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ABSTRACT 

In Friction Stir Welding Processes, good contact between tool and work piece can 

be accomplished through control of the axial force signals.  A method of stochastic 

modeling is introduced and used in conjunction with a Kalman filter to develop empirical 

static and dynamic models relating the axial force to input process parameters.  The 

filtering method reduces signal variance by an order of magnitude.  The models are 

experimentally validated and used to design and implement a general tracking controller 

with disturbance rejection for axial force control.  Online control of the axial force is 

experimentally validated for bead-on-plate welds using a 6061 aluminum alloy for 

constant and sinusoidal axial force reference signals. 
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SECTION   

1. INTRODUCTION 

Measurements from most manufacturing processes contain significant variation 

due to both electrical and process noise which can hinder process modeling and controller 

implementation.  The Kalman filter is a model-based optimal filter that compares a 

system model and measurement signal with weighted certainties to determine the optimal 

estimate.  While first principle models are ideal for this type of estimation, they seldom 

exist for most types of manufacturing processes due to the inherent nonlinearities. 

Empirical methods of model identification are used to approximate the process 

dynamics through reconstruction of the known inputs and signal measurements.  These 

dynamics are sensitive to variations in the signal, implying the necessity for signal 

processing prior to process modeling.  The same signals are often used for process 

control and can cause wear on the actuator due to noise frequencies that exceed the 

actuator bandwidth. 

Chapter two contains a paper published as a book chapter in “Kalman Filter: 

Recent Advances and Applications”, published in 2009.  It introduces a method of 

stochastically modeling manufacturing processes as first order for use with a Kalman 

Filter.  The Filtering Methodology is discussed and applied to examples in Friction Stir 

Welding and Laser Metal Deposition. 

Friction Stir Welding (FSW) is a solid state joining process invented in 1991 at 

the Welding Institute in Cambridge, United Kingdom.  Unlike conventional fusion 

welding, FSW is capable of joining aluminum alloys as well as dissimilar materials 

without need for filler material.  The technology boasts high energy efficiency, low 

shrinkage, and excellent weld strength. 

The FSW process utilizes a tool consisting of a larger shoulder and smaller 

threaded pin region, often tapered with flats and/or flutes to enhance material mixing.  

The rotating, non – consumable tool is plunged into the work piece and the process 

reaches minimal operational depth as the pin is completely submerged and the shoulder 

comes into contact with the material surface.  The tool dwells for a time as the friction 
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between the shoulder and work piece heat the material and the pin causes mixing and 

plastic deformation.  The tool is then advanced along the weld path, joining materials due 

to an elevated temperature field caused by friction and plastic deformation.  The work 

piece temperature does not exceed the material melting temperature, thus reducing the 

heat affected zone and providing good weld properties. 

Three process parameters in FSW are the plunge depth, the traverse rate, and the 

spindle rotation speed.  A significant amount of work has been done to model the FSW 

process with respect to these three input parameters for use in control and process 

optimization.  It has been found that good weld quality is highly dependent on 

maintaining proper contact between the tool and work piece [1], and trends have been 

established relating defect generation and high path force measurements [2].  A study 

conducted by Zhao et al. [3] developed empirical models relating the input process 

parameters to both the path and axial forces.  A later study conducted by the same authors 

used these models to design and test controllers to regulate the axial and path force 

signals [4]. 

Chapter three contains a paper published in the 2009 American Control 

Conference.  The paper utilizes the filtering method introduced in chapter two for 

empirical modeling of the axial force signals of Friction Stir Welding processes with 

respect to the input process parameters.  A general tracking controller with disturbance 

rejection is designed and implemented for control of the axial force by online 

manipulation of the plunge depth. 
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PAPER 

1. KALMAN FILTERING FOR MANUFACTURING PROCESSES 

 

Oakes, T., Tang, L., Landers, R. G., Balakrishnan, S. N. 

Department of Mechanical and Aerospace Engineering 

Missouri University of Science and Technology – Rolla, Missouri, U.S.A 65401 

Email: tmo6w3@mst.edu, ltx8d@mst.edu, landersr@mst.edu, bala@mst.edu   

 

ABSTRACT 

Manufacturing process measurements are inherently noisy. While this is due, in 

part, to electrical noise, a significant portion of the noise is due to the manufacturing 

process itself. Even when constant process parameters are applied, measurements contain 

tremendous variation due to naturally occurring phenomena in the process. To utilize the 

process measurements to construct dynamic models and perform on–line control, the 

process measurements must be filtered to decrease this variation. Even the variation due 

to the manufacturing process must be properly filtered since the bandwidth of these 

variations is typically beyond the actuator’s bandwidth. This chapter presents a 

methodology, based on stochastic modeling and Kalman filtering, to significantly reduce 

the variation in manufacturing process measurements. The methodology is applied to 

axial force measurements in a Friction Stir Welding (FSW) process and temperature 

measurements in a Laser Metal Deposition (LMD) process. The results demonstrate the 

methodology is able to accurately reproduce the measurements with a significant 

reduction in variation while preserving the measurement’s phase and steady–state 

characteristics. The filtering methodology is utilized in the dynamic process modeling 

mailto:tmo6w3@mst.edu
mailto:ltx8d@mst.edu
mailto:landersr@mst.edu
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and control of FSW and LMD processes. The results demonstrate that better models and 

process control are realized when utilizing the filtering methodology. 

 

I. INTRODUCTION 

Unwanted signal variation commonly occurs in manufacturing process 

measurements. This variation, due to both random electrical noise and noise in the 

manufacturing process itself, can be quantified by calculating the steady–state process 

data variance 

 

2 2

2

1 1

1 N N
i

i
i i

x
x

N N


 

    
     

     
   (1) 

where xi is the measurement at iteration i and N is the number of samples. Noise due to 

the manufacturing process itself is often greater in magnitude than the electrical noise. 

Examples of process noise include: (1) high frequency cyclic variations due to tool 

eccentricity in a turning process, (2) low frequency variations due to discrete 

solidification of deposited material in Laser Metal Deposition (LMD) processes, and (3) 

chaotic mixing of materials in Friction Stir Welding (FSW) processes. 

Manufacturing process measurements must be filtered before the data can be used 

for dynamic modeling or control. First principle modeling is generally unable to capture 

inherent nonlinear dynamics such as non–uniform friction and system wear. Also, first 

principle models do not always exist for certain aspects of manufacturing processes. For 

these reasons, dynamic manufacturing process models are often developed empirically. 

Estimation techniques such as Recursive Least Squares and Particle Swarm Optimization 

are commonly used for system identification to create a “best fit” model based on 
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collected measurements. However, the fidelity of an empirical model greatly depends 

upon the measurements used to create it and processes with high–magnitude variations in 

the measurement signals are often difficult to model due to the low signal–to–noise ratio. 

Manufacturing process models are often used to design process controllers. Process 

control is the on–line adjustment of process parameters to enhance operation productivity 

and improve part quality. Variations in the measurement signal are generally higher in 

frequency than the available actuator bandwidth, which can lead to increased actuator 

wear and possible stability issues. A filter must be developed for (1) post processing of 

data to compensate for large signal variations prior to use by a model identification 

method and (2) on–line filtering capable of preserving signal phase and offset with 

minimal computational burden. 

