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The field of dental biomaterials has witnessed a great revolution. Many material 

choices with superior aesthetic, biological, and mechanical properties have become 

available to restore or replace damaged and lost dental structure. However, when 

compared with the natural tooth structure, such materials often fail to provide the same 

longevity and functionality. Therefore, preserving and regenerating tooth structure is the 

scope of modern dentistry.  

Preserving teeth during early and mixed dentition stages is essential to achieve 

proper function and occlusion in the permanent dentition.
1
 As teeth start to erupt, their 

roots continue to develop to reach the final length and form. Root development continues 

up to three years after tooth eruption.
2
 Maintaining the vitality of the dental pulp is 

essential to the completion of root development and to achieve apical closure. 

Unfortunately, pulpal inflammation and necrosis are very common in immature teeth. 

Dental caries and trauma are the main reasons for pulpal necrosis.
3
 

Dental caries is a time-dependent multifactorial disease, which, if not treated, may 

lead to the penetration of bacteria and bacterial by-products into the dental pulp. Upon 

repeated and persistent insult, the pulp tissue undergoes chronic irreversible 

inflammation, ultimately leading to pulp necrosis and fibrosis. 

Trauma, on the other hand, is a very common reason for pulp necrosis. It has been 

reported that 30 percent of children and 33 percent of adult permanent teeth are subjected 

to trauma.
4,5

 Trauma can result in a partial or complete crushing of the apical blood 
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vasculature responsible for nourishing the dental pulp. Loss of blood supply eventually 

leads to pulp necrosis in about 1 percent to 16 percent of these traumatized teeth.
6
   

Traditional root canal treatment that involves debridement, instrumentation, and 

obliteration of the pulp canal space is the conventional treatment modality for necrotic 

teeth. However, necrotic teeth with incomplete root development pose a particular 

challenge for this approach. Given the wide, open apex, which halts the possibility of 

achieving an apical seal, and the thin dentinal walls, making them more prone to fracture, 

performing traditional root canal treatment on necrotic immature teeth is not advisable.
7
  

Apexification is the most commonly used endodontic treatment in cases of 

immature teeth. It relies on the use of calcium hydroxide (       ) or mineral trioxide 

aggregate (MTA) to induce the formation of a mineralized barrier resulting in the closure 

of the apical foramen.
8
 However, this approach eliminates any further possibility for 

complete root development (e.g., increased dentin wall thickness and ending apical 

formation) increasing future root fracture risks.
9,10

  

Regenerative treatment, on the other hand, could promote further root 

development improving the long-term prognosis of immature teeth. Regenerative 

endodontic procedures (REPs) are biologically-based approaches that aim to restore not 

only the function, but also the anatomy of the damaged structures.
7
 The concept of this 

approach is to regenerate/revitalize the necrotic pulp by utilizing the multipotent nature of 

stem cells derived from the periapical papilla (SCAPs). These cells can be introduced into 

the root canals once periapical bleeding is induced to act as a fibrin-based scaffold and 

develop a new pulp tissue.
7
 However, the establishment of aseptic root canals 
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environment is a prerequisite to ensure a successful outcome of the regenerative 

strategy.
7,11,12

  

Different bacterial species have been isolated from endodontically involved 

teeth.
13,14

 Some of these bacteria have biofilm formation ability ranging from moderate 

(e.g., Enterococcus faecalis, Lactobacilli spp., and Prevotella buccae) to high complexity 

(e.g, Actinomyces spp, Streptococcus mutans and Pseudoramibacter alactolyticus).
15

 

Actinomyces naeslundii, a Gram-positive filamentous, rod-shaped facultative anaerobe 

commonly found in the oral cavity, has been reported to be associated with failed 

endodontic therapy.
14,16

  Moreover, recent findings have identified A. naeslundii as the 

predominant bacterium in immature teeth with necrotic pulps due to trauma.
17

 These 

findings encourage studies to test the effectiveness of traditional and new intracanal 

medicaments and irrigant solutions against A. naeslundii biofilms. According to the 

literature, the presence of minocycline within the so-called TAP should display an 

effective antimicrobial action against A. naeslundii biofilm (MIC = 0.23 µg/mL).
18,19

 

Among the several available intracanal medicament options for regenerative 

endodontics, triple antibiotic paste (TAP), is the most widely used treatment. Although 

local application of TAP may offer advantages, such as effective root canal disinfection 

and a decrease in conceivable systemic complications compared with systemic antibiotic 

administration (e.g., antibiotic resistant strains, cytotoxicity, allergic reactions), the use of 

TAP has been related to significant drawbacks, including damage to stem cells and 

notable tooth discoloration.
4,11,20
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Electrospun polymer-based antibiotic-containing scaffolds have been shown to be 

an effective strategy in achieving root canal disinfection by delivering small yet effective 

amounts of antibiotics.
21,22

  

Therefore, the aim of this study is to produce a new tubular shaped three-

dimensional (3D) TAP-mimic scaffold to fit inside the root canal, and to analyze whether 

using the 3D-shaped antibiotic-containing scaffold will be able to completely eradicate A. 

naeslundii biofilm formed inside the dentinal tubules.  

 

CLINICAL SIGNIFICANCE 

A drug-releasing 3-D scaffold possesses favorable characteristics that could 

dramatically improve the outcome of the regenerative endodontic treatment. The unique 

nanoporous structure of the electrospun scaffold provides a more predictable skeleton to 

support the development of the newly regenerated pulp tissue. In addition, the slowly- 

released lower antibiotic dose imposes less toxicity upon the periapical stem cells 

(SCAPs), which will be later used in regenerating the pulp tissue.  

 

PURPOSE OF THE STUDY 

To determine the antimicrobial effect of 3D TAP-mimic scaffolds against A. 

naeslundii biofilm formed inside the dentinal tubules.  

 

HYPOTHESES 

 

Null Hypothesis 

The null hypothesis is that the 3D TAP-mimic scaffolds will not have 

antimicrobial activity against A. naeslundii biofilm. 
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Alternative Hypothesis 

The alternative hypothesis is that the 3D TAP-mimic scaffolds will display  

antimicrobial activity similar to or better than the TAP against A. naeslundii biofilm. 
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THEORIES AND TRADITIONAL TREATMENT 

MODALITIES FOR IMMATURE NECROTIC TEETH  

 

 Immature teeth with necrotic pulp have always been a challenge for endodontic 

treatment. In the past, different treatment approaches were suggested to overcome the 

problems associated with these teeth (wide, open apical foramen and thin dentinal walls). 

According to L.A. Friend in 1966, three basic methods existed to carry out a root canal 

filing in immature teeth.
23

  The first method was to use a custom filling material such as 

gutta-percha. This material would be shaped extra-orally by the clinician and then fitted 

and cemented into the root canals. The problem was the difficulty of achieving a uniform 

seal throughout the apical third, which is usually wider than the coronal third; given the 

thin dentinal walls, instrumentation could not be performed to achieve a favorable conical 

root canal form.
23,24

 The second method was to use a paste endodontic filling material. 

