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Given their numerous advantages, resin-based composite (RBC) materials have 

been widely used in dentistry since their development in the late 1950s. Besides having 

esthetic properties that mimic those of natural teeth, this type of restorative material does 

not require the removal of healthy tissues to achieve retention. RBC can be bonded to 

tooth structure using resin adhesives. As a result, RBC has several indications: direct 

filling of anterior and posterior caries lesions and tooth defects, esthetic bonding, and 

occlusion adjustments, as a luting cement for indirect restorations, and the bonding of 

orthodontic brackets.1 

One reason for RBC restoration failure is post-operative pain or sensitivity. The 

hydrodynamic theory proposes that any change in fluid pressure and fluid movement 

stimulates pain receptors in the pulp that would cause post-operative pain and sensitivity 

following placement of resin composite restorations.2 Any poor internal adaptation of a 

resin composite restoration will create gaps between the material and the tooth structure 

and allow fluid collection. This fluid will move under pressure changes, created during 

mastication or temperature change, into the dentinal tubules, and the patient will feel pain 

accordingly.3 Another reason for RBC restoration failure is material loss as a result of 

gap formation, and inadequate internal adaptation that has an impact on the restorative 

material retention. Thus, internal adaptation of RBCs is a significant factor that could 

affect the long-term performance of the material.3 

Many factors influence the quality of adaptation of RBC restorations, which are 

related to the material properties, cavity preparation, and operative technique. However, 
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polymerization shrinkage, and its associated stress, are some of the most adverse 

properties of the currently available materials.3 

Many clinical techniques have been introduced to minimize the shrinkage stress 

and thereby reduce gap formation, such as control of the curing light intensity,4 indirect 

placement of resin restorations,4 application of a flowable resin liner,5 and incremental 

layering techniques.4 However, no method has been shown to be totally effective in 

abating the effects of polymerization shrinkage.6  

One recommended technique is the incremental or layering technique, considered 

the standard way to eliminate gap formation and achieve an adequate bonding of 

composite to tooth structure.6,7 The technique involves building up the restoration in 

multiple increments. Each increment is placed to a specific thickness in an oblique 

manner, and polymerized separately. Thus, the technique allows adequate light 

penetration to cure the material.8 Moreover, it increases the unbonded surface area for 

RBCs relative to the bonded surface area and thus minimizes the C-factor (the ratio of 

bonded surface to unbonded free surface).6,9 However, this technique has some 

drawbacks, such as increased chair time and inclusion of voids between the increment 

layers.6  

Many efforts have been made to develop RBC materials that can fill the deep 

cavity all at once, utilizing a bulk-fill technique without affecting long-term performance. 

Unlike traditional RBCs, which typically are placed in increments of not more than 2-mm 

thickness, bulk-fill RBCs are intended to be placed in 4-mm, or sometimes greater, 

increments.8 Given that all the restorative material is placed in one step, this technique 

could be easier, save time, and result in fewer voids in the bulk of the material.  
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The concept of a ‘‘bulk-filling’’ technique is not a new idea10 and has been 

evaluated several times in the literature.3,11-13 Historically, many disadvantages of bulk-

filling preparations with light-cured composites are documented:  the inability to 

effectively cure composite to depths more than 2 mm,14,15 challenges related to the C-

factor and the cavity design,16,17 and potential complications due to the material shrinkage 

and increased gap formation.16,18,19 

The major challenge facing the bulk-fill RBCs is their ability to be cured well in- 

depth. While the external surface of the composite is sufficiently cured, the material may 

not polymerize well in deeper portions.20 Inadequately polymerized composite has been 

shown to be cytotoxic and could affect the longevity of the restoration negatively, 

including the internal adaptation to cavity walls.21 

Over the past two decades, many manufacturers have introduced RBC materials 

that are claimed to have increased depth of cure and decreased polymerization shrinkage 

and gap formation, which would lend the materials to a bulk-fill placement technique. 

Recently, some of these products have gained popularity, and many studies have been 

done to test different aspects of their properties.8 Multiple studies indicate comparable 

physical and mechanical properties among bulk-fill and increment-fill composite 

materials.15,20,22 Furthermore, several manufacturers claim that bulk-fill materials have 

greater depth of cure, and lower polymerization-induced shrinkage stress than the 

traditional incremental-fill materials.23,24 However, further investigation of the internal 

adaptation between the restorative material and the tooth structure is needed. 

Bulk-fill restorative material products can be considered viable alternatives to the 

traditional incremental-fill materials, when placed into a preparation having a high C-
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factor design, if high depths of cure are seen with less internal stress. As a result, reduced 

polymerization stress would decrease the incidence of gap formation, and accordingly, 

result in better internal adaptation, compared with traditional incrementally placed 

composites.25 

 
OBJECTIVES 
 

 The aims of this study were to quantitatively evaluate the internal adaptation 

among different bulk-fill RBC materials and a traditional RBC placed incrementally by 

measuring the gap area between the restorative material and the tooth structure, and to 

evaluate aging effect on the internal adaptation. 

 
HYPOTHESES 

 
Null Hypotheses 

1. There is no significant difference in the internal adaptation among bulk-fill 

RBC materials and a traditional RBC placed incrementally. 

2. There is no significant difference in the internal adaptation among bulk-fill 

RBC materials and a traditional RBC placed incrementally in not-aged 

material compared with aged material.  

 
Alternative Hypotheses 

1. There is significantly better internal adaptation in a traditional RBC 

material placed incrementally compared with internal adaptation in bulk-

fill RBC materials. 

2. There is significantly better internal adaptation in a traditional RBC 
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material placed incrementally compared with internal adaptation of bulk-

fill RBC material in not-aged material compared with aged material. 
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BACKGROUND 
 

In modern dentistry, restoration requires balancing the functional, biological as 

well as esthetic properties of the material. The known early attempts to establish esthetic 

filling materials were based upon silicate cements. The silicates released fluoride, but 

experienced solubility as well as erosion. The problems with silicate materials resulted in 

the introduction of unfilled acrylic systems in the late 1940s and the early 1950s due to 

their being more tooth-like in appearance, easy to manipulate, insoluble in oral fluids, and 

relatively inexpensive.  

In 1955 another important advance was made by Buonocore.26 This was the 

development of micro-mechanical adhesion to the enamel of the tooth through 

phosphoric acid-etching creating microporosities in the enamel surface. The development 

of resin composites first occurred in 1962 and they have significantly evolved since 

then.27  

RBC restorations are currently used for various applications in dentistry, which 

include but are not limited to applications such as cavity liners, restorative materials, and 

root canal posts. It is expected that the frequency of use as well as application of 

composite materials will be growing continuously due to their versatility.28,29 

The demand by patients for tooth colored restorations instead of amalgam 

restorations has increased.30 RBC materials have become the most preferred alternative to 

amalgam. According to Hickel and associates, the RBCs have been in use for many 

years, although they only started exhibiting improved wear resistance recently.31-33 Roulet 
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actually noted that the average annual wear for new composites seems to be equal to that 

of amalgam.34-37 Eakle and Ito observed in 1990 that one of the major challenges of resin 

restorations is microleakage.38 According to Tyan and his associates the leakage can 

result from the polymerization shrinkage of resin material which creates a gap between 

the cavity walls and restoration.39  

In recent years, dentin adhesives have successfully been developed with both 

hydrophilic groups and high wettability and this led to good results on the sealing of 

margins of Class II restorations being achieved.40 The new adhesives have the ability to 

penetrate into a chemically conditioned dentin as well as to create a mechanical 

interlocking dependent on the formation of a hybrid layer as well as resin tags which 

penetrate into opened dentin tubules.41-43 

Traditional dental adhesives of past generations utilized three steps which 

included: decalcification, infiltration and polymerization. The formation of an optimal 

hybrid layer requires the diffusion of a hydrophilic resin monomer mixture into the 

exposed collagen fibrils until the subsurface of demineralized dentin is reached.44-53 

The clinical steps of bonding procedures might however be technique-sensitive 

and result in ineffective bonding if the operator is inexperienced.42,50 Watanabe and his 

associates proposed self-etching primers so as to simplify handling properties, to reduce 

working time and to avoid the collapse of collagen fibrils.54  
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CLASSIFICATION OF RESIN-BASED  
COMPOSITE MATERIALS 
	  
 
According To Filler Particle Content 

The development of new resin composites in the 1980s and the 1990s focused 

majorly on the size as well as the amount of filler particles.55-61 The resin composites 

were categorized in three main groups according to filler content and they included: 

macrofilled, microfilled, hybrid, modern hybrid, and nanofilled composites (Table I). 

 
Macrofilled Resin-Based Composites 

Also known as conventional, this group had filler whose particle size was 10 µm 

to 40 µm. Their disadvantages included poor finish as well as relatively high wear. 

Quartz and strontium or barium glasses were among the most commonly used fillers in 

these composites. The quartz filler had good aesthetics and durability although it suffered 

from the absence of radiopacity as well as high wear of antagonist teeth. Although 

barium and strontium glass particles are radiopaque, they are less stable than quartz. 

