
Scholars' Mine Scholars' Mine 

Masters Theses Student Theses and Dissertations 

Summer 2008 

Parameter estimation of systems with deadzone and deadband Parameter estimation of systems with deadzone and deadband 

and emulation using xPC Target and emulation using xPC Target 

Jeffrey James Lentz 

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses 

 Part of the Mechanical Engineering Commons 

Department: Department: 

Recommended Citation Recommended Citation 
Lentz, Jeffrey James, "Parameter estimation of systems with deadzone and deadband and emulation 
using xPC Target" (2008). Masters Theses. 4645. 
https://scholarsmine.mst.edu/masters_theses/4645 

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4645&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/4645?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4645&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


 



 

 

 
 
 
 

PARAMETER ESTIMATION OF SYSTEMS WITH DEADZONE AND DEADBAND 

AND EMULATION USING xPC TARGET 

 
 

by 
 
 

JEFFREY JAMES LENTZ 
 
 

A THESIS 
 

Presented to the Faculty of the Graduate School of the  
 

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY 
 
 

In Partial Fulfillment of the Requirements for the Degree 
 
 

MASTER OF SCIENCE IN MECHANICAL ENGINEERING 
 

2008 
 

Approved by 
 
 

Robert G. Landers, Advisor 
K. Krishnamurthy 

 Jagannathan Sarangapani 
 
 

 
 

 

 

 



    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2008 

Jeffrey James Lentz 

All Rights Reserved 



    

 

iii

PUBLICATION THESIS OPTION 

This thesis consists of the following two articles that have been submitted for 
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ABSTRACT 

The first paper presents a new approach for online parameter estimation using 

multiple recursive least squares estimations implemented simultaneously to determine 

system model parameters, as well as a deadzone and/or deadband. The online adaptive 

estimation scheme was verified in simulation using MATLAB Simulink and verified 

experimentally for a DC motor driven cart, an electro-hydraulic pilot valve system, and a 

free cart loosely coupled to a DC motor driven cart by a pin that fits loosely in a slot.  

The results for the DC motor driven cart and electro-hydraulic pilot valve predicted the 

output within 10% in almost every case and as low as 2-3%. The estimation of the 

velocity of the free cart loosely coupled to the DC motor cart was within 3% for some 

cases; however, it was highly sensitive to input voltage frequency.   

The second paper demonstrates the use of the Mathworks xPC Target 

environment for validation of a control system and emulation of a physical system using 

real-time code auto-generated from a simulation environment. A Master/Slave control 

system is developed for a hydraulic test stand. The Master and Slave Electronic Control 

Units (ECUs) are emulated using two target PCs running the xPC Target kernel 

communicating with each other over a Controller Area Network.  The emulated and 

simulated results matched perfectly.  Then the emulated Master ECU is used to control 

the hydraulic test stand by sending current commands and receiving pressure sensor data 

from the Slave ECU.   The task execution time of the emulated Master ECU was the 

same regardless of whether it was controlling the emulated Slave ECU or the actual Slave 

ECU.  The accuracy of the emulation is shown to be only limited by the accuracy of the 

hydraulic system plant model. 
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1. PARAMETER ESTIMATION OF SYSTEMS WITH DEADZONE AND 

DEADBAND 

 

 

J.J. Lentz, R.G. Landers, and K. Krishnamurthy 

Department of Mechanical and Aerospace Engineering 

Missouri University of Science and Technology 

1870 Miner Circle 

Rolla, Missouri 65409-0050 

{Jeffrey.J.Lentz, landersr, kkrishna}@mst.edu 

1.1. ABSTRACT 

A new approach is presented for online parameter estimation using multiple 

recursive least squares (RLS) estimations implemented simultaneously to determine 

system model parameters, as well as a deadzone and/or deadband. Initial guesses of the 

deadzone parameters that are larger than the actual parameters are required in some cases. 

The system input and output signals dictate which of the RLS estimation schemes to 

utilize at each sample period. Comparing each of the RLS estimations, the deadzone 

and/or deadband are determined. The online adaptive estimation scheme was simulated 

using MATLAB Simulink to verify convergence. It was also verified experimentally for 

a DC motor driven cart, an electro-hydraulic pilot valve system, and a free cart loosely 

coupled to a DC motor driven cart by a pin that fits loosely in a slot.  The results for the 
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DC motor driven cart and electro-hydraulic pilot valve were very good, predicting the 

output within 10% in almost every case, and as low as 2-3%. The estimation of the 

velocity of the free cart loosely coupled to the DC motor cart was within 3% for some 

cases; however, it was highly sensitive to input voltage frequency.  In the case of a high 

frequency, the two carts generated high impact forces not modeled by the simple model 

used.   

1.2. KEYWORDS 

Deadzone, Deadband, Recursive Least Squares, Electro-Hydraulics, Parameter 

Estimation 

1.3. INTRODUCTION 

1.3.1. Need For Online Parameter Estimation. Many mechanical systemshave  

nonlinearities such as deadzone or deadband. Deadzone is typically present as a result of 

static friction, spring pretension, or overlapping parts and create a region where the input 

has no effect on the output [1, 2]. Deadband can result from static friction or from 

improper mating of parts (e.g., gear backlash) and creates a region where the output 

remains unchanged upon reversal of direction [1]. The parameters of these nonlinearities 

are rarely known and, if left unaccounted for, can degrade controller performance. 

Frequently in practice, a calibration routine will be conducted and deadband and 

deadzone parameters are determined offline. Then in the control software, the inverses of 

the deadzone and deadband are implemented using the predetermined static values [3]. 

While this is better than ignoring the nonlinearities entirely, any change in the 

nonlinearity is not accounted for in the control software. Factors such as wear, corrosion, 
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lubrication, and temperature change over time and affect the deadzone and deadband 

regions. Also, cost of the calibration test itself is often prohibitive. Using an algorithm 

that can eliminate the calibration test and constantly update the nonlinear parameters is 

advantageous in many applications. 

This paper presents an online parameter estimation scheme that estimates system 

model parameters as well as deadzone and/or deadband parameters. This is verified 

experimentally for a DC motor driven cart, an electro-hydraulic pilot valve system, and a 

free cart loosely coupled to a DC motor driven cart by a pin that fits loosely in a slot.   

1.3.2. Deadzone. Deadzone will be defined for the purpose of this paper as a  

range of inputs for which the output remains unchanged [1]. Outside that range there is a 

linear relationship between the deadzone input v(k) and deadzone output u(k). The 

deadzone is shown in Figure 1.1 and is defined by 

( )
( ) ( )

( )
( ) ( )








>−
≤≤

<−
=

rr

rl

ll

ckvforckv

ckvcfor

ckvforckv

ku 0   

(1) 

where cr ≥ cl. Some papers [2,3] define additional terms to account for any differences in 

the slope between positive and negative inputs. In this paper the deadzone is always 

considered before or after a linear system. Separate transfer functions are used to define a 

piecewise linear system: one for each side of the deadzone. Any terms added to equation 

(1) to account for slope differences will be accounted for in the steady-state gains of these 

transfer functions.  
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Figure 1.1. Block Diagram of a Deadzone Nonlinearity. 

 

 

 

 

The deadzone may occur at the input or output of an otherwise linear system. For 

the DC-motor driven cart that will be studied later in this paper, the Coulomb friction 

results in a deadzone. For this case the system is best modeled as a linear transfer 

function with a deadzone at the output. The pressure of an electro-hydraulic pilot valve, 

which will also be studied later, contains a deadzone resulting from spring pretension and 

an overlap in the spool’s land over the output port. For this case, the system is best 

modeled as a linear transfer function with a deadzone at the input. 

1.3.2.1. Deadzone Literature Review. Many articles have been written 

 regarding the online estimation of deadzone and deadband parameters, or the on-line 

estimation of plant dynamics. However, to the authors’ knowledge, no work has 

incorporated the estimation of multiple non-linearities and plant dynamics 

simultaneously.  

Tao and Kokotovic [2] develop projection methods to determine a symmetric 

deadzone on an input signal. They show improved controllability in simulation using a 

deadzone inverse. Er-Wei Bai [3] proves convergence of Tao and Kokotovic’s work [2], 

but assumes the deadzone output is measurable. Wang et al. [4] proposes a piecewise and 

intuitive method for controlling a deadzone without a deadzone inverse. His method 

cr 

cl 1 

1 

v 

u 
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assumes equal slopes on each side of the deadzone and prior knowledge of upper and 

lower deadzone bounds. Ibrir [5] develops a method for an adaptive control algorithm for 

a symmetric input deadzone without prior knowledge of deadzone bounds. Also, in [5] a 

method is developed for an adaptive control algorithm for a non-symmetric input 

deadzone that requires prior knowledge of deadzone bounds using Lyapunov and 

Algebraic Riccati Equations. Lewis et al. [6] derives a Fuzzy Logic control scheme to 

estimate a deadzone and validates it on a CNC machine tool assuming an input deadzone 

and that linear plant dynamic terms are known. Jang [7,8] uses a similar technique to 

estimate an input deadzone for a DC motor and for an XY positioning table. Xu et al. 

[9,10,11] uses iterative learning control (ILC) to estimate time-varying and state-

dependent deadzone for controlling a piezoelectric motor. However, ILC can only be 

used to control actuators performing repetitious motions.  

1.3.2.2. Deadzone Example 1.  The following is an example of a system with  

deadzone as shown in Figure 1.2. The input is ( ) ( )kTkv sin700= . The plant is a linear 

first order system with a deadzone at the input. The linear transfer function has a sample 

period of T = 0.005 and is  

96.0
1.0

)(
)(

−
=

zzU

zY
 

(2) 

The deadzone has the following parameters: cl = -300 and cr = 200. Thus u(k) is  

( )

( )

( )
( )

( )







>
≤≤−

−<

−

+
=

200

200300

300

200

0

300

)(

kv

kv

kv

for

for

for

kv

kv

ku  

(3) 
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Figure 1.2. Block Diagram of a Plant with Input Deadzone and a Sinusoidal Input. 

 

 

 

 

Figure 1.3 shows the signals plotted with respect to time and Figure 1.4 shows the 

input-output relationship. The input-output relationships are shown in comparison to a 

simulation of the transfer function from equation (2) in the absence of the deadzone. The 

elliptical shape in Figure 1.4 is the result of phase lag. The slower the time constant, the 

further it deviates from the line y = Ku where K is the steady-state gain. The portion of 

the line for the output without deadzone that lies inside the ellipse results from the zero 

initial condition.  
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Figure 1.3. Results for the System Defined By Equations (2) and (3) with v(k) = 

700sin(kT). 
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Figure 1.4. y(k) Versus v(k) for the Transfer Function in Equation (2) with and 

without Deadzone Defined in Equation (3) and v(k) = 700sin(kT). 

