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Untreated dental caries in permanent teeth was the most prevalent health 

condition according to the Global Burden of Disease 2010 study (1). If caries become 

extensive, in children in particular, severe pain and infection can occur, affecting quality 

of life. Therefore, untreated dental caries creates a significant biological, psychological, 

social, and financial burden on the family and the healthcare system (1). Pulp necrosis of 

the immature permanent tooth is a disease process in children that results from infection 

of the dental pulp chamber before root formation has been completed, leaving the root 

dentin thinner and shorter, and with an open root foramen. A dental infection of this 

nature has potential to cause grave morbidity and even mortality. Even if the health of the 

child is not endangered, this anatomical underdevelopment of the root structure 

compromises the survivability of the tooth and is prone to fracture and carious 

destruction (2). 

Historically, these teeth were treated through a technique known as apexification, 

in which the use of calcium hydroxide [Ca(OH)2] is utilized (3). This technique requires 

long-term placement of Ca(OH)2 inside the root canal with a goal of inducing the 

formation of an apical hard tissue barrier. The duration of placement often requires 

multiple visits over several years to achieve periodontal healing and bridging (2). In a 

retrospective study, Cvek found periapical healing of 95% and 91% of teeth immediately 

after treating and at a 4-year follow-up, respectively (4). Additional challenges include 

low patient recall, possible contamination of canal between appointments, and increased 

dentin brittleness, with the fracture strength of Ca(OH)2-treated teeth potentially being 
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halved after a year (2, 5, 6). Research by Yassen et al showed that this result is likely due 

to the significantly higher phosphate/amide I ratios in Ca(OH)2-treated dentin compared 

with untreated dentin (7). They proposed that the alkaline Ca(OH)2 with a pH of 11.8 has 

a denaturation effect on the dentin organic matrix, facilitating penetration of the apatite-

encapsulated collagen matrix and thus changing the nature of the internal walls of the 

tooth (7). 

Apexification has been improved with the use of bioceramic materials such as 

mineral trioxide aggregate (MTA) to improve the apical plug and biological response at 

the apex (8-10). As an apical plug, the MTA continues the formation of an apical barrier 

and also creates a stop for the obturation of the canal with gutta-percha.  The use of MTA 

could reduce the number of patient visits with an increased success rate (11), but still no 

increase in root-wall thickness occurs. 

In light of these challenges, regenerative endodontic procedures (REPs) have 

gained importance.  The goal of these procedures is to regenerate pulp-like tissue, ideally 

the pulp-dentin complex (12). The history of REPs can be dated back to the 1920s, when 

Dr. B.W. Hermann presented a case report on vital root amputation with Ca(OH)2 (13). If 

successful, there is continued root formation both in length and width. Also, pulp-like 

tissue is hoped to be formed in the canal that responds to sensibility testing (14). 

Nygaard-Ostby was an early pioneer regarding revascularization of necrotic pulp canals. 

In in vivo studies he observed after inducing a blood clot within a pulpless necrotic canal, 

ingrowth of new tissues and after ten months a full thickness of fibrous tissues with very 

few lymphocytes noted (15, 16). Recent emphasis in regenerative endodontics has been 
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placed on certain key factors – stem cells, scaffolds, and growth factors (17) in an 

environment that has been properly disinfected.  

 

REGENERATIVE ENDODONTIC PROCEDURES 

 

Disinfection with TAP and DAP 

Since its introduction by Hoshino et al. (18, 19), triple antibiotic paste (TAP) 

consisting of equal parts metronidazole, ciprofloxacin, and minocycline has been utilized 

as an intracanal medicament in a majority of reported regenerative cases (20). In 2004, 

Banchs and Trope published a case study using this combination on a necrotic immature 

tooth and showed that revascularization is possible (21). Since then, their results were 

confirmed and others managed to replicate their findings. However, concern over tooth 

discoloration has led to research regarding a double antibiotic paste (DAP), excluding 

minocycline, with equally successful anti-microbial results (22, 23). Much research has 

been performed on the effect of DAP against young and established biofilms in differing 

concentrations (24-27) with a conclusion that an effective range of 1-5 mg/ml DAP was 

ideally antibacterial with concentration-dependent cytotoxicity on human dental cells. In 

DAP and TAP concentrations greater than 0.5 and 0.25 mg/mL, respectively, cytotoxicity 

was found with human dental pulp stem cells (DPSC) (23, 28-30). However, other studies 

showed no cytotoxicity on DPSCs with DAP and TAP between 1-5 mg/mL (27, 30). The 

challenge has been in determining the concentration with maximal antibacterial effect 

and minimal cellular cytotoxicity. In their study comparing DAP and TAP to Ca(OH)2, 

Yassen et al. noted a reduction in the phosphate/amide I ratio indicating formation of 

collagen-rich matrix on the surface of radicular dentin with DAP and TAP (7). This 
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demineralization effect might play a significant role in pulp regeneration, effectively 

improving the attachment and growth of host stem cells onto dentin via exposure of 

collagen fibers and their accompanying growth factors (7).  

In recent studies within this university, water-based methylcellulose hydrogel has 

been utilized to deliver antibiotic paste with controlled concentrations (31, 32). 

Methylcellulose is a biocompatible material and has been utilized in similar carrier 

techniques (33, 34). In-vitro results of this technique appeared to minimize the negative 

effects of these medications on the immature necrotic tooth (31, 32, 35). Portions of this 

technique has been adopted by the American Association of Endodontists’ Clinical 

Guidelines for regenerative endodontic procedures (36).  However, the regeneration of 

the pulp-dentin complex has not been a consistent outcome of in vivo procedures. With 

this in mind, we intend to examine the potential for hydroxyapatite nanoparticles 

suspended into DAP/methylcellulose and its effect on DPSC activity.  

 

STEM CELLS  

There are a number of stem cells of importance for endodontic regeneration. The 

stem cells in the dental region differ from embryonic stem cells which are totipotent or 

pluripotent in that they are multipotent, giving rise only to a select type of cells (37). The 

DPSC as well as stem cells from the apical papilla (SCAP) are important for regenerative 

endodontics (38, 39). DPSCs have the ability to form dentin and pulp-like tissues when 

transplanted in immunocompromised mice using hydroxyapatite/tricalcium phosphate 

scaffolds (40, 41). Recent studies have shown DPSCs can be harvested, preserved, and 

utilized in-vitro with appropriate results. For the proposed studies, we will use DPSCs as 



6  

 

these have the potential to generate dentin and importantly, have been used extensively in 

our laboratories for research with application of DAP and methylcellulose. 

 

HYDROXYAPATITE NANOPARTICLES  

In an attempt to re-create the molecular structure of bone, collagen-

hydroxyapatite scaffolds have been created using a biomimetic precipitation technique 

(42). Collagen comprises approximately 90% of the organic matrix of bone, known as 

osteoid, and is mineralized by hydroxyapatite, which is Ca10(PO4)6OH2 (42). This molar 

ratio varies with age, species, and type of bone, but forms the foundation for a resorbable 

scaffold. The ratio between calcium and phosphate, generally 1.66:1, is important in the 

rate of resorption within bone (42) as well as providing surface area for which dental pulp 

stem cells to bind (43). Hydroxyapatite is able to chemically bind to bone without 

inducing toxicity or inflammation, stimulating bone growth via a direct osteoinductive 

action on osteoblasts (44). Application and fabrication of nano-hydroxyapatite crystals 

for use in dentistry has been investigated with crystal size ranging from 50 to 1000 nm 

(44). Nano-hydroxyapatite has shown biocompatibility in multiple studies (45). Of 

interest, nano-hydroxyapatite in concentrations ranging from 0.10 to 0.25% in sports 

drinks have been shown to decrease erosion on bovine enamel in vitro (46). Phosphate 

and hydroxide anions released from the nano-hydroxyapatite also appeared to decrease 

the titratable acidity of the sports drink (46). Similar studies have shown nano-

hydroxyapatite is able to occlude dentinal tubules, with significance objectively with 

measurement and subjectively with decreased dentin sensitivity (47-49). With this 

information, it is hypothesized that a secondary effect of hydroxyapatite would be to 

mitigate the acidity of DAP in solution and maintain a more neutral pH. Two in-vitro 
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studies using collagen-hydroxyapatite scaffolds found increased proliferation of 

mesenchymal stem cells and osteogenic differentiation, respectively(50, 51). Ning et al. 

showed these scaffolds have strong potential for bone tissue regeneration using differing 

collagen to hydroxyapatite ratios and different sized apatite crystals (50). Niemeyer et al. 

noted that cell infiltration and osteogenic differentiation were enhanced on collagen-

hydroxyapatite scaffolds compared with a tricalcium-phosphate scaffold (51). It is for 

these reasons that nano-hydroxyapatite is being considered in this study, based on similar 

studies conducted in the laboratory of Dr. Angela Bruzzaniti, as described in the 

experimental approach.  

It is important to note that in regenerative endodontics the DAP-loaded 

methylcellulose solution is not the scaffold. This solution, which would include nano-

hydroxyapatite, is removed by rinsing with EDTA between 1 to 4 weeks after placement 

(36).   The goal, which will be evaluated in future studies would be that residual 

hydroxyapatite remains to promote mineralization once bleeding is induced. Equally 

significant is clinical practicality of a material. With additional products, antibacterial 

efficacy and usability may decrease. Pending positive results from this study, future 

studies will include evaluation of antibiotic properties and, should the need arise, 

viscosity will be evaluated and reported upon in future studies. 

  

OBJECTIVE   

The specific objective of this study is to investigate the effect of hydroxyapatite in 

a methylcellulose plus DAP paste on the growth and maturation of DPSC. 
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Null Hypothesis 

The addition of hydroxyapatite nanoparticles to the methylcellulose plus DAP 

paste will have no effect on growth and maturation of dental pulp stem cells. 

 

Alternative Hypothesis  

The addition of hydroxyapatite nanoparticles to the methylcellulose plus DAP 

paste will increase the growth and maturation of dental pulp stem cells. 
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HISTORY OF ENDODONTICS 

The first evidence of dental treatment can be dated back to approximately 5000 

BC, when ancient Sumerians attributed dental caries to tooth worms (52). In 2500 BC, 

the death of Hesy-Re with an inscription on his tomb as “the greatest of those who deal 

with teeth” stands as the earliest known reference to a dentist (52). In ancient Egypt, 

papyri have been discovered explaining diseases of teeth and recommended cures (53). 

Millenia later, Hippocrates and Aristotle taught about dentistry, dental care and treatment 

(54).  

It was not until 1684 when Anton Von Leeuenhoek observed samples of teeth 

under microscopic magnification that the theory of the tooth worm was disproven (55). 

Three years later, in 1687, the first English book devoted to dentistry was authored by 

Charles Allen. Though the Little Medicinal Book for All Kinds of Diseases and 

Infirmities of the Teeth by Artzney Buchlein, written in 1530, was the first book devoted 

entirely to dentistry, the book by Charles Allen, written in English, had a much larger 

presence. Treatment at this time included identification and removal of diseased teeth 

with replacement as the only option (55). 

Fifty years later, the scholarly emphasis switched from removal of infected teeth 

to restoration and preservation of the natural dentition. In 1723, Pierre Fauchard, credited 

as being the Father of Modern Dentistry, authored The Surgeon Dentist and in doing so 

was the first to detail comprehensive dental care. Many aspects of this two-volume, sixty-

four-chapter book were revolutionary presentations in literature, including dental 
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anatomy, restorative treatment, and denture fabrication. Importantly, he presented many 

endodontic ideas in his book including accessing the pulp chamber for purulence 

drainage and obturating teeth with lead foil (55, 56). In doing so, he became the first to 

discuss obturation techniques in endodontics (55). In 1756, Philipp Pfaff authored a book 

in German in which he described pulp capping with gold foil prior to placing a 

restoration (57). In the following year, Bourdet offered the technique of intentional 

extraction followed by replantation for endodontic therapy (55). 

In the United States, Robert Woofendale was one of the earliest dentists (58). He 

also was an early pioneer in endodontics; he would cauterize the pulp to alleviate pulpal 

pain and proposed the use of cinnamon, clove, turpentine, opium, and camphor oils in 

alleviation of pulpal pain (54). Notably, he was a mentor of Paul Revere and John 

Greenwood, Sr.  

For the better part of the 1800s, research emphasis was placed on the role of pulp 

vitality. This period is referred to as the Vitalistic era, highlighted in 1805 by J.B. Gariot 

declaring that destruction of the pulp does not destroy the vitality of the tooth (53). In 

1802, B.T. Longbothom recommended filling the roots of teeth that for whatever reason 

should not be extracted. However, Edward Hudson is most often credited as having been 

the first to place filling material, in his case gold foil, in root canals in 1809 (55). John 

Callow, in 1819, crediting Charles Bew, described the flow of blood through the apical 

foramen (53).  

Leonard Koecker wrote Principles of Dental Surgery in 1826, which was used as 

standard for fifty years. He, however, believed that destruction of a pulp meant the whole 

dentinal core of the tooth immediately died and became a foreign body and required 
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immediate extraction (55). His contribution, on the contrary, was to popularize the pulp 

capping procedure and, although he is often credited for it, utilized the same technique as 

Pfaff described in 1756.  

