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ABSTRACT 

Design requires a series of decisions, and one of the major challenges engineering 

designers face is making decisions under uncertainty. The engineering designer must 

choose the best design among various alternatives. 

This work evaluates the use of utility functions to make decisions under 

uncertainty with both random and interval variables. Uncertainty cannot be eliminated 

completely, but it can be reduced. Most current methods treat only aleatory uncertainty. 

Here, however, both aleatory and epistemic uncertainties are addressed in the context of 

engineering design. Methods such as moment matching method and worst case analysis 

are used to incorporate uncertainty into design problems.  

Multi-objective optimization problems usually involve conflicting objectives, and 

tradeoffs are necessary. This work assigns to each objective a utility function based on 

the preferences and judgments of the decision maker, and these functions are then 

combined into a single function. The objective of the problem is now to maximize the 

expected utility. The design alternative with the highest utility value will produce the 

optimal design. Due to the presence of epistemic uncertainty, a penalty is applied to the 

utility value in this work. 

 This method is tested by application to a two-bar pin-jointed truss problem and a 

flag pole design.  
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1. INTRODUCTION 

Deterministic problems present little difficulty, but design decisions that must be 

made under uncertainty present a challenge for engineers. Utility theory plays a 

significant role in making decisions under uncertainty [1, 2, 3]. Utility theory models a 

decision situation by specifying the performance attributes important to the design. The 

designer’s preferences among the attributes are determined, thus making tradeoffs among 

the attributes. The foundation of utility theory has its roots in Daniel Bernoulli’s St. 

Petersburg Paradox [4]. Utility analysis was developed by Von Neumann and 

Morgenstern, Savage, and Keeney and Raiffa [2, 3, 5]. Utility is defined as the measure 

of usefulness, value in use or the degree of satisfaction achieved [6, 7]. 

 

1.1. UNCERTAINTY 

Uncertainty is ubiquitous in engineering design. It is a state in which knowledge 

is limited and the future cannot be predicted exactly. Uncertainty is measured by 

assigning probabilities to each possible outcome or by applying a probability density 

function to continuous random variables. Where it is not possible to represent uncertainty 

by a probability density function, it may be represented by intervals. 

Uncertainty can be either aleatory or epistemic uncertainty [8, 9, 10, 11]. 

1.1.1. Aleatory Uncertainty.  Aleatory uncertainty, also called objective 

uncertainty, stochastic uncertainty, irreducible uncertainty, or statistical uncertainty, 

describes the inherent variation associated with a physical system or environment [8, 9, 

10, 11, 12]. An example of this kind of uncertainty is the roll of a die. The outcome of a 

particular roll cannot be known, but its probability can be calculated [13]. Sources of 
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aleatory uncertainty include manufacturing imprecision, usage conditions, and material 

properties such as flexural strength or yield strength. Aleatory uncertainty is inherent in a 

system and cannot be reduced. 

1.1.2. Epistemic Uncertainty. Epistemic uncertainty, or reducible uncertainty,  

arises due to a lack of knowledge about a model, system or environment. In theory it can 

be reduced by gathering more information [8, 9, 10, 11, 12]. Under some circumstances, 

however, it may be impossible to gather more information. In such cases, epistemic 

uncertainty may be represented as an interval or range. 

 

1.2. ENGINEERING DESIGN 

Engineering design is defined as the systematic and intelligent creation of things 

or systems that perform the stated objectives and satisfy specified constraints [14]. The 

discipline seeks solutions to new engineering problems or offers new ways to address 

long-standing problems [8, 15]. Engineering design requires a series of decisions that 

must be made with limited information [1, 16, 17].  

 

1.3. DECISION MAKING UNDER UNCERTAINTY 

Decision making is relatively easy when conditions are known with certainty. 

Since randomness is intrinsic to most systems and environments, decision making 

demands rational thinking and sound judgment. For example, in selecting the material 

and dimensions for a beam, one must consider randomness inherent in beam strength, 

loads, and other properties. In such cases, the engineer must make decisions under 

uncertainty.  
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1.4. OBJECTIVES IN DECISION MAKING 

Various and often competing objectives determine the design of a product. The 

manufacturer may have one set of objectives, and the customer another as shown in 

Figures 1.1, 1.2, and 1.3. These require compromise. For example, the desire for high 

product quality conflicts with the need to minimize costs. And high stiffness may demand 

high volume in the design. 

 

 

 
Figure 1.1. Design Objectives 

 

 

 

 

 
Figure 1.2. Customer Objectives 
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Figure 1.3. Company Objectives 

 

 

 

1.5. RESEARCH NEEDS 

This research seeks to use utility functions to solve multi-objective optimization 

problems. When uncertainty is due to intervals, no single correct solution exists. Previous 

applications in this area offer a solution set [18, 19]. The engineer then faces the 

challenge of determining which solution should be chosen from this set. A need for 

making a point decision and finding a single solution rather than a solution set is realized. 

This work uses methods such as moment matching and worst case analysis to address 

uncertainty in design. Multi-attribute utility analysis compares attributes of different 

metrics by normalizing the value of the attributes between 0 and 1. This work also 

facilitates decision making by maximizing the expected utility of the alternative selected 

from the solution set. The design point of maximum utility represents the preferred 

solution, thus simplifying the engineer’s task. 
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1.6. ORGANIZATION OF THESIS 

Section 2 presents a survey of the literature on decision making under uncertainty 

in engineering design. It addresses methods that rely on utility functions and those that do 

not. Section 3 explains the basics of optimization and uncertainty modeling methods. 

Section 4 discusses utility theory and utility functions. Section 5 describes the proposed 

methodology. Section 6 validates the proposed methodology using two engineering 

design problems of a two-bar pinned truss system and a flag pole.  

Finally, Section 7 presents the conclusions and describes some future work to be 

done in the area. 
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2. LITERATURE REVIEW 

The St. Petersburg paradox is a game of probability [4, 21, 22]. A player pays a 

specified amount of money to enter the game. A fair coin is tossed repeatedly until tail 

appears, at which point the game ends. The payoff is $2 initially; and it doubles for each 

head that appears. If a tail appears on the first toss, the payoff is $2. If a tail appears on 

the second toss, the payoff is $4; on the third toss the payoff is $8, and so on. Thus if a 

tail appears on the n-th toss, the payoff is $2n.  

The expected value of the game can be expressed as:  

 
1 1 1 1(2) (4) (8) (16) ......
2 4 8 16

E = + + + + = ∞       (1) 

   

Since the expected value is so high, a rational person should pay any finite 

amount of money to enter this game, but in fact many people would not. Addressing this 

paradox, Daniel Bernoulli says that “the determination of the value of an item must not 

be based on the price, but rather on the utility it yields” [4]. In other words, the solution 

to this paradox involves a utility function. For this particular game, Bernoulli offers a 

logarithmic utility function, given as: 

 
( ) ln( )U x x=           (2) 

 
where x  is the wealth or money. 

Bernoulli chose the logarithmic utility function because of the diminishing 

increase in the utility of the money. A $1000 gain has a higher utility for a pauper than 

for a millionaire. 
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2.1. UTILITY ANALYSIS 

Utility analysis was developed by Von Neumann and Morgenstern [3], Savage 

[5], and Keeney and Raiffa [2]. The present utility theory is based on the axioms 

developed by Von Neumann and Morgenstern. Utility is a unitless measurement that 

allows comparison of various attributes. In utility analysis, human preferences are taken 

into account, along with risk attitudes. The goal in utility analysis is to maximize the 

expected utility of the design or system. Utility analysis helps humans to make better 

decisions. Decision making without the help of tools exhibits inconsistencies, 

irrationality, and suboptimal choices, especially when complex trade-offs must be made 

in conditions of uncertainty [23]. To ensure that decisions are rational, unbiased, and 

consistent, decision making with utility analysis should follow axioms developed by [2, 

3]. These axioms establish the ground rules for proper decision making, and they 

structure the problem so that a decision maker’s utility function can be assessed 

mathematically.  

