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One of the more popular esthetic all-ceramic restorative materials is lithium 

disilicate (LD). LD is available in two forms: (1) as an ingot, for use in a traditional lost 

wax processing technique (IPS e.max Press, Ivoclar Vivadent, Shaan, Liechtenstein); and 

(2) as a block that can be milled using computer aided design/computer aided 

manufacturing (CAD/CAM) technology (IPS e.max CAD, Ivoclar Vivadent, Shaan, 

Liechtenstein).1 LD has a flexural strength of 396 MPa compared to 125 MPa for fine 

particle feldspar ceramic using a 3-point bend test.2 The modulus of elasticity is favorable 

for LD (95 GPa) as it has been shown to be comparable to enamel (94 GPa).3 In addition, 

the coefficient of thermal expansion and the fracture toughness values for LD are similar 

to dentin.3 However, the hardness of LD (5.8 GPa) is higher than enamel (3.2 GPa).3 The 

has created some concern about possible wear of opposing dentition, but research has 

shown that a properly polished LD has the same occlusal wear rate as enamel.4 This 

increased strength comes from the 70-percent crystalline LD filler, and the fact that this 

material can be processed under pressure (“blue block” for CAD or the press process) to 

create a more uniform crystalline structure and also have fewer defects.5 Another major 

advantage of LD is that the glass matrix can be selectively removed with hydrofluoric 

acid to leave an etched surface to which silane can be applied to achieve excellent 

chemical bond strength when paired with a resin cement system.6,7 In addition, multiple 

shades and translucencies are available, offering practitioners a choice between a 

monolithic restoration or one that is reduced (“cut back”) and veneered with feldspathic 

porcelain (FP) to maximize esthetics.1 
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Modern practice philosophy is to be as conservative as possible, preserving sound 

tooth structure and vitality of the dental pulp. The ability to bond for retention rather than 

solely relying on mechanical retention has allowed for less tooth structure reduction.8 

Newer technology and material improvements led the manufacturer to recommend 

recently supported in-office or laboratory fabrication of thin (0.4-mm to 0.5-mm thick) 

LD CAD/CAM veneers.9 The use of a higher translucency LD veneer over a lower 

translucency LD crown substructure may result in a crown that has regained some of the 

more esthetic translucency and may reduce the occurrence of chipping seen with weaker 

traditional feldspathic veneers. Some evidence suggests that CAD/CAM fabricated LD 

veneering material on a substructure may be stronger than using traditional feldspathic 

veneering material.10,11 These restorations can be fabricated and delivered in a single 

clinical visit.12 First, a lower translucency substructure is fabricated with a digitally 

created cutback, then a thin 0.5-mm high translucency LD veneer is fabricated and 

adhered/sintered to the substructure. Sintering of a LD veneer to a more opaque 

substructure (traditionally zirconia) is known as the CAD-On technique and it has shown 

promising results.10 This may improve esthetics and the overall speed of fabrication, and 

may possibly reduce fracture compared to veneering with feldspathic porcelain. 

All-ceramic restorations tend to be fragile when placed in tension. They are 

especially vulnerable to defects and microcracks, which can develop during the 

processing steps. To evaluate all-ceramic restoration materials for use in the oral cavity, it 

is necessary to assess their resistance to fracture under load.13 Several performance tests 

can be used to assess the strength of ceramics. The biaxial flexure stress test (BFS) which 

can include ball on ring, ring on ring, and piston on three ball tests is one of them. An 
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advantage to this type of test over a three-point flexural test is that it is less sensitive to 

flaws and defects near the edges of the specimens.13,14 Using a test that is not sensitive to 

the edges of the specimens leads to results that are typically considered more reliable.14 It 

is necessary to evaluate whether using a CAD/CAM fabricated LD veneer over a LD 

substructure would increase the strength of the restoration above what we see with using 

a FP veneer on a LD substructure. The purpose of this project was to investigate the 

effect of using different LD veneer application methods to a LD substructure on the 

fatigue resistance of LD veneer/substructure restorations. The null hypothesis was that 

adhering or sintering a thin laminate layer of LD on another LD substructure will not 

result in increased fatigue resistance in comparison to sintered FP on LD.  
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LITHIUM DISILICATE 

 Dental ceramic restorations have become particularly appealing due to their 

esthetics, durability, and biocompatibility.6 A very popular dental ceramic is LD, which 

has been studied since 1959, it was recognized that by controlling the crystallization and 

nucleation of glasses, using variations in temperature and time held at a certain 

temperature, can result in a product with improved mechanical properties.15 LD based 

dental ceramics have become popular because they have improved durability and strength 

beyond conventional dental porcelains.6 This increased strength comes from the 70-

percent crystalline LD filler, and this material can be processed under pressure to create a 

more uniform crystalline structure and also have fewer defects.5 Another major advantage 

of LD is that, as a glass ceramic the glass matrix can be selectively removed with 

hydrofluoric acid to leave an etched surface to which silane can be applied to achieve 

excellent chemical bond strength when paired with a resin cement system.6,7 Because of 

its high strength, lithium disilicate is often used as a rigid core to which a more esthetic 