 

 

 

1.3.2.3. Deadzone Example 2.  The following is an example of a system with  

deadzone as shown in Figure 1.5. The input is ( ) ( )kTkv sin300= . The plant is a first 

order linear system with a deadzone at the output. The linear portion is defined by 

equation (2). The deadzone is defined by: cl = -300 and cr = 200. Thus y(k) is 

                                                                                                                                                      

( )
( )

( )

( )
( )

( )







>
≤≤−

−<

−

+
=

200

200300

300

200

0

300

kw

kw

kw

for

for

for

kw

kw

ky  

(4) 

 

Figure 1.5. Block Diagram of a Plant with an Output Deadzone and a Sinusoidal 

Input. 
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The results are shown in Figure 1.6 and Figure 1.7. The resulting plots for an 

output deadzone have roughly the same shape as the plots for an input deadzone as 

shown in Figure 1.3 and Figure 1.4. The difference is that the output decays 

asymptotically to zero when the deadzone is at the input and the output goes to zero 

without decay when the deadzone is at the output.  
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Figure 1.6. Simulated Results for System Defined by Equations (2) and (4) and u(k) 

= 700sin(kT). 
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Figure 1.7. y(k) Versus u(k) for the Transfer Function in Equation (2) with and 

without Deadzone Defined in Equation (3) and Figure 1.5 and u(k) = 700sin(kT). 
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1.3.3. Deadband.  The deadband is the range through which an input signal may  

be varied, upon reversal of direction, without initiating an observable change in the 

output signal [1]. The deadband is formulated in accordance with [1] and [12] as 

( )
( )
( )

( ) ( )
( ) ( ) ( )

( ) ( )







>
≤≤

<

−
−
+

=
kwkw

kwkwkw

kwkw

for

for

for

dkw

ky

dkw

ky

r

rl

l

)(

1  

(5) 

where 

( ) ( )1
l

w k y k d= − −  

( ) ( ) dkykwr +−= 1  
(6) 

 

Figure 1.8. Block Diagram of a Deadband Nonlinearity.  

 

 

Like the deadzone, the deadband can be the result of friction [1]. Another source 

of deadband is loosely mating mechanical parts often referred to as backlash [12]. A 

deadband and deadzone can be present simultaneously. Like a deadzone, the deadband 

can be present at the input or output of an otherwise linear system. The difference 

between modeling the deadband at the plant input versus modeling it at the output is very 

subtle. Modeling the plant with the deadband after the transfer function flattens the crests 

and troughs of an otherwise sinusoidal output. Modeling the plant with the deadband 
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before the transfer function flattens the input to the transfer function to a constant value at 

the crests and troughs. The plant output will asymptotically approach a steady-state value 

for those periods of constant input. 

1.3.3.1. Deadband Literature Review. Many notable works exist on the  

detection of deadband.  Tao and Kokotovic [12] simulated an adaptive controller to 

control an unknown linear system with an unknown deadband at the output. Grundelius 

and Angeli [13] presented an online determination of deadband and linear system 

parameters using recursive least squares.  The model assumed a deadband at the input to 

a linear system.  The estimated parameters were used in deadband inverse in a self tuning 

regulator in simulation.  The method presented in this paper expounds upon Grundelius 

and Angeli’s method to consider systems that also include a deadzone and consider the 

deadband at the linear system’s input as well.  Gebler and Holtz [14] simulated the 

compensation of a deadband determined offline.  Woo and Lewis [15] developed a fuzzy 

controller to compensate for an unknown deadband and demonstrated its utility on a CNC 

machine tool.  Ahmad and Khorrami [16] simulated the use of Lyapunov equations to 

determine the backlash online and used an adaptive backlash inverse for improved 

control. Tao [17] developed a fuzzy controller to reduce delay induced by an unknown 

deadband and verified the controller experimentally with a motor system with output 

backlash.  Zabiri and Samyudia [18] simulated the use of a “Mixed Integer Quadratic 

Programming” to determine deadband; however, the method had very slow computation 

time.  Lagerberg and Egardt [19] used Kalman filtering to determine the deadband 

parameters online for the control of an automotive powertrain.   
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1.3.3.2. Deadband Example.  The following is an example of a system with an  

output deadband as shown in Figure 1.9. The linear transfer function is defined by 

equation (2). The deadband is defined by d = 30. The input is )sin(100)( ttv = . Equations 

(5) and (6) become 









+−>
+−≤≤−−

−−<

−
−
+

=
30)1()(

30)1()(30)1(

30)1()(

30)(

)1(

30)(

)(

kykw

kykwky

kykw

for

for

for

kw

ky

kw

ky  

(7)  

The results are shown in Figure 1.10 and Figure 1.11.  

 

 

Figure 1.9. Plant with Output Deadband and a Sinusoidal Input. 
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Figure 1.10. Simulated Results from the System Defined by Equations (2) and (7) 

and by Figure 1.9 with v(k) = 100sin(kT). 
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Figure 1.11. y(k) and w(k) versus v(k) for the system defined by equations (2) and (7) 

and by Figure 1.9 with v(k) = 100sin(kT). 

 

 

Figure 1.10 shows that the deadband “flattens” the peaks and valleys of the 

output. One way to visualize the deadband is to think about the deadband input being 

offset on both sides. These offsets can be thought of as one-way tracks. These offsets will 

be -d and d. For y&  > 0, the offset is d and for y&  < 0, the offset is -d. When w&  changes 

sign the output remains the same until it intersects the other offset. The output cannot 

change unless it is on one of the two offsets.  

1.3.3.3. Deadzone and Deadband Examples.  Consider the following six  

examples with deadzone and deadband. The linear transfer function is defined by 

equation (2).  The input is )sin(600)( kTkv = . The deadband parameter is d = 100. The 

deadzone parameters cr and cl are 200 and -300, respectively. Plants are defined as shown 

in Figure 1.12, Figure 1.14, Figure 1.16, Figure 1.18, Figure 1.20, and Figure 1.22. The 

time history plots as well as input-output plots are shown in Figure 1.13, Figure 1.15, 

Figure 1.17, Figure 1.19, Figure 1.21, and Figure 1.23, respectively. When the 
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nonlinearity precedes the linear transfer function, the output will asymptotically approach 

a steady-state value within the deadzone or deadband as the output dynamically responds 

to the non-linearity.  In the case that the linear transfer function precedes the nonlinearity, 

the output will abruptly or non-asymptotically reach the steady-state value within the 

deadzone or deadband because the system dynamically responded prior to the 

introduction of the nonlinearity. Asymptotical and non-asymptotical approaches are 

denoted “AA” and “NA,” respectively, on the input-output plots. Areas in which the 

output y approaches a non-zero value due to the deadband are denoted as “~0” (where the 

tilde is used as the logical not).  

 

 

Figure 1.12. Block Diagram of Plant with Input Deadzone Preceded by Sinusoidal 

Input and Output Deadband.  
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Figure 1.13. Simulated Results for Plant Shown in Figure 1.12 and v(k) = 600sin(kT). 
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Figure 1.14. Block Diagram of Plant with Input Deadzone Proceeded by Input 

Deadband and Sinusoidal Input. 
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Figure 1.15. Simulated Results for Plant Shown in Figure 1.14 and v(k) = 600sin(kT). 

 

 

 

Figure 1.16. Block Diagram of Plant with Output Deadzone Followed By Output 

Deadband and Preceded by Sinusoidal Input. 
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Figure 1.17. Simulated Results for Plant Shown in Figure 1.16 and v(k) = 600sin(kT). 

 

 

 

Figure 1.18. Block Diagram of Plant with Output Deadband Followed by Output 

Deadzone and Preceded by Sinusoidal Input. 
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Figure 1.19. Simulated Results for Plant Shown in Figure 1.18 and v(k) = 600sin(kT). 
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Figure 1.20. Block Diagram of Plant with Input Deadband Preceded by Sinusoidal 

Input and Output Deadzone. 
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Figure 1.21. Simulated Results for Plant Shown in Figure 1.20 and v(k) = 600sin(kT). 

 

 

 

 

 

Figure 1.22.  Block Diagram of Plant with Input Deadzone Preceded by Input 

Deadband and Sinusoidal Input. 
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Figure 1.23. Simulated Results for Plant Shown in Figure 1.22 and v(k) = 600sin(kT). 

 

 

 

 

The results from Figure 1.13, Figure 1.15, Figure 1.17, Figure 1.19, Figure 1.21, 

and Figure 1.23 are very helpful for identifying which nonlinearities are present and 

where they should be modeled relative to each other and the linear transfer function. 

When the deadband came before the deadzone (Figure 1.19, Figure 1.21, and Figure 

1.23) the plant output went to zero periodically (in this case, every π seconds). However, 

when the deadband came after the deadzone (Figure 1.13, Figure 1.15, and Figure 1.17) 

the output went to a non-zero value periodically (in this case, every π seconds). This is 

also true for a deadband that is much larger than the deadzone. For every case the 

deadzone was before the transfer function (Figure 1.13, Figure 1.15, and Figure 1.23) the 

plant output asymptotically approached a constant. However, when the deadzone was 

after the transfer function (Figure 1.17, Figure 1.19, and Figure 1.21) the plant output 

went directly to a constant value. When the deadband came before the transfer function, 

the plant output asymptotically approached a constant value at the crests and troughs. 

However, when the deadband came after the transfer function, the plant output went 

directly to a constant value. When the nonlinearity is modeled preceding the transfer 
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function, the output will show a dynamic response to that nonlinearity, hence the 

asymptotical approach.  When the transfer function is modeled preceding the 

nonlinearity, the output will show an instantaneous non-asymptotical response to the 

nonlinearity.   

1.4.  PROBLEM FORMULATION 

Now the different types of nonlinearities have been defined in Section 1.1.1 and 

1.1.1, the objective is to find the parameters of the linear transfer function, deadzone, and 

deadband online without the use of the intermediate signals u(k) and w(k), which are not 

measurable. This section begins by applying recursive least squares (RLS) to estimate the 

parameters of a linear plant. Then a single nonlinearity is added and it is shown how to 

switch between two RLS estimation models to estimate the linear and deadzone  

parameters simultaneously. Without adding more terms to the RLS estimation routine, but 

by switching between four RLS estimation models, the linear, deadzone, and deadband 

parameters can be estimated simultaneously.  

1.4.1. Nonlinearities Not Present.  A first order linear transfer function with  

gain K and time constant τ has the form 

( )
( ) 1τ +

=
s

K

sU

sY
 

(8) 

In the discrete domain this becomes 

( ) ( ) ( ) ( )1 11 1
T

y k a y k b u k k= − − + − = φ η  

(9) 

where  
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









−=−=

−−
τ

1
τ

1 1,
TT

eKbea  

(10) 

Using y(k) as the measurement, the regression vector is 

( ) ( ) ( )1 1
T

k y k u k= − − −  φ  

(11) 

The system dynamics are described by the unknown parameters a1 and b1, which are 

denoted by the vector ηηηη 

[ ]1 1

T
a b=η  

(12) 

Åström et al. [20] derive a recursive least squares estimation for the estimated 

parameters defined in terms of the previous iteration’s parameters and a correction factor 

( ) ( ) ( ) ( ) ( )( )ˆ ˆ ˆ1k k k y k y k= − + −η η q  

(13) 

The estimation ( )kŷ  is computed from the previous parameter estimates ( )ˆ 1k −η  and the 

current states ( )kφ  

( ) ( ) ( )ˆˆ 1
T

y k k k= −φ η  

(14) 

The term q(k) is the gain of the estimation error which generates a correction 

factor for the estimate ( )ˆ 1k −η . To find a recursive form of P(k), Åström et al. [20] 

employ the matrix inversion lemma to define P(k) solely in terms of P(k–1) and ( )kφ  

( ) ( ) ( ) ( )1
1Tk k k k

λ
 = − − P I q φ P  

(15) 
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where 

( ) ( ) ( ) ( ) ( ) ( ) 1
1 1T

k k k k k kλ
−

 = − + − q P φ I φ P φ  

(16) 

An initial value for the matrix P is required. Typically it is selected as a large 

positive diagonal matrix. Åström et al. [20] suggest it can be selected arbitrarily. The 

parameter λ is the exponential forgetting factor. A value of λ = 1 indicates no forgetting, 

meaning all of the data is used in the estimation. A lower forgetting factor (typically 0.9 < 

λ < 1) uses only more recent data to find the parameter estimates. The unknown 

parameters are updated by equations (13), (14), (15), and (16). 

