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ABSTRACT 

Freeze-form Extrusion Fabrication (FEF) is an additive manufacturing technique 

that extrudes ceramic loaded aqueous pastes layer by layer below the paste freezing 

temperature for component fabrication. As the FEF is aimed at being conducted at low 

environmental temperatures, down to -20 °C, it is necessary to investigate the effect of 

environmental temperature on the process. The advantages of fabrication at low 

temperature have been proved by experiments. Comparisons in terms of operation 

parameters, self-sustaining ability, and system dynamic response were performed at 

different environmental temperatures ranging from 20 °C to -20 °C. 

It is commonly known in paste extrusion processes that due to unmodeled effects 

such as air bubble release, non-uniform water content, unpredictable agglomerate 

breakdown, etc., the throughput (extrusion rate) is difficult to control. Moreover, during 

the extrusion, the rheological characteristics of the paste changes due to liquid migration, 

resulting in a processing challenge. Because of these difficulties, additional paste 

extrusion research is still in progress. Traditional PID controllers based on off-line 

empirical models are inadequate to control the ram extrusion processes. The Recursive 

Least Square algorithm is used in this research to identify the dynamic responses of the 

FEF process in real time. An adaptive controller with a novel general tracking control 

strategy is designed and implemented to regulate the extrusion force in real time. 

Experimental results demonstrated the robust performance of the controller, allowing the 

extrusion force to track various types of reference signals, while traditional controllers 

could only maintain the extrusion force (pressure) at a constant level (operation point). 
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INTRODUCTION 

Advanced ceramics can meet high temperature requirements and are needed for a 

wide range of applications in the aerospace, automotive, and other industries. Compared 

to conventional 3-D ceramic component fabrication techniques, which are costly and 

time-consuming because of mold preparation and post-sintering machining, solid 

freeform fabrication (SFF) has the potential of becoming an efficient and inexpensive 

manufacturing technique because it is a tool-less fabrication process. Recently more and 

more SFF techniques have been investigated and developed for ceramic processing. Well 

researched and commercialized SFF techniques for ceramic component fabrication 

include Fused Deposition of Ceramics (FDC) [1, 2], Stereolithography (SLA) [3], 3-D 

printing (3DP) [4, 5], and selective laser sintering (SLS) [6, 7]. Most SFF techniques for 

ceramic component fabrication involve the use of organic binders. In some processes, 

such as FDC, the binder content may reach as high as 40 to 50 vol.%. This organic binder 

needs to be removed during post processing and generates harmful wastes that are 

undesirable for the environment [8]. Freeze-form Extrusion Fabrication (FEF) uses an 

aqueous ceramic paste with a solids loading up to 50 vol.%. The organic binder content is 

only 2-4 vol. %. In FEF, aqueous-based ceramic paste is extruded using a ram extruder 

and deposited on a 2-D motion substrate. After the deposition of each layer, the Z-axis of 

the gantry system moves up by one layer thickness and the next layer is deposited. This 

process is repeated until the component is completely fabricated. Freeze-drying is used to 

prevent crack formation during the drying process. After freeze-drying, the binder is then 

removed in a rapid heating cycle because of the low binder content. Finally, the parts are 

sintered at 1550 °C for Alumina paste. FEF has some unique advantages, such as 
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achievability of large dimension components fabrication and a high density of sintered 

components. Especially, low percentage of organic binder is involved and almost no 

material waste is generated.  Further, FEF is an environmentally friendly SFF technique. 

Most research studies in extrusion processes are concerned with screw extrusion 

of polymer (melt) extrusion processes where most research studies have concentrated on 

indirect control of these variables via the regulation of melt temperature and pressure. 

Costin [9] gave a critical review of the early dynamics and control work in this area, 

which focused on classical control techniques. Hassan and Parnaby [10] used 

optimization and off–line curve fitting of the experimental data to define a quasi–linear 

steady–state model. A cascade controller with one–step–ahead forecasts of melt 

temperature and melt pressure calculated and changed the set points of the screw speed, 

barrel/die wall temperature, and restrictor valve angular position to maintain the desired 

extrusion rate. Costin and Taylor [11] used step tests and pseudo–random binary 

sequence (PRBS) tests to determine the empirical models of melt temperature and 

pressure in a single screw extruder (SSE). A PI controller was implemented to remove 

the long–term drift in the pressure level. More recently, Previdi [12] used step tests to 

determine an empirical first–order model from voltage (screw speed) to pressure and 

implemented a digital PID controller. The results showed the controller was able to 

regulate the pressure at a desired constant reference value. These linear techniques 

generally cannot capture the system’s nonlinearities; therefore, they are only suitable for 

a specific operating point. Some nonlinear modeling techniques such as artificial neural 

networks, black box Nonlinear Autoregressive Network (NARX) and, more recently, 

grey box NARX [13] were proposed. However, these techniques are generally highly 
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dependent on the training data and, thus far, no controllers have been designed and 

implemented using these models. 

 Screw extrusion cannot be utilized for ceramic processing since ceramic pastes 

are abrasive and will severely damage the threads, eventually causing the screw extruder 

to fail. For ram extrusion, the pressure gradation and unstable shear stress regimes are 

much more complex. Modeling and controlling the extrusion pressure of the liquid–solid 

phase paste generally presents more difficulties, as compared to polymer extrusion, 

because of unpredictable disturbances such as air bubble release and agglomerate 

breakdown, material property uncertainties generated during the paste preparation 

procedures, and the complex variation of paste properties during extrusion due to liquid 

phase migration [14–18]. Post–operative statistical techniques such as standard error of 

signal, outlier, spectral and fractal analyses have been used to monitor and model the 

fluctuations in the ram extrusion pressure signals [19–24]. However, these approaches are 

still in the development stage and only a few of them have been applied to effectively 

provide and implement a control strategy due to the previously addressed control 

difficulties. Detailed initial modeling and control work for this ram extrusion process can 

be found in previous publication [25, 26]. 
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PAPER I 

Experimental Investigation of Effect of Environment Temperature  

on Freeze-form Extrusion Fabrication 
Xiyue Zhao1, Michael S. Mason1, Tieshu Huang1, Ming C. Leu1, Robert G. Landers1, 

Gregory E. Hilmas2, Samuel J. Easley3, Michael W. Hayes3

1870 Miner Circle 

Department of Mechanical and Aerospace Engineering1

Department of Materials Science and Engineering2

University of Missouri-Rolla, Missouri, U.S.A. 65401 

The Boeing Company, St. Louis, Missouri 630423

{xzd2c, mmason, hts, mleu, landersr, ghilmas}@umr.edu 

{Michael.w.hayes2, samuel.j.easle}@boeing.com 

Abstract 

Freeze-form Extrusion Fabrication (FEF) is an additive manufacturing technique 

that extrudes ceramic loaded aqueous pastes layer by layer below the paste freezing 

temperature for component fabrication. A computer controlled 3-D gantry system has 

been developed for the FEF process. The system includes a temperature control 

subsystem that allows for fabrication of components below the paste freezing 

temperature. The low temperature environment allows for larger component fabrication. 

Comparisons in terms of layer thickness, self-sustaining ability, and system response 

were performed between 0 °C and -20 °C for alumina sample fabrication. The minimum 

deposition angles without use of support material have been determined for 20°C, 10 °C, 

0 °C, -10 °C and -20 °C fabrication.   

