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Background: TB is a leading cause of mortality, infecting over one-third of the world’s 

population. Difficulties combating the disease are compounded by the fact that a majority of TB 

infections remain in an asymptomatic latent state. Macrophage migration inhibitory factor (MIF) 

is an innate cytokine that is encoded in a functionally polymorphic genetic locus with 

characterized allelic variants that correlate to TB progression. Understanding the genetic factors 

that regulate host immune responses to TB will help to identify individuals who are at higher risk 

of severe infection.  

Methods: A case-control study of HIV+ active pulmonary TB cases and HIV+ controls with no 

history of active TB was conducted on a South African cohort. With informed consent, we 

obtained demographics, clinical information, and blood samples for determination of MIF 

promoter polymorphisms: a functional -794 CATT5-8 microsatellite, and a closely associated -

173 G/C SNP. Serum cytokine levels were quantified using ELISA.  

Results: Among 165 enrolled patients (100 cases, 65 controls), 79 were female (40 cases, 39 

controls). Aggregate polymorphism assessment revealed non-significant distribution differences 

between cases and controls for both the 794 CATT5-8
 (p = 0.3316) and -173 G/C (p = 0.7452) 

loci. However, stratification by gender reveals a near significant difference in the frequency of 

CATT5/5 (p-value = 0.0863) and -173 G/G (p-value = 0.0949) low expresser genotypes in female 

cases versus controls but not in males. ELISA showed a significant difference (P = 0.0056) in 

serum cytokine levels between cases and controls but not between different polymorphisms.    

Conclusions: The results from this study suggest that MIF polymorphisms might contribute to 

susceptibility to TB in a sex-dependent manner and that MIF low-expresser genotypes might 

confer higher risk for active TB. However, additional studies will need to be done to establish 

this relationship.    
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Introduction 

Tuberculosis (TB) is a highly contagious disease that is transmitted by Mycobacterium 

tuberculosis carried in airborne particles generated when individuals who have active untreated 

pulmonary or laryngeal disease cough, sneeze, shout, or sing. Only about 10 percent of 

subsequently exposed individuals go on to develop an active, symptomatic infection1. Over one-

third of the world’s population is infected with M. tuberculosis at any given time. A quarter of 

these cases occur in Africa, where an estimated 250,000 individuals die of TB every year. More 

than half of new cases occur in individuals already infected with HIV/AIDS1. This is of 

particular concern because immune compromised individuals have much higher rates of active 

infection, mortality, and increased susceptibility to drug-resistant strains2. 

Both the innate and adaptive immune responses play a crucial role in controlling the 

development and severity of infection. In healthy individuals, 90% of TB infections remain in a 

controlled latent state compared to approximately 60% in immune compromised individuals2. 

Therefore, better characterization of the host immune response to TB infection will be necessary 

for development of more effective treatment options. Additionally, elements of the immune 

response may offer predictive value for disease susceptibility and progression. Animal and 

epidemiological studies have identified several immune factors that are implicated in suppressing 

TB infections. Some noticeable examples include IFN-γ3, which plays a pivotal and essential 

role in protective cellular immunity to tuberculosis infection, and IL-124, whose main role is 

activation of antigen-specific lymphocytes in an IFN-γ dependent manner. These results have led 

to the use of IFN-γ as a biomarker for tuberculosis diagnosis and treatment monitoring, however, 

its use has had limited predictive value5. Additional biomarkers, such as IP-10, MIP-1β, TGF-α, 

and VEGF have been proposed for prediction of development of active TB and differentiation of 
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active vs. latent infection, but so far none have shown high accuracy for diagnosing infection in 

HIV-infected individuals5. 

A second line of approach for identifying immune factors important in the host immune 

response to TB has been to search for genetic variants in humans that are associated with active 

infection. For example, one study showed specific HLA alleles in an Indonesian population were 

correlated with progression to active TB infection6. Epidemiological studies in Gambia have also 

correlated disease susceptibility to polymorphisms in the natural resistance-associated 

macrophage protein (NRAMP1) as well as interleukin-17. In this paper, we will utilize a similar 

approach to examine the effects of Macrophage Migration Inhibitory Factor (MIF) gene 

polymorphisms on disease susceptibility.     