The Vitalistic theory became rooted in 1829, when S. S. Fitch proposed its 

doctrines in System of Dental Surgery in which he theorized that the crown was 

nourished by the dental pulp or by its membrane, whereas the roots were supplied by the 

pulp membrane (53, 54). All vital pulp treatment would have been extremely painful at 

this time as no sedative materials had been discovered yet. In 1836, Shearjashub Spooner 

used arsenic trioxide to devitalize the pulp prior to removal, which became instantly 

successful given its painless technique (55). However, leakage of arsenic and overzealous 

usage lead to significant destruction of teeth and supporting tissues. Arsenic was used, 

however, as recently as the 1920s for pulp destruction prior to removal (59). In 1837, 

Jacob Linderer recommended essential oil or narcotic oil to desensitize the pulp prior to 

restoration (57). Then, in 1838, the first root canal broach was invented by Edwin 

Maynard using a watch spring, enabling treatment of teeth with smaller canals. 

Interestingly, Maynard became more famous for creating the Maynard Carbine rifle (55). 

The first recorded account of modern endodontic treatment occurred in 1839 when Baker 

wrote in the American Journal of Dental Science about removing nerve, cleaning and 

shaping the canal, and filling with gold foil (56).  

Gutta-percha was introduced to dentistry in 1847 by Edwin Truman. He 

incorporated it as a filling base as well as denture material (60). Then, attempts were 

made to obturate using wood soaked in creosote and plugged with a solution of Hill’s 

stopping (a mix of gutta-percha, lime, glass, and metal filings) and chloroform (56).  
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Awareness of secondary dentin was matched as the ultimate goal of pulp capping 

in 1850 by W. W. Codman (54). In 1857, Thomas Rogers reported a retrospective series 

of 220 cases of pulp capping, of which 202 he determined successful. His criteria were 

overall health, lack of inflammation and decrease in previous pain. His judgement was 

quite sound; however, in cases of failed pulp capping he prescribed three leaches and a 

laxative (55).  

In 1864, S.C. Barnum utilized a thin sheet of rubber to isolate a tooth during gold 

foil operations, thus harboring in a new era of rubber dam isolation providing more 

aseptic conditions (56).  

By the year 1865, a number of dentists were filling root canals with denture gutta-

percha heated to near-molten temperatures and plugged into place. Those often credited 

with this technique are G.A. Bowman and E.L. Clarke, both residing in the United States 

(54, 55).  

In 1867, Joseph Lister was practicing antiseptic techniques during surgical 

procedures and at the same time Leber and Rottenstein isolated a microbial organism 

present on tooth surface as well as inside dentinal tubules (57).  

In 1870, G.V. Black looked at 10-year survival outcomes of pulp capping on 42 

cases, in which only six cases the pulp survived longer than five years. In that study he 

promoted the use of zinc oxychloride as a capping material. Referred to as Ash’s cement, 

it became popular as a capping medicament and root canal filler material and is often 

credited to N.C. Keep for its wide acceptance (54, 56).  

In a pivotal article published in 1878, G.O. Rogers stated that diseased pulp may 

result from pathogenic organisms (61). This ushered in a new era of thinking from 
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vitalism to what would be referred to as septic theory (62). In the transition time between 

eras, Charles S. Tomes wrote that the lack of vitality of the dentin which allowed 

contamination of the cementum and ultimately the bone (61).  

In 1882, Arthur Underwood proposed that pulpal suppuration was in fact 

dependent on pathogens and that the most important aspect was a sterile tooth, which led 

to widespread acceptance of caustic germicides used in the root canal system to eliminate 

bacteria for over 30 years (61).  

In 1883, G.A. Mills wrote in Dental Cosmos about driving a wooden stick soaked 

with creosote into the root canal, followed by a “quick blow with a mallet,” leaving it in 

place for several seconds (62). The stick was then removed with the pulp attached. 

Also in 1883, Dr. Bowman introduced chloropercha, a mixture of chloroform and 

gutta-percha used to obturate root canals. A decade later, M.L. Rhein further developed 

the technique (63).  

In 1885, formalin was introduced by Lepkowski and naturally became an ideal 

solution for fixation of residual pulp stump tissue.  

In 1886, G.V. Black promoted root amputation of severely periodontally involved 

molars to retain teeth and maintain healthy tissues 

During this time, many restorative procedures required the use of a dowel in the 

root canal for the crown, which indicated a greater need for endodontic therapy in more 

teeth. Rarely were these procedures being performed in aseptic conditions. In 1888 W.D. 

Miller described endodontic abscess formation as a result of pulpal infection (64). As a 

proponent of the septic theory, he described the human mouth as a focus of infection and 

advocated sealing antiseptic in a cavity preparation and protecting it from saliva for 30 
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minutes. He even advocated that any organ inhabited by bacteria could produce a 

metastatic abscess at a susceptible target (65, 66). 

Chlorophenol was introduced in 1891 by Otto Walkoff, but only brought to the 

United States in 1899 by Hermann Prinz (62).   

In 1894, J.R. Callahan suggested the use of 20 to 40% sulfuric acid to enlarge and 

clean root canals soaked on cotton pellet in the canal for 24 to 48 hours with no regard for 

potential seepage of the caustic agent into periradicular tissues (62).  

In 1895, M.L. Rhein used a technique referred to as electromedication to sterilize 

root canals. Invented by Breuer and later known as ionization, this technique allowed less 

use of caustic agents to sterilize (63, 67).  

Also in 1895, William C. Roentgen accidentally discovered x-rays. In the United 

States, C. Edmund Kells began using the x-ray in his dental practice.  

Formocresol was introduced to dentistry about this time by John P. Buckley and 

remained popular for over 50 years and remains in use today (56, 67). 

In 1905, Einhorn developed procaine (Novocaine) and H.S. Vaughn was the first 

to use infiltration anesthesia before pulpal extirpation (59, 67, 68). 

The turn of the century ushered in a new thought process on infection within teeth 

and their relationship with the body. In 1904, Frank Billings noted an apparent 

relationship between oral sepsis and bacterial endocarditis (62). Then, in 1909, E.C. 

Rosenow, a student of Billings, developed the theory of focal infection by showing 

streptococci from diseased organs spreading through the bloodstream and establishing at 

a distant site (67). At the same time, Mayrhofer demonstrated a role of streptococci in 

pulpal infection (69). In 1910, William Hunter gave a lecture titled “The Role of Sepsis 
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and Antisepsis in Medicine,” which was later published in the Lancet. He is quoted as 

calling the gold crown “a mausoleum of gold over a mass of sepsis” (66, 70). After this, 

despite the recent advances in dentistry, pulpless teeth became condemned to extraction. 

This continued for twenty-five years. Billings then replaced the term “oral sepsis” with 

“focal infection” (71). In 1912, Rhein countered the work of  Hunter and pushed for 

improved techniques and aseptic protocols (71). In 1913, Rosenow developed the theory 

of elective affinity of organisms to tissue, where essentially an organism can choose the 

distant organ it wishes to infect (66). 

With all this scrutiny on the biologic principles of endodontics, increased 

attention to biocompatible materials was considered. B.W. Hermann, in 1920, promoted 

the use of calcium hydroxide which he called Calxyl for root canal obturation. A decade 

later, he would promote calcium hydroxide for pulpal therapy as well as in treating 

infected canals (72).  

In 1921, Rosenow and Meisser proved in animal models that the apexes of 

healthy teeth can be infected through external contaminants. In addition, Rosenow 

believed that once a tooth became infected, it remained infected (73).  

In 1925, U.G. Rickert proposed the use of sealer with a pre-fitted gutta-percha 

cone (67). Lentulo introduced a rotary paste inserter also in 1925 made of steel wire that 

would carry sealer down into a canal. 

In 1928, Walkoff invented an iodoformized chlorophenolcamphormenthol paste 

which he demonstrated was resorbable not tissue irritating (72). 
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In 1931, Rickert and Dixon began experimenting with principles that became 

what we now refer to as the hollow tube effect in which root canal space left void would, 

in the absence of microorganisms, initiate periapical inflammation (64). 

In 1933, Dr. E.A. Jasper introduced silver points to dentistry as a means of 

obturation. The silver points had standard sizes and similar diameter and taper as reamer 

and file instruments (63). 

In 1937, Logan began work that postulated microorganisms did not necessarily 

imply presence of infection (58). Also in 1937, Tunnicliff and Hammond demonstrated 

bacteria in pulps of teeth without evidence of inflammation (67). And that same year, 

Cecil reported arthritis cases in which the suspected foci of infection had been removed 

with no improvement to the patient (74).  

In 1938, Zander demonstrated histologic success from vital pulp capping by 

showing continuous odontoblasts lined up below secondary dentin bridge (67). 

In 1940, Sommer and Crowley reported that a periapical lesion demonstrated by a 

radiolucent area is not necessarily an infection (71). 

Antibiotic application in root canals began around this time with Fred Adams in 

1941 recommending the use of sulfanilamide to treat apical infection. In addition to this 

antibiotic, he was the first to use penicillin in endodontic therapy in 1944 (67). Although 

Grossman in 1944 recommended using a nonaqueous solution of penicillin to improve 

stability in system (67).  

In 1943, the American Association of Endodontists was formed with a meeting of 

20 men in Chicago (75). Harry Johnston created the term “endodontics” from two Greek 

words: “endon” meaning within and “ho dontas” meaning a tooth (70). The first dental 
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journal dedicated to the subject, The Journal of Endodontia, was published in 1946 with 

Orban as its first editor (71). In 1949, the American Association of Endodontists formed a 

committee to investigate the potential for specialty recognition. Eventually, in 1956, the 

American Dental Association Council on Dental Education recognized the American 

Board of Endodontics (70).  

In 1959, Sargenti and Richter introduced N2 paste (also known as Sargenti paste) 

to the United States, which remained controversial due to the use of paraformaldehyde 

among other questionable agents as its ingredients (76). The AAE issued a position paper 

against its use in the 1990s (77).  

By 1963, over 200 dentists in the United States were limiting their practice to 

endodontics (75). So, in that year, the American Dental Association recognized 

endodontics as a specialty of dentistry (70) and certified its first Diplomates two years 

later. 

 

THEORY OF ENDODONTICS 

Endodontic therapy received a significant contribution in 1965 when Kakehashi, 

Stanley, and Fitzgerald performed their work on germ-free rats. In this study, exposed 

pulps remained vital in bacteria-free rats despite exposure to masticatory forces and 

exposure to the oral environment (78). The alternative group, rats that were not germ-

free, experienced pulpal necrosis and periapical pathosis. The authors concluded 

appropriately that bacteria are responsible for pulpal and periapical disease (78). In 1974, 

Bergenholtz noted that traumatized teeth with periapical destruction had bacterial growth 

(79). In 1981, using a monkey model, Moller demonstrated that infected pulp tissue was 

necessary for periapical inflammation and not simply necrotic tissue (80).  
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These studies and many others laid the groundwork in establishing the current 

goal of endodontics, which is to achieve sufficient reduction in pathogens and their toxins 

for the body to manage healing (81, 82). Insufficient reduction of the microbial load can, 

therefore, lead to inflammation of the periapical tissues referred to as apical periodontitis 

(83). There is, therefore, a direct relationship between success of endodontic therapy and 

adequate reduction of bacteria. 

Endodontic success was originally outlined by Dr. G.G. Stewart in three distinct 

phases: chemomechanical preparation, control of microbes, and sealing and obturating 

the root canal system (84). Most importantly, the chemomechanical preparation reduces 

the microbial load to a sufficient extent and establishes a space to obturate the root canal 

system, which Grossman was later able to corroborate and expound upon (85). He 

identified 13 principles for endodontic therapy: 

• Clinical asepsis 

• Retaining instruments within the canal system 

• Never force instruments apically 

• Enlarging canal space to accommodate obturation material 

• Continuous irrigation throughout treatment 

• Irrigation solution remains within canal space  

• Fistulas do not require special attention 

• Negative culture should be confirmed prior to obturation 

• Obturation should result in hermetic seal to root canal system 

• Obturation material should not be inflammatory to tissues  

• Adequate drainage in case of acute alveolar abscess 
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• Avoidance of injections into infectious spaces 

• Surgical approach may be necessary for adequate healing 

Present-day, the understanding is that the most important objective is the 

elimination of bacteria and its associated contents. Schilder is credited with bringing this 

understanding to light in 1967 (86). Schilder also stressed the importance of obturating 

the root canal system in three dimensions, in which aliquots of gutta percha were placed 

into the canal, heated with a spreader and condensed, allowing for, what he referred to as 

a hermetic seal (86).  

 

MECHANICAL INSTRUMENTATION 

Primarily, instrumentation is the process of enlarging the root canal space to 

adequately allow for proper delivery of irrigation and disinfection as well as ultimately 

obturation of the same space (85, 87). Of significant importance is the ability to maintain 

the original canal to avoid deviation from the canal space (88). This deviation could 

result in transportation or unzipping from the original canal, which may result in a 

perforation exiting the canal at a location other than the original apical foramen (89). 

Despite the importance of shaping the canals, a significant amount of the pulp canal 

system remains untouched after instrumentation (90-92). Knowing that bacterial 

penetration may reach up to 300 m into dentinal tubules, an additional layer of 

disinfection is necessary (93, 94). 

 

CHEMICAL IRRIGATION 

Incorporating antibacterial solution into instrumentation of the root canal system 

provides that additional benefit (95). Ideal disinfection irrigant should display the 
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following properties: action on endodontic bacterial biofilm, tissue dissolution, endotoxin 

inactivation, effect on smear layer, minimal caustic potential, and minimal allergic 

potential (96). Sodium hypochlorite (NaOCl) has proven itself as the solution worthy of 

such a challenge as it meets many of these requirements. It demonstrates an ability to 

dissolve organic tissue, lubricate the canal, and disinfect canal space with some effect on 

the smear layer and only a few reported cases of allergenicity in the literature (96, 97). 