Keywords: Ram extrusion, Ceramic, Alumina, Temperature effect, RLS, Rapid 

Prototyping 
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1. Introduction 

Advanced ceramics which can meet high temperature requirements are needed for  

a wide range of applications in the aerospace, automotive, and other industries. 

Compared to conventional 3-D ceramic component fabrication techniques, which are 

costly and time-consuming because of mold preparation and post-sintering machining, 

solid freeform fabrication (SFF) has the potential of becoming an efficient and 

inexpensive manufacturing technique because it is a tool-less fabrication process [1]. 

Recently more and more SFF techniques have been investigated and developed for 

ceramic processing. Well researched and commercialized SFF techniques for ceramic 

component fabrication include Fused Deposition of Ceramics (FDC) [2, 3], 

Stereolithography (SLA) [4], 3-D printing (3DP) [5, 6], and selective laser sintering 

(SLS) [7, 8]. In the FDC process, the ceramic-thermoplastic material is heated into a 

semi-liquid state and extruded through a nozzle.  The extruded material is deposited on 

an X-Y working surface in a layer by layer fashion.  The solids loading is typically 40-50 

vol.%.  FDC uses a high percentage of organic chemical binders at 40-50 vol.% [3]. 

Stereolithography of ceramic components is implemented by mixing resins with ceramic 

particles which can be polymerized when exposed to ultraviolet light.  However, the laser 

scattering at the ceramic particles reduces the cure depth and widens the cured area, thus 

reducing the dimension accuracy [4]. 3-D printing of ceramic components includes two 

approaches according to applied materials: hot-melt dry powder and aqueous based 

pastes. The dry powder method is similar to 3-D printing where the binder is selectively 

printed onto the powder bed [5]. The main concern of this method is the relatively low 

green density, only up to 35 vol. %.  In recent years aqueous based ceramic pastes were 
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explored to overcome this problem [6]. Selective laser sintering was applied in ceramic 

part fabrication by mixing organic binder (typically PMMA) with ceramic particles as the 

process material allowing for achieving a smooth surface finish [7], but the post-sintering 

density is relatively low at about 55 vol.% [8]. 

Most SFF techniques for ceramic component fabrication involve the use of 

organic binders. In some processes, such as FDC, the binder content may reach as high as 

40 to 50 vol.%. This organic binder needs to be removed during post processing and 

generates harmful wastes that are undesirable for the environment [9]. Freeze-form 

Extrusion Fabrication (FEF) extended the idea of the rapid freeze prototyping (RFP) 

method [10-13], where water droplets are deposited on demand and freeze on a 2-D 

motion substrate for the fabrication of 3D components in a layer-by-layer manner. FEF 

uses an aqueous ceramic paste with a solids loading up to 50 vol.%. The organic binder 

content is only 2-4 vol. %. In FEF, aqueous-based ceramic paste is extruded using a ram 

extruder and deposited on a 2-D motion substrate. After the deposition of each layer, the 

Z-axis of the gantry system moves up by one layer thickness and the next layer is 

deposited. This process is repeated until the component is completely fabricated. Freeze-

drying is used to prevent crack formation during the drying process. After freeze-drying, 

the binder is then removed in a rapid heating cycle because of the low binder content. 

Finally, the parts are sintered at 1550 °C for Alumina paste.  Post-FEF processing has 

been detailed in previous publications [1, 9]. FEF has some unique advantages, such as 

achievability of large dimension components fabrication and a high density of sintered 

components. Especially, low percentage of organic binder is involved and almost no 

material waste is generated.  Further, FEF is an environmentally friendly SFF technique. 
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In this paper, a custom-designed 3D gantry system and a custom-designed cooling 

system (0 °C to -30 °C) was used for FEF processing. The layer thickness optimization 

was performed for fabrication at -20 °C. The self-sustaining ability at different 

temperatures was analyzed.  The time constant and gain of the first-order process model 

of FEF were calculated. The trends of these two parameters during fabrication at -20 °C 

and at 0 °C were recorded and analyzed.   

2. Experimental Setup and Procedure 

2.1. Experimental setup 

The 3-D gantry system, as shown in Figure 1, consists of three orthogonal linear 

axes from Velmex BiSlide (Velmex, Bloomfield, NY), each with a 508 mm travel range. 

The X-axis consists of two parallel slides and is used as the support for the Y-axis. The 

two parallel slides provide smooth and stable motion and allow more fabrication space. 

The Z-axis is mounted on the Y-axis and the extrusion mechanism is mounted on the Z-

axis. All these axes are mounted with limit switches on both ends. Four DC motors 

(Pacific Scientific PMA22B), each with a resolver for position feedback at a resolution of 

1000 counts per revolution, drive the axes. Each motion axis has a maximum speed of 

127 mm/s and a resolution of 0.00254 mm. All the axes are controlled by a Delta-Tau 

Turbo PMAC PCI board. 

The right image in Figure 1 shows an enlarged view of the extrusion mechanism. 

It is a ram extruder driven by a DC motor (Kollmorgen AKM23D), which has an encoder 

with a resolution of 0.254 µm and is mounted on the Z-axis slide. A load cell (Omega 

LC305) is mounted between the plunger and the ram extruder to measure the extrusion 
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force. An analog-to-digital conversion board (Delta-Tau ACC28) converts the analog 

signal from the load cell to a digital signal and is input to the PMAC board. 

The 3-D gantry is located inside a freezer. A condenser is used to keep the freezer 

temperature at 0 °C (± 2 °C). Liquid nitrogen is used for lowering the temperature to the 

range of 0 °C to –30 °C. A temperature controller (Omega CN132) (Danaher Motion, 

Wood Dale, IL) is used to control the temperature of the freezer by turning a solenoid 

valve on or off, which regulates the flow rate of nitrogen. As shown in Figure 2, two 

heating coils are installed around the extruder and the nozzle to keep the paste 

temperature in the range of 10~15 °C to prevent the paste from freezing. 

 

 
Figure 1: The 3D gantry system with extrusion mechanism. 
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Syringe 

Heating coils 
Syringe holder 

Heat insulation 
Heating coil DC 

power supply 

Figure 2: Schematic drawing showing the syringe and nozzle heating system. 

 

2.2. Process parameters 

 The process parameters included initial extrusion force, extrusion force 

increment, road offset, layer thickness, and X-Y motion table (working surface) speed. 

The road offset between deposition trajectories was mainly determined by the diameter of 

the nozzle. 580 µm diameter nozzles were used in all experiments. The X-Y table speed 

is 10 mm/s.  

The extrusion force is directly related to extrusion rate. A larger extrusion force is 

associated with a higher extrusion rate, and vice versa. The initial extrusion force was set 

to 311 N. To maintain a constant extrusion rate and avoid nozzle clogging, the reference 

extrusion force was continually increased at 2.2×10-2 N/s. An adaptive PI controller was 

designed and implemented to control the ram velocity in a range of ± 50 µm/s at steady 

state to achieve the desired extrusion. 

2.3. Investigation of fabrication at different temperatures 

2.3.1. Layer thickness effect 

The layer thickness determined by the Z-axis shift distance needs to be carefully 

adjusted, in order that the nozzle does not disturb the previous layer during the deposition 

process. To optimize this parameter, cylinder samples were fabricated at 0 °C and -20 °C 

with different layer thicknesses and X-Y table speeds, as listed in Table 1. The table 
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speed for fabrication at -20 °C (11 mm/s) was slightly larger than at 0 °C (10 mm/s) to 

compensate for the temperature effect of the paste. 