 
Microfilled Resin-Based Composites 

These composites contain colloidal silica filler with a particle size of 0.01 µm to 

0.05 µm. They were introduced in the late 1970s. The small particle size made it possible 

to polish the resin composite to achieve a smooth surface finish. However, the physical 

properties of the microfilled resin composites were not as good as that of macrofilled 

resin composites. Microfilled resin composites lacked of strength, bulk fractures were 

common, and they were undesirable for use in the high-stress areas. 
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Hybrid Resin-Based Composites  

Hybrid composites (also called the original hybrid composites) were introduced in 

order to combine the advantages of both the macrofilled and the microfilled composites. 

They combined the small particles from microfilled composites with the stronger 

macrofilled composite particles as an attempt to create a more ideal material. The hybrid 

resin composites that were first introduced contained relatively large filler particles with a 

size of 15 µm to 20 µm together with colloidal silica with a particle size of 0.01 µm to 

0.05 µm. Unfortunately, the hybrid composites failed to replace the microfilled 

composites due to their inferior esthetic properties and polish. Yet, they succeeded only 

in becoming a posterior material.  

 
Modern Hybrid Resin-Based Composites  

Modern hybrid composites (also called microhybrid composites) evolved from 

hybrid composites. The size of the largest particles in modern hybrid composites was 

decreased to be not more than 1 µm. Modern hybrid composites maintained the strength 

of the hybrid materials, but the esthetics have significantly improved. The modern hybrid 

composites also exhibited excellent physical characteristics and improved handling. 

Furthermore, they have proven successful for both anterior and posterior restorations. 

 
Nanofilled Resin-Based Composites 

They have recently been introduced in the market. They have filler particles 

whose sizes are less than 10 nm (0.01 µm). The nanofilled composites exhibited 

mechanical and physical properties similar to those of modern hybrid composites, but 

perform significantly better in terms of polish and gloss retention. Nanofilled composites 
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have demonstrated outstanding strength and wear properties, have good handling 

characteristics, and are highly esthetic. 

According to Viscosity 

Other classifications of RBCs include either the high-viscosity “packable” RBCs 

or low-viscosity “flowable” RBCs.  

 
Packable Resin-Based Composites 

The techniques of RBC are significantly more technically demanding than that of 

placing a Class II amalgam restoration. The development of acceptable proximal contours 

as well as contact can be quite challenging in various instances, although there may be 

need for not only special wedging techniques but also special wedging instruments. 

Products that are known as packable RBCs having improved handling characteristics 

were introduced so as to overcome such difficulties. The packable RBCs contain a high 

quantity of filler loading (about 80% by weight), which consequently enables them to be 

relatively easier to place as well as to be packed into the cavity and finally to be carved to 

form the shape that is required. One of the notable applications of the packable RBCs is 

the re-establishment of the teeth contour as well as proximal contacts.62 It should be 

noted that the increase in the quantity of the filler particles to exceed the conventionally 

used quantity leads to porosity as well as the insufficient wetting brought about by the 

resin matrix on the particles. The packable RBCs high viscosity made them almost 

impossible to extrude via syringes with small bore or a delivery system of a unit-dose.63 

In the case of RBCs, the ability to stick to the cavity wall is preferred, although this is not 

the case when dealing with the dental instruments. Manufacturers eliminated the 
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stickiness by slightly varying the content of the filler as well as by employing varied 

matrix monomers in order to reduce the viscosity of the matrix. The enabled the material 

to have enough flow so as to adapt to the preparation of the cavity when packing.63,64 

 
Flowable Resin-Based Composites 

‘Flowables’ are low-viscosity composites which are obtained from formulations 

having a filler loading that is about 20 percent to 25 percent lower than that of the 

conventional composites.65 They have a good wetting ability that favors their adaptation 

to the cavity walls, and therefore are expected to reduce the risk for air entrapment as 

well as void inclusion.66,67 The flowable RBC material is relatively easier to use.68 

Furthermore, they have higher wettability of the surface of the tooth, easier penetration 

into irregularities, higher flexibility.69,70 In addition, application of these flowable resin 

composite materials is important when restoring highly conservative preparations, the 

repair of margins of existing RBC restoration, the luting of porcelain veneers, the 

resurfacing of RBC or restorations of glass ionomer and the rebuilding of worn contact 

areas of RBC.71,72 Furthermore, the flowable materials have the ability to absorb/break 

stress under conventional RBCs.73 

 
RESIN-BASED COMPOSITE  
MATERIAL PLACEMENT TECHNIQUES 

Different techniques have been used to facilitate marginal adaptation and to 

minimize the RBC restoration microleakage.74  
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Incrementally Placed Resin-Based Composites 

When the RBCs are being polymerized, there is a competition between shrinkage 

stress and the adhesive-dentin bond, which has the ability to bring about failure of the 

bond, and consequently the failure of restoration. The inability of the adhesive to keep the 

RBC bonded to the structure of the tooth brings results into the formation of interfacial 

gap which has the ability to help in the post-operative sensitivity.75  

The RBC material is placed within the cavity in 2-mm layers which are irradiated 

before the next layer is added until the completion of the cavity restoration.76,77 The 

intention behind the incremental technique was to minimize the C-factor. C-factor is the 

“ratio of bonded surfaces of the restorations to the unbonded surfaces, and consequently, 

to relieve the polymerization shrinkage stresses developed at the bond interface between 

the tooth and the resin-composite.”78,79 The incremental placement of visible light-cured 

RBC has been taken to be an acceptable method that can be used in the provision of 

optimum contour, especially for restorations which are difficult to access.77 

 There are several disadvantages associated with the incremental layering 

technique that include higher probability for introducing porosity between different layers 

and a prolonged treatment session resulting in a relatively higher cost for the patient.  

 
Bulk-Filling Resin-Based Composites  

Restoring cavities, particularly deep ones having RBC increments of 2-mm layers, 

consumes a lot of time and leads to the increase in the risk of air bubble incorporation or 

contamination occurring between the increments. This concept is not new; it had been 

used with the chemically cured RBC materials when they were introduced to the market. 

Recently, some manufacturers introduced new types of light curable RBC materials, 
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which are referred to as the “bulk-fill” materials, and it is believed that they are curable to 

a 4-mm increment thickness.80  

A number of researchers have conducted studies to investigate the physical as 

well as mechanical properties for various bulk-fill RBC materials and their results were 

quite encouraging. In one study, Czasch and Ilie examined parameters which included 

Vicker’s hardness, indentation modulus, flexural strength as well as flexural modulus.15 

The variety of RBCs under investigation were found to have values of hardness as well as 

polymerization shrinkage similar to those of incrementally placed RBCs.80,81 In addition, 

there exist some brands of flowable bulk-fill RBCs which, when applied as bases under 

conventional RBCs, were shown to significantly minimize cuspal deflection during light 

irradiation.82 

Although there are obvious advantages of filling all of a tooth preparation with 

composite at one time, the disadvantages associated with such practice are also apparent. 

The potential advantages that are associated with bulk-filling include the presence of 

fewer voids which may be present in the mass of the material due to the fact that all of it 

has to be placed at one time and the technique is relatively easier and faster than the one 

in which numerous increments are placed. However, some of the potential disadvantages 

that are associated with bulk-filling include the presence of more voids in the mass of the 

material because of the difficulty in controlling the mass placement, the challenges of 

making adequate contact areas in case the matrices that are used are not adequate, more 

pronounced shrinkage stress when bulk-filled as compared to when placed in increments 

because the whole mass polymerizes at once instead of in small increments, and 

polymerization inadequacy of the resin in the depth of the restoration.20,83-85 
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The first-generation flowable composites were not suitable for the full-depth 

posterior fillings due to their inferior mechanical properties as well as increased 

volumetric shrinkage when compared to conventional paste-like composites, mainly 

because of the lower filler content.65,86 Thus, they could only be used as a liner or sealer, 

or in order to restore very small cavities.65-67,86,87 As the dental industry continued 

searching for materials with improved properties, the current generation of flowable 

composites emerged containing higher filler content and are said to have increased 

mechanical properties. This has made them recommended for the restoration of larger 

posterior preparations.88 To continue the simplification of the filling procedure (and also 

to save precious chair time), the current trend in composite technology includes the 

development of flowable restorative composites that may be placed in bulk up to a 4-mm 

thickness.13,89,90  

 
BONDING OF RESIN COMPOSITES TO ENAMEL AND DENTIN 

 
Introduction 

Enamel is made up of 96-percent minerals, hydroxyapatite, Ca10 (PO4)6(OH)2, 

which is packed in prisms, 1.0-percent organic material, and 3.0-percent water.62 

Buonocore illustrated that bonding resin to enamel after etching with phosphoric acid was 

very possible.26 Approximately 10 µm of enamel is usually removed from the surface 

during etching and a very rough surface with porosities between 25 µm to 75 µm deep is 

created. Etching leads to the increase of the surface area more than 2000 times in addition 

to improving the surface energy as well as wettability of the enamel. This enables the 

resin to penetrate the micro-irregularities, which results in the formation of an intimate 
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micromechanical bond to exist between enamel and resin. Buonocore began the use of 

85-percent phosphoric acid, but subsequent studies have demonstrated that etching with 

20-percent to 50-percent phosphoric acid created the best bond strength to enamel.26,91 

Dentin is made up of about 70-percent inorganic material (known as 

hydroxyapatite), 20-percent organic material (mainly collagen) and 10-percent water.91,92 

Although it is not homogenous, it also contains dentin tubules that traverse the whole of 

its thickness. The tubules contain a fluid that flows from the pulp to the surface, making 

the dentin hydrophilic. Consequently, the bonding of a hydrophobic resin to vital dentin 

is quite difficult. In 1982 Nakabayashi and his associates described the formation of the 

hybrid layer, which involved the penetration of hydrophilic monomers in acid-etched 

dentin.93 In 1987 Fusayama introduced the total etch technique, which is a simultaneous 

conditioning of the whole cavity.94 

Enamel-dentin bonding systems contain three components: 

 1.  A conditioner in the acid form (such as maleic acid, phosphoric acid, EDTA). 

 2.  A primer in the bifunctional/amphiphilic monomers form in suitable 

solvent(s). One of the most commonly used monomers is hydroxyethyl methacrylate 

(HEMA). The common solvents used include water, acetone, ethanol, or a mixture of 

these. 