The fourth order low pass Butterworth filter is used for a number of 

manufacturing processes. Bhattacharyya and Sengupta (2007) used a fourth order low 

pass Butterworth filter on a face milling process to remove high frequency variation due 

to spindle rotation harmonics. Liang et al. (2002) employed a Butterworth filter on the 

spindle power signal of an end milling process for use in a fuzzy logic controller. Ghosh 

et al. (2007) used a Butterworth filter for neural–based sensor fusion to estimate tool 

wear. Another common filter is a point–averaging filter. Freitag (2004) used a 50 ms 

Finite Impulse Response moving average filter to smooth command signals sent to the 

process controller of a miniature ball end mill. Zhao et al. (2007) employed a five point 

moving average filter to reduce the standard deviation of the axial force signal of a FSW 

process for the purpose of modeling and process control. 
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The objective of this chapter is to present a new method for filtering 

manufacturing process measurement signals via the use of a two–step Kalman filter. The 

rest of the chapter is organized as follows. A general filtering methodology is established 

that uses a stochastic model and a two–step Kalman filter. The filtering methodology is 

compared to other common filters and then applied to FSW and LMD processes. Post 

process filtering is performed on FSW and LMD processes to develop dynamic process 

models. On–line filtering is performed for FSW and LMD processes for use with process 

controllers. 

 

II. FILTERING METHODOLOGY 

Unlike standard frequency–based filters, the Kalman filter is a time domain filter 

that recursively estimates and updates process states using data from both a dynamic 

system model and collected measurements. Selection of a reliable dynamic process model 

is vital in maximizing the filter performance. A Markov process is a model that expresses 

the stochastic evolution of a system. This implies that knowledge of the present system 

states completely describes all relevant information necessary for the process evolution. 

Past and future states of a Markov Process are statistically independent. The excessive 

signal variation observed in many manufacturing processes leads to the realization that 

these processes can be modeled as Markov processes. A general stochastic model of a 

manufacturing process is 

      twtxtx    (2) 

where x(t) is the system state, λ is the system pole, and w(t) is the process noise, which 

accounts for the system’s stochastic nature, as well as changes in the input. It is assumed 
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the process noise is Gaussian with a zero mean normal distribution and variance, Q. 

Transforming equation (2) into the discrete–time domain using a zero order hold 

      1 1sT
x k e x k w k


     (3) 

where k is the time step and Ts is the sample period (s). The two–step discrete–time 

Kalman filter uses the model 

        1 1 1x k Fx k Gu k w k       (4) 

where sT
F e


  and u(k–1) = 0 to fit the form of equation (3). The input term in equation 

(4) is set to zero to allow the process noise term to account for all deviations in the state 

due to model uncertainty and input changes. Equation (4) has process noise 

characteristics 

       ~ 0,
T

w N Q E w k w k Q  (5) 

The measurement is 

      y k Hx k v k   (6) 

Equation (6) has measurement noise characteristics  

       ~ 0,
T

v N R E v k v k R  (7) 

where R is the measurement variance. Initial values of the state estimate and covariance, 

respectively, are 

    ˆ 0 0x x   (8) 

            ˆ ˆ0 0 0 0 0
T

P E x x x x      (9) 

where x̂  is the state estimate after the filter’s measurement update (aposteriori) and P
+
 is 

the covariance after the filter’s measurement update. A large initial covariance matrix is 
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required to ensure the estimates convergence. Equation (4) is rewritten in terms of its 

estimates 

    ˆ ˆ 1Tx k e x k    (10) 

where x̂  is the state estimate before the filter’s measurement update (apriori). Equation 

(10) is used to propagate the state estimate to the next time step. The covariance is 

propagated to the next time step using 

     QFkFPkP T   1  (11) 

where P
-
 is the covariance prior to the filter’s measurement update. The Kalman gain 

matrix is 

       RHkHPHkPkK TT    (12) 

Then the measurement is used to update, respectively, the state estimate and covariance 

           kxHkykKkxkx   ˆˆˆ  (13) 

              kRKkKHkKIkPHkKIkP TT
   (14) 

The computations in equations (10)–(14) are repeated at each time step. 

A. Filter Tuning 

A generic first order system is used to illustrate the tuning required for the 

filtering methodology. The system’s transfer function is 

  
16.0

6

1 





ss

K
sG


 (15) 

where K is the gain and τ is the time constant. The system is converted into the discrete–

time domain using a zero order hold and Ts = 0.01 s  

  
9835.0

1.0




z
zG  (16) 
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The unit step response is shown in Figure 1. Random noise with variance 0.25 is added to 

the output to simulate a noisy measurement. The measurement variance, R, is calculated 

directly from the measurement data while values of λ and Q are tuned to optimize the 

filter’s performance. This can be accomplished by first setting Q equal to R, implying 

equal faith in the measurements and model, and tuning λ while leaving Q and R constant 

until the disparity between the filtered and measured data is minimized. 
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Figure 1. Unit step response of system described by equation (16). 

 

Figure 2 illustrates the effect of tuning λ. As λ approaches zero, the observable 

offset between the measurement data and the estimated state is eliminated. For this 

particular portion of the tuning process, it can be assumed that the optimal value of λ is 

zero. 
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Figure 2. Outputs and estimates for unit step input for system described by equation (16) 

and different values of λ. (a) λ = –1000, (b) λ = –100, (c) λ = –10, and (d) λ = 0, with Q = 

R = 0.25 and Ts = 0.01 s. 

 

After an appropriate value of λ is selected, Q is reduced with respect to R. 

Reduction of the signal variance is observed as faith in the model increases (i.e., as Q 

decreases), as shown in Figure 3. Figure 3c demonstrates the algorithm can be used to 

effectively reduce the signal variance by nearly an order of magnitude while preserving 

the phase. The parameter Q can be reduced to the point that an increased delay in the 
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filter’s response time is observed as shown in Figure 3d. This can adversely affect 

modeling by making the system appear to have a slower response than its actual response. 

Despite the approximate 0.5 s time delay, the variance of the state estimate in Figure 3d is 

reduced by a factor of 50. 
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Figure 3. Outputs and estimates for unit step input for system described by equation (16) 

and different values of Q. (a) Q = 0.5R, (b) Q = 0.1R, (c) Q = 0.01R, and (d) Q = 0.005R, 

with λ = 0 and Ts = 0.01 s. 

 



 

 

12 

The sampling rate also has a tremendous affect on the tuning process and the filter 

performance. Applying a zero order hold to equation (15) with Ts = 0.1 s 

  
8465.0

9288.0




z
zG  (17) 

With λ = 0, the same tuning process of Q is performed to illustrate the affect the sample 

rate has on the filter performance. The results are shown in Figure 4. The lower sampling 

rate present in Equation (17) impacts the degree to which adjusting the value of Q will 

affect the phase. Lowering the value of Q significantly reduces the variance when 

compared to Figure 3; however, it also significantly increases the phase offset due to less 

data being available to the filter during the transient portion of the process. 
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Figure 4. Outputs and estimates for unit step input for system described by equation (17) 

and different values of Q. (a) Q = 0.5R, (b) Q = 0.25R, (c) Q = 0.1R, and (d) Q = 0.05R, 

with λ = 0 and Ts = 0.1 s. 