 

Table 1: Deposition parameters used in the layer thickness experiments 

 
Temperature

(ºC) 

X-Y table speed

(mm/s) 

Layer thickness 

(µm) 

1 0 10 510 

2 -20 11 510 

3 -20 11 580 

4 -20 11 640 

 

2.3.2. Minimum deposition angle test 

The minimum deposition angle is the minimum angle that can be achieved 

between the substrate and the slope of a hollow cone without collapse. This angle reflects 

the offset ability of the FEF process in building a 3-D part without supporting material. 

Three set of tests were conducted to fabricate cones with different bottom diameters to 

find the minimum deposit angle.  The tested temperatures include 20 °C, 10 °C, 0 °C, -10 

°C, and -20 °C. In each set of tests, hollow cones were fabricated using bottom diameters 

of 38 mm, 51 mm, and 64 mm. The cone height was varied to determine the lowest height 

without collapse for minimum deposition angle calculation.  

2.3.3. Time constant and gain  

The FEF process contains many nonlinear effects, such as air bubbles trapped 

within the paste, uneven water content from the upper portion to the bottom portion of the 

paste, various sizes of agglomerates, etc. Paste consistency is also slightly different from 

batch to batch. These factors contribute to difficulties in modeling the extrusion process. 
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Previous research work shows that the extrusion process, in general, can be approximated 

as a first-order dynamic system, where commanded voltage to the ram motor amplifier is 

the input and extrusion force is the output [10]. However, according to the experimental 

data, there is significant variation in the model parameters. Therefore, the Recursive 

Least Square (RLS) method will be applied to model the extrusion process and determine 

how the amount of remaining paste in the material reservoir affects the dynamic model 

parameters. The model input is the commanded ram motor voltage, which is processed by 

a 16 bit digital-to-analog converter before going to the ram motor amplifier. The output is 

the measured extrusion force, which is sent to the computer via an analog-to-digital 

converter. The resolution of the measured extrusion force is 2.2 N. 

Experiments were conducted to investigate how the parameters of the extrusion 

force dynamic model varied. In these experiments, a command ram motor voltage of 3 

mV is sent to the motor amplifier for 10 seconds, and then the voltage is changed to -1.5 

mV for 5 seconds, increased to 3.75 mV for another 10 seconds, and decreased to -1.75 

mV for 5 seconds. Each test lasted until approximately 5 ml of paste was extruded. The 

extrusion force was measured with a sample period of 0.06 sec and the RLS method was 

applied to estimate the model parameters at each sample period. The experiments were 

repeated at two environmental temperatures. 

3. Results and Discussion 

3.1. Relationship between extrusion force and extrusion rate 

 During fabrication the extrusion rate decreased as the amount of paste in the 

syringe decreased when the extrusion force was constant. The table speed was maintained 

constant during fabrication. Therefore, the decrease of extrusion rate may result in under-
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filling and generating scraps in the building area as shown in Figure 3.  The reason for 

this phenomenon is still not clear, but may be related to a change of the rheology of the 

paste during extrusion. In effect, there may be a redistribution of liquid phase versus solid 

phase during the extrusion process.  

The extrusion force should be gradually increased to balance the gradual increase 

of the resistance force of paste during extrusion which may be caused by this liquid 

migration. By using the adaptive PI controller at a sample period of 0.06 seconds, the 

extrusion force followed the increasing reference force closely as shown in Figure 4. 

 

 

Scraps

Figure 3: Picture showing scrapes on a tangent ogive hollow cone.  
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Figure 4:  Reference force vs. actual ram force during an extrusion process 

 



 16

3.2. Temperature effects  

 At 20 °C, the drying rate of the extruded materials was found to be significantly 

high when processed out of the freezer where the moisture was less than 60%. The high 

drying rate was usually associated with non-uniform drying, which generated cracks and 

caused warping. Increasing moisture in the surrounding area could help in improving 

sample quality. 

At 0 °C and processed in the freezer, water evaporated more slowly and the 

drying rate is observed lower than that at 20 °C. The surface finish of the samples 

fabricated at this temperature was generally smoother than the surface finish of those 

fabricated at 20 °C.  

Because the extruded materials didn’t freeze, the lower portion of the component 

did not have enough strength to support the whole component toward the end of the 

fabrication cycle during large component fabrication. This led to component deformation 

or even collapse. Decreasing the table speed (< 12.5 mm/s) could help solve this problem. 

However, the slow deposition rate would increase the fabrication time, which is 

undesirable. 

 At -20 °C, heating coils (Figure 2) were needed to keep the paste warm (10-15 

°C) to ensure proper extrusion. The extruded ceramic paste could freeze at -20 °C. No 

visible part deformation was observed. The table speed used for fabrication at -20 °C was 

15-20 mm/s, while 10-12 mm/s were used for fabrication at 0 °C. Table 2 shows the 

general comparison of fabrication at these three temperatures. 
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Table 2: Results of layer thickness experiments 

Environment 

Temperature 

(ºC) 

Drying Rate 
Freezing 

Rate 

Table 

Speed 

(mm/s) 

Part 

Deformation 

Part 

Surface 

Condition 

-20 Low High 15-20 No Smooth 

0 Medium None 10-12 Yes Smooth 

20 
High, non-

uniform 
None 10-12 Yes 

Cracks and 

warping 

 

3.3. Comparison of part fabrication at different temperatures 

3.3.1. Layer thickness effect 

Five cylinders were fabricated for each layer thickness. Figure 5 shows one 

typical cylinder for each value listed in Table 1. Cylinder 1 was fabricated at 0 °C, while 

cylinders 2-4 were fabricated at -20 °C. Visually cylinder 1 has the best surface finish. 

This is because at this temperature, the extruded paste had a high viscosity (>50 Pa-s). As 

a result, the new layer of material deformed slightly, making the surface smoother. The 

layer thickness for this fabrication was 510 µm, which was slightly less than the diameter 

of the nozzle (580 µm). At –20 °C, the paste froze quickly and exhibited little 

deformation. When using the same layer thickness (510 µm), the surface quality was poor 

as shown in Figure 5 (cylinder 2). This is because the paste did not deform and the nozzle 

tip would scratch the previously deposited material. By increasing the layer thickness to 

580 µm, the cylinder (Figure 5, cylinder 3) had a better surface finish. When the layer 

thickness was increased to 640 µm, the cylinder (Figure 5, cylinder 4) had an even better 

surface finish. However, if the layer thickness were larger than 640 µm, under-filling 
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would occur. Therefore, the optimized layer thickness should be close to 640 µm for 

fabrication at -20 °C.  

Experiments were repeated at table speeds of 15 mm/s and 20 mm/s and results 

indicated no direct relationship between table speed and layer thickness distance. 

 

                     

                  1 (0°C, 510 µm)    2 (-20°C, 510 µm)   3 (-20°C, 580 µm)  4 (-20°C, 640 µm) 

Figure 5:  Cylinders fabricated using the parameters in Table 1. 

 

3.3.2. Minimum deposition angle test 

The minimum deposition angle test results are shown in Table 3. Figure 6 gives 

the definition of the minimum deposition angle.  Figure 7 shows a successfully built cone 

having a 19 mm height and a 38 mm bottom diameter (left) and a collapsed cone (right).  