 3.  A bonding agent (also referred to as a sealer), which may be made up of a 

mixture of Bis-GMA and HEMA. 

The conditioner is used so as to modify and/or remove the smear-layer as well as 

to demineralize the enamel surface and dentin hydroxyapatite. The collagenous network 

is uncovered in the dentin surface. The smear layer is mostly made up of coagulated 
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proteins and is usually highly contaminated with bacteria although it can have different 

thicknesses based on the preparation procedure. The primer will penetrate both 

demineralized enamel and dentin. In the dentin, the primer interpenetrates the 

collagenous network as well as the external part of the demineralized dentin tubule walls. 

The amphiphilic character it bears makes it possible to bond to the hydrophilic dentin 

surface as well as the hydrophobic sealer (bonding agent) or resin composite. The sealer 

or bonding agent will bond to the hydrophobic part of the primer and the hybrid layer will 

be created that consists of a collagen network embedded in adhesive resin. Dentin tubules 

will then be sealed leading to the prevention of leakage of bacteria or toxins, as the resin 

composite and the tooth tissues are bonded. 

The modern systems of enamel-dentin bonding can be divided into different 

categories that include: 

• Three-step or two-step etch and rinse systems. The primer and sealer are 

combined in the two-step systems. 

• Two- or one-step self-etching systems. The acidic primers are not rinsed 

off in these systems. 

Using self-etching bonding system has some advantages including simplicity, low 

technique sensitivity, and less operative time is required. However, in one study, results 

have showed that three- and two-step etch and rinse systems are more reliable than the 

self-etching systems.95 Although there was improvement on bonding to dentin, the dentin 

bonding was generally accepted among dentists in the mid 1990s. Most dental schools in 

the United States (US) claimed that total-etching was quite harmful to the pulp, but this 

claim was dismissed by Kanca.96,97 Gwinnett and Kanca further showed that 
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improvement of bonding to dentin could be possible during the bonding procedure if the 

dentin surface was kept moist.98 Nowadays the total-etch and dentin bonding has been a 

generally accepted concept.99-103 

 
Polymerization Shrinkage 

The shrinkage of composite resins during polymerization is well documented and 

shrinkage brings about various challenges during light curing as well as during 

placement. In some instances, the transfer of shrinkage stresses may bring about coronal 

deformation, which consequently brings about postoperative sensitivity as well as the 

propagation of the already present enamel microcracks. The size of these stresses is 

dependent on several factors such as rate of polymerization and restorative techniques, 

resin modulus of elasticity, and C-factor (cavity configuration). C-factor is determined by 

getting the ratio between bonded and unbonded surfaces, a higher ratio signifies higher 

polymerization stress. 

 
Internal Adaptation and Adhesion to Tooth Structure 

Resin composite adaptation is one of the most important contributing factors that 

may affect the long-term performance of RBCs including their esthetics and longevity.3 

Brunthaler et al. reviewed many prospective clinical studies of direct posterior composite 

restorations and reported that one of the reasons for restoration failure was post-operative 

pain or sensitivity. The percent of failures due to post-operative pain or sensitivity ranged 

from 2 percent to 8 percent. Many theories have been proposed for post-operative pain 

and sensitivity following placement of resin composite restorations. The current theory of 

dentinal sensitivity is that, within dentinal tubules, any changes in fluid pressure and fluid 
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movement stimulate pain receptors in the pulp.2 There are no pain receptors in the dentin 

and, thus every dentin stimulus that elicits pain must be stimulating the pain receptors in 

the pulp. Therefore, any resin composite restoration that is not well adapted to the 

internal cavity surface will end up with internal gaps. The existing gaps between the 

material and tooth structure will allow fluid collection, which can transmit hydraulic 

pressure changes during mastication or temperature change into the dentinal tubules. The 

pain receptors in the pulp will be stimulated by the changes in hydraulic pressure within 

the dentinal tubules and the patient will feel pain accordingly. Thus, it is necessary for the 

resin composite restoration material to be well adapted to the internal cavity surfaces.  

 
Effect of the Placement Technique on Internal Adaptation 

The bulk fill RBCs boast of the particularity of having the option to be placed in 

4-mm thick bulk without having negative effects on the polymerization shrinkage or the 

degree of conversion (DC). It has been stated by manufacturers that these materials have 

polymerization shrinkage that is relatively lower than that of conventional RBCs.104 

Consequently, polymerization shrinkage related problems such as post-operative 

sensitivity when chewing, gap formation causing secondary caries as a result of bacterial 

colonization, cusp deflection resulting from high C factor, or pulp irritation could be 

minimized.5,78,105-107 

The bulk fill material which is known as Surefil® SDR™ (Smart Dentin 

Replacement, shrinkage decreased resin) flow has the characteristic of lowering the 

polymerization shrinkage. This is due to its polymerization modulator, which has been 

embedded chemically within the central part of the polymerizable resin backbone of the 

SDR™ monomer.23 
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Studies carried out on RBCs with SDR™ technology indicated significantly lower 

values of shrinkage stress when compared with others, which included regular flowable 

RBCs, nano- and hybrid RBCs and other silorane-based composites.81,90,108 

Packables were introduced in 1990 to provide materials that could address the 

challenges faced by incremental placement. The packables had a relatively higher 

viscosity and also contained higher filler loads. Many packables can be bulk placed, that 

is, they can be placed and cured in 4-mm to 5-mm incremental. One of the challenges 

faced by the packables in internal adaptation is the high viscosity, which makes it more 

challenging to adapt to the cavity surface. The actual depth of cure of the packables has 

been confirmed to be less than claimed. Furthermore, the clinical repercussions of 

shrinkage stress are more prominent with thicker layers of 4 mm to 5 mm. Most of these 

materials have been shown by studies to have high shrinkage as well as polymerization 

stress. A 3M ESPE test method known as cusp deflection was designed to bring about a 

relative estimate of polymerization shrinkage stress, which originated from placing and 

curing a dental composite in an open-ended cavity of 4 mm by 4 mm. 

Studies have also shown that flowable restoratives have been used to minimize 

most of the challenges posed by the placement of higher viscosity posterior universal 

composites. The composites have the ability to flow better than conventional composites. 

This makes adaptation relatively easier with minimal manipulation of the material. A 

majority of dentists who use flowables apply them as liners in posterior restorations in 

order to exploit their ease of adaptation on the cavity surface. However, flowables have 

relatively lower physical as well as wear resistance properties, which limit their 

application as filling materials for restorations. It has been shown by researchers that 
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flowables have higher polymerization shrinkage as compared to most conventional 

composites. However, it is believed by dentists that a lower modulus has the ability to 

help in the formation of a stress reducing layer and also to improve marginal integrity 

although no research has supported this theory.109 On the other hand, it has been shown 

by some studies that the flowables may minimize the effects of cusp deflection and 

consequently reduce gap formation which can bring about post-operative sensitivity.109 
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TOOTH PREPARATION 

Seventy extracted, unrestored, and caries-free human maxillary (n = 13) and 

mandibular (n = 57) molar teeth were collected and stored in 0.10-percent thymol 

(Indiana University/ IRB number; 1505861672) until they were used in this in-vitro 

study. The teeth were cleaned with a dental scaler, polished with a rubber cup and flour 

of pumice (Miltex Pumice flour, Integra® Miltex®, USA) and stored in distilled water 

(grade 3, ISO 3696) in a refrigerator, i.e., nominal 4oC until use. Part of the occlusal 

surface of each tooth was removed by grinding it at a right angle to the long axis of the 

tooth using a 400- grit silicon carbide paper under water lubrication leaving the enamel 

intact at the center of the tooth. This resulted in creation of a flat exposed dentin surface 

at the cusp tip areas with enamel located at the center, which allowed the entire cavity 

occlusal cavosurface margin to be in enamel. This step was required to allow the light 

curing units to be held at a repeatable distance from the occlusal margin when 

photocuring each tooth. In addition, the root portion was removed up to 1 mm apical to 

the cementoenamel junction parallel to the occlusal flat surface to simplify the later 

sectioning procedure for each specimen by using an ISOMET 1000 precision saw 

(Buehler, Lake Bluff, IL) under water cooling. The teeth were stored in artificial saliva 

that had a pH equals to 7 at 37 oC with the composition listed in Table II.  