1.4.2. Deadzone Present At Input.  Consider the system with a deadzone at  

the input as shown in Figure 1.2 assuming u is unknown. Using the deadzone definition 

in equation (1), and replacing u for a function of v in equation (9)  yields the following 

piecewise definition of the output 

( )
( ) ( )( )

( )
( ) ( )( )

( )
( )

( )







>
≤≤

<

−+−−
−−

−+−−
=

r

rl

l

rrr

lll

ckv

ckvc

ckv

for

for

for

ckvbkya

kya

ckvbkya

ky

,1,1

1

,1,1

1

1

1

 

(17) 

The subscripts r and l indicate right and left-hand planes for the input v. This is 

helpful in the event plant dynamics are different on either side of the deadzone. It also 

eliminates the need to include slope terms in the deadzone definition as mentioned in 

Section 1.1.1. Note neither an r nor an l was used for a1 within the deadzone. This will be 

discussed shortly.  Since equation (17) is a piecewise definition, it will be necessary to 

implement two estimation routines: one for v < cl and one for v > cr. Attempting to 

estimate b1, cr, and cl for cl < v < cr is not possible since the output is not influenced by 
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the input in that region. Because cl and cr are unknown, the switching criterion between 

estimations is unknown. However, for most systems, a general range is known [4,5]. 

Using this approximation, switching criterion cl* and cr* can be selected such that they are 

certain (or at least very likely) to meet the following conditions 

 c  c ,c  c r*rl*l ><  
(18) 

Selecting the parameters too conservatively will only slow the convergence by 

leaving out usable data. However, not guessing conservatively enough (i.e., one or both 

conditions in equation (18) are not met) runs the risk that some of the points used in the 

regression are in the deadzone. Using a constant switching condition cl* and cr* worked 

well for all of the tests presented in this paper. However, since cl and cr are being 

estimated by the routine, it may be possible to change the switching criterion from the 

initial approximates cl* and cr* to the estimates of cl and cr once they have converged. 

 The two regression vectors are 

( ) ( ) ( )1 1 1
T

k y k v k= − − −  lφ  for ( ) *lckv <  

(19) 

( ) ( ) ( )1 1 1
T

k y k v k= − − −  rφ  for ( ) *rckv >  

(20) 

and the two parameter estimation vectors are 

( ) 1, 1, 1,ˆ
l l l lk a b b c = − lη  for  ( ) *lckv <  

(21) 

( ) 1, 1, 1,ˆ
r r r rk a b b c = − rη  for  ( ) *rckv >  

(22) 
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Substituting 
l
φ  and 

r
φ  for φ  and ˆ

l
η  and ˆ

r
η  for ηηηη into the equations (11) and (12) 

respectively and using equations to update the parameters (13), (14), (15), and (16) 

completes the estimation law. One issue with using separate transfer functions for each 

side of the deadzone is the question of what to use for the a1 term in the deadzone as 

shown in equation (17). The ideal solution would be to estimate a1 for the decay within 

the deadzone using RLS and ϕ(k) = y(k-1). However, the unknown deadzone parameters 

cr and cl result in unknown switching conditions. To deal with that, approximates for cr* 

and cl* must be selected such that cr* < cr, cl* > cl and cr* > cl*. If cr* is not close enough to 

cr and the signal decays rapidly, then the RLS estimation will “miss” the most significant 

part of the decay. Then y will appear to be a constant and a1 will go to -1. It is only 

possible to use RLS to obtain a good estimate of a1 within the deadzone if the system has 

a slow decay (i.e., large time constant) and approximations of cr* and cl* close to cr and cl 

are known. If it is not possible to use RLS to estimate a1 within the deadzone, there are a 

number of different ways to approximate it. One possibility is for all v(k) ≥ 0 use a1,r and 

v(k) < 0 use a1,l. Another possibility is to use the previous a1. For example if v(k) > cr 

then v drops to where cr > v(k) > cl, continue to use a1,r until v(k) < cl. This latter method 

will be used throughout the rest of the paper and no estimation of any a1 terms is 

performed within the deadzone. 

1.4.3. Deadzone Present At Input And Deadband Present At Output.  Now  

consider the plant shown in Figure 1.12 with a deadzone at the input and a deadband at 

the output. In equation (17), replacing y(k) with w(k) yields 
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( )
( ) ( )( )

( )
( ) ( )( )

( )
( )

( )






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for
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1

,1,1

1

1

1

 

(23) 

From the deadband equations (5) and (6) 

( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1

1

−≥⇒≥
−≤⇒≤





+
−

=
kykykwkw

kykykwkw

for

for

dky

dky
kw

r

l  

(24) 

Substituting k-1 for k in equation (24) yields 

( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )2111

2111

1

1
1

−≥−⇒−≥−
−≤−⇒−≤−





+−
−−

=−
kykykwkw

kykykwkw

for

for

dky

dky
kw

r

l
 

(25)  

The equations are simplified by defining the derivative as the backwards difference  

( ) ( ) ( )
T

kyky
ky

1−−=&  

(26) 

The conditions y(k) < y(k - 1), y(k) > y(k - 1), y(k - 1) < y(k - 2), and y(k - 1) > y(k - 2), 

become ( )ky&  < 0, ( )ky&  > 0, ( )1−ky&  < 0, and ( )1−ky&  > 0 respectively. Combining 

equation (23) and (24) yields the equation for a system defined by a first order transfer 

function with input deadzone and output deadband 

( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )






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><−−+++−−
>>−−+−+−−
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<>−−+−+−−
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−−−−
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−−−−
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lllllll

lllllll
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ckvkykyforcbadkvbkya
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,1,1,1,1
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(27) 
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The four regression vectors become 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

*

*

*

*

1 1 1 , ( 1) ( 2)

1 1 1 , ( 1) ( 2)

1 1 1 , ( 1) ( 2)

1 1 1 , ( 1) ( 2)

T

l

T

l

T

r

T

r

k y k v k for v k c y k y k y k

k y k v k for v k c y k y k y k

k y k v k for v k c y k y k y k

k y k v k for v k c y k y k y k

= − − − < > − > −  

= − − − < < − < −  

= − − − > > − > −  

= − − − > < − < −  

l+

l-

r+

r-

φ

φ

φ

φ

  

(28) 

The four parameter estimation vectors become 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1, 1, *

1, 1, *

1, 1, *

1, 1, *

ˆ , ( 1) ( 2)

ˆ , ( 1) ( 2)

ˆ , ( 1) ( 2)

ˆ , ( 1) ( 2)

l l l l

l l l l

r r r r

r r r r

k a b e for v k c y k y k y k

k a b e for v k c y k y k y k

k a b e for v k c y k y k y k

k a b e for v k c y k y k y k

+ + +

− − −

+ + +

− − −

 = − < > − > − 

 = − < < − < − 

 = − > > − > − 

 = − > < − < − 

l+

l-

r+

r-

η

η

η

η

 

(29) 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1, 1, *

1, 1, *

1, 1, *

1, 1, *

1 , ( 1) ( 2)

1 , ( 1) ( 2)

1 , ( 1) ( 2)

1 , ( 1) ( 2)

l l l l l l

l l l l l l

r r r r r r

r r r r r r

e d a b c for v k c y k y k y k

e d a b c for v k c y k y k y k

e d a b c for v k c y k y k y k

e d a b c for v k c y k y k y k

+ + +

− − −

+ + +

− − −

= − + − < > − > −

= + − < < − < −

= − + − > > − > −

= + − > < − < −

 

(30) 

Note again, the coefficients for each estimation are kept separate. Positive and 

negative values of v are denoted by r and l subscripts, respectively. The positive and 

negative conditions of y& are denoted by + and – subscripts, respectively. Substituting 

+lϕϕϕϕ , −lϕϕϕϕ , +rϕϕϕϕ , and −rϕϕϕϕ  for ϕϕϕϕ  and +lηηηη̂ , −lηηηη̂ , +rηηηη̂  and −rηηηη̂  for ηηηη̂  into the equations from 

Section 1.1.1 completes the estimation law. 
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The deadzone and deadband parameters are determined from the following 

equations 

( )
( ) 
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(31) 
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1
 

(32) 

1.4.4. Other Cases.  There are many other possibilities of the order in which the  

nonlinearities present themselves as shown in Section 1.3.3.3. However the procedure for 

setting up the estimation routine is the same:  

1. Write out the generic linear transfer function in discrete form  

2. Perform substitutions from deadzone and deadband equations in (1) and 

(4), respectively, creating an equation for every possible condition 

3. Create an RLS estimation law for each condition 

4. Solve for the nonlinear terms 

1.4.5. Filtering.  One of the challenges of implementing the routine presented in  

Sections 1.1.1 is that knowledge of the sign of y& is required. The output y is typically a 

signal coming from an electronic sensor. Voltage signals are inherently noisy. The signal 

y&  computed by a first order finite backwards difference using equation (26) becomes 

noisier as the sample time becomes smaller.  

Because of the noise, the statement y& > 0 can switch back and forth from true to 

false very rapidly. For this reason, it is helpful to define limits on either side of zero. For 



 

 

26 

all points between these two limits, 0y ≈& . All points above and below the limits will be 

considered as y& > 0 and y& < 0, respectively.  

If the noise has a Gaussian distribution, it is known that 99.7 % of the points will 

lie within three standard deviations (+/-3σ) of the mean. Therefore +/- 3σ would be a 

good place to start for limits. However it can be a problem if the +/- 3σ range spans 

nearly the entire range of y& . It was necessary to filter y& and y in the example of the 

hydraulic test bench presented below. Since filters add delay to the measurement signal, a 

pure delay was added to the input v to maintain a meaningful relationship between the 

input and output.  

An M-point non-weighted moving average filter that uses the current term delays 

the signal by ½ (M-1) samples or ½ (M-1)T seconds. The variance (σ2 denotes population 

variance, SN
2 denotes sample variance) is reduced by a factor of 1/M (see the Appendix 

for derivation). Note that after filtering the signal can no longer be considered as a 

random number because there is positive covariance between consecutive data points. 

The variance of y& when calculated from equation (26) is given by    

( ) ( ) 2var2var −= Tyy&  

 (33) 

Since the sample period T is usually a very small number, the variance of 

y& becomes very large and y& will need to be filtered.  See the Appendix for derivation. 