The material was injected into the canal space to achieve a uniform seal. However, the 

possibility of overfilling into the periapical tissue was one of the drawbacks of this 

approach. In the third method, advocated by Ingle 1965, a surgical intervention in the 

form of apicectomy is carried out simultaneously with a root canal filling. In this case an 

amalgam retrograde filling is properly condensed after the apicectomy to achieve an 

apical seal.
23,25

 However, such a surgical approach is not advisable in children, who 

constitute the majority of immature necrotic teeth cases. In addition, apicectomy will 

result in a further shortening of the already short roots.
25
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            Due to the limited success of the above described methods, a general interest in 

further root development or even the formation of an apical barrier was aroused. 

Nygaard-Ostby believed that the induction of bleeding by lacerating the periapical tissue 

will lead to the formation of a newly vascularized pulp tissue within the canal space 

resulting in a continued root development.
26

 Moller et al. demonstrated that a successful 

canal debridement, which involves a complete removal of the infected pulp tissue, would 

create an environment that promotes the development of an apical closure without the use 

of medicaments.
27

 The same hypothesis was promoted by McCormick et al. believing 

that complete pulp canal debridement is a critical factor in apexification.
28

 Although  

most prescribed techniques involved the placement of a medicament after canal 

debridement, many authors believed that apical closure could still occur. Some authors 

also suggested that instrumentation of the pulp canal should be kept to a minimum, if at 

all.
29

  They hypothesized that instrumentation could halt further root development by 

traumatizing the remnants of Hertwig’s epithelial root sheath, which could potentially 

organize the apical mesodermal tissue into root components.
30-32

 

 Thus, the ultimate goal of the early work was to produce an infection-free root 

canal environment conducive to the formation of an apical barrier. 

 

APEXIFICATION 

 Apexification is defined as “a method of inducing a calcified barrier in a root with 

an open apex or the continued apical development of an incompletely formed root in 

teeth with necrotic pulp.”
33

 The technique relies basically on removal of the remaining 

necrotic pulp tissue and cleaning of the canal, followed by filling of the root canal with a 

temporary filling material that would promote the formation of a calcified barrier to 
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achieve an apical closure of the open apex.
34

 After positive radiographic and clinical 

assessment of the apical closure, the temporary material is replaced with a final gutta-

percha filling.  

 In general, since the introduction of the apexification concept, many technique 

variations with or without the application of medicaments have been advocated for use.
24

  

 

Calcium Hydroxide 

 Calcium hydroxide is one of the first used and most popular intracanal 

medicaments.
35

 In 1964 Kaiser first introduced the use of calcium hydroxide mixed with 

camphorated parachlorophenol (CMCP) to induce the formation of a calcified periapical 

barrier.
24

 Consequently, many studies have confirmed the successful outcome after using 

a combination of calcium hydroxide and CMCP.  Calcium hydroxide was also used along 

with Cresatin (Premier Dental Products), shown to be less cytotoxic and to induce a 

lower inflammatory potential compared with CMCP.
36,37

 In addition, calcium hydroxide 

was also mixed with saline, distilled, and sterile water in order to reduce the cytotoxic 

effect. Successful clinical outcomes have been reported using these combinations.
24

  

The mechanism by which calcium hydroxide induces the formation of an apical calcified 

barrier is still controversial. That is mainly because the calcium ions deposited in the 

apical barrier comes mainly from the bloodstream rather than the calcium hydroxide 

intracanal dressing.
38

  Mitchell and Shankwalker have confirmed the potential of calcium 

hydroxide to induce the formation of heterotopic bony tissue by being implanted into the 

connective tissue of rats.
39

  According to Holland et al., the periapical tissue reacts to 

calcium hydroxide in a way that is similar to the pulp tissue.
40

  Calcium hydroxide 

produces a multilayer necrosis in the periapical area that acts as a low-grade irritation 
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inducing a subjacent mineralization by the attraction of calcium ions into the newly 

formed collagenous matrix.
24,41

  It has been demonstrated that calcium hydroxide’s high 

pH as well as its antibacterial efficacy are the main properties contributing to its ability to 

induce the formation of the calcified barrier. Javelet et al. demonstrated that the alkaline 

pH of calcium hydroxide (pH 11.8) is more conducive to the formation of an apical 

barrier compared with a lower pH material, such as calcium chloride (pH 4.4). Several 

studies have confirmed the antibacterial efficacy of calcium hydroxide attributed to the 

release of hydroxyl ions.
42-44

 These ions are highly oxidative and can damage the 

bacterial cytoplasmic membrane and DNA.
24

 

 Calcium hydroxide can cause a localized increase in the calcium concentration, 

which can stimulate pyrophosphatase enzyme.
45

 This enzyme can facilitate the repair 

process by promoting collagen synthesis.  

 The calcified barrier may be composed of cementum, dentin, bone or 

osteodentin.
32

 Steiner and Van Hassel have shown that the apical calcified bridge can be 

histologically identified as a cementum-like material.
46

 Histological analysis of this ‘cap-

like’ bridge that extends over the root apex, revealed that it is composed of irregular dens 

fibrocollagenous core with calcified foci surrounded by an outer layer that is dens 

acellular cementum-like material. In regard to the clinical application, no agreement 

exists about the frequency of the calcium hydroxide dressing re-application. Authors who 

recommend a single application claim that calcium hydroxide plays a role only in 

initiating the healing reaction and that no benefit is to be gained from repeated 

applications.
24,47,48
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 Other authors suggest that monitoring the recurrence of clinical symptoms and 

making a radiographic assessment of the presence of the material in the canal are the best 

indications for evaluating the need to replace the dressing.
49,50

 However, other authors 

such as Abbot recommend the replacement of the dressing, because it allows for clinical 

monitoring of the bridge formation.
51

 Abbot also believes that radiographic assessment 

does not yield an accurate evaluation of whether the material has been washed out nor on 

the progress of the barrier formation.  

 The time required for complete formation of the apical barrier varies according to 

several factors. The stage of root development, the presence of pre-treatment periapical 

infection, and the rate of change of calcium hydroxide are all factors that have been 

considered by different authors.
24

 

 Clinically, either a calcium hydroxide paste or a powder that is mixed with saline 

can be used. The creamy paste should be packed against the apical soft tissue through the 

canal opening. The rest of the canal length should also be filled with calcium hydroxide 

to maximize the antibacterial efficacy and to prevent recurrent infection throughout the 

extended treatment period.
52

  Radiographic assessment of hard barrier formation should 

be conducted every three months. Evidence of material washout should also be checked 

to assess the need to replace the dressing. Unnecessary dressing changes should be 

avoided because the material’s initial toxicity could delay the healing process.
53

 

Complete formation of the calcified barrier could take between 6 to 18 months.  