Ranges of pH of NaOCl are above 11, which allows for hypochlorous acid to affect 

oxidative phosphorylation in cellular processes, blocking membrane activities and DNA 

synthesis (98-100). This process can be affected by a variety of factors, several studied 

include amount of exposure time, temperature upon exposure, and concentration (95, 

101, 102). Regarding its minimal effect on the smear layer, it effects only the organic 

component; however, incorporation of one minute of ethylenediaminetetraacetic acid 

(EDTA) adequately removes the smear layer (103). Additionally, NaOCl demonstrates no 

residual effect or efficacy against endotoxin (104-106). In such cases where these 

requirements are desired, disinfection with 2% chlorhexidine gluconate (CHX) would be 

indicated (107, 108). Unfortunately, mixture of NaOCl and CHX forms a precipitate 

described as para-chloroaniline (PCA), which may have negative and potentially harmful 

effects (109, 110). This can be prevented by flushing the canal with a different irrigant 

between solutions. 

 

OBTURATION 

As mentioned earlier, and described by Schilder, a hermetic seal after adequate 

disinfection to minimize space for bacterial penetration is necessary and defined by the 

AAE as obturation. Obturation should be confined to the canal system without voids and 
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terminate within 1 mm of the radiographic apex (111, 112). Requirements for adequate 

endodontic sealer were listed by Grossman in 1982 (113), which included: 

1. Should create a hermetic seal 

2. Tacky when mixed to “stick” to canal walls 

3. Radiopaque 

4. Fine powder particles to mix well with liquid 

5. No shrinkage on setting 

6. Should not stain tooth 

7. Bacteriostatic (or at least not bacteriophilic) 

8. Slow setting time 

9. Insoluble in tissue fluid 

10. Tissue tolerant, or non-irritating to tissue 

11. Soluble in a common solvent 

 Endodontic sealer is used in conjunction with obturation 

material, primarily gutta percha, to aid in providing a hermetic seal (111).  

 

MICROORGANISMS 

Bacteria are the challenge against which endodontics faces (78). Numerous 

studies look at species present within root canal systems, and comparing biofilms within 

necrotic pulps of mature and immature teeth, as well as primary and secondary infections 

where a tooth has already been endodontically treated (114-118). In the necrotic pulp of 

the immature tooth, as is often the case with regenerative techniques, endodontic 

infections most often consist of gram-negative anaerobic rods (114). The most commonly 
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isolated of these species is A. naeslundii, which has significant pathogenicity activating 

the innate immune response triggering an inflammatory process (115-120). 

Another important pathogenic species located often in these teeth is F. nucleatum, 

which is a gram-negative obligate anaerobe (121). This species is important because of its 

ability to aggregate additional bacterial species, developing the biofilm (122). F. 

nucleatum and another species, P. gingivalis have virulence factors that lead to tissue 

destruction and difficulty in the host response eradication (122, 123).  

Another endodontic species is E. faecalis, a gram-positive facultate anaerobe, 

which demonstrates ability to invade dentinal tubules and expresses significant virulence 

factors (124-126). 

 

MANAGING IMMATURE TEETH WITH PULPAL NECROSIS 

Pulp necrosis of the immature permanent tooth results from infection of the dental 

pulp chamber before root formation has been completed, leaving the root dentin thinner 

and shorter, and with an open root foramen (4, 127). This blunderbuss apex presents a 

significant challenge to endodontics (22, 128). Techniques to address this include 

apexogenesis, apexification, and regenerative endodontics (89).  

 

APEXOGENESIS AND APEXIFICATION 

Historically, these teeth were treated through a technique known as apexification, 

in which the use of calcium hydroxide [Ca(OH)2] is utilized (3). This technique requires 

long-term placement of Ca(OH)2 inside the root canal with a goal of inducing the 

formation of an apical hard tissue barrier. The duration of placement often requires 

multiple visits over several years to achieve periodontal healing and bridging (2). In a 
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retrospective study, Cvek found periapical healing of 95% and 91% of teeth immediately 

after treating and at a 4-year follow-up, respectively (4). Additional challenges include 

low patient recall, possible contamination of canal between appointments, and increased 

dentin brittleness, with the fracture strength of Ca(OH)2-treated teeth potentially being 

halved after a year (2, 5, 6). Research by Yassen et al showed that this result is likely due 

to the significantly higher phosphate/amide I ratios in Ca(OH)2-treated dentin compared 

with untreated dentin (7). They proposed that the alkaline Ca(OH)2 with a pH of 11.8 has 

a denaturation effect on the dentin organic matrix, facilitating penetration apatite-

encapsulated collagen matrix and thus changing the nature of the internal walls of the 

tooth (7). 

Apexification has been improved with the use of bioceramic materials such as 

mineral trioxide aggregate (MTA) to improve the apical plug and biological response at 

the apex (8-10). As an apical plug, the MTA continues the formation of an apical barrier 

and also creates a stop for the obturation of the canal with gutta-percha.  The use of MTA 

could reduce the number of patient visits with an increased success rate (11), but still no 

increase in root-wall thickness occurs. 

 

REGENERATIVE ENDODONTICS 

Regenerative endodontics is defined as biologically-based procedures which 

replace damaged structures of the pulp-dentin complex (12, 129). The term 

“regeneration” has very specific connotation and does not truly occur within the canal 

chamber (130). However, AAE definition to “replace” damaged structures is quite 

appropriate and fitting as there is a new and unique mineralized layer that is deposited in 

these cases (130). When performed clinically, the AAE defines this term as a 
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Regenerative Endodontic Procedure (REP) (129). There are three goals of regenerative 

endodontics, which are: to remove the source of infection and reduce clinical symptoms, 

to increase root wall thickness and root length, and to have a return in sensibility response 

within the tooth (12). The process is based on tissue engineering and knowledge gained 

has benefitted from the biomedical fields. This process is accomplished via disinfection 

initially followed by inducing apical bleeding, which delivers a blood supply rich in 

mesenchymal stem cells into the canal chamber promoting tissue growth (38, 131, 132).  

 

HISTORY OF REGENERATIVE ENDODONTIC PROCEDURES (REPs) 

Despite their recent surge in popularity, REPs are not new in the literature. 

Interestingly, Nygaard-Østby had performed preliminary work in the field in the 1960s 

and hypothesized that a blood clot formation in the canal could lead to revascularization 

and healing (133). He conducted research on patients with vital and non-vital pulps where 

root canal treatment was performed, and apices enlarged to allow bleeding into the canal 

system. Teeth were medicated if necrotic, restored and followed for a period of time until 

ultimately were extracted and sectioned. Interestingly, despite being left unfilled, all teeth 

had resolution of symptoms and pathosis. Some of the cases showed evidence of 

“regeneration” in that there was apical closure of some teeth and others developed 

ingrowth of connective tissue (133). Histologically, the new tissue differed from normal 

pulp tissue in that it included cementoblasts while lacking odontoblasts (133). 

Nonetheless, this was a seminal study despite the lack of attention that it received at the 

time. 

In 1966, a study involving mixtures of antibiotic paste emerged where the 

investigators instrumented short of the expected vital tissue and medicated, representing 
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the first case where antibiotic mixtures were used in immature necrotic teeth for 

disinfection (134). As with Nygaard-Ostby, all teeth resolved clinical signs and 

symptoms of infection. However, in this study, there was a reported increased root length 

with all cases (134). Then, in 1971, another Nygaard-Ostby study emerged with similar 

results demonstrating resolution of symptoms and increased root width (15). However, 

the tissue within the canals remained the same, lacking the tissues expected within a 

normal tooth (15).  

Another 30 years passed before regenerative endodontics continued its course 

with the first case report of successful REP. In the seminal study by Iwaya, double 

antibiotic paste (DAP) using the same two antibiotics (ciprofloxacin and metronidazole) 

as presented in this study was utilized (135). Though a case report, this paper was able to 

demonstrate that an appreciable amount of root width and length can develop with this 

procedure (136). In treatment of this infected necrotic immature tooth, Iwaya utilized 5% 

NaOCl and 3% hydrogen peroxide over the course of six appointments with 

interappointment medicament of DAP to achieve the desired results, which were 

demonstrable continued root length and thickness radiographically over two years later 

(135). Another case report by Banchs and Trope was published three years later utilizing 

triple antibiotic paste (TAP) consisting of ciprofloxacin, metronidazole, and minocycline 

(21). The necrotic pulp space of the immature permanent tooth was irrigated with 5.25% 

NaOCl and medicated with TAP for 28 days. Then, at the second appointment, antibiotic 

was removed with saline and bleeding was induced followed by a restoration to seal the 

chamber (21). These two studies both reported a return to sensibility testing at over two 
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years post-operatively (136). This protocol became the framework for treatment protocol 

in REPs and was utilized in multiple reported cases (137-140). 

 

CLINICAL ASEPSIS THROUGH DISINFECTION 

We understand from Kakehashi et al. that bacteria are the cause of apical 

periodontitis (78). Our understanding of bacteria present within the necrotic tooth is 

improving with the development of Next-Generation Sequencing techniques. Currently, 

the identified important players within the canal are gram-negative and gram-positive 

species. Fusobacterium, Dialister, Porphyromonas, Prevotella, Tanerella, Treponema, 

Campylobacter, and Veillonella are the most prevalent gram-negative bacteria (141). 

Parvimonas, Fillifactor, Pseudoramibacter, Olsenella, Actinomyces, Peptostreptococcus, 

Streptococcus, Propionibacterium, and Eubacterium are the most prevalent gram-positive 

bacteria identified (141). In the primary endodontic infection of immature permanent 

teeth, as would be seen in REPs, A. naeslundii was identified as most prevalent (141). 

These species are present in complex and diverse biofilms along the canal walls as well 

as penetrating into dentinal tubules (142).  

Bacterial species also change as the infection becomes more established and 

environmental conditions such as oxygen saturation and availability of nutrients changes, 

progressing from facultative bacteria in the presence of oxygen to eventually obligate 

anaerobes later in disease progression (143).  
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TYPES OF IRRIGANTS 

The primary goal of regenerative endodontics is resolution of clinical signs and 

symptoms as evidenced by radiographic healing. Chemical disinfection is critical as 

minimal to no mechanical instrumentation is recommended in these procedures.  

 

Sodium Hypochlorite (NaOCl) 

Primarily, the use of NaOCl is recommended as it is antibacterial, dissolves 

organic tissue, and provides lubrication for instrumentation (116, 144, 145). NaOCl has 

been in use since its introduction in 1919 (150JJ). Concentration is recommended at 1.5% 

as the immature tooth presents with an open apex so as not to cause significant harm to 

the patient (145, 146). Equally, a greater concentration can adversely affect stem cells 

and growth factors located in the apical papilla (147-149).  

Calcium Hydroxide (Ca(OH)2)  

Introduced in the 1920s by B.W. Hermann, Ca(OH)2 has been a workhorse in 

endodontic disinfection (13). It is effective due to its alkaline nature, with a pH above 12 

and works by direct contact, inhibiting microorganism DNA replication (150). Ca(OH)2 

is able to inactivate lipopolysaccharide (LPS) (151, 152). Ca(OH)2 demonstrates a 

beneficial effect for stem cell proliferation in all concentrations (20, 153, 154). However, 

Ca(OH)2 can affect hard tissue formation by interfering with the osteoprotegrin/RANKL 

ratio (155) as well as negatively affecting the phosphate:amide ratio (31). Andreasen 

reported prolonged use of Ca(OH)2 intracanal can reduce tooth fracture resistance, which 

was confirmed in other studies (2, 156). Ca(OH)2 also has demonstrated limited 

effectiveness against commonly isolated endodontic microbes including E. faecalis and 
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Porphyromonas gingivalis (24). For these reasons, antibiotic pastes retain an influential 

role.  

 

Triple Antibiotic Paste (TAP) 

To combat the multispecies nature of the bacteria present within endodontic 

infections, pastes consisting of multiple antibiotics have been proposed. TAP was 

introduced by Hoshino when examining in-vitro endodontic comparisons and found that 

the combination of ciprofloxacin, metronidazole, and minocycline was effective (18, 19). 

In-vitro studies have demonstrated that 0.3 mg/mL of TAP significantly reduces bacterial 

load (23, 25, 157). However, challenges exist when utilizing TAP, most notably the issue 

of dentin discolorization associated with minocycline (158, 159). Also, minocycline 

causes demineralization by binding to calcium ions with its low pH of 2.9 (7, 160). 

Equally and more importantly in REPs, concentrations above 1 mg/mL demonstrate 

detrimental effects on SCAP (153) and DPSC (23, 27, 161). Given these complications 

with minocycline, other antibiotics have been recommended as replacements such as 

cefaclor, amoxicillin, or clindamycin (136). Clindamycin is efficacious against many 

endodontic microbes (162, 163). When considering an alternative antimicrobial to 

minocycline, the term modified TAP (mTAP) has been promoted as a useful replacement 

(31).  

 

Double Antibiotic Paste (DAP) 

An alternative is to remove minocycline altogether and utilize DAP, which 

consists of ciprofloxacin and metronidazole (164). DAP does not cause the levels of 

staining as found with TAP and has been found to be equally efficacious against 
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endodontic pathogens (24, 26, 135) while showing low cytotoxicity to dental pulp stem 

cells and SCAP (23, 162). This has led to growing interest in DAP as antibiotic treatment 

of choice.  