In the central fossa of each tooth, a Class I cavity (C-factor = 5.0) was prepared 

with a straight fissure carbide bur with a rounded end (cylindrical) #1158 (SS White Bur 

Inc., part #17709) at high-speed in a contra angle air-turbine handpiece with air/water 
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spray. The teeth together with the handpiece were mounted on a Lathe Model 4100 

(Sherline Products Inc., Vista, CA) to produce repeated cavity preparation dimensions 

(Figure 1). The teeth were mounted on the stationary part while the handpiece was 

mounted using metal screws on the movable part of the lathe machine to assure the 

stability of the handpiece during cavity preparation (Figure 2). The Lathe movement was 

linear with measuring wheels that permitted movement in millimeter precision (Figure 3). 

The cavity dimensions were as following: The buccolingual extension was 2 mm (±0.2 

mm); the mesiodistal extension was 6 mm (±0.2 mm), and the occlusogingival depth of 

each cavity was 4 mm (±0.2 mm). The initial entrance of the bur was made at the mesial 

pit perpendicular to the long access of each tooth with the depth of 3.5 mm, crossing the 

central groove (of the lower molars) and the oblique ridge (of the upper molars) 

whenever necessary to obtain the cavity 6 mm mesiodistal extension. The bur was 

changed after every five cavity preparations. The internal angles were rounded, and the 

cavosurface margins were angled approximately 90o (Figure 4). The dimensions of each 

preparation were measured using a Michigan-O probe (Hu-Friedy Mfg. Co., Chicago, IL) 

under X3.0 operator loupe magnification with LED headlight illumination 

(SurgiTel/General Scientific Corp.) and any required slight cavity modification was made 

manually to ensure all the cavities had the same dimensions with the deepest part from 

the cavosurface margin equal to 4 mm.  

All cavities were checked for cracks at the margins, which could have impacted 

the final results using a Polaroid Digital Microscope Camera. In addition, preparations 

with observed pulpal exposure were not used in the experiment, because an entirely intact 

preparation margin was mandatory for analysis. 
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RESTORATIVE PROCEDURE  

The 70 prepared teeth were randomly distributed to five experimental groups and 

each group contained at least 2 upper molar teeth (n = 14). Each group was restored with 

a different RBC system. 

The experiment materials were selected from bulk-fill resins produced by popular 

dental manufacturers. The selection of bulk-fill resin composite materials included those 

that can be placed in a single 4.0-mm increment, and that do not require a conventional 

high-viscosity composite to be placed/cured on top of the 4.0-mm thick composite base. 

In contrast, most posterior bulk-fill flowable composite materials require such a layer to 

enhance their physical properties.   

The RBC material systems were: a traditional universal composite placed by 

multi-increment-fill technique (Filtek Supreme Ultra Universal Restorative; 3M ESPE, 

St. Paul, MN), Four composite materials placed by a bulk-fill technique (Tetric 

EvoCeram Bulk Fill; Ivoclar Vivadent, Schaan, Liechtenstein), (SonicFill; Kerr, West 

Collins, Orange, CA), (QuiXX Posterior Restorative; Dentsply DeTrey GmbH, Konstanz, 

Germany), and (x-tra fil; Voco GmbH, Cuxhaven, Germany) (Table III). 

All the prepared cavities were acid etched and bonded by using the same system 

(Kerr Gel Etchant and OptiBond Solo Plus; Kerr, West Collins, Orange, CA) to reduce 

the number of variables as there is no manufacturer restriction for using the adhesive with 

the previously selected resin composite materials. In this study, a two-step etch and rinse 

system had been used as it had more reliable results than the self-etching system.99 Each 

cavity was etched with 37.5-percent phosphoric acid (Kerr Gel Etchant; Kerr, West 

Collins, Orange, CA) using a total-etch technique for 15 seconds and then rinsed 
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thoroughly with copious amounts of water for 15 seconds. A moist dentin surface was 

maintained by blotting excess moisture from the dentin with a cotton pellet. Then, two 

layers of light cure single-component, total-etch bonding agent were applied by using a 

micro brush, using a light brushing rubbing motion for 15 seconds for each layer 

(OptiBond Solo Plus; Kerr, West Collins, Orange, CA). After applying a weak stream of 

air for 3 seconds to disperse the bonding agent into a thin layer, it was light cured with 

visible light (DEMI LED light curing system, Kerr) and irradiance of 1615 mW/cm2 for 

20 seconds. Light output was monitored using a Managing Accurate Resin Curing 

calibrator (MARC Resin Calibrator; BlueLight Analytics Inc., Canada). The light-curing 

tip was placed perpendicular to the cavosurface margin of the cavity. The light tip was 

fixed at 3.0-mm distance from cavosurface margin to achieve maximum curing depth and 

to maintain this fixed distance. The curing light tip was fixed using the benchMARCTM 

adjustable arm clamp that is attached to a bench plate (MARC Resin Calibrator; 

BlueLight Analytics Inc., Canada) (Figure 5). The distance from the cavity occlusal 

margin up to the cure light tip was measured by using a Michigan-O probe. All of the 

restorative materials were packed to the cavity floor and walls by using the same blunt 

plastic instrument then light cured according to the manufacturer instructions.  

 
FSU Group (Control) 

The cavities were restored with traditional universal composite material (Filtek 

Supreme Ultra Universal Restorative) using an oblique incremental layering technique 

with five wedge-shaped composite increments from the pulpal floor to the occlusal 

surface (each increment being not more than 2-mm thick). The first increment of material 

was placed against the mesial wall and the pulpal floor and then polymerized. Material 
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was then placed against the distal wall to the pulpal floor and polymerized. This 

procedure was repeated to place the third increment against the mesial wall, and the 

fourth one against the distal wall. No increment was placed at any time that would 

contact both the mesial and distal walls of the preparation. The last increment filled the 

remaining part up to the occlusal portion of the preparation (Figure 6). Each layer or 

increment was cured for 20 seconds according to manufacturer instructions (Table IV) 

from the occlusal surface with a visible light-curing unit (DEMI LED light curing system, 

Kerr) and irradiance of 1615 mW/cm2. The curing process was initiated by using a light 

tip that was perpendicular to the restoration occlusal surface and fixed within a 3.0-mm 

distance from it using the same previously described method. 

 
TEC Group 

The cavities were restored with Tetric EvoCeram Bulk Fill composite-based 

material using a bulk-fill placement technique. It was placed in a 4.0-mm bulk increment, 

then light-cured for 10 seconds by the previously described method for FSU group.  

 
SF Group 

The cavities were restored with SonicFill composite-based material. This material 

was activated by a SonicFill handpiece (sonically activated delivery) that converted it to a 

low viscosity during placement. It was placed in a 4.0-mm bulk increment, and then light 

cured for 20 seconds by the previously described method for FSU group. Additional cure 

from the facial and lingual surfaces was performed following the manufacturer 

recommendation. 
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QX Group 

The cavities were restored with QuiXX Posterior Restorative composite-based 

material using a bulk-fill placement technique. It was placed in a 4.0-mm bulk increment, 

and then light cured for 10 seconds by the previously described method for FSU group. 

Additional cure from the facial and lingual surfaces was performed following the 

manufacturer recommendation. 

 
XF Group 

The cavities were restored with x-tra fil composite-based material using a bulk-fill 

placement technique. It was placed in a 4.0-mm bulk increment, and then light cured for 

10 seconds by the previously described method for FSU group. Additional cure from the 

facial and lingual surfaces was performed following the manufacturer recommendation 

(Figure 7). 

 
SPECIMEN PRERARATION AND AGING METHODS 

Each group of samples was divided equally into two groups with seven teeth each. 

The first group was the control group, and the second group was the aged group. The 

control group specimens were immersed in artificial saliva at 37oC and dark-stored for at 

least 48 hours until their next use to ensure complete material polymerization. In the aged 

group, all specimens were immersed in artificial saliva at 37oC for 48 hours and then 

thermocycled (SD Mechatronik Thermocycler, SD Mechatronik GmbH, Germany) 

(Figure 8) for 5000 cycles between 5oC and 55oC, with a dwell time of 30 seconds and a 

transfer time of 10 seconds that corresponded to six months of in-vivo functioning to 

mimic long-term bonding effectiveness (Figure 9).110  
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TEETH SECTIONING AND LABELING PROCEDURES 

After the aging procedure, each tooth from both groups was sectioned 

occlusogingivally perpendicular to the cavity occlusal surface from the most mesial 

margin to the most distal margin of the restoration with four cuts, in order to create three 

2.0-mm thick slices for each tooth with an ISOMET 1000 precision saw (Buehler, Lake 

Bluff, IL) under water-cooling (Figure 10). This procedure created a flat surface on both 

sides of each slice that simplified mounting, finishing, and polishing procedures, thus 

permitting more accurate results. Later research measurements were conducted on the 

exposed filling material bonded to the tooth structures on one side of the mesial and distal 

slice, which was the inner one. However, they were conducted on both sides of the 

middle slice. The specimen sides were labeled: (a) for the inner side of the mesial slice, 

(b) for the mesial side of the middle slice, (b’) for the distal side of the middle slice, and 

(c) for the inner side of the distal slice (Figure 11, Figure 12). 