Utility analysis helps a decision maker construct a real valued function, or a utility 

function, which models the decision maker’s preferences. This utility function is then 

used to determine which course of action will have the best outcome. Utility function is 

used in engineering design primarily for multiattribute optimization under uncertainty. 

The utility function captures the decision maker’s attitude towards risk.  

Solving design problems without uncertainty in the variables with the help of 

utility analysis and utility functions has been demonstrated in [7, 24, 25, 26, 27, 28]. 
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2.2. SIMPLE METHODS FOR DECISION MAKING 

Making decisions with the help of weights, ranking, group preferences, and 

dropping or adding alternatives is discussed in [29]. Other methods, such as pairwise 

comparison, ranking of alternatives, normalization rating, strength of preferences, and 

weighted sums, are presented in [30].  

2.2.1. Pairwise Comparison. In pairwise comparison, each alternative is  

compared attribute by attribute, and the alternative that has the greatest net number of 

advantageous attribute wins. The winning alternative is then compared to the next 

alternative, and so on. However, this method does not take into account the strength of 

the decision maker’s preference. Therefore, an alternative which is a little better on most 

attributes and a lot worse on the remaining attributes could still be chosen as the best 

design. This procedure also does not consider the relative importance of attributes.  

2.2.2. Decision Matrix Method. The decision matrix method, also called the  

Pugh selection method, selects one alternative as a reference. The attributes of this 

reference and the other alternatives are then compared [31]. For each attribute, if the 

alternative is better than the reference, the alternative scores “+1”. If it is worse it scores 

“-1”, and it scores “0” if both are same. The scores are totaled for each alternative, and 

the alternative with the highest score wins. With this method, however, the best 

alternative may vary depending on which alternative is chosen as the reference. 

2.2.3. Ranking of Alternatives. In the ranking of alternatives, attributes are  

assigned points or ranks. Each alternative receives a separate rank for each attribute. For 

example, given four alternatives, the one that is best in terms of a specific attribute will 

receive four points; the next best will receive three points, and so on. The alternatives are 
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ranked for each attribute, and the scores are totaled. The alternative with the highest total 

score wins. 

2.2.4. Normalization Rating. In normalization rating, the lowest value of an  

attribute among the alternatives is assigned 0 points and the highest value is assigned 100 

points. All other values in between can be assigned points based on linear interpolation. 

Points are totaled for each alternative, and the one with the highest score wins. 

2.2.5.  Strength of Preferences and Weighted Sums. The strength of  

preferences and weighted sums method uses a non-linear point value that might more 

accurately reflect a decision maker’s preference. The lowest value of an attribute among 

the alternatives is assigned 0 points, the highest value is assigned 100 points, and those in 

between are assigned points based on the preferences of the decision maker. For example, 

an increase in an individual’s assets from $0 to $10,000 may be more important than an 

increase from $10,000 to $20,000, even though the increase is in the same amount. The 

individual can give 0 points for $0, 100 points for $20,000 and 65 points for $10,000. 

After all attributes are scored, the scores are totaled for each alternative, and the 

alternative with the highest total score wins. However, one attribute may be significantly 

more important than the other attribute. Therefore, the attributes are weighted. The 

weight of each attribute is then multiplied by its assigned point value to arrive at a final 

score. The scores for all attributes of an alternative are then totaled, and the alternative 

with the highest score wins. 
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2.3. COMPLEX METHODS FOR DECISION MAKING 

To select one aircraft among four alternatives, See, Gurnani and Lewis [30] use a 

hypothetical equivalents approach. They determined that the attributes on which they 

would base their selection were speed, maximum cruise range, and passenger’s capacity. 

They developed four hypothetical alternatives based on combinations of theses attributes. 

Normalized scores were then assigned to each of the attributes, with 0 for the least 

important, 1 for the most important, and interpolated values for the others. The total value 

of an alternative was the weight of the attribute multiplied by its normalized score. An 

optimization problem was then set up as:  

 
2

1

Min 1
an

i
i

F
=

w
⎡ ⎤

= −⎢ ⎥
⎣ ⎦
∑      (3) 

 
where  is the total number of attributes and  is the weight of the attribute.  an iw -thi

This optimization problem is subject to constraints obtained by determining the 

difference in the totals of the alternative values [30]. The weight of each attribute is then 

multiplied with its preference score, which is obtained using the strength of preferences 

method as described above, and the alternative with the highest total score wins. 

Hazelrigg compares decision making methods, including weighted sum of 

attributes, analytical hierarchy process, physical programming, Pugh matrix, quality 

function deployment, Taguchi loss function, Suh’s axiomatic design, and six sigma 

method [32]. 

Targets provide an alternative to utility functions [33]. The alternative with the 

highest probability of reaching a specified target is selected as the best design. 
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Information-gap decision theory approach is applied to problems involving 

uncertainty, but this approach has numerous limitations [34, 35]. 

Gurnani and Lewis present the concept of overlap measure [36]. For an attribute i  

of an alternative x , overlap is calculated as: 

 
+

-

Overlap measure = ( ) ( )i if x U x dx
∞

∞
∫     (4) 

 
where ( )if x is the probability density function of the attribute of the alternative-thi ,x  

and  is the utility function of the attribute. Figure 2.1 shows a graphical 

representation of the overlap measure for an attribute of an alternative.  

( )iU x -thi

 
 
 
 

Limits of Integration

U(x)

f(x)

x

f, U

 
Figure 2.1. Overlap Measure for an Attribute of an Alternative. Source: [36] 
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Depending on the weights of the attributes, the alternative with the highest 

overlap measure wins. The overlap measure is determined for every attribute of each 

alternative. This measure is then multiplied by the attribute weight to arrive at a final 

score. The final scores of all attributes are totaled to reach the final score of the 

alternative. Gurnani and Lewis convert a problem of uncertainty with random or interval 

distribution into a single meaningful score [36]. This method also considers the decision 

maker’s preference using the utility function. The weights are obtained by the 

hypothetical approach [30]. The alternative with the highest score wins. 

With more information, uncertainty is reduced and decisions can be made with 

less risk. This concept has been applied in [37], which uses the principles of utility theory 

and probability bounds analysis to obtain additional information and thus reduce 

epistemic uncertainty. By this means, some design points may be eliminated, reducing 

the number of alternatives and narrowing the design space. The decision maker thus 

chooses from fewer designs and is subject to less risk. 

When uncertainty is involved, the decision maker must choose a design from a set 

of alternatives. This choice involves considerable risk. As demonstrated by [18, 19], by 

considering shared epistemic uncertainty, the set of alternatives can be reduced. Under 

interval-based uncertainty, some design alternatives can be eliminated allowing the 

decision maker to choose from a smaller set, thus reducing the risk. Even with this 

method, however, no single design can be considered optimal. Uncertainty implies a 

maximum utility and a minimum utility. By plotting the maximum and minimum utility 

curves, the decision maker can eliminate all designs having a maximum utility is lower 

than the minimum utility of any other design [18, 19]. Figure 2.2 illustrates this method. 
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Design Variable

U
til

ity

Eliminate

Maximum utility curve

Minimum utility curve
Reference point

 
Figure 2.2. Elimination Using the Alternative with Highest Lower Bound. Source: [18] 

 

 

 

2.4. OBJECTIVES OF THIS RESEARCH 

Engineering design is influenced by decision making, and proper decisions must 

be made if a product or system is to succeed. Decision making with no tools or aid is 

irrational and generally inconsistent. This research uses utility analysis to make reliable, 

rational, and consistent decisions. The methods currently available for decision making 

give little attention to uncertainty. Of those methods that focus on uncertainty, most focus 

only on aleatory uncertainty.  

When uncertainty is due to intervals, no single correct solution exists. Existing 

applications in this area offer a solution set [18, 19]. The engineer faces the challenge of 
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choosing a solution from this set. This work addresses the critical issue of finding a single 

solution rather than a solution set.  