layer of material is added. Traditionally this has been feldspathic porcelain, which has 

inferior mechanical properties.16 

 In 2006 the use of LD in a chairside CAD/CAM mill was made possible because 

of a two-stage crystallization process.5 The first stage precipitates 40-percent lithium 

metasilicate crystals which creates a blue/violet color block formation with a crystal size 

of 0.2-1.0 µm.5 This step is essential to being able to mill the material in a milling unit 

because it is softer, and therefore less damage occurs to the material and to the diamond 

burs in the mill, compared to the harder LD. After milling in this “blue block” phase the 
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ceramic can then be crystallized at 850º C while under vacuum for 20 minutes to 25 

minutes to become LD. The final grain size is 1.5 µm and it is 70-percent volume of LD 

crystals in a glassy matrix.1,5 It is, however, necessary to return the surface to a high 

polish or glaze as non-polished surface prepared by diamond burs, like those used for the 

CAD process, have been shown to negatively influence fracture resistance.17 

 
COMPUTER-AIDED DESIGN/COMPUTER-AIDED 
MANUFACTURING (CAD/CAM) 
 
 The initiation of CAD/CAM in dentistry started in an effort to move away from 

having analog models that involve a lot of steps. The lost wax technique involves the 

need to control or compensate for the small changes in expansion and contraction that 

take place in the process of fabricating an indirect restoration. Between impression 

materials, stone models, waxed restorations, investing, and casting there are many 

opportunities for error to be introduced. CAD/CAM technologies were introduced to the 

dental community in 1971.18 However, it was not until a conference in 1983 that the first 

crown was milled and delivered on a patient.18 Recently, utilization of CAD/CAM 

technology to fabricate ceramic dental restorations has become common.1,5,19 

CAD/CAM offers the speed and reproducibility of digital technology and lessens 

the dependence on the manual skills of the laboratory technician. However, the 

monolithic composition of many CAD/CAM ceramic blocks limits the esthetic 

appearance of CAD/CAM-fabricated restorations. Overlaying a more translucent and 

esthetically appealing, placed by hand, sintered porcelain onto the stronger ceramic 

substructure improves esthetics, while maintaining good strength.20,21 
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PORCELAIN CHIPPING 

 According to a 10-year study, Tiechmann et al. found that a major challenge with 

feldspathic veneered LD substrate crowns was chipping of the veneering material.22 At 

five years, the annual chipping rate was 3.08 percent; however, the rate dropped to a 

more acceptable 1.5 percent at the ten-year follow-up. The authors decided that the early 

chipping was most likely not due to fatigue phenomenon, but, rather, to errors that were 

made during the manufacturing process.22 Decreased fracture loads were also 

demonstrated in a study by Zhao et al. in which fracture loads were significantly lower 

for feldspathic veneered LD specimens in comparison to monolithic LD specimens.23 

This is a challenge with using feldspathic porcelain placed by hand, in that it can be 

susceptible to errors during its application, and this may lead to an increased failure rate 

for the restoration. Jian et al. confirmed that there were more defects in the feldspathic 

veneering layer than in the monolithic layers.24 This knowledge guides the desire to find 

a mechanically stronger veneering material that is more resistant to fracture and 

chipping.10 

 Wattanasirmkit investigated ways of improving the shear bond strength of 

feldspathic porcelain on zirconia substructures by adding a liner of LD in between the 

two.25 A layer of LD glass ceramic paste was applied onto a sintered zirconia substructure 

and fired before adding multiple layers of feldspathic porcelain. Specimens with the LD 

liner had a statistically significant increase in shear bond strength compared to the 

specimens where feldspathic porcelain was added directly to the zirconia substructure.25 
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LAMINATION 

 The process of adhering a layer of one material to another material using a resin 

composite luting agent is known as lamination and has been used in other industries to 

increase flexural strength and interrupt crack propagation.26 This process has 

demonstrated an increase in flexural strength for crowns using dental zirconia as the 

crown substructures laminated with a resin-bonded feldspathic veneers.26 However, we 

found no reports in the literature using the same process with LD materials as the crown 

substructure and veneer. This lamination technique could potentially allow improved 

esthetics while maintaining very good strength in comparison to monolithic 

restorations.26 

 
STEPWISE STRESS BIAXIAL FLEXURE TESTING 

Dental ceramics are a brittle material and prone to fracture.27 Typically, dental 

restorations do not fail due to extreme loads, but rather clinically they fail due to cyclic 

fatiguing of the material.28 For this reason a popular method for assessing the fatiguing of 

dental ceramics is to use a stepwise stress testing method, in which a non-static load is 

gradually increased.29 Stepwise stress testing can be carried out using a number of 

methods. One popular method is to use a biaxial flexure test, in which a load is applied 

through a single contact on top of the specimen while it is supported underneath by 

multiple points in the shape of a ring.29 

 