Figure 8 shows the relationship between the minimum deposit angle and the 

fabrication temperature. The minimum deposition angles increased quickly from -20 °C 

to 0 °C, then more slowly from 0 °C to 10 °C, and the trend flattened from 10 °C to 20 

°C. At -20 °C, the extruded materials froze and became solid immediately, thus providing 

the lowest minimum deposition angle. When the temperature increased to 0 °C, the 

extruded materials would not freeze, but the viscosity was high. As the temperature 

increased, the viscosity became lower and the minimum deposition angle increased. 
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α

Figure 6: Definition of the minimum deposit angles. 

 

  

Figure 7: A successfully built cone (left) and a collapsed cone (right). 

 

Table 3: Minimum deposition test results 

Bottom Diameter 

 = 38 (mm) 

Bottom Diameter 

 = 51 (mm) 

Bottom Diameter 

= 64 (mm) 
Fabrication  

Temperature 

(°C)  Collapse angle (°) Collapse angle (°) Collapse angle (°) 

-20 27.47 25.64 23.75 

-10 34.22 34.61 34.53 

0 37.72 41.35 43.35 

10 38.66 45.58 49.04 

20 40.91 47.73 50.57 
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Figure 8: Minimum deposit angle as a function of temperature for different bottom 

3.3.3. Time constant and gain 

 the dynamics of the extrusion force process can be 

modele

 

diameters. 

It has been shown that

d by a first order process [10]. In this section, the effect of environment 

temperature on the model parameters was explored. The transfer function of the first-

order process in the digital domain is 

( ) ( )
( )

( )1F z K a
G z

V z z a
−

= =
−

 (1) 

where z is the forward shift operator, F is the ram force (N), and V is the DC voltage sent 

to the ram motor amplifier. The difference equation corresponding to equation (1) is 

 ( ) ( ) [ ] ( )1 1 1F k aF k K a V k= − + − − = ηϕ  (2) 

where k is the iteration number and the unknown parameter and regression variable 

vectors, respectively, are  

 ( ) [ ]1a K a a b= − =⎡ ⎤⎣ ⎦η   (3) 

 

 ( ) ( )1 1
T

F k V k= − −⎡ ⎤⎣ ⎦ϕ  (4) 

 



 21

In this form, the Recursive Least Squares tec

experim

hnique can be applied to the 

ental data to estimate the parameters a and b. The model parameters (i.e., time 

constant τ and gain K) are derived from the estimated parameters a and b and, 

respectively, are 

 
ln
T

a
τ = −  (5) 

 1
bK

a
=

−   (6) 

 Table 4 shows the model time constants and gains for six experiments at 0°C and 

each experiment. The data is graphed in Figure 9. The model time constant and gain for 

and gain increased as the initial volume of paste in the material reservoir decreased. As 

increase. The model time constant in each experiment at -20°C was smaller than the 

corresponding model gain at 0°C. The reason for this is that the paste temperature at -20 

C

six experiments at -20°C. The model time constants and gains for each experiment were 

calculated by taking the average of the last 100 data points of the total data gathered in 

the model at -20°C showed the same trend as those at 0°C: the time constant decreased 

paste is extruded, air bubbles leave and liquid migration occurs causing the paste to 

become drier and stiffer. These effects cause the time constant to decrease and the gain to 

corresponding time constant at 0°C and the model gain at -20°C was also lower than the 

°C was increased 10~15°C by the heater; therefore, the paste temperature was higher than 

the paste in the 0°  experiments, making the paste thinner and easier to extrude. 
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Table 4: The time constant and gain of FEF at -20 °C and 0 °C 

FEF at -20 °C FEF at 0 °C 

Test 

Volume of  

remaining 

paste  

(ml) 

Time constant  

(s) 

Gain  

(N/mV) 

Time constant 

 (s) 

Gain 

(N/mV) 

1 35 108.03 761.38 117.79 794.66 

2 30 95.58 825.51 110.36 881.46 

3 25 85.47 889.93 103.52 920.43 

4 20 75.72 931.06 91.27 935.82 

5 15 65.28 936.75 87.69 980.16 

6 10 40.32 973.61 61.43 1035.18 
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Figure 9: Trends of model gain and time constant at -20 °C and 0 °C. 

3.4. Demonstration of components fabrication 

Figure 10 shows tangent ogive cones in the green state fabricated at -20 °C. The 

left image shows a cone made from alumina paste and right image shows two cones made 

from zirconium diboride. 
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Figure 10: An Al2O3 and two ZrB2 tangent ogive hollow cones in the green state. 

 

4. Summary and Conclusions 

The fabrication temperature has been found to significantly affect the material 

extrusion and deformation behavior in the aqueous based extrusion fabrication process. 

Fabricating samples at -20 °C allows the deposited paste to freeze. This results in the 

lowest minimum deposition angle, which means the highest self-sustaining ability 

(without the use of support material). The minimum deposition angle is mainly decided 

by the environment temperature. The lower the environmental temperature is, the smaller 

the minimum deposition angle will be. This means the FEF process can fabricate larger 

parts at -20 °C than at 0 °C. By using the heater to prevent paste from freezing, the model 

time constants and gains are both smaller than the model time constants and gains at 0 

°C. Therefore at -20 °C, with the use of a paste heater, the paste is easier to extrude. 

Further, the system response is faster than at 0 °C without the paste heater.  Figure 10 

shows two ogive cones in green state fabricated at -20 °C. Successful tangent ogive cone 

fabrications from alumina and zirconium diboride pastes, demonstrated the feasibility of 

the FEF process at -20 °C. 
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Abstract 

Freeze–form Extrusion Fabrication (FEF) is an additive manufacturing process that 

extrudes high solids loading aqueous ceramic pastes in a layer–by–layer fashion below 

the paste freezing temperature for component fabrication. Due to effects such as the air 

bubble release, agglomerate breakdown, change in paste properties during extrusion as a 

result of liquid phase migration, etc., the extrusion force is difficult to control. In this 

paper, an adaptive controller is proposed to regulate the extrusion force. Recursive Least 

Squares is used to estimate extrusion force model parameters during fabrication and a 

low–order control scheme capable of tracking general reference trajectories is designed 

and implemented to regulate the extrusion process. The controller is implemented for 

sinusoidal, triangular, and square reference trajectories over a wide range of frequencies 

and to fabricate several parts. The results show the excellent tracking performance of the 

adaptive controller. 

 

Keywords: Ceramic Paste Extrusion, Solid Freeform Fabrication, Adaptive Control 
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1. Introduction 

Solid Freeform Fabrication (SFF) has tremendous potential for becoming an 

efficient and inexpensive manufacturing technique for 3–D ceramic component 

fabrication since it is a tool–less fabrication process and, as compared to conventional 

fabrication techniques, does not require costly and time–consuming mold preparation. 

Most SFF techniques for ceramic component fabrication involve the use of organic 

binders. In some processes, such as the Fused Deposition of Ceramics (FDC) process, the 

binder content may be as high as 40 to 50 vol.%. The organic binder must be removed 

during post processing. The binder removal is very time–consuming and generates 

harmful wastes that are undesirable for the environment [1]. 

 Freeze–form Extrusion Fabrication (FEF) uses an aqueous ceramic paste with a 

solids loading up to 50 vol.%; however, water is the main liquid medium and the organic 

binder content is only 2–4 vol.% [2]. In FEF, an aqueous–based ceramic paste is extruded 

using a ram extruder and deposited on a substrate. After the deposition of each layer, the 

extrusion mechanism moves up one layer thickness and the next layer is deposited. When 

fabrication is complete, the part is freeze–dried to prevent crack formation during the 

drying process. After freeze–drying, the binder is then removed in a rapid heating cycle 

because of the low binder content. Finally, the parts are sintered at a high temperature 

(e.g., 1550°C for Alumina). Because the organic binder content is reduced to 2–4 vol.%, 

FEF is an environmentally friendly paste extrusion technique for ceramic part fabrication. 