MIF is a cytokine that plays an important role in regulating innate immune and 

inflammatory responses in humans and has been linked to both autoimmune and infectious 

disease responses. MIF was definitively cloned and recombinant MIF characterized in 1993 by 

the Bucala group9. A single gene located on chromosome 22 encodes MIF, which is a 12.5 kD 

protein that is highly conserved across species. MIF is produced by T-cells and macrophages, 

activates cytokine production, upregulates TLR-4 expression, and suppresses activation-induced 

apoptosis of inflammatory cells10.  MIF has been shown to have roles both in pathogenic 

inflammation and enhanced immunity. Elevated levels of MIF have been linked to sepsis 

syndromes, malarial infection, and autoimmune diseases10. In contrast, MIF also has been linked 

to enhanced immunity to intracellular microbes, including Leishmania, Salmonella, Toxoplasma, 

and Mycobacteria11. The Bucala lab has shown that MIF-deficient mice have lowered cytokine 

production and impaired ability to control mycobacterial infection, resulting in a higher 

pulmonary bacterial burden and decreased survival12,13.  In vitro studies have demonstrated that 

MIF inhibits the growth of virulent M. tuberculosis in human macrophages14. 
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Four polymorphisms have been identified in the human MIF gene (MIF).  In the 

promoter region, these include a functional -794 tetranucleotide repeat (CATT5-8) and a -173 G/C 

single nucleotide polymorphism (SNP) that is in linkage disequilibrium with CATT15,16. These 

polymorphisms can be used to characterize an individual’s MIF expression as either high, 

medium, or low. MIF expression genotype also has been correlated with plasma cytokine levels, 

with low expression allele patients having lower plasma levels of MIF 13. Studies have shown an 

association between MIF polymorphisms and susceptibility to different infectious states. For 

example, susceptibility to severe malarial anemia was shown to be partially mediated by MIF 

polymorphisms. An association was found between increasing CATT repeats at -794, the -173 

CC haplotype, and severity of malarial anemia17. Susceptibility to meningococcal disease18 and 

community-acquired pneumonia19 also have been associated with polymorphisms in MIF. 

In epidemiological studies carried out by Dr. Bucala’s group, some African and Asian 

populations were shown to have a significantly higher prevalence of low-expression MIF alleles 

compared to other geographical areas20.  It is hypothesized that this trend evolved as a protection 

against malaria, given that severe malarial anemia is associated with high-expression alleles17. 

However, patients with low expression MIF alleles have been shown to be at significantly 

greater risk for high TB bacteremia and are more likely to develop sepsis13. Our present study 

was undertaken in South Africa, which has one of the highest incidence rates of tuberculosis in 

the world, including both multi-drug-resistant tuberculosis (MDR-TB) and extensively drug-

resistant tuberculosis (XDR-TB) strains. As such, understanding how TB spreads in the context 

of South Africa is critical to combating the disease. Studying how MIF polymorphisms affect 

susceptibility to TB in this high incidence area will contribute to the understanding of TB 

pathogenesis as well as help inform prevention and treatment programs, allowing for 

identification of individuals and groups who are at higher risk of active TB infection. 
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Methods 

Patient Recruitment 

A case-control study design was used to compare MIF polymorphisms between cases 

who had microbiologically confirmed TB and controls who had no active or history of active TB. 

Patients were enrolled from two different treatment centers in KwaZulu Natal, South Africa: the 

Church of Scotland Hospital/Philanjalo NGO in Tugela Ferry and the Greytown MDR-TB 

Hospital in Greytown from 10 February 2015 to 5 August 2015. This region of the KZN 

province of South Africa is home to approximately 180,000 traditional Zulu people. The 

population suffers from high TB incidence (1100/100,000) as well as high HIV prevalence (30% 

of antenatal patients). The medical infrastructure that serves this area includes a 350-bed Church 

of Scotland Hospital (COSH) and satellite primary health care clinics. Greytown specialized 

MDR-TB Hospital is a nearby referral hospital which treats cases of confirmed MDR-TB. 

