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Bone homeostasis is dependent on the balanced actions of osteoclasts which resorb 

bone and osteoblasts which form new bone.  A disruption of the bone remodeling process 

can lead to skeletal disorders including osteoporosis, arthritis and many inheritable 

skeletal diseases.  Mechanical stresses generating from orthodontic appliances can lead to 

craniofacial bone remodeling and facial bony defects. In addition, defects in bone 

modelling or remodeling in the oral and craniofacial system may require orthognathic 

surgery as well as pharmacologic approaches for bone regeneration. 

Suture expansion is a very important clinical approach to correct maxillary width 

deficiency but has a high potential of treatment relapse. Accelerating bone formation and 

mineralization in the mid-palatal suture during suture expansion may be beneficial in 

preventing relapse of the arch width and reducing the retention period. Pyk2-mediated 

signaling pathways are involved in osteoclast and osteoblast function. Pyk2 knock-out 

mice have augmented bone formation and bone mass, suggesting that therapeutic 

strategies that target Pyk2 may be useful to enhance bone remodeling and prevent suture 

relapse during suture expansion.  

 

 Purpose 

In this study we examined the role of Pyk2 in bone formation and suture remodeling 

in the mid-palatal suture following rapid maxillary expansion.  Pyk2 knock out (Pyk2-

KO) and wild-type (WT) mice received no expansion (0 g), 10 g or 20 g force of rapid 

maxillary expansion for 14 days using nickel titanium spring expanders.  Three 

dimensional (3D) morphometric analysis of the suture and histomorphometry were used 
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to detect changes in bone volume to total volume (BV/TV), bone formation rate as well 

as osteoclast and osteoblast activities in vivo.        

 

 Hypothesis  

Our null hypothesis (H0) was that there would be no difference in the mid-palatal 

suture bone mass between Pyk2-KO mice and WT mice following suture expansion. Our 

alternative hypothesis (HA) was that Pyk2-KO mice would show increased mid-palatal 

suture bone mass following suture expansion.   
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Rapid maxillary expansion (RME) is an effective technique to increase the 

transverse dimension of the mid-face to correct posterior crossbite and relieve dental 

crowding with a narrow maxillary dental arch [1] . When the midpalatal suture opens, the 

maxillopalatine complex and surrounding tissues also receive expansion force, which can 

induce suture disjunction and increase bone remodeling in adjacent craniofacial sutures, 

resulting in an increase in the transverse dimension of the entire midface [2].This 

technique uses an expander to separate the midpalatal suture, induce new bone deposition 

at the suture bone margins, and finally reach the goal of widening the maxillary arch. 

 Although rapid maxillary expansion (RME) is commonly used to open the 

midpalatal suture and widen constricted maxillary arches in orthodontics, it has a high 

tendency for treatment relapse. After expansion, soft and bony tissues within the suture 

exert resistance forces that tend to pull the two palatal shelves back to their original 

unexpanded position. Even though new bone forms at the suture margins, it is usually 

insufficient in density and quality (immature bone) to withstand the resistance force.  To 

minimize relapse, a long retention period of 3 to 6 months is usually recommended to 

prevent relapse and allow new bone to grow and mature in the expanded suture.  Ideally, 

increasing bone volume and mineral density in the expanded suture will likely shorten the 

retention period after expansion. 

New bone formation during suture expansion occurs in two stages. During the first 

stage an initial traumatic response is followed by a period of connective tissue repair and 

wound healing.  During the second stage, the new bone deposition occurs perpendicular 

or parallel to the bony edges of the suture in tension areas to re-establish the original bone 

morphology [3, 4]. Unfortunately, in RME, the rate of suture expansion often exceeds the 
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rate of bone formation within the suture. The prolonged suture gap leads to a high 

potential of treatment relapse because the connective tissues between the separated bones 

tend to pull the maxillary bones back into their original positions. This leads to the 

reduced treatment effects and requires an extensive retention period to decrease the rate 

of relapse [5]. A previous animal histologic study and a computed-tomography evaluation 

on patients have shown that the retention time for the reorganization and restoration of 

the bone density of suture tissue is at least 6 months [6, 7].  In order to shorten the retention 

period and obtain ideal treatment effects of RME in patients with constricted maxillary 

arches, strategies have to be employed to stimulate bone formation within the suture 

during RME treatment [1, 8, 9].  

As joints, sutures unite bones, absorb and transmit mechanical stresses, and also play 

a role as growth sites adapt to the change of the local mechanical environment [3, 10]. 

Craniofacial sutures are subjected to loads from natural activities, such as intermittent 

force from mastication, cyclic loading from pulsation of blood vessels, and quasi-static 

force from growth of neighboring tissues [10]. The remodeling of suture and adjacent 

bones occurs in response to functional demands caused by mechanical loading [4, 11, 12]. 

Orthodontists commonly use expanders to open midpalatal sutures with mechanical 

forces to augment the maxillary width [13]. Hou et al. [14] demonstrated that bone 

formation was more active in the suture after application of the expansion force 

compared with that of the suture without any intervention. Moreover, expansion forces 

across the midpalatal suture promote bone resorption through activation of osteoclasts 

and bone formation by increasing proliferation and differentiation of periosteal osteoblast 

cells. Therefore, despite being applied exogenously, this orthodontic force will be 
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transmitted as mechanical stress and strain within the suture, which in turn will induce 

local gene expression and the differentiation, proliferation and matrix synthesis of 

osteoblasts and chondrocytes.  Osteoclast activity within the suture is also required to 

enable sutural remodeling and growth [15]. 

The hard palate of a mouse contains three sutures from front to rear on the transverse 

plane; a midpalatal suture between the first and second molars, a transverse palatine 

suture, and an interpalatine suture at the posterior end [16]. These sutures allow the palate 

to grow in two directions; widen in the lateral direction (midpalatal and interpalatine 

sutures), and elongate in an anteroposterior direction (transverse palatine suture).  There 

are significant differences in the tissue structure, bone density, and cell number among 

the three suture types. The midpalatal suture is an end-to-end suture in mouse. It is the 

least interdigitated among the three sutures and the most common area for suture 

expansion [13, 16]. The midpalatal suture mainly consists of unmineralized matrices, 

including polygonal mesenchymal cells, secondary cartilage and fibrous tissue in the 

middle zone between two cartilaginous areas [4, 17]. The existence of the unmineralized 

suture mesenchyme is essential for the continuous growth of the adjacent bones.  The 

mesenchymal progenitor cells in unmineralized sutures have the capability to 

differentiate into fibrogenic, chondrogenic, and osteogenic lineages [12]. Mechanical force 

enhances the differentiation of mesenchymal cells in the suture [18, 19].  

RME initiates a mild injury to the suture which is followed by a proliferative repair 

mechanism that begins soon after injury. Injury to connective tissue usually results in scar 

formation. However, within the suture, instead of forming scar tissue, fibroblast activity 

pulls the palatal shelves back to their original position, leading to suture relapse [4]. 
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Secondary cartilages are also found in the sutures and cover the front edges of the rodent 

animal sutures. Secondary cartilage is chiefly composed of chondrocytes embedded in an 

extracellular matrix. The presence of secondary cartilages, as a resilient tissue, is 

regarded as a sutural adaptation to mechanical forces, such as compression, tension and 

shearing stresses [17, 18]. Bone tissue has a low tolerance for these types of force, and 

secondary cartilage could provide a degree of structural protection. Secondary cartilage 

also has the potential of endochondral ossification in suture [20]. 