This research treats both aleatory and epistemic uncertainty and introduces a 

simple yet effective penalty approach. Epistemic uncertainty is mainly due to a lack of 

knowledge, and the penalty approach penalizes the variations in the utility due to 

epistemic uncertainty. Utility analysis with the help of this penalty approach offers a 

single solution rather than a set of solutions. This helps the designer make consistent 

decisions.  

 

 

 



 15

3. BASICS OF OPTIMIZATION AND UNCERTAINTY MODELING 

3.1. OPTIMIZATION 

 Engineers generally find it challenging to design effective and efficient systems 

without compromising on the basic essentials of the system. Competition from others has 

forced the engineers to design economical and better designs. Optimization can be 

defined as finding the solution that is a best possible fit for the available resources. In 

mathematical terms, optimization can be defined as the minimization or maximization of 

a real valued function. Decision making involves the allocation of specific resources to 

specific problems. Optimization can be used in decision making, and as an example, the 

solution that minimizes cost for a particular task is the best chosen solution. Thus, 

optimization is a very useful tool in decision making. 

An optimization problem may be formulated from a problem statement in which 

the objective function, the design variables, and the constraints are identified [38].  

Such a problem can be expressed mathematically as follows: 

  
( )

( )

( )

min max

                           min   

subject to

                           0,  1,2,...,

                           0,  1, 2,...,

                            

i g

j h

f

g i

h j

≤ =

= =

≤ ≤

X
X

X

X

X X X

n

n

    (5) 

 
where  is the vector of design variables,  X

            is the objective function,  ( )f X
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            are the inequality constraints,  ( )ig X

           gn  is the number of inequality constraints,  

            are the equality constraints,  ( )jh X

            is the number of equality constraints, and  hn

            are the lower and upper bounds of the vector of design variables 

respectively. 

min max and X X

The objective function is of primary concern here and must be optimized, either 

by minimization or maximization. Generally, the function is expressed as minimization, 

and the maximization is expressed as negative minimization. The constraint functions are 

the conditions that must be satisfied if the design is to be feasible. The designer seeks to 

offer the most feasible, or optimum design. 

In Matlab, fmincon is a function generally used to solve complex nonlinear 

multivariable optimization problems [39]. In this work, the optimization is formulated 

using fmincon as: 

 
( )

( )

( )

                           min   

subject to

                           0

                           0

                           

                           

                         

f

c

ceq

A

Aeq

≤

=

≤

=

X
X

X

X

X b

X beq

min max  ≤ ≤X X X

       (6) 
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where is the objective function that returns a scalar value, ( )f X

           are vectors,   and b beq

            and  A Aeq are matrices,  

            and  are functions that return vectors, and ( )c X ( )ceq X

           can be nonlinear functions. ( ),  ( ),  and ( )f c ceqX X X

3.1.1. Multi-Attribute Optimization. Engineering designers must often consider 

multiple conflicting objectives. One of the simpler approaches considers the most 

important of the objective functions and sets the remaining functions as constraints 

restricted to within acceptable limits [40, 41].  

Another common approach weights all the objectives and combines them into a 

single objective function [40] as follows: 

 
Optimize 1 1 2 2 ...

a an nf w f w f w f= + + +     (7) 

 
where 1 2, ,..., nf f

an

f  are the individual attributes,  are the weights given to the 

attributes, and  is the total number of attributes. The sum of the weights equals 1. This 

is shown in equation 8. 

1 2, ,..., nw w w

 

1
1

a

a

n

n
i

w
=

=∑         (8) 

 
3.1.2. Tradeoffs in Decision Making. Complex engineering design problems 

often involve many conflicting objectives. Generally, no single design simultaneously 

maximizes all the objectives. Lesser mass precludes optimal deflection; high reliability 

cannot be achieved at low cost; smaller mass cannot carry higher loads.  
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When objectives conflict, the decision maker must make a tradeoff, sacrificing the 

on 

s 

ffective 

compro

int in 

ss 

the 

ier, and the selection of a single Pareto point is at the discretion of the 

decisio

value of one objective to increase the value of another. Ultimately, the choice depends 

the value assigned by the decision maker to each objective, and different decision maker

will have different preferences. A Pareto optimal solution is can achieve e

mise. The Pareto optimal solution is not unique, and each solution in a Pareto 

optimal set trades improvement in one attribute for deterioration in one or more 

attributes.  

The Pareto frontier is the set of design points not dominated by any other po

the design space. A Pareto frontier for a problem with two objectives, less mass and le

deflection, will look something like that in Figure 3.1. The optimal point lies on 

Pareto front

n maker. The decision maker must base his choice on a compromise among the 

objectives. 
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M
as

s

 

Figure 3.1. Pareto Frontier  
 

 

 

3.2. UNCERTAINTY MODELING 

Uncertainty occurs in a system in many different ways, and better methods are 

required to represent it. The uncertainties in a system or a design problem can be 

represented using probabilistic or interval methods. Uncertainty is represented 

probabilistically as a random variable that follows a specific probability distribution. The 

interval method represents uncertainty in a range as an interval variable. As mentioned 

above, if the uncertainty is aleatory, it is modeled by the probabilistic approach, and if it 

is epistemic, it is modeled by the interval approach.  
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3.2.1. Random Variable. A random variable reflects the numerical values of the  

outcome of any random event. The diameter of a shaft, the length of a beam, yield 

strength, or the roll of a die may be examples of a random variable. Aleatory uncertainty 

is modeled by random variables to which probability distributions are assigned. A 

random variable is defined by its mean, the standard deviation; and the types of 

distribution it follows. 

3.2.2. Interval Variable. In some situations, data on the distribution or  

occurrence of variables may be insufficient, and the only information available may be 

the range in which the variable falls. These variables are treated as interval variables; 

they have an upper bound and a lower bound. A few examples of interval variables are 

given in [21, 22]. 

The interval variable Y is represented as 

 
min max[ ,Y Y Y ]=              (9) 

 
where  and  are the lower and upper bounds of the interval variable respectively. 

The range of the interval variable Y is given as 

minY maxY

 
max minY Y Yδ = −            (10) 

 
The average value of the interval variable Y is given as 

 

max min
1 ( )
2

Y Y Y= +             (11) 
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3.3. UNCERTAINTY ANALYSIS METHODS 

Two commonly used techniques for uncertainty analysis are the worst case 

analysis (or the extreme condition approach) and the statistical approach [42]. The 

statistical approach relies heavily on the use of data sampling to generate a cumulative 

distribution function (CDF) of system outputs [42]. 

3.3.1. Moment Matching Method. Knowing only the first two moments (the  

mean and standard deviation) of a random variable, moment matching method may be 

used to estimate the mean and standard deviation of a function [43, 44].  

Let ( 1 2 3, , ...... m )X X X X=X

( )3, ...... m

be m independent random variables that have means 

1 2,μ μ μ μ=μ and standard deviations ( )1 2 3, , ...... mσ σ σ σ=σ   

The performance function is linearized by the first order Taylor expansion at the 

means of the random variables as follows: 

 

1 μ

( )( ) ( ) ( ) ( )
m

i i
i i

gg L g X
X

μ
=

⎡ ⎤∂
≈ = + −⎢ ⎥∂⎣ ⎦

∑ XX X μ      (12) 

 
The mean of  is approximated by the mean of the linearized function  

and is given by 

( )g X (X)L

 
( )g gμ ≈ μ        (13) 

 
The standard deviation of  is given by ( )g X

 
2

2

1

( )m

g i
i i

g
X

σ σ
=

⎡ ⎤⎡ ⎤∂
= ⎢ ⎥⎢ ⎥∂⎢ ⎥⎣ ⎦⎣ ⎦
∑

μ

X           (14) 
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Using the moment matching method, the constraint can be 

 
g gg kσμ σ= +      (15) 

 
where kσ  is the number of standard deviations. 

The probabilities of constraint satisfaction for different values of kσ  are as shown 

in Table 3.1.  