 Despite the high success rate of the calcium hydroxide apexification technique, it 

still has some major disadvantages. The prolonged treatment period, which ranges from 

six to eight months, involves multiple follow-up sessions making patient compliance an 
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essential requirement.
52

  Failure of the patient to regularly appear at the follow-up 

appointments or loss of the temporary coronal filling between the appointments can 

seriously impact the outcome of this technique. Unpredictability of the apical barrier 

formation is another disadvantage of this approach.
54

 In addition, calcium hydroxide has 

been shown to weaken dentin by making it more susceptible to fracture, especially in 

immature teeth with thin dentinal walls.
55

  

 

Mineral Trioxide Aggregate 

 Due to the previously mentioned limitations of calcium hydroxide, several other 

materials have been considered for the treatment of necrotic immature teeth. Mineral 

trioxide aggregate (MTA) is a material that has been considered to replace traditional 

calcium hydroxide treatment. MTA was first introduced in 1993 and approved by the 

FDA in 1998.
24

  MTA is endodontic cement that consists of fine hydrophilic particles of 

tricalcium silicate, tricalcium oxide, and silicate oxide. It is a biocompatible material with 

low solubility. After setting, the material has a high pH (12.5), which imposes some 

antimicrobial effect.
56

  

 In 1999 Shabahang et al. tested the material’s ability to produce an apical barrier 

in immature teeth of a dog model. They concluded that MTA can successfully produce a 

consistent apical barrier.
57

 Several clinical studies have also reported successful results 

using MTA.
54

 

 Given the previously mentioned shortcomings of the traditional multiple-visit 

apexification technique, a one-visit apexification that involves the use of an apical plug 

was suggested. The idea behind this approach is to produce an apical stop that allows 

direct condensation of a permanent root filling material, such as gutta-percha, eliminating 
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the prolonged treatment time associated with the traditional technique. MTA has been 

successfully used as an apical plug material. In addition to expedited treatment, the use of 

MTA allows for the immediate placement of a bonded core inside the root canal, thus 

reinforcing the canal system and decreasing the risk of fracture. MTA is placed into the 

apical 3 mm to 4 mm of the canal, while the rest of the canal is filled with a permanent 

root filling material. A bonded resin restoration is then placed to reinforce the restored 

tooth.
52

  

 Apical closure with this technique is more predictable than with calcium 

hydroxide; however, similar to calcium hydroxide, this technique only treats the issue of 

the open apex and does not result in further root development.
54

   

 

TISSUE REGENERATION  

  The recent evolution in material science has greatly improved and expanded 

treatment options in terms of replacing damaged or lost dental structures. Nevertheless, 

these synthetic materials usually possess chemical, biological, and physical 

characteristics different from the host tissue.
58

  Mostly, these artificial substitutes only 

provide a structural rather than a physiologically functional replacement.
1
 Therefore, the 

long-term prognosis of traditional restorative approaches is often questionable.  

 The ultimate goal of any restorative treatment is to restore the tissue back to its 

original physiological and functional state.
59

  Although unsuccessful, the early attempts 

to regenerate pulp tissue go back to the 1960s and 1970s.
59

 Direct pulp capping, 

pulpotomy, and root canal revascularization are some of the earliest regenerative 

endodontic approaches in use since the 1970s.
60

 However, the lack of isolation and 
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characterization strategies of the stem cells has resulted in limited success, particularly in 

pulp tissue regeneration.  

 The emergence of modern tissue engineering technology has encouraged 

extensive research and advancements in the field of regenerative endodontics.
59

 Tissue 

engineering is a discipline that integrates the fundamentals of engineering, physics, 

chemistry and biology to develop materials and approaches that enable the regeneration 

of defective or lost tissues.
58,61

   

 The concept of endodontic tissue engineering relies on the interplay of three 

major components, namely, progenitor stem cells capable of differentiation to different 

cell types; growth factors that signal the proliferation and differentiation of the cells, and 

a three-dimensional scaffold that can support and provide structural integrity of the 

regenerated tissue.
62-64

  

 

REGENERATIVE ENDODONTIC PROCEDURES 

 According to the current Glossary of Endodontic Terms published by the 

American Association of Endodontists, regenerative endodontics is defined as 

“biologically-based procedures designed to physiologically replace damaged tooth 

structures, including dentin and root structures, as well as cells of the pulp-dentin 

complex.” 
65

 

 In the most recent clinical considerations for a regenerative procedure, the 

American Association of Endodontists stated three goals of regenerative endodontic 

treatment for necrotic immature teeth: primarily, resolution of symptoms and evidence of 

bone healing; secondarily, root development in the form of increased thickness and 

length, and thirdly, positive evidence of vital pulp tissue growth.
66,67
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 There have been several clinically successful published case reports. However, 

there are no adequately consistent results to support a specific regenerative protocol.
66

  

Based on the disinfection technique, two distinct pulp revascularization methods have 

been described in the literature.
68

 In the first technique, calcium hydroxide is used as 

intracanal medicament, while triple antibiotic paste is used in the other.  

 Regardless of the medicament used, the AAE has published a general treatment 

protocol consisting of three stages.
69,70

 After a thorough case evaluation and selection, the 

first stage involves chemical root canal disinfection using sodium hypochlorite. The AAE 

recommends using 1.5-percent NaOCl, however; higher concentrations up to 6 percent 

have been used in successful clinical case reports.
4,71

 After initial irrigation, a therapeutic 

root canal dressing consisting of either calcium hydroxide or antibiotic paste is placed 

inside the cleaned empty canal. The purpose of this step is to treat any persistent infection 

as well as complete disinfection of the root canal to provide a favorable environment for 

pulp tissue regeneration.
70

 In the second stage, which is typically performed in a separate 

appointment after 1 week to 4 weeks, the dressing is removed, and the canal is gently 

flushed with 17-percent EDTA. Then, the periapical tissue is lacerated using a sterile 

hand file to induce bleeding into the canal space. The aim of this step is to form a blood 

clot inside the root canal that will act as a natural scaffold for the recruited stem cells to 

regenerate the pulp tissue. The blood clot is also believed to help deliver SCAPs into the 

pulp canal space. Moreover, the disintegration of the platelets, which are a major 

component of the blood clot, leads to the release of growth factors essential for stem cell 

proliferation and differentiation. In the final stage, the bleeding is stopped and the canal is 

sealed with MTA; then a final restoration is carried out. A three-month interval follow-up 
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should be maintained to assess an indication of successful outcomes. Absence of clinical 

symptoms as well as radiographic evidence of bone healing and root development can 

take up to 2 years to be achieved.
66

  