1.5. SIMULATED RESULTS 

1.5.1. Simulation Example - Without Noise.  Consider the plant piecewise- 

defined by two discrete transfer functions with a deadzone input nonlinearity and a 

deadband output nonlinearity. The transfer functions are 
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(34) 

and have a sample period T = 0.005. Using the regression and parameter estimation 

vectors given in equations (28) through (30) with recursive least squares, the plant 

parameters will be estimated. The deadzone and deadband parameters are cr = 200, cl = -

300, dr = 30, and dl = 50. The positive and negative deadzone offset guesses were cr* = 

350 and cl* = -350, respectively. The initial covariance matrix was chosen to be 

diag[1000 1000 1000]. The initial states forφ  were [0 0 0]. The initial estimates for each 

set of parameters were chosen to be [1 1 1]. The forgetting factor λ was chosen to be 

0.99.  

The estimates converged to their proper values. As seen in Figure 1.24, the 

estimates did not converge smoothly, but rather “stair-stepped” towards the actual value. 

This is because each estimation routine is not continuously running, but rather triggered 

when certain conditions are met. The spikes in the estimated output are present each time 

one of the RLS estimation algorithms is used for the first time.  The estimates for cr, cl, dr, 

and dl converge slower than the a1’s and b1’s. This is because they depend on the 

convergence of the a1, b1 and e1 term for both positive and negative y& before they will 

compute properly. The 1 + a1 term is likely to be the cause of slow convergence. For 

example  

( )
1,

1,1
r r r

r

r

e b c
d

a

− −

−

+
=

+
 

(35) 
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If every parameter needed to solve for dr has converged with the exception of a1,r- 

which is off by one percent, the error is estimating dr is 20 percent. This is due to the fact 

that a1,r- is a number close to -1 making the denominator very small.  
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Figure 1.24. Simulated Estimation Results of Equation  

(34), cr = 200, cl = -300, dr = 30, and dl = 50. 
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1.5.2. Simulation Example – With Gaussian Noise.  Consider the previous  

example from Section 1.1.1 with an added zero-mean Gaussian noise to the simulated 

signal with variance 200. The raw output signal is filtered with a 20-point moving 

average filter, differentiated, and filtered again with a 20-point moving average filter.  

The filters have delayed the signal 19 steps (9.5 steps for each of the filters). Every 

estimated y& greater than 600 is considered to be positive. Every estimated y& less than -

600 is considered to be negative. Figure 1.25 shows the actual and estimated outputs as 

well as the parameter convergence.  

The parameters converge slower due to the noise as shown in Figure 1.25. After 

200 seconds at T = 0.005 sec, the estimated parameters b1 terms still had errors of up to 

15%, the a1 terms had errors up to 1%, cr and cl had errors of approximately 1%, and dr 

and dl had errors of up to 50%.  As was shown in the previously in 1.1.1, the errors in the 

a1, b1, and e1 can be magnified in the calculated estimations cr, cl, dr, and dl. Figure 1.26 

showns the estimation error plotted with +/-3σ of the superimposed Gaussian noise 

( 2003± ). If the parameters were estimated perfectly, there would theoretically be three 

data points per every 1000 in which the error is outside of the +/-3σ band.  The number of 

data points observed in which the error was outside the +/-3σ band was 12 per 1000 for 

50-200 seconds (16 per 1000 for 50-100 sec, 11 per 1000 for 100 to 150 sec, and 10 per 

1000 for 150 to 200 sec.)  This indicates that even after 200 seconds (40,000 data points) 

there is a very small but observable error in the estimation.  It is difficult to determine 

whether or not the parameters will eventually converge to their proper values, but these 

results indicate that the output can be estimated very closely even in the presence of 

noise.  
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Figure 1.25. Simulated Estimation Results of Equation  

(34), cr = 200, cl = -300, dr = 30, and dl = 50 with σ
2
 = 200. 
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Figure 1.26. Estimation Error 

 

 

1.6. EXPERIMENTAL RESULTS  

The online deadzone and deadband estimation scheme established in Section 1.4 

and simulated in Section 1.5 was tested to demonstrate its applicability. Three case 

studies are performed: (1) modeling the dynamics and the deadzone in a motor-driven 

cart with voltage input and velocity output, (2) modeling the dynamics and deadzone of 

an electro-hydraulic pilot valve with current input and pilot pressure output, and (3) 

modeling the dynamics, the deadzone, and deadband in a cart that is loosely coupled to a 

motor-driven cart.  

1.6.1. Modeling Motor-Driven Cart Velocity.  One example of a first order  

system with a deadzone is a DC-motor driven cart with voltage input and velocity output, 

as shown in Figure 1.27. There is a range of voltages around 0 V in which the cart does 

not move due to Coulomb friction. This results in an input deadzone. Figure 1.28 shows 

the input-output curve for 30 seconds (approximately 19 cycles) of the cart for a 

sinusoidal input voltage of )4sin(6)( ttv = . The output goes directly to zero in the middle 
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of the plot. This indicates the plant dynamics should be modeled before the deadzone due 

to Coulomb friction acting at the motor’s output. The curve has nearly the same shape as 

the curve in Figure 1.7 indicating it should be possible to fit the cart’s dynamics to a first 

order system with an output deadzone. 

 

 

Figure 1.27. DC-Motor Driven Cart. 
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Figure 1.28. Velocity Versus Voltage for DC-Motor Driven Cart with v(t) = 6sin(4t). 
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Since there does not appear to be any deadband in the velocity, the online 

parameter estimation scheme shown in Section 1.1.1 can be used to derive equations for 

el and er  

( ) ( )
( ) ( )

1,

1,

1 0

1 0

l l l

r r r

e c a for y k

e c a for y k

= − + <

= − + >
 

(36) 

Not only is modeling the deadzone after the linear transfer function more accurate 

for this system, it has the added benefit of having known switching conditions. If the 

deadzone is modeled before the transfer function, values larger than cr and -cl have to be 

assumed as switching conditions. In this arrangement, the switching condition is based 

solely on y(k), which is known and needs little filtering. The initial covariance matrix P 

was chosen as diag[1000 1000 1000]. The forgetting factor λ was chosen as 0.99. The 

initial estimation vector ηηηη was chosen as [1 1 1]. Since an incremental encoder is use, the 

initial output is 0. The sample time was 0.001 seconds. Figure 1.29 shows the estimated 

output is very close to the actual output. The estimated parameters converged to within a 

few percent of their final values within approximately two seconds.  
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Figure 1.29. Results of Online Estimation of DC-Motor Driven Cart Dynamics and 

Deadzone for a Sinusoidal Input.  
 

 

Several more tests were conducted to examine the algorithm at other frequencies, 

amplitudes, and waveforms. Three tests were conducted for each permutation of 2, 4, 6, 

and 8 rad/s frequencies and 2, 4, 6, and 8 V amplitude for sine, square, and triangle 
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waves, totaling 144 tests. The functions for the square wave and triangle wave were 

defined as  

( ) ( )( )
( ) ( )( )tAmplitudet

tAmplitudet

sinsin
2

Triangle

sinsignSquare

1−⋅=

⋅=

ππππ
 

(37) 

Examples of those results are shown in Figure 1.30 through Figure 1.32. A 

randomized input signal was created by generating a zero-mean Gaussian distributed 

random number with variance 10000 every time step and filtering with a first-order low 

pass filter with a time constant of 0.5 seconds.  An example of input signals is shown in 

Figure 1.33 for sine, square, and triangle waves with amplitude 8 and frequency 1 rad/s 

and the randomized signal. Figure 1.34 shows the root mean square error of the simulated 

and actual output calculated from time 7.5 to 30 seconds and normalized about the 

maximum absolute value of the output. 
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Figure 1.30. Results of Online Estimation of DC-Motor Driven Cart Dynamics and 

Deadzone for a Square-Wave Input. 
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Figure 1.31. Results of Online Estimation of DC-Motor Driven Cart Dynamics and 

Deadzone for a Triangle-Wave Input. 
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Figure 1.32. Results of Online Estimation of DC-Motor Driven Cart Dynamics and 

Deadzone for a Randomized Input. 
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Figure 1.33. Input Signal Waveforms to Motor Driven Cart.  
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Figure 1.34. Normalized Root Mean Square Error between Simulated and 

Experimental DC-Motor Drive Cart Velocities. 

 

 
 

 



 

 

40 

It can be seen from Figure 1.34 that the error was less than 5% most of the time 

for the sine and triangle waves and that errors were larger at smaller amplitudes. This is 

largely due to the fact that for low amplitudes the signal to noise ratio is higher. As was 

shown in simulation, a spike in the estimated output occurs the first time an estimator was 

used.  Once the estimator has received about 100 milliseconds of data, its values have 

converged close enough that it will not generate any more spikes while it is used.  The 

randomized signal’s error was zero in a few locations as a result of the output remaining 

in the deadzone for several seconds. 

The convergence was the worst using a square wave voltage signal. This is due to 

the input signal not being sufficiently exciting. For a square wave input, the estimation 

algorithm only receives two values for the input signal: the voltages equal to the wave’s 

amplitude and the negative of the amplitude. When the output stabilizes such that 

( ) ( )1−≈ kyky and since u(k) = u(k-1) more than 99% of the time, there becomes an 

infinite number of parameter estimations that will minimize the estimation error. For 

instance, under stable conditions when ( ) ( )1−= kyky  and ( ) ( )1−= kuku , the estimates 

a1 = -1, b1 = 0, e1 = 0 create an estimation with zero error. However so will a1 = 0, b1 = K, 

e1 = 0 and a1 = 0, b1 = 0, e1 = y(k). In the plots of the parameter convergence of the square 

wave, it is apparent that the estimations spiked every time the input changed. After the 

input has changed, the output y reaches a steady state value momentarily as well as the 

estimates until the next input change occurs. This lack of excitation caused the deadzone 

parameter estimates cr and -cl to become negative in some cases, which was compensated 

for by underestimating the gains. However, having a cl > cr does not make physical sense 

when the deadzone is modeling Coulomb friction.  
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1.6.2. Modeling Pilot Valve Pressure.  The control of hydraulic systems  

typically requires manual or solenoid-type control valves. If the pressure is low enough, 

the operator’s movement of a joystick or the actuation of a solenoid moves a spool to 

directly regulate the working pressure. The working pressure acts on an implement such 

as a cylinder or motor. However, for a high-pressure system, the forces required to move 

the spool to regulate the working pressure are too high for an operator or solenoid to exert 

(a solenoid can only exert about 50 to 100 N [21]). In this case the operator merely 

controls an intermediate pressure called the pilot pressure and the forces generated move 

the main spool to control working port pressure. It is desirable to have some deadzone in 

the system to mitigate unintended motion should the joystick be accidentally bumped. 

However, deadzone can also be detrimental to a controller’s performance if not 

accounted for.  

The pilot valve’s deadzone results from two main factors: spring pretension and 

spool land overlap. When the valve is closed the fluid flows from the supply port through 

the spool (this is shown to flow external to the spool in Figure 1.35 and Figure 1.36 for 

clarity).  It passes through a small port, and flows around a ball, and out the drain port. 

When current flows through the solenoid coil, a pin extending from the armature presses 

on the ball restricting flow to the drain. The pressure builds up on the end of the spool 

opposite the spring. The pressure has to build high enough to overcome the pretension in 

the spring before the spool can move. Once the spool begins to move, it still needs to 

move a certain distance for fluid to flow from the supply to the control port. This is 

because the land on the spool overlaps the supply port by some distance – on the order of 
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2-3 mm. For reference the full range of motion of the spool is around 7 mm. This spool 

land overlap and spring pretension result in a significant deadzone. 

