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Abstract

Molybdenum disulfide has some of graphene’s properties but has an edge over
graphene as this new 2D nanomaterial has a band gap in its electronic structure, which
Is absent in graphene. The purpose of this thesis is to study the electronic properties of
the promising Molybdenum Disulfide (MoS>) material in its bulk and monolayer forms
by undertaking a systematic theoretical approach. We will mainly study the band gap,
the density of states and the electronic charge distribution which is considered as the

most important electronic characteristics of semiconductors.

In this study, the density functional theory (DFT) — implemented in WIEN2k
and VASP- is used. The generalized gradient approximation (GGA), Modified Becke-
Johnson and Hybrid functional approximation are used for the exchange—correlation
potential. Band structure, density of states and band gap pressure coefficients are
calculated. WSez — MoS; heterostructre and the effect of impurities are covered in this

study.

The study matched the experimental results, the band gap of molybdenum
disulfide increases with decreasing the number of layers and it shifts from an indirect
band gap to a direct band gap when a monolayer MoS; is formed. The pressure effect
found in this study is consistent with the experiments and supports the idea of changing

the electrical phase of MoS; with pressure (from semiconductor to metallic phase).

This study shows that MoS; is an excellent candidate in electronics industry

along with its great applications as lubricant, Transistors and composite applications.

Keywords: Molybdenum disulfide, 2D material, density functional theory, electronic

properties.
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Chapter 1: Introduction

1.1 Overview

The interest in 2-dimensional (2D) semiconductors is largely fueled by the
highly successful miniaturization of Si-based electronic devices for higher packing
density, faster circuit speed, and lower power dissipation.

The bulk form of many layered materials were found long time ago and they
were used as dry lubricant such as graphite and Molybdenum disulfide MoS: due to
their layered nature. Atoms are strongly attracted to each other within the same plane
by a strong covalent or ionic bonding but the interlayer attraction is due to a weak Van
der Waals force, which makes it easy to extract one or few layers of the material.

2D Materials consist of a range of distinct electronic properties. Some are
semiconductors with a big direct band gap (5.8 eV) like boron nitride [1], transition
metal dichalcogenides (TMIDCSs) such as molybdenum disulfide (MoS;) -which we
will be studying — and tungsten diselenide (WSez) .Others are semi-metallic such as
the promising 2D graphene ( single layer of graphite).

Comparing layered materials to the known - and widely used- photonic
materials such as gallium arsenide (GaAs) or silicon (Si) one may find that the layered
material may be a very good alternative in electronic and photonic devices. Since the
2D materials have a passivated surface! that makes it easy to create heterostructures
using two different 2D materials (say for example MoS2 — WSe2 heterostructure)
without any problem of lattice mismatch issue since they will be attracted by Van der

Waals forces just like their bulk sheets do. Many 2D materials interact with light very

! There are no dangling bonds on the surface so it will not interact with the
surrounding environment
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strongly and they may cover a long range of the electromagnetic spectrum, for
example, the semi metallic graphene interacts with the electromagnetic spectrum from
the range of the microwave to the ultraviolet region which makes it a very good
material for light detection applications [2].

The recently discovered 2D materials have gained the researchers interest for
its promising applications in the optical and electrical industries. Graphene, with its
high optical transparency (97.7% transmittance in the visible spectrum), good thermal
conductivity at room temperature (3x10® W/mK) and exceptional mechanical strength
(Young’s modulus of 1.1TPa) opened new era in the technologies of photonics and
optoelectronics. These properties put graphene in the top of the list as a candidate for
transparent electrodes, energy storage and solar cells industries. These outstanding
characterizations enhanced the demand to search more in the field of 2D layered
materials. One major disadvantage in graphene is that it lacks the existence of a band
gap therefore it is not considered as an optimal material for light emission devices and
it minimized its application in the electronic industry where semiconductor materials
maybe of much use. On the contrary, single layer TMDCs such as MoS; are considered

as direct band gap semiconductors and they exhibit good light emitting properties [2].

The main goal of this work is to contribute toward an accurate theoretical
determination of the electronic properties of a monolayer and multilayer MoS2. We
plan to investigate the effect of pressure on the band gap energies and the density of

states of MoS..



1.2 Properties of Molybdenum Disulfide

Molybdenum disulfide (MoS2) is one of the 2D material, which offers a great
promise for device applications especially in the optoelectronics and energy harvesting
which requires thin semiconductors; it can also be used along with graphene where
both materials may complement each other. MoS; has gained a lot of interest for its
properties, which differs if you deal with the 2D monolayer or with its 3D bulk form.

It was widely used as a solid lubricant since its first discovery in 1960 [3].

MoS: is a black / grey material (figure 1) similar to Graphite with a molar mass
of 160.07 g/mole and a density of 5.06 g/cm3. It has a very high melting point just
like the other layered materials that may exceed 1000° C and is insoluble in water. It

has a 2H hexagonal structure with space group P6s/mmc [5].

Figure 1: Bulk MoS; imaging a) An image of the bulk MoS, b) a Close-up
SEM image of MoSz nano-flakes from noncentrifuged MoS: dispersion [4]

The MoS:; crystal consists of layers attracted by Van der Waals force, which
explains the ease to exfoliate few layers or even one layer from the bulk form. Each
layer is built of a sheet of Molybdenum (Mo**) sandwiched between two sheets of
Sulfur (S2) as shown in (figure 2). Depending on the arrangement of S atoms, the 2D

monolayer MoS; may appear in two different symmetries that may affect its electronic
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structure and properties. The first is 2H, which is trigonal prismatic, acquires
semiconducting properties. The other form is the metallic 1T, which is Octahedral On
phase. Yung-Chang et.al have showed that the transition between these two phases is

possible by intra-layer atomic plane glide [6].

P
Jf

Figure 2: Three-dimensional representation of the structure of MoSz. The intre-
layer distance between two Mo atoms is 6.55 A

Similar to graphene, MoS> has a Young’s modulus of 033 + 0.07 TPa which
makes it mechanically flexible [7].

During the early 2010, Raman Changgu Lee’s group ran spectra
characterization on a single and few layers of MoS,. They aimed to investigate two
peaks E;, and A, to reflect the crystal structure of MoSz. E3, In addition, 4,4 are
indicators of in-plane and out-of-plane vibrational modes of S atoms respectively.

From bulk to monolayer, three changing parameters are collected, first, Ezlg exhibits a
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blue shift whereas the A, undergoes a red shift. The second note is the difference of
frequency between the two peaks reduces proportionally with respect to the number of
layers where it ranges from 25 cm™ in the bulk characterization to 19 cm™ for the
monolayer MoS;. The third note is that the intensities of the peaks increases linearly
with increasing the layer thickness up to four layers [8].

The thermal conductivity of few layers of MoS, was estimated to be 52
w /mK [9]. Opposing the graphene that is highly sensitive to light but has low photo
response, MoS: has a high photo response.

MoS: exhibits good electrical and transport properties, and is chemically and
thermally stable, transparent, flexible, and relatively inexpensive, which all together
makes this material an excellent candidate for a variety of electronic and optoelectronic
applications. The 2D form of the material was not discovered until 2011when scientists
succeeded in producing a transistor made from this new material.

Molybdenum disulfide looks to be a promising class of material for next-
generation electronics, as it is the only 2D material yet discovered which has an
inherent band gap. With this feature, molybdenum disulfide paves the way for the
development of a very new domain of electronic devices and materials, which can be

used in heterostructures with other 2D layered materials to complement each other.

1.3 MoS: Preparation
This work will not involve any experimental preparation but I must say that
this material (few layers or single layer MoS>) can be prepared experimentally. The

preparation techniques may vary from exfoliation to Chemical vapor decomposition.



1.3.1 Exfoliation

Exfoliating graphene form graphite successfully opened the door to use this
technique on other graphene-like two-dimensional materials such as MoSz. Though
this method is useful for fundamental research, it cannot be used for large-scale

applications because of the inaccuracy in defining the number of layers.

Karim et al. used a technique called anodic bonding to fabricate a two-
dimensional few layers of MoS». Anodic bonding is a process used to seal glass to
either silicon or a metal without any intermediate layer by different techniques such as
sputtering. Hua Zhang et al. used exfoliation based on chemical reactions through an
electrochemical lithium discharge process. After several ultra-sonication, they were

able to achieve a 92% high yield monolayer MoS..

The last exfoliation technique to present in this thesis is the approach used by
O’Neill et al. They exfoliated bulk MoS. by suspending it in an organic solvent. They
were able to control the sonication time, which improved the efficiency of this
approach to produce a higher concentration of flakes (up to 40 mg/mL). Chemical
exfoliation seems to be more productive with a disadvantage of creating more defects
in the structure of the two-dimensional layered materials. The defects in structure due
to the sonication may affect the flakes size and constrict the produced 2D material

applications in the large-scale integrated circuits [10] .



1.3.2 Chemical Vapor Deposition (CVD) Synthesis

CVD is a technique used for material processing. During CVD, a precursor? is
being delivered to a reaction chamber where it passes over a heated substrate under a
critical temperature that is required for a specific reaction to take place after the
precursor is diffused on the surface. In addition, the required products will be adsorbed
in the substrate with the by-product being desorbed and removed from the chamber.

At the end, you will get the substrate coated by the desired material.

This technique is very useful in preparing 2D layered materials and their
heterostructure since it allows to control the thickness of your sample. CVD is a better
choice than transporting layer by layer for creating a heterostructure because of its
advantages in reducing the interfacial contamination. Since synthesizing 2D layered
materials on a wafer scale using CVD is possible, it will give the industry the potential

to use the produced materials in large-scale application.