 
FINISHING AND POLISHING PROCEDURE 

All control group and aged group specimens were mounted on mounting blocks 

(Struers Inc., Cleveland, OH) and fixed by using sticky wax leaving the resin material 

side on the top exposed (Figure 13). The exposed surfaces were ground flat and polished 

(MD-Fuga, Struers Inc., Cleveland, OH) with water-cooled abrasive discs in a circular 

motion (500- then 1200-grit Al2O3 paper with 5 N force for 8 seconds, and 2400- then 

4000-grit Al2O3 papers with 5 N force for 14 seconds) (Figure 14). Then, they were 

rinsed with running distilled water for 3 minutes and cleaned for 3 minutes in an 

ultrasonic bath to remove loose particles and debris (L&R Ultrasonics, L&R 
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Manufacturing Company, NJ) (Figure 15), and afterward air dried gently. They were 

polished using a polishing cloth (10 N force for 3 minutes) with a diamond suspension (1 

µm DP-Suspension P; Struers Inc.). After polishing procedures, all specimens were 

immersed in distilled water for 3 minutes, sonicated in detergent for 3 minutes, and then 

rinsed with running distilled water for 3 minutes (Figure 16). The previously described 

procedures were repeated for all the teeth middle slices after flipping them. Then, 

specimens were stored under humid conditions in dark, closed, and labeled containers at 

37oC until their next use.  

 
IMAGE RECORDING PROCEDURE 

In this study, the internal adaptation, defined as the lack of any space/gap between 

the tooth structure and the restorative material, was evaluated along the cavity pulpal 

floor since it was more challenging for the material to adapt to the deepest cavity area 

compared with the other interface locations. A study done by Furness and associates 

showed less gap-free margin at the pulpal interface when compared with enamel or mid-

dentin interfaces after restoring Class I cavities with different types of bulk-fill RBC 

materials.111 The internal adaptation analysis measurements were obtained from a 

designated area that was 1000-µm long and located at the center of the cavity pulpal floor 

(Figure 17). 

Each individual specimen experimental side (n = 210) was retrieved from its 

humid storage, and the surface was gently dried immediately before it’s use, first by 

using laboratory delicate task wipes (Kimwipes, Kimtech Science, Kimberly-Clark 

Global Sales Inc., Roswell, GA), and then by light spray with a compressed-gas duster 

(Dust Destroyer, Falcon Safety Products Inc., Branchburg, NJ). Afterwards, each 
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specimen was placed in a light reflection microscope (Instron-Wilson-Tukon Model 

2100B) (Figure 18) and multiple digital images were taken and saved for each of a-, b-, 

b’-, and c-labeled specimen experimental sides (n = 280) by using its simple 1.3 MP 

high-resolution monochrome CCD digital camera.  

The images were obtained and saved using Clemex CMT HD software version 

6.0.011 at the cavity pulpal floor and restorative material interface using X200 

magnification. Next, X500 magnification was used to confirm any adaptation failure by 

the existence of gap between the dentin and the restorative material. The images were 

stitched together by using Adobe Photoshop CS6 to create one panoramic view for each 

labeled specimen side.  

 
IMAGE ANALYSIS PROCEDURE 

The images were quantitatively analyzed by using digital image analysis software 

(ImageJ, v1.459r, National Institutes of Health, Bethesda, MD, USA). All of the research 

measurements conducted at a fixed dimensional designated area obtained from each 

panoramic image named, Region Of Interest (ROI). It was located at the center of each 

pulpal floor and had dimensions of 1000-µm length and 500-µm height. To eliminate any 

differences in the pulpal floor length included in the ROI of each specimen due to the 

variation of pulpal floor curvature that might impact the final results, drawing a line 

along the inferior border of the pulpal floor using the free hand tool was done. Afterward, 

the drawn line length was measured and any additional length beyond 1000 µm was 

cropped from the ROI (Figure 19).  

 Any presence of gap at the composite/dentin interface was determined and 

classified into one or more of the following categories based on its location:  
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i. CA: gap at the composite/adhesive interface 

ii. AD: gap at the adhesive/dentin interface  

iii. CAD: gap at the composite/adhesive/dentin interface (mixed).  

Then each gap boundary was determined and cropped using Adobe Photoshop 

CS6. Next, each gap area was measured (unit of µm²) using dimensional calibration 

based on a high precision stage micrometer after threshold determination using ImageJ 

(Figure 20). Furthermore, the cavity adaptation (%) was calculated for each specimen 

with ImageJ utilizing the following equation: cavity adaptation (%) = (sum of adaptation 

length/ total length of cavity floor)×100. Moreover, any cohesive failure that occurred in 

the composite-based material or the dentin was documented. In addition, the incidence of 

any internal void that was surrounded completely by composite-based material was 

recorded.  

The same trained operator prepared and filled all the cavities and completed all 

the previously described procedures. To insure accuracy, a second trained operator also 

collected data. The results were consistent. 

 
STATISTICAL ANALYSIS 

Summary statistics (n, mean, standard deviation, minimum and maximum) were 

computed for gap measurement without and with aging of the specimens. This was 

completed for each of the five restorative material groups and for each of the gap location 

categories. Mixed-model analysis of variance (ANOVA) was performed to examine the 

effects of aging, restorative material groups, gap location categories, and specimen slice 

side with a random effect for the correlation between the slices within each tooth. An 

additional mixed-model ANOVA was performed to examine the additional effect of gap 
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location categories, with an additional random effect for correlating the gap location 

categories within each slice. Fisher’s protected LSD test was used to control for multiple 

comparisons. Due to non-normality in the data regarding the dependent variables were 

ranked (from smallest to largest) prior to analyses process.  

The sum of all gap categories (CA for gap at the composite/adhesive interface, 

AD for gap at the adhesive/dentin interface, and CAD for gap at the 

composite/adhesive/dentin interface) and the cavity adaptation values were ranked and 

then used for the analysis process. There was an additional fixed and random effect in 

gap measurement analysis in addition to the ranking of the dependent variables of the gap 

measurement values. A 5.0-percent significance level was used for all comparisons. 

With a sample size of 14 teeth per group, the study had 80-percent power to detect 

a mean gap ratio of 2.5 for one group compared to another, assuming two-sided tests each 

conducted at a 5.0-percent significance level and assuming the coefficient of variation 

was 1. 
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GAP MEASURMENT  

 
Restorative Material Groups 

There was a significant difference in gap measurement among different 

restorative material groups (p = 0.0333). The gap measurement for the control group FSU 

was significantly smaller than SF and XF groups (p ≤ 0.008). Nevertheless, no significant 

difference was found between the other restorative material groups (Figure 21). 

 
Gap Location Categories 

 Regarding the interaction between the gap measurement and different gap 

categories identified by location (i.e. CA for gap at the composite/adhesive interface, AD 

for gap at the adhesive/dentin interface, and CAD for gap at the 

composite/adhesive/dentin interface) there was a significant difference (p < 0.0001). The 

gap measurement for AD was significantly smaller than CA (p < 0.0001). But, the gap 

measurements for AD and CA were significantly larger than CAD (p ≤ 0.0004) (Figure 

22). 

 
Restorative Material Groups and Gap Location Categories 

Testing the effect of restorative material group and different gap category on gap 

measurements indicated a significant interaction (p < 0.0001). In the FSU group, the gap 

measurement for CAD was significantly smaller than CA (p = 0411). Gap measurements 

for AD and CAD were significantly smaller than CA in QX, SF, TEC, XF groups (p ≤ 
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0.0024), and for CAD was significantly smaller than AD in QX group (p = 0010) (Figure 

23, Figure 24). 

 
Aging Groups 

The gap measurement for the aged group was significantly higher than for the 

control group (p = 0.0452) (Figure 25). 

 
SUM OF ALL GAP CATEGORIES 

 
Restorative Material Groups 

Overall, there was a significant difference between the restorative material groups 

(p = 0.0036). Individual comparisons of the fill groups indicated that the sum of all gap 

categories in the control group FSU was significantly smaller than the TEC, SF, and XF 

groups (p ≤ 0.021), and the sum of all gap categories for QX was significantly smaller 

than SF (p = 0.0257) (Figure 21).  

 
Slice Sides  

The sum of all gap categories for slice side a and side c was significantly larger 

than b (p ≤ 0.0155).  

 
Aging Groups 

The sum of all gaps for the aged groups was significantly higher than that for the 

control groups (non-aged) (p = 0.0239) (Figure 25). 
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CAVITY ADAPTATION (%) 

 
Restorative Material Groups  

Generally, there was a significant difference between restorative material groups 

(p = 0.0001). The control group FSU had a higher cavity adaptation than the SF, TEC, 

and XF groups (p ≤ 0.019), and the cavity adaptation for the QX and TEC groups were 

significantly higher than SF group (p ≤ 0.0148) (Figure 26). 

 
INCIDENCE OF GAP LOCATION CATEGORIES 
AMONG THE RESTORATIVE MATERIAL GROUPS 

 
The incidence of gap location categories among different restorative material 

groups shows in (Table V). CA gap category was the highest among all the restorative 

groups followed by AD gap category. The only two groups that had CAD gap category 

were QX and TEC. 

 
COHESIVE FAILURE 

Any cohesive failure observed in the filling material or the dentin was reported. 

There were 11 total cohesive failures; 9 failures occurred in the composite, and 2 in the 

dentin. In particular, 9 failures occurred in the control group, and 2 in the aged group. 