 Most research studies in extrusion processes are concerned with screw extrusion 

of polymer (melt) extrusion processes. In these processes, in–process measurement of 

viscosity and throughput (extrusion rate) is generally not available; therefore, most 
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research studies have concentrated on indirect control of these variables via the regulation 

of melt temperature and pressure. Costin [3] gave a critical review of the early dynamics 

and control work in this area, which focused on classical control techniques. Hassan and 

Parnaby [4] used optimization and off–line curve fitting of the experimental data to 

define a quasi–linear steady–state model. A cascade controller with one–step–ahead 

forecasts of melt temperature and melt pressure calculated and changed the set points of 

the screw speed, barrel/die wall temperature, and restrictor valve angular position to 

maintain the desired extrusion rate. Costin and Taylor [5] used step tests and pseudo–

random binary sequence (PRBS) tests to determine the empirical models of melt 

temperature and pressure in a single screw extruder (SSE). A PI controller was 

implemented to remove the long–term drift in the pressure level. More recently, Previdi 

[6] used step tests to determine an empirical first–order model from voltage (screw 

speed) to pressure and implemented a digital PID controller. The results showed the 

controller was able to regulate the pressure at a desired constant reference value. These 

linear techniques generally cannot capture the system’s nonlinearities; therefore, they are 

only suitable for a specific operating point. Some nonlinear modeling techniques such as 

artificial neural networks, black box Nonlinear Autoregressive Network (NARX) and, 

more recently, grey box NARX [7] were proposed. However, these techniques are 

generally highly dependent on the training data and, thus far, no controllers have been 

designed and implemented using these models. 

 Screw extrusion cannot be utilized for ceramic processing since ceramic pastes 

are abrasive and will severely damage the threads, eventually causing the screw extruder 

to fail. For ram extrusion, the pressure gradation and unstable shear stress regimes are 
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much more complex. Modeling and controlling the extrusion pressure of the liquid–solid 

phase paste generally presents more difficulties, as compared to polymer extrusion, 

because of unpredictable disturbances such as air bubble release and agglomerate 

breakdown, material property uncertainties generated during the paste preparation 

procedures, and the complex variation of paste properties during extrusion due to liquid 

phase migration [8–12]. Post–operative statistical techniques such as standard error of 

signal, outlier, spectral and fractal analyses have been used to monitor and model the 

fluctuations in the ram extrusion pressure signals caused by air bubble release, surface 

cracking, poor mixing, agglomerate breakdown, etc. [13–18]. However, these approaches 

are still in the development stage and only a few of them have been applied to effectively 

provide and implement a control strategy due to the previously addressed control 

difficulties. Detailed initial modeling and control work for this ram extrusion process can 

be found in previous publication [19,20]. 

 The rest of the paper is organized as follows. First, the experimental system and 

FEF process are described. Next, variation in the force extrusion model parameters is 

investigated experimentally. In the fourth section the adaptive extrusion force controller 

is designed and its performance is analyzed. Several parts are fabricated using the 

controller in the final section. 

2. Experimental System and Process Parameters and Disturbances 

The experimental system consists of three subsystems: gantry motion system, 

extrusion mechanism, and temperature control system. These subsystems and the 

disturbances that affect the FEF process are described in this section. 
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2.1. Hardware and Software Systems 

The motion system, shown in Figure 1, consists of a gantry with three orthogonal 

linear axes (Velmex BiSlide), each with a 250 mm travel range. The X–axis consists of 

two parallel slides and is used as the support for the Y–axis. The Z–axis is mounted on 

the Y–axis and the extrusion mechanism is mounted on the Z–axis. All axes have limit 

switches on both ends. Four DC motors (Pacific Scientific PMA22B) drive the axes, each 

with a resolver for position feedback. The signal sent from the resolver is converted by a 

resolver–to–digital encoder converter. Each motion axis has a maximum speed of 127 

mm/s and a resolution of 2.54 μm. The axes are controlled by a Delta–Tau Turbo PMAC 

(Programmable Multi–Axis Controller) PCI board. The axis command voltages are sent 

from 16 bit Digital to Analog Converters (DACs) with ranges of ±5 V. 

 The extrusion mechanism is shown in Figure 1. It is a ram extruder driven by a 

DC motor (Kollmorgen AKM23D), which has an encoder with a resolution of 0.254 µm. 

The input signal to the ram axis drive is voltage from a 16 bit DAC with a range of ±5 V. 

The control signal is limited to a range of ±610 mV to prevent system damage due to 

excessive ram speeds. A load cell (Omega LC305–1KA) is mounted between the plunger 

and the ram extruder to measure the extrusion force. A 16 bit analog–to–digital 

conversion board (Delta–Tau ACC28) with a voltage range of ±5 V converts the analog 

signal from the load cell into a digital signal in the PMAC board. The force measurement 

resolution is 2.2 N. 

 The motion gantry system is housed inside a freezer. A condenser maintains the 

environmental temperature at 0°C (± 2°C). Liquid nitrogen can be used to lower the 

environmental temperature below 0°C to –30°C. A temperature controller (Omega 
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CN132) is used to control the environmental temperature by turning a solenoid valve on 

and off, which regulates the flow rate of liquid nitrogen. As shown in Figure 2, heating 

coils are installed around the material reservoir and the nozzle to keep the paste 

temperature at approximately 10–15°C to prevent it from freezing and ensure continuous 

extrusion. 

 Control of the motion gantry system is realized by embedded Proportional plus 

Integral plus Derivative (PID) controllers on the PMAC control board. Estimation and 

control algorithms for the extrusion mechanism are implemented in PLC programs, 

which are also provided by the PMAC control system, and can be programmed to 

implement customized algorithms. Since the PMAC control environment is originally 

designed for motion control, PLC programs have a lower priority than the motion 

controllers and are typically executed asynchronously. However, timers can be used to 

ensure a constant sample rate. In the experiments conducted in this paper, the extrusion 

force control loop is executed at 10 Hz. The control system schematic is shown in Figure 

3. 

2.2. Process Parameters 

The FEF operation process parameters include reference extrusion force, 

reference extrusion force derivative, deposition path offset distance, standoff distance 

(i.e., layer thickness), table speed, and environmental temperature. The path offset 

distance and standoff distance are mainly determined by the nozzle size. Since 580 µm 

diameter nozzles are used for the experiments conducted in this paper, the path offset 

distance and standoff distance are both empirically determined to be 500 µm for proper 

deposition. For proper part fabrication the table speed must be matched to the extrusion 
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force. For a given extrusion force, if the table speed is too high fully dense tracks will not 

be formed and, if the table speed is too low, the ceramic bead will be too large and cover 

the nozzle. The table speed is set to 10 mm/s for the experiments conducted in this paper 

such that operation productivity is maintain without the need for an excessive extrusion 

force. Environmental temperature will affect the rheological properties of the extrudate. 

The environmental temperature is set to 0°C for the experiments conducted in this paper. 

See [21] for further details of the effect environmental temperature has on FEF processes. 