 Published case reports document a successful outcome for a regenerative 

endodontic approach in the form of increased root length and width.
7
 A greater survival 

rate for teeth treated with regenerative endodontic procedures (100 percent) has been 

noted compared with teeth treated with a traditional MTA apexification approach (77 

percent).
9
  

 Despite these promising results, the biological outcome of the regenerative  

treatment approach is rather unpredictable.
70

  Bone healing and root development does 

not necessarily confirm the regeneration of the pulp dentin complex within the root 

canals. In fact, histological examination of the tissue formed inside the root canals of 

teeth treated with regenerative procedures reveals the apposition of a cementum-like 

tissue, which is responsible for the canal narrowing as well as for the length increasing.
72

 

Additionally, in-growth of a connective tissue similar to periodontal ligament along with 

a bone-like tissue was identified inside the root canals.
73

 These findings suggest the 

current endodontic regenerative protocols need careful consideration and review. The 

unpredictability of the results could be related to many factors. The disinfection 

technique is one of the most influential factors affecting the outcome of this approach.
1
 

There is a compelling level of evidence indicating that both irrigants and intracanal 

medicaments can greatly affect the survivability of the stem cells.
11,74,75
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ROOT CANAL DISINFECTION 

 One important factor in the success of regenerative endodontic treatments is the 

establishment of a high level of root canal disinfection. Regrettably, periapical abscesses 

and periodontitis are highly associated with necrotic immature teeth.
7
 In immature teeth, 

bacteria are more likely to penetrate deeply into the tissue rendering bacterial disinfection 

even more challenging.
76,77

  This step is usually accomplished using a combination of 

chemical irrigation and intra-canal medicaments. The current operative protocols vary 

considerably regarding the types and concentrations of the chemicals used. However, the 

majority of these protocols rely on initial root canal disinfection using sodium 

hypochlorite (NaOCl) or chlorhexidine (CHX) and EDTA followed by the application of 

intra-canal medicaments such as either calcium hydroxide (         ) or antibiotic paste 

(DAP or TAP).
66,78,79

 

 

Sodium hypochlorite 

 Sodium hypochlorite is one the most popular irrigants in endodontics. In addition 

to its antiseptic effect, NaOCl can also dissolve organic tissues including necrotic pulp 

remnants.
80

 It has been used in variable concentrations ranging between 0.5 percent and 

5.25 percent.
68

 At high concentrations, sodium hypochlorite is found to be toxic to stem 

cells and can hamper their attachment to the dentinal surface.
74,81

 Trevino et al. have 

shown that full-strength NaOCl is cytotoxic to stem cells and prevent their attachment to 

the dentinal surface of the root canals.
74

  Sodium hypochlorite cytotoxicity is proportional 

to its concentration.
68

  Martin et al. postulates that a concentration of 1.5-percent NaOCl 

is more favorable for the survival of stem cells as compared with a 3-percent NaOCl 
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concentration.
82

 Generally, normal saline should be used to flush sodium hypochlorite out 

of the root canal to reduce its residual toxic effect on the stem cells.  

 

Chlorhexidine 

 Chlorhexidine is known to have antimicrobial effects on gram positive bacteria 

and candida. At concentrations as low as 0.12 percent, CHX is known to be 

bacteriostatic, while it is bactericidal at higher concentrations. A concentration of 2 

percent is the most commonly recommended. The prolonged antimicrobial effect is the 

main advantage of CHX. In fact, it is adsorbed to the dentinal surface allowing for an 

extended release that continues up to twelve weeks. However, unlike NaOCl, CHX 

cannot dissolve organic tissue, which is considered a major disadvantage of CHX.
68

 

Moreover, CHX is found to be cytotoxic to stem cells.
74

  It is recommended to use 

normal saline between CHX and NaOCl in order to reduce the toxic effect of CHX 

precipitate.
83

  Based on these reasons, the use of CHX in regenerative endodontics should 

be avoided.
66

 

 

EDTA 

 Ethylenediamine tetra-acetic acid (EDTA) is a chelating agent that can strip 

inorganic components from the smear layer by binding divalent cations. Although it is 

not an antiseptic agent, EDTA can act synergistically with other irrigants (such as 

NaOCl) by increasing wettability of the dentin surface and removal of the smear layer. 

More importantly, EDTA is believed to stimulate the proliferation of stem cells by 

facilitating the release of growth factors as a result of its chelating effect. Additionally, 
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Trevino et al. found that using EDTA (17 percent) before irrigants increases the survival 

of stem cells.
74

 

 

Antibiotics 

 A wide variety of antibiotics and antibiotic mixtures have been used in endodontic 

regenerative procedures. The use of a double antibiotic paste consisting of metronidazole 

and ciprofloxacin was reported in the first successful regenerative case report.
94

 

Subsequently, a triple antibiotic paste consisting of metronidazole, ciprofloxacin, and 

minocycline became more popular after many successful case reports.
84-86

 However, 

minocycline was found to result in teeth discoloration.
20,87

 Different triple antibiotic 

combinations have been tested; however, minocycline containing combinations are found 

to achieve the best results, especially in providing increased root thickness.
10

 In fact, 

triple antibiotic paste containing minocycline has the ability to diffuse deeply in root 

dentin resulting in better disinfection of the deeper layers.
88,89

  Despite its proven 

antibacterial efficacy, TAP is found to be cytotoxic for the stem cells, which is a major 

drawback for its use in regenerative endodontics.
11,72,90

 Ruparel et al. have shown that the 

widely used creamy paste (1000 mg/mL) of a triple antibiotic mixture is toxic to SCAP.
11

 

Althumairy et al. postulated that the toxicity of TAP depends on the concentration. 

According to Ruparel et al., concentrations between 0.01 mg/mL to 0.1 mg/mL promote 

SCAP survival.
11

 However, such low concentrations result in a watery mixture that  

cannot be retained inside the root canals, thus posing a clinical difficulty for using such as 

low concentration.
70

 Therefore, it would be beneficial to use a biocompatible scaffold to 

deliver the antibiotic at  lower concentrations.
70
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 Several studies have proven the antibacterial efficacy of drug delivering scaffolds 

through controlled release of the incorporated antibiotic.
91, 92

 Recent studies using a novel 

electrospun polymer-based bioactive scaffold suggest that the scaffold can release small 

yet effective antibiotic concentrations, which should have much lower detrimental effects 

on the survival of SCAP.
22, 93

 In fact, in our current study an antibiotic concentration of 

35 wt% was used to synthesize the scaffold yielding a total amount of less than 10 mg of 

TAP per scaffold, which represents only 1 percent of the total amount of antibiotic in the 

currently used triple antibiotic paste (1000 mg/mL).  

 

Scaffolds 

 In order for stem cells to migrate and proliferate within the empty canal space, 

there must be a structural unit that can support this new growth.
62

 A scaffold is a three-

dimensional extra-cellular matrix mimicking temporary microstructure that can support 

and regulate cell proliferation, differentiation, and function.
94,95

  Ideally, a scaffold should 

possess certain biomechanical properties that favor and support new cellular growth. 