 

B. Filter Comparison 

The performances of two common digital filters are compared to that of the 

proposed methodology. A first order low–pass filter is 

 
 

 
1

1

fX s

X s s



 (18) 
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where Xf(s) is the filtered signal, X(s) is the unfiltered signal, τ is the time constant and τ
–1

 

is the filter break frequency (rad/s). The break frequency is selected to be 2π to provide a 

cut off frequency of 1 Hz; therefore, τ = 0.159 s. Transforming equation (18) into the 

discrete–time domain with a zero order hold and Ts = 0.01 s 

 
 
  9391.0

10882.6 2








zzX

zX f
 (19) 

Transforming equation (18) into the discrete–time domain with a zero order hold and Ts = 

0.01 s 

 
 

 
0.4664

0.5336

fX z

X z z



 (20) 

A fourth order Butterworth filter with a 1 Hz cutoff frequency and Ts = 0.01 s is 

  
  8486.0534.3521.5836.3

10982.8103594.0105391.0103594.010982.8
234

75253547








zzzz

zzzz

zX

zXf  (21) 

A fourth order Butterworth filter with a 1 Hz cutoff frequency and Ts = 0.1 s is 

 
 
  1874.0055.1314.2366.2

10827.410937.110891.210935.110826.4
234

32223243








zzzz

zzzz

zX

zXf  (22) 

Plots of filters’ performances are shown for the transient portion of the response in Figure 

5 for Ts = 0.01 s and in Figure 6 for Ts = 0.1 s. Values of Q = 0.01 and Q = 0.25 are 

selected for the Kalman filter with Ts = 0.01 and 0.1 s, respectively. Figures 2.5 and 2.6 

show that the Kalman filter outperforms the low–pass and Butterworth filters. All three 

filters underpredict the measurement for both sample periods. The maximum error of the 

Butterworth filter is approximately 44% for both sample periods while the low–pass and 

Kalman filters contain comparable maximum errors at approximately 13%. Less error is 

present in the Kalman filter estimates in both plots through the majority of the transient 

portion of the response. 
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Figure 5. (a) Output and (b) error for Kalman, low–pass, and Butterworth filters, Ts = 

0.01 s. 
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Figure 6. (a) Output and (b) error for Kalman, low–pass, and Butterworth filters, Ts = 0.1 

s. 
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C. Modeling 

The Recursive Least Squares technique (Åström and Wittenmark, 1995) is used to 

develop system models from the filtered and raw signals. The model responses for a step 

input are shown in Figs. 7 and 8 for Ts = 0.01 and 0.1 s, respectively. The model 

coefficients and percent error are shown in Tables 2.1 and 2.2 for Ts = 0.01 and 0.1 s, 

respectively. The model constructed from the data processed with the Kalman filter is the 

most accurate in terms of coefficient estimates, transient response, and steady–state error. 

The model constructed from the data processed with the Butterworth filter has significant 

errors due to the phase shift created by the Butterworth filter. The model constructed 

from the raw data contains the most error since the noise distorts the system dynamics. 
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Figure 7. Model (a) output and (b) error using raw data, low–pass, Butterworth, and 

Kalman  filters, Ts = 0.01 s. 
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Figure 8. Model (a) output and (b) error using raw data, low–pass, Butterworth, and 

Kalman  filters, Ts = 0.1 s. 

 

Table 1. Coefficient estimates for models with Ts = 0.01 s, a = –0.983, and b = 0.100. 

a b

estimate error (%) estimate error (%)

Kalman

low-pass

Butterworth

raw data

-0.986

-0.989

-0.994

-0.797

0.315

0.596

1.04

19.0

8.15·10-2

6.57·10-2

4.05·10-2

1.15

18.2

34.1

59.3

1060

 

 

Table 2. Coefficient estimates for models with Ts = 0.01 s, a = –0.846, and b = 0.922. 

a b

estimate error (%) estimate error (%)

Kalman

low-pass

Butterworth

raw data

-0.879

-0.897

-0.938

-0.737

3.88

6.04

10.8

12.9

0.732

0.631

0.404

1.52

20.6

31.5

56.2

64.8

 

 

The filtering methodology can be used to filter data prior to empirical modeling to 

acquire a more reliable model. Since this filter relies on model–based estimation, it has 

always been necessary to have a precise model of the system dynamics to ensure proper 
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filter performance. However, the stochastic process model provides a way to use a 

Kalman filter for state estimation with limited knowledge of the system behavior. 

 

III. FRICTION STIR WELDING EXAMPLE 

Friction Stir Welding is a new welding technique capable of joining traditionally 

hard to join materials such as 2000 and 7000 series aluminum alloys (Mishra and Ma, 

2005). The process utilizes a rotating, non–consumable tool containing a shoulder and 

profiled pin to induce gross plastic deformation along a weld path. In a FSW process, the 

tool is plunged into the material at a specified spindle speed, ω, until the shoulder 

contacts the material and is then left to dwell for a specified period of time to soften the 

surrounding area. The tool then advances along its weld path at a traverse rate, v, joining 

the material as it leaves the processing zone. Schematics of the FSW process are shown in 

Figure 9. 

 

   

Figure 9: FSW Process Schematics. 
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Constant process parameter runs in FSW processes can lead to internal defects 

known as wormholes and surface voids due to improper fixturing of the parts and 

machine geometric errors. Therefore, the process is typically run in a force control mode 

in which the traverse rate and spindle speed are held constant while the plunge depth is 

adjusted on–line to maintain a desired axial force profile. Before a controller can be 

designed, the system is modeled empirically through a series of step tests. An example of 

a step test is shown in Figure 10. It can be seen that small changes in plunge depth create 

large changes in axial force. If no post signal processing is used, the combined process 

and sensor noise is so large in magnitude that it is difficult to detect changes in the axial 

force due to changes in the plunge depth. This is particularly apparent between the fourth 

and fifth step changes. From the experimental data, R = 0.0163 kN
2
. The filtering 

methodology is applied (λ = 0, Q = 0.05R kN
2
) to the measurement data in Figure 10, and 

it is seen that the variance is greatly reduced (i.e., over an order of magnitude) without 

compromising the phase. 
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Figure 10. Step test (a) axial force and (b) plunge depth, v = 2.6 mm/s and ω = 1600 rpm. 
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A. FSW Process Modeling 

Twelve experiments are conducted based on a central composite Design of 

Experiments (DOE) over the operating range of all three process parameters. The filtering 

methodology is applied (λ = 0, Q = 0.05R) to all twelve runs. Table 3 shows the process 

parameters, heat index, and variance reduction ratio for each run. The variance reduction 

ratio is the unfiltered signal variance divided by the filtered signal variance. The results 

demonstrate the filtering methodology can reduce signal variance by a factor of 3 to 

nearly a factor of 17 for FSW processes. 