 

 

 

Table 3.1. Probability of Constraint Satisfaction 
Number of Standard Deviations ( kσ ) Percentage of feasible designs 

1 84.13 
2 97.725 
3 99.865 
4 99.9968 

 

 

 

 

3.3.2. Worst Case Analysis. For situations in which uncertainty is the result of  

interval variables, worst case analysis is used to find the interval of a performance 

function [43]. Worst case analysis assumes that all fluctuations may occur simultaneously 

in the worst possible combination [42]. Since this situation is unlikely, worst case 

analysis is almost always too conservative [44, 45]. 

Let the range of the interval variable  be iY [ ]min max,i iY Y  

The performance function is linearized by the first order Taylor expansion at the 

average of the input random variables as follows: 
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( ) ( ) ( )g Y g g Y≈ + ΔY      (16) 

 
where Y  is the average of the interval variable given by equation 11, and  is the 

effect of variations of the interval variables on the performance function. It is estimated 

using a first-order Taylor’s series as follows: 

( )g YΔ

 

1

( )( ) ( )
n

ii
i i

gg Y Y Y
Y=

⎡ ⎤∂
Δ = −⎢ ⎥∂⎣ ⎦

∑
_
Y

Y           (17) 

 
Therefore, worst case analysis gives the constraint function as:  

 

1

( )( ) ( ) ( )
n

ii
i i

gg Y g Y Y
Y=

⎡ ⎤∂
≈ + −⎢ ⎥∂⎣ ⎦

∑
Y

YY     (18) 

 
Worst case analysis is only an approximation, and an error will occur in the 

calculation of the effect of variations, ( )g YΔ . This error comes from using the first order 

Taylor expansion and taking the absolute values of the derivates. Nonetheless, this 

method is used because of its simplicity.   
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4. UTILITY THEORY AND UTILITY FUNCTIONS 

4.1. UTILITY THEORY 

Utility theory models a decision situation by specifying the performance attributes 

important to the design. The designer’s preferences among the attributes are determined, 

thus making tradeoffs among the attributes. Finally a utility function of the attributes is 

constructed to represent the overall value of the design problem.  

Utility theory has gained tremendous attention in decision making. First, an 

appropriate utility is assigned to each possible consequence. The expected utility of each 

alternative is then calculated. The best course of action is the alternative with the highest 

expected utility [2].  

Multiattribute utility analysis also helps design engineers decide among numerous 

alternatives. Its strength lies in its ability to accommodate different metrics and to take 

into account human preferences and risk attitudes. 

Utility theory relies heavily on the concept of lottery. A lottery is a set of possible 

outcomes, each of which has a specific probability of occurrence. A simple lottery is 

represented in Figure 4.1 in which  are the probabilities of the outcomes 

. 

1 2 3 np ,p ,p ,..., p

1 2 3, , ,..., nA A A A
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Lottery L

An

A1

A2

A3

p1

p2

p3

pn

 
Figure 4.1. A Simple Lottery 

 

 

 

A set of axioms must be followed to ensure that utility theory is an appropriate 

guide for decision making [2, 3, 46]. These axioms are 

Orderability: A preference on part of the decision maker exists. Given two 

outcomes  andA B , he either prefers  overA B , or B  over , or he is indifferent to 

them. This axiom is shown as: 

A

 
     or

     or

A B

A B

A B

≺

∼

        (19) 

 
where  means “is preferred to” and  means “is equally preferred to”. ∼
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Transitivity: The decision maker’s rank ordering of preferences should be 

transitive. Given three outcomes A, B, and C, 

 
If           

and        

then       

A B

B C

A C

         (20) 

 
Monotonicity: The decision maker’s preferences regarding an attribute must either 

increase or decrease monotonically. For example, more money is always preferred to less 

money, and lower cost is always preferred to more cost.  

Continuity: If , then there exists a probability A B C p such that 

(1 )pA p C+ − ∼ B . Thus the decision maker is indifferent in a choice between a certain 

outcome B  and a lottery involving outcome A with probability p and outcome C  with 

probability 1 p− . This axiom is illustrated in Figure 4.2. 

 

 

 

Certainty Lottery

p

1-p

A

C

B ~

 
Figure 4.2. Certainty Equivalent Vs. a Lottery 
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Substitutability or Independence: If , and C is any outcome, then the 

decision maker should have no preference between the two lotteries, as shown in Figure 

4.3. If , then lottery 1 should be preferred to lottery 2. 

A B∼

A B

 

 

 
Figure 4.3. Independence Axiom Lottery 

 

 

 

Decomposability: A compound lottery such as lottery 1 shown in Figure 4.4, 

broken down into a simple lottery that has all the outcomes of the compound lottery with 

the associated probabilities among its outcomes. A compound lottery is a lottery in which 

at least one outcome is another lottery. 
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p

(1-p)(1-q)

 

Figure 4.4. A Compound Lottery Broken Down Into a Simple Lottery 
 

 

 

 

4.2. UTILITY FUNCTIONS 

Utility functions provide a means to measure a designer’s preferences. A utility is 

unitless; therefore a utility function can be compared to other utility functions.  

One common and popular approach to multi-attribute optimization problems is 

defining a formulation that transforms an n-dimensional vector objective to a scalar 

performance measurement. This is called a multi-attribute utility function. It is composed 

of individual utility functions for each attribute, and it weighs attributes to show the 

significance for the design as a whole. The linear additive utility model is given as: 

 

1
( ) ( )

an

i i i
i

U x wU x
=

= ∑      (21) 

 
where  is the combined utility,  ( )U x

            is the total number of attributes,  an
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            ix  is the attribute,  -thi

             is the weight of the attribute, and  iw -thi

             is the utility of the attribute. The sum of the weights is equal to 1. ( )i iU x -thi

The individual utility function of a particular attribute indicates the attribute’s 

utility for the decision maker and reflects his attitude towards risk. These functions are 

usually evaluated by the certainty equivalent method presented in [2]. The utility values 

are normalized between a 0 and 1. A utility of 1 is assigned for the best possible outcome, 

and a utility of 0 is assigned for the worst possible outcome. 

4.2.1. Types of Utility Functions. A number of utility functions can be used in  

decision making. The history and types of utility functions are listed in [35]. A few basic 

types and frequently used utility functions are described below. 

Linear utility function: A utility function is said to be linear if it is of the form 

 
U ax b= +      (21) 

 
where x  is the attribute value, and  are constants that are determined based on 

the preferences and risk attitude of the decision maker. 

and a b

x

Logarithmic Utility function: A logarithmic utility function is expressed as: 

 
ln( )U =      (22) 

 
This is a monotonically increasing function. 

Exponential utility function: A exponential utility function is expressed as: 

 
exp( )U a b cx= +      (23) 
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where  are constants that depend on the preferences and risk attitude of the 

decision maker. The exponential utility function has been favored in the past because it 

has risk aversion properties [40]. 

, ,  and a b c

Power utility function: As risk aversion has become increasingly irrelevant in 

today’s practical problems, the power utility function has gained popularity. The power 

utility function is given as 

 
cU a bx= +      (24) 

 
Quadratic utility function: A quadratic utility function has the form 

 
2U a bx cx= + +     (25) 

 
4.2.2. Risk Attitude. The decision maker might be risk averse, risk seeking, or  

risk neutral. A risk neutral individual has no preference for either the expected value of a 

lottery or its certainty equivalent. For example, given a choice between the certainty of 

winning $50 and a 0.5 probability of winning $100, such an individual is indifferent. The 

risk neutral utility function is linear as shown in Figure 4.5. 

A risk averse individual is one who prefers less risk for the same expected return. 

He sacrifices high returns to ensure low risk. Such a person would rather accept a sure 

return of $50 than a 0.5 probability of a $100 return. A utility function that is concave 

downwards is risk averse as shown in Figure 4.5. 

 A risk seeking individual is one who will accept the risk of a bad return for the 

chance of a very good return. The risk seeking person will choose to gamble on a 0.5 
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probability of winning $100 rather than accept a sure $50. A utility function that is 

concave upwards is risk seeking as shown in Figure 4.5. 