SUMMARY OF THE REVIEW OF THE LITERATURE 

 Testing and clinical use of LD as a veneering material on a zirconia substructure 

has been documented.30 Also, there has been limited research in using LD that has been 
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placed by hand in a manner similar to how feldspathic porcelain has been used.10 The use 

of digitally created CAD/CAM veneers on a single tooth restoration has been 

documented, but not with LD veneering materials.11 Lamination has been used as a way 

to improve esthetics by varying translucencies, and possibly shades, to create more 

natural esthetics compared to a monolithic restoration.3 External staining of a monolithic 

restoration is currently used, but this has some limitations due to the difficulty of using 

colored pigments to mimic translucency and there are some concerns about the longevity 

of external stains.31 Currently there is no published research that has studied using a LD 

veneer over a LD substructure and the effects of laminating these materials for use as a 

dental prosthesis. The question this article addresses is whether or not there is a potential 

to return to similar fracture resistance of monolithic LD compared to bilayer LD. This 

could potentially help to guide the next step in esthetic dental restorations that use a high 

strength ceramic as a veneering layer while using the same high strength material as a 

substructure, both of which can be fabricated quickly using a CAD/CAM chairside 

system. This type of restoration could also potentially help to move from a reliance on 

chairside external staining or dental laboratories to create appropriately translucent all-

ceramic restorations. 
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MATERIALS AND METHODS 
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SPECIMEN FABRICATION 

 This was a laboratory study. No human subjects were used. The flexural strength 

of LD veneering materials sintered or bonded to LD, and FP sintered to LD were 

compared to that of monolithic LD utilizing ceramic discs (Ø=12 × 1.2 mm) (n = 15). 

Specimen fabrication and testing conformed to ISO/FDIS 6872:2014(E).  

 Four different disc shaped sample groups were fabricated to have a final 

dimension of 12-mm diameter with a total thickness of 1.2 mm (Figure 2; Table 1). Non-

crystalized LD blocks (e.max CAD, Ivoclar Vivadent, Shaan, Liechtenstein; Lot# 

W93529; Figure 3), 32 mm in length, were machined into cylinders on a lathe to create 

uniform, round 12-mm diameter cylinders. Then, each cylinder was sectioned using a low 

speed diamond saw (Isomet 1000, Buehler, Lake Bluff, Illinois, USA; Figure 4). To 

obtain a uniform and flat surface, finishing and polishing steps (Leco DS-20, Saint 

Joseph, Michigan, USA) were performed under running water using #600, #800, & 

#1,200-grit silicon carbide paper.26 For the three experimental groups (SLDV, RBLDV 

and SFV), “crown substructure” discs fabricated from LD cylinders (Ø = 12×32 mm) 

were sectioned into 0.8-mm thick discs, polished and then crystalized in a furnace 

(Programat CS Furnace, Ivoclar Vivadent, Shaan, Liechtenstein; Table 2). There were no 

more than five specimens fired at a time during a firing cycle. Final thickness of each 

substructure specimen after polishing was 0.7 mm. Specimens were stored in a constant 

temperature oven at 22°C. 
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EXPERIMENTAL GROUPS 

 
Monolithic LD, MLD 

 The control group consisted of monolithic LD specimens (MLD) 1.3 mm in 

thickness. The final thickness of each specimen after polishing (Figure 5) was verified 

with a micrometer to be 1.2±0.05 mm. After polishing, the LD specimens were 

crystalized at the prescribed firing cycle following the manufacturer’s guidelines (Figure 

6). 

 
THIN LD VENEER SINTERED TO LD SUBSTRUCTURE, SLDV 

 Thin veneers (Ø=12×0.5 mm) of pre-crystalized 32-mm LD were cut, polished 

and crystalized using the same methods described above. The 0.5-mm thickness is the 

minimum thickness recommended by the material manufacturer for CAD/CAM thin 

veneers (E.max IPS CAD). To create this specimen group a 0.5-mm veneer disc was 

sintered it to a 0.7-mm LD substructure disc. A thin layer of connecting porcelain (IPS 

e.max CAD Crystall/Connect, Ivoclar Vivadent, Shaan, Liechtenstein; Lot# W01285; 

Figure 7) was placed on the thicker LD sample and then the thin LD disc was positioned 

on top. A thin 0.05-mm sheet of acetate film was placed above and below the specimens 

to create uniformity of pressure distribution with a 200 g weight applied for 1 minute, 

while vibrating (Heavy Duty Vibrator, WhipMix, Louisville, KY, USA; Figure 8). 

Excess connecting porcelain was removed by a plastic instrument and brush while still 

under pressure. The specimens were then fired (no more than 5 specimens at a time) at 

the manufacturer’s recommended temperature (Table 2). To account for the thickness of 

the connecting sintering porcelain the specimens were re-sized (returned to 1.2 mm at the 
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expense of the 0.7-mm substructure disc), and re-polished up to 1200 grit in the same 

manner as previously described. The specimens were remeasured to assure they had 

returned to the previously allowed dimensions of 1.2±0.05 mm 

 
THIN LD VENEER RESIN-BONDED LD SUBSTRUCTURE, RBLDV 

A thin LD veneer (Ø =12×0.5 mm) was resin bonded to the surface of a LD 

substructure (Ø = 12 × 0.7 mm), creating an overall final specimen thickness of 1.2 mm. 