The results from runs 11 and 12 were deemed to be unacceptable and, therefore, 

were not used to create the dynamic model. This can be explained by the heat index, 

which is 

 
2

410
HI

v


  (23) 

Note the traverse rate is given in inches per minute when calculating the heat index. Runs 

11 and 12 had particularly low heat indices, although they were not the lowest. A low 

heat index can lead to a “cold run” that sometimes produces poor welds. 
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Table 3. Process parameters and variance reduction for FSW runs used for process 

modeling. 

v (mm/s)  (rpm) HI (rpm
2
/ipm) Variance Reduction RatioRun

1

2

3

4

5

6

7

8

9

10

11

12

2.60

2.60

2.18

3.02

2.60

3.02

2.18

3.02

2.18

2.00

3.20

2.60

1600

1900

1810

1390

1600

1810

1390

1390

1810

1600

1600

1300

41.7

58.8

63.6

27.1

41.7

45.9

37.5

27.1

63.6

54.2

33.9

27.5

11.3

3.11

4.91

12.9

7.08

8.25

16.9

5.22

3.07

7.23

12.1

6.01  

 

An empirical second order model of the process and equipment dynamics is 

 
 

 
1 2

2

1 2

dnF z b z b
v z

U z z a z a

  


 
 (24) 

where F(z) is the axial force, U(z) is the control signal, nd is the number of delay periods, 

and b1, b2, a1, a2, α, and β are model coefficients. The model structure is based upon 

visual inspection of the runs in Table 3. The control signal and plunge depth are related 

by 

    u k d k  (25) 

where γ is a model coefficient. The model coefficients α, β, and γ are found by using the 

steady–state model 

  dCvFss   (26) 

where Fss is the average steady–state axial force and C is the steady–state gain. Taking 

the natural log of both sides of equation (19) 

          dvCFss lnlnlnlnln    (27)  
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and applying Least Squares to the data in runs 1–10, C = 6.18·10
–2

, α = 0.185, β = –

0.374, and γ = 2.65. Transforming equation (24) into the discrete–time domain using a 

zero order hold 

          1 2 1 21 2 1 2d dF k a F k a F k v bu k n b u k n               (28) 

where nd is determined to be 5 iterations by visually inspecting the step tests. Recursive 

Least Squares is used to determine the model coefficients b1, b2, a1, and a2. A complete 

covariance reset is employed if any of the diagonals of the covariance matrix become less 

than ten percent of their initial value. After the algorithm is executed for runs 1–10, the 

model coefficient sets are averaged and the transfer function is 

 
 

 

2
0.185 0.374 5

2 2

1.22 10

0.848 4.77 10

F z z
v z

U z z z



 






  
 (29) 

The same empirical model is now constructed in the same manner as above using the 

unfiltered data. In this case the transfer function is 

 
 

 

2 3
0.189 0.372 5

2 2 2

6.04 10 6.2 10

7.34 10 3.48 10

F z z
v z

U z z z


 
 

 

  


   
 (30) 

The response of each model is now compared to the measured data. An example is shown 

in Figure 11. Both dynamic models predict steady–state values within five percent of 

each other. The model in equation (29) contains two overdamped poles with time 

constants of 3.57·10
–2

 s and 0.418 s. The model in equation (30) contains two 

overdamped poles with time constants of 6.74·10
–2

 s and 5.33·10
–2

 s. Based on the work 

of Zhao et al. (2007), the system is dominated by a time constant of 0.519 s. This implies 

the model acquired through the use of the unfiltered data is not reliable and should not be 

used for controller design. 
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Figure 11. Measured response compared to (a) response of model developed using 

filtered data and (b) response of model developed using raw data, v = 3.02 mm/s, ω = 

1810 rpm, and plunge depth profile in Figure 10b. 

 

B. FSW Process Control 

 A general tracking controller with constant disturbance rejection is designed to 

control the axial force. The block diagram is shown in Figure 12. The transfer function is 

  
 
 za

zb
zG   (31) 

The disturbance generating polynomial is 

   1 zzv  (32) 

The controller polynomial is 

   32

2

1 gzgzgzg   (33) 

where g1, g2, and g3 are chosen to shape the closed–loop system error dynamics. The 

closed error dynamics are third order with one overdamped pole and two underdamped 

poles. The time constant of the overdamped pole is τ1 = 0.03 s and the two underdamped 
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poles are characterized by a natural frequency of 10 and a damping ratio of 0.5. Equating 

the actual and desired closed–loop characteristic polynomials 

       223 10311.13959.08216.0  zzzzgzazv  (34) 

Equation like coefficients in z in equation (34), g1 = –1.026, g2 = 0.4994, and g3 = –

0.3460. The control signal is 

 

             

     

     

1 2 1 2

1

1 1 2 1 3 1

1

2 1 2

1

1
1 1 1 2

1
1 2

1
1 2

r r r ru k F k a F k a a F k a F k
b

g E k g E k g E k
b

b b u k b u k
b

          

      

      

 (35) 
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Figure 12. Axial force closed–loop system block diagram. 

 

The controller is implemented on the FSW platform with saturation limits on the 

plunge depth set between 4.17 mm and 4.8 mm to ensure the shoulder does not lose 

contact with the material surface.  The imposed rate limitation on change in plunge depth 

is 0.5 mm/s to prevent tool breakage. 
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In the first experiment the axial force controller uses the unfiltered measurement 

to track Fr(t) = 2.7 kN. The traverse rate and spindle speed are 2.18 mm/s and 1810 rpm, 

respectively. The results are plotted in Figure 13. The controller maintains a constant 

force with an average 2.74 kN and standard deviation of 0.1910 kN; however, the average 

absolute error during the steady–state portion is 0.3410 kN and large axial force 

oscillations occur due to the large amounts of variation present in the raw measurement 

signal. The plunge depth continuously oscillates between its saturation limits. 
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 (a) (b) 

Figure 13. Axial force controller results using unfiltered measurement and Fr(t) = 2.7 kN, 

(a) axial force and (b) plunge depth. 

 

In the second experiment the axial force controller uses the filtered measurement 

to track Fr(t) = 2.7 kN. The traverse rate and spindle speed are 2.18 mm/s and 1810 rpm, 

respectively. The results are shown in Figure 14. In this case the average axial force is 

2.705 kN, standard deviation of 4·10
–4

 kN, and absolute average error of 0.1064 kN 

during the steady–state portion. The filter effectively reduces the magnitude of the 
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oscillations in both the axial force and plunge depth. Implementation of the filtering 

methodology allows for a wider range of reference tracking as the controller is no longer 

continuously saturating. 
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Figure 14. Axial force controller results using filtered measurement and Fr(t) = 2.7 kN, 

(a) axial force and (b) plunge depth. 

 

Next, the axial force controller is used to track a time varying reference of 

    tSintFr 8.01.07.2   (36) 

In the third experiment the axial force controller uses the unfiltered measurement to track 

the reference signal in equation (36). The traverse rate and spindle speed are 2.18 mm/s 

and 1810 rpm, respectively. The results are shown in Figure 15. As in Figure 13, the 

controller is able to adequately track the desired reference, but with considerable 

oscillations and continuous plunge depth saturation. For this experiment the average 

absolute error is 0.4131 kN during the steady–state portion of the response. 
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Figure 15. Axial force controller results using unfiltered measurement and reference force 

in equation (36), (a) axial force and (b) plunge depth. 