Cases were selected based on the presence of active pulmonary TB, as confirmed by 

sputum smear, Gene Xpert, or culture. TB cases were further separated into drug susceptible 

(DS-TB) or multi-drug resistant (MDR-TB). In contrast, controls were individuals who had 

neither signs of active TB nor history of being on TB treatment. All individuals enrolled were 

HIV positive and on or beginning Antiretroviral therapy (ART). All patients provided informed 

consent and the studies were approved by the institutional review boards (IRB) at the collecting 

institutions and at Yale. Demographic information (age, gender, race, etc.), HIV status and 

treatment regimen, CD4 counts, history of TB and treatment, as well as laboratory values and 

image results were collected from each patient. In addition, blood samples were collected by a 

trained nurse directly into vacutainer tubes, a portion from which serum was separated and 

transported to K-RITH to be stored at -80° C. All specimens collected were labeled with study 

ID codes only. Names or identifiers were not used on laboratory specimens.    
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Genotyping and Serum Analysis 

The acquisition and transfer of patient samples to Yale was approved by the providing 

institution and the Yale human investigation committee (HIC). DNA was extracted from the red 

blood cell fraction using Invitrogen’s Easy DNA extraction kit. Analysis of the MIF promoter 

polymorphism, -794 CATT5–8 microsatellite repeat [rs5844572], was carried out by PCR using a 

forward primer (5’-TGCAGGAACCAATACCCATAGG-3’) and a fluorescence-labeled reverse 

primer (5’-AATGGTAAACTCGGGGGAC-3’). Automated capillary electrophoresis on a DNA 

sequencer was performed on the PCR products, and the CATT alleles were identified using 

Genotyper version 3.7 software (Applied Biosystems)13. Analysis of the -173 G/C single 

nucleotide polymorphism (SNP, rs755622) was carried out using a pre-developed TaqMan assay 

for allelic discrimination and analyzed on a Roche 480 Lightcycler real time PCR machine. 

Serum MIF levels were measured by sandwich ELISA using specific antibodies13. 

Statistical Analysis 

Differences in demographic characteristics were analyzed using the Student t test. 

Multivariate odds ratios were calculated using logistic regression, controlling for age and sex. 

The proportion of MIF genotypic low expressers (CATT5/5 and -173 G/G) as well as the different 

allelic combinations of the two polymorphisms in the cases and controls were compared by χ2 

analysis. Subsequent χ2 analyses were conducted split by gender. SAS (Statistical Analysis 

Software) was used for all statistical calculations.   
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Results 

Patient Demographics  

 A total of 165 patients (100 active TB cases, 65 no history of TB controls) were enrolled. 

Important clinical and demographic characteristics are listed in Table 1. The median age was 36 

years with an IQR of 31-46 for the active cases compared to a median age of 37 with an IQR of 

28.5-46 for controls. A significantly higher proportion of controls 39/65 (60%) were female 

compared to cases 40/100 (40%), 2-sample z-test; p < 0.05. The median CD4+ T-cell count was 

78 for cases (IQR 30.75-163.75) and 207 for controls (IQR 73-480.25). Average CD4+ T-cell 

counts were 157.2 cells/µl for cases and 274.5 cells/µl for controls.  

 

 Characteristic  HIV+ Active TB HIV+ No TB P-value 

N= 
 

100 
 

65 
 

 

Age, median years (IQR)  
 

36 (31-46) 
 

37 (28.5-46) 
 

 

Female Sex  
 

40 (40.0%) 39 (60.0%) 
 

< 0.05* 

CD4 T-cell count, median 
cells/µl (IQR)  
 

78 (30.75-163.75) 
 

207 (73-480.25) 
 

 

Average (SD)  
 

157.2 (237.3) 
 

274.5 (233.5) 
 

 

Table 1 Clinical and demographic characteristics of subjects. 

Genotype Distributions of MIF Polymorphisms  

 The genotype distribution of MIF-794 CATT5–8 and -173 G/C between the active TB 

cases and the no TB controls were found to be non-statistically different, as calculated by chi-

squared tests for CATT distributions (Table 2, p = 0.3316) and for SNP (Table 3, p = 0.745).   
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Table 2 Distribution of MIF -794 CATT5–8 polymorphisms and chi-squared analysis. Outcome: C = control, HIV+ 
No Active TB; I = case, HIV+ Active Tuberculosis.  

 
 

 

 

 

 

Table 3 Distribution of MIF -173 G/C single nucleotide polymorphism and chi-squared analysis. Outcome: C = 
control, HIV+ No Active TB; I = case, HIV+ Active Tuberculosis. 