Osteoblasts and osteoclasts are the two major bone cell types that regulate the bone 

remodeling process.  Bone remodeling involves a balance between the bone formation by 

osteoblasts, and the bone destruction by osteoclasts. Unlike osteoblasts which 

differentiate from mesenchymal stem cells, osteoclasts are derived from the 

hematopoietic monocyte-macrophage lineage. The intercellular communication between 

osteoblasts and osteoclasts is very important for bone homeostasis and dysfunction in this 

process can lead to bone diseases.  Osteoblasts play a key role in the differentiation and 

function of osteoclasts by producing several factors, such as receptor activator of the NF-

КB ligand (RANKL), macrophage colony stimulating factor (M-CSF), osteoprotegerin 

(OPG), interleukin-1 (IL-1) and tumor necrosis factor (TNF) [21, 22].  OPG is a secreted 

product and blocks the ability of RANKL to bind to the RANK receptor in osteoclasts, 

thereby reducing osteoclasts differentiation.  Therefore, the RANKL/OPG ratio is critical 

regulator of osteoclast activity. 

Skeletal tissues develop via two distinct pathways; intramembranous and 

endochondral ossification. Intramembranous ossification occurs when the pluripotent 

mesenchymal stem cells condense and become the osteoblast lineage and eventually 
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differentiate into osteoblasts. Another process of ossification is known as endochondral 

ossification. This process begins with a condensation of mesenchymal stem cells. The 

stem cells first differentiate into chondrocytes, form a rigid template of cartilage and are 

eventually replaced by osteoblasts [22] . In a growing plate of long bone, the cartilage 

template transforms into bone and includes a series of microscopic regions including the 

resting zone, proliferative zone, hypertrophic zone and ossification zone. The 

hypertrophic stage is the last stage of chondrocytes differentiation and is characterized by 

a large cell volume, low nucleus to cytoplasm ratio and active secretion of the cartilage 

matrix [23]. In general, the nasomaxillary bones develop and grow through 

intramembranous ossification [3]. However, endochondral ossification also plays a 

significant role in mandibular development, long bone formation and growth, as well as 

fracture healing.  

When a tension force is applied, many cytokines regulating bone regeneration and 

remodeling, such as transforming growth factor-β (TGF-β), bone morphogenetic protein-

2 (BMP-2) and vascular endothelial growth factor (VEGF), are secreted by cells present 

in the suture [22, 24]. These cytokines promote the bone repair process. In independent 

studies, Liu et al. [8] and Lai et al. [25] implanted absorbable collagen sponges containing  

recombinant human bone morphogenetic protein-s (rhBMP-2) over craniofacial sutures 

in rabbits or rats, respectively.  Both laboratories found that rhBMP-2 promoted bone 

formation in the expanded suture and decreased the relapse ratio (the rate of decrease in 

distance). Lee et al. [26] reported that the relapse of mechanical sutural expansion was 

decreased by the injection of bisphosphonate (etidronate), an inhibitor of osteoclastic 

bone resorption, in rat sagittal sutures combined with mechanical retention. 
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Pharmaceutical aids may therefore be therapeutically beneficial to the inhibition of 

relapse and shortening of the retention period during rapid expansion. However, the 

application rhBMP-2 and bisphosphonate can lead to medical complications. The former 

may induce ectopic bone formation, osteolysis and suture fusion [8, 27]; the latter may 

result in bisphosphonate-related osteonecrosis of the jaw [28]. Therefore, there is a clinical 

need to find new ways to increase bone mass and bone formation in the suture. 

The protein tyrosine kinase 2 (Pyk2) is a mediator of intracellular protein signaling 

pathways. It has been well established that genetic deletion or pharmacologic inhibition 

of Pyk2 regulates bone remodeling and improves osteogenesis [29-31]. Pyk2 knock-out 

(Pyk2-KO) mice, which lack the Pyk2 gene, have normal bone development but bone 

mass and bone formation are increased [30, 32]. Compared to wild-type (WT) mice, Pyk2-

KO mice demonstrated a significant increase in bone volume to total volume (BV/TV), 

trabecular number, trabecular thickness and trabecular volumetric bone mineral density 

(BMD) in both the distal femur and lumbar vertebrae [29, 30].   

The high bone mass of Pyk2-KO mice is due to both increased osteoblast activity as 

well decreased osteoclast activity [30, 32]. Pyk2 is highly expressed in osteoclasts and 

localizes in the actin and integrin-rich adhesion domain known as the “sealing zone” 

following osteoclast adhesion [29, 31, 33]. Pyk2-KO osteoclasts fail to form sealing zones 

and exhibit defects in bone resorption [29, 31, 33]. Pyk2-deficiency also regulates the 

differentiation of early osteoprogenitor cells across species and affects both 

osteoblastogenesis and osteoblast activity [30]. 

Osteoblast differentiation is a multi-step series associated with cell proliferation, 

matrix mineralization and matrix maturation [34]. The matrix maturation phase is 
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characterized by maximal expression of alkaline phosphatase.  Analysis of bone markers, 

such as alkaline phosphatase (ALP), osteocalcin and osteopontin, is frequently used to 

characterize osteoblasts activity [35]. Young et al. [36] found that under fluid shear stress, 

primary calvarial osteoblasts from Pyk2-KO mice showed increased c-Fos and COX-2 

proteins, both of which play roles in bone remodeling by transcriptional activation of 

bone matrix proteins. Buckbinder et al. [30] reported that daily administration of a 

pyrimidine-based Pyk2 inhibitor increased bone formation and blocked bone loss in rats. 

These studies indicate that under normal physiological conditions, Pyk2 exhibits an 

inhibitory effect on bone mass and further suggest that pharmacologic inhibition of Pyk2 

may increase bone mass. 

Currently, the role of Pyk2 in chondrocytes is not well defined. A limited number of 

reports suggest that the Pyk2-mediated pathway may regulate collagenase expression in 

chondrocytes in vitro.  In two studies using chondrocytes grown in vitro, it was shown 

that chemical inhibitors of Pyk2 decreased matrix metalloproteinase (MMP) upregulation 

in response to fibronectin fragments, which are known to enhance cartilage damage [37, 38]. 

Although no studies have been reported for the role of  Pyk2-mediated signaling pathway 

in mechanically stimulated chondrocytes, the focal adhesion kinase (FAK), which is 

highly related to Pyk2, has been shown to be activated by ultrasound-induced 

mechanostimulation [39] and has been shown to be involved in chondrogenic progenitor 

cell migration and cartilage healing [40]. 

Based on the above studies, we hypothesized that inhibition of Pyk2 may enhance 

suture bone formation under orthodontic mechanical stimuli. In the current study, we 

used global Pyk2-KO mice to study bone formation and suture remodeling in the 
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midpalatal suture created by rapid maxillary expansion.  Custom manufactured nickel-

titanium springs were used to open the midpalatal sutures in this study due to the unique 

properties of Ni-Ti alloy in shape memory and super-elasticity which allow the springs 

when deformed to return to their original configuration.  Ni-Ti springs can dissipate and 

maintain a stable, constant force on the midpalatal suture rather than abrupt force from 

the stainless steel springs [41].  Our studies suggest that inhibiting Pyk2 during RME may 

be beneficial in correcting bone loss and preventing relapse of the suture. 
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Animal procedures 

Pyk2-KO (-/-) mice were described previously [29] and were generously provided by 

Pfizer (Groton, CT, USA). Mice were bred as heterozygotes and crossed to generate 

Pyk2-KO mice and WT littermates. Pyk2-KO mice have been backcrossed more than 10 

generations onto a C57BL/6 background.  Thirty-six Pyk2-KO and thirty-six WT 6-

week-old male mice were used in this study, approximately weighing 22-25 grams each. 