 

In the fourth experiment the axial force controller uses the filtered measurement to 

track the reference signal in equation (36). The traverse rate and spindle speed are 2.18 

mm/s and 1810 rpm, respectively. The results are shown in Figure 16. Similar to Figure 

14, the filter effectively reduces the magnitude of the axial force oscillations and allows 

for a wider range of reference signals to be utilized since the plunge depth is not 

saturating during the steady–state response. For this experiment the average absolute 

error is 0.1242 kN during the steady–state portion of the response. 
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 (a) (b) 

Figure 16. Axial force controller results using filtered measurement and reference force in 

equation (36), (a) axial force and (b) plunge depth. 

 

IV. LASER METAL DEPOSITION EXAMPLE 

Laser Metal Deposition is an important Solid Freeform Fabrication technique that 

allows direct fabrication of functional metal parts directly from CAD solid models (Liou 

et al., 2007). The process can also be used for part repair, thereby extending product 

service life. Generally a LMD system consists of a multiple–axis motion system, a laser, 

and a powder feeder (Figure 17). During the process, a powder stream is injected into a 

laser generated melt pool on the substrate. With the axis moving, the melt pool quickly 

solidifies and forms a clad; thus, the injected powder is metallurgically bonded with the 

substrate. Depending on the trajectory of the motion system, parts with complex 

geometries can be fabricated in a layer–by–layer manner. Melt pool temperature control 

is an important control problem in LMD because it affects the part microstructure, which 

is highly related to the material properties. The measurement signal has tremendous 

variations that may deteriorate the controller performance. The application of the filtering 
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methodology to the temperature measurement signal will significantly reduce 

measurement signal variation, resulting in improved controller performance. 
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Figure 17. LMD system schematic. 

 

To illustrate the affect the filtering methodology has on the measured temperature 

signal, an open–loop test is conducted. In this experiment the powder flow rate is 4 g/min 

and the traverse speed is 4 ipm. The powder material is H13 tool steel with particles 

having a mean diameter of 100 µm. The filtered and measured temperature signals are 

shown in Figure 18. It can be observed that with the Kalman filter, the magnitude of the 

variation becomes smaller.  
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Figure 18. Open–loop LMD test with Ts = 0.01 s, λ = 0, R = 2500, Q = 25, (a) 

temperature versus time, (b) zoomed–in view of temperature versus time, and (c) laser 

power versus time. 

 

A. LMD Process Modeling 

The melt pool temperature is modeled using the following model 

        
1

K
T s V s Q s M s

s

  





 (37) 

where T is the melt pool temperature (°C), V is the traverse speed (ipm), Q is the laser 

power (W), M is the powder flow rate (g/min), K is the system gain, and τ is the time 

constant (s). Transforming equation (35) into the discrete–time domain using a zero order 

hold 

        0

0

b
T z V z Q z M z

z a

  


 (38) 

where /

0
sT

a e


   and  /

0 1 sT
b K e


  . To determine the model coefficients K, α, β, and γ, 

the steady–state portion of equation (38) is considered 

 ssT Kv q m    (39) 

where Tss is the average steady–state temperature. A series of experiments, covering the 

process operating range, are designed using DOE. The results are listed in Table 4. The 
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parameters are estimated using the Least Squares method based on the data listed in 

Table 4 and are found to be K = 1170, α = –8.18·10
–3

, β = 7.16·10
–2

, and γ = 3.42·10
–3

. 

 

Table 4. Experimental results for model coefficient identification of LMD process. 

Q (W) m (g/min) v (ipm) ave(T) (ºC)Run

1

2

3

4

5

6

7

8

9

600

700

800

600

700

800

600

700

800

4

4

6

6

8

4

8

6

8

8

4

4

6

6

6

4

8

8

1851

1861

1911

1835

1854

1854

1842

1857

1881  

 

To determine the time constant, an experiment where the laser power is increased 

and decreased in a step–wise manner is conducted. For this experiment, m = 4 g/min and 

v = 4 ipm. The measured temperature data is filtered using the filtering methodology with 

λ = 0, R = 2500, and Q = 25. Recursive Least Squares is then applied to estimate the time 

constant. The value of the time constant is determined to be τ = 7.27·10
–2

 s. The model 

response is compared to the filtered measurement data in Figure 18. 

 

B. LMD Process Control 

Letting U(z) = V
α
(z)Q

β
(z)M

γ
(z), equation (38) becomes 

    0

0

b
T z U z

z a



 (40) 

A general tracking controller using the Internal Model Principle is designed to regulate 

the melt pool temperature. The block diagram is shown in Figure 19. 
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Figure 19. Melt pool temperature closed–loop control system block diagram. 

 

With the disturbance generating polynomial given by equation (32) and a closed–

loop characteristic polynomial v(z)a(z)–g(z) with two poles at 1/sT
e


  and 2/sT

e


 , where τ1 

= 0.1 s and τ2 = 0.11 s, the controller polynomial is 

      1 2 1 2/ / / / / /

1 0 1s s s s s sT T T T T T
g z g z g e e e z e e

          
         (41) 

The control signal is 

    
           

 

/ /

1 0

/

1 1 1 1
1

1

s s

s

T T

r r r

T

T k e T k e T k g e k g e k
u k u k

K e

 



 



       
  


(42) 

and the commanded laser power is 

  
 

   

1/

r

u k
q k

v k m k





 
  
 
 

 (43) 

In the first experiment the temperature controller uses the unfiltered measurement to track 

Tr(t) = 1900 °C. The mass flow rate and traverse rate are 6 g/min and 6 ipm, respectively. 

The results are shown in Figure 20. For this experiment, the average melt pool 

temperature is 1904 °C, the average absolute error is 61.8 °C, and error standard 
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deviation is 76.8 °C. The results show that significant variation exists in both the 

temperature and the laser power signals. 
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 (a) (b) (c) 

Figure 20. Temperature controller results using unfiltered measurement and Tr(t) = 1900 

°C, (a) temperature versus time, (b) zoomed–in view of temperature versus time, and (c) 

laser power versus time. 

 

In the second experiment the temperature controller uses the filtered measurement 

to track Tr(t) = 1900 °C. The mass flow rate and traverse rate are 6 g/min and 6 ipm, 

respectively. The results are shown in Figure 21. For this experiment, the average melt 

pool temperature is 1901 °C, the average absolute error is 42.3 °C, and error standard 

deviation is 57.9 °C. The results show that the average absolute error is reduced by 31.6% 

and the error standard deviation is reduced by 24.6%. 
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Figure 21. Temperature controller results using filtered measurement and Tr(t) = 1900 °C, 

(a) temperature versus time, (b) zoomed–in view of temperature versus time, and (c) laser 

power versus time. 

 

The performances of the controllers are now compared when tracking a time 

varying reference. The temperature reference for these experiments is 

    1850 50sinrT t t   (44) 

In the third experiment the temperature controller uses the unfiltered measurement to 

track the temperature reference given in equation (44). The mass flow rate and traverse 

rate are 6 g/min and 6 ipm, respectively. The results are shown in Figure 22. The average 

absolute error is 52.9 °C and error standard deviation is 71.0 °C. The results show that 

significant variation exists in both the temperature and the laser power signals due to the 

fact that the controller operates on the unfiltered signal. 
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Figure 22. Temperature controller results using unfiltered measurement and reference 

temperature given in equation (44), (a) temperature versus time, (b) zoomed–in view of 

temperature versus time, and (c) laser power versus time. 