 Similar to other studies, extrusion force (pressure) is selected to be the controlled 

variable because it directly affects the extrusion rate. The larger the extrusion force, the 

higher the extrusion rate, and vice versa. An experiment was performed to explore the 

extrusion force operating range. A constant voltage of 30 mV is sent to the ram motor 

amplifier and the result is shown in Figure 4. The extrusion force continuously increases 

until it reaches 2002 N at 219.1 sec, and then suddenly drops to 1252 N. It was observed 

that the paste began to come out from the top of the material reservoir due to the large 

extrusion force. After this occurred, the paste continuously extruded from both the nozzle 

and the top of the material reservoir and the extrusion force remained at approximately 

1160 N. Therefore, the maximum extrusion force should not exceed 2002 N. According 

to operator experience, the maximum extrusion force is set to 1558 N, which is large 

enough for normal operation and low enough to protect the extrusion mechanism. 

 Reference extrusion force derivative is another important process parameter. 

Typically, the initial reference extrusion force is manually selected to be between 315 and 

405 N, depending on paste properties, which vary from batch to batch. The higher the 

paste apparent viscosity, the larger the initial reference extrusion force. It is necessary to 
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continually increase the reference extrusion force during the operation to maintain a 

constant extrusion rate. Experiments show that the extrusion rate slowly decreases as the 

amount of paste in the material reservoir reduces when the extrusion force is maintained 

constant. Since the table speed is constant during fabrication, the decrease in extrusion 

rate may result in under–filling, generating discontinuous paste flow in the building area 

as shown in Figure 6. Nozzle clogging may even occur. It is believed that the continuous 

decrease of extrusion rate is related to liquid phase migration during the extrusion process 

[8]. The extrusion force causes a redistribution of the paste liquid and solid phases during 

the extrusion process, subsequently changing the paste rheological property (typically the 

paste apparent viscosity will increase). When the paste is compressed, the water moves 

toward the die region more quickly than the paste; therefore, the water content becomes 

highest in the die region and decreases until it is a minimum at the top of the material 

reservoir. This change will affect the extrusion rate. Typically, the reference extrusion 

force will need to be increased to maintain the desired extrusion rate [9–12]. The 

reference extrusion force derivative is selected to be 2.2·10–2 N/s, from operator 

experience, for the experiments conducted in this paper. 

2.3. Process Disturbances 

Disturbances affecting the FEF process include liquid phase migration, 

agglomerate breakdown, and air bubble release. Liquid phase migration causes the paste 

to become drier during the operation and, thus, become more difficult to extrude, as 

discussed above. Regardless of how well the paste is prepared, it will always contain 

agglomerates (i.e., groups of ceramic particles) and air bubbles. When the ram is applied 

to the paste, the agglomerates will “slide” past one another in the material reservoir, 
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which will cause the agglomerates to break into smaller agglomerates and cause 

fluctuations in the extrusion force. Further, based on experimental observations, a large 

agglomerate breakdown in the nozzle region will cause the extrusion force to increase. As 

the air bubbles migrate towards the nozzle, they join together and, when an air bubble 

leaves the nozzle, the extrusion force drops. This affect is shown in Figure 5. In this 

experiment the periodic voltage signal sent to the ram motor drive was 21.4 mV for 10 

sec, –9.2 mV for 5 sec, 18.3 mV for 15 sec, and –6.1 mV for 5 sec. The extrusion force 

fluctuated periodically and, when an air bubble release occurred at 1836 sec, the 

extrusion force suddenly dropped from 285 N to 55.9 N, and then slowly increased to the 

previous range. 

3. Model Parameter Variations in FEF Processes 

The FEF process contains many disturbances, as described above. Also, the paste 

composition is slightly different from batch to batch due to variations in the preparation, 

which includes material mixing and ball milling, and cannot be totally eliminated. 

Storage time and environmental conditions, such as temperature and humidity, also affect 

the paste properties. In this section Recursive Least Squares (RLS) is applied to the FEF 

extrusion force process to estimate the dynamic model parameters for different batches of 

paste, and for a single reservoir of paste as it is completely extruded, to analyze variations 

in the model parameters for different batches and as the amount of paste in the reservoir 

changes. 

 Alumina paste is utilized for all of the experiments conducted in the paper. The 

paste is a combination of Al2O3 powder, PEG, glycerol, Darvan C, and water. The 

components are mixed and then ball milled for twenty–four hours to break up 
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agglomerates and produce a uniform mixture. Aquazol is dissolved in water at 60°C 

using magnetic stirring to form a 50 vol.% Aquazol solution. The Aquazol solution is 

added using a vacuum mixer (Whip Mix, Model F) to minimize bubbles. The final 

viscosity is adjusted by adding acid to control the paste pH. 

3.1. Model Parameter Estimation 

It has been shown that the ceramic paste extrusion force dynamics can be 

characterized as a first–order dynamic system [19]. The digital transfer function of a 

first–order system is 

 ( ) ( )
( )

( )1F z K a
G z

u z z a
−

= =
−

 (1) 

where z is the forward shift operator, F is the extrusion force (N), u is the command 

voltage (mV) sent to the ram motor amplifier, K is the model gain (N/mV), which is 

unknown. The parameter a is also unknown and is related to the time constant. The 

difference equation corresponding to Eq. (1) is 

 ( ) ( ) [ ] ( ) ( ) ( )1 1 1 1F k aF k K a u k k k= − + − − = − −η ϕ 1  (2) 

where k is the iteration number and the unknown parameter and regression variable 

vectors, respectively, are  

 ( ) [ ]1a K a a b= − =⎡ ⎤⎣ ⎦η   (3) 

 ( ) ( )1 1
T

F k u k= − −⎡ ⎤⎣ ⎦ϕ  (4) 

Parameter estimates are then computed recursively using the following equations 

 ( ) ( ) ( ) ( ) ( ) ( ) 1
1 Tk k k k k k

−
1⎡ ⎤= − + −⎣ ⎦q P I Pϕ ϕ ϕ  (5) 

 ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ1 Tk k k y k k k 1⎡ ⎤= − + − −⎣ ⎦η η q ηϕ  (6) 
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 ( ) ( ) ( ) ( )1Tk k k k⎡ ⎤= −⎣ ⎦P I q Pϕ −  (7) 

where  is the estimated parameter vector. The matrix I is a two–by–two identity 

matrix. The matrix P is known as the covariance matrix. The initial covariance matrix is 

typically selected to be a large positive definite diagonal matrix. In the experimental 

studies conducted in this paper, 

( )ˆ kη

( )
1000    0

0
  0    1000

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

P  and covariance resetting is not 

applied. In this form, RLS can be applied to experimental data to estimate the model 

parameters a and b. The time constant and gain, respectively, are derived from the 

estimated model parameters as 

 
ln( )

T
a

τ = −  (8) 

 1
bK

a
=

−   (9) 

where T is the sample period. 

 An experiment is conducted to investigate the ability of RLS to estimate FEF 

extrusion force process model parameters. The input voltage to the ram motor amplifier is 

18.3 mV for 15 sec, –6.1 mV for 5 sec, 21.4 mV for 10 sec, and –9.2 mV for 5 sec. 

Positive and negative input voltages donate advancing and retreating ram motions, 

respectively. Note that the magnitudes of the positive and negative inputs are not equal. 

Since it typically requires more energy for the ram to advance than to retreat, the 

magnitude in the positive direction is greater than the magnitude in the negative direction 

in an attempt to maintain a constant average extrusion force. By using Eqs. (5)–(7), the 

model parameters are estimated and the modeled output is computed and compared with 
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the measured output, as shown in Figure 7. It can be seen that the modeled extrusion 

force matches the real extrusion force well. 