The six-week-old mice were in growing phase, and their first and second maxillary 

molars were fully erupted. All Pyk2-KO and WT mice were randomly and evenly 

assigned to three force groups; 0 g (serve as controls), 10 g or 20 g expansion force 

groups (n=12 per group). The control group did not receive any intervention (0 g). The 

animals in the 10 g and 20 g force groups received spring expanders made of 0.008” and 

0.010” nickel titanium (Ni-Ti) wires (G&H Orthodontics, Franklin, IN) to expand the 

mid-palatal suture, respectively. The two ends of spring were inserted between the first 

and second molars underneath the proximal contact points. The appliances were bonded 

bilaterally on the maxillary molars with light cured composite resin (Transbond, 3M 

Unitek, CA) (Fig. 1). Half of the mice in each group was used for histology analysis (n=6 

per group); the other half was assigned for fluorescence analysis (n=6 per group). Each 

animal was injected with alizarin complexone (MP Biomedical, Solon, OH) at 25 mg/kg 

body weight on day 1 and calcein (Sigma, St. Louis, MO) at 20 mg/kg body weight on 

day 11. All the bone labels were given once a day by intraperitoneal injection.  

All mice were fed with the same ground diet and housed throughout the experiment 

in environmentally controlled rooms at Indiana University School of Dentistry 

Bioresearch Facility. Mice were euthanized on day 14 after suture expansion. The animal 
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procedures (DS000885R and DS0000916R) were reviewed and approved by the 

Institutional Animal Care and Use Committee of Indiana University School of Dentistry.  

 

Tissue processing 

The maxillae including midpalatal suture were dissected and fixed with 10% 

buffered formalin phosphate, which contains 4% formaldehyde (Fisher Scientific, Fair 

Lawn, NJ), for 7 days before X-ray imaging. After micro-CT scanning, thirty-six fixed 

specimens without bone labels were demineralized in 10% neutralized 

ethylenediaminetetraacetic acid (EDTA, PH 7.4) for 14 days and embedded in paraffin 

for histological study. Another thirty-six undecalcified maxillae injected with bone labels 

were embedded in methyl methacrylate (MMA) resin for fluorescence study. 

 

Micro computed tomography scanning 

The fixed intact maxillae were wrapped in paraffin and affixed to the scanning stage. 

These samples were scanned using high-resolution micro computed tomography at a 

resolution of 8 µm pixel size (Skyscan 1172, Kontich, Belgium). The system was set at a 

source of 59kV/167µA, rotation angle of 180° with a rotation step of 0.45 °. Projection 

images were reconstructed using the NRecon software (Version 1.6.3.2, SkyScan).   

 

Three dimensional micro computed tomography analysis 

3D morphometric analyses (Ctan software, Version 1.10.1.0, SkyScan) were 

performed by selecting the palatal bone regions to obtain the bone volume fraction. The 

regions of interest (ROI) of suture consisted of the midpalatal suture bony edges, as well 
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as their bilateral extensions for 200 μm on each side with anterior and posterior 

boundaries at the notches of the palatal process (Fig. 2-A and B).  The suture width (or 

remaining suture gap after expansion) was measured by tracing the two bony edges of the 

midpalatal suture using Image Pro Plus software (Version 6.0.0.260; Media Cybernetics, 

Bethesda, MD) (Fig. 2-C). The width of the maxillary bone was measured as the distance 

between canals of palatal roots of the right and left first molars using same software (Fig. 

2-D).  

 

Fluorescence analysis 

The maxillae embedded in MMA resin were cut at 5 µm along the coronal plane 

between the first and second maxillary molars. The sections were viewed and the images 

were taken with a fluorescence microscope (Nikon DXM1200, Melville, NY) with 40X 

magnification. 

 

Histomorphometry 

Serial 5-µm-thick paraffin-embedded sections of decalcified maxillae were made in 

the coronal plane in the same area as the fluorescence analysis. These sections were used 

for Hematoxylin and Eosin staining (H&E) for morphological analyses, Tartrate 

Resistant Acid Phosphatase (TRAP) staining, Alkaline Phosphatase (ALP) detection and 

Alcian blue staining for visualizing the osteoclasts, osteogenesis and chondrocytes, 

respectively. 

H&E staining is a routine histological technique to demonstrate tissue structures and 

condition. H&E stained sections were observed for morphological alterations under an 
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inverted microscope system (Leica DMI 4000B, Leica microsystems), and the 

microscopic photographs were taken at 50X and 100X magnification. The changes of 

suture morphology were compared among different types of mice and expansion forces. 

The width, height and area of fibrous region in the midpalatal suture were measured by 

tracing the interface of chondrocytes and fiber tissue using Image Pro Plus software.  The 

width was defined between parallel chondrocytes of front bone edges. The height was 

measured between nasal side and oral side chondrocytes. The area was the whole fibrous 

region surrounded by chondrocytes. 

TRAP is a metalloprotein enzyme, highly expressed in osteoclasts. TRAP stain was 

detected by using a histochemical procedure described by Erlebacher A [42]. Osteoclasts, 

the multinucleated TRAP-positive cells appearing in the whole ROI, as previously 

defined in the coronal plane of the micro-CT images, were counted under the same Leica 

inverted microscope at high magnification (100X). The ratio of the bone surface area in 

direct contact with osteoclasts versus the total bone surface area (osteoclast surface/bone 

surface; Oc.S/BS) in each ROI was calculated using Bioquant Osteo software (Bioquant 

Image Analysis Corporation, Nashville, TN). 

ALP is the most widely recognized biochemical marker for osteoblast activity and 

plays a role in bone formation. ALP expressions were examined by 

immunohistochemistry (IHC) using rabbit anti-mouse ALPL antibody (TA307702, 

OriGene Technologies, Rockville, MD) according to the manufacturer’s instructions. 

Briefly, the serial sections from each sample were boiled for 3 minutes in 10 mM citrate 

buffer (PH 6.0) to retrieve the antigens. Then the sections were blocked with 3% goat 

serum (MP Biomedicals, Auckland, New Zealand) for 30 minutes at room temperature, 
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incubated overnight at 4°C with anti-mouse ALPL at 1:400 dilution. The signals were 

visualized after incubation with a secondary detection system (DAB 150 kit, Millipore, 

Billerica, MA). Normal goat serum used as the substitution of primary antibody for 

negative control did not reveal any signals (figure not shown). The photomicrographs of 

ALP signal on midpalatal suture and periodontal tissue were detected using the Leica 

microscope.  

Alcian blue staining can detect proteoglycans (PGs), sulfated and carboxylated acid 

mucopolysaccharides, which are important in the production of the extracellular matrix of 

chondrocytes and cartilaginous elements. Alcian blue staining was used to detect the 

cartilage area and hypertrophic chondrocytes following the protocol described by 

Sheehan DC [43]. The cartilage area was defined as the metachromatic regions on alcian 

blue stained sections and measured using Image Pro Plus software. Hypertrophic 

chondrocytes have unique phenotypic traits, large and round. The hypertrophic 

chondrocyte numbers were counted under the Leica microscope.   

 

Statistical analysis 

With a sample size of 6 mice per level of expansion force for the Pyk2-KO and WT 

mice, our study was predicted to have an 80% power to detect a difference of 3% in 

measurements.  Two-way ANOVA was used to evaluate the effects of different 

magnitudes of expansion force on suture width, maxilla width, the ratio of bone volume 

to tissue volume, the ratio of the bone surface area in direct contact with osteoclasts 

versus the total bone surface area, the width, height and area of fibrous tissue, the 

cartilage area and hypertrophic chondrocyte number. Student T-test comparisons were 
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used for comparing differences between Pyk2-KO and WT mice among force levels. The 

differences were considered statistically significant at p<0.05. Statistical support was 

provided by Elizabeth Moser, Biostatistician, School of Public Health.  



20 
  
 

 

 

 

 

 

 

 

 

 

 

 

 

RESULTS 
  



21 
  
 

General effects of suture expansion in mice. 