A single surface of each specimen was prepared for bonding using a self-etching primer 

(Ivoclar Monobond Prime and Etch, Ivoclar, Vivadent, Shaan, Liechtenstein; Lot # 

X46577; Figure 9) that was actively applied with a microbrush for 20 seconds, allowed to 

sit for 40 seconds, and thoroughly rinsed under running water for 30 seconds (according 

to manufacturer instructions). A small amount of resin cement (transparent) was placed 

on the center of the substructure disc (Multilink, Ivoclar Vivadent, Shaan, Liechtenstein; 

Lot# X21834; Figure 9). The veneer was lightly positioned onto the prepared surface of 

the substructure disc. An acetate film was applied above and below the discs for 

uniformity of dispersion of forces. A 200 g weight was applied on top for 30 seconds for 

consistent pressure between specimens.32 The specimens were tack cured for 2 seconds 

around the periphery, excess resin was removed with a plastic instrument, and light cured 

(Bluephase Light, Ivoclar Vivadent, Shaan, Liechtenstein; Figure #10) for 2 minutes at 6 

different locations (3 locations approximately 120° apart on veneer side of the specimen 

and then the same on the substructure side) on the disc for 20 seconds each. A visible 

curing light meter was used at the beginning of each bonding session to assess the light 

intensity generated by the light curing unit (Cure Rite, DENTSPLY Sirona, York, PA, 

USA; Figure #10). Outputs were recorded between 1150-1250 mW/cm2. Due to the low 
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thickness of the resin cement, there was no need to refinish the discs to obtain a 1.2-mm 

thick sample. The RBLDV specimens were stored dry in the constant temperature oven at 

22°C, until the resin bonding, then they were stored in water for 24 hours prior to testing.  

 
FELDSPATHIC VENEER SINTERED ONTO LD SUBSTRUCTURE, SFV 

 Feldspathic porcelain was sintered on the surface of 0.7-mm LD specimens to 

simulate a traditional veneer-ceramic condensation process. These specimens were 

prepared by placing each selected LD disc into a stainless-steel mold (Ø =12 × 1.3 mm) 

(Figure 11). Following manufacturer instructions, a thin wash layer slurry of feldspathic 

veneering ceramic (e.max Ceram, Ivoclar Vivadent, Shaan, Liechtenstein; Lot# W89584; 

Figure 10) was combined with a build-up liquid (e.max Ceram build up liquid, Ivoclar 

Vivadent, Shaan, Liechtenstein), this slurry was placed onto the 0.7-mm disc, and then 

vibrated to remove any air bubbles. The excess liquid was absorbed with an absorbent 

tissue paper. Specimens were then vacuum-fired and allowed to cool to room 

temperature. A second layer was placed and fired using the same protocol.32 If necessary, 

a third firing cycle was used to complete the specimens. To accommodate for any 

shrinkage of the veneering porcelain, the specimens were purposefully thickened by an 

additional 0.1 mm. For these specimens, finishing and polishing was performed, on the 

feldspathic veneer side, using the same protocol as previously listed to obtain a polished, 

uniform 1.2-mm thickness of the entire specimen.  

 
STEPWISE STRESS TESTING USING BIAXIAL 
FLEXURAL STRESS TEST 
 
 Testing was performed dry with biaxial flexure test using a piston-on-ring 

configuration following ISO/FDIS 6872:2014(E). The fabricated specimens were tested 
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up to 215,000 cycles at room temperature (22ºC) using a stepwise stress fatigue test. The 

specimens were conditioned at 50 N for 5,000 cycles; then the applied load was increased 

by 50 N increments every 30,000 cycles with a load ranging from 100 N up to 400 N. A 

frequency of 1.4 Hz on a universal testing machine (Electropuls E3000, Instron, 

Norwood, MA, USA; Figure #12) was used with a cross-head speed of 0.5 mm/min until 

fracture occurred. The load was applied using three hardened steel balls with 4.5 mm 

diameter (radius 2.25 mm) placed 120 degrees apart on a support circle with a diameter 

of 11 mm (radius 5.5 mm). Load was applied with a flat piston with a diameter 1.4 mm 

(radius 0.7 mm) at the center of the specimen (Figure 13 and 14). To evenly distribute the 

forces, a 0.05-mm thick acetate film was placed above and below the specimen.13,27 Each 

specimen was checked for cracks and/or failures every 30,000 cycles under a light 

microscope.33  

 The Poisson’s ratios and Young’s modulus for the materials used were: e.max 

CAD 0.20, 95 GPa; Multilink 0.28, 18.6 GPa; Fusion Ceramic 0.21, 70 GPa; e.max 

Ceram 0.23, 90 GPa respectively.34,35 The variation of the stresses through the thickness 

for the bilayer discs was calculated according with the equations 1 and 2 proposed by 

Hsueh et al. varying the thickness from 0.1 mm to 1.2 mm.36 

σr1 = σθ1 =
−PE1(1 + ν)(Z − Zn∗)

8π(1 − ν12)D∗  

×  �1 + 2 ln �
a
c
� +  

1 − ν
1 + ν

  �1 −
c2

2a2
�

a2

R2� 
(1) 

  
 

 

(for 0≤Z≤t1 and r≤c), 
 

σr2 = σθ2 =  
−PE2(1 + ν)(Z − Zn∗)

8π(1 − ν22)D∗  

×  �1 + 2 ln �
a
c
� +  

1 − ν
1 + ν

  �1 −
c2

2a2
�

a2

R2� 
(2) 
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(for t1≤Z≤t1+t2 and r=c), 

Where a, c and R are the radii of the supporting ring, piston and disc, respectively and 

considering r the radial distance from the center of the disc and r, θ and Z cylindrical 

coordinates. The neutral surface position and the flexural rigidity for all bilayer groups 

were obtained from the equation 3 and 4, respectively.  