 

 

 

Logistic Regression  

 Logistic regression was conducted to predict 

development of TB from CATT5/5 genotype, -173 G/G genotype, age, and sex (Table 4). Only 

Table 4 Logistical regression. Multivariate analysis 
adjusting for CATT5/5 genotype (CATT55), -173 G/G 
genotype (SNPGG), age, and sex. Gender was found to 
significantly predict development of TB (p = 0.0141) 
with females being less likely to develop disease (OR 
0.448 (0.236-0.851)).  
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the independent variable of sex was determined to significantly predict development of TB (p = 

0.0141) with females being at a lower risk of developing disease (OR = 0.448 (0.236-0.851)).  

MIF Polymorphisms Distributions by Gender  

 Due to the significant predictive value of sex in the logistic regression, we next examined 

the distribution and chi-squared statistic for the different polymorphisms separated by gender 

(Table 5, Table 6). When separated by gender, the CATT chi-squared p-value drops to 0.1496 

for females and 0.2568 for males (Table 5). For SNP distribution, the chi-squared p-value 

becomes 0.2379 for females and 0.5099 for males (Table 6).  

Table 5 Distribution of MIF -794 CATT5–8 polymorphisms 
and chi-squared analysis by gender (left: female; right: male). Outcome: C = control, HIV+ No Active TB; I = case, 
HIV+ Active Tuberculosis.   
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Table 5 Distribution of MIF -173 G/C single nucleotide polymorphism and chi-squared analysis by gender (left: 
female; right: male). Outcome: C = control, HIV+ No Active TB; I = case, HIV+ Active Tuberculosis. 
 

Distribution of CATT5/5 Low-Expresser Genotype in Aggregate and by Gender 

The MIF CATT5/5 genotype has been previously correlated with low MIF expression 

levels13,15. Aggregate distribution of CATT5/5 showed no statistical significance (p = 0.955) 

between cases and controls, as compared using a chi-squared test (Table 6). However, separating 

by gender suggested that the frequency of the CATT5/5 low producer genotype is over expressed 

in female cases versus controls in an almost significant manner. (Table 7; chi-squared p-value = 

0.086). In males, the relationship was inversed with a higher proportion of controls having the 

CATT5/5 genotype, although it too was not yet significant (Table 7; chi-squared p-value = 0.100).        
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Table 6 Distribution of MIF -794 CATT5/5 genotype and chi-squared analysis. Outcome: C = control, HIV+ No 
Active TB; I = case, HIV+ Active Tuberculosis.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7 Distribution of MIF -794 CATT5/5 genotype and chi-squared analysis by gender (left: female; right: male). 
Outcome: C = control, HIV+ No Active TB; I = case, HIV+ Active Tuberculosis.   
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Distribution of -173 G/G Low-Expresser Genotype in Aggregate and by Gender    

 The -173 G/G genotype has likewise been associated with low MIF expression21. 

Aggregate distribution of -173 G/G also showed no statistical significance (p = 0.4495) between 

cases and controls (Table 8; chi-squared p-value = 0.4495). Separating by gender suggested that 

female cases had a higher proportion of the -173 G/G genotype, however, it did not reach 

statistical significance (Table 9; chi-squared p-value = 0.0949). The male distribution also 

returned a non-significant result (Table 9; chi-squared p-value = 0.2515).  

 

 

 

 
 
 
 

 
Table 8 Distribution of MIF -173 G/G genotype and chi-squared analysis. Outcome: C = control, HIV+ No Active 
TB;    I = case, HIV+ Active Tuberculosis.  

  

Table 9 Distribution of MIF  -173 G/G 
genotype and chi-squared analysis by 
gender (left: female; right: male). 
Outcome: C = control, HIV+ No 
Active TB; I = case, HIV+ Active 
Tuberculosis.	
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MIF Polymorphisms and Serum Cytokine Levels 

 MIF cytokine levels in serum were measured by sandwich ELISA using specific 

antibodies and showed a statistically significant difference between TB cases and non-infected 

controls with cases having a higher serum level (Figure 1, 31.9 ng/ml vs 20.9 ng/ml, P = 0.0056). 

Neither -794 CATT5–8  nor -173 G/C polymorphisms were found to correlate with MIF cytokine 

expression (Figure 2, Figure 4) even after being separated by gender (Figure 3, Figure 5).    

 

Figure 1 MIF cytokine levels (ng/ml) measured using 
sandwich ELISA. AT = TB-infected cases. NT = no-TB 
controls. (Mean (SD): AT = 31.9 (27.4), NT = 20.9 
(18.4)) 
 

 
 

 

Figure 2 MIF cytokine levels (ng/ml) by -794 CATT 
genotype and corresponding values.  
 