3.2. Model Variation Analysis 

As previously mentioned, paste compositions are slightly different from batch to 

batch. A similar phenomenon was also reported by Costin [5]. To investigate the effect 

paste batch preparation has on the force extrusion model parameters, model parameters 

for four reservoirs of paste, each from a different batch, are estimated. Each experiment 

starts with a reservoir of unused paste with an initial volume of approximately 40 ml. The 

command voltage to the ram motor amplifier periodically changes between constant 

values of –3.7 and 8.5 mV every 5 sec. The time constants and gains are calculated using 

Eqs. (5)–(9). Each experiment is conducted for 120 sec and the average time constants 

and gains are shown in Table 1. It can be seen that both model parameters are very 

different for the four batches of paste.  

 Even for the same batch of paste, the paste properties for different reservoirs of 

paste will be different because of the variations in storage time, temperature, humidity, 

etc. Moreover, for the same tube of paste, the paste properties will also change during the 

extrusion process, as reported in [8]. Experiments are conducted to investigate how the 

extrusion dynamic model parameters vary during the FEF process as the amount of paste 

in the material reservoir decreases. In these experiments, a reservoir of paste with an 

initial volume of approximately 35 ml is extruded. The command voltage changes 

periodically and is 12.2 mV for 10 sec, –6.1 mV for 5 sec, 6.1 mV for 10 sec, and 0 mV for 

5 sec for each experiment, and approximately 5 ml of paste is extruded over a period of 
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approximately 2000 sec. Average time constants and gains (shown in Table 2) were 

calculated from the last 100 sec of data collected for each experiment. 

 Figure 8 shows that as the volume of paste in the material reservoir decreases the 

time constant decreases and the gain increases. It is hypothesized that the changes in the 

time constant and gain as paste is extruded are associated with changes in the paste 

rheological properties. As paste is extruded, liquid phase migration causes the paste to 

become drier and air bubble release causes the paste to become stiffer. These effects will 

cause the paste to become less elastic and more viscous; therefore, the time constant 

decreases and less time is required for the extrusion force to reach the steady–state. Also, 

as the paste becomes less elastic and more viscous, it is harder to compress, and the gain 

will increase. 

 These experiments demonstrate that different batches of paste have much 

different extrusion force dynamic properties and that even for the same reservoir of paste, 

the extrusion force dynamic properties change substantially as the amount of material in 

the reservoir decreases. Therefore, an adaptive control scheme is adopted in this paper to 

account for the inherent model parameter variations by updating the controller gain 

calculated from the model parameters in real time. Also, the smallest time constant for 

the force extrusion process is approximately 61.4 seconds, as shown in Table 2. 

Therefore, a sample rate of 10 Hz is more than sufficient for this process.  

4. Adaptive Force Extrusion Controller 

An adaptive general tracking controller that will be used to regulate the extrusion 

force for FEF processes is designed and discussed in this section. 
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4.1. Tracking Controller Design 

The extrusion force model is 

 ( ) ( ) ( )1F k aF k bu k 1= − + −  (10) 

The error is 

 ( ) ( ) ( )re k F k F k= −  (11) 

where Fr is the reference extrusion force. Substituting Eq. (11) into Eq. (10) 

 ( ) ( ) ( ) ( )1re k F k aF k bu k 1= − − − −  (12) 

Noting that e(k–1) = Fr(k–1) – F(k–1), solving for F(k–1) and substituting this expression 

into Eq. (12) 

 ( ) ( ) ( ) ( ) ( )1 1r re k ae k F k aF k bu k= − + − − − −1  (13) 

Defining the pseudo control signal μ(k–1) = Fr(k) – aFr(k–1) – bu(k–1), Eq. (13) can be 

rewritten as 

 ( ) ( ) ( )1e k ae k kμ 1= − + −  (14) 

A controller of the form μ(k–1) = ge(k–1) is used where the controller gain g is adjusted 

to shape the closed–loop transient response. In the adaptive control scheme, the model 

parameters a and b are estimated in real time and the controller gain g is updated in real 

time given the estimated value of a 

 ˆexp
d

Tg
τ

⎛ ⎞
a= − −⎜ ⎟

⎝ ⎠
 (15) 

where τd is the desired closed–loop time constant. The physical control signal is 

 ( ) ( ) ( ) ( )ˆ 1 1
1 ˆ

r rF k aF k ge k
u k

b
− − − −

− =  (16) 
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Note that this controller requires future knowledge of the reference signal, which is 

typically available. The controller is able to intelligently modify its gain to maintain 

stability and a consistent transient response as the extrusion force process varies. Also, 

when different batches of paste and reservoirs of material are used, the adaptive 

controller can quickly estimate the model parameters and adjust its gain. 

4.2. General Tracking Controller Performance 

The general tracking controller is implemented in PLC programs of the Turbo 

PMAC control system. The control law is proved (see Appendix) to be able to achieve a 

unitary closed–loop transfer function, assuming zero initial conditions. Therefore, 

theoretically, this controller extends the tracking bandwidth to infinity. Practically, the 

system tracking bandwidth is limited due to unmodeled dynamics, control signal 

magnitude limitation, disturbances, etc. To investigate controller performance, 

experiments with three different reference signals (i.e., sinusoidal, triangular, and square) 

are conducted. The closed loop time constant is selected to be 0.1 sec, to achieve the 

fastest response possible given the sampling limitations. All experiments were conducted 

using the same batch of alumina paste. 

4.2.1. Sinusoidal Reference  

Sinusoidal reference extrusion forces with frequencies ranging from 0.1 to 1 Hz 

and peak–to–peak amplitudes of 89 N are utilized in the first set of experiments. Figure 9 

shows the extrusion force and control signal responses for a reference with a frequency of 

0.1 Hz. It can be seen that there are some fluctuations in the control signal ranging from –

250 to 200 mV. The fluctuations of the control signals coincide with the fluctuations of 

the measured force feedback. Figure 10 shows the extrusion force and control signal 
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responses for a reference with a frequency of 1 Hz. The controller sample rate is 10 Hz, 

so there are 10 samples/cycle for the reference with a frequency of 1 Hz, much less than 

the 100 samples/cycle for the reference with a frequency of 0.1 Hz. Therefore, the 

fluctuations in the measured force signals are significantly reduced and, subsequently, the 

fluctuations in the control signals are much less. Since more control energy is required to 

track the reference with the higher frequency, the control signal is larger and is between –

500 to 500 mV. 

 The data is used to create magnitude and phase frequency plots of the closed–loop 

system, as shown in Figure 11. The magnitude is between –0.05 and 0.21 dB and tends to 

decrease as the frequency increases. The phase is zero for low frequencies, decreases 

slightly as the frequency increases, and is –9.8° for a frequency of 1 Hz. Figure 12 shows 

the extrusion force average error and standard deviation of the average error. The average 

error is between 0.053 and –0.115 N and is not correlated with frequency. The standard 

deviation increases as the frequency increases and varies from 1.31 N for a frequency of 

0.1 Hz to 4.73 N for a frequency of 1.0 Hz. 

4.2.2. Triangular Reference 

Triangular extrusion force references with frequencies ranging from 0.1 to 1 Hz 

and peak–to–peak amplitudes of 89 N are utilized in these experiments. Figure 13 shows 

the extrusion force and control signal responses for a reference with a frequency of 0.1 

Hz. The control signals range from –130 to 150 mV. Figure 14 shows the extrusion force 

response for the reference with a frequency of 1 Hz. As more control energy is used to 

perform the higher frequency tracking, the control signals are between –250 to 200 mV, 

larger than those in Figure 13. 
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 The data is used to create magnitude and phase frequency plots of the closed–loop 

system, as shown in Figure 11. The magnitude is between –0.301 and 0.051 dB and tends 

to decrease as the frequency increases. The phase is zero for low frequencies, decreases 

slightly as the frequency increases, and is –11.9° for a frequency of 1 Hz. Figure 12 

shows the extrusion force average error and standard deviation of the average error. The 

average error is between –0.018 and 0.078 N and is not correlated with frequency. The 

standard deviation increases as the frequency increases and varies from 1.19 N for a 

frequency of 0.1 Hz to 3.74 N for a frequency of 1.0 Hz. 