 

Figure 1.35. Pilot-Operated Hydraulic System. 

 

 

 

     

Figure 1.36. Pilot Valve. 
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The pilot valve is shown in Figure 1.36. Each pilot pressure hose can be 

considered as a variable-sized control volume with two variable orifices: one that opens 

the control volume to supply and one that opens it to drain.  The volume of the pilot 

pressure hose changes as the main spool moves as seen in Figure 1.35.  It is apparent that 

a detailed pilot pressure model could easily be 3rd order or higher if the dynamics of the 

solenoid, ball valve, pilot spool, main spool, and oil compressibility are accounted for.  

However, since an empirical model is used, the higher order dynamics will be ignored 

and the RLS routine will attempt to capture the dynamics dictated by the most dominant 

pole.   

The RLS algorithm developed in the previous sections has been configured for a 

single input/single output system.  However, the pilot pressure in one of the pilot hoses is 

dependant on the supply and drain pressures and the current supplied to each of the 

solenoids.  A change in the pressure in one pilot hose could move the main spool which 

changes the oil volume and thereby the pressure in the other pilot hose.  To consider this 

as a single input/single output system a few assumptions are made. The supply pressure is 

assumed constant.  This is a fairly valid assumption since the accumulator attenuates 

spikes in the supply pressure.  The drain pressure is also assumed to be constant since it is 

an unrestricted path to the tank. 

The objective of pilot operation is to control the force exerted on the main valve’s 

spool.   Since the spool has equal areas on each end, the difference in the pilot pressures 

is directly proportional to the force on the spool.  Because of this, the difference in the 

pilot pressures (labeled pilot a and pilot b in Figure 1.35 and Figure 1.36) will be 

considered the output.  Actuating both solenoids simultaneously is counterproductive 



 

 

44 

since pressure difference is the only thing of concern.  All of the positive input 

commands can be given to one solenoid and the negative input commands can be given 

to the other.  This reduces the model to a single input and single output.  

Figure 1.37 shows the input-output curve of the pilot valve for a sinusoidal 

command current (in mA) of )sin(1200)( ttv =  for 60 seconds of data (approximately 10 

cycles). The curve has nearly the same shape as the curve in Figure 1.4 indicating that it 

should be possible to fit the pilot valve to a first order system with an input deadzone. 

There does not appear to be any deadband. The deadzone appears to be within the range 

between -500 and 500. The initial switching condition cl* was chosen as -500 and cr* was 

chosen as 500. The initial covariance matrix P was chosen as diag[1000 1000 1000]. The 

forgetting factor λ was chosen as 0.99. The initial estimation vector η was chosen as [1 1 

1]. The initial output was 0. 
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Figure 1.37. Pilot Valve Pressure Difference Versus Current. 
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Imposing saturation on the estimates η keeps the estimated output within a much 

more realistic range.  Limits of 0 to -1 were imposed upon a1,r and a1,l.  Limits of 0.0001 

to 2 were imposed upon b1,r and b1,l.  If the lower limit would have been chosen at 

exactly zero, it could cause an error (i.e., division by zero) when calculating cr and cl.  

Limits of 0 to 500 and -500 to 0 where imposed upon er and el.   The resulting actual and 

simulated outputs are shown in Figure 1.38. 
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Figure 1.38. Results of Online Estimation of Pilot Pressure Difference Dynamics and 

Deadzone for a Sinusoidal Input. 
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Several more experiments were conducted to examine the algorithm at other 

frequencies, amplitudes, and waveforms.  Three tests were conducted for each 

permutation of 1, 2, 5, and 10 rad/s frequencies and 600, 800, 1200, 2000 mA amplitudes 

for sine, square, and triangle waves and twenty tests were conducted for a randomized 

waveform, totaling 164 tests.  The root mean square error of the estimated output 

compared to the actual output was calculated and normalized about the maximum 

absolute value of the actual output.   

Figure 1.39 shows that the error was below 10 percent for most runs.  The results 

for the hydraulic test bench appear to be more frequency dependent than for the motor 

driven cart.  This is understandable since many higher order effects were ignored.  The 

largest error was observed for a triangle wave at low amplitude and high frequency.  This 

is due to the fact that current was barely large enough to induce any pressure change.  

This is not as much of a problem with the sine wave or square wave because their signals 

stay above the deadzone estimate (cr* and –cl* = 500) longer than for a triangle wave.  For 

the triangle wave with amplitude of 600 mA and frequency of 10 rad/s, the estimator 

shuts off before the pressure begins to react to the current’s change in slope as shown in 

Figure 1.40.   
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Figure 1.39. Normalized Root Mean Square Error between Simulated and 

Experimental Pilot Pressures. 
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Figure 1.40. Estimation is not Active Long Enough to Capture Dynamics for the 600 

mA Amplitude, 10 rad/s Triangle Wave. 
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1.6.3. Modeling Velocity Of A Free Cart Loosely Coupled To A Motorized 

Cart.  The velocity of a motorized cart was successfully modeled in Section 1.1.1 as a  

first order transfer function with a deadzone at the output.  Now a motorized cart that is 

coupled to a second free moving cart with a very loose coupling is considered as shown 

in Figure 1.41. The velocity of the free cart is still modeled as a first order transfer 

function with a deadzone at the output.  However, the position of the cart has a deadband 

due to the loose coupling.  The deadband parameter d as defined in equation (5) is equal 

to half the range of free motion, which is the slot length minus the pin diameter. 

 

 

Figure 1.41. Two Carts with Slotted Coupling. 

 

 

 

 

The model shown in Figure 1.43 is created with u the input voltage and y&  the free 

cart’s velocity. The intermediate states v, w& , and w are unobservable where v is the 

theoretical velocity of the motorized cart in the absence of deadzone, w& is the velocity of 

the motorized cart, and w is the position of the motorized cart.   Certain assumptions 

dictated by the deadband model from equation (4) are made.  First, it is assumed the 

motor driven cart’s velocity is not effected by the free cart.  If the velocity of the motor 

driven cart changes depending upon whether or not it is engaged with the free cart, 

separate dynamics for each condition would have to be considered.  Second, it is assumed 



 

 

49 

the pin sliding within the slotted coupling absorbs all of the contact impact between itself 

and the ends of the slot.  If the end of the slot hits the pin with significant force, the 

connecting pin may oscillate back and forth within the length of the slot.  Third, it is 

assumed the free cart only moves when it is pushed or pulled by the motor driven cart.  

Therefore, there has to be sufficient friction within the bearings to quickly stop the cart 

when the pin loses contact with the coupling. Fourth, the motor driven cart velocity must 

be immediately inherited by the free cart upon contact of the pin and the ends of the slot. 

These four assumptions can be summed up with one comprehension assumption: the free 

cart has no mass.  Figure 1.42 shows ten cycles of the free cart velocity versus the input 

voltage to the motor driven cart.  With the input voltage used in Figure 1.42, the system 

appears to fit the model in Figure 1.43.  The cart is stationary throughout the deadzone 

but almost instantaneously assumes the velocity of the motor driven cart.   
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Figure 1.42. Velocity Versus Voltage for Free Cart With v(t) = 6sin(2t). 
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Figure 1.43. Free Cart Velocity Model. 

 

 

 
Using the methodology presented in Section 1.4, a switching RLS algorithm is 
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Using the backwards difference method from equation (26), the motor driven cart’s 

position, w, is  
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Using the deadband definition in equation (5) and taking the backwards difference from 

equation (26) shows that the free cart velocity y& is 
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Therefore, the free cart’s velocity y& is equal to the motor driven cart’s velocity w& outside 

of the deadband and the free cart is motionless within the deadband.  Since the free cart’s 

velocity is either equal to the motor driven cart’s velocity or zero, it is impossible to 

estimate the deadband by examining the free cart’s velocity alone.  Therefore the motor 

driven cart’s velocity w& , which is not directly observable, is assumed to be equal to the 

free cart’s velocity y& whenever the free cart is moving.  Using the motor driven cart’s 

velocity, the parameters a1,r, a1,l, b1,r, b1,l, cr, and cl are determined using the methodology 

from Section 1.1.1 regarding the estimation of the velocity of a motor-driven cart.  After 

the estimation of w&  converges, it is integrated to estimate w.  The deadband, d, can be 

determined from y and the estimate of w because y - w = d for )(ky&  > 0 and y - w = -d for 

)(ky&  < 0 from equations (5) and (6), respectively.  Integrating w&  is problematic since the 

initial condition is unknown and several inaccurate estimations of w& are generated before 

the algorithm converges to an accurate value. 

The motor driven and free cart masses are 7.35 and 0.42 kg, respectively: a ratio 

of 17.5.  Also, to avoid high impact forces between the pin and the slot, only low voltages 

(3, 4, and 6 volts) and low frequencies (2, 4, 6, and 8 rad/s) were considered.  Three tests 

were conducted for each permutation of sine, square, and triangle waves, frequencies of 

2, 4, 6, and 8 rad/s, and voltages of 3, 4, and 6 V, for a total of 108 tests.   

The results were best for the sine and triangle waves at low frequencies with 

errors as low as three percent.  At higher frequencies the impact speeds between the slot 

and pin are faster resulting in motion of the free cart even when the motor driven cart was 

not pushing or pulling on it.  The square wave results were far worse than those for the 

triangle or sine waves.  This is most likely the result of lack of excitation.  The estimation 
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algorithm was only active when the free cart velocity was non-zero.  However, due to the 

“instantaneous” jump in velocity, accelerations over 1 m/s2 were excluded.  In the case of 

the square wave, the free cart velocity reaches is close to the steady-state value before the 

estimation algorithm is activated.  This acceleration condition can cause the exclusion of 

some of the dynamic response data to be lost during the fast acceleration of the free cart 

in response to a stepped input voltage. As mentioned in Section 1.1.1, the inputs to the 

estimation algorithm are not persistently exciting enough to generate an accurate 

estimation. 
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Figure 1.44. Normalized Root Mean Square Error of the Simulated Output of the 

Free Cart Velocity. 
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It was observed that when the simulated motor driven cart velocity matched the 

actual free cart velocity with small error, this error was achieved within approximately 

five seconds.  A time of 7.5 seconds was chosen as the time to begin the deadband 

estimation by comparing the free cart position y to the estimated motor driven cart 

position w.  As observed in previous examples and in Figure 1.45 and Figure 1.46, the 

estimation error is very large momentarily at approximately 0.3 seconds when the 

estimation begins for positive velocities.  The estimation error is also large momentarily 

at approximately 2.0 seconds when the estimation begins for negative velocities.  A spike 

in the velocity is observed at approximately 7.5 seconds and again at 8 seconds as a result 

of the deadband estimation beginning.  After 8 seconds the simulation matches the actual 

data to within approximately 0.02 m/s with the exception of spikes that occur when the 

free cart assumes the velocity of the motor driven cart.   