Most of the failures occurred in XF restorative group with total of 5 failures (Table VI), 

(Figure 27). 

 
INCIDENCE OF VOIDS IN THE COMPOSITE 
RESTORATIVE MATERIALS 
 

The incidence of any internal void that was surrounded completely by composite-

based material observed in the panoramic view (from the most inferior boarder of the 



	  

	  

39 

composite-based material up to 250 µm occlusally) was documented. Overall, there was a 

significant difference in the probability of a void for the different restorative material 

groups (p < 0.0001). The SF group had a significantly lower probability of voids than 

FSU, QX, TEC, and XF groups (p ≤ 0.0024). QX had a significantly lower probability of 

voids than FSU, TEC, and XF (p ≤ 0.0287). However, FSU, TEC, and XF did not have 

significantly different probabilities of voids (Figure 28, Figure 29). 
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TABLE I 

 Filler sizes and compositions in dental composite materials 

Composite type Filler size (µm) Filler material 

Macrofilled 10 - 40 Quartz or glass 

Microfilled 0.01 – 0.1 Colloidal silica 

Hybrid 15 – 20 and 0.01 – 
0.05 Glass and colloidal silica 

Modern hybrid 0.5 – 1 and 0.01 – 
0.05 

Glass, zirconia and colloidal 
silica 

Nanofilled < 0.01 (10 nm) Silica or zirconia 
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TABLE II 

 Artificial saliva (OHRI* recipe with mucin and buffer) 

Material Weight/one liter 

CaCl2  *H2O 0.213g 

KH2PO4 0.738g 

KCl 1.114g 

NaCl 0.381g 

Tris Buffer 12g 

Gastric Mucin 2.20g 

 
*Oral Health Research Institute, Indiana University School of Dentistry, Indianapolis, 
Indiana. 
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TABLE III 

  Materials, manufacturers, and chemical compositions of matrix, 
  filler type, and filler content by weight (wt) and volume (vol) 

 

Group 
code/product 

Manufacture 
shade, mfg. part 

# 
Resin matrix 

Filler 
composition/ 

 size 

Filler 
amount 

Wt%/Vol% 
 

Traditional increment-fill resin composite 

FSU: Filtek 
Supreme 

Ultra 
Universal 

Restorative 
(nanohybrid) 

3M ESPE, A2B, 
6029A2B 

Bis-GMA, 
UDMA, 

TEGDMA, Bis-
EMA, PEGDMA 

Silica, zirconia, 
zirconia/silica 
(0.6 - 10 µm) 

78.5/63.3 

Bulk-fill resin composites 

TEC: Tetric 
EvoCeram 
Bulk Fill 

(nanohybrid) 

Ivoclar 
Vivadent, 

universal IVA*, 
638244WW 

Bis-GMA, 
UDMA, Bis-EMA 

Barium glass, 
ytterbium 

trifluoride, mixed 
oxide, 

prepolymerized 
fillers 

(0.04 - 3 µm) 

76 -77/53 -
54 

 

SF: SonicFill 
(nanohybrid) Kerr, A2, 34922 

Bis-GMA, 
Bis-EMA 

TEGDMA, 
EBPDMA, MPS 

SiO2, glass, 
oxide 

(0.02 - 40 µm) 
 

67/83.5 

QX: QuiXX 
Posterior 

Restorative 
(hybrid) 

Dentsply 
DeTrey GmbH, 

universal, 
631202 

 

UDMA, 
TEGDMA 

Di- and 
trimethacrylate 

resins, Carboxylic 
acid modified 
dimethacrylate 

resin 

Strontium 
aluminum, 

Sodium fluoride, 
Phosphate 

silicate glass 
(NP) 

86/66 

XF: x-tra fil 
(hybrid) 

Voco GmbH, 
universal, 1741 

Bis-GMA, 
UDMA, 

TEGDMA 

Barium boron 
aluminum 

silicate glass 
(0.05 - 10 µm) 

86/70 

 Abbreviations: Mfg., Manufacturer; Bis-EMA, Bisphenol-A polyethylene glycol diether 
 dimethacrylate; Bis-GMA, Bisphenol-A diglycidyl ether dimethacrylate; EBPDMA, ethoxylated 
 Bisphenol-A-dimethacrylate; TEGDMA, triethylene glycol dimethacrylate; UDMA, urethane 
 dimethacrylate; MPS, 3-trimethoxysilylpropyl methacrylate, PEGDMA; poly(ethylene glycol) 
 dimethacrylates; NP, filler size not provided. *Universal IVA for restorations in the “A” range 
 (A2-A3). 
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TABLE IV 

 The manufacturer instructions for use* 

Group code Manufacturer instructions for use 

FSU -Placed in 2.0 mm increment. 
-Light cure each increment for 20 sec. 

TEC -Placed in one 4.0 mm increment. 
-Light cure for 10 sec. 

SF 

-Placed in one 4.0 mm increment. 
- Light cure for 20 sec. 

-For Class I, additional cure is recommended from the facial and 
lingual surfaces. 

QX 

 
-Placed in one 4.0 mm increment. 

- Light cure for 10 sec. 
-Additional cure is recommended from the facial and lingual surfaces. 

 

XF 
-Placed in one 4.0 mm increment. 

- Light cure for 10 sec. 
-Additional cure is recommended from the facial and lingual surfaces. 

 

*Information given by the manufacturers. 
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TABLE V 

  The incidence of gap location categories among different 
   restorative materials’ groups 
 

 
Gap Location 

              Category 
 

 
Restorative 
 Material  
   Group 
 

 
 

CA 

 
 

AD 

 
 

CAD 

 
 

Total 

 
FSU 

 
7 

 
4 

 
0 

 
11 

 
QX 

 
26 

 
15 

 
3 

 
44 

 
SF 

 
51 

 
5 

 
0 

 
56 

 
TEC 

 
22 

 
6 

 
3 

 
31 

 
XF 

 
27 

 
5 

 
0 

 
32 
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TABLE VI 
 

Cohesive failure among different restorative material groups 
 

Restorative 
Material Group Aging Group Dentin 

 
Composite 

 
Total 

 

FSU 
Control 0 1 3 
Aged 1 1  

QX 
Control 0 1 

1 
Aged 0 0 

SF 
Control 0 0 

0 
Aged 0 0 

TEC 
Control 0 2 

2 
Aged 0  0 

XF 
Control 1 4 

5 
Aged 0 0 
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FIGURE 1.  Mounted handpiece with metal screws on a Lathe Model 4100 machine. 
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FIGURE 2.  

 
The handpiece linear movement towards the tooth with the bur 
perpendicular on the teeth long access.  
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      FIGURE 3.  

 
The measuring wheels attached to the Lathe machine motional part. 
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FIGURE 4.  A diagram of cusp tips flattening, root sectioning, 
and cavity preparation. 
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FIGURE 5. 

 
MARC Resin Calibrator that was used to maintain a 
fixed distance during light-curing materials procedure. 
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         FIGURE 6.  Cross-section view shows the incremental buildup of restoration 

with polymerization following each increment. 
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FIGURE 7. Schematic showing the teeth preparation and 
experimental groups: (a) An occlusal view of the 
experimental teeth; (b) Cavity preparation dimensions 
for each tooth, and (c) The five experimental groups, 
each filled with different resin composite material 
(14 per group).  
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    FIGURE 8.  
 
SD Mechatronik Thermocycler that was used in aging procedure. 
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         FIGURE 9.  A diagram for specimen preparation and aging methods. 
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            FIGURE 10.  
 
ISOMET 1000 precision saw used in specimen sectioning 
procedure. 
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     FIGURE 11.  Teeth sectioning and labeling procedure. Three slices were created 
from each tooth and four sides were labeled; a for the inner side of 
tooth mesial slice, b for the mesial side of tooth middle slice, b’ for 
the distal side of tooth middle slice, and c for the inner side of tooth 
distal slice. 
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         FIGURE 12.  An illustration shows tooth preparation steps. (a) Cusp tips 

flattened and the root portion was removed up to 1mm apical 
to the cementoenamel junction parallel to the occlusal flat 
surface, occlusal view shows the flat cusp tips, cavity preparation, 
and filling placement, (b) Tooth sectioning and three slices were 
obtained, (c) Labeling the slice sides (a,b,b’,c). 
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         FIGURE 13.  Specimens mounting on mounting blocks in  
preparation to finishing and polishing procedures. 
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                            FIGURE 14.  MD-Fuga machine that used in specimen 
finishing and polishing procedures. 
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            FIGURE 15.  Specimens sonication using L&R Ultrasonics to remove  
finishing and polishing debris. 
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                        FIGURE 16.  Mounted specimens after finishing  
and polishing procedures.  
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FIGURE 17.  The designated area that the study analysis attained 

was1000 µm long and located at the center of the 
cavity pulpal floor. 
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FIGURE 18.  Instron-Wilson-Tukon Model 2100B 
machine used for image recording. 
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FIGURE 19.  Image recording and analysis steps schematic 

illustration for one of the specimens as an example 
under X200 magnification. (a) Multiple images 
collection, (b) Stitching the images together manually 
to get a panoramic view, (c) Locating Region Of 
Interest (ROI) window that has specific dimensions, 
(d) Cropped initial ROI, (e) Measuring the inferior 
border of pulpal floor length, (f) Adjustment ROI 
window by excluding any extra pulpal floor length 
than 1000 µm, (g) Cropping the image and attaining 
the final ROI. 
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FIGURE 20.  Gap determination and analysis steps for one of the 
specimens as an example under X200 magnification. 
(a) Determination of the gap margins, (b) Cropped 
previously determined gap, (c) Threshold the gap and 
measuring its area. 
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FIGURE 21.  Effect of restorative material group on gap 
measurement. Groups identified with similar letters 
are not significantly different. 
 