 

In the third experiment the temperature controller uses the filtered measurement to 

track the temperature reference given in equation (44). The mass flow rate and traverse 

rate are 6 g/min and 6 ipm, respectively. The results are shown in Figure 23. The average 

absolute error is 40.8 °C and error standard deviation is 55.7 °C. Compared with the 

results in Figure 22, the average absolute error is reduced by 22.9% and error standard 

deviation is reduced by 21.6%. Also, the oscillations in the temperature and laser power 

signals have been greatly reduced. 
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Figure 23. Temperature controller results using filtered measurement and reference 

temperature given in equation (44), (a) temperature versus time, (b) zoomed–in view of 

temperature versus time, and (c) laser power versus time. 

 

V. SUMMARY AND CONCLUSIONS 

The filtering methodology is applied to control of the axial force in a Friction Stir 

Welding process. Two sets of experiments are performed to test constant and time 

varying references under filtered and unfiltered conditions. Results show that the Kalman 

filtering methodology improves controller performance and allows for a wider variety of 

inputs without saturating the control signal. 

The Kalman filter introduced in the above context has been applied to the melt 

pool temperature control in the laser metal deposition process. Two experiments, 

regarding the tracking of two different references: constant and time varying, are 

conducted. The experimental results show that the application of the Kalman filter in the 

melt pool temperature control helps to improve the controller performance by reducing 

the tracking error and melt pool temperature variations.  
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ABSTRACT 

This paper establishes a method for force filtering, develops a dynamic process 

model, and designs and implements a general tracking controller to regulate the axial 

force for a variety of reference signals in Friction Stir Welding processes. Steady state 

and dynamic models are used to relate the input process parameters to the axial force. 

The general tracking controller is implemented in a Smith Predictor–Corrector Structure 

to compensate for a pure communication delay. The controller successfully performs 

bead–on–plate welds using a 6061 aluminum alloy. Both constant and sinusoidal 

reference forces are tracked. 

 

I. INTRODUCTION 

Friction Stir Welding (FSW) is a solid state joining process that utilizes gross 

plastic deformation rather than a conventional welding flame to join material. The FSW 

process is unique in that it can be used to successfully join materials such as aluminum 

alloys that are difficult to join with other welding processes. 

 The FSW joining process requires a non–consumable tool, containing a shoulder 

and profiled pin region. The tool is plunged into the part at a specified spindle speed and 

plunge rate until the shoulder makes contact with the material to be joined. Following a 

mailto:tmo6w3@mst.edu
mailto:ltx8d@mst.edu
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brief dwell period, the rotating tool advances along the weld path at a specified traverse 

rate and spindle rotation speed. The combination of heat input and tool geometry cause 

the material along the boundaries of the weld region to deform and mix together to form a 

solid joint. A process schematic is shown in Figure 1. 

 

   

Figure 1. Friction Stir Welding Schematic. 

 

 Three common process parameters for the FSW process are traverse rate, v, 

spindle speed, ω, and plunge depth, d. Constant process parameter runs can result in poor 

quality welds due to improper fixturing of the work piece, machine geometric errors, and 

material inconsistencies (i.e., part slope) along the weld path. Cederqvist et al. [2008] 

fixed values of traverse rate and plunge depth and adjusted the spindle speed online with 

a Proportional plus Integral plus Derivative controller to regulate the tool pin 

temperature. The method is effective, but the closed–loop response is sluggish due to the 

inherent low bandwidth of thermal systems. Zhao et al. [2007] conducted a FSW process 

with constant traverse rate and spindle speed while varying the plunge depth to control 

the axial force. A polynomial pole placement technique was used to design a controller 

Traverse Rate, v 

Spindle Speed, ω 

Parts Welded Area 

 

Pin 

Traverse Rate, v 

Plunge Depth, d 

Shoulder 
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based on a desired characteristic equation. The controller was designed specifically to 

reject constant disturbances and allow tracking of constant axial forces. Kalya [2007] 

regulated the axial force in a similar manner using an adaptive neural network controller 

to account for variations in the model dynamics. The axial force is regulated in this paper 

to ensure the tool maintains proper contact with the part to avoid creating excessive flash 

and defects such as surface voids and wormholes. 

 

II. EXPERIMENTAL SYSTEM AND FILTERING 

An ABB IRB 940 Tricept Robot is retrofitted with a FSW spindle head to provide 

the desired rotational motion. The spindle is driven by a SLM115–368 servo motor and is 

rated at 10 hp with a range of ±3000 rpm. A six axis force/moment sensor (JR3 Inc. 

model 75E20S–M125A–A 6000N1150) is used to record the lateral, normal and axial 

forces, as well as the respective moments. The physical setup is shown in Figure 2. 

 

 

Figure 2. ABB IRB 940 Tricept Robot with FSW Head. 
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The robot control unit is programmed through RAPID, which allows the operator 

to pre program the system motion and control algorithms. The code is typed in text 

format and uploaded to the control unit. Code is typically divided into subsections 

including: low–level formatting, primary welding loop, interrupt subroutines, and data 

collection. A teach pendant is used to load the file, select a welding vector and execute 

the code. 

 Tool eccentricity and sensor noise contribute to a large variance in the measured 

force signals; therefore, a first order stochastic process model is used in conjunction with 

a two–step Kalman filter to effectively reduce the axial force signal variance while 

preserving the phase and magnitude. The stochastic process model is 

      1Tf k e f k w k    (45)  

where f is the axial force, k is the current iteration, T is the sample period, w is the process 

noise, and λ is a filter tuning parameter. Previous studies have found that λ = 0 provides 

the best filtering capability in terms of steady–state behavior. The process measurement 

is 

      y k F k v k   (46) 

where F is the measured axial force and v is the measurement noise. The process and 

measurement noise characteristics, respectively, are 

        ~ 0,
T

w N Q E w k w k Q  
 

 (47) 

        ~ 0,
T

v N R E v k v k R  
 

 (48) 

where R is the measurement variance determined by analyzing steady–state data and is 
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  
2

1

1

1

N

i

i

R y y
N 

  
 

  (49) 

where yi is the steady–state force measurement at the i
th

 iteration, y  is the measurement 

average, and N is the number of data points. The parameter Q is the model variance and 

is adjusted with respect to R to tune the filter. Experimentally, a value of Q = 0.05R is 

selected for this filter. The filter effectively reduces the signal variance by an order of 

magnitude while preserving the phase and magnitude. 