Zn∗ =

E1t12
2(1 − ν12) + E2t22

2(1 − ν22) + E2t1t2
1 − ν

E1t1 
1 − ν12

+ E2t2
1 − ν22

 

 
 
 

(3) 

D∗ =
E1t13

3(1 − ν12) +
E2t23

3(1 − ν22) +
E2t1t2(t1 + t2)

1 − ν22

−
� E1t12
2(1 − ν12) + E2t22

2(1 − ν22) + E2t1t2
1 − ν22

�
2

E1t1 
1 − ν12

+ E2t2
1 − ν22

 
(4) 

 

Where E is the Young’s modulus of each ceramic, t1 and t2 is the overall thickness of each 

layer and the Poisson’s ratio of the bilayered disc calculated by the equation 5. 

ν =
ν1t1 + ν2t2

t1 + t2
 (5) 

 

 

 
For the monolithic discs the stress variation was calculated through equation 6 and 7.36 

σr = σθ =
3P(1 + ν)

4πhn
3  ×  �1 + 2 ln �

a
c
� + 

1 − ν
1 + ν

  �1 −
c2

2a2
�

a2

R2� (6) 
 

 

 
(at z=0 and r≤c), 
 

σr = σθ =
−3P(1 + ν)(z − hn

2
2πhn

3  ×  �1 + 2 ln �
a
c
� +  

1 − ν
1 + ν

  �1 −
c2

2a2
�

a2

R2� 
(7) 
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SCANNING ELECTRON MICROSCOPY  

Specimen fragments that fractured during the stepwise stress testing were viewed 

in a scanning electron microscope (JSM-6390LV, JEOL, Peabody, MA, USA; Figure 

#15) was performed. Specimens were placed on aluminum stubs with carbon adhesive 

tabs, (Electron Microscopy Sciences, Hatfield, PA) and a gold-palladium thin layer was 

coated for 120 seconds, (Denton Vacuum, Moorestown, NJ). Digital images were 

obtained and submitted to qualitative evaluation to provide insight regarding the stresses 

caused on the specimens at the fracture time, and also the sequence of events that lead to 

the fracture. Specimens representing the highest and lowest strength from each group 

were selected for imaging.32  

 
SAMPLE SIZE 

With a sample size of 15 specimens per group, the study had 80-percent power to 

detect a 25-percent difference in biaxial flexural stress between any two groups, 

assuming two-sided tests conducted at a 5-percent significance level.12,26 
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The biaxial fatigue resistance mean, standard deviation, Weibull characteristic 

strength, and Weibull modulus were summarized for each group. Weibull parametric 

survival analysis was used to compare biaxial flexural fatigue resistance among the four 

groups. A 5.0-percent significance level was used for each test. 

 A Weibull-distribution survival analysis compared the differences in fatigue 

resistance among the four groups. The fatigue resistance (Newtons) was used as time to 

event for the analysis. The Weibull characteristic strength (Table 3) was found to be 

314.5 for RBLDV, 256.8 for SFV, 289.7 for MLD, and 305.2 for the SLDV groups. The 

results (Table 4), show that both the RBLDV and SLDV (p = 0.0174, and p = 0.036 

respectively) had a statistically significantly greater fatigue resistance than the SFV 

group. The fatigue resistance to fracture between the two LD veneer groups compared to 

the MLD group was not statistically significant (p = 0.26 for RBLDV to MLD, and p = 

0.49 for SLDV to MLD). The difference between the MLD and SFV groups was also not 

statistically significant (p = 0.17). In addition, the Weibull modulus was found to be 4.6 

for MLD, 5.6 for SLDV, 6.2 for RBLDV, and 4.1 for SFV groups. The survival 

probability was shown using both a Kaplan Meier, and Weibull model for the various 

materials (Figure 18 and 19). 

 A non-parametric test was used to compare the number of pieces created upon 

fracture between the groups. The increased number of pieces the RBLDV broke into was 

statistically significant, when compared to other sample groups (p=0.0008 MLD, <0.0001 

SLDV, and 0.0002 SFV). In addition, the total number of cycles were compared using a 
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one-way ANOVA with factor for group to identify the differences between the groups. 

The results were not statistically significant (p=0.06). 

 Stress testing determined where the compressive and tensile forces were 

concentrated in the sample at a certain load (Table 5). The biaxial flexural stress results 

are presented (Figure 20 A-D) for each sample group at the outer surface of each layer. 