 

 

 

 



	  

	  

68 

 
FIGURE 22.  Effect of gap location categories on the gap 

measurement. 
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FIGURE 23.  Effect of restorative material group and gap location 
categories on the gap measurement. 
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FIGURE 24.  Panoramic images representing different gap 

categories. (a) Obtained from FSU group shows no 
gap at all; (b) Obtained from SF group shows CA gap 
type; (c) Obtained from XF group shows AD gap 
type; (d) Obtained from QX group shows CAD gap 
type. 
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FIGURE 25.  Effect of aging group on gap measurement and the 

sum of all gap categories. 
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FIGURE 26.  Effect of restorative material group on the sum of all 
gap categories. Groups identified with similar letters are 
not significantly different. 
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FIGURE 27.  Effect of restorative material group on gap 

measurement and the sum of all gap categories. 
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FIGURE 28.  Effect of restorative material group on the cavity 

adaptation (%). 
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FIGURE 29.  Representative images to illustrate cohesive failures. (a) 
Cohesive failure in RBC with cracked adhesive obtained 
from one of XF control group samples; (b) cohesive 
failure in RBC with cracked adhesive obtained from one 
of TEC control group samples; (c) cohesive failure in 
RBC with cracked adhesive obtained from one of FSU 
control group samples. (d), (e), (f) Cohesive failure in 
RBC with cracked adhesive obtained from different XF 
control group samples. (g) Cohesive failure in dentine 
obtained from one of XF control group samples. 
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FIGURE 30.  Incidence of voids (%) among different restorative 

groups. 
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FIGURE 31.  Images show internal voids. (a), (b) samples from XF 
group; (c), (d) samples from FSU group; (e), (f), (g) 
samples from TEC group; (h), (i) samples from QX 
group. 
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RBC materials are often considered the restorative material of choice in various 

clinical situations due to their unique qualities including their esthetic properties and the 

ability to bond to the tooth structure which makes them one of the most conservative 

filling materials.1 Although RBC materials have properties that meet some clinical 

requirements, they have some less desired properties. One of the main challenges facing 

the RBC materials is polymerization shrinkage that produces stress at the tooth-

restoration interface that may clinically lead to the formation of marginal and internal 

gaps. Several studies have been done addressing the clinical relevance of this 

phenomenon with using in-vitro microleakage. However, these studies have generally 

evaluated the correlation between polymerization shrinkage and microleakage of the 

marginal gap rather than the internal adaptation.112-116 

The goals of this study were to quantitatively evaluate the internal adaptation 

among different bulk-fill RBC materials and a traditional RBC placed incrementally and 

to evaluate aging effect on the internal adaptation. Measuring the gap area between the 

restorative material and the tooth structure has been used as the representative index for 

the internal adaptation. In this study five different filling materials were compared and to 

produce accurate measurements, it was important that every experimental step be detailed 

and precise. 

There are many factors influencing the stress formation including volumetric 

polymerization shrinkage, elastic modulus, curing mode used, configuration factor of the 
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restoration, and adherence of the resin composite to the cavity walls.117 In the current 

study, the cavity size and type, dentin adhesive, and curing method were standardized 

across all specimens; only the RBC material was varied. 

Longitudinal clinical trials have a great scientific influence on determining the 

efficiency of restorative materials. On the other hand, they are time consuming and 

demand a large sample size that is challenging to be uniform and standardized. Thus, 

laboratory studies simulating the clinical condition are vital as an alternative prospect. 

There are critical factors to be considered in the experimental procedures. First, 

the variable nature of tooth substrate needs to be considered. Bonding to tooth structure 

can be influenced by structural defects like the presence of internal crazes and enamel 

cracks. Considering that hydrated teeth have shown better bonding than dried teeth,118 

using extracted teeth that were stored and manipulated using different conditions might 

affect the highly variable nature of the results. Also, the anatomical features like cusp 

height and shape had an effect on the final cavity preparation dimensions and C-factor, 

which impact the resulted data. This was the motivation for using the Lathe in this study 

that allowed the secured handpiece to be precisely moved, preparing the experimental 

teeth while they were stationary. The attached measuring wheels allowed repeating the 

desired cavity dimensions successfully.  

Second, some complications might follow the physical sectioning method that 

was used in this study to make the margin visible for examination that includes time 

consuming and the destructive nature of the procedure. Several methods have attempted 

to evaluate internal adaptation of RBC materials to tooth structure. Using a non-

destructive technique like micro computed tomography (micro-CT or µCT) might be 
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advantageous in avoiding destruction to the samples. Numerous studies were done using 

micro-CT after silver nitrate infiltration to evaluate the internal adaptation of RBC 

materials.119-121 Another study investigated Class I cavity floor internal adaptation by 

using swept-source optical coherence tomography (OCT) in combination with 

microtensile bond strength (MTBS) using different filling methods.122 Nevertheless, 

using these new methods to investigate internal adaptation have some significant 

challenges including; time intensive, high cost, technically challenging, steep learning 

curve, the results obtained from them need to be validated by sectioning the specimens 

and examining them under a stereomicroscope. In many cases during the result validation 

process and in which silver nitrate had previously penetrated the gap, it is very difficult to 

detect an other dye like rhodamine because of the intense black shade of the silver nitrate 

that could interfere with the detection of the red rhodamine shade.121 

Some previous studies utilized the dye and tracer penetration methods to 

determine the quality of material internal adaptation and the existence of gaps.111-123 

These methods necessitate soaking the specimens in various types of solutions, sectioning 

through the restorations, and evaluating the leakage that occurred by light microscopy. 

SEM can also be used to examine the resin/dentin interface after sectioning specimens.124 

Tracers, such as methylene blue, erythrosine, rhodamine, and silver nitrate, can be used 

for penetration. This technique is widely used due to its simplicity but it is very technique 

sensitive, a more subjective evaluation, and it has restraints in quantitative 

assessment.125,126 Another way for assessing internal adaptation is to measure the fluid 

flow from the pulp area to a sealed dentin surface.127,128 An additional method used for 

leakage detection is immersing the restored tooth in water and exposing the tooth to air 
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pressure. In this case, gap existence is confirmed if bubbles appear due to gas passage 

through the gap. This non-destructive method results in nominal values that mostly are 

too low and the definite leakage path is unclear. In addition, leakage could happen 

through the dental substrate itself that can lead to a false increase of leakage values.110 

In this study, the dependent variables of gap measurement, sum of all gap 

categories, and cavity adaptation (%) were ranked (from smallest to largest) prior to 

analyses process. This step was necessary due to non-normality of the obtained data that 

would have had the potential to affect the study results. Although the study data were 

trending toward significant results, and given that the study had 80-percent power, a 

larger sample size could be advantageous to increase the study power.  

The first research alternative hypothesis was that there is significantly better 

internal adaptation among a traditional RBC material placed incrementally compared to 

bulk-fill RBC materials. The research findings supported this hypothesis, as there was a 

significant difference in the gap measurement and the sum of all gap categories for the 

control group FSU (incrementally placed) compared to the other bulk-fill material gap 

measurements, TEC, SF, and XF (Figure 27). Of materials tested in bulk placement, all 

had a significantly larger gap interfaces than the incrementally placed one, with the 

exception of QX material. For this material, there was no statistical difference found 

between it and the FSU group. However, QX showed smaller gap than SF in regards to 

the sum of all gap categories (p = 0.0257). 

The smaller number of measured gap area indicates less space between the tooth 

structure and the restorative material that would affect the incidence and severity of post-

operative pain or sensitivity following placement of the restorative material. Likewise, 
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material adaptation to the cavity floor plays an important role in the resultant sensitivity 

as shown in this study that FSU group had the highest cavity adaptation rate among all 

other bulk-fill composite materials except QX group (Figure 28). 