Using this technique in preparing MoS: is possible using different kinds of precursors

such as Mo based compounds, (NH4)2Mo0S4 and graphene /MoS2 composites.

1.3.2.1 Sulfurization of Mo based compound and Mo based Oxides

In 2012, Lain-Jong Li et al. used Molybdenum trioxide (MoO3) and Sulfur
powder (S) as solid reactants to synthesis large-scale monolayer MoS; films on a

silicon dioxide (SiO) coated by graphene substrate. The field effect transistors (FET)

2 Precursors are the compounds used in chemical reactions to produce other
compounds.
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produced from this film have an on/off ratio of 10* with an n-type behavior (Figure

3.a).

One year later, Yifei Yu et al. demonstrated that the replacement of MoO3 by
molybdenum chloride (MoCls) might improve the performance of the FET with a

mobility that could reach up to 0.03 cm?/V.s.

Yongie Zhan et al. used a different approach where they pre-deposited Mo thin
layer on a SiO; substrate using electron beam physical vapor deposition. The substrate
would then be placed in furnace at 750° C to react with sulfur vapor. The result samples
were bi-layers and tri-layers with typical mobility in the range 0.004 — 0.04

cm?/V.s (Figure 3.b) [11] .

1.3.2.2 Thermal decomposition of (NH4)2M0S4

MoS: films created using Thermal decomposition of (NH4)2MoS4 showed an
excellent bottom gated FE electron mobility that reached 4.7 cm?/V.S. Keng Ku Liu
et al. were able to fabricate a bi layer and a tri layer films on an insulating substrate.
This approach should be done with extreme caution to achieve homogeneous precursor

films on target substrate (Figure 3.c) [11].

1.3.2.3 Direct synthesis of graphene/MoS2 composites

Creating heterostructures from the 2D layered materials is of a great concern
in the optoelectronics and electronic industry. Since the graphene was the first 2D
material to be examined and showed promising features with some limitations in
specific applications (graphene is a gapless material) it would highly be interesting to

study its features in heterostructures with other 2D materials.
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Layer by layer stacking has been the simplest way of creating the
heterostructures with the disadvantage of interfacial contamination. So far the
substrates used for preparing MoS. were mainly SiO2, Mica or sapphire, but it was
shown that graphene itself might be used as a substrate for growing MoS». Yumen Shi
et al. showed that hexagonal MoS; nano-flakes with a crystal size ranging from
hundred nanometers to few micrometers were deposited on top of a graphene layer
with a small lattice mismatch. Recently (In 2014), Kathleen M. et al. reported growing
a uniform monolayer MoS; on a large area graphene with a heterostructure size up to
centimeters which is more controllable and practical. Being able to create such

heterostructure will allow us to use the features of both materials simultaneously [11].

dip-coating 15t anneal 2nd anneal
= A'f Mos-,.
Mﬂ'la or Ar+S tra
1 Torr ,“,l" 500 Torr /
c
500°C 1000 p—
1 hr Wmin M‘ L
L 3 0
(NH4)2MoS, )
solution on sapphire  an Si0y/Si

Figure 3: CVD preparation of MoS; a) sulfurization of MoO3 b) sulfurization of Mo
films c) thermal decomposition of (NH4)2Mo0S4
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1.4 Applications of Molybdenum Disulfide

MoS;, just like graphene, has various applications in many fields as a bulk and
in its monolayer form. Due to its optical and electrical characterizations, and since it
is the most abundant TMDC:s, it expanded into a wide researched topic to be used in

related applications.

1.4.1 Lubricant Applications

Lubricants are materials used to protect other materials and surfaces from being
damaged due to friction or wear. Lubricants are usually liquids or gases, but solids
have an excellent feature in providing lubricant features as solid lubricants or dry
lubricant. For the solid to work as a lubricant, it must acquire some preferred
properties. First, it must be able to maintain a low and controlled friction between the
surfaces. It should be chemically stable under a range of specified temperatures that
are required for the designed application and adhere strongly to one of the surfaces, so
that it does not get lost rapidly. Finally, yet importantly, it must be non-toxic with

sufficient wear resistance.

Shankara. A et al. have tested phosphate steel specimens coated by MoS; while
applying a scratch test. They found that the average wear rate was 0.215 pm/cycle and
the initial coefficient of friction around 0.08.They also studied the addition of 8%
zirconia and 25% graphite on MoS; and they found that the wear resistance increased

to reach 0.003 pum/cycle and the initial coefficient of friction 0.06 [3].
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1.4.2 2D VVan der Waals Heterostructures

MoS: gained the researchers interest since it is one of the most abundant
TMDC:s. It can be used in many applications such as transistors, photo detectors, solar
cells, Lubricant applications, etc. However, due to its intrinsic properties, it has some
limitations that constrict its applications in some applications. For example, MoS;
electron mobility is much less than graphene which makes it a bad candidate to act as
transparent electrodes. Graphene on the other hand, shows a great mobility with
outstanding electrical performance but since it has a zero band gap it fails in the switch

control applications.

An excellent alternative to using these two materials separately is to use a
hybrid heterostructure employing the controllable band gap of MoS> to enhance the

performance of the gapless graphene.

In 2011, Yandong Ma et al. calculated the binding energy of carbon (C) atom
to MoS; to be 23 eV with an interlayer spacing between graphene and MoS: to be 3.32
A. This structure introduced a 2 meV band gap of graphene, which is almost negligible

but may be tuned by varying the interlayer spacing [12].

Marco.B et al. have shown that a type 2 Schotty junction (MoSz/graphene) of
0.9 nm thickness exhibit a high power conversion efficiency that may reach 1% and
power density of 0.25 — 2.5 mW/Kg which is higher than the known ultrathin solar

cells (GaAs and Si) by 1- 3 order of magnitudes [13].
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Chapter 2: Density Functional Theory (DFT)

2.1 Introduction

Solid state physics deals with studying the rigid materials, their
crystallography, the electromagnetism and the electronic structure. The simplest form
of any material is its unit cell. The unit cell may contain different atoms (many

electrons) at different positions, which is repeated periodically to form a crystal.

Quantum mechanics gives us the opportunity to study the electronic structure
of any material, and helps us to understand many other properties such as phase
transition, relative stability and electrical, mechanical, optical or magnetic properties.
With a huge number, such as the Avogadro’s number of atoms, the problem in

Quantum mechanics becomes very complicated to solve manually.

One of the basic problems in theoretical physics and chemistry is the
description of the structure and dynamics of many-electrons systems. The Density
Functional Theory (DFT) is a modeling method to study the electronic structure
calculations, which ranks among the most computationally intensive tasks in all
scientific calculations. This method helps to deal with problem of N-particle
(electrons) in 3-spatial coordinates as a problem of one main variable which is the

electron density [14].

Density functional theory uses several approximations, which we will describe

in the following sections.
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2.2 Born-Oppenheimer Approximation

We will consider a system of two hydrogen atoms with two nuclei A and B and

two electrons 1 and 2 as shown in figure 4.

Figure 4: A system of two hydrogen atoms where A & B denote the nuclei and
1&2 denote the electrons

The general molecular Schrodinger equation, apart from electron spin effects, is

Hy = Ey, 1)

where H is the Hamiltonian operator and E is the energy eigenvalue.

Considering the kinetic energy of each electron and nuclei in the system described
above and the electric potential energy for all possible interactions, the Hamiltonian of

the system is [15]:

H=T+V
~ h? _ h? _ h? _ h? _
H= —o=V; —=V} ——V{——V}
2m 2m 2m 2m
b (Lo Lo L1 L) )
4mep \Ry12 Ria  Raz Rip  Rpz Rap



14

2
L isthe

TEp Ryj

2
where T:—Zh—mvi2 is the Kinetic energy operator of electron i and V=

potential energy between objects i and j.

Since the nuclear mass is much greater than the electron mass, the Born Oppenheimer
approximation, which is the first approximation used in DFT, defines the nuclear
position as being fixed so that the kinetic energy of the nucleus will equal to zero

compared to the kinetic energy of the electron.

Then, the electronic Hamiltonian can be rewritten as:

~ k% _o h% _, e? ( 1 1 1 1 1 1 )
Heic = 2mVl 2mv2+4n£0 Ri» Ria Raz Rip R32+RAB ’ ©)
1 2 . . . .
where pr ® _is considered as a constant which we will consider later as the external
o Y AB
potential

2.3 The Hartree Approximation

Hartree approximation uses the same concept that is used in variational
method. The Hartree approximation starts with a guess of the wave function and just
run a self-consistent cycle until we reach convergence but we will come to that later
in more details. The Hartree approximation does not follow Pauli Exclusion Principle
since it does not take the antisymmetry due to interchange of coordination into account,
so correlation due to Pauli principles are ignored but one should ensure that no two

electrons are occupying the same state.

Hartree theory starts with defining the wave function by equation (4).

Y(X) =1L, 8:(x) (4)
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where @;(x) = ;(r)x;(0).
The Schrodinger differential equation of the system is now defined as:

|-V +v() + v @) 0:(0) = €0:(®) i=1,...N (5)
where vZL () is the local effective electron- interaction potential energy.

v(r) is the external potential energy.

viL(r) is defined as the work required to move the model fermion (electrons) due to

the force of the conservative field, the effective Hartree field F7(r").
v () = — [LFIE).dl (6)

Where FH(r") is the summation of the electron interaction field /L (r) and the

correlation kinetic field Z/%(r).
FA@") = efe(r) + Z{@) (7
With V x FH(r") = 0 so that vf, (r) is path independent.