Z=0 represents the bottom of the thicker LD substructure, and the z=1.2 or 1.05 

represents the upper surfaces of the veneer layers. The positive stress values to the right 

of zero represent the tensile forces while the negative stress values to the left of zero 

represent the compressive forces.  

 To observe if some specimens were more stable or that they presented less 

variance at the time of fracture, a homogeneity of variance test was conducted. This test 

looked at whether or not a group had a statistically significant greater range of when the 

specimens would break. Results showed a no statistically significant differences 

(p=0.2735).  

 Scanning electron microscope images were qualitatively evaluated for porosities 

or cracks (Figure 21 A-D). The MLD sample (figure 21A) shows a uniform surface with 

no porosities or voids, which is expected from a manufactured LD CAD material. Figure 

21B shows a specimen from the SLDV group. Of interest were the stress lines noted at 

the base of the veneer sample radiating from the sintered connecting porcelain. These 

stress lines were not noted in the other groups. Also, there were occasional small voids 

within the connecting feldspathic porcelain material of the SLDV group. Additionally, 

the figure 21D (SFV group) shows the high number of porosities within the feldspathic 

porcelain. Each one of these imperfections can act to increase the stress within the 
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feldspathic veneer sample leading to a decrease of the material strength. The CAD 

materials were consistently more uniform, especially in comparison to the feldspathic 

material. Porosities were not found in the RBLDV group (figure 21C). 
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FIGURE 1. A) Polished low translucency 
LD substructure without  
veneering or staining. B) 
Polished higher translucency 
LD veneer was bonded to a 
lower translucency substructure 
to create a more realistic and 
esthetic restoration. 

 

A 
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FIGURE 2.  Showing the sample groups and the various 

layers of each sample group. 
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FIGURE 3.  Lathe-cut (to create cylinder shape) 32-mm long 
e.max CAD block 12-mm wide for specimens 
ready to cut. 
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FIGURE 4.  Shows the Bueller Isomet 
diamond saw preparing to cut a                     
specimen. 
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FIGURE 5. Leco polisher used to polish specimens 
up to 1200-μm grit. 
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FIGURE 6. Shows the Programat CS oven. 
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FIGURE 7. Crystall./Connect. 
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FIGURE 8.  Vibrator, Whip-Mix. 
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FIGURE 9.  Prime and Etch (Left), Multilink Resin  
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FIGURE 10.  BluePhase Curing Light (left), 
Cure Rite curing light meter 
(right). 
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FIGURE 11. Twelve-millimeter (12-mm) stainless 
steel push mold (left), e.max Ceram  
(center) and Build-Up Liquid (right). 
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FIGURE 12.  Demonstrating the Instron E3000 in use 
with specimen during. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

 

36 

 

 
 

FIGURE 13. Demonstrating a specimen 
placed with protective 
films above and below it 
mounted on the piston and 
3 ball device. 
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FIGURE 14.  Shows a broken sample. 
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FIGURE 15. JEOL JSM-6390LV scanning electron 
microscope. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



 

 

39 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE 16. Desk V, Denton Vacuum sputter coat 

machine. 
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FIGURE 17. Gold sputter coated specimens ready 
for SEM imaging. 
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FIGURE 18.  Survival probability (Kaplan-Meier). 
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FIGURE 19. Survival Probability (Weibull model): Representing the 

probability of the specimens failing at a certain BFS (Newton) 
load.  
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FIGURE 20.  Shows the distribution of biaxial 
flexural stress on the specimens. 
A = MLD. 
(continued) 
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FIGURE 20 (cont.)  Shows the distribution of 

biaxial flexural stress on the 
specimens.  
 B = SLDV. 
(continued) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

45 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 20 (cont.) Shows the distribution of 
biaxial flexural stress on the 
specimens. C = RBLDV. 
(continued) 
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FIGURE 20 (cont.)  Shows the distribution of 
biaxial flexural stress on the 
specimens. 
D = SFV. 
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FIGURE 21.  (A) MLD; (B) SLDV; (C) RBLDV; (D) SFV showing scanning 
electron microscope images of specimens. 
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TABLE I 
 

Showing the groups and materials tested 
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TABLE II 
 

Programat cs firing table* used for the crystallization 
 of LD, sintering of LD to LD (CAD-on), and placing  

    the e.max Ceram wash, and then dentin layers** 
 

 
 

 
 
 
 
 
 
 
 

 
*Legend 
A = Standby temp. 
B = Closing time. 
C = Temp. increase.  
D = Holding temp. 
E = Holding time.  
F = Vacuum on. 
G = Vacuum off. 
H = Long-term cooling. 
I = Cool-down gradient. 
J = °C. 
K = mm:ss. 
  
**http://www.ivoclarvivadent.com/zoolu-
website/media/document/4611/Programat+P300%2C+P500%2C+P700%2C+EP+3000%
2C+EP+5000+-+Firing+program+tables.pdf. 
https://www.ivoclarvivadent.nl/zoolu-website/media/document/1086/Programat+CS+-
+Program+Table 
 
 

  
A 
 

 
 

B 
 

C 
 

D 
. 