Factors that impact polymerization shrinkage include monomer molecular weight 

and concentration and filler size and concentration.129 FSU, TEC, QX, and XF all have 

higher filler content by weight % than SF (Table III). These high-filler resin composites 

have a lower monomer content to contribute to the polymerization process related to the 

lower polymerization shrinkage. While the space occupied by the filler particles does not 

contribute to the curing contraction, high filler particle loads may necessitate low-

molecular-weight monomers to ensure a proper handling viscosity. In low viscosity 

materials, the motility of the monomers is active, such that a greater proportion of 

monomers contribute in the polymerization procedure, increasing the polymerization 

shrinkage.19 In the present study, SF exhibited significantly larger gaps and less 

adaptation to the cavity compared with the other materials tested. The fact it had the least 

filler content aided in lowering its viscosity via sonic activation during placement but 

resulted in generating more polymerization shrinkage. However, in previous studies 

authors claimed that the SonicFill material showed excellent adaptation to cavity walls 

due to the vibration during placement. This, in turn, resulted in smaller gaps and fewer 

voids when compared with conventionally lined and layered composite placement 

techniques.29,130 

In general, FSU showed less gap area measurements and higher material 

adaptation to the cavity floor than the other restorative materials. This result is supported 

by a recent study that stated the usage of the universal composite in conjunction with an 
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increment-fill technique improved the adaptation of the composite to the cavity floor 

compared with a bulk-fill technique.122 This outcome might be related to the reduced 

material volume and C-factor of each increment which as a result reduced the 

polymerization shrinkage and generated contraction stresses which are in agreement with 

previously reported studies on the advantages of incremental filling.131,132 

In this study, the gaps had been classified into three categories based on their 

location (CA: gap at the composite/adhesive interface; AD: gap at the adhesive/dentin 

interface; CAD: gap at the composite/adhesive/dentin interface (mixed)). AD and CAD 

gap categories could have a clinical significance on the post-operative sensitivity 

occurrence due to the bare dentinal surface. Nevertheless, the restorative material poor 

retention and eventually loss occurrence could be linked to the CA gap category 

especially when it is associated with a poor marginal retention. Obviously in this study, 

the incidence and measurement of the CA gap category was significantly higher than the 

others, followed by AD. Another finding of interest in the results of this experiment is 

that the SF group had the highest incidence of CA gap compared with the other groups. It 

is not clear why this occurred, even though the same bonding system was used for all the 

experiment groups. It might be connected with relatively higher polymerization shrinkage 

in SonicFill restorative material that produced gap between the restorative material and 

the bonding agent. Also, it might be connected with the poor chemical reaction between 

SonicFill restorative material and OptiBond Solo Plus bonding system used in this study 

although they were from the same company (Kerr, West Collins, Orange, CA). Further 

study will be necessary comparing the SonicFill restorative material capability to adapt to 

the cavity pulpal floor using different total-etch adhesive systems (OptiBond XTR, 
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OptiBond Solo Plus, OptiBond All-In-One, OptiBond FL, and OptiBond XTR; Kerr, 

West Collins, Orange, CA, USA). The CA gap category could be clinically significant in 

relation to the composite material retention and long-term service.  

The second research alternative hypothesis suggested that there is significantly 

better internal adaptation among a traditional RBC material placed incrementally 

compared with bulk-fill RBC materials not-aged versus aged. This hypothesis was 

partially accepted. To examine the alterations at the interface between resin restorations 

and tooth cavities, three manners of artificial aging technique can be used: 1) aging by 

water storage; 2) aging by thermocycling; and 3) aging by thermomechanical load 

cycling.133-135 The aging technique used in this study was selected based on a previous 

study demonstrating that applying a thermocycling aging procedure created stresses 

similar to those seen with six months in the clinical situation, and it would therefore be a 

clinically relevant method.110 It is interesting to note, the aging technique used in this 

study appeared to be a significant factor affecting the resultant gap size measurement 

while it did not affect the material adaptation to the cavity (Figure 25). This indicates that 

the aging method that used in this study affected the existing gap size by making them 

worse. Yet, the aging techniques did not assist in gap generation. Several previous studies 

showed that thermocycling or storage in water might have slight effect on artificial aging; 

however, thermomechanical load cycling can efficiently cause artificial aging.110,126,136,137 

Another study investigating the effect of the three various types of aging 

techniques on gap size and bulk-fill material adaptation is recommended.  

In this study, the internal adaptation concept was evaluated in four different 

locations within the same tooth; as three slices obtained from each tooth allowed analysis 
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of four different sides (a, b, b’, and c). According to the results, the sum of all gap 

categories for slice sides a and c (the mesial and the distal slice sides) was significantly 

larger than b (one of the middle slice sides) (p ≤ 0.0155). In other words, the gaps located 

closer to the center of the cavity were larger than those located close to the cavity sides. 

This implies that the material adaptation to the cavity margin was better when there were 

more walls to bond to. 

Of the materials tested in this study, all had at least one cohesive failure that was 

associated with the dentin or the composite material except SF. The XF group had the 

highest incidence of cohesive failure that all occurred in the composite material (Table 

VI). This might be linked directly to the material strength and properties.  

A void within the composite material is a pore that remains unoccupied. It could 

result from an imperfection in the material processing and is generally deemed 

undesirable. It can impact the mechanical properties and lifespan of the composite. Voids 

can allow moisture to penetrate the composite material and contribute to anisotropy of the 

composite. Moreover, voids can act as a crack nucleation site which would be an issue 

because crack formation and propagation can generate unpredictable behavior of the 

material.138 In this study, SF had the significantly lowest probability of voids among the 

groups (p ≤ 0.0024). The second group with low probability of voids was QX (p ≤ 

0.0287) (Figure 30). The incidence of voids can be related to the viscosity of the material 

during placement and the placement technique. A resin composite material with a high 

viscosity will likely generate voids in the composite more than a low viscosity material. It 

is challenging for a high viscosity resin or matrix to penetrate the original void spaces 

among adjacent fillers. This will produce voids to form close the filler surface. 
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Preventing these voids becomes more challenging when the fillers are packed tightly 

together in a composite.139 The current study supported these data as it showed fewer 

voids associated with SF that had a low viscosity during placement in response to sonic 

activation. Furthermore, it had been suggested that using an increment-fill placement 

technique would result with more voids due the nature of the layering procedure that 

would allow air to trap between layers. In this study, although FSU (the incrementally 

placed group) showed a statistical higher probability of voids compared with SF and QX, 

there was no statistically significant difference comparing it to the other two bulk-fill 

groups (i.e. TEC and XF).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	  

	  

88 

 

 

 

 

 

 

 

 

 

 

 

 
 

SUMMARY AND CONCLUSIONS 
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The objectives of this study were to quantitatively evaluate the internal adaptation 

among different bulk-fill RBC materials and a traditional RBC placed incrementally by 

measuring the gap area between the restorative material and the tooth structure and to 

evaluate aging effect on the internal adaptation. Four bulk-fill RBC materials and one 

placed incrementally were tested.  

Within the limitations of this in vitro study that included limited material 

selection, the following conclusions can be drawn:  

FSU had the smallest sum off all gap category values compared to the bulk-fill 

materials tested except QX. However, QX had significant smaller values than SF. 

 FSU had the smallest gap measurement values compared to the bulk-fill materials 

tested except QX and TEC. No significant difference was exhibited among the other 

restorative groups. 

 The CA gap location had the highest incidence and gap size values of all 

investigated categories. 

 All aged groups had greater gap values in regards to the sum of all gap categories 

and gap measurement compared to non-aged groups. However, no significant difference 

was found between aged and non-aged groups in correlation to the cavity adaptation.  

 XF material had the highest cohesive failure among all groups except for SF that 

had no cohesive failure at all. 
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 All the tested restorative materials had voids inside the material except SF that 

had no voids at all. 

Based on the results of the present study, it can be concluded that incrementally 

placed material FSU had the highest internal adaptation to the cavity surface. In general, 

the four materials placed using the same bulk-fill technique show various behaviors and 

results. Moreover, thermocycling aging technique influenced the existing gap quantities 

but it didn’t play a role in the material adaptation to the cavity. 

Clinical significance: based on the results of this study, an increment-fill 

technique seems to have significant advantages in internal adaptation over a bulk-fill 

technique. 
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used to overcome limitations related to resin-based composite (RBC) material. However, 
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it has some drawbacks that affect its efficiency. Recently, many resin-based composite 

materials have been introduced to the market allowing for use of the bulk-fill technique 

with many advantages over the incremental placement technique. OBJECTIVES: To 

quantitatively evaluate the internal adaptation among different light-activated bulk-fill 

RBC materials and a traditional RBC placed incrementally by measuring the gap area 

between the restorative material and the tooth structure and to evaluate aging effect on 

the internal adaptation. METHODS: A Class I cavity with specific dimensions was 

prepared using 70 extracted human molar teeth. They were randomly distributed into five 

groups; four groups were restored with different resin-based composite systems using a 

bulk-fill technique (TEC, SF, QX, XF); the fifth group (the control) was restored with 

multi-increment-fill technique (FSU). Each group was divided equally and randomly into 

two groups; the first group was the control and the other was the aged group that was 

thermocycled. Then, each tooth was sectioned occluso-gingivally and three 2-mm thick 

slices were obtained. Digital images from all specimens were recorded and analyzed and 

the presence and dimension of gaps were measured. Data were analyzed using ANOVA 

with a 5-percent significance level. RESULTS: FSU had the smallest gap measurement 

values compared with the bulk-fill materials tested except QX and TEC (p ≤ 0.008). FSU 

had the smallest sum of all gap category values compared with the bulk-fill materials 

tested, except QX (p ≤ 0.021). QX was significantly smaller than SF (p = 0.0257). The 

CA gap location category had the highest incidence and gap size values. All aged groups 

had greater gap values in regard to the gap measurement and the sum of all gap categories 

compared with non-aged groups. CONCLUSION: The incrementally placed material 

FSU had the highest internal adaptation to the cavity surface while the other four 
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materials using the bulk-fill technique showed various behaviors and results. The 

thermocycling aging technique influenced the existing gap quantities. The findings 

suggest that the increment-fill technique has advantages in terms of internal adaptation 

over the bulk-fill technique.
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