 

Ethylenediaminetetraacetic acid (EDTA) 

EDTA is a viscous chelator, removing the inorganic portion of the smear layer by 

binding metallic ions (165). The smear layer is created mechanically and chemically and 

occludes the dentinal tubules causing decreased disinfection and bond strength when 

required (113). EDTA at a concentration of 17% removes the smear layer and releases 

growth factors from inside dentin (166-168). By removing the smear layer, EDTA 

increases surface area, possibly leading to better stem cell attachment, as evidenced by 

DPSC attachment to dentin pre-treated with EDTA (169, 170). EDTA can also mitigate 

some of the negative effects of NaOCl, again possibly increasing survival of stem cells of 

the apical papilla (149). If left in place too long, EDTA is able to demineralize 

peritubular and intertubular dentin (103).  

 

MAJOR DOMAINS OF REPs 

The secondary goal of regenerative endodontics is increased root length and root 

wall thickness, followed by the tertiary goal of positive sensibility. Though the primary 

goal is most important, the secondary and tertiary goals are where regenerative 

endodontics research begins to differentiate itself from traditional endodontics. There are 

three major domains required to develop REPs. They include stem cells, scaffold or 

tissue engineering materials, and growth factors (12). 
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Stem Cells 

Stem cell nurturing is the tissue engineering aspect of REPs. Stem cells can be 

either pluripotent or multipotent, dividing into any human cell or into their identical cell, 

respectively (37, 131). Stem cells can be further sub-categorized according to their 

source. Allogenic stem cells derive from the same species. Autologous stem cells are 

collected from the same individual. Xenogenic stem cells originate from a different 

species. There exist a great number of mesenchymal stem cells (MSCs) in the periapical 

area of immature teeth with necrotic pulp (131). Stem cells are found in the apical papilla 

(SCAPs), dental pulp stem cells (DPSCs), dental follicle progenitor stem cells (DFPCs), 

periodontal ligament stem cells (PDLSCs), and stem cells from human exfoliated 

deciduous teeth (SHEDs) (38-40, 171-173). Stem cells are concentrated in the cell-rich 

zone of the pulp, near the odontoblastic layer (136). The above stem cell lines are 

essential for pulp fibroblasts, extracellular matrix, and collagen regeneration (40, 89, 

174). The DPSC as well as stem cells from the apical papilla (SCAP) are important for 

regenerative endodontics (38, 39). DPSCs have the ability to form dentin and pulp-like 

tissues when transplanted in immunocompromised mice using hydroxyapatite/tricalcium 

phosphate scaffolds (40, 41). Based on their location in proximity to the Hertwigs 

epithelial root sheath (HERS), SCAP are believed to be the main source of 

undifferentiated cells involved in root development, whether in vital cases or with REPs 

(39). These SCAP have demonstrated ability to retain their vitality and stemness in an 

inflammatory environment as well as increased osteogenic differentiation and induction 

of angiogenesis (175). 
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Scaffold 

A scaffold is required for transport of nutrients, oxygen, and metabolites to the 

site of repair so that stem cells are capable of differentiating accordingly (17, 176). 

Nevins was the first to use a scaffold in REPs in 1976 using a collagen membrane (177). 

He later used a cross-linked collagen-hydroxyapatite scaffold (SynOss) in an off-label 

application in four cases and reported substantial hard tissue repair (178). Hutmacher 

identified six properties of an ideal scaffold for use in REPs (179): 

1. Porous structure to allow for tissue attachment 

2. Resorbable membrane 

3. Cellular growth and proliferation 

4. Sufficient mechanical properties 

5. Biocompatible materials 

6. Good handling characteristics 

Often, the patient’s own blood clot is indicated as the scaffold (12). However, 

given recent technological advancements, new scaffolds are being designed (12). Platelet-

rich plasma (PRP) and platelet-rich fibrin (PRF) have been utilized as scaffold (137, 180-

182). In addition, key growth factors may potentially be released by the use of these 

scaffolds (166, 167, 170).  

 

Growth Factors 

Growth factors are endogenous molecules that act as a signaling molecules 

promoting tissue growth, maturation, healing, and repair with significant impact on the 

regeneration potential of stem cells (183). These growth factors are located within the 

dentin matrix and under certain conditions are released into surrounding environment to 
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influence neighboring cells and tissues (183). The use of EDTA in regeneration aids in 

the release of signaling molecules including transforming growth factor beta (TGF-β), 

which promotes stem cell differentiation into odontoblasts and signals pulp tissue 

mineralization while promoting wound healing (166). Additional growth factors, 

including bone morphogenic protein (BMP) and vascular endothelial growth factor 

(VEGF), promote odontoblast differentiation and vasculature formation, respectively 

(183).  

 

Nano-Hydroxyapatite (n-HA) 

Nano-HA has been used in dentistry for a variety of indications ranging from 

desensitization by blocking of dentinal tubules (184) to remineralization of carious 

lesions (185). More exciting, however, has been its incorporation in the medical tissue 

bioengineering fields. Hydroxyapatite has a chemical formula of Ca10(PO4)6(OH)2 and is 

the main component of enamel, giving its bright white appearance (44). The size of n-HA 

ranges from 50 to 1000 nm (44). In recent bone regeneration models n-HA has been used 

to increase healing potential. One study in 2015 created sponge-like plugs of collagen-

hydroxyapatite implanted in mice and found that an appropriate HA proportion facilitated 

MSC attachment, proliferation, and differentiation (50).  

 

CLINICAL APPLICATION 

REPs address a challenge – the necrotic pulp of an immature permanent tooth – 

that has not been easily treated. The excitement is in the potential to regenerate tissues 

and re-establish vitality in a previously necrotic pulp with a potentially sizeable apical 

infection. However, the true benefit is in the fact that a tooth that, if treated 
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conventionally with apexification, would have had a questionable prognosis for the 

duration of its life. Now there is a probability that with increased root width and root 

thickness, stability will be granted for a longer time. Whether or not DAP with n-HA 

finds its way into the AAE Guidelines for Regenerative Endodontics, it was exciting to 

have researched such an interesting field. 

 

CURRENT RECOMMENDED GUIDELINES FOR REPs 

Case Selection: 

• Tooth with necrotic pulp and an immature apex 

• Pulp space not needed for post/core, final restoration 

• Compliant patient/parent 

• Patient not allergic to medicaments and antibiotics necessary to complete 

procedure 

Informed Consent 

• Two or more appointments 

• Use of antimicrobials 

• Possible adverse effects: staining of crown/root. lack of response to 

treatment, pain/infection 

• Alternatives: MTA apexification, no treatment, extraction 

• Permission to enter information into AAE database (optional) 

First Appointment 

• Local anesthesia, dental dam isolation and access 

• Copious, gentle irrigation with 20-ml NaOCl using an irrigation system 

that minimizes the possibility of extrusion of irrigants into the periapical space (e.g., 
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needle with closed end and side-vents, or EndoVac™), lower concentrations of NaOCl 

are advised 1.5-percent NaOCl (20mL/canal, 5 min) and then irrigated with saline or 

EDTA (20 mL/canal, 5 min), with irrigating needle positioned about 1 mm from root end, 

to minimize cytotoxicity to stem cells in the apical tissues 

• Dry canals with paper points 

• Place Ca(OH)2 or low concentration of triple antibiotic paste 

If the triple antibiotic paste is used: 1) Consider sealing pulp chamber with a 

dentin bonding agent [to minimize risk of staining] and 2) Mix 1:1:1 ciprofloxacin: 

metronidazole: minocycline to a final concentration of 0.1mg/ml to 1.0 mg/ml  

Triple antibiotic paste has been associated with tooth discoloration 

Double antibiotic paste without minocycline paste or substitution of minocycline 

for other antibiotic (e.g., clindamycin; amoxicillin; cefaclor) is another possible 

alternative as root canal disinfectant 

• Deliver into canal system via syringe 

• If triple antibiotic is used, ensure that it remains below CEJ (minimize 

crown staining) 

• Seal with 3-4 mm of a temporary restorative material such as Cavit™, 

IRM™, glass-ionomer, or another temporary material, dismiss patient for 1 week to 4 

weeks 

Second appointment (1-4 weeks after 1st visit) 

• Assess response to initial treatment. If there are signs/symptoms of 

persistent infection, consider additional treatment time with antimicrobial, or alternative 

antimicrobial 
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• Anesthesia with 3-percent mepivacaine without vasoconstrictor, dental 

dam isolation 

• Copious, gentle irrigation with 20 ml of 17-percent EDTA 

• Dry with paper points 

• Create bleeding into canal system by over-instrumenting (endo file, endo 

explorer) (induce by rotating a pre-curved K-file at 2 mm past the apical foramen with 

the goal of having the entire canal filled with blood to the level of the cemento-enamel 

junction), an alternative to creating a blood clot is the use of platelet-rich plasma (PRP), 

platelet rich fibrin (PRF), or autologous fibrin matrix (AFM) 

• Stop bleeding at a level that allows for 3 mm to 4 mm of restorative 

material 

• Place a resorbable matrix such as CollaPlug™, Collacote™, CollaTape™ 

over the blood clot if necessary and white MTA as capping material. 

• A 3-mm to 4-mm layer of glass ionomer (e.g. Fuji IX™, GC America, 

Alsip, IL) is flowed gently over the capping material and light- cured for 40 s. MTA has 

been associated with discoloration. Alternatives to MTA (such as bioceramics or 

tricalcium silicate cements [e.g., Biodentine®, Septodont, Lancaster, PA]) should be 

considered in teeth where there is an esthetic concern 

• Anterior and Premolar teeth - Consider use of Collatape/Collaplug and 

restoring with 3 mm of a non-staining restorative material followed by bonding a filled 

composite to the beveled enamel margin 

Molar teeth or teeth with PFM crown - Consider use of Collatape/Collaplug and 

restoring with 3 mm of MTA, followed by RMGI, composite, or alloy 
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Follow-up 

• Clinical and radiographic exam 

• No pain, soft tissue swelling or sinus tract (often observed between first 

and second appointments) 

• Resolution of apical radiolucency (often observed 6 mos. to 12 mos. after 

treatment) 

• Increased width of root walls (generally observed before apparent increase 

in root length and often occurs 12 mos. to 24 mos. after treatment) 

• Increased root length 

• Positive pulp vitality test response 

• The degree of success of REP is largely measured by the extent to which it 

is possible to attain primary, secondary, and tertiary goals: 

o Primary goal: The elimination of symptoms and the evidence of bony 

healing 

o Secondary goal: Increased root wall thickness and/or increased root length 

(desirable, but perhaps not essential) 

o Tertiary goal: Positive response to vitality testing (which if achieved, 

could indicate a more organized vital pulp tissue) 
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EXPERIMENTAL GROUPS 

 Group 1 – Ca(OH)2 

 Group 2 – Methylcellulose  

 Group 3 – Methylcellulose + 1 mg/mL DAP 

 Group 4 – Methylcellulose + 1 mg/mL DAP + 0.25% Hydroxyapatite 

 Group 5 – Methylcellulose + 1 mg/mL DAP + 0.50% Hydroxyapatite 

 Group 6 – Methylcellulose + 1 mg/mL DAP + 1.0% Hydroxyapatite 

Group 1 serves as a positive control since Ca(OH)2 has known positive effects on 

DPSC growth (186). Group 2 serves as the negative control group. Groups 3-6 serve as 

the experimental groups, testing the effect of hydroxyapatite on DPSCs. No true negative 

control was included as this had been conducted in an earlier study within this laboratory. 

 

MATERIALS  

Materials required for this project were purchased commercially or prepared as 

per the methodology below. DPSC from immature third molars were previously 

purchased and stored in aliquots in liquid nitrogen (Cook General BioTechnology, 

Indianapolis, IN, USA).  Cell culture 24-well plates (Alkali Scientific Inc. Cat: TP9024), 

Transwell chambers (Falcon Product 1.0 m permeable support transmembrane with 

transparent PET membrane: #353104 ), alpha modified minimal essential media, fetal 

bovine serum (FBS) (Atlanta Biologicals Inc., Flowery Branch, GA, USA), penicillin-

streptomycin (Life Technologies Corporation, Grand Island, NY, USA), 0.25% 

trypsin/EDTA (Life Technologies Corporation), DAP powder [(Double antibiotic 

capsules; Ciprofloxacin HCL monohydrate (LETCO: 1509220034), Metronidazole, USP 

(MEDISCA: 137957/B); (1:1)*400 mg/400mg; #20)], methylcellulose (Methocel 60 HG, 
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28-30% methoxyl basis), hydroxyapatite nanoparticles (HA nanopowder <200 nm size, 

Aldrich: 677418-10G), ALP assay kit (Sigma Aldrich), Alizarin red reagents and Pierce 

BCA Assay Kit (Thermo Scientific: 23225) were purchased commercially. 

 

METHODOLOGY 

 

Preparation of Methylcellulose containing DAP ± HA 

We prepared methylcellulose containing DAP as per previously published 

protocols (32). Initially, 1 mg/mL concentration of DAP was made by dissolving 25 mg 

each of metronidazole and ciprofloxacin in 25 mL of sterile water. Antibiotics were 

measured using sterilized aluminum foils and DAP powder was added to the beaker 

containing media.  Solution was mixed with magnetic stir bar at speed 6/10 for 10 

minutes until DAP was fully incorporated. It should be noted that 1 mg/mL DAP fully 

suspended. A paste-like consistency of DAP was achieved by incorporating 2.0 g of 

methylcellulose powder into solution at room temperature. The solution was then 

separated into three divisions so that the differing concentrations of hydroxyapatite 

nanoparticles could be added independently. Nano-HA was added by weight; for 0.25%, 

0.50%, and 1.0% (Figure 9). A homogenous mixture was created ultimately by vibrating 

for less than 1 minute.  