 

 

U
til

ity

Performance

Risk averse

Risk neutral

Risk seeking

 
Figure 4.5. Utility Functions Based on Risk Attitude 
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4.3. CONSTRUCTION OF A QUADRATIC UTILITY FUNCTION 

This work uses utility functions of the second order polynomial, (i.e., quadratic 

utility function). The quadratic utility function has the form 

 
2( )U x a bx cx= + +              (26) 

 
where  are the constants to be determined to complete the utility function, and , ,  and a b c

x  is the value of the attribute.  

Suppose the best or the most desirable value of an attribute x  is bestx , and the 

worst or the least desirable value of attribute x  is worstx . By assigning a utility of 1 to the 

best value of the attribute and a utility of 0 to the worst, two equations are generated as: 

 
2( ) 1best best bestU x a bx cx= = + +          (27) 

 
2( ) 0worst worst worstU x a bx cx= = + +             (28) 

 
A third equation is necessary to solve for all three constants . , ,  and a b c

Since the decision maker’s preferences and attitude towards risk are reflected in 

the utility function, he is asked to assign a value he believes will give him a utility of 0.5. 

Suppose that 0.5x  is the value at which the utility is 0.5, the third equation would be 

 
2

0.5 0.5 0.5( ) 0.5U x a bx cx= = + +              (29) 

 
This process of finding out utilities at other values of the attribute is called the 

certainty equivalent method and can also be shown as a lottery in Figure 4.6 [2]. The 

certainty equivalent is the value at which the decision maker is indifferent between 
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receiving this value for certain or playing a lottery where the expected payoffs are the 

most desired value and the least desired value with probabilities of 0.5 each. 

 

 

0.5

0.5

Most
 desired value

Least
 desired value

Certainty equivalent ~

 

Figure 4.6. Certainty Equivalent 
 

 

 

These three equations 27, 28, and 29 are solved for the constants , and 

the utility function for a particular attribute 

, ,  and a b c

x  is given by . 2cx+( )U x a bx= +

This process is used to generate a utility function for each attribute. The attributes 

are then weighted, and the utility functions are added up assuming a linear additive utility 

model as: 

 

1

an

i i
i

U w
=

= ∑ U      (30) 

 
where  is the number of attributes,  is the weight of the attribute, and  is the 

utility function for the attribute 

an iw -thi iU

-thi
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4.4. OPTIMIZATION WITH UTILITY FUNCTIONS 

The first step in solving an optimization problem with utility functions is to 

identify the attributes and constraints. Individual utility functions are then constructed for 

each attribute. The utility function is chosen based on the needs of the decision maker. It 

affects the design, and different utility functions may give different optimum designs. 

Each decision maker will use his own utility function to solve an optimization problem; 

therefore, unique designs might be produced.  

Next, a single utility function is constructed which is a weighted sum of the utility 

functions of the attributes. When multiple attributes are combined into a single utility 

function, care must be taken to assign weights to the attributes in such a way that no 

attribute dominates the function. The expected utility from this function is found, and the 

design point at which the maximum utility occurs is chosen as the optimum design. 

Figure 4.7 shows a simple flowchart to solve an optimization problem using utility 

functions.  
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Figure 4.7. Solution to an Optimization Problem Using Utility Functions 
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5.  PROPOSED METHODOLOGY 

Most current methods for uncertainty focus only on aleatory uncertainty. When 

uncertainty is due to intervals, no single correct solution exists. Previous applications in 

this area offer a solution set [18, 19]. The engineer faces the challenge of choosing a 

solution from this set. The methodology presented here addresses the critical issue of 

finding a single solution rather than a solution set. Most previous methods are 

complicated, confusing the user and requiring much thought. 

Utility analysis permits comparison of the attributes of various metrics by 

normalizing the value of the attributes between 0 and 1. It helps designers make reliable, 

rational, and consistent decisions. 

The method proposed here facilitates decision making by maximizing the 

expected utility. The design point of maximum utility represents the preferred solution, 

thus simplifying the engineer’s task. 

The proposed method treats both aleatory and epistemic uncertainties introducing 

a simple yet effective penalty approach. Epistemic uncertainty is mainly due to a lack of 

knowledge, and the penalty approach penalizes the variations in the utility due to 

epistemic uncertainty. With the help of this penalty approach, utility analysis offers a 

single solution rather than a set of solutions, thus helping the designer to make consistent 

decisions.  
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5.1.  PROPOSED METHOD 

Due to the existence of aleatory and epistemic uncertainties, the utility function 

depends on both random and interval variables. For given values of the random variables, 

the utility function is still a function of interval variables. Therefore, over a range of 

values for interval variables, there exists a maximum utility value and a minimum utility 

value. Since the utility value is in a range, it is difficult to choose a design that provides 

the highest utility. The highest utility may not be presented by an average of the 

maximum and minimum values. Such an average might, for example, produce a situation 

like the following. 

 
max min

max min

Design 1: 0.9, 0.1

Design 2: 0.6, 0.4

U U

U U

= =

= =
    (31) 

 
where  represent the maximum and minimum utilities max min and U U

For both these designs, the average utility is 0.5. In the first design, however, the 

difference between the maximum and minimum utilities is much larger than in the second 

design. The closer the values of maximum and minimum utilities, the smaller the effect 

of interval variables on the design. Therefore, a penalty is introduced into the average 

utility formula that depends on this difference. This penalty is due to the lack of 

knowledge on the interval variables. The designer determines the penalty factor, which is 

denoted by k  as shown in equation 32. The final utility is now given as  

 
max min max min0.5( ) ( )U U U k U U= + − −    (32) 
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Using the penalty method, and a penalty factor, , the final utility values 

for the above two designs are  

of 0.2k

 
Design 1: 0.34

Design 2: 0.46

U

U

=

=
     (33) 

 
Although the maximum utility of design 1 is higher than that of design 2, these 

utility values indicate that design 2 is the better choice. 

The above procedure applies only to a single sample of the random variables. It 

must be modified so that the uncertainty due to random variables is also included in the 

design.  

For  samples of the random variables, the maximum and minimum utility can 

now be determined based on the values of the interval variables. Over the range of the 

interval variables, using an optimization loop, the maximum utility and the minimum 

utility are found. For each sample of the random variable, there exists a maximum utility, 

 and a minimum utility, ; the average of these n values is expressed as 

n

maxU minU

max min and U U  respectively.  

 
max

max
1

max
min

1

=

=

in

i

in

i

UU
n

UU
n

=

=

∑

∑

          (34) 

 
The net or expected utility is therefore given as: 

 
max min max min0.5( ) ( )netU U U k U U= + − −    (35) 
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For a single starting design point, there is an expected utility, . The goal now 

is to identify a design for which the expected utility is maximized. In addition, if the 

design is to be feasible, the constraints must be satisfied. The overall problem can now be 

formulated as:  

netU

 
max min max min 0.5( ) ( )

. .  constraints

netMax U U U k U U

s t

= + − −
DV           (36) 

 
where are design variables. In many engineering design problems, the means of the 

random variables X  and the averages of interval variables are to be determined during 

a design process. In this work, therefore, we use 

DV

Y

and Xμ Y  as design variables. 

 and Xμ Y  are the means of the random variables and averages of the interval variables 

respectively. 

( ), X=DV μ Y  

The constraints to be satisfied might involve uncertainty, which might be due to 

random and interval variables. To address the uncertainty due to intervals, worst case 

analysis is applied to the constraints. The constraint is then given by equation 18 as 

shown above in Section 3.  

1

( )( ) ( ) ( )
n

ii
i i

gg Y g Y Y
Y=

⎡ ⎤∂
≈ + −⎢ ⎥∂⎣ ⎦

∑
Y

YY  

To address uncertainty due to random variables, moment matching method is 

applied to the constraints. A Monte Carlo simulation for n number of samples of the 

random variables is performed to get n values of each of the constraints. The means and 
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standard deviations of each constraint are then found. Using the moment matching 

method, the constraints are then given in equation 12, 14, and15 as shown above.  