In the current study, custom manufactured nickel-titanium springs were used to open 

the midpalatal sutures.  Ni-Ti alloy exhibit the properties of shape memory and super-

elasticity which allow the springs when deformed to return to their original configuration.  

We chose two expansion forces of 10 g and 20 g.  We confirmed the force exerted by the 

compressed/activated springs using a digital force gauge (Lutron FG-5000, Lutron 

Electronic Enterprise Co., Taipei, Taiwan). The trans-palatal distance (measured between 

the left and right interproximal contacts of the maxillary first and second molars) was 3.8 

µm in both the WT and Pyk2-KO groups. Three activated springs form the 10g group 

delivered 10±1g force while 2 springs from the 20 g group delivered 20±2g force.   

During the 14 day experimental period, the springs were generally well tolerated by 

mice and no long-term adverse systemic reactions were observed.  Mice were fed soft 

chow for the entire study and after an initial mild weight loss in the first few days 

following expansion, feeding and weight gain appeared normal. 

        

Micro-CT analysis reveals increased bone mass in control and expanded Pyk2-KO 

mice. 

Three dimensional (3D) reconstructions of WT and Pyk2-KO skulls after 14 days of 

expansion are shown in Figure 3.  Panel A shows the occlusal view of the skull without 

midpalatal suture expansion while Panel C shows the skull with expansion. Panels B and 

D are high magnification images of the midpalatal suture area. The sutures following 

expansion are shown in Panels C and D.  The transverse micro-CT images showed 

midpalatal, transverse and interpalatine sutures connected in the palate (Fig. 3-E). 
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Although the main purpose of the expander was to open the midpalatal suture, the 

expansion forces affected all three sutures. After expansion, the suture bony edge 

appeared loose in both genotypes of mice with increased suture width and broadened 

periodontal membrane space of molars (Fig. 3-F).  

BV/TV is used to evaluate relative changes in bone volume density between 

different specimens or following a given treatment. The BV/TV ratio reflects the change 

in the size of bone marrow cavities. In this study, the total volume (TV) was defined by 

outlining ROI in the palatal bone, the bone volume (BV) was occupied by mineralized 

bone. The BV/TV ratio in Pyk2-KO mice was significantly higher (p<0.0001) than the 

ratio in WT mice with and without expansion force (Table 1, Fig. 4).   Under 10 g or 20 g 

expansion forces, there was a significant reduction in BV/TV in WT mice (p<0.05) 

compared with control groups (0 g), whereas the 10 g force did not significantly decrease 

the BV/TV of Pyk2-KO mice (p>0.05) (Table 2, Fig 4). Our data revealed that the 

BV/TV ratio of Pyk2-KO mice was decreased in both the 10 g group (-6 %) and 20 g 

force group (-11%).  In WT mice, the loss of BV/TV was greater than in Pyk2-KO mice; 

BV/TV decreased -11% and -22% in the 10 g and the 20 g force groups. These data 

demonstrate that Pyk2-KO mice have higher bone mass before and after expansion, 

which may indicate higher resistance to the expansion forces than WT mice. 

 

Expanded Pyk2-KO mice exhibited lower suture width and maxilla width compared 

to expanded WT mice. 

The goal of RME is to increase maxilla width without excessive increase in suture 

width which would promote relapse.  Micro-CT analysis showed that the suture width 
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was significantly increased in both mice genotypes receiving springs.  In WT mice, the 

suture width was increased 5.3-fold and 6.4-fold in the 10 g and 20 g force groups, 

respectively (p<0.05) (Table 2 and 3, Fig. 5).  However, in Pyk2-KO mice, 10 g and 20 g 

springs only increased suture width 4.3-fold and 5.7-fold, respectively, compared to the 0 

g force group. 

After suture expansion, the maxilla widths of both WT and Pyk2-KO mice were 

significantly increased compared with non-treated (0 g) animals (p<0.0001), confirming 

that RME was successful in our mice. Although maxilla width increased in both mice 

with the 10 g and 20 g, Pyk2-KO mice exhibited overall narrower maxillae than WT mice 

(Table 2, Fig. 6).  In addition, we found no difference in maxilla width using the 10 g or 

20 g springs in either mouse genotype.   

 

Fluorescence analysis failed to show alizarin staining around sutures. 

To determine the bone formation rate in the suture, we injected two fluorescent dyes 

which bind calcium which can be used to indicate the sites of mineralization, including 

the site of bone formation. Alizarin complexone (red) and calcein (green) were 

administrated at day 1 and day 11, respectively.  In the non-treated control group, the 

alizarin complexone red and calcein green labels were barely detected along the bony 

edges of midpalatal sutures. After suture expansion, the suture region was widened, new 

bone was formed at the front edges of sutures, and irregular suture bone margins were 

labeled by green. In the fluorescence images, there were strong calcein green labels along 

the sutures, which indicated active bone formation under expansion force. Furthermore, 

diffused calcein green labels were observed on the oral side and nasal side of sutures 
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where chondrocytes concentrated. However the Alizarin complexone red labels were too 

weak to be observed around suture edges (Fig. 7), most likely due to a high rate of bone 

turnover in the suture resulting in loss of the alizarin label. Therefore, we were unable to 

calculate the inter-label distance between the two injection time points which enables 

determination of the bone deposition rate (bone formation rate) in control and expanded 

mice.  

 

TRAP staining shows decreased osteoclast number in Pyk2-KO after expansion. 

To examine whether the increased BV/TV of Pyk2-KO mice following suture 

expansion was due to decreased osteoclast activity, maxillary bone sections were stained 

for TRAP, a marker of osteoclast activity.  The osteoclast surface to bone surface 

(Oc.S/BS) ratio was then determined.  Few multinucleated TRAP-positive cells were 

observed in the non-treated group of either Pyk2-KO or WT mice (Fig. 8). There was no 

significant difference in Oc.S/BS between Pyk2-KO and WT non-treated mice (Table 2, 

Fig. 9). In WT mice, Oc.S/BS was increased to 176% and 232% in the 10 g and 20 g 

force groups (p<0.05), respectively, after 14 days of expansion (Table 3, Fig. 9).  In 

contrast, in Pyk2-KO mice, the Oc.S/BS ratio was 127% and 134% in the 10 g and 20 g 

force groups (p>0.05), respectively.  These findings suggest that osteoclast differentiation 

and osteoclast number is lower in Pyk2-KO mice following expansion.   

 

ALP expression appears to be increased by expansion force in WT mice. 

Since alkaline phosphatase (ALP) is a bone marker of osteoblast maturation, we 

performed immunohistochemistry to determine the role of Pyk2 on osteoblast activity 
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following suture expansion.  However, due to antibody-related technical difficulties that 

arose in specimen preparation, we were unable to quantitate the changes in ALP activity 

and osteoblast surface to bone surface (Ob.S/BS) in our bone specimens.  Nevertheless, 

qualitative image analysis revealed an apparent increase in the number of ALP-positive 

cells after suture expansion. The number of ALP-positive cells in the suture regions of 

WT groups also appeared to be higher than in Pyk2-KO mice (Fig. 10).  The alveolar 

ridge of molars in the 20 g expansion groups of Pyk2-KO and WT mice also revealed 

increased bone formation.   

 

Decreased fibrous area in Pyk2-KO mice in the 10 g expansion force group 

H&E staining, which is used to recognize various tissue types and suture 

morphologic changes, revealed a thin layer of fibrous tissue between chondrocytes, 

which covered the front bone edges of sutures (Fig. 11). In the expansion groups, the 

midpalatal sutures were broadened.  Spindle-shaped fibroblasts and fibrous tissue 

occupied the suture gap between the chondrocyte layers and were arranged parallel to the 

expansion force. On the oral side of sutures, new bone was located adjacent to the 

periosteum and was covered by numerous chondrocytes.  In contrast, on the nasal side of 

sutures, new bone was located next to the nasal epithelium and only a thin layer of 

chondrocytes was observed. In addition, the bone marrow cavities were extended and 

increased in the palatal bone.  Pyk2-KO mice exhibited a reduced bone marrow area 

compared to WT mice with the same expansion force (Fig. 11).  