 

III. DYNAMIC MODELING 

A series of step tests are conducted to obtain a relationship between axial force 

and commanded plunge depth for use in designing the axial force controller. The tests are 

conducted using a 6061–T6 aluminum alloy with material composition: 97.9% Al, 0.60% 

Si, 0.30% Cu, 1.0% Mg, and 0.20% Cr. The tool is tapered, threaded, and contains three 

flats. The FSW bead–on–plate method is conducted during the testing with a single solid 

6.35 mm thick plate. This method does not involve the actual joining of parts; rather, the 

pin processes solid material. Bead–on–plate welding is commonly used in initial testing 

to analyze the process without disturbances generated by gaps between the parts. The 

input process parameters are selected as the plunge depth, traverse rate, and spindle 

rotation speed. Other factors, such as travel angle and work angle, are held as constant 

during all runs and, therefore, are not included in the modeling. During each run the 

transverse rate and spindle speed remain constant, while the plunge depth varies between 

4.191–4.716 mm. Note that the shoulder contacts the part at a plunge depth of 4.17 mm. 

Based on empirical observations, the minimum and maximum traverse rates are 2.0 and 

3.2 mm/s, respectively, and the minimum and maximum spindle rotation speeds are 1300 
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and 1900 rpm, respectively. The selected test conditions are based on a Central 

Composite Design of Experiments (DOE) and are shown in Table 1. 

 

Table 1. Process Parameters for Step Testing of Plunge Depth. 

1 2.6 1600 98.5

2 2.6 1900 138.8

3 2.18 1810 150.3

4 3.02 1390 64.0

5 2.6 1600 98.5

6 3.02 1810 108.5

7 2.18 1390 88.6

8 3.02 1390 64.0

9 2.18 1810 150.3

10 2 1600 128.0

11 3.2 1600 80.0

12 2.6 1300 65.0

Traverse 

Rate, v 

(mm/s)

Rotational 

Speed, ω 

(rpm)

Heat 

Index 

(rpm
2
/ipm

RUN

 

 

 Measured axial force and plunge depth data, as well as commanded plunge depth 

data, are obtained for each run at a sample rate of 10 Hz. Results from runs 11 and 12 had 

poor signal to noise ratios and, thus, were excluded from system modeling. This resulted 

from the runs being very cold, as shown by their low values of heat index in Table 1. An 

example of the collected force data is shown in Figure 3. 
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Figure 3. Step Test Force Results and Filter Estimates for Run 1 with v = 2.6 mm/s and ω 

= 1600 rpm. 

 

The data indicates a positive correlation between measured axial force and 

commanded plunge depth. As the commanded plunge depth increases, the axial force 

increases and eventually reaches a steady value. The initial drop in the measured axial 

force signal represents an extra transient portion of the process present only in the 

beginning of the weld. This portion of the data is ignored in modeling to minimize error. 

Note the first and fifth segments, as well as the second and fourth segments, of measured 

axial force occur at the same depth but do not have the same average force. This is due to 

machine geometric errors and stiffness, as well as the amount of flash that is generated. 

As the amount of flash increases, the depth–force relationship is affected due to less 

material being present in the weld path to resist the tool. 

 A static power model that relates the steady–state axial force to the input process 

parameters is 

 aF C d     (50) 
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where C, α, β, and γ are model coefficients. Taking the natural log of both sides of 

equation (50) 

          ln ln ln ln lnaF C d         (51) 

Using the Least Squares method the model parameters are determined to be C = 6.18·10
–

2
, α = 0.185, β = –0.374, and γ = 2.650. 

 An empirical second order model of the process and equipment dynamics is 

 
 
 

dna z
azaz

bzb
v

zU

zF 






21

2

21  (52) 

where Fa(z) is the axial force, U(z) is the control signal, nd is the number of delay periods, 

and b2, b1, a2, and a1 are model coefficients. The delay is due to an inherent 

communication delay between the processor implementing the force controller that 

determines the reference plunge depth and the processor that regulates the plunge 

position. The control signal and plunge depth are related by 

    u z d z  (53) 

Equation (52) is transformed into a difference equation and solved for Fa(k) 
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
 (54)   

A Recursive Least Squares (RLS) algorithm is used to solve for the unknown coefficients 

of equation (54). The collection of known system inputs and measured system outputs is 

 
     
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1 2

1 2
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d d

k f k f k
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φ
 (55) 

where f(k) is the filtered force measurement at iteration k. The parameter estimates are 

  1 2 1 2

T
a a b bη  (56) 
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where the initial values are selected to be unity. The gain matrix is 

            
1

1 1 1Tk k k k k k


     q P φ φ P φ  (57) 

The parameter estimates are 

            1 1Tk k k y k k k      η η q φ η  (58) 

The matrix covariance is 

        1Tk k k k    P I q φ P  (59) 

where the diagonals of the initial covariance matrix are all set to 100. If any of the 

diagonals of the covariance matrix fall below ten percent of their initial value, a 

covariance reset is employed to ensure that the covariance matrix does not wind down. 

The number of delay periods is determined to be nd = 5. This number is determined based 

on the average delay observed in the data sets. 

 The RLS algorithm is applied to runs 1–10 and the values of the coefficients for 

each model are determined. These ten sets of coefficients are then averaged to determine 

the overall system model, as shown in Table 2. The system model is 

 
 

 
5

2

0.0122

0.8476 0.0477

aF z z
z

U z z z


 

 (60) 

The open loop transfer function contains two real roots located at 0.787 and 6.06·10
–2

, 

corresponding to time constants of 0.418 and 3.57·10
–2

 s, respectively. There is a zero at 

z = 0. The system is stable and exhibits an overdamped response dominated by the slower 

time constant. The steady–state gain of equation (16) is 6.10·10
–2

, which is 1.29% less 

than the value of C. 
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Table 2. Dynamic Model Coefficients. 

Run a1 a2 b1 b2

1 -7.42E-01 -9.33E-02 -1.31E-02 2.36E-02

2 -1.46E+00 5.61E-01 -1.99E-04 6.63E-03

3 -1.05E+00 2.37E-01 6.73E-03 5.24E-03

4 -8.70E-01 1.15E-01 2.56E-02 -1.04E-02

5 -5.91E-01 -2.25E-01 2.49E-02 -1.43E-02

6 -8.32E-01 5.23E-02 7.66E-03 5.59E-03

7 -7.20E-01 -1.52E-03 1.97E-02 -2.64E-03

8 -7.33E-01 -4.27E-02 2.19E-02 -8.07E-03

9 -9.87E-01 1.48E-01 1.63E-02 -7.24E-03

10 -4.94E-01 -2.74E-01 1.26E-02 1.41E-03

11 n/a n/a n/a n/a

12 n/a n/a n/a n/a

avg -8.48E-01 4.77E-02 1.22E-02 -2.57E-05  

 

 Next, the dynamic model is validated through experimental runs using process 

parameters in the range used to construct the model. Two process parameter sets, v = 2.6 

mm/s and ω = 1600 rpm, and v = 2.18 mm/s and ω = 1810 rpm, are selected for use in 

validation experiments due to minimal observable flash. Figure 4 shows the axial force 

measurements taken from varying the plunge depth in a sinusoid manner with a 

frequency of 0.2 Hz. 
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Figure 4. Model Validation Run 1 with v = 2.6 mm/s and ω = 1600 rpm. 
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The maximum error is approximately 6%. Figure 5 shows the axial force measurements 

taken from varying the plunge depth in a triangular manner at a frequency of 0.1 Hz. 
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Figure 5. Model Validation Run 2 with v = 2.18 mm/s and ω = 1810 rpm. 