The term i, (r) is obtained from the hartree pair correlation density g (rr’) via

coulomb law.

ef(r) = [ g ©®)

[r—r'|3

The Hartree pair correlation density is a property representing the electrons correlation

due to Pauli principles or coulomb interactions and is defined mathematically as:

y _ P
gy =" ©)
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Where p(r) is the electronic density and P(rr’) is the expectation value of the pair

correlation operator P(rr’) that gives the probability of finding the electron at r and

r' simultaneously. The effect of the pair correlation density is valid and necessary.

According to Pauli’s exclusion principle, no two electrons can be at the same quantum

state and the repulsion due to the Coulomb force will affect the local density of the

electrons at r’ and from this concept comes the importance of the pair correlation

density. This change in the local density is called the Fermi coulomb hole charge

distribution py- (rr'), which is a nonlocal self-interaction correlation (SIC).

According to what we said, the pair correlation density can be rewritten as the

summation of the local and the nonlocal densities:
g rr) = pSrr’) + p(r")

Now substituting equation (10) in equation (8), we get:

SIC ! ! ! ot
el (r) = [T gy 20T gy

[r—r'|3
ebe(r) = ey(r) + /(1)
Combining equation (12) and equation (7), we get:
FH@") = ZHr) + ey(r) + &7 (1)
In addition, from equation (6) we may find v, (r) to be:

Vi) = —[[ZH@) + ey() + &€ dl

(10)

(11)

(12)

(13)

(14)

Choosing the correct symmetry such that all the above fields are conservative, we can

simplify equation (14) as:
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vee(r) = Wy(m) + Wi' () + Wi(r) (15)

where Wy(r), W3¢ (r) , WH(r) are the separate work done by the fields

ey(r), et (r), ZE(r) respectively.

Now applying Schrodinger’s equation, we may find that the total energy of Hartree

theory written in term of the fields is:
Ef =T+ [p(v(@)dr + TE@) + Ey(r) + E5'C(r) (16)
Where the first term in Schrodinger equation is due to the Kinetic energy

<®i(ra)|—%vz|®i(ra)> and the second term is due to the external field. The third,

fourth and fifth terms are due to W (r), Wy (1) and W3¢ () respectively [16].
The difficulty in solving N particle problems is that the potential of each particle is
related to the other N-1 particles. That is why this method is self-consistent and one

may solve it by finding @;(x) that may be a solution to the Hartree equation. The

following steps will summarize the approach:

First: GUESS a set of one-particle states®; (x).

Second: Using the guessed state, FindVy (r).

Third: Solve the one particle Hartree equation usingVy ().

Fourth: If the found states are the same as the guessed states then we are done, if not,
then use the new states as guessed ones and repeat from the first step until you reach
convergence. To avoid any oscillations, it is better for the new guessed state to be a

mixture of the old guessed state and the last solution obtained from step four [17].
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2.4 The Hartree-Fock Approximation

The Hartree approximation is considered as a good introduction to the methods
of solving the many particles systems. In fact, the Hartree approximation is not
perfectly correct and it is safe to say that it is wrong since the wave functions are not

antisymmetric.

The Hartree-Fock (H-F) approximation follows the same procedure used in the
Hartree approximation but by taking the antisymmetric wave function as a
requirement. To do so, H-F approximation uses a slater determinant to define the wave

function.

Y= 7= Lnny) Eniny.. Pry TP, (12 (17)

Note that; the indices indicate the single particle state and not the particle

coordinates [18], [19].

The wave function can also be writes as;

(18)

1 ‘/)1(1) ¢1(N)
l/J(]., N) = W det[ : ‘. :

Pu(D) o PN

According to the properties of the determinant, the exchange of two columns -
that corresponds to exchanging two particles- will result on a minus sign. Moreover,
if two rows are the same, then the determinant will be zero, which demonstrates Pauli’s

exclusion principle. Then we may apply the same procedure used in section 2.3.

2.5 The Hohenberg-Kohn Theorems

As we discussed earlier in section 2.2, the Born-Oppenheimer approximation

freezes the nuclei since they are much heavier and therefore much slower than the
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electrons. In other words, only the electrons are kept as players in our many body
problem. The nuclei are treated as a source of positive charge; they become ‘external’
to the electron cloud. After applying this approximation, we are left with a much

simpler Schrodinger equation:
Hy=[T+U+V]y
Ay = S, (-2 7) + SN, V0D + S, 00 r)] =By (19)
Where H is the Hamiltonian,
E is the energy,
T is the kinetic energy of the particle (electron) "i" ,

V is the external field potential energy due to a positively charge nuclei,

And U is the e~ — e~ interaction energy (since electrons are fermions, no two
electrons of the same quantum number are allowed to stay in the same energy state)

[20].

There are many sophisticated methods to solve the many-particle Schroédinger
equation. In DFT, the key variable is the particle (electron) density p(r). Vice versa,
if we have the wave function of the ground state o (r1, 2,...) we will be able to find
po(r), which means that y is unique — as said above — . Then, we can say that the

expectation value of the Hamiltonian (the energy) is a function of po.

E, = E(n,) =<¢(n0)|7'+l7+fl|¢ (n,) >
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T and U are universal operators — independent of the system — whereas V is a non-
universal one; and hence the contribution of the external potential V, <

Y (n,)|VI|w(n,) >, can be written explicitly in terms of the ground state density no

Vinel = [V(Ir)po)dir; (20)

The above remark was stated by the Hohenberg-Kohn theorems (H- K theorems). The
H-K theorems were held only for non-degenerate states neglecting any magnetic field.
However, they have been improved to encompass these cases. | will only consider the

non-degenerate H-K theorems.

The first and second of (H-K) theorems suggests that the ground state of a many-
electron systems can be uniquely described by the ground state- electron density as a
function of the 3 spatial coordinates only that if approximated correctly, we will be
able to find our wave function that minimizes the energy. Therefore, instead of having
a problem with N-particle (electrons) in 3-spatial coordinates, we will have a problem
of one (electron density) in the 3- spatial coordinates. The (H- K) theorems suggests
that there is a one-to-one correspondence between the ground-state density n(r)of a
many-electron system (atom, molecule, solid) and the external potential. This theorem
can be proved by assuming two different systems A and B with two different external
potentials, Va and Vb, having the same density of state. The two potentials Vaand Vb
corresponds to two different Hamiltonians Ha and Hp respectively. We know that the
ground state eigenvalue Eoa corresponds to a unique ground state wave function o,
Where a refers to the Hamiltonian for the system A. Applying the Hamiltonian of
system A on any other wave function other than yoa will result an energy eigenvalue

greater than Eg .
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Eoa < (Wopl Hal ¥op) (21)
Where “a” refers to system A and “b” refers to system B.
Now subtracting and adding H,, to the operators will yield to equation 22;
Eoq < (WYopl Ho — Hp + Hp| Yo )
Eoa < (Yol Ho — Hpl Yo) + (Yol Hyl Yop)

Eoq < (opl Hy — Hp| Yop) + Eop (22)

Since we are assuming that the only difference in A and B is in the external potential

Equation 22 maybe written as.

Eoa < (Wopl Vo= Vil Yop) + Eop (23)

We can write equation 23 in terms of the ground state density;

Eoq < [Va—Vplpo @ d@) + Egp (24)
Since a and b are interchangeable indices equation 24 may be written as.

Eop < [IVy = Valpo @ A + Eyq (25)

Adding equation 25 and 24;

Eoq + Eop < [Va=Vulpoey dr) + [IVy = Valpoy d(r) + Eop+ Egq

(26)

The integration terms will cancel since V, — V}, =- (V}, — V) and equation 26 becomes;
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Eoa + Eop <Eop+Epq (27)

This clear contradiction proves that our assumption was not valid and that there is a
unique one to one correspondence between the external potentials, the wave functions
and the electron density. H-K theorems suggest that there exists a density function (
theorem 1) that helps us find the optimized Hamiltonian and wave function in order to

find the corresponding minimum eigenvalue [21].

2.6 The Kohn-Sham equations

The term Z’i"<j U(ri,rj)] in equation 19 is what makes it hard to solve the

Schrodinger equation, since many particles are involved in the interaction.

The Kohn-Sham (K-S) equation is the Schrddinger equation of non-interacting
particles; that generates the same density as any given system of interacting particles.
It is defined by a local effective fictitious external potential in which the non-

interacting particles move, typically denoted as vs(r) or Ves(r).

One can solve the so-called Kohn—Sham equations of this auxiliary non-interacting

system,
|- =2+ T ()] 0:0) = 0:(r) (28)

where ¢; is the orbital energy of the corresponding Kohn-Sham orbital (stata) @;(r)

and 7 (r) is an external effective potential in which the particles are moving.

Thus, the density for N-particle systems;

p(r) = XL, 10;|? (29)



23

The effective single- particle potential can be written in more details;

) = V() + [EE a3+ 1 [, () (30)

Where: f(e ns(r) d3r' is the so-called Hatree term describing the e — e coulomb

repulsion.
Vyc is called the exchange correlation potential.

The exchange interaction is a quantum mechanical effect between identical particles.
It is due to the wave function of indistinguishable particles being subject to exchange
symmetry that is either remaining unchanged (symmetric) or changing its sign
(antisymmetric) when two particles are exchanged. Whereas the electronic correlation
is the interaction between electrons in the electronic structure of a quantum system.
The term Vyc is the summation of the exchange potential and the correlation potential

[22].

2.7 The Exchange-Correlation Approximations

So far, we have seen the beautiful result of Kohn-Sham, which states that by
finding a self-consistent solution to a set of single particle equations, will help us find

the required ground state energy by minimizing the energy of an energy functional.