 

Human dental pulp stem cells (DPSC) 

DPSC were used for all studies. The stem-like nature of these cells has been 

previously established utilizing flow cytometric analysis. The DPSCs were previously 

frozen in liquid nitrogen in aliquots. Cells at passages from 3 to 5 were utilized in this 

experiment. Sub-confluent cells were detached from the culture plate with 0.05% trypsin-
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EDTA. Cells were thawed, passaged once, plated at 4x104 cells/well in 24-well plates 

(Figure 6) and placed into 37oC/5% CO2 incubator (Figure 10). For proliferation assay, 

cells were cultured in alpha-modified essential medium (MEM) supplemented with 10% 

FBS and 1 % penicillin/streptomycin.  For ALP and mineralization assays, the media was 

also supplemented with 10 mM –glycerolphosphate and 50 mg/ml ascorbic acid. 

 

Proliferation 

 

DPSCs were cultured in 24-well plates with or without the medicaments for 3 

days (Figure 7).  500 L MEM culture media were placed in the floor of the wells 

followed by the transwells. 750 L media was then placed into the transwell, followed by 

100 L of each treatment, respectively, using a tuberculin syringe. This experimental 

plate was then incubated for 3 days at 37oC/5% CO2 incubator. On day 3, a modified 

MTS Assay kit (CellTiter 96 Aqueous Non-Radioactive Cell Proliferation Assay) was 

then used as a measure of the cell proliferation. This assay is able to determine the ability 

of the cells to metabolize.  The time points at which the proliferation assay was run were 

0-3 hours as per previous studies in this laboratory. 200 μL of MTS reagent solution was 

in each culture well per time point to be read. Enough reagent solution was reserved for 

three extra wells of only reagent solution as a control. Transwells were removed and 

discarded. Media was aspirated; appropriate volume of the reagent solution added to each 

well in plate with the same volume of reagent solution added as control to three empty 

wells on the plate. The Normal ratio for the reagent is 20 mL -MEM:4 mL MTS: 200 

L PMS. Plate reading required 1 mL of above reagent mix to each well. For reading the 

plate, 100 μL from each well was pipetted to 96-well plate and absorbance measured at 

490 nm (Figure 14).  Again, this was performed at 0, 1, 2, and 3 hours in which 
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timeframe the absorbance on the spectrophotometer did not saturate out (Figure 15). 

Caution was used throughout the procedure to minimize light exposure as reagents are 

light-sensitive, and plates remained in incubator when not being manipulated. In total, 

proliferation was performed over three trials with a total n = 10, all performed in 

triplicate. 

 

Quantification of ALP Activity 

DPSCs were cultured in 24-well plates with or without the medicaments for 7 

days.  For ALP quantification, -GP and AA were added to the media to promote 

differentiation of the cells. b-GP was added to MEM media at 0.01 volume and AA was 

added at 0.001 volume of MEM. 500 L MEM culture media plus -GP/AA was placed 

in the floor of the well followed by the transwell. 750 L media was then placed into the 

transwell, followed by 100 L of each treatment, respectively, using a tuberculin syringe. 

This experimental plate was then incubated for 3 days at 37oC/5% CO2 incubator. At day 

3, media were changed; transwells were removed delicately with forceps and placed in 

new 24-well plate. Media was aspirated from wells ensuring avoidance of cells. 500 L 

MEM/-GP/AA media were added to floor of wells, transwells were returned to original 

well, and an additional 250 L media were added to the transwell. Plates were returned 

for incubation until day 7. For cell lysis prior to ALP activity estimation, 10 mL lysis 

buffer were required consisting of 7.92 mL double distilled H2O, 0.5 mL of 1 M Tris-Cl 

(pH 7.5), 0.3 mL of 5 M NaCl, and 1 mL of 10% Igepal-CA 630 (NP-40). For inhibitors, 

0.25 mL of 10% sodium deoxycholate, 0.01 mL of 10 mg/mL leupeptin hydrochloride, 

0.01 mL of 10 mg/mL aprotinin, and 0.01 mL of 10 mg/mL of pepstatin were used. For 

the substrate solution, 10 mL of double distilled H2O mixed with 10 mL of alkaline 
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buffer and 40 mg of 4-nitrophenyl phosphate sodium salt hexahydrate powder were made 

ready. And 40 μL NaOH (10 M) were mixed with 20 mL H2O for NaOH (20 mM) for 20 

mL.  After culture, transwell chambers containing the spent medicaments were discarded 

and cells in the bottom chamber were washed twice with ice cold phosphate buffered 

saline (PBS). Cells were lysed in 100 L of lysis buffer and the bottom of the well was 

scraped with a pipette tip. Cells were carefully placed in a microcentrifuge tube and 

sonicated for 5 minutes (Figure 12). Microcentrifuge tubes were then spun on 13.2x103 

RPM for 3 minutes (Figure 13). Supernatant was then stored at -34oC until ALP assay 

was performed as per the laboratory protocol described below. 

The colorimetric conversion hydrolyzing p-nitrophenol phosphate to p-

nitrophenol was used to determine alkaline phosphatase activity according to protocols in 

this lab(187). A standard curve was created using serial dilution. 200 μL of standards in 

triplicates were added to a 96-well plate. 3 l of the cell lysate was added to be assayed in 

triplicate. 100 μL of the substrate solution (40 mg of p-nitrophenyl phosphate (p-NPP), 

10 mL of alkaline buffer, and 10 mL of double distilled H2O) was added to each well that 

contained photo-sensitivity and incubated at 37°C for 1 hour. Incubation was stopped by 

adding 95 l of 20 mM NaOH when the treatment groups were within the color range of 

the standards, determined by the colorimetric conversion of p-NPP to nitrophenol. Final 

volume was cooled to room temperature and optical absorbance measured at 405 nm 

using the plate reader (Figures 14, 17). 

ALP activity was normalized by total protein in the cell lysates.  For this we used 

the BCA kit according to the manufacturer’s protocol.  Briefly, a working solution of 

BSA 250 μg/mL in distilled H2O was used to generate the standard curve. In parallel, 



44  

 

aliquots of the protein lysates were added to the BCA reaction mixture.  Absorbance for 

both the standards and samples were measured at 562 nm (Figure 14).  Total protein in 

each lysate was determined based on the BSA standard curve (Figure 20). In total, ALP 

assay was evaluated in three trials with a total n = 13, all performed in triplicate.  

 

Mineralization Assay 

DPSCs were cultured in 24-well plates with or without the medicaments for 7 

days.  For mineralization quantification, -GP and AA were added to the media to 

promote differentiation of the cells. -GP was added to MEM media at 0.01 volume and 

AA was added at 0.001 volume of MEM. 500 L MEM culture media plus -GP/AA was 

placed in the floor of the well followed by the transwell. 750 L media was then placed 

into the transwell, followed by 100 L of each treatment, respectively, using a tuberculin 

syringe. This experimental plate was then incubated for 3 days at 37oC/5% CO2 

incubator. At day 3, media was changed; transwells were removed delicately with forceps 

and placed in new 24-well plate. Media was aspirated from wells ensuring avoidance of 

cells. 500 L MEM/-GP/AA media was added to floor of wells, transwells were 

returned to original well, and an additional 250 L media was added to the transwell. 

Plates were returned for incubation until day 7. The mineralization plates were stopped at 

7 days by fixing the cells with 500 μL of 3.7% formaldehyde in PBS added to each well 

and waiting 15 minutes for cell fixation. This solution was aspirated from wells and 

ended with fixed cells in 1 mL of PBS. Separately, Alizarin Red S solution was mixed 

with a stir bar. A standard curve of solution in 1.7 mL microcentrifuge tubes was then 

prepared. PBS was suctioned off from the fixed mineralization plates and rinsed twice 

with distilled H2O. 500 μL per well of 40 mM Alizarin Red S were added to each well on 
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plate. Shaker was set to speed 20 for 10 minutes. Alizarin Red S was suctioned off and 

rinsed with H2O three times. Water was aspirated and washed with 1 mL of PBS to each 

well for 15 minutes. PBS was aspirated and 500 μL of CPC was added to each well to 

extract Alizarin Red S. Solution was placed on shaker at speed 20 for 15 minutes. 150 μL 

of standards and samples were placed into a 96-well plate (Figure 16) in triplicates and 

absorbance was measured at 562 nm (Figure 14). In total, mineralization assay was 

evaluated in three trials with a total n = 13, all performed in triplicate. 

 

Sample Size and Statistical Analysis 

Comparisons between groups for differences in mineralization, BSA, and ALP 

activity were performed using analysis of variance (ANOVA), with different variances 

allowed for each group and a random effect included in the model to account for 

correlation within each of the three trials. The effects of time and group on proliferation 

were evaluated using repeated measures ANOVA, with different unstructured variance-

covariance matrices allowed for each group and a random effect included in the model to 

account for correlation within each of the three trials.  A simulation-based multiple 

comparisons procedure was used to adjust for multiple comparisons. A 5% significance 

level was used for all tests.  
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RESULTS 

 

 

Proliferation Assay 

Regarding proliferation, comparisons were made at three time points; T=0, 1, 2, 3 

hours. Very little statistically significant difference was noted between treatment groups 

at all time points. Of note, however, the MC + DAP + HA 1% group displayed 

significantly greater metabolic activity than that of Ca(OH)2 at T= 2, 3 hours with p = 

0.039 and 0.007, respectively. There was a positive trend toward greater proliferation in 

the three experimental groups throughout all time (Figure 18). Equally, these three groups 

outperformed the MC + DAP and Ca(OH)2 groups; these two groups had very similar 

readings (Figure 19). And the MC group consistently demonstrated the lowest 

proliferation with the largest standard error as well.   

 

ALP Assay 

The three experimental groups (DAP + MC + HA 0.25%, DAP + MC + HA 

0.5%, DAP + MC + HA 1.0%) statistically outperformed all other groups except MC + 

DAP + HA 0.25% was only moderately greater than Ca(OH)2, p = 0.100 (Figure 22). The 

other two groups, MC + DAP + HA 0.5% and MC + DAP + HA 1.0%, were significantly 

greater than Ca(OH)2, at p = 0.002 and p = 0.010, respectively. All three experimental 

groups were significantly greater than the MC group and the MC + DAP group. The 

Ca(OH)2 group was also significantly greater than the MC + DAP group, p = 0.031. 
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Comparing the three experimental groups, there was a trend favoring MC + DAP + HA 

0.5%. 

 

Mineralization Assay 

  

When comparing Ca(OH)2 to all three experimental HA groups (DAP + MC + 

HA 0.25%, DAP + MC + HA 0.5%, DAP + MC + HA 1.0%), a statistically significantly 

greater amount of mineralization was noted (Figure 24). MC + DAP + HA 0.25% (p = 

0.012), MC + DAP + HA 0.5% (p = 0.008), and MC + DAP + HA 1.0% (p = 0.013) were 

all equally and similarly greater than the Ca(OH)2 group. Interestingly, the strongest 

group was the MC alone group which was meant to serve as the control group 

demonstrating statistical significance over MC + DAP and Ca(OH)2 groups with p = 

0.003 and p = 0.001, respectively. One other significance occurred, which was MC + 

DAP + HA 0.5% over MC + DAP, at p = 0.049. Comparing the three experimental 

groups, a slight linear trend appeared matching HA concentration. 
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FIGURE 1. Flowchart of experimental design 
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FIGURE 2. Experimental design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3. Experimental MTS assay. 
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FIGURE 4. Experimental ALP assay. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5. Experimental Mineralization assay. 
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FIGURE 6. Counting DPSC after plating. 
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FIGURE 7. A 24-well plate with Transwells and medicaments with 

culture in place. 

 



55  

 

 

 

FIGURE 8. Image of 1.0-m pore size Transwell with experimental 

medicament lining membrane and culture media filling 

well. 
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FIGURE 9. Photo of experimental groups within experimental tubes. 
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FIGURE 10. Photo of CO2 incubator utilized during 

experimentation. 
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FIGURE 11. Pipetting during assay preparation. 
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FIGURE 12. Sonication set to 5 minutes during ALP assay. 
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FIGURE 13. Centrifugation of tubes during assay. 
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FIGURE 14. Spectrophotometer utilized during 

experimentation for quantitative analysis of 

results. 
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FIGURE 15. Experiment Trial 3 

proliferation assay. 
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FIGURE 16. Experiment Trial 3 

mineralization assay. 
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FIGURE 17.  Experiment Trial 3 BSA 

and ALP assay. 
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FIGURE 18. Proliferation Results: Assay quantitatively analyzed over T = 0 to 

3 hours (significance demonstrated below). 

 

 
 

FIGURE 19. Proliferation results: Significance (P < 0.05) demonstrated by 

differing letters above respective experimental groups. Note: 

Graph demonstrates measurement at T = 3 hours as absorbance 

separated through timespan.  
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FIGURE 20. BSA standard curve for Trial 3 against which trial 

measurements were measured to determine ALP activity 

(below). Note: Standard curve was established for each of the 

three trials separately. 