It is well established that after suture expansion, fibroblasts differentiate from 

mesenchymal cells and proliferate in central zone of suture. However, the fibrous tissues 
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formed increases the rate of relapse if insufficient or immature bone occupies the suture 

gap.  Therefore, we used H&E to determine the role of Pyk2 on the width, height, and 

area of the fibrous regions in control and expanded groups. After expansion, the width of 

the fibrous region was significantly increased in both mice genotypes (p<0.0001) (Table 

3, Fig. 12). The width of fibrous region in Pyk2-KO was significantly less than the width 

in WT mice in the 10 g and 20 g force groups (p<0.05) (Table 2, Fig. 12).  Although the 

width of fibrous region in the 10 g force groups was overall lower than the 20 g force 

groups, no significant difference in the width of the suture was observed between the 10 g 

and 20 g force groups for either the Pyk2-KO or WT mice (Table 3). The fibrous area in 

the middle of suture in the 10 g force group was significantly lower in Pyk2-KO mice 

compared to WT mice (p<0.05) (Table 2, Fig. 14). However, the average height of the 

fibrous region was independent of treatment group or mouse genotype (Fig. 13).  

 

Cartilage area and hypertrophic chondrocyte number are increased by suture 

expansion. 

Secondary cartilages appear in the midpalatal suture of rodent animal and have the 

potential to ossify in the suture [20, 44]. Therefore, to detect cartilage in our expanded 

sutures, we used alcian blue staining as shown in Figure 15.  Alcian blue images 

demonstrated that a thin layer chondrocytes and cartilage covered the bony edges of the 

midpalatal suture in Pyk2-KO and WT control groups. After suture expansion, the pre-

existing chondrocytes and cartilage were separated laterally, and numerous chondrocytes 

appeared in midpalatal sutures. We used image analysis software to quantitate the 

cartilage area and the number of hypertrophic chondrocytes which could be distinguished 
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morphologically based on their enlarged cell size and distinct nucleus. The cartilage area 

and the number of hypertrophic chondrocytes were significantly greater after expansion 

(p<0.0001) (Table 3, Fig. 16, 17). There was no significant difference in cartilage area 

between the 10 g and 20 g force groups either in Pyk2-KO and WT mice, although the 

overall cartilage area in the 10 g force group was higher than the 20 g force group. 

Cartilage area and chondrocyte number were not significantly different between Pyk2-

KO and WT mice (Table 2).  Therefore, Pyk2-deficiency does not appear to affect the 

formation of secondary cartilage in the suture with or without expansion.   
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    Pyk2-KO  WT  
Outcome Force Mean (SD) Mean (SD) 

BV/TV 0 g 90.81 (3.56) 84.10 (4.17) 
  10 g 85.61 (4.95) 75.38 (6.99) 
  20 g 80.55 (4.27) 65.89 (4.61) 
Suture width 0 g 79.82 (7.97) 90.71 (13.32) 
  10 g 341.06 (59.31) 476.79 (62.19)  
  20 g 453.01 (66.61) 578.23 (63.50) 
Maxilla width 0 g 2988.34 (101.18) 3062.63 (73.08) 
  10 g 3418.67 (104.47) 3689.68 (138.91) 
  20 g 3553.63 (150.78) 3745.46 (77.75) 
Width of fibrous region 0 g 46.35 (2.97) 48.65 (9.59) 
  10 g 326.81 (53.5) 441.5 (83.85) 
  20 g 422.61 (95.45) 532.83 (67.05) 
Height of fibrous region 0 g NA NA 
  10 g 130.13 (29.91) 120.12 (37.38) 
  20 g 116.54 (33.24) 100.09 (32.52) 
Area of fibrous region 0 g NA NA 
  10 g 45974.3 (3717.5) 57592.8 (9095) 
  20 g 54658.3 (14962.3) 57057.7 (12974) 
Oc.S/BS 0 g 0.072 (0.032) 0.074 (0.016) 
  10 g 0.091 (0.019) 0.131 (0.022) 
  20 g 0.096 (0.028) 0.172 (0.031) 
Cartilage area 0 g 17162 (2901.7) 15533 (2799.6) 
  10 g 105592 (20560.1) 97532 (32051.1) 
  20 g 87220 (17553.1) 78126 (11614.8) 
Hypertrophic chondrocyte number 0 g 30.5 (5.52) 28.08 (6.05) 
  10 g 119.33 (31.99) 102.67 (22.06) 
  20 g 100.89 (17.35) 95.67 (19.00) 

TABLE 1. Summary of tissue parameters for control and expanded mice 

The table shows the mean and standard deviation (SD) for all our data sets (NA; not 

applicable).   
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Outcome Mouse 
Comparison All 0 g 10 g 20 g 

BV/TV Pyk2-KO vs. WT <0.0001 0.0134 0.0151 0.0002 

Suture width Pyk2-KO vs. WT <0.0001 0.1166 0.0031 0.0076 

Maxilla width Pyk2-KO vs. WT <0.0001 0.17746 0.0034 0.0198 

Width of fibrous region Pyk2-KO vs. WT 0.0018 0.5877 0.018 0.0432 

Height of fibrous region Pyk2-KO vs. WT 0.3316 NA 0.6197 0.4065 

Area of fibrous region Pyk2-KO vs. WT 0.0246 NA 0.001 0.5888 

Oc.S/BS Pyk2-KO vs. WT 0.0001 0.8588 0.0072 0.0011 

Cartilage area Pyk2-KO vs. WT 0.2874 0.3467 0.6154 0.3148 

Hypertrophic chondrocyte 
number Pyk2-KO vs. WT 0.2097 0.4866 0.3181 0.6299 

 
TABLE 2. Statistical analysis of mouse comparison.  

The table shows comparison between Pyk2-KO and WT mice among different expansion 

force levels. Highlighted boxes denote statistical significance (p<0.05) 
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Outcome Force Comparison All Pyk2-KO WT 
BV/TV 0 g  vs. 10 g 0.002 0.0632 0.0254 
  0 g  vs. 20 g <0.0001 0.0011 <0.0001 
  10 g  vs. 20 g 0.001 0.0873 0.0195 
Suture width 0 g  vs. 10 g <0.0001 <0.0001 <0.0001 
  0 g  vs. 20 g <0.0001 <0.0001 <0.0001 
  10 g  vs. 20 g <0.0001 0.0117 0.0189 
Maxilla width 0 g  vs. 10 g <0.0001 <0.0001 <0.0001 
  0 g  vs. 20 g <0.0001 <0.0001 <0.0001 
  10 g  vs. 20 g 0.0528 0.1017 0.4108 
Width of fibrous region 0 g  vs. 10 g <0.0001 <0.0001 <0.0001 
  0 g  vs. 20 g <0.0001 <0.0001 <0.0001 
  10 g  vs. 20 g 0.0017 0.0576 0.0638 
Height of fibrous region 0 g  vs. 10 g NA NA NA 
  0 g  vs. 20 g NA NA NA 
  10 g  vs. 20 g 0.2206 0.4738 0.3454 
Area of fibrous region 0 g  vs. 10 g NA NA NA 
  0 g  vs. 20 g NA NA NA 
  10 g  vs. 20 g 0.1511 0.0639 0.9725 
Oc.S/BS 0 g  vs. 10 g 0.001 0.2269 0.0005 
  0 g  vs. 20 g <0.0001 0.1857 <0.0001 
  10 g  vs. 20 g 0.032 0.7198 0.0233 
Cartilage area 0 g  vs. 10 g <0.0001 <0.0001 <0.0001 
  0 g  vs. 20 g <0.0001 <0.0001 <0.0001 
  10 g  vs. 20 g 0.012 0.127 0.1934 
Hypertrophic chondrocyte number 0 g  vs. 10 g <0.0001 <0.0001 <0.0001 
  0 g  vs. 20 g <0.0001 <0.0001 <0.0001 

  10 g  vs. 20 g 0.1105 0.2427 0.5689 
 

TABLE 3. Statistical analysis of expansion force comparison.  