1 μ

( )( ) ( ) ( )
m

i i
i i

gg g X
X

μ
=

⎡ ⎤∂
≈ + −⎢ ⎥∂⎣ ⎦

∑ XX μ  

2

2

1

( )m

g i
i i

g
X

σ σ
=

⎡ ⎤⎡ ⎤∂
= ⎢ ⎥⎢ ⎥∂⎢ ⎥⎣ ⎦⎣ ⎦
∑

μ

X  

max
g gg kσμ σ= +  

Depending on the probability, R of satisfying the constraints, the value of kσ  is 

taken from Table 3.1. 

The overall problem can now be shown as: 

 

{ }

max min max min
,

max

 0.5( ) ( )

. .  ( , ) 0

X
netMax U U U k U U

s t P g R

= + − −

≤ ≥

μ Y

X Y
          (37) 

The probability of the maximum constraint satisfaction  should be 

greater than a required reliability level R desired by the designer for the application type. 

Figure 5.1 summarizes this procedure in a flowchart. 

max ( , ) 0g ≤X Y
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Minimize utility over range of interval variables to obtain U  min

Minimize utility over range of interval variables to obtain U  max

Utility functions are developed and combined into 

a single utility function with attribute weights 

This step is repeated n times with different 
samples of the random variables 

max min
max min

1 1
 and 

n n

i i

U UU U
n n= =

= =∑ ∑  

Input initial design point 

and interval variable ranges 

 
 
 
 
 
 
 
 
 
 
 

Maximize the expected utility, U  over 

the design range subject to constraints 

net

max min max min0.5( ) ( )netU U U k U U= + − −  

 
 
 
 

Optimum design 

point is obtained 

Figure 5.1. Flowchart of the Proposed Method 
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5.2. SUMMARY OF THE PROPOSED METHOD 

The first step in the procedure is to identify the objectives, constraints, design 

variables, random variables, and interval variables. Next, individual utility functions are 

constructed for all the objectives involved in the problem. Giving a weight to each of the 

objective or attribute, a single utility function is determined as the weighted sum of the 

individual utility functions.  

For a given start point of the design variables, and for a sample of the random 

variables, the minimum and maximum utilities over the range of the interval variables are 

found. The net utility is then calculated as given by the formula above, which reflects the 

lack of information due to epistemic uncertainty by using the penalty approach. For the 

design to be feasible, the constraints also need to be satisfied as discussed above. This is 

performed n number of times and the average minimum utility and the average maximum 

utility are determined for a particular value of the design variables. The optimization of 

the net utility yields the optimum value of the design variables. Using the moment 

matching method and worst case analysis, the constraints are simplified to address 

uncertainty.  

To better understand the proposed method, two engineering problems are taken as 

examples and are presented in the next section. 
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6.  EXAMPLES 

6.1. EXAMPLE 1: A TWO-BAR PIN-JOINTED TRUSS PROBLEM 

A two-bar pin-joined truss problem is taken from [12], and modified to test the 

optimization method described here. In Figure 6.1, A and B are two stationary pinned 

joints connected to one of two bars in the truss. The bars join at joint C where a random 

force of 2R  acts downwards on it. The design variables are the cross-sectional areas of 

bars AC and BC, represented by 1x  and 2x  respectively. The vertical distance between 

the line joining A and B to the point C is denoted by y .  

 

 

 

 

 
Figure 6.1. A Two-Bar Pin Jointed Truss Problem 
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The stresses in bars AC and BC are limited to 2R  (yield strength of the material), 

and the total volume of the two bars should not exceed . The objective is to 

minimize the volume of the material, while also minimizing the stress in bar AC.  

30.1 m

The properties of the randomness of 1R  and 2R  are given in Table 6.1. 

 

 

 

Table 6.1. Properties of the Random Variables 

Symbol Mean Standard 
Deviation 

Distribution 

Yield Strength, 1R  100,000 kPa 10,000 kPa Normal 

Force applied, 2R  100 kN 10 kN Normal 

 

 

 

 

The vertical distance y  between the line joining A and B to the point C is an 

interval variable and may range over 1 m and 3 m; namely, [1,3] my∈ . 

The volume in the truss system is given by 

 
2

1 216 1V x y x y2= + + +        (38) 

 
The stress in AC is given by  

 
2

2

1

16
5AC

R y
x y

σ
+

=                 (39) 
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The stress in BC is given by  

 

2
2

2

4 1
5BC

R y
x y

σ
+

=              (40) 

 
This problem has two objectives, to minimize the volume of material used and to 

minimize the stress in bar AC.  

The problem can be formulated as 

 
2 2

1 2

2
2

1

3

1

1

1 2

 16 1

16
 

5

 :  0.1 m

                    

                    

                    0,  0

AC

AC

BC

Minimize V x y x y

R y
Minimize

x y

Subject to V

R

R

x x

σ

σ

σ

= + + +

+
=

≤

≤

≤

> >

   (41) 

 
As the volume of the material decreases, the stress in AC increases; therefore, to 

reduce the stress in AC, the volume of the material must increase. However, since the 

goal is to reduce both, a trade-off must be made between these two objectives. This 

compromise can be achieved by assigning a utility function involving both material 

volume and stress in AC. The objective of the optimization problem then becomes to 

select the design that offers the highest utility while successfully satisfying all 

constraints. 
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6.1.1. Construction of the Utility Function. A less volume is desirable;  

therefore, a utility of 1 is assigned to a volume of 0 m³. The maximum possible volume in 

this problem is 0.1 m³. Therefore, a utility of 0 is assigned to a volume of 0.1 m³. This is 

shown as 

(0) 1

(0.1) 0

V

V

U

U

=

=
 

The volume at which the utility is 0.5 must be determined, and this lies between 0 

m³ and 0.1 m³. In this case, a volume of 0.04 m³ is given a utility of 0.5, this is 

represented as  (0.04) 0.5VU =

Using the quadratic function to express the utility of the volume, three equations 

are obtained as shown below. These are then solved for the constants a, b, and c of the 

quadratic equation . 2( )U x a bx cx= + +

 
2

2

2

(0) 1 0 0

(0.1) 0 0.1 0.1

(0.04) 0.5 0.04 0.04

V

V

V

U a b c

U a b c

U a b

= = + +

= = + +

= = + + c

V

       (42) 

 
 

The constants obtained are  

1
14.266

42.379

a
b
c

=
= −
=

 

Therefore, the quadratic utility function for the volume is  

 
21 14.266 42.379VU V= − +     (43) 
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This utility curve is plotted in Figure 6.2 for all feasible values of the volume. 
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Figure 6.2. Utility Curve of Volume 
 

 

 

A less stress in AC is desirable; therefore, a utility of 1 is assigned to a stress of 0 

kPa. The stress in AC can be 100,000 kPa at maximum. Therefore, a utility of 0 is 

assigned to a stress of 100,000 kPa. This is shown as 

(0) 1

(100,000) 0

AC

AC

U

U

σ

σ

=

=
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The stress in AC at which the utility is 0.5 is to be determined, and this lies 

between 0 kPa and 100,000 kPa. In this case, a stress of 35,000 kPa is given a utility of 

0.5. This is represented as (35,000) 0.5
AC

Uσ =  

Using the quadratic function to express the utility of the stress in AC, three 

equations are obtained as shown below, which are then solved for the constants a, b, and 

c of the quadratic equation . 2( )U x a bx cx= + +

 
2

2

2

(0) 1 0 0

(100,000) 0 100000 100000

(35,000) 0.5 35000 35000

AC

AC

AC

U a b c

U a b

U a b

σ

σ

σ

= = + +

= = + +

= = + +

c

c

σ

   (44) 

 
 

The constants obtained are  

1
0.1659 4

0.659 10

a
b E
c E

=
= − −
= −

 

Therefore, the quadratic utility function for the stress in AC is  

 
21 (0.1659 4) (0.659 10)

AC AC ACU E Eσ σ= − − + −    (45) 
 
 

This utility curve is plotted in Figure 6.3 for all feasible values of the stress. 
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Figure 6.3. Utility Curve of Stress in AC 
 

 

Assuming the linear additive utility model with a weight of 0.5 for both attributes, 

the overall utility function for this problem is  

 
 0.5 0.5

ACVU U Uσ= +      (46) 

 
Substituting the values of the individual utilities from equations 43 and 45, the 

overall utility function becomes 

 
( ) ( )2 2 0.5 1 14.266 42.379 0.5 1 (0.1659 4) (0.659 10)AC ACU V V E Eσ σ= − + + − − + −  (47) 

 
where the values of  and ACV σ  are given by equations 38 and 39. 
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Since some parameters in the calculation of volume and stress are random 

variables and intervals, the exact value of the utility cannot be calculated. Before the 

problem is solved under uncertainty, it is first solved deterministically. 