4.2.3. Square Reference 

Square reference extrusion forces with frequencies ranging from 0.1 to 1 Hz and 

peak–to–peak amplitudes of 89 N are utilized in this set of experiments. Figure 15 shows 

the extrusion force and control signal responses for a reference with a frequency of 0.1 

Hz. It can be seen that the control signal saturates at –610 and 610 mV for approximately 

0.09 sec when the reference signal decreases and increases, respectively. However, the 

steady–state control signal is between –30 and 30 mV. The rise time is approximately 

0.14 sec. Figure 16 shows the extrusion force and control signal responses for a reference 

with a frequency of 1 Hz. As the reference changes values, the control signal saturates 

between –610 to 610 mV for about 0.09 sec, similar to Figure 15. The rise time is 0.102 

sec, similar to that for that of the reference with the frequency of 0.1 Hz, due to the 

control signal saturation. 

 The data is used to create magnitude and phase frequency plots of the closed–loop 

system, as shown in Figure 11. The magnitude is between –0.115 and 0.204 dB and tends 

to decrease as the frequency increases. The phase is –0.150 for low frequencies, decreases 
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slightly as the frequency increases, and is –15.1° for a frequency of 1 Hz. Figure 12 

shows the extrusion force average error and standard deviation of the average error. The 

average error is between –0.094 and 0.137 N and is not correlated with frequency. The 

standard deviation increases as the frequency increases and varies from 2.81 N for a 

frequency of 0.1 Hz to 8.06 N for a frequency of 1.0 Hz. The larger phase shifts and error 

standard deviations, as compared to the experiments with sinusoidal and triangular 

references, are due to the fact that saturation occurred whenever the reference extrusion 

force changed values. 

4.2.4. Discussion 

At steady–state, the control signal is very small, usually between –50 to 50 mV 

according to the experimental results. Therefore, the controller only utilizes a very small 

range of the operation range of the ram motor control signal, which is –5 to 5 V. 

Therefore, the ram motor rotates at a very low speed, and motor commutation will cause 

fluctuations in the ram velocity, which will directly affect the extrusion force.  

5. Summary and Conclusions 

Recursive Least Squares (RLS) was applied to estimate the parameters of a first–

order dynamic model of the Freeze–form Extrusion Fabrication process in real time. An 

adaptive controller with a general tracking control law was designed and implemented to 

regulate the extrusion force. Experiments with sinusoidal, triangular, and square 

extrusion force references with different frequencies ranging from 0.1 to 1 Hz were 

conducted to investigate the controller’s performance. 

The experimental results show the model parameters are not only different from 

batch to batch, but also change significantly during the extrusion process. It is observed 
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that the time constant decreases and gain increases as the paste in the material reservoir 

decreases. The reason for these trends is believed to be related to liquid phase migration. 

The adaptive controller demonstrated excellent tracking for all reference trajectories over 

a wide range of frequencies. The adaptive controller provides an automated means to 

determine the controller parameter when a new batch of paste is utilized and can adjust 

the controller parameter automatically during the extrusion process to account for 

disturbances and inherent changes in the process due to liquid phase migration. 

Estimating the model parameters during the extrusion process also provides a potential 

technique to monitor the paste property in real time. 
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Table 1: Estimated model time constants and gains for different batches of paste. 

Batch Time constant (sec) Gain (N/mV) 

1 108 761 
2 184 410 
3 125 825 
4 164 550 
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Table 2: Model time constants and gains for various amounts of paste in material 

reservoir. 

Test Volume of remaining paste (ml) Time constant (sec) Gain (N/mV) 

1 35 117 794 

2 30 110 881 

3 25 103 920 

4 20 91.2 935 

5 15 87.6 980 

6 10 61.4 1035 

 

 

Figure 1: Gantry motion system (left) and extrusion mechanism (right). 
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Figure 2: Extrusion mechanism schematic. 
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Figure 3: FEF process control system schematic. 
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Figure 4: Extrusion force response to a constant command voltage of 30 mV. 
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Figure 5: Extrusion force (top) and command voltage (bottom). Sudden drop in 

extrusion force is due to an air bubble release. 
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Discontinuous 
paste flow 

Figure 6: Discontinuous paste flow on top of a hollow cone. 
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Figure 7: Commanded voltage (upper left), modeled and measured extrusion forces 

(bottom left), and estimated model parameters a (upper right) and b (lower right). 
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Figure 8: Model time constant (top) and model gain (bottom) as functions of paste 

volume in material reservoir. 
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Figure 9: Extrusion force (top) and command voltage (bottom) responses for a 

sinusoidal reference with a frequency of 0.1 Hz. 
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Figure 10: Extrusion force (top) and command voltage (bottom) responses for a 

sinusoidal reference with a frequency of 1 Hz. 
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Figure 11: Experimental extrusion force closed–loop magnitude (top) and phase 

shift (bottom) for sinusoidal, triangular, and square reference extrusion forces. 
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Figure 12: Extrusion force average error (top) and error standard deviation 

(bottom) for sinusoidal, triangular, and square reference extrusion forces. 
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Figure 13: Extrusion force (top) and command voltage (bottom) responses for a 

triangular reference with a frequency of 0.1 Hz. 
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Figure 14: Extrusion force (top) and command voltage (bottom) responses for a 

triangular reference with a frequency of 1 Hz. 
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Figure 15: Extrusion force (top) and command voltage (bottom) responses for a 

square reference with a frequency of 0.1 Hz. 
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Figure 16: Extrusion force (top) and command voltage (bottom) responses for a 

square reference with a frequency of 1 Hz. 
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Appendix 

The proposed controller’s ability to achieve a unitary transfer function is proved in this 

appendix. Taking the z–transform of Eq. (16), assuming no model parameter estimation 

error 

 ( ) ( ) ( ) ( )r rbu z F z z aF z ge z= − −  (A1) 

Taking the z–transform of the error given in Eq. (11) 

 ( ) ( ) ( )re z F z F z= −  (A2) 

Substituting Eq. (A2) into Eq. (A1) and rearranging 

 ( ) [ ] ( ) ( )rbu z z a g F z gF z= − − +  (A3) 

Taking the z–transform of Eq. (10) 

 ( ) ( ) ( )1F z aF z z bu z z 1− −= +  (A4) 

Substituting Eq. (A3) into Eq. (A4) and rearranging 

 ( ) ( )1 1 1 11 1 raz gz F z az gz F z− − − −⎡ ⎤ ⎡ ⎤− − = − −⎣ ⎦ ⎣ ⎦  (A5) 

Therefore, the closed–loop transfer function is 

 
( )
( )

1 1

1 1

1 1
1r

F z az gz
F z az gz

− −

− −

− −
= =

− −
 (A6) 
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