The table shows comparison among expansion force levels either in Pyk2-KO or WT 

mice. Highlighted boxes denote statistical significance (p<0.05)  
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(A)                                                       (B) 

FIGURE 1. Occlusal view of midpalatal suture in 6-week-old mice.  

(A)  Maxilla without expander, non-treated control. (B) Experimental maxilla with a Ni-

Ti expender bonded to first and second molars with resin. 
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(A)                                                                   (B) 

       

(C)                                                             (D) 

FIGURE 2.  Micro-CT images for measurement.  

(A) ROI on transverse plane (B) ROI on coronal plane (C) Suture width was measured by 

tracing two bony edges of the midpalatal suture. (D) Maxilla width was measured as the 

distance between canals of palatal roots of the right and left first molars. .  
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                        (A)                            (B)                               (C)                             (D) 

       

                           (E)                                                                  (F) 

FIGURE 3. Three dimensional micro-CT reconstructed images of control and 

expanded sutures.  

Occlusal view of reconstructed skull of control (A) and expanded (C) animals at day 14. 

(B) and (D) are high magnification images of the areas marked by rectangles in panels (A) 

and (C), respectively. (E) Transverse section of Pyk2-KO control mouse. (F) 

Representative 3D image of transverse section of Pyk2-KO mouse subjected to 20 g 

expansion force. 
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FIGURE 4. The ratio of BV/TV from micro-CT analysis.  

Statistical analysis showed that the BV/TV was significantly higher in Pyk2-KO mice 

than the WT group among force levels (p<0.0001).  There was no significant difference 

between the control group (0 g) and 10 g expansion force groups in Pyk2-KO mice. The 

20 g force induced the lowest BV/TV in both Pyk2-KO and WT mice (p<0.001). The 

letters indicate statistically significant differences between groups at p<0.05. 

a: 0 g versus 10 g force groups in WT mice 

b: 0 g versus 20 g force groups in WT mice 

c: 0 g versus 20 g force groups in Pyk2-KO mice 

d: 10 g versus 20 g force groups in WT mice 

e: WT versus Pyk2-KO for 0 g groups 

f: WT versus Pyk2-KO for 10 g force groups 

g: WT versus Pyk2-KO for 20 g force groups 
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 FIGURE 5. Suture width from micro-CT analysis.  

The suture width in Pyk2-KO was significantly narrower than the width in WT mice after 

expansion (p<0.0001). The width under 20 g expansion force was the significantly 

highest among force levels in both types of mice (p<0.0001). The letters indicate 

statistically significant differences between groups at p<0.05. 

a: 0 g versus 10 g force groups in WT mice 

b: 0 g versus 20 g force groups in WT mice 

c: 0 g versus 10 g force groups in Pyk2-KO mice 

d: 0 g versus 20 g force groups in Pyk2-KO mice 

e: 10 g versus 20 g force groups in WT mice 

f: 10 g versus 20 g force groups  in Pyk2-KO mice 

g: WT versus Pyk2-KO mice for 10 g force groups 

h: WT versus Pyk2-KO mice for 20 g force groups 
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FIGURE 6. Maxilla width from micro-CT analysis.  

The maxilla width in Pyk2-KO was significant narrower than the width in WT mice after 

expansion (p<0.0001), but no difference was shown between 10g and 20g force groups in 

both types of mice (p>0.05). The letters indicate statistically significant differences 

between groups at p<0.05. 

a: 0 g versus 10 g force groups in WT mice 

b: 0 g versus 20 g force groups in WT mice 

c: 0 g versus 10 g force groups in Pyk2-KO mice 

d: 0 g versus 20 g force groups in Pyk2-KO mice 

e: WT versus Pyk2-KO mice for 10 g force groups 

f: WT versus Pyk2-KO mice for 20 g force groups 
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                                                                    (A) 

 

                                                                           (B) 

FIGURE 7. Bone labeling of control and expanded midpalatal suture.  

(A) Suture without expansion. (B) Expanded suture.  Without expansion, the alizarin red 

and calcein green labels were difficulty to observe along the bony edges of the suture. In 

the expanded suture, sharp calcein green labels were observed along the bone margins 

and diffused calcein green labels were observed on the oral and nasal sides of sutures 

where chondrocytes concentrated.  However, alizarin red labels were too weak to be 

detected around the suture. White arrows (B) point to new bone formed in the expanded 

suture region after 14 days of expansion. The magnification of image is 40X. 
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FIGURE 8. TRAP staining images of midpalatal suture.  

TRAP-positive red cells were barely observed on TRAP staining sections in non-treated 

group either Pyk2-KO or WT mice. After expansion, the osteoclasts were obviously 

increased in midpalatal suture. The magnification of images is 100X. Scale bar: 100µm. 
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FIGURE 9. The ratio of Oc.S/ BS from TRAP staining. 

Oc.S/BS in Pyk2-KO was significantly lower than WT mice in the10 g and 20 g 

expansion force groups (p<0.05). There was no significant deference among force levels 

in Pyk2-KO mice. The letters indicate statistically significant differences between groups 

at p<0.05. 

a: 0 g versus 10 g force groups in WT mice 

b: 0 g versus 20 g force groups in WT mice 

c: 10 g versus 20 g force groups in WT mice 

d: WT versus Pyk2-KO mice for 10 g force groups 

e: WT versus Pyk2-KO mice for 20 g force groups 
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                                                               (A) 
 

 

 

 

 

 

 

 

 

                                                                (B) 

FIGURE 10. ALP stained images of midpalatal suture and the alveolar ridge of 

molar. 

(A) ALP expression in suture. (B) ALP expression in alveolar ridge. The brown signals 

were ALP positive cells. Alveolar ridge region was used an internal labeling control. 

ALP expression appeared to be increased by expansion force in WT but not in Pyk2-KO 

mice. The magnification of image is 100X. Scale bar: 100µm 
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FIGURE 11. H&E stained images of the midpalatal suture.  

After expansion, newly formed bone was observed adjacent to the periosteum on the oral 

side and was covered by chondrocytes along the suture margin. The open arrow head 

indicates the periosteum; closed arrowhead points to chondrocytes; arrows indicate new 

bone formed along the edge of palatal bones, and the dotted line defines the fibrous area 

surrounded by chondrocytes. Image magnifications are indicated. Scale bar: 100µm. 
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FIGURE 12. The width of fibrous region from H&E staining.  

The fibrous region in WT was significantly wider than the fibrous region of Pyk2-KO 

mice in the 10 g and 20 g expansion force groups (p<0.05). After expansion, the width of 

fibrous region was significantly increased in Pyk2-KO and WT mice (p<0.0001). The 

letters indicate statistically significant differences between groups at p<0.05. 

a: 0 g versus 10 g force groups in WT mice 

b: 0 g versus 20 g force groups in WT mice 

c: 0 g versus 10 g force groups in Pyk2-KO mice 

d: 0 g versus 20 g force groups in Pyk2-KO mice 

e: WT versus Pyk2-KO mice for 10 g force groups 

f: WT versus Pyk2-KO mice for 20 g force groups 
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FIGURE 13. The height of fibrous region from H&E staining.  