The main difficulty in solving the Kohn-Sham equation is with the exchange
correlation (XC) term especially when dealing with an n body system, the problem
becomes extremely complicated that needs super computers to be solved. Although
HK theorems tells us that, there is an exchange correlation functional, it is still not
known. For a good start, there is one system which is the uniform electron gas where

the electron density is constant everywhere and the exchange correlation functional is
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known. Using the uniform electron gas XC potential may not be of practical use since
the electron density is the main feature that defines the chemical bonding. However,
Kohn- Sham used the uniform electron gas XC potential locally which is called the
local density approximation (LDA). The LDA allow us to completely define the Kohn-
Sham equation but one should be careful since we are not solving the actual

Schrédinger equation as a consequence of not using the correct XC functional.

LDA approximation is not the only used approximation. Scientists worked and
are still working very hard to improve these approximated functional. For example,
one of the best known functional uses the LDA approximation along with local
gradient in the electron density which is known as the generalized gradient
approximation (GGA), more detailed explanation will be given in chapter 3 about
some functional that have been used within DFT which we will be using to carry out

our study [23].

2.8 The Linearized Augmented Plane Wave Method

The Linearized augmented plane wave (LAPW) method is one of the most
accurate methods to solve the Kohn sham equation. It is used in most of the available

computational software including the WIEN2K that we will be using in this work.

The LAPW method relies on dividing space into two regions as shown in
(Figure 5). The first one is a non-overlapping atomic sphere and the other is the

interstitial region around these spheres.
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Figure 5: Division of the unit cell into two regions 1) the atomic spheres and 2)
the interstitial region

Inside each atomic sphere of radius R the wave function @, is a combination of radial

functions times the spherical harmonicsYy,, ().
Dr, = XimlAimk, Wi ED) + By, W, ED] Vi (F) (31)

where u; (r, E;) is the regular solution of the radial Schrodinger equation (at the origin)
for energy E; taken at the center of bands with the corresponding [-like character.

w,; (r, E;) is the energy derivative of u,;(r, E;) taken at the same E;.

Note that Ay, x, and By, i, are not variational constants, they are functions of

k, and are determined by requiring that the wave function is a continuous sphere’s

boundary.

In the interstitial region, the wave function takes a PW form:

Qk — eikn.r’ (32)

L
n " Vo
where k, = k + K,, .K,, is the reciprocal lattice vector and k is the wave vector inside

the first Brillouin zone.
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The solution of the Kohn Sham equation is taken to be the combination of the basis set

of the LAPW according to the variational method.
lpkn = Zn Cn (Dkn (33)
where c,, are determined by the Rayleigh Ritz variational principle®.

To improve the wave function and to increase the flexibility of the basis the
addition of one more (k,, independent) term is necessary. This term is called the local
orbital (LO) and it is used to ensure orthogonality. Local orbitals consist of two radial
functions at two different energies that will make it possible to treat a semi core and

valence states in one energy window consistently (for example 3s and 4s energies).
tm = [Amm w(1,E1p) + Bun (7, 1) + Cim wi (7, E2) Vi (P), (34)

The coefficients Ay, By, and Cy,, by requiring that first: @72 should be normalized,
second it should be zero at the boundaries of the sphere, third derivative should also

be zero at the boundaries of the sphere [24]-[26].

2.9 Computation on Solids: Electronic Band Structure

The band structure is one of the most important concepts in solid-state physics;
it shows the available energy ranges that the electron may have in a material and the

forbidden energies, which the electrons cannot acquire. Each electronic level in the

% The Rayleigh Ritz variational principle deals with finding the Hamiltonian
expectation value and try to minimize it. The Ritz theorem states that the expectation
value of the Hamiltonian is stationary with respect to the neighbor space of its discrete
eigenvalue.
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band structure is characterized by the Bloch vector K and the band index n. The Bloch

vector is related to the reciprocal lattice and has the dimension of (1/ Length).

The band structure may give indications about the Fermi energy level, the band
gap, type of the band gap — direct band gap or indirect band gap-, width of valence and

conduction bands, etc.

This shows the need to be explicit about what is meant by the band structure,
and to make it simple, let us assume a lattice in one dimension that may be generalized
later into two and three dimensions easily. Imagine that we have N atoms resting at
their lattice locationsr,, = na, where a is the lattice constant andn = 1,2, ... N.

Assuming a periodic potential caused by the ions such that:
Viot () = Xh=1Va(x —na) (39)

Where V,( x) is the potential from an ion at the origin. Injecting this potential

in Schrodinger’s equation, we will get:

~ L L b Vet @] 00 = E 9(x) (36)

2m dx?

Using periodic boundary conditions ¢(x + Na) = ¢@(x) such that the
probability of being in any unit cell must be the same regardless of the unit cell and
the wave function should vary inside the unit cell, we may guess that the wave function

would take the following form:

Yie(0) = = Tpe™ oy (x = R) 37)

21

Where u;, (x) is periodic and k = Vo
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It is believed that this guess works perfectly and it is known as the Bloch wave
functions, with the only distinct solutions come in the range of k € [—Z ,Z] which

means in the first Brillouin zone.
The expectation value of the energy now reads;
E(K) = [{rHyy dx (38)
Substituting equation 37 in equation 38 will give;
E(K) = — [ Xre * Ry (x — R) H L €™ g (x — R') dx (39)

Taking x" = x — R, with the fact that our Hamiltonian is periodic (unchanged

under translation H(x") = H(x)) equation (36) becomes;
E(K) = — [ Zr@r(x') H S e®F" gy (x' = R") d’ (40)

Where R" = R’ — R is another translation vector. The summation over R will just give

a factor of N and the final expression of the expectation value is now;
E(K) = Y e [ (xYHoy(x' = R") dx’ (41)
Equation 8 is valid only for R"" very small. TakingR" = 0;
Epr_o(K) = [ ox(xVHepy(x") dx' = € (42)

The subscript s stands for the s orbital since we are interested in the ground state.
Separating the R” = 0 term from equation 8, we will end up with an expectation value

of two terms;

E(K) = &+ X e™y(Iz) (43)



29

Where in second term we assumed the translation vectortobe t = +a,iand y(|z]) =

Jor(xHpp(x' — 1) dx .
E(K) = e+ y(|t])[ etk + etkao]
E(K) = €, + 2y(|t])cos(ka,) (44)

Which shows that for an s orbital the energy varies with the k points as shown in

(Figure 6) [27].

] 1 2
b [2etdsy)

Figure 6: The E(K) relation for an S orbital, K in the range [0,2rao] with a band
width of 4y

Generalizing equation 44 to three dimension is now an easy task, it just requires a little

algebrawith t = %the distance between two nearest neighbors in a face centered cube

and k — (ky, ky, k). 1t will become:

kya

E(K)= e, +4y(z]) (cos (k’z‘—a) cos (T) +

cos (ka/—a) cos (sza) +cos (k;—a) cos (k’z‘—a)) (45)
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The bands of the different state orbitals of the electrons inside a crystal of an N atom
will have N degenerate levels of each atomic state due to the interactions between the

atoms and that is what creates the bands [28], [29].

2.10 Density of States

In solid state physics and condensed matter physics, the density of state of a
system describes the number of states per interval of energy at each energy level that
are available to be occupied by electrons. The task of calculating every possible carrier
wave function as well as its corresponding energy is impractical. Fortunately, rather
than solving the Schrddinger equation multiple times, we can instead find what is
referred to as a density of states. This is when multiplied by an interval of energy,
provides the total concentration of available states in that energy range. The Density

of state is a very critical variable in the density functional theory.

Namely,

N(interval) = p(E)dE (46)

where N is the total concentration of available states in the energy range dE, and p(E)
is the desired density of state. We consider the case of a particle in a 3-D infinite

potential box with V(x,y,z)= 0 inside the box as shown in figure 7.

/
/

Figure 7: Electron in a box of length L. With V(x,y,z) = 0 inside the box
and oo outside
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The wave function and the energies obtained using Schrédinger equation is;
h2K?

E(3D — box) = — 47

2m "’

2.2
where K2 = % and n® = n + ny2 + n? are positive integers and L is the radius of

the box.

Now, to find the density of state (DOS) we will work in the K-space where we will

represent each quantum state as a dot as shown in figure 8.

Figure 8: Two-dimensional array of allowed quantum states represented by the
dots

To calculate the volume of one quantum state, one needs to find the spacing between

two quantum states (Kx+1 and Ky) as shown in figure 7.

Kpy1 —Ke =y + 1) (%) — Ny (%) = % (48)
Using equation (48) to find the volume of one quantum state leads to:
- 3
Vos = (7) (49)

Dividing the volume of spherical shell of radius dK as shown in figure 8. by the

volume of one quantum state will give the total number of available states;
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N(interval ) = 2 dmi”dK (50)

T 3
8(7)
where the factor 2 takes into account the two spin states allowed for each quantum

state, the factor % deals with taking the octant of the sphere since we consider only

positive values for K, 4mK?dK is the volume of the shell as shown in figure 9 and

3
(%) is the volume of the quantum state.

Figure 9: Positive octant part of the sphere for Ky, Ky, K; >0

Comparing equation (50) to equation (46), we get.

_ LPK?dK
p(K)dK = = (51)
K and E are related; since we have
h2K?
E(3D — box) =

2m

2mE _ K2 and  dk = (L) dE (52)
h2 hv2mE
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Equation (51) becomes:

L} 2mE m
P(EMIE = o5 ) () 4F (53
Arranging equation (53):
p(E)IE =2 (2m)s VE dE (54)

where equation (54) gives the total number of quantum states in the region between E
and dE . Dividing equation (54) by L3 we will get the density of quantum states per

unit volume of the crystal as shown in equation (55).

g(B) =% (2m): VE (55)

The case of a particle in a 3-D infinite potential box is the simplest example
that is used to explain the density of states. Different potential systems would have
different density of states and this proportionality relation between g(E’) and E would

change as well [30], [31].
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Chapter 3: Exchange Correlation Potential

The difficulty in solving the Kohn Sham equation lies in the complication of
defining the exchange-correlation potential. Density functional theory, in practical
applications, is simple and accurate when compared to the experimental results. DFT
approximations have shown excellent results in solving the Kohn sham equation. In

this chapter, we will list some of these approximations.