Essential characteristics for a successful scaffold are biocompatibility; capability of 

seeding the stem cells and the delivery of growth factors; and bioactivity to facilitate cell 

adhesion and angiogenesis.
70

  Mechanically, a scaffold should be rigid enough to sustain 

in-vivo stress.
58

 Micro and nano-porosity is critical for cell seeding and transfusion of 

nutrients.
96,97

  High porosity favors cellularity; however, it reduces mechanical 

strength.
98,99

 Controllable biodegradability is one of the most critical properties of the 

scaffold. The scaffold material should degrade at a rate compatible with the growth of 

new host tissue.
100

 Moreover, the biodegradation products should be non-toxic and easily 

eliminated.
101
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 Traditionally in regenerative endodontics, the most used scaffold is a blood clot,  

formed by laceration of the apical tissue of a cleaned pulp canal in an immature tooth 

with necrotic pulp. This natural scaffold provides an environment conducive to the 

growth of recruited stem cells (mostly SCAPs) within the emptied root canal.
26

 However, 

the unpredictability of the results as well as uncertainty regarding the type of regenerated 

tissue has nourished the search for an alternative scaffold.
72,102

  

 Generally, there are three basic types of scaffolds:  

 Natural – collagen and glycosaminoglycan, and platelet rich plasma (PRP).

 Synthetic – poly-L-lactic acid (PLLA), poly-glycolic acid (PGA), and their 

copolymers, poly-lactic-co-glycolic acid (PLGA). 

 Mineral scaffold – hydroxyapatite and calcium phosphate. 

 Several studies report successful results using natural scaffolds such as collagen 

and PRP scaffolds in regenerative endodontics; nevertheless, positive histological 

indications regarding the nature of the newly formed tissue have not been established.
70,72

  

 Synthetic polymer scaffolds such as PLLA, PGA, and PLGA are commonly used 

in tissue engineering. Using different manufacturing techniques, these polymers can be 

shaped into micro or nanoporous three-dimensional structures. Such scaffolds have many 

favorable properties that enhance their potential role in the advancement of tissue 

regeneration. Great surface area, enhanced cellular adherence, the ability to deliver 

controlled levels of antimicrobial substances and growth factors, and controllable 

biodegradability are the most important properties of these synthetic scaffolds.
1
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Electrospun scaffolds 

 The technology of electrospinning has been recently used to fabricate nanofibrous 

medicated scaffolds for tissue regeneration in dentistry with promising initial results.
103-

105
  The nanotechnology allows for controlling fiber diameter and morphology to produce 

customized 3D scaffolds that fulfill the mechanical and structural demand for their use in 

regenerative endodontics. In addition to providing an extracellular matrix mimicking the 

skeleton for cell integration and proliferation, these scaffolds can be used to deliver 

different antibiotics and growth factors essential for infection eradication and stem cell 

differentiation, respectively. The most important advantage of such scaffolds is their 

ability to release low and controllable amounts of antibiotics with sustainable 

antibacterial efficacy without jeopardizing the survivability of the stem cells.
21,22,104,106

  

 The FDA-approved polydioxanone (PDS) synthetic polymer was used to 

synthesize nanofibrous scaffolds for regenerative endodontics in several recent 

studies.
12,21,22,103,106

  PDS elicits a minimal inflammatory response compared with other 

synthetic polymers such as Dexon and Vicryl.
107

 In addition, it has high mechanical 

strength and a slow degradation rate, which are suitable properties to sustain the 

functional demand for use as an endodontic scaffold.
107

 

 The incorporation of different drugs and growth factors into electrospun scaffolds 

is the focus of many ongoing research studies. In this study, we incorporated a triple 

antibiotic mixture (35 wt% ciprofloxacin, 35 wt% metronidazole, and 35 wt% 

minocycline) into the PDS nanofibrous scaffold to investigate the antibacterial efficacy of 

a novel 3D tubular-shaped drug delivery system.  
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ANTIMICROBIAL ASSAY 

 The complete eradication of infection in the root canal and the surrounding 

dentinal tubules is fundamental for the success of regenerative endodontics. Hence, the 

efficacy of a new intracanal medicament must be verified using an experimental tool that 

has the ability to assess these results with a high level of accuracy.
108

  In chronic 

infections, bacteria penetrate deep into dentinal tubules and form a bacterial biofilm, 

which if not completely eradicated, can cause recurrent infection and thus failure of the 

endodontic therapy. Unfortunately, scanning electron microscopy can only be used to 

verify and measure the penetration of bacteria within the dentinal tubules and cannot give 

quantitative information about  bacterial viability.
108

  

 

Confocal Laser Scanning Microscopy (CLSM) 

 CLSM is an imaging technology that enables the capturing in-depth images with 

high resolution.
109

 The technique relies on an optical sectioning feature that allows for 

depth selectivity. Three-dimensional reconstruction of the thin (0.5 μm to 1.5 μm) 

consecutive sections using computer software results in the production of a topological 

three-dimensional image of the specimen.  

 The use of CLSM in biofilm research started in the 1990s.
110

 The increased focus 

on this technique in biofilm studies is attributable to the ability of CLSM to obtain a 

series of high-quality images of hydrated living sections with simple non-invasive 

preparation.
110,111

 Currently, there are over 150 published papers that have used CLSM 

for oral biofilm analysis.
111

 Similar to traditional light microscopy, CLSM specimen 

visualization is accomplished through the stimulation of fluorescent light emission using 

a low-power laser beam.
111,112

 However, CLSM relies on the technology of spatial 
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filtering to eliminate out-of-focus light to produce images of well-defined sections.
112

  

Using CLSM is especially beneficial for the purpose of our current study. CLSM uses  

certain dyes to yield information about the viability of the bacterial biofilm that may have 

grown deeply inside the dentinal tubules. Thus, we are able to report more accurate 

results regarding the antibacterial efficacy of our antibiotic-containing scaffold, not only 

on the surface, but also in the deeper layers of the dentin specimen.   

 Fluorescence is the most beneficial imaging mode in biological CLSM. 