 

The maximum error is approximately 4%. Unlike the previous experiment, the 

error appears as more evenly distributed about zero. These frequencies of 0.2 Hz and 0.1 

Hz were chosen based on operator experience due to rate limits imposed on the plunge 

depth. 

 

IV. CONTROLLER DESIGN 

In this section a controller is designed to regulate the axial force signal. A general 

tracking controller with constant disturbance rejection is selected and tuned to allow the 

system to robustly track any desired reference force. General tracking control is a method 

of combination feed–forward feedback control that theoretically guarantees proper 

tracking regardless of the reference axial force. The constant disturbance rejection is 
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necessary due to process repeatability issues (i.e., machine stiffness) as a basic general 

tracking controller does not contain integral action. The controller is implemented in a 

Smith Predictor–Corrector (SPC) Structure to allow the system to properly account for 

the pure communication delay. If the inherent communication delay is ignored, the 

system model becomes 

 
 

 

 

 
1 2

2

1 2

aF z b zb z b

U z z a z a a z


 

 
 (61) 

The error is 

      R aE z F z F z   (62) 

where FR(z) is the reference axial force. Equation (62) is rearranged and substituted into 

equation (61) 

                v z a z E z v z a z R z b z U z   (63) 

where v(z) is the disturbance generating polynomial 

   1 zzv  (64) 

A dummy control variable, μ(z), is defined as 

                z g z E z v z a z R z b z U z     (65) 

where g(z) is 

   32

2

1 gzgzgzg   (66) 

The coefficients g1, g2, and g3 are chosen to shape the closed–loop error dynamics. The 

closed–loop characteristic equation is 

    3 2

1 1 2 1 2 2 31 0z a g z a a g z a g          (67) 
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The desired closed–loop system has a pole with a time constant of τ = 300 ms and two 

poles having a natural frequency of ωn = 30 rad/s and a damping ratio of δ = 0.9. These 

closed–loop poles were determined by trial and error and were found to (1) reduce 

control signal saturation during the transient portion of the response and (2) reduce the 

natural frequency and increase the damping ratio to decrease the system overshoot, 

settling time, and oscillations. The desired closed–loop characteristic equation is 

 00245.02177.01076.1 23  zzz  (68) 

Comparing equations (67) and (68), g1 = –0.74, g2 = 0.6776, and g3 = –0.0232. The 

controller is implemented in a SPC structure to account for the system communication 

delay. A block diagram of the system with the general tracking controller implemented in 

the SPC structure is shown in Figure 6. 
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Figure 6. Closed–Loop System Block Diagram with General Tracking Controller in SPC 

Structure. 

 

The signal E1(z) is 
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  
 

 
 5

1 1
b z

E z z U z
a z

     (69) 

Transforming equation (69) into the difference domain 
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      

      

 (70) 

Combining equations (63), (65), and (69) and transforming into the difference domain, 

the control signal is 
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 (71) 

 

V. EXPERIMENTAL STUDIES 

In this section, a series of bead–on–plate experiments are conducted to validate 

the general tracking controller. The traverse rate and spindle rotation speed are constant 

during each experimental run and saturation limits are imposed on the plunge depth 

between 4.17 mm and 4.8 mm to ensure that the tool maintains proper contact with the 

part. A rate limit on the plunge depth is set at ±0.5 mm/s to prevent tool breakage. Two 

runs have reference force signals consisting of a series of step changes, and one run 
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contains a sinusoid reference. The reference force signal magnitudes are selected to 

utilize a significant portion of the plunge depth range. 

 The results for an experiment with a constant reference force of 3.7 kN are shown 

in Figure 7. 
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 Figure 7. Controller Validation Run 1 with v = 2.18 mm/s and ω = 1810 rpm. 

 

The standard deviation is 48.1 N, 1.23% of the reference. The second run is conducted by 

varying the reference axial force in a step–wise manner over a range of different inputs. 

These results are shown in Figure 8. 
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 Figure 8. Controller Validation Run 3 with v = 2.6 mm/s and ω = 1600 rpm. 

 

The average standard deviation over this collection of step inputs is 107.2 N, less 

than 2.89% of the reference force. The results of the third run are shown in Figure 9. 
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 Figure 9. Controller Validation Run 5 with v = 2.18 mm/s and ω = 1810 rpm. 

 

The reference frequency is 0.2 Hz and the average absolute value of the errors is 0.1248 

kN. 

 The control signal for the first constant input run is shown in Figure 7. Note that 

significant variations are present in the plunge depth to maintain a constant reference 

force. These variations are due to machine geometric errors, imperfection of the fixturing 

method, changes in the thermal boundary conditions as the tool advances along the weld 

path and a number of other factors. The general tracking controller provides an effective 
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means to compensate for these errors and successfully track a number of desired 

reference forces. 

 

VI. SUMMARY AND CONCLUSIONS 

Empirical models were constructed from a series of experiments do determine 

steady–state and dynamic relationships between the input process parameters and the 

axial force for use in controller design for Friction Stir Welding processes. Following 

model validation, a general tracking controller with disturbance rejection was designed to 

robustly track a variety of desired reference axial forces with zero steady–state error. The 

controller was implemented in a Smith Predictor–Corrector structure to account for an 

inherent communication delay in the FSW system due to the method of controller 

interrupt. 

 The controller was validated through a collection of step tests and sinusoid 

references to demonstrate the ability to track non–constant references. The experimental 

results demonstrate excellent tracking of all reference signals with minimal error most 

likely due to the physical limitations of the process (i.e., rate limit due to material 

stiffness). The standard deviation of the controlled response was found to be 

approximately one percent of the reference signal magnitude. 
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SECTION   

2. SUMMARY, CONCLUSIONS, AND FUTURE WORK 

A method of stochastic modeling is introduced and used for the model update 

stage of a two-step Kalman filter.  The filtering methodology is applied to model and 

control both Friction Stir Welding and Laser Metal Deposition processes.  Values of λ 

and Q are tuned to significantly reduce the signal variance for both cases.  The 

experimental results demonstrate the ability of the filtering methodology to reduce the 

axial force and temperature signal variances by an order of magnitude, while preserving 

the original trends of the data. 

 A series of bead-on-plate welds are conducted in a Friction Stir Welding process 

to develop static and dynamic models relating the input process parameters to the axial 

force signals.  The models are used in conjunction with a Smith Predictor-Corrector 

Structure to design and implement a general tracking controller with disturbance rejection 

for online control of the axial force signals.  The controller is experimentally validated 

through a series of step and sinusoid changes in the reference axial force signal.  The 

second order model is an adequate approximation for the Friction Stir Welding process.  

Any errors in the combined equipment and process dynamics model are sufficiently 

suppressed by the addition of disturbance rejection (integral control) to the general 

tracking controller. 

 Future work on the filtering method involves the addition of an input term to 

reduce the delay in estimate response due to changes in the input.  The Friction Stir 

Welding work needs to be expanded to lap and butt welds.  Complex reference force 

signals must be investigated to accommodate the nonlinear velocity profiles required for 

corner welding. 
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