 

 

 
 

FIGURE 21. ALP standard curve for Trial 3 against which trial measurements 

were measured to determine ALP activity (below). Note: Standard 

curve was established for each of the three trials separately. 
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FIGURE 22. ALP Results: Significance (P < 0.05) demonstrated by 

differing letters above respective experimental groups. 
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FIGURE 23. Mineralization Trial 3 standard curve against which trial 

measurements were measured to determine calcium deposited 

(below). Note: Standard curve was established for each of the three 

trials separately. 

 

 

 
 

FIGURE 24. Mineralization Results: Significance (P < 0.05) demonstrated by 

differing letters above respective experimental groups. 
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TABLE I  

 

Mineralization results measured in g/mL 

 
Trial Group N Mean SD SE Min Max 
All Ca(OH)2 12 7.11 0.86 0.25 5.88 8.54 
 MC 13 8.96 1.74 0.48 6.71 12.58 
 MC + DAP 1 13 7.53 0.88 0.24 5.99 9.05 
 MC + DAP 1 + HA 0.25% 13 8.22 1.32 0.37 5.88 10.50 
 MC + DAP 1 + HA 0.5% 13 8.59 1.74 0.48 6.17 12.45 
 MC + DAP 1 + HA 1% 13 8.66 2.04 0.57 6.62 12.97 
1 Ca(OH)2 4 7.37 0.44 0.22 6.90 7.76 
 MC 4 10.77 1.83 0.92 8.48 12.58 
 MC + DAP 1 4 8.19 0.67 0.34 7.57 9.05 
 MC + DAP 1 + HA 0.25% 4 9.56 0.76 0.38 8.65 10.50 
 MC + DAP 1 + HA 0.5% 4 10.31 1.89 0.94 8.43 12.45 
 MC + DAP 1 + HA 1% 4 11.29 1.27 0.64 9.88 12.97 
2 Ca(OH)2 5 7.47 0.99 0.44 5.88 8.54 
 MC 6 8.64 0.70 0.29 7.68 9.38 
 MC + DAP 1 6 7.63 0.65 0.26 6.35 8.14 
 MC + DAP 1 + HA 0.25% 6 8.24 0.56 0.23 7.72 9.03 
 MC + DAP 1 + HA 0.5% 6 8.45 0.48 0.20 7.66 8.91 
 MC + DAP 1 + HA 1% 6 7.86 0.73 0.30 6.93 8.69 
3 Ca(OH)2 3 6.17 0.06 0.04 6.13 6.24 
 MC 3 7.19 0.52 0.30 6.71 7.75 
 MC + DAP 1 3 6.44 0.47 0.27 5.99 6.92 
 MC + DAP 1 + HA 0.25% 3 6.39 0.44 0.25 5.88 6.66 
 MC + DAP 1 + HA 0.5% 3 6.56 0.41 0.24 6.17 6.99 
 MC + DAP 1 + HA 1% 3 6.75 0.11 0.07 6.62 6.82 
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TABLE II 

 

Mineralization (g/mL) comparisons* 

     

Result Difference SE p-value  
Ca(OH)2 < MC -1.85 0.42 0.001 * 
Ca(OH)2 & MC + DAP 1 n.s. -0.41 0.33 0.809  
Ca(OH)2 < MC + DAP 1 + HA 0.25% -1.10 0.32 0.012 * 
Ca(OH)2 < MC + DAP 1 + HA 0.5% -1.47 0.41 0.008 * 
Ca(OH)2 < MC + DAP 1 + HA 1% -1.55 0.45 0.013 * 
MC > MC + DAP 1 1.43 0.37 0.003 * 
MC & MC + DAP 1 + HA 0.25% n.s. 0.75 0.36 0.297  
MC & MC + DAP 1 + HA 0.5% n.s. 0.38 0.44 0.955  
MC & MC + DAP 1 + HA 1% n.s. 0.30 0.48 0.989  
MC + DAP 1 & MC + DAP 1 + HA 0.25% n.s. -0.69 0.25 0.084  
MC + DAP 1 < MC + DAP 1 + HA 0.5% -1.06 0.36 0.049 * 
MC + DAP 1 & MC + DAP 1 + HA 1% n.s. -1.13 0.41 0.074  
MC + DAP 1 + HA 0.25% & MC + DAP 1 + HA 0.5% n.s. -0.37 0.35 0.894  
MC + DAP 1 + HA 0.25% & MC + DAP 1 + HA 1% n.s. -0.44 0.40 0.871  
MC + DAP 1 + HA 0.5% & MC + DAP 1 + HA 1% n.s. -0.07 0.47 1.000  

 *Denotes significance. 
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TABLE III 

 

BSA (mg/mL) results 

 
Trial Group N Mean SD SE Min Max 
All Ca(OH)2 13 1.21 0.24 0.07 0.85 1.57 
 MC 13 1.52 0.41 0.11 0.88 1.96 
 MC + DAP 1 13 1.26 0.21 0.06 0.92 1.57 
 MC + DAP 1 + HA 0.25% 13 1.30 0.15 0.04 1.04 1.56 
 MC + DAP 1 + HA 0.5% 13 1.25 0.20 0.06 0.89 1.53 
 MC + DAP 1 + HA 1% 13 1.25 0.21 0.06 0.86 1.55 
1 Ca(OH)2 4 0.88 0.03 0.01 0.85 0.92 
 MC 4 0.96 0.10 0.05 0.88 1.10 
 MC + DAP 1 4 1.00 0.07 0.04 0.92 1.09 
 MC + DAP 1 + HA 0.25% 4 1.11 0.07 0.03 1.04 1.18 
 MC + DAP 1 + HA 0.5% 4 0.99 0.07 0.04 0.89 1.04 
 MC + DAP 1 + HA 1% 4 0.98 0.09 0.05 0.86 1.09 
2 Ca(OH)2 6 1.38 0.10 0.04 1.29 1.57 
 MC 6 1.73 0.16 0.06 1.59 1.96 
 MC + DAP 1 6 1.30 0.07 0.03 1.17 1.38 
 MC + DAP 1 + HA 0.25% 6 1.35 0.04 0.02 1.30 1.41 
 MC + DAP 1 + HA 0.5% 6 1.32 0.07 0.03 1.23 1.41 
 MC + DAP 1 + HA 1% 6 1.33 0.05 0.02 1.29 1.43 

3 Ca(OH)2 3 1.32 0.05 0.03 1.27 1.37 
 MC 3 1.85 0.02 0.01 1.82 1.87 
 MC + DAP 1 3 1.53 0.07 0.04 1.45 1.57 
 MC + DAP 1 + HA 0.25% 3 1.47 0.09 0.05 1.40 1.56 
 MC + DAP 1 + HA 0.5% 3 1.46 0.07 0.04 1.39 1.53 
 MC + DAP 1 + HA 1% 3 1.45 0.10 0.06 1.36 1.55 
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TABLE IV 

 

ALP activity per g protein 

 
Trial Group N Mean SD SE Min Max 

All Ca(OH)2 13 16.4 7.1 2.0 3.5 25.1 
 MC 13 11.7 9.9 2.8 1.2 25.7 
 MC + DAP 1 13 10.2 4.8 1.3 4.9 18.6 
 MC + DAP 1 + HA 0.25% 13 22.0 12.5 3.5 6.0 42.8 
 MC + DAP 1 + HA 0.5% 13 26.6 15.4 4.3 7.2 49.5 
 MC + DAP 1 + HA 1% 13 24.9 14.8 4.1 6.6 46.4 

1 Ca(OH)2 4 16.8 3.8 1.9 12.5 21.7 
 MC 4 3.1 2.5 1.2 1.2 6.5 
 MC + DAP 1 4 6.6 1.7 0.8 5.3 9.0 
 MC + DAP 1 + HA 0.25% 4 15.3 6.4 3.2 10.3 24.3 
 MC + DAP 1 + HA 0.5% 4 18.0 2.9 1.5 14.7 21.8 
 MC + DAP 1 + HA 1% 4 16.5 3.0 1.5 13.1 20.3 

2 Ca(OH)2 6 21.6 3.1 1.3 16.2 25.1 
 MC 6 21.2 5.7 2.3 10.0 25.7 
 MC + DAP 1 6 14.7 2.7 1.1 10.7 18.6 
 MC + DAP 1 + HA 0.25% 6 33.7 5.5 2.2 26.9 42.8 
 MC + DAP 1 + HA 0.5% 6 41.4 6.7 2.7 29.1 49.5 
 MC + DAP 1 + HA 1% 6 39.1 6.8 2.8 27.1 46.4 

3 Ca(OH)2 3 5.5 1.8 1.0 3.5 6.8 
 MC 3 4.3 1.1 0.6 3.0 5.0 
 MC + DAP 1 3 6.1 1.5 0.8 4.9 7.7 
 MC + DAP 1 + HA 0.25% 3 7.8 1.6 0.9 6.0 9.1 
 MC + DAP 1 + HA 0.5% 3 8.6 1.4 0.8 7.2 10.0 
 MC + DAP 1 + HA 1% 3 7.9 1.3 0.8 6.6 9.2 
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TABLE V 

 

ALP activity per g protein comparison* 

 
Result Difference SE p-value  

Ca(OH)2 & MC n.s. 4.7 1.9 0.161  
Ca(OH)2 > MC + DAP 1 6.2 2.0 0.031 * 
Ca(OH)2 & MC + DAP 1 + HA 0.25% n.s. -5.6 2.1 0.100  
Ca(OH)2 < MC + DAP 1 + HA 0.5% -10.2 2.6 0.002 * 
Ca(OH)2 < MC + DAP 1 + HA 1% -8.5 2.5 0.010 * 
MC & MC + DAP 1 n.s. 1.5 1.9 0.969  
MC < MC + DAP 1 + HA 0.25% -10.3 2.1 <.001 * 
MC < MC + DAP 1 + HA 0.5% -14.9 2.5 <.001 * 
MC < MC + DAP 1 + HA 1% -13.2 2.4 <.001 * 
MC + DAP 1 < MC + DAP 1 + HA 0.25% -11.8 2.1 <.001 * 
MC + DAP 1 < MC + DAP 1 + HA 0.5% -16.4 2.5 <.001 * 
MC + DAP 1 < MC + DAP 1 + HA 1% -14.7 2.4 <.001 * 
MC + DAP 1 + HA 0.25% & MC + DAP 1 + HA 0.5% n.s. -4.6 2.7 0.516  
MC + DAP 1 + HA 0.25% & MC + DAP 1 + HA 1% n.s. -2.9 2.5 0.859  
MC + DAP 1 + HA 0.5% & MC + DAP 1 + HA 1% n.s. 1.7 2.9 0.992  

 *Denotes significance. 
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TABLE VI 

 

Proliferation time = 0 hours 

 
Trial Group N Mean SD SE Min Max 
All Ca(OH)2 10 0.040 0.015 0.005 0.01 0.07 
 MC 10 0.014 0.009 0.003 0.00 0.03 
 MC + DAP 1 10 0.013 0.003 0.001 0.01 0.02 
 MC + DAP 1 + HA 0.25% 10 0.024 0.012 0.004 0.01 0.05 
 MC + DAP 1 + HA 0.5% 9 0.024 0.008 0.003 0.01 0.04 
 MC + DAP 1 + HA 1% 10 0.027 0.008 0.002 0.01 0.04 
1 Ca(OH)2 3 0.040 0.015 0.009 0.03 0.06 
 MC 3 0.006 0.003 0.002 0.00 0.01 
 MC + DAP 1 3 0.015 0.004 0.002 0.01 0.02 
 MC + DAP 1 + HA 0.25% 3 0.035 0.011 0.006 0.03 0.05 
 MC + DAP 1 + HA 0.5% 3 0.025 0.002 0.001 0.02 0.03 
 MC + DAP 1 + HA 1% 3 0.026 0.003 0.002 0.02 0.03 
2 Ca(OH)2 4 0.033 0.015 0.007 0.01 0.05 
 MC 4 0.015 0.001 0.001 0.01 0.02 
 MC + DAP 1 4 0.011 0.002 0.001 0.01 0.01 
 MC + DAP 1 + HA 0.25% 4 0.014 0.005 0.002 0.01 0.02 
 MC + DAP 1 + HA 0.5% 3 0.016 0.003 0.002 0.01 0.02 
 MC + DAP 1 + HA 1% 4 0.020 0.007 0.003 0.01 0.03 

3 Ca(OH)2 3 0.049 0.017 0.010 0.04 0.07 
 MC 3 0.021 0.013 0.008 0.01 0.03 
 MC + DAP 1 3 0.015 0.002 0.001 0.01 0.02 
 MC + DAP 1 + HA 0.25% 3 0.027 0.008 0.005 0.02 0.03 
 MC + DAP 1 + HA 0.5% 3 0.030 0.008 0.004 0.02 0.04 
 MC + DAP 1 + HA 1% 3 0.035 0.001 0.001 0.03 0.04 
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TABLE VII 

 