 
 

Figure 3 MIF cytokine levels (ng/ml) by -794 CATT genotype and separated by gender.  

P	=	0.0056	
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Figure 4 MIF cytokine levels (ng/ml) by -173 G/C genotype and and corresponding values.  

Figure 5 MIF cytokine levels (ng/ml) by -173 G/C genotype and separated by gender. 

 

Discussion 

Infection with M. tuberculosis results in a wide range of outcomes from asymptomatic 

clearance to latent infection to clinical disease and mortality. Understanding how the immune 

system influences clinical outcome is crucial for developing new therapeutics and preventative 

strategies. Here we utilized a case-control study to examine the effects of functional 

polymorphisms in the human gene for MIF on tuberculosis disease susceptibility. We enrolled 

cases who were HIV+ and had microbiologically confirmed TB together with controls who were 
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HIV+ but with no history of TB or TB treatment. South Africa has one of the world's most severe 

tuberculosis epidemics, which is compounded by rising drug resistance and HIV co-infection22. 

Limiting our study to individuals who were HIV+ allowed us to control for immune-deficiency 

status. However, this approach in turn limits the ability of our results to be extrapolated to other 

population groups that are not HIV+ or outside of Kwazulu-Natal, South Africa. Even within 

South Africa, large genetic differences between ethic groups23 complicate generalization, and 

further research is needed to elucidate the effects of MIF polymorphisms on TB susceptibility in 

other populations.  

Among the patients we recruited, there was a significantly higher proportion of female 

controls compared to cases (Table 1). How this sample difference affects the calculated results is 

difficult to determine; however,  the subsequent analysis with stratification by gender should 

have accounted for the discrepancy. The different gender distributions between the cases and 

controls might partially explain the non-significant results when the data was taken in aggregate.  

When we used logistical regression to model the data, the predictor variables we selected 

were age, sex, and the low MIF genotypes CATT5/5 and -173 G/G (Table 4). Besides sex, none 

of the other variables were good predictors for development of TB. Other models with differing 

combinations of MIF genotypes likewise showed no statistical predictive value (data not shown). 

Variables such as CD4 T cell count or HAART treatment history were not included in the model 

due to missing or otherwise unreliable data points. These results again highlight the important of 

gender when examining the results of our data set. Whether the significance of gender is due to 

the distribution of the patients we enrolled or if there is an underlying interaction between gender 

and MIF in the context of HIV and TB is a difficult question to answer.                

Another limitation of the study that might explain the non-significant results is the small 

sample size. Initial calculations gave a conservative minimum required sample size of 210 to 
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have enough power to find a significant difference between cases and controls. Our sample size 

of 165 limited the power of our study. Additional recruitment or combining with previous 

cohorts of patient samples might result in a more significant difference between the two groups 

due to an increased sample size. 

In summary, genetic analysis of MIF polymorphisms in this population of HIV+ 

individuals in KwaZulu-Natal, South Africa show no statistical difference in the distribution of 

functional MIF polymorphisms between cases who had microbiologically confirmed TB 

compared to controls who had no history of TB, both at the -794 CATT5–8 and the -173 G/C 

promoter sites (Table 2, Table 3). Stratification by gender showed that the low-expresser 

CATT5/5 genotype was overexpressed in female cases vs. controls in a near significant manner (p 

= 0.0863, Table 7). In males, the relationship was inversed with controls having a higher 

expression of CATT5/5 genotype, however, the difference also was not statistically significant (p 

= 0.100, Table 7). Likewise, stratification of -173 G/C distribution by gender suggested that 

female controls had a higher proportion of the low-expresser -173 G/G genotype, although only 

at a near significant level (p = 0.0949, Table 9). ELISA showed a difference in serum MIF 

cytokine levels between cases and controls (Figure 1), which is likely due to TB treatment or 

response to infection as opposed to basal genetic expression. No difference in cytokine levels 

were found between the different polymorphisms (Figure 2, Figure 4) or by gender (Figure 3, 

Figure 5).  

The data presented here suggest that there may be a gender-related difference in the 

relationship between MIF polymorphisms and TB disease susceptibility. Additional research is 

needed to establish whether this relationship persists in other populations or in a larger sample. 

Previous studies have shown MIF to have gender-dependent effects24,25, which may partially 
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explain the results of this study. Additional research is needed to establish whether this 

relationship persists in other populations.        
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