 

 

54 

0 1 2 3 4 5
-0.5

0

0.5

Time [s]

V
e

lo
c
it
y
 [
m

/s
]

 

 

7 8 9 10 11 12
-0.5

0

0.5

Time [s]

V
e

lo
c
it
y
 [
m

/s
]

 

 

0 10 20 30
0

0.05

0.1

Time [s]

T
im

e
 C

o
n

s
ta

n
t 
[s

]

 

 

0 10 20 30
0

0.02

0.04

0.06

0.08

Time [s]

G
a

in
 [
m

/s
/V

]
 

 

0 10 20 30
0

0.05

0.1

0.15

0.2

Time [s]

D
e

a
d

z
o

n
e

 [
m

/s
]

 

 

0 10 20 30
0

1

2

3

4

5
x 10

-3

Time [s]

D
e

a
d

b
a

n
d

 [
m

]

0 10 20 30
5.8

5.85

5.9

Time [s]

y
 -

 w
s

im
 [
m

]

0 10 20 30
0

0.1

0.2

0.3

0.4

Time [s]

E
rr

o
r 

[m
/s

]

y
sim

y

y
sim

y

τ
r

τ
l

K
r

K
l

c
r

-c
l

 

Figure 1.45. Free Cart Parameters for v(t) = 6sin(2t). 
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Figure 1.46. Free Cart Parameters for v(t) = 6triangle(2t). 
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1.7. SUMMARY AND CONCLUSIONS 

Nonlinearities such as deadzones and deadbands are present in many mechanical 

systems.  While many of these nonlinear parameters are unknown, they can be 

determined if the general nature of the system is known.  Section 1.3 demonstrates the 

response of a first order system with deadzone and deadband nonlinearities to help 

identify which nonlinearities are present and how they should be modeled.  Section 1.4 

derives an RLS estimation law for a linear system, a linear system with an input 

deadzone, and a linear system with an input deadzone and output deadband.  Section 1.5 

demonstrates that the parameters converge perfectly to their actual values in simulation.  

Section 0 implemented the RLS estimation laws developed in Section 1.4 on a DC motor 

driven cart, a hydraulic pilot pressure, and a free cart loosely coupled to a DC motor 

driven cart.   

The results for the DC motor driven cart were very good.  The simulated velocity 

had an error of less than 10% for 94% of the experiments.  The results for the hydraulic 

pilot pressure were similar with 91% of the experiments having less than 10% error 

between the actual and simulated pressure.  A few experiments of the pilot pressure did 

not converge to accurate values because the estimation did not remain active long enough 

to capture the system dynamics.  The results for the free cart loosely coupled to DC 

motor driven cart had estimation errors as low as three percent, but only for inputs with 

low frequencies.  At higher frequencies the deadband model fails to describe impact 

forces between the two carts.  For all three experimental scenarios the square waveform 

performed the worst.  For most experiments, the RLS algorithm was still able to create a 

simulated output that was close to the experimental output when a square wave was 
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input; however, it frequently determined inaccurate parameter values.  In many cases the 

square wave caused the gain to be underestimated and compensated for it by allowing the 

deadzone terms to be negative.   

This method for determining nonlinearities and plant dynamics worked well 

because generic equations for the system were known and only coefficients were needed. 

Further work is needed to apply these techniques to higher order systems, to use 

nonlinearities other than deadzone and deadband, and to incorporate the estimations in an 

adaptive control algorithm. 
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1.8. NOMENCLATURE 

a1 = coefficient of y(k-1) 

a1,l = coefficient of y(k-1) for v < 0 

a1,r = coefficient of y(k-1) for v > 0 

+la ,1 = coefficient of y(k-1) for v < 0, y& > 0 

−la ,1 = coefficient of y(k-1) for v < 0, y& < 0 

+ra ,1 = coefficient of y(k-1) for v > 0, y& > 0 

−ra ,1 = coefficient of y(k-1) for v < 0, y& < 0 

b1 = coefficient of u(k-1) 

b1,l = coefficient of u(k-1) for v < 0 

b1,r = coefficient of u(k-1) for v > 0 

b1,l+ = coefficient of u(k-1) for v < 0, y& > 0 

b1,l- = coefficient of u(k-1) for v < 0, y& < 0 

b1,r+ = coefficient of u(k-1) for v > 0, y& > 0 

b1,r- = coefficient of u(k-1) for v > 0, y& < 0 

cl = negative deadzone offset, cl < cr 

cl* = negative deadzone offset guess, necessary condition: cl* < cl 

cr = positive deadzone offset, cr > cl 

cr* = positive deadzone offset guess, necessary condition: cr* > cr 

d = deadband offset 

e = lumped parameter of constant nonlinear terms 

I = identity matrix, subscript indicates dimensions 
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K = steady-state gain 

k = iteration 

t = time 

T = sample time 

U, u = input into linear portion of plant, output of deadzone 

V, v = desired control input 

W, w = input into deadband, output of linear portion of plant 

Y, y = plant output 

z = Z-transform operator 

η= unknown parameter vector 

η̂= unknown parameter estimate vector  

λ = forgetting factor  

τ = time constant 

φ  = recursive least squares regression vector 
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1.9.  APPENDIX 

1.9.1. Derivation Of The M-Point Moving Average Filter’s Variance.  An M- 

point moving average filters the data by averaging the current point with the M-1 

preceding terms. If it is filtering Gaussian noise, each point is independent of the point 

before and after it.1 Therefore, it is the same as averaging any M-number of Gaussian 

distributed sets and it does not matter that it is the same set shifted multiple times. The 

sample variance SN
2 is given by  

( ) ( )∑
=

−=
N

i

i XX
N

X
1

21
var  

(42) 

where X is the sample set with mean X  having N terms given by 

[ ]NXXXX ...21=  
(43) 

The covariance between X and a set Y is given by  

( ) ( )( )∑
=

−−=
N

i

ii YYXX
N

YX
1

1
,cov  

(44) 

The covariance is a measure of how well two or more sets of random variables are 

correlated. For two uncorrelated sets, such as two sets of Gaussian noise, the covariance 

is zero. Given that each point in X is filtered data from an M-point moving average has 

been implemented on x, the terms in X become  

                                                  
1 Not all noisy signals can be assumed to be a Gaussian distributed random number.  
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Substituting equation (45) into equation (42)  
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(46) 

Since this is used to determine the sign of derivative, the mean X is dropped 

because the derivative is the differentiation of a noisy yet static signal.  Expanding 

Equation (46) yields 

( )

( )

( )

( )

2

, , , 1 , , 12 2 2
1 1 1

2

, 1 , , 1 , 1 , 12 2 2
1 1 1

2

, 1 , , 1 , 1 , 12 2 2
1 1 1

1 1 1

1 1 1
var

1 1 1

N N N

i k i k i k i k i k M

i i i

N N N

i k i k i k i k i k M

i i i

N N N

i k M i k i k M i k i k M

i i i

x x x x x
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x x x x x
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(47) 

Each term with a square is in the form of the variance shown in Equation (42) 

with a coefficient of 1/M2. Since the variance before the M-point moving average was 

taken is known, all of these terms are known. Furthermore, the variance is constant for 

the whole sample meaning that all of the terms with squares are equal. Each term without 

a square is in the form of the covariance. Since each point is independent of the points 
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before and after it, the covariance is zero. There are M number of diagonal terms.  

Therefore Equation (47) reduces to  

( ) ( )x
M

X var
1

var =  

(48) 

1.9.2. Derivation Of The Variance Of y& . The numerical derivative y& is  

computed from equation (26). The terms of the sample vector X&  defined in equation (43) 

become  
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(49) 

Substituting into Equation (42) and dropping X because it is zero yields  
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Expanding it becomes 

( ) ∑∑∑
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(51) 

Once again for Gaussian noise there is no correlation between xi and xi-1 so the third term 

is zero. Since the variance of xi and xi-1 are the same Equation (51) becomes 

( ) ( )x
T

X var
2

var
2

=  

(52) 
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2.1. ABSTRACT 

The Mathworks xPC Target environment allows for rapid prototyping of a 

controller without the burden of low level coding. This allows for validation of the 

control system logic early in the design process. It also provides proof that the algorithm 

can be executed in real-time. With xPC Target, algorithms are developed in a simulation 

environment and automatically converted into real-time executable code. This paper 

demonstrates the development of a Master/Slave control system for a hydraulic test stand 

using xPC Target. The Master and Slave Electronic Control Units (ECUs) are emulated 

using two target PCs running the xPC Target kernel communicating with each other over 

a Controller Area Network (CAN).  The emulated and simulated results matched 

perfectly.  Then the emulated Master ECU is used to control the hydraulic test stand by 

sending current commands and receiving pressure sensor data from the Slave ECU.   The 

task execution time of the emulated Master ECU was the same regardless of whether it 

was controlling the emulated Slave ECU or the actual Slave ECU.  The accuracy of the 
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emulation was shown to be only limited by the accuracy of the hydraulic system plant 

model. 

2.2. INTRODUCTION 

In systems engineering it is good practice to validate system components 

individually before integrating them.  For example, when designing a hydraulic 

excavator, the engine, hydraulic system, and structure should be individually validated 

before creating a prototype.  Control software design and development is similar in that 

respect. It is desirable to validate a control system’s logic and execution time in simulated 

and emulated environments before going through the time-consuming process of creating 

embedded code on an Electronic Control Unit (ECU).  As vehicle control systems are 

becoming increasingly complex in order to accommodate more special features, to reduce 

wiring, and to modularize systems, a need arises for individually validating all levels of 

the control system’s hierarchy.   

The xPC Target environment developed by The Mathworks, Inc. allows control 

system engineers to perform Hardware-in-the-Loop (HIL) testing using an emulated 

version of the ECU.  With the xPC Target environment, a Simulink model can be used to 

auto-generate real-time executable code which resides on a target PC.  In the example 

shown in this paper, target PCs are used to emulate ECUs.  Since the most popular 

communication protocol is the Controller Area Network (CAN), each target PC is 

equipped with a CAN board to communicate with any other device with CAN capability.  

In this case, a target PC will communicate with an ECU or another target PC over CAN.   

An example is given to demonstrate the steps for designing, validating, and 

implementing a controller for a hydraulic test stand.  For demonstration purposes, it is 
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required that the control algorithm reside on a Master ECU which is used to control a 

Slave ECU.  The Master ECU commands the Slave ECU to drive current through the 

hydraulic solenoid valves and receives pressure sensor information back from the Slave 

ECU.  In the example a system model is created of the hydraulic test bench and a 

controller is created and simulated in Simulink. The controller model is compiled onto 

one target PC to emulate the Master ECU called the Master Emulator. The plant model is 

compiled onto another target PC called the Slave and Plant Emulator to emulate the 

Slave ECU and hydraulic system to evaluate the performance of the controller. The target 

PC emulating the Master ECU will be used to control the actual Slave ECU and hydraulic 

test stand.  The simulated and emulated results matched perfectly.  The task execution 

time of the emulated Master ECU was the same regardless of whether it was controlling 

the emulated Slave ECU or the actual Slave ECU.  The accuracy of the two target PC 

emulation was shown to be only limited by the accuracy of the hydraulic system plant 

model, which was embedded within the emulated Slave ECU target PC. 

