peaks dropped. At 17 GPa a new line emerges which suggests the presence of another 

phase. In 2014, Zhen-Hua Chi et al. proposed that inducing pressure is an excellent 

way to change the lattice without impurities intervention. They conducted their 

experiment using X ray diffraction, Raman spectroscopy and electrical conductivity 

measurements. They found that by increasing the pressure up to 20 GPa a new phase 

emerges ( metallic phase) and appears along with the semiconductor phase until 40 

GPa is reached where the transition is completed and MoS2 becomes metallic [58]. 

They explained this transition by the collapse in the c-lattice constant, the volume and 

due to the interlayer bonding. 

  Following Bandaru and Chi work [57] [58], an investigation of the positive and 

negative pressure was induced using WIEN2K package within MBJ approximation. 

Pressure up to 50 GPa was applied on a bulk MoS2 and as low as -30 GPa. The volume 

of MoS2 changes while applying pressure as shown in figure 29. As experiments 

showed that, the band gap decreases with increasing pressure for the reasons stated by 

Chi et al. Figure 30 shows the behavior of the band gap with respect to pressure, which 

is consistent with the experimental results. A saturated region is observed beyond -25 

GPa where the energy approximately stabilizes, it is important to note that the volume 

also will not vary if pressure was increased beyond -30 GPa (Unfortunately there is 

not much information in the literature regarding the negative pressure). The band gap 
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and the DOS for Negative pressure are shown in figures 31a and 31b respectively. The 

positive pressure induced band gap reduction is shown in the band structure and DOS 

in figures 32 and 33 respectively. 

 

 

  

Figure 30: Behavior of the band gap with respect to pressure (While 

pressure increases the band gap decreases) 
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Table 10: Induced band gap reduction with increasing pressure. Pressure, Volume, 

lattice parameters and Band gap were calculated 

 

Pressure 

(GPa) 

Volume 

(Bohr)3 

a(Bohr) a,b (Å) c(Å) BG (eV) 

-10 755.6 6.218 3.23 11.724 0.41886 

-15 793.8 6.32 3.286 11.928 0.45517 

-20 846.8 6.46 3.359 12.193 0.48685 

-25 930.8 6.661 3.464 12.52 0.46905 

-30 1111.8 7.0717 3.677 13.35 0.47199 

10 665.3 5.959 3.098 11.246 0.2758 

15 650.49 5.915 3.076 11.165 0.23998 

20 637.4 5.875 3.035 11.090 0.2067 

25 625.71 5.837 3.019 11.017 0.172 

30 615.15 5.806 3.003 10.959 0.1407 

35 605.575 5.775 2.988 10.901 0.1073 

40 596.79 5.747 2.9749 10.848 0.0761 

45 588.7 5.721 2.962 10.799 0.0462 

50 581.21 5.697 2.950 10.753 0.016 
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Figure 31: Effect of negative pressure a) The band structure of MoS2 under negative 

pressure b) DOS of MoS2 under negative pressure. The arrows shows the direction of 

decreasing pressure 
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Figure 32: The band structure of MoS2 under positive pressure. The arrows show the 

direction of increasing pressure  
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Figure 33: DOS of MoS2 under positive pressure. The arrows show the 

direction of increasing pressure  
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Chapter 6: Conclusion 

 

Molybdenum disulfide is a promising class of material for next-generation 

electronics, as it is the only 2D material yet discovered which has an inherent band 

gap. It paves the way to a new generation of applications in the optical and electronic 

industry along its lubricant applications. In this approach, we used Generalized 

gradient approximation, Modified Becke Johnson, LDA+U and hybrid functional 

implemented in WIEN2k package and VASP (except MBJ in VASP) within DFT. We 

have shown that MoS2 (an indirect band gap semiconductor), in its monolayer form, 

has a direct band gap (1.8eV) in the visible range (1.6-3.1 eV) which makes it an 

excellent candidate for optical applications and increases the possibility of creating an 

electron-hole pair. Our study shows that the manipulation of the monolayer MoS2 band 

gap can be done using substitutional impurities and induced pressure and the 

metallization is possible which even widens the range of its applications. Metallizing 

partial size of the MoS2 sample used for electronic applications where high 

conductivity and low resistivity are required.  

We were limited by the size of our super-cells, bigger super cells would give 

even better results this is due to the insufficient computer capability (In order to study 

bigger supercells, super computers is needed).  

Further investigation to find the effect of temperature and analyze the 

correlation between the two effects, pressure and temperature is recommended. 

Studying graphene- MoS2 heterostructure is a very promising idea as well that is 

required for future applications.  
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