Fluorescent probe technology offers a high level of sensitivity with the ability to monitor 

specific dynamic processes and cellular integrity.
112

  The LIVE/DEAD BacLight 

bacterial viability kit is used to gather quantitative data regarding bacterial viability. The 

kit is composed of two dyes: SYTO 9 and propidium iodide. The former has the ability to 

penetrate most bacterial membranes, while the latter penetrates only damaged cell 

membranes.
113

 Therefore, when these dyes are applied together, viable cells with intact 

membranes will yield green fluorescence, while cells with damaged membranes will 

yield red fluorescence.
114

  After in situ reconstruction of the images, bacterial 

quantification is performed using a digital image analysis tool. 
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ELECTROSPUN 3D SCAFFOLDS SYNTHESIS 

Polydioxanone (PDS II/ PDS, PDSII, Ethicon) suture wires were cut into small 

pieces and immersed in dichloromethane solution (Sigma, Aldrich, St. Louis, MO) for the 

undying process. After 48 h, 1,1,1,3,3,3-hexafluoro-2-propanol (HFP, Sigma Aldrich) 

solution was added to the fibers at a 1:10 weight ratio in order to prepare the polymer 

solutions. Afterwards, three antibiotics powder namely metronidazole, ciprofloxacin, and 

minocycline were added to the polymer solution to prepare the triple antibiotic paste 

(TAP)-mimic scaffolds (at 35 wt.% of each drug). Thus, a total of 210 mg (relative to the 

PDS 600 mg) of each drug was incorporated into the solution. Pure antibiotic-free PDS 

solution, was prepared to synthesize control scaffolds. After 24 h of stirring, each 

solution was loaded individually into plastic syringes (Becton, Dickinson and Co., 

Franklin Lakes, NJ) fitted with a metallic 27-gauge blunt tip  needle. Then, it was 

electrospun using an electrospinning system (Figure 1)  consisting of a high-voltage 

source (ES50P-10W/DAM, Gamma High-Voltage Research Inc., FL), a syringe pump 

(Legato 200, KD Scientific Apparatus, Holliston, MA), and a Teflon-coated collecting 

steel mandrel (1.5 mm ± 0.02) connected to a high-speed mechanical stirrer (BDC6015, 

Caframo, Wiarton, ON) (Figure 2).  The processing parameters were set up as follows: 

flow rate 2 mL/h, the distance between the needle tip and the collecting mandrel was 18-

cm, and electrical voltage between 15 and 19 kV. 
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The collected tubular-shaped fibrous scaffolds were then cut into multiple 

specimens (1 mm height ± 0.1) (Figure 3) and dried under vacuum for at least 48 h to 

ensure complete removal of any remaining solvent. 

 

DENTIN SAMPLE PREPARATION  

Twenty-four caries-free human canines, collected under an approved (protocol 

#1407656657) local Institutional Review Board protocol (Indiana University), were 

cleaned and stored in 0.1-percent thymol.  After removal of the crown using a low-speed 

water-cooled rotary saw with a thin wafering blade (Isomet, Buehler, Lake Bluff, IL), the 

roots were horizontally sectioned at 3 mm apical to the cement-enamel junction, to obtain 

1.5-mm high ( ± 0.1)  dentin slices (Figure 4). The specimens were wet-finished with SiC 

papers (800 grit) until they reached a uniform 1-mm thickness. The root canals were 

enlarged using a round bur (2.5 mm in diameter) at low speed (300 rpm) under water-

cooling. To remove the smear layer, all specimens were immersed first in 2.5-percent 

NaOCl for 3 minutes in an ultrasonic bath (L&R 2014 Ultrasonic Cleaning System, NJ) 

(Figure 5) and washed using distilled water followed by immersion in 17-percent 

ethylenediamine tetraacetic acid (EDTA-Inter-Med. Inc., WI) and sonication for another 

3 minutes.
115

 After final rinsing with distilled water, all specimens were autoclaved 

(121°C for 20 min).  
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A. NAESLUNDII – BIOFILM FORMATION 

IN THE DENTINAL TUBULES 

Five mL of brain heart infusion broth (BHI) was inoculated with a single colony 

of A. naeslundii (ATCC 43146) from a blood agar plate containing a pure culture of the 

bacterium and incubated at 37ºC in 5-percent CO2 for 16 h to 18 h.  All dentin specimens 

were randomly placed in sterile microcentrifuge tubes containing 500 µL of A. naeslundii 

suspension pipetted on top of the dentin specimens (Figure 6). The tubes were 

centrifuged twice at 1400 g, 2000 g, 3600 g, and 5600 g in a sequence each for 5 minutes 

(Figure 7).
116

 The bacterial suspension was refreshed between every centrifugation cycle, 

and the solution that penetrated through the dentin slice was discarded. The inoculated 

dentin specimens were distributed into 24 well plates containing 1 mL of BHI + 1-percent 

sucrose (BHIS). The plates were incubated in aerobic conditions at 37°C and 5-percent 

CO2 for 7 days for biofilm formation. The BHI broth was replaced every other day to 

remove dead cells and ensure bacterial viability. After 7 days of biofilm formation, the 

dentin specimens were gently rinsed with sterile phosphate-buffered saline (PBS) to 

remove the culture medium and non-adherent bacteria. Afterwards, the infected dentin 

specimens (n = 24) were randomly allocated into two experimental groups: tubular-shape 

TAP-mimic scaffolds, and TAP solution (50 mg/mL of each of the drugs), and two 

negative control groups (7-day biofilm, untreated and pure PDS). Tubular-shaped 

scaffolds were sterilized by UV-irradiation (30 min/side) and fitted inside the infected 

root canal spaces of TAP-mimic and pure PDS groups (Figure 8 to Figure 10).   Triple 

antibiotic paste was prepared into a creamy consistency by mixing 50 mg each of 

metronidazole, minocycline, and ciprofloxacin with 1 mL of distilled water. The prepared 

TAP was applied into the root canal spaces of the third group (Figure 11). The 
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medicaments remained for 7 days. To maintain a humid environment and prevent the 

TAP and TAP-mimic scaffolds from drying out, a damp cotton ball saturated with 50 µL 

of distilled water was placed on top of each specimen. After 7 days, 4 of the 6 specimens 

of each group were washed in PBS twice and prepared for CLSM live/dead staining.  The 

other 2 specimens of each group were prepared for SEM analysis.  

 

Scanning Electron Microscopy (SEM) 

  Briefly, after biofilm formation/intracanal medicament exposure, the dentin 

samples (2 samples × 4 groups) were carefully removed from the wells using a sterile 

forceps and gently washed with PBS to remove non-adherent bacteria. The specimens 

were split in the middle using a sterile enamel hatchet positioned perpendicular to the flat 

specimen’s surface and pressure applied until the specimens split into two halves. Next, 

the specimens were fixed in 2.5-percent glutaraldehyde for 24 hours and dehydrated in 

increasing concentrations of alcohol solutions (10%, 25%, 50%, 75%, 90% and 100%). 

The samples were mounted on aluminum stubs, sputter coated with gold and imaged by 

SEM (Figure 12). The dentin wall surfaces of the root canals were analyzed to verify the 

presence of biofilm (Figure 13).  

 

Confocal Laser Scanning Microscopy (CLSM) 

For CLSM analysis, 4 specimens from each of the 4 groups were stained with the 

fluorescent LIVE/DEAD BacLight Bacterial viability Kit L-7012 (Molecular Probes, 

Eugene, OR, USA) containing SYTO 9 and propidium iodide (PI). The stained 

specimens were assessed with a CLSM (Leica SP2 CL5Mt, Leia Microsystems Inc. 

Heidelberg. Germany) using an X40 lens. The excitation emission maxima for the dyes 
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are approximately 480/500 nm for SYTO 9 and 490/635 nm for PI (Figures 14 and 15). 