2.3. LITERATURE REVIEW 

The emulation of control hardware has been used extensively in industry and 

academia as a way to prove out design concepts.  Several papers have been written on the 

use of the xPC Target environment to this end.  Teng [1] compared xPC Target version 

1.0 to two third party systems for automatic real-time code generation from the 

Matlab/Simulink: Real-Time Toolbox (not to be confused with Real-Time Workshop) 

and WinCon.  He implemented all three systems with PID, LQR, and fuzzy logic 

controllers on various adaptations of the inverted pendulum problem and concluded that 

while this initial version of xPC Target is somewhat difficult to use, it offers sampling 
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times of less than a millisecond, which the other systems failed to accommodate.  Luce 

and Rahnamai [2] used the xPC Target environment to implement a PID controller for a 

Multi-Fan Hovering System for use on a vertical take off and landing vehicle.  Shiakolas 

and Piyabongkarn [3] developed a magnetic levitation controller for undergraduate level 

controls laboratories.  Nilsson [4] compared the Matlab/Simulink and xPC Target 

environment to their analogous counterparts from National Instruments, 

MatrixX/SystemBuild and Autocode.  He demonstrated the use of both tools via a 

hydraulic test stand, compared the results of both controllers, and concluded that both 

perform about the same, however, MatrixX has an easy interface.  Leonessa et al. [5] 

used the xPC Target environment on an autonomous surface vessel to follow an 

unmanned underwater vehicle for the purpose of transmitting GPS locations and 

controlling the underwater vehicle.  Gani and  Khan [6] implemented active vibration 

control of a beam with piezoelectric patches using the xPC Target environment.  

Shangying et al. [7] used Labview as a GUI to tune parameters on a target PC running the 

xPC Target kernel.  The controller was for a 6 degree-of-freedom hydraulic robot.  Low 

et al. [8] used the xPC Target environment to perform telemanipulation of a robotic hand.  

Wei et al. [9] performed a haptic learning experiment to investigate how to help stroke 

victims regain motor skills.  Kelper [10] examined in real-time the switching impedance 

in power electronics using the xPC Target environment. Hassan-Zadeh et al. [11] used 

the xPC Target environment to perform teleoperation of a mobile robot using haptic 

feedback control.  Mazon et al. [12] used the xPC Target environment to evaluate the 

behavior of an artificial neural network.  Driscoll [13] used the xPC Target environment 

to evaluate the effectiveness of emulating a hydraulic cylinder using an electric motor 
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driving a hydraulic motor.  Ferreira [14] used the xPC Target environment to experiment 

with a robot-arm controlled by real-time image processing.  Zhu [15] used the xPC 

Target environment to monitor networks of MEMS sensors.  Rahnamai et al. [16] used 

the xPC Target environment to develop an automatic guitar tuner.  Cao [17] used the xPC 

Target environment to control fuel injection on a liquefied petroleum gas engine.  

Anderson and Stone [18] used the xPC Target environment to control a vertical launching 

unmanned aerial vehicle.  Luqiao et al. [19] used the xPC Target environment to control 

a binocular vision robot used for explosive ordnance disposal (i.e., it is used for removing 

land mines, bombs, or for counter-terrorism).   

The previous works were all similar in that they used xPC Target to either test a 

controller or to collect data.  The target PC interfaced with the hardware using either 

analog to digital (A/D) conversion, digital to analog (D/A) conversion, and/or counter-

timers (C/T). They are also similar in that they used a single target PC.  However, in two 

collaborative works by Quinones-Reyes [20] and Ramirez-Gonzalez [21], three target 

PCs were employed to control a magnetic levitation system.  The three target PCs, 

communicating over CAN, were needed to perform an “earliest deadline first” algorithm.  

Variable CAN message transmission rates were used to prioritize messages with an 

algorithm deciding if the messages were important enough to send.  McGowan [22] also 

used the xPC Target environment in conjunction with CAN communication to control a 

standby diesel generator.  He controlled an engine by sending commands from the target 

PC to the engine ECU and receiving sensor data. Being a Caterpillar generator set, he 

used the same Caterpillar RPAC (Rapid Prototyping for Automated Controls) toolbox 

that is used in this paper.     
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All of the aforementioned papers demonstrate the utility of using the xPC Target 

environment to evaluate the effectiveness of a controller.  However, [23] demonstrated 

the feasibility of using the xPC Target system as an emulated system to test real 

controller hardware.  He created a virtual diesel engine contained on a single target PC.  

The engine governor interfaced with the target PC through digital channels rather than 

CAN. 

This paper is similar to [20] and [21] in that multiple target PCs communicating 

over CAN will be used; however, one of the target PCs will be an emulated system rather 

than a controller.  This work differs from [23] in that it interfaces with the emulated 

system via CAN and in that it uses multiple target PCs.  This work differs from [22] in 

that not only are Caterpillar RPAC toolboxes used for a controller, they are reverse 

engineered to create an emulation of the ECU and the plant being controlled on a second 

target PC. 

2.4. CONTROL ARCHITECTURE  

Many systems, such as vehicle control systems, are becoming increasingly 

complex as it is not feasible for one Electronic Control Unit (ECU) to service all of the 

controls needs. Networks of ECUs are ubiquitous. For example, today’s automobiles can 

have over 60 ECUs [24]. Each ECU performs some or all of the following functions: 

reading sensor data, powering sensors and actuators, transmitting sensor measurements, 

transmitting actuator commands, executing control algorithms, and reporting faults. 

Many ECUs are needed to make each subsystem modular. On an automobile the engine, 

powertrain, steering, braking, and HVAC systems may all have their own ECU or 

network of ECUs. Airplanes have additional systems which may have their own ECU 
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such as the elevators, rudders, flaps, ailerons, landing gear, etc. Earth moving equipment 

has additional systems such as hydraulic pumps, motors, cylinders, grippers, hammers, 

and compactors that may have dedicated ECUs.   

An increase in automation is also driving up the number of ECUs on control 

systems. For example, in the automobile industry automatic features such as traction 

control systems, headlights that adjust automatically when the vehicle turns, collision 

prevention systems, and parking guidance systems are becoming increasingly prevalent. 

The earth-moving equipment market also has emerging technologies such as Laser and 

GPS grade control systems and automatic compaction technologies. These features 

require additional computation, sensors, and/or actuators. For marketing reasons, 

manufacturers tend to sell special features as optional modular packages, which can result 

in separate ECUs.  

Another motivation behind having multiple ECUs is for wiring harness 

optimization and serviceability. It is easier for a service technician to pull and replace 

wires on an ECU with a 20-pin connector than on an ECU with a 100-pin connector. If 

every wire on a machine had to be connected to the same ECU, the resulting bundle of 

wires might end up being several inches in diameter making it difficult to bend and route. 

Making several smaller wiring harnesses is typically more manageable than one large 

harness. The length of wire required can be optimized in situations where the sensors and 

actuators are spread out from each other. Having an ECU for each cluster of sensors and 

actuators can be more economical and reliable than having just one ECU connected to 

every sensor and actuator. 
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2.5. COMMUNICATION 

One challenge of having a large number of ECUs is networking them to share 

information with each other. For example, an engine on a hydraulic earth-moving 

machine must know the load on the hydraulic pump to operate at the optimal speed. A 

hydraulic variable displacement piston pump must know how much flow is requested by 

the implements to optimize the swash angle. The most prevalent communication protocol 

is Controller Area Network (CAN) developed by Robert Bosch GmbH. It has been the 

most widely used communication protocol since the early 1990s, when it was first used 

by Mercedes-Benz [25]. There are a few other protocols that appear very promising for 

the future such as Flexray and LIN; however, CAN is still the most prevalent.  

The CAN protocol is a rugged two-wire communication. It is robust to 

electromagnetic interference by sending a high signal and a low signal on a pair of wires, 

and then subtracting the signals. Typically, the wires are twisted to ensure the 

interference picked up by one wire is picked up equally by the other. The interference is 

cancelled when the signals are subtracted. There is 60 ohms of resistance between the 

high and low signals achieved by placing a 120 ohm terminating resistor across the high 

and low wires at the two nodes that are farthest apart.  CAN broadcasts messages with 

“identifiers” that identify the data contained within the message. In the standard format, 

identifiers have 11 bits. Messages are broadcast without an intended destination. Each 

node on the network filters all messages that are not needed and thereby “listens” for the 

messages it needs. In the standard CAN format, called the Base Frame Format, each 

message contains up to eight bytes of data. A 4-bit field called the Data Length Code 

indicates how many of those bytes are used. The data field bits can be designated in any 
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way desired. Dividing the eight bytes into four 16-bit signals or into eight 8-bit signals is 

common. The bits used for a given signal need not be consecutive. Assigning signals to 

their respective bits in the message is called “Bit-Packing.” Similarly, extracting signals 

from a CAN message is called “Bit-Unpacking.” The data is always sent as unsigned 

integers so it is necessary to scale the signals before sending and after receiving to use the 

full range [26]. 

One example illustrating the use of CAN is the feature of headlights that adjust to 

turn corners. CAN is used to transmit data between the headlight ECU, the transmission 

ECU, and the steering system ECU. The headlight ECU needs the vehicle speed from the 

transmission ECU and it needs the angle of the tires from the Steering ECU to calculate 

where to point the headlights. Therefore, the headlight ECU only accepts messages 

known to contain the vehicle speed or tire angle and ignores all other messages regarding 

impertinent data such as transmission gear, transmission oil temperature, etc. The 

messages containing vehicle speed and tire angle are most likely shared with other 

signals. The headlight ECU has to unpack the messages to extract the pertinent data. If 

the tire angle measurement is transmitted as a 10-bit 0 to 100% PWM, then it is apparent 

that the bits 0 to 210-1 (or 0 to 1023) correspond to the 0 to 100% duty cycle. To convert 

the bits to duty cycle a gain of 100/1024 is used to scale the signal. The software also 

must convert the signals into engineering units before they are used by the control 

algorithm. 

2.6. XPC TARGET ENVIRONMENT 

The xPC Target Environment was developed by The Mathworks, Inc. as a rapid-

prototyping tool to allow Simulink and Stateflow models to be executed in real-time and 
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to interface with hardware. Two computers are required for the xPC Target Environment: 

one, called the target, to execute the generated real-time code in the xPC Target kernel 

and one, called the host, to upload the real-time code to the target and to tune parameters. 

The target and host communicate via TCP/IP or RS-232. The Real-Time Workshop and 

Stateflow Coder toolboxes generate real-time executable code. Input/Output devices such 

as CAN, digital to analog, analog to digital, counter-timer, or encoder boards are installed 

on the target PC. The xPC Target toolbox contains a library of blocks for supported I/O 

devices, which are inserted in the Simulink model to interface with the I/O devices. The 

devices must use a PCI, CompactPCI, PC/104, or ISA bus. 

The target PC can be made from an ordinary PC by installing PCI I/O boards, 

creating an xPC boot disk, and booting the PC into the xPC Target environment. There 

are also several commercially available target PCs tailored to the application in which 

they are used. The Mathworks, Inc. developed the mobile xPC Targetbox® shown in 

Figure 2.1. Speedgoat GmbH purchased The Mathworks, Inc.’s xPC Targetbox® product 

line in February 2007.  They also manufacture rack-mounted and desktop target PCs as 

shown in Figure 2.2  and Figure 2.3, respectively. 
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Figure 2.1. Mobile Mathworks xPC Targetbox® (270mm x 162mm x 82mm). 

 

 

 

Figure 2.2. Rack Mountable Speedgoat Target PC. 