Statistical results indicated that the height of fibrous region was independent of the force 

levels and mouse genotypes (p>0.05).   
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FIGURE 14. The area of fibrous region from H&E staining.  

Statistical analysis showed that the area of fibrous region in the 10 g expansion force 

group of Pyk2-KO mice was significantly less than WT mice of same force group 

(p<0.05). No difference was found between the 10 g and 20 g (P>0.05).  “a” indicates  

statistically significant differences at p<0.05 between WT and Pyk2-KO in the10 g 

expansion force group. 
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FIGURE 15. Alcian Blue staining of cartilage and chondrocytes.  

The cartilage and chondrocytes, which are stained blue, appear to be significantly 

increased after expansion.  The yellow arrows point to the hypertrophic chondrocytes 

which appear large and round. The magnification of image is 100X. Scale bar: 100µm. 
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FIGURE 16. The area of cartilage region in sutures.  

After expansion, the cartilage area was significantly increased in Pyk2-KO and WT mice 

(p<0.0001). There was no significant difference in the cartilage area between genotypes 

among force levels (p>0.05).  The letters indicate statistically significant differences 

between groups at p<0.05. 

a: 0 g versus 10 g force groups in WT mice 

b: 0 g versus 20 g force groups in WT mice 

c: 0 g versus 10 g force groups in Pyk2-KO mice 

d: 0 g versus 20 g force groups in Pyk2-KO mice 
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FIGURE 17. Hypertrophic chondrocytes number.  
No significant difference the hypertrophic chondrocytes number was observed between 
Pyk2-KO and WT mice (p>0.05).  The number was obviously increased after expansion 
(p<0.0001) but no difference between 10 g and 20 g force groups in both genotypes of 
mice (p>0.05). The letters indicate statistically significant differences between groups at 
p<0.05. 
a: 0 g versus 10 g force groups in WT mice 

b: 0 g versus 20 g force groups in WT mice 

c: 0 g versus 10 g force groups in Pyk2-KO mice 

d: 0 g versus 20 g force groups in Pyk2-KO mice  

0
20
40
60
80

100
120
140
160

0g 10g 20g

N
um

be
r o

f c
ho

nd
ro

cy
te

 

Expansion force 

Number of hypertrophic 
chondrocytes in suture  

WT

KO

a

   

b 

c 

d 

a b c d 



50 
  
 

 

 

 

 

 

 

 

 

 

 

 

DISCUSSION 
  



51 
  
 

In the current study we examined whether Pyk2 plays a role in suture expansion and 

if a pharmaceutical agent to inhibit Pyk2 can be used to accelerate new bone formation at 

the suture margins in the expanded maxilla.  We used Pyk2-KO and WT mice to 

investigate bone mass and remodeling of the midpalatal suture under two expansion 

forces, 10 g and 20 g.  Control mice received no springs (0 g). Our data demonstrated 

both the 10 g and 20 g expansion forces resulted in maxilla expansion in Pyk2-KO and 

WT mice.  However, Pyk2-KO mice had higher bone mass in the suture which was 

correlated with a narrow suture width.  This suggests that Pyk2-deficency leads to a 

smaller gap between the two palatal shelves with more dense bone, implying a more 

stable environment with a lower likelihood of treatment relapse.  

Pyk2 mediates signaling pathways involved with the process of bone remodeling by 

acting on both osteoclasts and osteoblasts. Pyk2 deficiency impedes osteoclast activities, 

leading to decreases in osteoclast-mediated bone resorption.  In the non-treated control 

groups, Pyk2-KO mice had a higher BV/TV ratio and similar Oc.S/BS compared to WT 

mice. In our study, TRAP images showed that more osteoclasts concentrated in the bone 

marrow around sutures in the WT expansion groups, indicating more osteoclasts engaged 

in bone resorption in WT mice. Therefore, the higher bone density of Pyk2-KO mice may 

result from the impairment of osteoclast function, which is consistent with previous 

studies [29].  However, whether the expansion forces decreased osteoclast differentiation 

or increased apoptosis in Pyk2-KO mice is currently unknown.   

During suture expansion, new bone forms at the suture margins, which is usually 

immature woven bone [3, 7]. In humans, it requires more than 3 months for new bone to 

remodel and become calcified after RME.  Although this time frame is reduced in mice, 
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the decreases in BV/TV found in both Pyk2-KO and WT expansion groups compared to 

the genotype-matched control (0 g) groups, suggest that newly formed bone was not 

completely remodeled to become organized lamellar bone, leading to lower bone density.  

In future studies, increasing the retention time may allow for more bone remodeling and a 

higher final BV/TV in both WT and Pyk2-KO mice.  Furthermore, it will be of interest to 

determine the role of Pyk2 on suture stability and decreasing relapse rate by removing 

springs after suture expansion and allowing mice to recover prior to necropsy.          

RME initiates fibroblast proliferation and mesenchymal stem cell differentiation 

within several hours. The maxilla width, suture width and fibrous area were significantly 

increased in both genotypes of mice subjected to expansion forces. The stretched fibers 

filled in the central area of the sutures. The application of 20 g force on WT mice resulted 

in the widest suture gap, with higher number of osteoclasts, and a lower BV/TV than the 

10 g force groups. These findings indicate mice that received the 20 g expander may have 

a higher potential for midpalatal suture relapse than the lower 10 g force groups.  In 

addition, since Pyk2-KO mice exhibited higher BV/TV as well as a narrower suture 

width, our findings suggest that the expanded suture in Pyk2-KO mice may be more 

stable and more resistant to relapse than WT mice treated with the 10 g or 20 g forces. 

To quantify bone formation in the suture following expansion, alizarin complexone 

and calcein fluorescent dyes were administered to Pyk2-KO and WT mice.  The 

fluorescent labels can be bound to calcium ions and indicate the sites of mineralization, 

including the site of bone formation. Ten et al. [4] demonstrated that the new bone was 

formed by the pre-existing and undamaged osteoblasts within 3 to 4 days after expansion 

force application in rats.  In addition to bone formation rate, the interlabel distance is 
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affected by the label clearance and calcium affinity.  Alizarin complexone and calcein 

have shorter plasma half-lives than tetracycline. Calcein has higher calcium affinity 

compared to alizarin. The longer time intervals will increase the chances for label escape, 

whereas the shorter time intervals will make discrimination between the labels more 

difficult [45]. In the present study, the alizarin complexone was injected on day 1, when 

new bone may not have been formed and not yet deposited along the suture edges, 

although the strong red labels were observed around the bone marrow adjacent the suture 

in the palatine bone.  On the other hand, the high bone turnover rate under expansion 

forces in the midpalatal suture may have caused significant bone resorption and the loss 

of the alizarin labels. Buckbinder et al. [30]demonstrated an increase in bone formation 

rate in the long bone of 18 week Pyk2-KO mice.  Therefore, in future studies, decreasing 

the time interval between injection fluorescent dyes, or using multiple injections may 

enable bone formation rate determination in the suture.  In addition, it may be necessary 

to examine bone formation rate at different expansion times.   