3.1 The Generalized Gradient Approximation

3.1.1 Introduction

So far, we referred to solving the Kohn Sham equation for N particles system
by using the electron density as the main factor but can we do that in real systems.
Using the density only was the approach used in local spin density approximation
(LSD was the main approach to study the electronic structure for many years) which
cannot be used in system of varying densities. John P. Perdew proposed a new
approach in approximating the exchange-correlation potential by using the local
density along with its gradient, so instead of using equation 56-a in the LSD

approximation we can use equation 56-b:
ExPIn,ml = [ @rn(r) eec(n,m) (56-2)
where (r) = n; + ny and &,.(n, ny) is the exchange correlation energy per particle.
Egiin,m] = [ d®r f(ny,ng, Vny, Vny) (56-b)

From this point, researchers have been working to improve this approximation to be
practical to solve a real N particles problem. The literature of density functional theory

contains many approximations for the functional f( n;, ny, Vny, Vn,), one of the most
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Important approximation is Perdew-Wang 1991(PW91)[32] which we will be using
for calculating the potential via Vienna ab-initio simulation package, the other one is

PBE that we will be using under GGA approximation within WIEN2k package.

3.1.2 Theory

The form that the exchange correlation energy per particle always starts from
the uniform electron gas. The exchange correlation energy can be written in terms of

the exchange correlation hole 4 as shown in equation 57.

Ey = fo)L d/lfd3rfd3r/"(r)nxc,z(r’r) (57)

2|lr-r'|

where n, ; (r, ") is the exchange-correlation hole at coupling strength A.

Using LSD, the exchange correlation hole is well approximated as using a
uniform electron gas:

Neea(r,m) ~ nyg” [y, |1 —7'| = 0] (58)
Since LSD works best locally, in the regions around the electrons vicinity [33]. The
definition of the uniform electron gas density and exchange correlation energy are well

established but researchers were interested to improve the notion of a gradient

dependent functional f( n;, ny, Vn,, Vny).

One major approximation of the gradient dependent functional uses the second
order density gradient expansion of the exchange correlation hole, which was used by
Perdew-Wang 1991. This approximation has a problem since it describes systems of

slowly varying density, it does not describe the uniform electron gas as satisfactory as

4 Exchange-correlation hole is the region of space around an electron where the
probability to find another electron approaches zero due to coulomb repulsion and
Pauli Exclusion Principle.
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the LSD does, and restrictions must be considered when dealing with semi local form
of equation 56. PW91 has many other problems regarding the
approximatedf ( n;, ny, Vny, Vn,), the derivation of the functional is very tedious,
complicated and over parameterized. In 1996, Perdew, Burke and Ernzerhof (PBE)
developed new approach to find the exchange correlation energy. They started with

GGA for correlation energy only:
EE%An, ] = [dPrnfeg™ (15,8) + H(rs , ,0)] (59)

: : : / —n : :
where 7, is the local Seitz radius® (r; = (ﬁ) 3), & =""" s the relative spin

n

polarization, and t = Zlngln is a dimensionless density gradient. In the definition of the

[a+6)3+1-6"3]
2

parametert, @ (§) = is a spin scaling factor, kg, = \/4kp/ma, is the

Thomas-Fermi screening wave number and a,, is Bohr radius.
The construction of the H contribution is done under several assumptions.

1. Inthe limit t - 0 (the slowly varying limit), H - (e?/a,)B®3t? where =
0.066725. This assumption was studied by SHANG-KENG MA et al. by
subtracting the Hartree-Fock energy from the exact energy [34].

2. In the limit t — oo (the rapidly varying limit), H — —e2™/ where the

correlation term (equation 59) vanishes and the exchange density dominates.

These two assumptions (mainly) can be satisfied by the following ansatz:

® Local Seitz radius or Wigner- Seitz radius, the radius of the sphere with a volume
equivalent to the mean volume per atom in the solid.
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B 1+At?
H= (82/(10)}/@3X1n{1 + ;tz [m]} (60)
B Eunif -1
_B __Cc _
where = » [exp{ WDSBZ/%} 1] .
Under the uniform high density scaling (t - 0) ES%4[n,, n;] becomes:
GGA _ _ €[ 3 3 1
ESC4 = aofd rny®3 XIn[1 + st/®2+(xsz/®z)2] (61)

where s = |Vn|/2kgn. For s = 0 we recover the uniform gas LSD and EZ%4 reduces

to -oo.

On the other hand, the exchange energy is expressed as:
ESSA = [d3rn €™ Fy(s) (62)

Such that we recover the uniform gas limit Fx(0) = 1. The exact exchange energy

follows the spin scaling relationship:

Ex[2m]+Ex[2n]

2 (63

Ex[n,n] =

For a small density variation, the LSD does better job than the gradient approximation
and to recover the LSD we must have for Fy(s) - 1 + us? as s approaches zero

andFXC(rSJ Er S) - FX(rS -0, f)
PBE also discussed the importance of the Lieb-Osford bound:

Ex[ny, ny] = Exc[ny,ny] (64)

K

They assumed Fy(s) =1+ k — with ¥=0.804. PBE approximation shows very
(

us?

1+£55

K

satisfying results compared to the PW91, as shown in table 1 they both give same
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results however PBE is much easier to prove. PBE gives the researchers the chance of
improving the GGA by adjusting the value of k, which was done in 1998 by Zhang et
al [35]. Where they used k= 1.245 and they compared their results with the original
PBE as shown in (table 1) (revPBE represenet Zhang et al work) and the adjustment

showed better results.

Table 1: Atomization energy of some molecules in Kcal/mol ( 1eV = 23.06
Kcal/mol) using different approximations [35], [36]

Molecular atomization energy (kcal/mol)

Molecult

PWO91 PBE revPBE Exact

H2 105 104.5 105.3 109.2
CHa4 421 419.2 410.9 419.3
NH3 303 301.0 293.4 297.4
OH 101 109.5 106.3 106.4
H20 235 233.8 227.2 232.2
HF 143 141.7 137.8 140.8
Li2 20 19.7 19 24.4
N2 242 241 231.8 228.6
O2 143 141.7 132.6 120.5

Mean absolute error 8 8.1 49



39
Later from the same year Perdew, Burke and Ernzerhof replied to the adjustment done
by Zhang et al. and they justified that the improvement of the parameter k will improve
the energy calculations only but no other factors such as the bond length (table 2).
They suggested that users may employ LSD as a simple and of wide applicability
density functional and at higher level use GGA (U =0.804) since their approximation

is valid for both Quantum chemistry and condensed matter physics.

Table 2: Bond length in Bohr for some molecules using different approximations

[37]
Molecule LSD PBE revPBE Experimental
H2 1.447 1.418 1.413 1.401
CHg4 2.074 2.071 2.073 2.052
N2 2.071 2.084 2.089 2.072
NO 2.169 2.189 2.196 2.175
O2 2.279 2.306 2.313 2.281
F2 2.618 2.672 2.685 2.678

3.2 Modified Becke-Johnson Scheme
3.2.1 Introduction
Despite the success of the local density approximation and the generalized

gradient approximation discussed earlier, the problem with these two approximations

is that they neglected the derivative discontinuity of the exchange correlation energy.
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GGA set all the parameters other than those that appear in the LDA to be constant.
Becke-Johnson potential is a semi-local method, which leads the KS states with results

that are considered accurate compared to the experimental results.

The work done on this approximation started in 1983, A.D. Becke examined
the short range variation of the Hartree Fock exchange density by performing taylor
expansion[38]. In 1989, A.D.Becke and M.R.Roussel introduced a new exchange hole

model (locally) vER, where:

—(1—e‘x—lxe‘x)
v = (65)

Xgle ¥o

8nps

1
Where x = ab,, for an arbitrary a , b, (1) = [ ]3. Which was the starting

point that the scientists tried to improve [39].
3.2.2 Theory

The Hartree Fock equation may be expressed as [40]:
1 ) —
_EAdjia + [Vnuc + Vel + ng]lpia - Eialpia (66)

where V. is the nuclear attraction potential, V,,(r;) = Z(,ff—" d3r, is coulomb
12

repulsion interaction and the exchange potential V§;3, is written as;

1

_ .fll’fg(rﬂll);o 2P jo(r1)Yis(rs)
Ebz‘g(rﬂwio(rﬂ

X X

vO ) =

(o2

(67)

T12
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The first attempt to simplify equation (67) was to replace the orbital 1;4()

dependent by the density p;, = |;,|? which was introduced by Slater [41].

Equation (67) may be written as:

1 Vigr1)Vje 2V e 1)Yis(r2)

(Slatter) —_ ]
VXG () = Ps(r1) X ij T12 (68)
Another term can be defined now which is the exchange charge or the
exchange hole:
1 .
Pxo(Ty,12) = mmﬂ/)ia(rl)lpia(rzﬂz (69)
Therefore, V%™ can be:
(Slatter) _ Pxa(r1,r2) 43
Vie ()= —[ —, 4T (70)

The task now is to find a unique local potential that minimizes the total energy
of the slater determinant proposed by Hartree Fock (this is known as the optimized
effective potential). In 2006, A.D. Becke and E.R. Johnson found an approximation of
the exchange potential that depends on the total density only. They found that the

exchange potential is expressed as:

1[5 [ty
vy o) = Ve +2 2 [0 )

where VER(r) is the Becke- Roussel potential defined earlier, t,(r) =
%Z’i"zl Vi Vi o and p, (1) = §V=1|z/)l-,0|2 is the electron density [40].
In 2009, Tran and Blaha [42] proposed a modification on equation (71), as

shown in equation (72). This was more accurate as shown in (table 3) when calculating

the band gap of different solids.
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1[5 [2t,
Vi) = VB + (e -9 |5 [ @

where:

c= a+p [ [P0 sy (73)

Veen “cell p(r')
Veenr 1s the unit cell volume. a and B are two free parameters which were found
according to experimental results, fitting to be -0.012 and 1.023 respectively while the

band gap increases proportionally to the value of ¢ [39].