Two random areas, measuring 0.9 × 0.9 mm
2
 provided by a mosaic technique, of each 

dentin specimen were randomly selected starting from the root canal space toward the 

cementum (Figure 15) to be analyzed on CLSM by 3D reconstruction. Each mosaic 

consisted of 9 (0.3 × 0.3 mm
 2

) sub-areas (Figure 16). LIVE/DEAD images were 

analyzed and quantified using dedicated software (Imaris 7.2 software, Bitplane Inc., St. 

Paul, MN).  

 

Statistical Analysis 

 The percentages of green live/red dead bacteria were compared for differences of 

dead bacterial cells using a mixed-model ANOVA, with a fixed effect for group and a 

random effect for sample, to account for measurements at multiple areas on each 

specimen. All tests were performed using a 5-percent significance level.  
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CLSM scans and 3D reconstructions of the images of the 7-day biofilm control 

group showed a dense penetration of A. naeslundii deep in the dentinal tubules (Figure 

17) with a dominant green color indicating the heavy presence of viable A. naeslundii 

inside the dentinal tubules. Bacterial viability for this group was between 99.88 and 

99.99%.  The PDS negative control group (Figure 18) also showed a high percentage of 

bacterial viability ranging between 98.01 percent and 99.34 percent. The proportion of 

dead bacterial cells in the 3D-TAP (Figure 19) ranged from 99.1 percent to 99.94 percent 

which was significantly different compared to the control PDS group (p < 0.05). The 

TAP solution group showed a 100-percent reduction in bacterial viability (Figure 20). 

However, there was no statistically significant difference between the results of the TAP 

solution and the 3D-TAP groups. Table I summarizes the results of the bacterial viability 

of the four groups.  

Similarly to CLSM, SEM verified the penetration of A. naeslundii into the 

dentinal tubules from the root canal side after centrifugation and incubation of these 

specimens. SEM images showed apparent infection of the dentinal tubules in the 7-day 

biofilm control and the PDS groups (Figure 21 and Figure 22). Both of the TAP solution 

3D-TAP groups showed bacterial-free dentinal tubules (Figure 23 and Figure 24). 
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       FIGURE 1.  Image of electrospinning set-up used in the current study located in 

Dr.   Bottino’s laboratory.  
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FIGURE 2.      Image showing the fibrous’ collection and 3D scaffold 

fabrication on the rotating mandrel of the electrospinning 

apparatus. 
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           FIGURE 3.  Tubular electrospun scaffold after being formed on the 

Teflon-coated rotating mandrel during the electrospinning  

process. This shows how the scaffold was cut to 1 mm 

height 3D-scaffolds. 
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FIGURE 4.   Schematic drawing showing the dimensions of the dentin specimen. 
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FIGURE 5. Image showing NaOCl and EDTA solutions and the  

ultrasonic bath used to clean the prepared specimens.  
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FIGURE 6.  Dentin specimens placed inside microcentrifuge tubes with 

500 µL of BHIS broth. 
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FIGURE 7. Image showing the centrifuge machine loaded 

with microcentrifuge tubes containing the 

dentin specimens. 
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              FIGURE 8. Images showing fitting the 3D scaffold inside the canal 

space of the dentin specimen. 
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                       FIGURE 9.  Image showing dentin specimens with 3D TAP 

scaffolds (experimental group) placed inside 24 

well plates. 
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FIGURE 10. Image showing dentin specimens with 3D 

scaffolds (control group) placed inside 24 

well plates. 
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                     FIGURE 11. Image showing: A. The mixed TAP solution; 

and B. Placement inside the root canal space of 

a dentin slice. 
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FIGURE 12. Sputter coating of the specimens 

prior to SEM imaging. 
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                   FIGURE 13. SEM image (original magnification X60) of the root 

canal surface which will be analyzed to verify the 

presence of the bacterial biofilm. 
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FIGURE 14.      Confocal laser scanning microscope. 
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FIGURE 15. Image showing the stained dentin specimens viewed 

under the CLSM lens. 
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FIGURE 16.  Schematic drawing showing the areas scanned by CLSM. 
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       FIGURE 17.  CLSM macrophotographs of 7-day A. 

naeslundii biofilm (negative control) 

growth inside dentinal tubules. 
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   FIGURE 18.  CLSM macrophotographs of infected dentin 

treated with pure PDS. 
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FIGURE 19. CLSM macrophotographs of infected 

dentin treated with 3D TAP-mimic 

scaffold. 
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FIGURE 20.     CLSM macrophotographs of infected 

dentin treated with TAP. 
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     FIGURE 21. SEM images (original magnification, X2500 and 

X10000) of A. naeslundii biofilm on the dentin 

surface (negative control).  
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  FIGURE 22.   SEM images (original magnification, X2500 and      

X10000) of infected dentin specimen treated with pure 

PDS. 
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FIGURE 23.     SEM images (original magnification, X2500 and 

X10000) of infected dentin specimen treated with 3D 

TAP-mimic scaffold. 
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FIGURE 24.     SEM images (original magnification, X2500 and 

X10000) of infected dentin specimen treated with TAP. 
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FIGURE 25.      Graph representing comparison of live bacteria percentage for each of 

the four groups. 
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TABLE I 

    Percentage of live and dead bacterial cells based on CLSM analysis 

 

 Groups 

N 

Areas 

N 

Samples 

Min 

 

Max 

% 

Median 

 

D
ea

d
 

Control 16 4 0.01 0.12 0.03 

PDS 16 4 0.66 1.99 1.2 

3D-TAPs 16 4 99.1 99.94 99.8 

TAP 16 4 100 100 100 

L
iv

e 

Control 16 4 99.88 99.99 99.97 

PDS 16 4 98.01 99.34 98.77 

3D-TAPs 16 4 0.06 0.99 0.21 

TAP 16 4 0 0 0 
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Regenerative endodontic procedures for treating immature teeth with necrotic 

pulp have been increasingly utilized and investigated over the past decade.
117

 Compiling 

successful clinical reports for cases treated with REPs have provided an evidence based 

strategy to replace the traditional apexification approach. In fact, recent studies suggest 

that the anticipated positive outcomes of REPs rationalize the use of this approach over 

the traditional apexification even if the achievement of the ultimate goal of pulp re-

vitalization is questionable.
66

  

Despite some variations, most of the current regenerative protocols emphasize 

infection control as an essential step in the regenerative endodontic procedures.
7,11,12

 

Due to the fact that mechanical debridement (instrumentation) is not recommended in 

cases of necrotic immature teeth, disinfection of the root canals is heavily dependent on 

chemical treatment. Thus, any proposed disinfectant should be able to eradicate bacteria 

and bacterial biofilm deep in the dentinal tubules to eliminate the chance of recurring 

infection. In vitro infected dentin models have been used to test the efficacy of different 

disinfectants used in root canal disinfection.
118-120

 However, traditional broth cultured 

dentin specimens often fail to produce heavy infection inside the dentinal tubules.
121