ALP is an important marker of osteoblast maturation. Osteoblast differentiation is a 

multistep process associated with cell proliferation, matrix synthesis and matrix 

mineralization [46, 47]. The matrix maturation phase is characterized by maximal 

expression of ALP, whereas peak levels of expression of osteocalcin and osteopontin are 

achieved during matrix mineralization. In this study, qualitative assessment of ALP 

stained sections indicated that ALP expression appears to be increased by expansion 

forces in WT mice after 14 days expansion, although we were unable to quantify changes 

in Ob.S/BS (osteoblast surface per bone surface) due to technical issues related to our 

ALP staining. In future studies, it may be necessary to select an alternate bone marker 
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and/or include a series of expansion periods to detect the osteoblast activity status in the 

sutures of mice. Our studies revealed decreased Oc.S/BS in midpalatal sutures in Pyk2-

KO mice.  Since osteoclast number is controlled by the RANKL/OPG ratio secreted by 

osteoblasts, it is possible that expansion may have resulted in a local decrease in RANKL 

or an increase in OPG, or both in Pyk2-KO mice. However, the mechanism of interaction 

between osteoblasts and osteoclasts in Pyk2-KO mice during suture expansion remains to 

be determined.  

       Mechanical force can enhance the differentiation of mesenchymal cells into 

chondroprogenitor cells which produce secondary cartilage [19].  Hypertrophic 

chondrocytes are terminal stage of differentiation in the chondrogenic cell lineage [48]. 

These cells have unique phenotypic traits that relate to cartilage calcification and 

endochondral ossification.  In our study, chondrocytes and secondary cartilage was found 

along the bone edges of suture of mice. After expansion, cartilage areas were 

significantly increased in WT and Pyk2-KO mice.  Moreover, the 10 g expansion force 

induced more cartilage area compared to the 20 g force group.  Numerous hypertrophic 

chondrocytes concentrated around the front of bone edges were also observed in 

expended animal.   However, no differences in the hypertrophic chondrocyte number or 

cartilage area were found between Pyk2-KO and WT mice. Similar to our findings, Liu et 

al. [23] also reported  that a 10 g expansion force induced a more preferable suture 

cartilage response pattern than a 20 g force.  

The ossification pattern during RME of the suture is still unclear and may involve 

both intramembranous and endochondral bone formation.  It has been reported that 56 g 

tensional forces applied to midpalatal sutures of mice induce bone formation in the 
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periosteum, which contains osteogenic progenitor cells, suggesting intramembranous 

ossification [14]. In contrast, Takahashi et al. [44] demonstrated that 10-20 g expansion 

forces induce cellular transition from cartilaginous tissue to bone in rat midpalatal sutures. 

Kobayashi et al. [20] also suggested that mesenchymal cells located on the inner side of 

the cartilaginous tissue can proliferate and differentiate into osteoblasts in rats under 

midpalatal suture expansion. These latter studies suggest the occurrence of endochondral 

ossification in the suture.  In our studies, histological staining with H&E on tissue 

sections after force-induced expansion revealed the presence of newly formed bone 

adjacent to the periosteum of the palatine bone.  We also found that the suture margins 

were covered by chondrocytes.  In addition, diffused green fluorescence labels (calcein) 

in the same region of the sutures where chondrocytes were concentrated. Therefore, we 

cannot exclude the possibility of endochondral bone formation in the suture.  
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As mentioned previously, the null hypothesis, that there would be no difference of 

bone mass in the midpalatal suture between Pyk2-KO mice and WT mice following 

suture expansion, was rejected. Our findings supported the alternate hypothesis.  We 

found the following: 

1. After suture expansion, increased bone marrow spaces appeared around suture edges; 

BV/TV was significantly reduced. 

2. After suture expansion, the suture width, fibrous area in the middle zone of suture, 

osteoclast number, cartilage area and hypertrophic chondrocyte number were all 

significantly increased.  

3. The suture BV/TV in Pyk2-KO mice was significantly higher than in WT mice. 

Moreover, Pyk2-KO exhibited reduced suture width, maxilla width, fibrous area, and 

osteoclast number per bone surface (Oc.S/BS) compared to WT mice under 

expansion forces.  

4. Cartilage area and hypertrophic chondrocyte number were independent of mouse 

genotypes.  

In conclusion, Pyk2-deficency increased the bone mass and decreased the suture 

width following expansion, while still allowing expansion of the maxilla.  Therefore, our 

data suggest that suture expansion in Pyk2-KO may result in a more stable which is more 

resistant to relapse than WT mice.  Furthermore, our studies suggest that therapeutic 

approaches to inhibit Pyk2 in the suture may increase bone mass to reduce relapse of the 

arch width following mechanical expansion.  
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Background: Suture expansion is a very important clinical approach to correct 

maxillary width deficiency, but it has a high potential for treatment relapse. Accelerating 

bone formation and mineralization in the midpalatal suture during suture expansion is 

beneficial in preventing relapse of the arch width and reducing the retention period. Pyk2 

is tyrosine kinase which has been shown to mediate signaling pathways that are involved 

in the process of bone remodeling. Pyk2 knock-out (KO) mice have augmented bone 

formation and increased bone mass, suggesting that therapeutic strategies that inhibit 

Pyk2 may be useful to enhance bone remodeling and prevent suture relapse during suture 

expansion.  

Objectives: To determine if Pyk2-deficiency affects midpalatal suture bone mass 

and bone remodeling with or without suture expansion in mice. 

Methods: Thirty-six Pyk2-KO and thirty-six wild type (WT) 6 week-old male mice 

were randomly assigned into three groups: receiving no expansion force (0 g), 10 g or 20 

g force of rapid maxillary expansion for 14 days. Half of the mice in each group were 

used for histology analysis; the other half was assigned for fluorescence analysis. Suture 

width, maxilla width and bone volume/tissue volume around suture bone edges were 

measured using micro-CT. Histological analyses of osteoclasts (tartrate resistant acid 

phosphatase, TRAP), osteoblasts (alkaline phosphatase, ALP) and chondrocytes (alcian 

blue) were performed.  

Results: The BV/TV ratio was significantly higher in Pyk2-KO control mice 

compared to WT control mice. Suture expansion in WT and Pyk2-KO mice led to an 

increase in bone marrow spaces around the suture edge and significantly reduced BV/TV.  

Expansion also led to a significant increase in suture width, suture fibrous area, osteoclast 
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number, cartilage area and hypertrophic chondrocyte number. However, BV/TV in Pyk2-

KO mice was significantly higher than in WT mice at both the 10 g and 20 g force levels. 

In addition, Pyk2-KO exhibited reduced suture width, maxilla width, fibrous area and 

osteoclast number per bone surface (OC.S/BS) compared to WT mice under expansion 

forces. Cartilage area and hypertrophic chondrocyte number were increased by force but 

were independent of mouse genotypes. 

Conclusion:  Pyk2-KO mice have higher BV/TV and narrower suture width 

compared to WT mice, which may be due to decreased osteoclast activity. The higher 

BV/TV of the midpalatal sutures of Pyk2-KO mice following suture expansion may 

suggest the presence of a more stable suture that has a reduced potential for relapse.  

Therapeutic strategies to inhibit Pyk2 during RME may be beneficial in increasing bone 

mass and preventing relapse of the suture.   
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ALP Alkaline Phosphatase  

BMP-2 Bone Morphogenetic Protein-2  

BV/TV Bone Volume to Tissue Volume 

H&E Hematoxylin and Eosin  

IHC Inmmunohistochemistry 

IL-1 Interleukin-1  

Pyk2-KO Knock Out 

MMA Methyl Methacrylate  

Ni-Ti Nickel-Titanium  

Oc.S/BS Osteoclast Surface to Bone surface 

OPG Osteoprotegerin 

Pyk2 Proline-rich tyrosine Kinase 2 

RANKL Receptor Activator of the NF-КB Ligand  

RME Rapid Maxillary Expansion 

rhBMP-2 Recombinant Human Bone Morphogenetic Protein-2 

ROI Regions of Interest  

TGF-β Transforming Growth factor-β  

TNF Tumor Necrosis Factor  

TRAP Tartrate Resistant Acid Phosphatase 

VEGF Vascular Endothelial Growth Factor  

WT Wide Type 
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