Table 3: The value of the band gaps for several solids using different approximations
along with the value of c calculated using equation (73)

Solid PBE MBJ Experiment C
HfO:2 4.09 5.83 5.7 1.44
ZnS 2.10 3.68 3.91 1.28
ZnO 0.82 2.71 3.44 1.42
SiO: 6.01 8.89 10.30 1.47
SrTiOs 1.88 2.7 3.25 141
TiO2 1.89 2.57 3.3 1.44
ZrO2 3.66 4.73 5.5 1.42
Cu20 0.53 0.82 2.17 1.32

Table 3 shows that MBJ improves the calculated band gap except for Cu.O
case where the band gap is underestimated. The value of ¢ may affect the calculated
band gap and it may be adjusted be hand to reach an optimized value that results a

band gap that meets the experiment but that means equation (73) is not general enough,
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though still the value obtained from equation (73) is not too far from the experimental

values.

3.3 LDA+U

One major failure of the density functional theory and its exchange- correlation
approximation is represented in the Mott insulators calculations. Other approximations

were necessary to fit real problems of such materials.

In the Mott insulators systems, the repulsion force between the electrons is
large enough to create a gap and change the conductivity features of the system as
shown in figure 10. When the electron coulomb repulsion U is large enough (larger
than the overlap W), the electrons are forced to localize on atomic like orbitals (Mott

localization).

A)

B)
m s
— T ]

Energy [eV]

4

Conduction
band

Band
gap {

Valence band

v

Figure 10: Schematic figure of the band gap a) The overlap between the valence
and the conduction band with an overlap width W for metals. b) Shows the
prevailing of the electrons coulomb repulsion on their Kinetic energy
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This phenomenon requires a full knowledge of the multi determinant nature of

the electron’s wave function not the single determinant proposed by Hartree-Fock.
Most of the known approximations (such as LDA and GGA) fail to represent the
insulating nature of these systems. The main problem with analyzing these systems
using the DFT approximation lies in the definition of the exchange — correlation
potential, which aims to delocalize the electrons by the incomplete cancellation of the

self- interaction between electrons in the coulomb integrals [43].

One way to solve the problem of a strongly correlated materials (such as the
simple transition metal oxides) is by using the Hubbard model. This model strongly
depends on the localized orbitals definition and determining the interaction
parameters. The main assumption is that electrons of d and f orbitals, which are
strongly correlated, are subject to a quasi-atomic interaction. Anisimov et al. defined
the coulomb energy required to place two electrons on same site U and they corrected
the known functional by adding a term which is called the Hubbard-like

interactionEy,,,p:

Epasru[n(M)] = Eppan()] + Egyp[{nig 3] — Epc[{nig}] (74)

where n(r) is the electronic density, n’? are the atomic orbital occupations for the
atom experiencing the Hubbard term and the last term is used to avoid double counting
of the interaction in both E; 4 and Ey,,;,. On the other hand, they defined the Hubbard
term with respect to the electron — electron repulsion potential as shown in equation

(75):
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1 _
Equw[{nl 1] = > Z {mm" |[Veelm'm")nl ml=7 .

{m},0,1

lo Inlo-ll "r (75)

+ ((m,m"|[Vee|lm'm"") — (m,m"|Vee|m"" m'Nmyimopin,

With:

(m,m"|Veelm'm"’y = ¥2L, 2:74:11:1( §=_k(lm|qu|lm’)(lm”

*
Yiq

Im'"") (76)

where [ is the angular momentum, FX are the radial slater integrals which are
considered as the model parameters (k = 0,1&2 corresponds to the d orbital, while
k= 6 is necessary when studying the f orbital. These parameters were redefined with

respect to the coulomb energy U and the exchange interaction J as follows:

_ 1
T (2l+1)2?

U Ymm{m,m'|[Vee|lm,m'y = F° (77)

1 F24+F*

J= mzmim’,m’<m: m'|Veelm',m) = 14 (78)
So that the double counting term will be expressed with respect to U and J:
Epcl(nig}] = Lion!(n! = 1) = T2 [n/"(n" = 1) + n (' — 1)) (79)

Anisimov et al. proposed that the linearized muffin tin orbitals (LMTO’s)®

calculations can be performed on super-cells where the occupation of the localized

® LMTO’s is an approximation used in LAPW where for LMTO’s the potential has a
spherical symmetric feature inside the muffin tin and constant in the interstitial
region.
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orbitals of one atom are restricted and limited as a start to run the calculations by

dealing with atomic like problem [44].

In 1991, Anisimov et al. ran some calculations and compared the results of
LSD with the results of LSD+U for the 3-d transition metal monoxides as shown in

table 4 which shows clearly how the insulating feature using LSD+U.

Table 4: Band gap calculations for 3-d transition metal monoxides [14]

Material ELsp ELsp+u Eexp
CaCuOz2 0 2.1 1.5
CuO 0 1.9 1.4
NiO 0.2 3.1 4.3
CoO 0 3.2 2.4
FeO 0 3.2 2.4
MnO 0.8 3.5 3.6

3.4 Hybrid Functional

The hybrid functional approach is a very successful in describing the molecular
properties of large molecules and solids (especially metals). It depends on mixing part
of the exact H-F exchange potential with the exchange- correlation potential from other
sources (approximations). One approach was derived by Heyd and Scuseria in 2003,

they developed a hybrid density functional based on a screened coulomb potential.
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They split the coulomb operator into long range and short range (to avoid the

divergence of the coulomb potentialﬂ ) using the error function:
r=0

1 _ erfc(wr) + erf(wr) (80)

r r r

2@ for the long-

r

where indicates the short-range component and

erfc(wr)
r

range component. erfc(wr) =1 — erf(wr) and w is an adjustable parameter. For

w = 0 the long-range component vanishes and the short-range component is
equivalent to % (the coulomb potential). Figure 11 [45] shows how this approximation

(with w = 0) let the exchange correlation energy decays exponentially with distance
from the center of cell ( just like the case for insulators where the exchange correlation

potential decays exponentially as a function of the band gap [45])

(LERT P 1 = " "
nal peld

B =

bt B 1ol Rt |
ey —a— SR.MF atw= 0152

:”’: Reghbars

= e o e | _
> G—E---10 5
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Oighhoes %
h?
l'hq__
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Distance from center cell in Angstrom

Figure 11: The decay properties of the screened coulomb potential (SR-HF) and
the Hartree Fock potential. SR-HF decays exponentially with distance from center
cell for carbon nanotube
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They used the hybrid functional results obtained by Perdew, Ernzerhof and
Burke who used their original GGA approximation PBE to determine a hybrid

exchange-correlation energy E5Z5°[46]:

Ex¢™ = akE¢" + (1 — a)Eg®® + E{PF (81)
Where a = % using perturbation theory.

Using the definition in equation (80) (splitting each term of the exchange

potential in equation (81) to short range and long range) equation 81 becomes:

EPBER = q ISR () + (1 — @) ESPP R (w) + EFPPMR (w) + EEPE (82)
Numerical calculations shows that the H-F and the PBE long range terms are
very small for realistic values of w, so they cancelled [45].
In 2004, Heyd et al. assessed the Heyd-Scuseria-Ernzerhof (HSE) screened
coulomb hybrid functional and calculated the band gap for several semiconductors and
compared it with other approximations as shown in table [47].

Table 5: Band gaps in [eV] for four semiconductors with three different numerical
approximations and experimental results

Material LDA PBE HSE Experiment
C 4.13 4.1 4.16 5.48
Si 0.52 0.71 0.78 1.17
BN 4.38 4.45 4.47 6.4
BP 1.23 1.35 141 2.4
MAE? 1.3 1.32 1.27

a: means absolute error



49

Chapter 4: Methodology

During the past, decades computer simulations based on density functional
theory and other quantum mechanical theories improved the material study field. The
development of such packages that manage to solve the Kohn Sham equation with high
efficiency and accuracy is not an easy task. In 1998, Walter Kohn shared the Nobel
Prize for chemistry, in recognition of his work in developing DFT, with John Pople
for developing the GAUSSIAN program package. The GAUSSIAN package is very
important to perform accurate DFT calculations for complex molecular systems until
today and the work on developing an equivalent package for solid state and material

science is an active field.

In this work, we have used the density functional theory implemented in
WIENZ2k package (Version 14.2) and the Vienna ab-initio simulation package VASP

(Version 5.3).

4.1 WIEN2k Package

WIENZ2K is a Fortran program that uses the full potential linearized augmented
plane wave to solve the Kohn-Sham equation and allows you to study various
properties of the material under study such as density of state, electron density, band
structure, optical properties, etc. Calculations with WIEN2k takes several steps
starting with building your structure, then initializing the calculations to guess an
initial density of electrons using a specific exchange correlation approximation, after
that we run the self-consistent cycle until we reach convergence so that at the end we

may run the desired study.
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In this work, we have used the parameters in table 6 to build our structure as
shown in figure 9. The geometric optimization was performed with the generalized
gradient approximation (PBEsol-GGA) developed by Perdew, Burke and Ernzerhof

in 1998 [35], [36].