E 
 

F 
 

G 
 

IPS e.max CAD 
Crystall 
/Glaze 403 6:00 90/30 820/840 00:10/07:00 550/820 820/840 

IPS e.max  
CAD-on 

Fusion/ 
Crystall. 403 2:00 30/30 820/840 2:00/7:00 550/820 820/840 

IPS e.max Press 
Layering Tech. 

Wash firing 
(foundation) 403 4:00 90/20 650/730 0:00/2:00 650/730 650/729 

IPS e.max Press 
Layering Tech. 

1st/2nd 
Dentin/ 
Incisal firing 403 4:00 90/20 650/730 0:00/2:00 650/730 650/729 

  

 
H 
 

I 
 

J K 

IPS e.max CAD 
Crystall 
/Glaze 700 0 0 0.00 

IPS e.max  
CAD-on 

Fusion/ 
Crystall. 600 0 403 6:00 

IPS e.max Press 
Layering Tech. 

Wash firing 
(foundation) 0 0 0 0.00 

IPS e.max Press 
Layering Tech. 

1st/2nd Dentin/ 
Incisal firing 0 0 -0 0.00 

http://www.ivoclarvivadent.com/zoolu-website/media/document/4611/Programat+P300%2C+P500%2C+P700%2C+EP+3000%2C+EP+5000+-+Firing+program+tables.pdf
http://www.ivoclarvivadent.com/zoolu-website/media/document/4611/Programat+P300%2C+P500%2C+P700%2C+EP+3000%2C+EP+5000+-+Firing+program+tables.pdf
http://www.ivoclarvivadent.com/zoolu-website/media/document/4611/Programat+P300%2C+P500%2C+P700%2C+EP+3000%2C+EP+5000+-+Firing+program+tables.pdf
https://www.ivoclarvivadent.nl/zoolu-website/media/document/1086/Programat+CS+-+Program+Table
https://www.ivoclarvivadent.nl/zoolu-website/media/document/1086/Programat+CS+-+Program+Table
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TABLE III 
 

Weibull characteristic strength and modulus 
 

 
 
 
 

TABLE IV 
 

Paired comparison results and p-values from Weibull reliability analysis 
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TABLE V 
 

   Shows the biaxial flexural stress (MPa) on each layer  
                                    of the material at a certain load (N) 
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DISCUSSION 
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We rejected the null hypothesis that adhering or sintering a thin laminate of LD 

on another LD surface would not result in increased fatigue resistance in comparison with 

FP on LD. This study did find a statistically significant difference between the SFV 

group and the two LD veneer groups, in relation to how much cyclical loading and force 

the specimens could survive. This result was not surprising as LD has superior 

mechanical properties and fracture resistance than FP.2 The SFV specimens were not 

significantly different from the MLD specimens. A statistically significant difference was 

observed in the number of fragments of the RBLDV group. When the specimens 

fractured, they typically delaminated along the resin bond between the two layers. 

However, this contrasts another study, which found that the laminated group showed a 

decrease in the number of fragments resulting from biaxial flexural testing.26 This same 

study found through fractographic analysis that the adhesive layer acts to deflect crack 

propagation through the ceramics.26 

A variable loading strategy was selected as it is representative of the variety of 

forces that may be placed upon dental restorations.37 A cyclic stepwise fatigue test also 

seems to be more representative of a natural mastication and can help to represent the 

type of cyclic fatiguing that teeth and dental restorations need to endure.37 This test 

method is designed to simulate the growth of a slow-crack starting at a critical defect.29 

Although simplistic in nature, this strategy is also a practical way for exploring the 

possible viability of a novel restorative treatment; however, further investigation would 

be necessary to predict actual clinical success. 
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For the SLDV group, reducing the size of the substructure disc in order to 

maintain a minimum thickness of the LD veneer was a challenge. The manufacturer’s 

recommended thickness for the sintering porcelain used to join the LD substructure to the 

LD veneer is 80 micrometers. This was not achieved in this experiment with the pressure 

parameters that were set for the application of a 200 g weight during vibration to 

intimately adapt the two LD specimens together.10 The connecting porcelain layer created 

in this study were usually much thicker (0.15 mm) than recommended, and the substrate 

specimens had to be adjusted and re-polished to achieve the predetermined 1.2-mm 

overall thickness. Minimum thickness recommended by the manufacturer for the core is 

0.8-mm thick.37 The reduction in thickness from 0.7 mm to an average of 0.55 mm may 

have led to a reduced resistance to fracture for those specimens. A study by Anusavice et 

al., using finite element analysis, found 50-percent reduction in thickness of the core 

substructure doubled the risk of fracture for that specimen.38 Other evidence suggests that 

not dropping the ratio of core/veneer below 1:1 was preferred. 37 When the ratio was 0.7 

there was a significant decrease in strength, but when it was increased to 2 there was little 

gain beyond the 1:1 ratio.37 This was used as a guideline, as none of the specimens were 

below this recommended 1:1 ratio. Additionally, Thompson and Rekow found that an 

increase in the thickness of the core structure above 0.5 mm, while the overall dimension 

of the core/veneer complex remained the same, had little effect on strength.39 

This study used an etchant and primer that are in a single bottle rather than the 

more historically studied hydrofluoric acid etch and silane applications. Hydrofluoric 

acid has traditionally been used because it etches the ceramic surface by dissolving the 

glassy phase and results in a roughened surface to which we can micromechanically 
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retain resin.40 An important issue is the toxic nature of hydrofluoric acid and the 

occupational hazard it can pose to healthcare workers and patients.40 After etching, a 

silane coupling agent is applied which allows a covalent bond to both resin and ceramic. 