Proliferation time = 1 hours 

 
Trial Group N Mean SD SE Min Max 
All Ca(OH)2 10 0.431 0.031 0.010 0.39 0.49 
 MC 10 0.323 0.145 0.046 0.14 0.49 
 MC + DAP 1 10 0.422 0.042 0.013 0.36 0.51 
 MC + DAP 1 + HA 0.25% 10 0.457 0.041 0.013 0.38 0.50 
 MC + DAP 1 + HA 0.5% 9 0.452 0.041 0.014 0.39 0.51 
 MC + DAP 1 + HA 1% 10 0.457 0.030 0.010 0.42 0.51 
1 Ca(OH)2 3 0.427 0.013 0.008 0.42 0.44 
 MC 3 0.270 0.075 0.044 0.18 0.32 
 MC + DAP 1 3 0.423 0.012 0.007 0.41 0.44 
 MC + DAP 1 + HA 0.25% 3 0.459 0.015 0.009 0.44 0.47 
 MC + DAP 1 + HA 0.5% 3 0.463 0.018 0.010 0.45 0.48 
 MC + DAP 1 + HA 1% 3 0.472 0.006 0.003 0.47 0.48 
2 Ca(OH)2 4 0.461 0.019 0.010 0.44 0.49 
 MC 4 0.478 0.016 0.008 0.46 0.49 
 MC + DAP 1 4 0.454 0.040 0.020 0.41 0.51 
 MC + DAP 1 + HA 0.25% 4 0.493 0.018 0.009 0.47 0.50 
 MC + DAP 1 + HA 0.5% 3 0.490 0.021 0.012 0.48 0.51 
 MC + DAP 1 + HA 1% 4 0.474 0.029 0.015 0.44 0.51 

3 Ca(OH)2 3 0.397 0.012 0.007 0.39 0.41 
 MC 3 0.170 0.032 0.019 0.14 0.21 
 MC + DAP 1 3 0.377 0.016 0.009 0.36 0.39 
 MC + DAP 1 + HA 0.25% 3 0.406 0.019 0.011 0.38 0.42 
 MC + DAP 1 + HA 0.5% 3 0.404 0.016 0.009 0.39 0.42 
 MC + DAP 1 + HA 1% 3 0.422 0.005 0.003 0.42 0.43 
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TABLE VIII 

 

Proliferation time = 2 hours 
 

Trial Group N Mean SD SE Min Max 

All Ca(OH)2 10 0.917 0.065 0.021 0.85 1.00 
 MC 10 0.719 0.312 0.099 0.38 1.10 
 MC + DAP 1 10 0.958 0.091 0.029 0.86 1.15 
 MC + DAP 1 + HA 0.25% 10 0.999 0.055 0.017 0.91 1.08 
 MC + DAP 1 + HA 0.5% 9 0.977 0.057 0.019 0.90 1.07 
 MC + DAP 1 + HA 1% 10 0.998 0.027 0.009 0.97 1.06 
1 Ca(OH)2 3 0.855 0.006 0.003 0.85 0.86 
 MC 3 0.540 0.142 0.082 0.39 0.67 
 MC + DAP 1 3 0.888 0.011 0.006 0.88 0.89 
 MC + DAP 1 + HA 0.25% 3 0.962 0.022 0.013 0.94 0.99 
 MC + DAP 1 + HA 0.5% 3 0.938 0.026 0.015 0.92 0.97 
 MC + DAP 1 + HA 1% 3 0.987 0.005 0.003 0.98 0.99 
2 Ca(OH)2 4 0.986 0.018 0.009 0.97 1.00 
 MC 4 1.066 0.037 0.018 1.02 1.10 
 MC + DAP 1 4 1.040 0.085 0.042 0.95 1.15 
 MC + DAP 1 + HA 0.25% 4 1.053 0.030 0.015 1.01 1.08 
 MC + DAP 1 + HA 0.5% 3 1.036 0.040 0.023 0.99 1.07 
 MC + DAP 1 + HA 1% 4 1.014 0.037 0.019 0.98 1.06 

3 Ca(OH)2 3 0.886 0.044 0.025 0.85 0.93 
 MC 3 0.434 0.076 0.044 0.38 0.52 
 MC + DAP 1 3 0.918 0.057 0.033 0.86 0.98 
 MC + DAP 1 + HA 0.25% 3 0.964 0.045 0.026 0.91 1.00 
 MC + DAP 1 + HA 0.5% 3 0.959 0.053 0.030 0.90 1.01 
 MC + DAP 1 + HA 1% 3 0.988 0.017 0.010 0.97 1.00 
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TABLE IX 

 

Proliferation time = 3 hours 

 
Trial Group N Mean SD SE Min Max 
All Ca(OH)2 10 1.506 0.121 0.038 1.33 1.66 
 MC 10 1.221 0.495 0.157 0.67 1.80 
 MC + DAP 1 10 1.590 0.124 0.039 1.46 1.86 
 MC + DAP 1 + HA 0.25% 10 1.667 0.104 0.033 1.54 1.84 
 MC + DAP 1 + HA 0.5% 9 1.632 0.090 0.030 1.52 1.78 
 MC + DAP 1 + HA 1% 10 1.684 0.064 0.020 1.63 1.84 
1 Ca(OH)2 3 1.365 0.027 0.016 1.33 1.38 
 MC 3 0.928 0.236 0.136 0.68 1.15 
 MC + DAP 1 3 1.504 0.056 0.032 1.46 1.56 
 MC + DAP 1 + HA 0.25% 3 1.577 0.041 0.024 1.54 1.62 
 MC + DAP 1 + HA 0.5% 3 1.558 0.036 0.021 1.52 1.58 
 MC + DAP 1 + HA 1% 3 1.636 0.005 0.003 1.63 1.64 
2 Ca(OH)2 4 1.625 0.029 0.015 1.60 1.66 
 MC 4 1.771 0.035 0.017 1.73 1.80 
 MC + DAP 1 4 1.688 0.133 0.067 1.57 1.86 
 MC + DAP 1 + HA 0.25% 4 1.773 0.059 0.030 1.70 1.84 
 MC + DAP 1 + HA 0.5% 3 1.733 0.058 0.033 1.67 1.78 
 MC + DAP 1 + HA 1% 4 1.743 0.065 0.032 1.70 1.84 

3 Ca(OH)2 3 1.490 0.071 0.041 1.42 1.56 
 MC 3 0.781 0.151 0.087 0.67 0.95 
 MC + DAP 1 3 1.545 0.078 0.045 1.48 1.63 
 MC + DAP 1 + HA 0.25% 3 1.615 0.052 0.030 1.56 1.66 
 MC + DAP 1 + HA 0.5% 3 1.604 0.055 0.032 1.54 1.65 
 MC + DAP 1 + HA 1% 3 1.653 0.011 0.006 1.64 1.66 
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TABLE X 

 

Proliferation comparison 

 
Time Result Difference SE p-value  
All Ca(OH)2 & MC n.s. 0.154 0.078 0.320  
 Ca(OH)2 & MC + DAP 1 n.s. -0.022 0.026 0.955  
 Ca(OH)2 & MC + DAP 1 + HA 0.25% n.s. -0.063 0.023 0.054  
 Ca(OH)2 & MC + DAP 1 + HA 0.5% n.s. -0.047 0.022 0.257  
 Ca(OH)2 < MC + DAP 1 + HA 1% -0.068 0.019 0.005 * 
 MC & MC + DAP 1 n.s. -0.176 0.079 0.195  
 MC < MC + DAP 1 + HA 0.25% -0.217 0.077 0.050 * 
 MC & MC + DAP 1 + HA 0.5% n.s. -0.202 0.077 0.083  
 MC < MC + DAP 1 + HA 1% -0.222 0.076 0.039 * 
 MC + DAP 1 & MC + DAP 1 + HA 0.25% n.s. -0.041 0.025 0.551  
 MC + DAP 1 & MC + DAP 1 + HA 0.5% n.s. -0.025 0.025 0.903  
 MC + DAP 1 & MC + DAP 1 + HA 1% n.s. -0.046 0.022 0.273  
 MC + DAP 1 + HA 0.25% & MC + DAP 1 + HA 0.5% n.s. 0.016 0.021 0.971  
 MC + DAP 1 + HA 0.25% & MC + DAP 1 + HA 1% n.s. -0.005 0.018 1.000  
 MC + DAP 1 + HA 0.5% & MC + DAP 1 + HA 1% n.s. -0.021 0.017 0.822  

0 Ca(OH)2 > MC 0.026 0.006 0.001 * 
 Ca(OH)2 > MC + DAP 1 0.027 0.005 <.001 * 
 Ca(OH)2 & MC + DAP 1 + HA 0.25% n.s. 0.016 0.005 0.196  
 Ca(OH)2 & MC + DAP 1 + HA 0.5% n.s. 0.017 0.005 0.057  
 Ca(OH)2 & MC + DAP 1 + HA 1% n.s. 0.013 0.005 0.308  
 MC & MC + DAP 1 n.s. 0.001 0.003 1.000  
 MC & MC + DAP 1 + HA 0.25% n.s. -0.010 0.004 0.572  
 MC & MC + DAP 1 + HA 0.5% n.s. -0.009 0.004 0.496  
 MC & MC + DAP 1 + HA 1% n.s. -0.012 0.004 0.078  
 MC + DAP 1 < MC + DAP 1 + HA 0.25% -0.011 0.003 0.022 * 
 MC + DAP 1 < MC + DAP 1 + HA 0.5% -0.010 0.002 <.001 * 
 MC + DAP 1 < MC + DAP 1 + HA 1% -0.014 0.002 <.001 * 
 MC + DAP 1 + HA 0.25% & MC + DAP 1 + HA 0.5% n.s. 0.001 0.004 1.000  
 MC + DAP 1 + HA 0.25% & MC + DAP 1 + HA 1% n.s. -0.002 0.004 1.000  
 MC + DAP 1 + HA 0.5% & MC + DAP 1 + HA 1% n.s. -0.003 0.003 0.998  

1 Ca(OH)2 & MC n.s. 0.108 0.048 0.575  
 Ca(OH)2 & MC + DAP 1 n.s. 0.010 0.017 1.000  
 Ca(OH)2 & MC + DAP 1 + HA 0.25% n.s. -0.025 0.017 0.979  
 Ca(OH)2 & MC + DAP 1 + HA 0.5% n.s. -0.020 0.018 0.998  
 Ca(OH)2 & MC + DAP 1 + HA 1% n.s. -0.026 0.014 0.880  
 MC & MC + DAP 1 n.s. -0.099 0.049 0.750  
 MC & MC + DAP 1 + HA 0.25% n.s. -0.134 0.049 0.249  
 MC & MC + DAP 1 + HA 0.5% n.s. -0.129 0.049 0.311  
 MC & MC + DAP 1 + HA 1% n.s. -0.134 0.048 0.215  
 MC + DAP 1 & MC + DAP 1 + HA 0.25% n.s. -0.035 0.020 0.883  
 MC + DAP 1 & MC + DAP 1 + HA 0.5% n.s. -0.030 0.020 0.973  
 MC + DAP 1 & MC + DAP 1 + HA 1% n.s. -0.036 0.017 0.708  
 MC + DAP 1 + HA 0.25% & MC + DAP 1 + HA 0.5% n.s. 0.005 0.020 1.000  
 MC + DAP 1 + HA 0.25% & MC + DAP 1 + HA 1% n.s. -0.001 0.017 1.000  
 MC + DAP 1 + HA 0.5% & MC + DAP 1 + HA 1% n.s. -0.006 0.017 1.000  

*Denotes significance. 

(continued) 
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TABLE X 

  

Proliferation comparison 

(cont.) 

 

2 Ca(OH)2 & MC n.s. 

 
 
 
 

0.198 

 
 
 
 

0.102 

 
 

0.807  
 Ca(OH)2 & MC + DAP 1 n.s. -0.041 0.037 0.999  
 Ca(OH)2 & MC + DAP 1 + HA 0.25% n.s. -0.082 0.028 0.169  
 Ca(OH)2 & MC + DAP 1 + HA 0.5% n.s. -0.060 0.029 0.730  
 Ca(OH)2 < MC + DAP 1 + HA 1% -0.081 0.023 0.039 * 
 MC & MC + DAP 1 n.s. -0.239 0.104 0.553  
 MC & MC + DAP 1 + HA 0.25% n.s. -0.280 0.101 0.241  
 MC & MC + DAP 1 + HA 0.5% n.s. -0.258 0.102 0.377  
 MC & MC + DAP 1 + HA 1% n.s. -0.279 0.100 0.229  
 MC + DAP 1 & MC + DAP 1 + HA 0.25% n.s. -0.041 0.035 0.997  
 MC + DAP 1 & MC + DAP 1 + HA 0.5% n.s. -0.019 0.036 1.000  
 MC + DAP 1 & MC + DAP 1 + HA 1% n.s. -0.040 0.031 0.994  
 MC + DAP 1 + HA 0.25% & MC + DAP 1 + HA 0.5% n.s. 0.022 0.027 1.000  
 MC + DAP 1 + HA 0.25% & MC + DAP 1 + HA 1% n.s. 0.001 0.020 1.000  
 MC + DAP 1 + HA 0.5% & MC + DAP 1 + HA 1% n.s. -0.021 0.022 1.000  

3 Ca(OH)2 & MC n.s. 0.285 0.162 0.900  
 Ca(OH)2 & MC + DAP 1 n.s. -0.083 0.056 0.975  
 Ca(OH)2 & MC + DAP 1 + HA 0.25% n.s. -0.161 0.052 0.101  
 Ca(OH)2 & MC + DAP 1 + HA 0.5% n.s. -0.125 0.050 0.398  
 Ca(OH)2 < MC + DAP 1 + HA 1% -0.178 0.044 0.007 * 
 MC & MC + DAP 1 n.s. -0.368 0.163 0.578  
 MC & MC + DAP 1 + HA 0.25% n.s. -0.446 0.161 0.241  
 MC & MC + DAP 1 + HA 0.5% n.s. -0.410 0.161 0.367  
 MC & MC + DAP 1 + HA 1% n.s. -0.463 0.159 0.173  
 MC + DAP 1 & MC + DAP 1 + HA 0.25% n.s. -0.077 0.052 0.977  
 MC + DAP 1 & MC + DAP 1 + HA 0.5% n.s. -0.042 0.050 1.000  
 MC + DAP 1 & MC + DAP 1 + HA 1% n.s. -0.094 0.045 0.708  
 MC + DAP 1 + HA 0.25% & MC + DAP 1 + HA 0.5% n.s. 0.036 0.046 1.000  
 MC + DAP 1 + HA 0.25% & MC + DAP 1 + HA 1% n.s. -0.017 0.040 1.000  
 MC + DAP 1 + HA 0.5% & MC + DAP 1 + HA 1% n.s. -0.053 0.037 0.985  

*Denotes significance. 
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The field of regenerative endodontics has seen tremendous advancements in 

recent years. AAE Guidelines now recommend a DAP or TAP concentration between 

0.1% and 1.0% antibiotic. These guidelines are based in some part on research performed 

at this institution. Concentrations ranging from 0.125 to 10 mg/mL of DAP and TAP 

demonstrated a similar antimicrobial effect on an established E. faecalis biofilm (23). 