Using equation (83) for the volume of the unit cell, the optimized lattice

constants were found.

V = a?c sin60

V = ar sin60 (83)
where = 2 .

Table 6: The parameters used to build the molybdenum disulfide structure

Parameter Value

Title MoS;
Space group P63/mmc, No 194 (2H)
Lattice constants a=b=3.16 A, c=12.29A
Angles A=p=90° vy =120°

Mo:x=2/3 y=43 z=14

Position of atoms Sx=13 y=23

z=0.1215
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Figure 12: The crystal structure of a) Monolayer MoS; b) Bulk MoSg, the
hexagonal lattice is clear

After rebuilding the structure with the optimized lattice constants, the exchange
correlation function we calculated using different approximations including the
generalized gradient approximation (PBEsol-GGA, Perdew08), The modified Becke-
Johnson, GGA+U and the onsite Hybrid functional to test their performance. After
running the self-consistent cycle for each approximation, the density of state and the
band structure were plotted and calculated for the following structures:

1. Bulk Molybdenum disulfide [MoSz] (Figure 12.b).

2. Monolayer Molybdenum disulfide [ ML_MoS;] (Figure 12.a).

3. MoS; with certain impurities including H, N and B (Figurel3.a.b.c

respectively).

4. Study the effect of pressure on the band gap.
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Figure 13 Interstitial substitution crystallography a) Hydrogen atom substitution
in Sulfur vacancy b) Nitrogen substitution in Sulfur vacancy c) Boron substitution
in Sulfur vacancy

4.2 VASP

VASP is a computer simulation for electronic structure calculation in the
atomic scale based on LAPW and pseudo potentials (projector augmented wave
method PAW)’. It approximates the solution of the Schrédinger equation within
DFT by iterative matrix diagonalization technique. VASP is a very efficient

software package for materials simulations, it was used to treat a system of 2744

"PAW is a technique used in ab initio electronic structure to generalize LAPW and
the pseudopotential (effective potential).
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(which is an extremely large supercell) atoms for simulating C defect in group 3

nitrides [48].

The most useful feature of this package is that it allows answering questions
that are not applicable using the laboratory experiments. One major example is the
study of the magnetic ordering in a nanostructured material (Nano-structured
material has different magnetic properties than their bulk) sine the information on

the local magnetic moment cannot be achieved experimentally [49].

There are many exchange-correlations functional that are implemented
in VASP such as GGA, LDA+U, HF, meta-GGAs, etc. In this thesis, we will be
using the first three approximations to perform our calculations. It requires four

input files to start the calculations, which are:

1) INCAR, it is the most important file during the calculations and it contains
many parameters that are adjusted to meet the study objectives either for
calculating the band structure, DOS or other features (usually kept as
default for the complexity of this file).

2) POTCAR, this file contains the pseudo potential of each atom in the
structure. In this study, pseudo potential is calculated using
potPAW_PW91).

3) KPOINT, it contains the K points coordination and the mesh size
(Monkhorst-Pack MP). | used 5x5x1 and 10x10x2 for geometry
optimization and DOS calculations respectively.

4) POSCAR, this file contains the geometry and the atomic positions; | used
Materials studio program to create the POSCAR files for my structure

shown in figures12 and 14.
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Before running any calculations, We calculated the equilibrium (optimized)
lattice constants just like I did using WIENZ2k, the optimized K points (mesh size) and

we used the default cutoff energy of 400 [50].

We used VASP to study the electronic properties of Bulk MoS», Mololayer

MoS; and MoS,-WSe; heterostructure figure 14.

174
o

Figure 14: MoS2 - WSe2 Heterostructure
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Chapter 5: Results and Discussion

5.1 Optimization

The first step of this study is to find the equilibrium optimized lattice constants
of our structure to build our cells (in both Wien2k and VASP). Using the experimental
values of the lattice constants (a and c) [51], energy versus c/a was plotted to find the
optimum value that corresponds to the minimum energy for WIEN2k calculations and
energy versus volume was plotted to find the optimized volume for the VASP

calculations (Figure 15). The constants were calculated using equation 83 as shown in

table 6.
a) Evs.cla b)
41937858 405
-19378.60 - -41.04
4937862 4 45
5
5 420
-19378.64 £
425
-19378.66 -
430
-19378.68 -
T T T T T T T T T T 435 T T T T T T T T T T T
0 5 0 5 10 15 90 100 110 120 130 140
% cla Volume

Figure 15: Optimization a) Energy in Rydberg [Ry] versus c/a % using WIEN2k
to find the optimized lattice constants b) Energy versus volume using VASP to
find the optimized volume and lattice constants
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Table 7: The lattice parameters (a,b and c¢) using WIEN2k and VASP with the mean
absolute error

Parameter WIEN2k VASP Experiment [52].
a=b 3.07 (A) 3.178(A) 3.16(A)

C 13.317(A) 12.62(A) 12.294(A)

cl/a 4.338 3.971 3.890

Vo 108.696 (A%) 110.381(A%) 106.316(A3)
MAE 0.985 1.1225 -

An extra optimization using VASP have been used to find the optimum mesh

size as shown in figure 16. The saturated mesh size to be 5x5x1.

414
416
418
420
422 ]
424 ]
426
428
430
432 ]
434 ]
436

Energy x1072

2xéx1 3xéx1 5xéx1 6xéx1 TX7x4
K-mesh

Figure 16: Energy versus K-mesh points to find the optimized k-mesh. K
mesh saturates at 3x3x1

We used the default cut off energy, which was 400 eV. Using these optimized

parameters, we rebuilt our structures and used the new files to run our calculations in

sections 5.2 - 5.4.
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5.2 Electronic Structure Calculations

Electronic structure calculations were performed by the two simulations
(WIENZ2k and VASP) using different approximations (GGA, MBJ, LDA +U and On-

site Hybrid functional.

5.2.1 Bulk MoS:2 Calculations

The electron density along the plane (110) is displayed in Figure 17, which
shows that the electrons are more concentrated along the molybdenum atom than the

Sulfur atom.

Figure 17: Electron Density around MoS; along the plane (110). The
density of the lines indicates the electrons density
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Four approximations were used to find the band gap of the bulk MoS; which
are GGA, LDA+U, on-site hybrid functional and MBJ implemented in the WIEN2k
package as shown in Figure 18 and 19. However, only three approximations were used
(GGA, LDA+U and onsite hybrid functional) implemented in VASP as shown in

figure 20.

The band gap of the bulk MoS: shows a clear indirect band gap semiconductor
(I' = K). The results are close to the experimental values obtained by Mak.K.F et al
[53] where they found that the bulk MoS: has an indirect band gap of 1.23 eV. While
MBJ approximation shows the most accurate results in WIEN2k package, the on-site
hybrid functional shows the most accurate result in VASP package as shown in table
8. The failure of GGA to produce an accurate result was predicted because, as we
mentioned earlier, GGA fails with TMID’s due to Mott localization and it

underestimates the band gap.

VASP produces more accurate results than the WIEN2k package does
comparing the percentage differences with respect to the experimental value with

12.03 % more accuracy in the GGA approximation.
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Table 8: The band gap of the bulk MoS> using different approximations implemented
in both VASP and WIENZ2k package

%o difference % difference

Approximation WIEN2K VASP
(WIEN2K) (VASP)
GGA 0.898 1.015 31.99 19.96
LDA+U 0.999 1.024 21.52 19.1
On-site Hybrid
0.986 1.501 22.8 18.98

functional

MBJ 1.176 - 5.29 -
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5.2.2 Monolayer MoS: Calculations

We used monolayer MoS: super-cell of size 2x2x1 to run my calculations with
lateral size of 6.14x6.14 and 6.36x6.36 for WIEN2k and VASP respectively (4 Mo
atoms and 8 S atoms). | found that the band gap changes from an indirect band gap
(the case of the bulk) to a direct band gap and it widens. Figure 21 shows the band
structure obtained by WIEN2K using different approximations while figure 22 shows
the VASP results. VASP shows less percentage difference compared to the WIEN2k
results where the difference was approximately 5% using the VASP simulation with

respect to the experimental value of 1.8 eV[53].

Fermi level was also calculated using VASP simulation. Comparing Fermi
levels of the monolayer MoS> with the bulk, a major reduction in the highest occupied

state occurs (from 6.19 to 1.709 eV using GGA) [54].