 In 

addition, quantitative comparison of live/dead bacteria between the specimens is nearly 

impossible due to the great variation between the specimens.
121

  In this study, a 

centrifugation protocol was used to force the bacteria inside the dentinal tubules. In fact, 

this model was based on previous studies which have proven the efficacy of 
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centrifugation in producing multiple infected specimens with comparable amounts of 

bacteria 
116,121

 Happasalo et al. have performed extensive pilot testing on the time and 

force sequence used in the current centrifugation protocol.
116

 It was found that shorter 

centrifugation cycles did not allow the bacteria to move deeper inside the tubules. A 

gradual increase in g force prevented bacterial accumulation on the dentin surface and 

allowed for deeper penetration inside the dentinal tubules. SEM and CLSM images of our 

seven-day biofilm control group clearly show deep penetration of A. naeslundii inside the 

dentinal tubules, and this result validates the efficacy of this protocol in producing deep 

bacterial infection. 

The antibacterial efficacy of TAP mimic scaffold has been investigated in 

previous studies. Albuquerque et al. have studied in vitro the effects of a (TAP)- mimic 

polymer nanofibrous scaffold against P. gingivalis-infected dentin biofilm.
117

 They 

concluded the PDS-based TAP-mimic scaffold has a significant antimicrobial efficacy 

against an established P. gingivalis-infected dentin biofilm. In a different study, the novel 

TAP-mimic scaffolds promoted a significant reduction in A. naeslundii biofilm formed 

on human dentin.
103

  Similarly, the current study further proved the efficacy of the TAP-

mimic scaffolds against A. naeslundii biofilm. However, the main advancement from the 

previous studies is the use of a more clinically relevant test model. Previous in-vitro 

studies have used a square (4 4 1 mm³) dentin model to provide preliminary data 

regarding the antibacterial efficacy of the TAP-mimic scaffold.  The positive initial 

results have promoted the development of a model that is more simulative to the 

proposed clinical application of this therapeutic scaffold. The nature of the root canals, as 

well as, the arrangement and distribution of the dentinal tubules poses a unique 
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anatomical challenge for the placement of the scaffolds and the action of the incorporated 

medicaments.  

To our knowledge, this is the first study that develops a three-dimensional model 

to study the antimicrobial efficacy of the TAP-mimic electrospun scaffold. The tubular 

scaffold was fitted inside the root canal space of a dentin slice obtained from the mid-

section of a human canine root. This model allows testing the efficacy of the 3D tubular 

scaffold against the bacterial biofilm, not only on the surface in contact with the scaffold, 

but also deeper inside the dentinal tubules. In fact, based on the CLSM analysis, the 3D 

TAP mimic scaffold has shown antibacterial effect against A. naeslundii biofilm that is 

comparable to the efficacy of the TAP (Figure 24), which is considered a gold standard 

for REPs. The scaffold should be in intimate contact with the dentinal wall of the root 

canal in order to allow efficient release of the antibiotics to act against the bacterial 

biofilm formed deep inside the dentinal tubules. 

Collectively, the promising results of this study, in addition to similar ongoing 

studies in this laboratory on different bacterial species, should promote the advancement 

of this research to a preclinical animal research model. Such research will provide 

important consideration regarding the proposed clinical application of the 3D TAP-mimic 

scaffold. Insertion and removal techniques as well as the interaction of the TAP-mimic 

scaffold with the root canal environment should be addressed in future research. 
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Based on the present results, our null hypothesis was rejected because 3D 

electrospun TAP-mimic scaffold significantly reduced the percentage of viable A. 

naeslundii bacteria. The TAP mimic-scaffold showed an antimicrobial activity  

comparable to the TAP solution. 

In fact, the TAP-mimic scaffold used in this study showed antimicrobial activity 

comparable to TAP, despite the lower concentration of antibiotics present in the scaffold 

(i.e., ~3.3 mg) as opposed to 1 g/mL in the TAP.  

This scaffold has the potential to replace the currently used TAP. Moreover, it has 

the potential to improve the outcome of the regenerative endodontic approach by serving 

as an extra-cellular matrix-mimic scaffold for new tissue growth in addition to the 

controllable drug release.  
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THE ANTIMICROBIAL EFFICACY OF INNOVATIVE 3D TRIPLE 

ANTIBIOTIC PASTE-MIMIC TUBULAR SCAFFOLD  

AGAINST ACTINOMYCES NAESLUNDII 

 

 

 

by 

Asma Azab 

 

Indiana University School of Dentistry 

Indianapolis, Indiana  

 

Background: Root canal disinfection is an essential requirement for the success of 

regenerative endodontics. Currently, the so-called triple antibiotic paste (TAP) is 

considered the standard of care. Notwithstanding the good antimicrobial capacity, the 

high concentration of TAP has shown significant toxicity to human cells, especially 

dental pulp stem cells. A novel drug release system, i.e., a triple antibiotic paste-mimic 

electrospun scaffold containing low concentrations of the antibiotics present in the TAP, 

has emerged as an effective and reliable alternative to fight root canal infections without  

potential toxic effects on dental stem cells, which are an integral part of the regenerative 

treatment.  
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Objectives: The aim of this study was to determine the antimicrobial efficacy of 

an innovative three-dimensional (3D) triple antibiotic paste-mimic tubular scaffold 

against Actinomyces naeslundii biofilm formed inside human root canal dentinal tubules. 

Materials and methods: Pure polydioxanone (PDS) polymer solution and PDS 

loaded with metronidazole, ciprofloxacin and minocycline (35 wt.% of each antibiotic, 

3D-TAP-mimic scaffold) were spun into 3D fibrous scaffolds. A. naeslundii (ATCC 

43146) was centrifuged to induce biofilm formation inside human root canal dentinal 

tubules using a dentin slice model (1 mm thickness and 2.5 mm canal diameter). The 

infected dentin slices were exposed to the 3D-TAP-mimic scaffold, TAP solution (50 

mg/mL of each antibiotic), and antibiotic-free PDS. Biofilm elimination was 

quantitatively and qualitatively analyzed by confocal laser scanning microscopy (CLSM) 

and scanning electron microscopy (SEM), respectively.  

Results: A dense penetration of A. naeslundii biofilm was observed by CLSM 

throughout the dentinal tubules. 3D-TAP-mimic scaffold significantly reduced the 

percentage of viable bacteria compared with PDS (p <.05).  TAP solution completely 

eliminated viable bacteria without differing from 3D-TAP-mimic scaffolds. SEM images 

showed results similar to CLSM.  

Conclusion: Collectively, the proposed tubular 3D-TAP-mimic scaffold holds 

significant clinical potential for root canal disinfection strategy prior to regenerative 

endodontics. 
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