6.1.2. Deterministic Solution. The deterministic case takes into account only the  

mean and average values of the random and interval variables. The new values are 1R  = 

100,000 kPa, 2R = 100 kN, and y  = 2. 

The problem can now be formulated as  

 

( )

2

2

2 2
1 2

  0.5 0.5

   0.5 0.5

                   1 14.266 42.379

                   1 (0.1659 4) (0.659 10)

                   16 1

         

AC

AC

AC

V

V

V

AC AC

Maximize U U U

or Minimize U U U

where

U V V

U E E

V x y x y

σ

σ

σ σ σ

= +

− = − +

= − +

= − − + −

= + + +

2
2

1

2
2

2

3

1

1

1 2

16
          

5

4 1
                                      

5

     0.1 m

                    

                    

                    0,  0

AC

BC

AC

BC

R y
x y

R y
x y

Subject to V

R

R

x x

σ

σ

σ

σ

+
=

+
=

≤

≤

≤

> >

        (48) 

 

Using the optimization tool of Matlab, the problem is solved; and the best utility 

value is found to be 0.4718. The design values at which the maximum utility occurs are  
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1

2

 = 0.000447 m²
 = 0.0009 m²

x
x

 

6.1.3. Solution under Uncertainty. Since the constraints also contain interval  

variables and random variables, worst case analysis and the moment matching method 

are applied to incorporate uncertainty into the constraints and simplify them. The 

constraints are 

 
2 2

1 1 2

2
2

2 1
1

2
2

3 1
2

16 1 0.1 m 0

16
0

5

4 1
0

5

C x y x y

R y
C R

x y

R y
C R

x y

= + + + − ≤

+
= − ≤

+
= − ≤

3

      (49) 

 
Constraint  contains only design and interval variables, whereas constraints  

and  contain design, random, and interval variables. Worst case analysis is used to 

treat uncertainty due to interval variables. From equations 16, 17 and 18, the constraint 

 is written as 

1C 2C

3C

1C

 

1
1 1 1 1 1

(y)( ) ( ) or ( ) ( )
i y

CC C y C y C C y y y
y

⎛ ⎞∂
≈ + Δ ≈ + −⎜ ⎟∂⎝ ⎠

                (50) 

 
where 2y = . Substituting this value into equations 49 and 50, 

_

1 1 2( ) 20 5 0.1C y x x= + −  

1 1 2
2 2

( ) (2 ) (2 )
2 16 2 1

C y x y x y
y y y

∂
= +

∂ + +
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1 1( ) 2 2
20 5y

C y x x
y

⎛ ⎞∂
= +⎜ ⎟∂⎝ ⎠

2  

1 2 1 2
1

2 2 2 2( ) (3 2)
20 5 20 5
x x xC y ⎛ ⎞ ⎛ ⎞Δ = + − = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

x  

1 2
1 1 2 1 2

2 220 5 0.1 4.91 3.13 0.1
20 5
x xC x x x x⎛ ⎞≈ + − + + = + −⎜ ⎟

⎝ ⎠
 

 
1 1 24.91 3.13 0.1C x x≈ + −       (51) 

 
Similarly, worst case analysis is applied on constraints  and  to yield 2C 3C

 
2

2 1
1

0.2683 RC R
x

≈ −               (52) 

2
3 1

1

0.805 RC R
x

≈ −              (53) 

 
The constraints  still contain random variables 2  and C 3C 21  and R R , and moment 

matching method is applied on them to address uncertainty. A Monte Carlo simulation is 

performed for 50 samples of 1 an 2d R R  to get 50 values of the constraints . The 

means and standard deviations of the constraints on these 50 values are found. For a 

99.865% probability of constraint satisfaction, a k value of 3 is taken from Table 3.1. The 

new constraints are then given as: 

2 3 and C C

2

3

C

C

 
2 2

3 3

mean( )+3std( )

mean( )+3std( )

C C

C C

≈

≈
      (54) 
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where  are the means of the constraints  respectively, 

and  are the standard deviations of the constraints  

respectively.  

2mean( ) and mean( )C

2 3std( ) and std( )C C

3C 3C2  and C

 a2 3nd C C

The solution generated by Matlab indicates that the highest expected utility is 

0.4923, and the design variables corresponding to this utility are  

1

2

 = 0.0195 m²
 = 0.0013 m²

x
x

 

Also, this optimum design was found to have a maximum utility of 0.5226 and a 

minimum utility of 0.4793. 

In the deterministic case, the design variables obtained were 

1

2

 = 0.000447 m²
 = 0.0009 m²

x
x

 

A Comparison of the solutions demonstrates that optimization under uncertainty 

suggests a more conservative design than that selected by the deterministic case. 
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6.2. EXAMPLE 2: DESIGN OF A FLAG POLE 

An example of a flag pole design demonstrates the methodology presented in the 

previous section. This example is modified from a design presented in [38]. The goal here 

is to design a flag pole of height with minimum mass. The pole is made of uniform 

circular tubing with  as the outer and inner diameters respectively. This pole 

must withstand very high winds, and it should be between  high. 

H

0 and id d

9.5 m and 10 m

This work assumes that the pole is a cantilever subject to a uniform lateral wind 

load . At its top, the pole carries a concentrated load . The pole should not fail in 

bending or shear, and deflection at its top should not exceed 0.1 . The ratio of mean 

diameter to thickness must not exceed 60. The design variables are the height , the 

outer diameter . Figure 6.4 illustrates the design of the flag 

pole. 

w P

id

 m

H

, and the inner diameter od

 

 

 
Figure 6.4. Flag Pole Design 
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The modulus of elasticity, allowable bending stress, and the allowable shear stress 

are random variables; they are shown in Table 6.2. 

 

 

Table 6.2. Random Variables 

Random Variables Mean Standard 
Deviation 

Distribution 

Modulus of elasticity, E  210 GPa 10.5 GPa Normal 

Allowable bending stress, b σ 165 MPa 8.2 MPa Normal 

Allowable shear stress, sτ  50 MPa 2.5 MPa Normal 

 

 

 

The mass density, wind load, and the load on the top of the pole are interval 

variables and are shown in Table 6.3 

 
 
 
 

Table 6.3. Interval Variables 

Interval Variables Lower Bound Upper Bound 

Mass density, ρ  7300  3Kg/m 8300  3Kg/m

Wind load,  w 1800  N/m 2200  N/m

Load on top of pole,  P 3700 N 4300 N 
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Other equations related to this problem are 

 
2 2 2
0

4 4 4
0

2

0

2
0 0

Cross-sectional area, ( ),  m
4

Moment of inertia, ( ),  m
64

Moment at the base, ( 0.5 ),  kNm

Bending stress, , kPa
2

Shear at the base, ( ), kN

Shear stress, (
12

i

i

A d d

I d d

M PH wH

M d
I

S P wH

S d d
I

π

π

σ

τ

= −

= −

= +

=

= +

= + 2

3 4

), kPa

Deflection at the top, , m
3 8

i id d

PH wH
EI EI

δ

+

= +

       (55) 

 
The constraints in this design problem are as follows: 

1. Bending stress should be less than the allowable bending stress. 

 

2

1 0

0

( 0.5 ) 0
2

b

b
PH wHC d

I

σ σ

σ

− ≤

+
= − ≤

          (55) 

 
2. The shear stress should be less than the allowable shear stress. 

 

2 2
2 0 0

0

( ) ( )
12

s

i i s
P wHC d d d d 0

I

τ τ

τ

− ≤

+
= + + − ≤

     (56) 
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3. The deflection should not exceed 0.1 m . 