Table 9: Band gap and fermi energy level for monolayer MoS> using different
approximations

Approximation WIENZ2k VASP % difference % difference

(WIEN2K) (VASP)
GGA 1.325 1.7096 30.4% 5.19%
LDA+U 1.2903 1.711 33% 5.07%
On-site hybrid 1.31 - 31.51% -

functional.
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Figure 21: The band structure (left) and DOS (right) of monolayer MoS2 using a)
GGA b) LDA+U c) onsite Hybrid functional implemented in WIEN2k, which shows
a direct band gap



K-points

2
Density of States

a)
| ML MoS2- Band structure (GGA08) | | Monolayer MoS2 DOS using (GGAOS) |
—~ 1 - S
=
g 0- 0 |8
0 2
5 m
20
K-points Density of States
b)
| ML MoS2- Band structure (GGA+U) | | Monolayer MoS2 DOS using GGA+U |
—~~ i i 1 -1 - I;!
0 | | 13
= 0] ! 0 L5
3 : s :
c ' c
w m |

65

Figure 22: The band structure (left) and DOS (right) of monolayer MoS2
using a) GGA b) LDA+U implemented in VASP, which shows a direct band

gap
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5.2.3 Partial Density of States

Plotting the partial density of states for the valence orbitals of the molybdenum
and the sulfur atoms (Figure 23) shows the contribution of each orbital in the density
of states. Equations 84 and 85 shows the orbitals of the valence band for the atoms. As
predicted, the d orbital has the most contribution in the density of states and the s
orbital is barely showing. Comparing the different approximations there is a band
missing in the GGA+U approximation (beyond 5 [eV]) and is showing clearly in the
other approximations which may be due to the localization and the repulsion from

coulomb interaction (U) of the LDA+U approximation.

a) b :
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5 5
[0) (0]
5 i
10 10
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Figure 23: Partial density of states for the molybdenum atom and its s and d
orbitals using a) GGA08 b) GGA+U c) onsite hybrid functional d) MBJ
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The partial density of states for the sulfur atom are shown in figure 24. The
contribution of the sulfur atom is less than the contribution of the molybdenum atom
but the same feature appears in the GGA+U with the missing band beyond 5 eV. For
the sulfur atom, the p orbital contributes more than the s orbital. For both atoms, GGA
and MBJ shows more states than does the other two approximations and it may be due

to the delocalization of inherent these approximations.
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Figure 24: Partial density of states for the Sulfur atom and its s and p orbitals
using a) GGAO08 b) GGA+U c) onsite hybrid functional d) MBJ
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5.3 Effect of Interstitial Substitution and Heterostructure on the Electronic

Properties

Previous studies have shown that adsorption of non-metal (insulators and
semiconductors) material on a small system (dimensionally small such as the 2D
MoS>) will induce a magnetic moment. In 2010, He and his coworkers calculated the
magnetic moment for several non-metal atoms adsorbed monolayer MoS,. They found
that the magnetic moment of H-, B-, N- adsorbed Monolayer MoS; are 1.0, 1.0,1.0 per
4x4 super cell respectively. In this study, | will investigate the effect of these dopants
on the band gap of Monolayer MoS; will be investigated. The electronic configuration

of the Hydrogen, Boron and Nitrogen are shown in equation (86).

[H] - 1S5, [B] — [He]25%2pt, [N] - 15225%2p3 (86)

As shown in figures 25, 26 and 27, the substitution of boron in sulfur vacancy
(done initially using no spin polarization within GGA), The bands retain their band
gap but other bands were created inside the gap itself which is consistent with the
previous results of Yue. et al. and He. et al.[50], [55]. The substitution of boron caused
a transition to the metallic phase, as Yue proposed, this may give a chance for spin
separations or filtering, so a second calculation was done taking the spin polarization
into account and performing the LDA+U approximation for the exchange - correlation
potential. The results show that for the up spin channel a direct band gap is detected
just like Yue’s results but with an extra band which is due to the Hubbard potential
and the repulsion coulomb interaction that is absent in GGA used by Yue. However,
the down spin channel shows bands in the middle of the gap shifting the semiconductor

behavior to a metallic behavior.
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The Nitrogen substitution in a Sulfur vacancy shows a clear direct band gap

just like the pure monolayer MoS: with a reduction in the band to reach 1.3 eV. While
the Hydrogen atom was substituted in S vacancy and its band structure shows a
metallic behavior just like the Boron substitution, so a spin polarized calculations using
LDA+U was performed. The up-spin channel shows a direct band gap of 0.71 eV
which is less than half the monolayer band gap with a valance band maximum of
-0.68566 [eV] and a conduction band minimum of 0.028 [eV]. The down spin channel
showed a similar direct semiconductor behavior with a band gap equals 0.709 [eV].
In both channels, new bands were created deep inside the MoS, band gap
(between -0.02 and 0.48 [eV]) these new bands are responsible of the metallic behavior

after the substitution.

Lastly, since the two-dimensional materials may be formed in heterostructures
with no mismatch as discussed earlier. WSez — MoS: (WSe is another TMID’s layered
2D material) heterostucture was investigated using LDA+U implemented in VASP,
the band structure is shown in figure 28. The valence band maximum (VBM) was
found to be 0.73 eV while the conduction band minimum (CBM) was 0.83 eV which
is in agreement with the previous reported by Chiu et el.[56]. They found the VBM
0.76 and the CBM 0.83 eV. The band structure of MoS; was packed by bands, which

I had to remove some to be able to interpret the structure.
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Figure 25: Band structure of ML MoS: with B substitution in Sulfur vacancy
using a) GGA b) up spin channel ¢) down spin channel

70



b)

Energy [ eV]

Energy [ eV]

Energy [ eV]

| Density of statae with H atom subsfitution [ GGAQS] |

Band structure with H atom substitution [ GGAQS] I

T T
Energy [ eV]

vacancy using a) GGA b) up spi

‘~ <
Sy
»-«r :
. —— v/ '
: / E
> =
T I| T T T |/>'6§;%f T
R K A g 10 2
K point Density of state
\ Band structure with H atom substitution [ GGA+Ulup] I Density of statae with H atom subsfitution [ up]
0 S = % >
1 E | N
: : : )
; : : 0
T ! . c
S——"
r ) M K A 0 10
K point Density of state
Band structure with H atom subsfitution [ dn] Density of statae with H atom substitution [ dn] I
— 09 09— ]
1/;{
ST——— | =
E——————
Y] -
1 M K ' A0 10
K point Density of state

n channel ¢) down spin channel

Energy [ eV]

71

Figure 26: Band structure of ML MoS> with Hydrogen substitution in Sulfur
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5.4 Effect of Pressure on the Electronic Properties

Pressure investigation is essential to improve our understanding about many
physical properties of the materials. In 2013 Bandaru et al. investigated the effect of
pressure up to 51 GPa using Raman spectroscopy [57]. They showed that the
diffraction pattern stays the same up to 23 GPa but at 26 GPa, the intensity of certain
peaks dropped. At 17 GPa a new line emerges which suggests the presence of another
phase. In 2014, Zhen-Hua Chi et al. proposed that inducing pressure is an excellent
way to change the lattice without impurities intervention. They conducted their
experiment using X ray diffraction, Raman spectroscopy and electrical conductivity
measurements. They found that by increasing the pressure up to 20 GPa a new phase
emerges ( metallic phase) and appears along with the semiconductor phase until 40
GPa is reached where the transition is completed and MoS, becomes metallic [58].
They explained this transition by the collapse in the c-lattice constant, the volume and

due to the interlayer bonding.

Following Bandaru and Chi work [57] [58], an investigation of the positive and
negative pressure was induced using WIEN2K package within MBJ approximation.
Pressure up to 50 GPa was applied on a bulk MoS; and as low as -30 GPa. The volume
of MoS> changes while applying pressure as shown in figure 29. As experiments
showed that, the band gap decreases with increasing pressure for the reasons stated by
Chi et al. Figure 30 shows the behavior of the band gap with respect to pressure, which
is consistent with the experimental results. A saturated region is observed beyond -25
GPa where the energy approximately stabilizes, it is important to note that the volume
also will not vary if pressure was increased beyond -30 GPa (Unfortunately there is

not much information in the literature regarding the negative pressure). The band gap
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and the DOS for Negative pressure are shown in figures 31a and 31b respectively. The
positive pressure induced band gap reduction is shown in the band structure and DOS

in figures 32 and 33 respectively.

Figure 29: Behavior of the volume with respect to pressure
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Figure 30: Behavior of the band gap with respect to pressure (While
pressure increases the band gap decreases)
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Table 10: Induced band gap reduction with increasing pressure. Pressure, VVolume,

lattice parameters and Band gap were calculated

Pressure  Volume a(Bohr) ab(A) | c(A) BG (eV)
(GPa) (Bohr)?3

-10 755.6 6.218 3.23 11.724 0.41886
-15 793.8 6.32 3.286 11.928 0.45517
-20 846.8 6.46 3.359 12.193 0.48685
-25 930.8 6.661 3.464 12.52 0.46905
-30 1111.8 7.0717 | 3.677 13.35 0.47199
10 665.3 5.959 3.098 11.246 0.2758
15 650.49 5.915 3.076 11.165 0.23998
20 637.4 5.875 3.035 11.090 0.2067
25 625.71 5.837 3.019 11.017 0.172
30 615.15 5.806 3.003 10.959 0.1407
35 605.575 5.775 2.988 10.901 0.1073
40 596.79 5.747 2.9749 10.848 0.0761
45 588.7 5.721 2.962 10.799 0.0462
50 581.21 5.697 2.950 10.753 0.016
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Figure 32: The band structure of MoSz under positive pressure. The arrows show the

direction of increasing pressure
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Chapter 6: Conclusion

Molybdenum disulfide is a promising class of material for next-generation
electronics, as it is the only 2D material yet discovered which has an inherent band
gap. It paves the way to a new generation of applications in the optical and electronic
industry along its lubricant applications. In this approach, we used Generalized
gradient approximation, Modified Becke Johnson, LDA+U and hybrid functional
implemented in WIEN2k package and VASP (except MBJ in VASP) within DFT. We
have shown that MoS: (an indirect band gap semiconductor), in its monolayer form,
has a direct band gap (1.8eV) in the visible range (1.6-3.1 eV) which makes it an
excellent candidate for optical applications and increases the possibility of creating an
electron-hole pair. Our study shows that the manipulation of the monolayer MoS; band
gap can be done using substitutional impurities and induced pressure and the
metallization is possible which even widens the range of its applications. Metallizing
partial size of the MoS, sample used for electronic applications where high

conductivity and low resistivity are required.

We were limited by the size of our super-cells, bigger super cells would give
even better results this is due to the insufficient computer capability (In order to study

bigger supercells, super computers is needed).

Further investigation to find the effect of temperature and analyze the
correlation between the two effects, pressure and temperature is recommended.
Studying graphene- MoS; heterostructure is a very promising idea as well that is

required for future applications.
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