A negative byproduct of this reaction is the formation of insoluble silica fluoride salts, 

which can interfere with the bond strength of the resin to ceramic.41 The self-etching 

ceramic primer was selected as various studies have shown similar results between the 

two processes.42,43 The use of ammonium polyfluoride and trimethoxypropyl 

mechacrylate for silanization in a single bottle application was designed to be able to etch 

the surface while silanating in a single step application. Alrahlah et al. found that little to 

no etching was apparent on the surface after treatment with the self-etch ceramic primer 

in comparison to hydrofluoric acid; however, the same study also noted statistically 

insignificant bond strength differences between the two techniques.43 They attributed this 

to the very strong bonds that can form between silica, in the ceramic, and fluoride in the 

ammonium polyfluoride.43 Another study did find an increase in surface roughness using 

the same self-etch ceramic primer, and also found comparable bond strengths with 

aging.40 

 This study reported an increase in resin performance, to a level similar to that of 

the sintered group. This result may be attributed to having used a different bonding 

protocol. Another study reported that the lamination of a material increased the strength 

compared to a monolithic sample.44 Our study did not find any statistical significance 

between the RBLDV and SLDV group in comparison to the MLD group. Therefore, 

these findings could not be used to support the mentioned study (Dibner). 
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 Lin, et al. showed that although the feldspathic specimens were weaker than the 

monolithic, the veneering had a stabilizing effect.14 This study, however, did not find any 

statistical significance of one sample group being more stable than another, using a 

homogeneity of variance test. 

 This study experimented with a novel way to gain a more favorable translucency, 

using CAD/CAM fabricated materials, and to use a material with higher mechanical 

properties in comparison with our traditional methods. Although this introductory study 

seems to indicate that a LD CAD/CAM fabricated veneer is comparable to MLD, and 

that it may be stronger than a FP hand-fabricated veneer, additional studies would be 

recommended prior to implementing its use in a clinical setting. 
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SUMMARY AND CONCLUSION 
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This study found that replacing the veneering substrate with LD (either resin 

bonded or sintered) results in an increase in fatigue resistance in comparison with using a 

feldspathic veneering material. It also showed that laminating the LD substructure with a 

LD veneer by using either attachment method (resin bonded or sintered) could return the 

specimens to at least a similar fracture resistance of a monolithic restoration with the 

same dimensions. In addition, the RBLDV group was found to break into a significantly 

greater number of pieces when it did fracture.  
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Objective: CAD/CAM technology allows fabrication of thin lithium disilicate 

(LD) veneers to a LD crown substructure in place of using traditional feldspathic 

porcelain (FP) which has inferior mechanical properties. This project investigated the 

effect of different LD veneer applications to LD substructure on the biaxial flexural 

fatigue of LD veneer/substructure restorations. 

Materials/Methods: Forty-five LD discs (Ø = 12×0.7 mm) were fabricated that, 

when combined with the veneering discs, achieve final dimensions of (Ø = 12×1.2mm). 

Experimental groups were (n = 15) as follows: (1) Resin Bonded LD Veneer (RBLDV), 

LD veneer (Ø = 12×0.5 mm) adhesively cemented to LD (0.7 mm); (2) Sintered LD 

Veneer (SLDV), LD veneer (Ø=12×0.5 mm) sintered to LD (0.7 mm); (3) Sintered 

Feldspathic Veneer (SFV), feldspathic porcelain (FP) applied to LD discs to achieve a 
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final dimension of (Ø = 12×1.2 mm). A fourth group of (1.2 mm) monolithic LD served 

as the control. Weibull-distribution survival analysis was used to compare the differences 

of the resistance to fracture after fatigue between groups. Total number of cycles were 

analyzed using one-way Anova (p < 0.05). 

Hypothesis: Adhering or sintering a thin laminate layer of LD on another LD 

surface would result in increased fracture resistance in comparison to sintered FP on LD. 

Results: The SFV group had significantly lower fatigue resistance than SLDV and 

RBLDV groups (p < 0.05). The RBLDV group fractures resulted in significantly more 

fractured fragments in comparison to the other groups. No statistical difference was 

observed in the number of cycles. The results also showed that the LD veneered groups 

presented similar resistance to fatigue as monolithic discs of the same overall dimensions. 

Conclusion: The hypothesis was accepted suggesting that veneering a LD 

substructure with a LD veneer, bonded or sintered, has increased resistance to fatigue as 

FP veneering material on a LD substructure. In addition, it was observed to have similar 

resistance to fatigue in comparison to the monolithic LD group. 
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