Concentrations of 0.5 mg/mL and 0.25 mg/mL DAP and TAP showed no cytotoxicity to 

DPSC (23). Dentin with DAP had a significantly longer residual antibacterial effect than 

TAP at equal concentrations (25). A similar study looked at the residual effect of DAP on 

pretreated dentin at 1 and 4 weeks at varying concentrations (188). The DAP 

concentrations at 1 and 5 mg/mL demonstrated significant antibacterial effects against 

biofilm from mature teeth with necrotic pulp (188).  

The introduction of methylcellulose hydrogel as a carrier for antibiotic has 

improved handling characteristics of the antibiotic pastes. Introduction of methylcellulose 

may minimize the reduction in microhardness of roots compared with equal 

concentration of antibiotic (31).  Since this time, research performed here at this 

institution has been performed utilizing the same MC preparation techniques, as 

described in the prior section. In a 2017 study comparing concentration of DAP and its 

direct and residual effects on biofilms obtained from mature and immature teeth with 

pulp necrosis, it was concluded that 1 and 5 mg/mL DAP, and Ca(OH)2 all exhibited a 

significant and substantial direct antibacterial effect on all biofilms (28). Additionally, 
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dentin pretreated with 5 mg/mL DAP had a significant residual effect against both 

biofilm types compared to the 1 mg/mL DAP and Ca(OH)2 groups (28).  

One significant limitation of using DAP in this formulation is the inability to 

confirm placement of the medicament within the canal. Recent research has been 

conducted exploring the effects of radiopacifiers on the effect of DAP. In one study 

adding radiopacifiers to varying concentrations of DAP medicament, it was found that 

BaSO4 DAP as low as 1 mg/mL showed profound direct and residual antibacterial effect 

on biofilms from immature teeth with pulp necrosis (189). In contraindication to these 

findings, recent unpublished research here at IUSD demonstrated ZrO2 had a greater 

antibacterial effect and actually demonstrated these effects alone. Nonetheless, the effect 

is the same; that radiopacifiers do not negatively affect the antibacterial properties of 

DAP at 1 mg/mL. In recent manuscript-submitted research conducted in the same lab, the 

researchers performed the same experimental design to evaluate the effects of addition of 

BaSO4 and ZrO2 on DPSCs. In this research, they utilized proliferation, mineralization, 

and ALP assays to assess the differentiation and specialization of DPSCs and found little 

significant difference between the addition of BaSO4 and ZrO2 in regard to proliferation 

and slightly but not significant improved ALP activity with addition of ZrO2. 

The same researchers also investigated the antimicrobial properties, cytotoxicity, 

and differentiation potential of double antibiotic intracanal medicaments loaded into 

hydrogel system (161). In this study, the authors found that the direct antibacterial effects 

of DAP at 1, 5, and 10 mg/mL, as well as Ca(OH)2 resulted in no E. faecalis biofilm 

remaining. They found less effect of 1 mg/mL DAP on a dual-species biofilm consisting 

of E. faecalis and P. intermedia with four of seven culture samples remaining positive for 
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bacteria with a statistically significant difference from the other experimental groups. The 

differences become even more dramatic when evaluating the residual effect of treated 

dentin on bacterial biofilm. Similar to previous studies, DAP at 5 and 10 mg/mL had 

significant residual effect on both single-species and dual-species biofilms, whereas 

Ca(OH)2 had no residual effect on either biofilm type. The 1 mg/mL DAP group 

demonstrated no residual effect on either species biofilm (161). This demonstrates that 

DAP at lower concentrations has a diminished direct, and no residual effect, on more 

complex biofilms that would be present in a necrotic pulp of an immature tooth.  

It would seem evident that a concentration greater than 1 mg/mL DAP would be 

necessary in attempt to reduce the bacterial load to allow healing. However, the study of 

the cellular effects of DAP offer a resounding rebuttal to that idea. When investigating 

the proliferation of DPSC exposed to the experimental medicaments, the authors found 

that compared to the positive control, 5 and 10 mg/mL DAP induced significant 

decreases in DPSC proliferation, whereas 1 mg/mL DAP and Ca(OH)2 did not cause 

significant decreases in proliferation of DPSC (161). Regarding ALP activity, which 

demonstrates the cells ability to differentiate into an osteogenic lineage only 1 mg/mL 

DAP demonstrated no significant difference when compared to the positive control 

among the experimental groups. Ca(OH)2, 5 and 10 mg/mL DAP all led to significant 

decreases in ALP activity. When evaluating mineralization, the MC alone and Ca(OH)2 

groups demonstrated significant mineral deposits when compared to the other groups. 

However, 5 and 10 mg/mL DAP demonstrated significant reductions in mineralization 

when directly compared to 1 mg/mL DAP (P<.001) (161).  
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These findings became the formative experimental design of this project. Based 

on the detrimental stem cell effects of DAP concentrations greater than 1 mg/mL, as well 

as being the current regenerative guidance of the AAE, we decided to focus on this 

concentration in our groups. In the previous study, the negative control did not differ 

statistically from other experimental groups; therefore, it was decided to not be beneficial 

to this research. The determination of concentration of hydroxyapatite was made 

experimentally. Nano-hydroxyapatite has shown an ability to chemically bind to bone 

without inducing toxicity or inflammation (44). In the dental literature, concentrations of 

nano-HA usage ranged from 0.1-1.0% (46, 47) and hydroxyapatite demonstrates an 

ability to chemically bind to bone without inducing toxicity or inflammation, stimulating 

bone growth via a direct osteoinductive action on osteoblasts (44).  

The current study investigated the cytotoxicity and differentiation potential of 1 

mg/mL DAP with concentrations of HA at 0.25%, 0.50%, and 1.00%, comparing these 

experimental groups to established groups of Ca(OH)2, MC alone, and DAP 1 mg/mL. It 

should be noted that all DAP concentrations were formulated with MC using established 

protocols, the decision was made to alter the protocol for HA groups as the final step of 

centrifugation for 15 minutes would be expected to precipitate the HA out of suspension.  

The proliferative capacity of all experimental groups containing DAP were 

similar, as was the Ca(OH)2 group in our study. The only significance noted at T=3 hours 

was that of MC + DAP + HA 1% over Ca(OH)2, which differs from previous findings 

(29, 161). However, the minimal amount of error between groups (SE = 0.038 and 0.02, 

respectively) demonstrates the repeatability of the trials. Interestingly, proliferation 

demonstrated very similar results across all experimental groups, which emphasizes that 
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no negative effects were imposed on DPSCs when exposed to HA which would agree 

with previous findings (44, 190).  

Our study also demonstrated similar effects when evaluating mineral deposited in 

the experimental groups (161). There was, however, a difference when observing the 

Ca(OH)2 group between experiments. No statistical analysis was performed between the 

two experiments, but when comparing Ca(OH)2 and DAP at 1 mg/mL in the previous 

experiment Ca(OH)2 had significantly greater mineral deposited, whereas in the current 

experiment Ca(OH)2 had a significantly lesser mineral deposited. This is interesting, and 

the author is unsure of its significance, but Ca(OH)2 is known to demonstrate mineral 

deposition in MSCs. The concern is that too much mineralization may result in excessive 

calcification within the root canal system in vivo which could lead to potential pulp canal 

obliteration (191). In fact, a recent study that compared Ca(OH)2 to DAP/TAP 

medicaments in regenerative cases showed an increased frequency of intracanal 

calcification (77% and 46%, respectively) (192). However, as with proliferation, when 

comparing mineralization between DAP groups, very similar results were demonstrated 

among all groups. In fact, the DAP + MC + HA 0.5% group demonstrated statistically 

significantly greater mineralization than the DAP + MC group alone. So, a potential 

pitfall of HA inclusion might be canal obliteration.  

However, when observing ALP activity, a clear improvement developed with the 

experimental HA groups. This confirms research performed in the medical literature that 

shows a biocompatible nature of HA, and more specifically nano-HA, to improve cellular 

metabolic activity (44, 190, 193). ALP activity was statistically significantly greater in 

the DAP + MC + HA 0.5% and DAP + MC + HA 1.0% groups than all other groups 
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(excluding DAP + MC + HA 0.25%) with a significant magnitude. Not only did the HA 

not have a detrimental effect on the differentiation potential of DPSC, it had a near-

threefold greater effect than DAP + MC alone. 

However, no such study of this nature has been performed prior. Though our 

volume of research is growing regarding DAP at concentration of 1 mg/mL, 

incorporating nano-HA is a novel addition. The current study investigated this growth 

potential at time intervals of 3-7 days based on previous designs, which can be justified 

based on previous studies and AAE guidelines. One week of antibiotic administration 

remains the minimum amount of time recommended for regenerative treatment of the 

immature necrotic pulp. Therefore, further investigations are recommended to examine 

potential growth and differentiation of DPSC at greater time points. Additionally, with 

the promise this study offers, further research that incorporates recently-studied 

radiopacifiers would be recommended. 
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 In conclusion, the null hypothesis, which stated that there would be no difference 

in growth and maturation of DPSCs in the presence of nano-HA, was partially rejected. 

The incorporation of n-HA, especially at the 0.50% and 1% levels showed no evidence of 

cytotoxicity on DPSCs and, in fact, demonstrated comparable metabolic activity to 

established medicaments and positive controls. The incorporation of n-HA showed 

statistically significantly increased potential to differentiate into an osteogenic or 

odontogenic lineage over Ca(OH)2 as well as DAP. In addition, these cells showed an 

increased end production of calcium demonstrating their potential for incorporation in 

regenerative procedures. 
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Regenerative endodontic procedures (REP) require disinfection techniques to 

eliminate bacteria from the infected immature root canal system and promote new growth 

of the pulp-dentin complex. Double antibiotic paste (DAP), a mixture of ciprofloxacin 

and metronidazole, has shown efficacy in doing so while minimizing cytotoxicity on 

dental pulp stem cells (DPSC). Stem cells, scaffolding, and growth factors are necessary 

in the maturation, proliferation, and differentiation of mesenchymal stem cells into the 

root canal system.  Nano-hydroxyapatite (n-HA) has a history of biocompatibility and, in 

addition, has shown promising effects as a tissue bioengineering material.  
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Objective: The aim of this in vitro study was to investigate the proliferation and 

mineralization of DPSC in the presence of 1% DAP and methylcellulose (MC) with 

varying concentrations of nano-hydroxyapatite.  

Materials and Methods:  DPSC were plated in 24-well plates containing culture 

media.  The next day, semi-permeable 0.1 m Transwell chambers were inserted into the 

wells to separate the reservoirs for medicaments.  Treatment paste composed of 

methylcellulose containing 1% DAP with either 0.25%, 0.50%, or 1.0% nano-

hydroxyapatite was added along with culture media.  Methylcellulose alone and calcium 

hydroxide (Ultracal) were used as control groups. After 3 days, cells were evaluated for 

cytotoxic effects using an MTS proliferation assay (n = 10, in triplicate).  DPSCs were 

also cultured with these medicaments for 7 days in osteogenic media and evaluated for 

alkaline phosphatase (ALP) activity and mineralization activity (n = 13, in triplicate).  

Comparisons between groups for differences in mineralization, BSA, and ALP activity 

were performed using analysis of variance (ANOVA), with different variances allowed 

for each group and a random effect included in the model to account for correlation 

within each of the three trials. A simulation-based model was used to adjust for multiple 

comparisons. 

Results: Addition of n-HA treatment groups increased mineralization significantly 

greater than calcium hydroxide, with MC alone and MC+DAP+0.5% HA providing the 

greatest effect. Regarding ALP, all HA concentrations performed significantly greater 

than MC and DAP concentrations. Proliferation demonstrated similar metabolic activity 

in all experimental groups with few comparisons significant. 
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Conclusion: The challenge in REPs is to maintain survival, and preferably 

promote the proliferation and development of DPSCs into the pulp-dentin complex with a 

consistent treatment outcome.   The combination of DAP with hydroxyapatite may allow 

for both disinfection and improved mineralization and cellular differentiation. This 

contribution has shown significant ability to increase stem cell differentiation into an 

osteogenic lineage as well as calcium deposition, indicating end goal results of 

regenerative procedures. 
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