 

3 4

3

0.1 0

0.1 0
3 8
PH wHC

EI EI

δ − ≤

= + − ≤

                   (57) 

 
4. The thickness of the pole should be between . 0.005 m and 0.02 m

 
4 40.005 0 and 0.02 0a i o b o iC d d C d d= − + ≤ = − − ≤   (58) 

 
5. The ratio of mean diameter to thickness must not exceed 60. 

 

5
0.5( ) 60 0o i

o i

d dC
d d

+
= − ≤

−
       (59) 

 
6. The mass of the pole should not exceed . 5000 kgs

 

2 2
6 0

5000 0

( ) 5000 0
4 i

AH

C d d H

ρ

πρ

− ≤

= − − ≤

           (60) 

 
6.2.1. Construction of the Utility Function. Given these values, the minimum  

possible deflection is 0.0026 m , and the maximum allowable deflection is . 

Therefore, a utility of 1 is assigned for the minimum deflection, and a utility of 0 is 

assigned for the maximum. This is shown as 

0.1 m

(0.0026) 1

(0.1) 0

U

U

δ

δ

=

=
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The decision maker determines the deflection at which the utility is 0.5, and this 

lies between  and . In this case, a deflection of  is given a utility of 

0.5. This is represented as 

0.0026 m 0.1 m

(0.03Uδ

0.03 m

) 0.5=  

The quadratic function expresses the utility of the deflection. These three 

equations are then solved for the constants a, b, and c of the quadratic equation 

. 2( )U x a bx cx= + +

 
2

2

2

(0.0026) 1 0.0026 0.0026

(0.1) 0 0.1 0.1

(0.03) 0.5 0.03 0.03

U a b

U a b c

U a b

δ

δ

δ

= = + +

= = + +

= = + +

c

c

   (61) 

 
The constants obtained are  

1.056
21.965

114.017

a
b
c

=
= −
=

 

Therefore, the quadratic utility function for the deflection is  

 
21.056 21.965 114.017Uδ δ δ= − +     (62) 

 
This utility curve is plotted in Figure 6.5. for all feasible values of the deflection. 
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Figure 6.5. Utility Curve of Deflection 

 

 

 

Given the constraint values listed above, the minimum possible mass is 322 kgs, 

and a mass above 5000 kgs is undesirable. Therefore, a utility of 1 is assigned for the 

minimum mass, and a utility of 0 is assigned for the maximum. This is shown as 

(322) 1

(5000) 0

m

m

U

U

=

=
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The decision maker determines the mass at which the utility is 0.5, and this lies 

between 322 kgs and 5000 kgs. In this case, a mass of 2000 kgs is given a utility of 0.5. 

This is represented as (2000) 0.5mU =  

Using the quadratic function to expresses the utility of the mass, three equations 

are obtained as shown below, which are then solved for the constants of the 

quadratic equation . 

, ,  and a b c

2( )U x a bx cx= + +

 
2

2

2

(322) 1 322 322

(5000) 0 5000 5000

(2000) 0.5 2000 2000

m

m

m

U a b c

U a b

U a b

= = + +

= = + +

= = + +

c

c

m

   (63) 

 
The constants obtained are  

1.114
0.363E-3

0.28E-7

a
b
c

=
= −
=

 

Therefore the quadratic utility function for the mass is  

 
21.114 - (0.363E-3)  + (0.28E-7)mU m=       (64) 

 
This utility equation is plotted in Figure 6.6 for all the values of mass that are 

feasible in this design. 
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Figure 6.6. Utility Curve of Mass 

 

 

 

Here, the deflection attribute is assigned a weight of 0.2, and the mass attribute is 

assigned a weight of 0.8. These are combined by the linear additive utility model into a 

single utility function. 

 
0.2 0.8 massU U Uδ= +      (65) 
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6.2.2. Deterministic Solution. The problem is solved deterministically, taking  

the mean of the random variables and the average value of the interval variables. 

Applying the procedure described in Section 5, the design variables are  

0.4597  or 45.97

0.45  or 45

9.5

o

i

d m

d m cm

H m

=

=

=

cm

 

The expected utility at these design variables is 0.7511U = . 

6.2.3. Solution under Uncertainty. Constraints 3  are a  1 2,  ,  and C C C

combination of design variables, random variables, and interval variables. Constraints 

 are a combination of only design variables. Constraint  is a combination of 

design variables and interval variables only. Uncertainty must be incorporated into the 

constraints, and worst case analysis is used for all constraints that depend on interval 

variables. Moment matching method incorporates uncertainty into the constraints that 

depend on random variables.  

4  and C 5C

6

6C

Worst case analysis as described above is applied to constraints 

. The constraints now are  1 2 3,  ,  ,  and C C C C

 
2

1 0
(4300 1100 ) 0

2 b
H HC d

I
σ+

= − ≤              (66) 

2 2
2 0 0

(4300 220 ) ( )
12 i i s

HC d d d d
I

τ 0+
= + + − ≤         (67) 

3 4

3
4300 2200 0.1 0

3 8
H HC

EI EI
= + − ≤              (68) 

4 40.005 0 and 0.02 0a i o b o iC d d C d d= − + ≤ = − − ≤              (69) 
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5
0.5( ) 60 0o i

o i

d dC
d d

+
= − ≤

−
      (70) 

2 2
6 08300 ( ) 5000 0

4 iC d d Hπ
= − − ≤              (71) 

Only constraints  depend on random variables, and moment 

matching method is used here. 

1 2,  ,  and C C C3

cm

The problem is then solved based on the methodology presented in Section 5. The 

design variables obtained are  

0.4625  or 46.25

0.45  or 45

9.5

o

i

d m

d m cm

H m

=

=

=

 

The expected utility at these design variables is 0.7237U = . The maximum and 

minimum utility dependent on the interval variables are 0.7508 and 0.7120 respectively. 

In the deterministic design, the design variables obtained were 

0.4597  or 45.97

0.45  or 45

9.5

o

i

d m

d m cm

H m

=

=

=

cm

 

A comparison of the solutions demonstrates that optimization under uncertainty 

suggests a more conservative design than that selected by the deterministic case. 
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7. CONCLUSIONS AND FUTURE WORK 

7.1. CONCLUSIONS 

 The research has shown that utility analysis is a powerful tool for decision 

making. Utility functions express the designer’s preferences and risk attitudes as a scalar 

value, and optimization of this utility value determines the best possible solution. This 

research also treats uncertainty using the moment matching method for aleatory 

uncertainty and worst case analysis for epistemic uncertainty. Thus the constraints 

incorporate both forms of uncertainty. Variation due to a lack of knowledge of the 

interval variables is penalized using a penalty on the lack of information. If more 

information is obtained, the penalty value is reduced and a more robust solution can be 

chosen.  

 Using the method presented here, the designer can effectively obtain point 

solutions to any problem instead of a solution set. This aids the designer in making 

decisions in his applications. In the two examples shown, the design under uncertainty is 

more conservative than the deterministic design because it uses the worst case of the 

interval variables, and all the worst possible fluctuations are assumed to occur 

simultaneously.  

 

7.2. FUTURE WORK 

 Proper formulation and assessment of a utility function requires too much time 

and effort. Monte Carlo simulation is computationally expensive, and a more efficient 

algorithm is needed to reduce the computational burden. The feasibility of a particular 

type of utility function must be assessed. Depending on the application type, utility 
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functions must be used. Also, the final designs obtained are extremely conservative; 

hence the cost to produce such a design is high. New methods must be formulated to 

produce efficient designs. Further, effective methods are required to gather more 

information on the interval variables and thus to reduce epistemic uncertainty. 
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