 

 

Figure 2.3. Desktop Speedgoat Target PC. 
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2.7. HYDRAULIC TEST BENCH EXAMPLE 

The following example demonstrates how the xPC Target environment can be 

used in conjunction with an electro-hydraulic test bench. In 2005 Caterpillar, Inc. donated 

eight electro-hydraulic test benches to the University of Missouri – Rolla (now called 

Missouri University of Science and Technology or Missouri S&T). Each bench (Figure 

2.4 and Figure 2.5) consists of an electric motor-driven pump to supply pressure, an 

electro-hydraulic pilot valve (Figure 2.6), a main valve, an ECU, an xPC Targetbox, and 

a PC running Matlab with Simulink, Real-Time Workshop, Rapid Prototyping for 

Automated Controls (RPAC), and xPC Target toolboxes. The RPAC toolbox is a 

Caterpillar proprietary Matlab toolbox that provides input and output library blocks to 

interface with a Caterpillar ECU.  

To administer hydraulic controls experiments, the electrical portion of the test 

bench is configured as shown in Figure 2.4. The host PC compiles the model into real-

time executable code and uploads it to the target PC via TCP/IP. The target PC 

communicates with the ECU via a CAN link. The software flashed on the ECU 

configures it to behave as a “dumb” I/O box. The target PC sends CAN messages to the 

ECU to command the current drivers and the ECU sends CAN messages back to the 

target PC containing sensor data. This software architecture is typically referred to as a 

Master/Slave arrangement because the ECU (the slave) is merely being used for its 

ability to read the sensors and drive currents, while the target PC (the master) is doing all 

of the high-level decision-making. In industry a Master/Slave configuration like this may 

be utilized during the development of two types of systems. The algorithm residing on 

the target PC will eventually be rewritten in a low level language and 1) embedded onto 
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the ECU, making the ECU autonomous or 2) embedded onto a master ECU while the 

current ECU remains a slave. The latter of the two will be utilized in the following 

example in which a controller is developed to regulate the pilot valve’s outlet pressure. 

This section of the paper goes through the following steps to create and validate a 

controller: 

1. Model system 

2. Design controller and simulate in Simulink 

3. Emulate controller and plant using two target PCs 

4. Control real system with  target PC 

 

 
 

Figure 2.4. Electrical Portion of Electro-Hydraulic Test Bench. 
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Figure 2.5. Hydraulic Portion of the Electro-Hydraulic Test Bench. 

 

 

 

 
Figure 2.6. Pilot Valve Schematic. 

 

 

2.7.1. System Model.  An empirical model of the hydraulic system is developed  

from test data with current as the input and pilot pressure as the output. A simple model is 

constructed in Simulink using the RPAC block as shown in Figure 2.7. The sample time 
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is set to five milliseconds. The pilot pressure reading is converted from percent duty 

cycle to kPa by subtracting 5.98% duty cycle and multiplying the result by 48.82 kPa/% 

duty cycle. The RPAC block is configured by the user to select the required inputs and 

outputs. Within a Simulink s-function, the RPAC block assigns a CAN identifier for each 

input and output. The RPAC block also sends CAN messages to the ECU at the 

beginning of execution to tell it which assignments were made. The user does not need to 

understand CAN to use the RPAC block to communicate with the ECU during this 

modeling step. A stepped current command signal is sent to one of the pilot valve’s 

solenoids as open loop pressure data is collected. The supply pressure is maintained 

constant by modulating a variable restrictor valve that connects the supply lines to the 

return lines.  

 

Figure 2.7. Simulink Model Used for Collecting Open Loop Pilot Pressure Data. 

 

 

 

 Figure 2.8 shows current and pressure time history plots. It can be seen that low 

levels of current produced no pressure change.  This is because the current in the solenoid 

has to induce a force large enough to alleviate the spring pretension on the pilot spool and 
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has to move the spool a few millimeters before the supply pressure is exposed to the pilot 

valve’s outlet. This is modeled as a deadzone.  Figure 2.6 shows that when both sides of 

the pilot valve are not actuated 100%, there is flow passing through the valve from supply 

to drain.  Since the pilot hoses are connected to the drain at zero current, the pressure in 

the pilot hoses is nonzero. Averaging the steady-state pressure at zero current yields a 

pressure 90.1 kPa. Subtracting off this bias zeros the data. Fitting a line to the steady state 

values of pressure (after zeroing) versus current is a convenient means of determining the 

steady-state gain and the deadzone as shown in Figure 2.9. The x-intercept is the 

deadzone, which is 288 mA, and the slope is the steady-state gain, which is 2.15 kPa/mA. 

The small offsets between rising and falling steady-state pressures, as seen in Figure 2.9, 

indicates there is little hysteresis and the same model can be used for increasing and 

decreasing pressures.  The rise time appears to become smaller with increased pressure as 

can be seen in Figure 2.8 and Figure 2.10. This is most likely the result of fluid bulk 

modulus increasing with increasing pressure, making the oil more incompressible.  Since 

the scope of this paper is emulation of ECUs, not hydraulic system modeling, a single 

time constant of 0.07 sec is used to characterize the system dynamic response.  The time 

constant was adjusted manually until a good match of the actual data was achieved in 

simulation. The time constant was selected to be faster than the response at low pressures 

but slower than the response at high pressures as a compromise. There is also noise in the 

signal that will be modeled as Gaussian distributed. Selecting a few seconds of steady-

state pressure data is sufficient to estimate the standard deviation, which was determined 

to be 7.28 kPa. The plant model is created in Simulink as shown in Figure 2.11.   
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Figure 2.8. Pilot Valve Output Pressure and Input Current Versus Time. 

 

 

 

 

Figure 2.9. Steady-state Pilot Pressure Versus Input Current. 
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Figure 2.10. Pressure Transient Response (Enlargement of Figure 2.9.) 

 
 
 

 
Figure 2.11. Pilot Valve Pressure Plant Model. 
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2.7.2. Controller Design.  Using the model, a PID controller can be tuned to  

track a square wave, triangle wave, sine wave, and randomized reference. When this 

controller is implemented on the hydraulic test stand, the supply pressure will be 

controlled in closed-loop.  The closed-loop supply pressure controller is given 20 seconds 

to stabilize the supply pressure before the pilot pressure controller is initiated.  The 

control signal is offset by a value slightly smaller than the deadzone, known as a 

deadzone inverse [27], as shown in the controller model in Figure 2.12. The deadzone 

inverse is chosen about three percent lower than the actual deadzone to prevent 

unintended actuation should there be a small error in the deadzone estimate. A saturation 

block is added to insure the current command stays between 0 and 2 A, which are the 

limits of the ECUs current drivers. The response of the closed loop system as shown in 

Figure 2.13 is simulated as shown in Figure 2.14. It can be seen that the controller tracks 

the reference aggressively responding to a step response with a 90% rise time of 0.11 sec, 

10% settling time of 0.25 sec, and an overshoot of 59%. The error at steady-state appears 

to show the same variance as the modeled noise.  This indicates the controller would have 

zero steady-state error in the absence of noise.  

The solver Simulink uses has a large impact on the simulated results.  By default 

Simulink uses ode3 Bogacki-Shampine to simulate a fixed-step model.  However, when 

real-time code is generated for the xPC Target environment, it behaves as if it is using the 

Fixed-Step Discrete solver. The contrast between the solvers is the most significant when 

examining overshoot.  The overshoot using the Discrete solver was 59% but the 

overshoot using the ode3 Bogacki-Shampine solver was 32%.  To use the Discrete solver, 
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the PID block’s library link is disabled and the continuous integrator and derivative 

blocks are replaced with discrete time integrator and derivative blocks.  

 

Figure 2.12. PID Controller With Deadzone Inverse. 

 

 

 

 

Figure 2.13. Closed-Loop System Model. 



 

 

85 

0 50 100
0

500

1000

1500

P
re

s
s
u

re
 [
k
P

a
]

 

 

0 50 100
0

500

1000

1500

2000

C
u

rr
e

n
t 
[m

A
]

0 50 100
-1000

-500

0

500

1000

Time [s]

E
rr

o
r 

[k
P

a
]

0 50 100
-100

-50

0

50

100

Time [s]
E

rr
o

r 
[k

P
a

]

 

 

Reference

Simulated Output

Error

+3 σ
-3 σ

 

Figure 2.14. Simulated Results. 

 

 

2.7.3. Emulation.  The model predicts the hydraulic system’s response but  

does not indicate anything regarding to the electrical hardware required to implement this 

controller such as the processor time the controller requires or the load on the CAN bus.  

One way to further delve into evaluating the electrical hardware requirements is to 

perform an emulation of the controller and plant models using two target PCs as shown in 

Figure 2.15. A cable is used to connect the two target PCs with D-sub DB-9 connectors 

with 120 ohm resistors at each end between CAN high and CAN low.  The first target PC 

emulates the Master ECU and will be referred to as the Master Emulator. The Master 

Emulator receives pressure readings via CAN, calculates a current output using the 

controller from Figure 2.12, and sends the current command to the Slave and Plant 
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Emulator via CAN. The Simulink model in Figure 2.7 used to collect open loop data is 

modified to include the controller shown in Figure 2.12, creating a closed-loop feedback 

controller of the pilot pressure shown in Figure 2.16. The model is compiled, generating 

real-time executable code, which is uploaded to the Master Emulator.  

 

 
 

Figure 2.15. Two Target PC Configuration Used for Emulation. 

 

 

 

 

Figure 2.16. Simulink Model Used for Implementing Controller. 
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The second target PC is used to emulate the slave ECU and the pilot valve 

pressure dynamics. Since the slave ECU receives current commands and outputs pressure 

sensor readings, this target PC also contains the plant model and thus will be referred to 

as the Slave and Plant Emulator. Creating the Slave and Plant Emulator is more 

complicated than creating the Master Emulator model. With the Master Emulator model, 

the RPAC block contains and automatically sets up the CAN send and receive blocks. 

With the Slave and Plant Emulator model each CAN message has to be configured 

manually. The Slave and Plant Emulator needs to mimic all of the signals the slave ECU 

would send and receive. Since the Slave and Plant Emulator target PC and the Master 

Emulator target PC are the only two nodes on the CAN, every message that is sent by one 

is received by the other. Therefore the send and receive messages for the Master 

Emulator are interchanged to create the send and receive messages for the Slave and 

Plant Emulator as shown in Figure 2.17 and Figure 2.18 of their respective subsystems. 

To send out the pilot pressure message, the pressure is received from the plant model in 

units of kPa, converted to percent duty cycle, converted to an unsigned 16-bit integer by 

multiplying by a gain of (216-1)/100 and packed into the message using the bit-packing 

block as shown in Figure 2.17. The message containing the current command is received, 

unpacked by the bit-unpacking block, and converted from bits to milliamps. The two 

signals that were terminated Figure 2.18 are unneeded because one of them was being 

used for controlling the supply pressure (labeled “Restrictor Valve” in Figure 2.16), 

which is not a part of the pilot pressure model, and the other was unused (labeled “Pilot 

B” in Figure 2.16).  Likewise the pressure signal used for supply pressure feedback in 

Figure 2.17 is not modeled so a zero is sent in its place. 
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Figure 2.17. Slave and Plant Emulator's Recreation of the Messages Sent by the 

Slave ECU to the Master ECU 
 
 
 

 
Figure 2.18. Slave and Plant Emulator's Recreation of the Messages Received by the  

Slave ECU from the Master ECU 
 

 

 The RPAC block, being a development tool, allows the user to specify the number 

of inputs and outputs to the ECU as well as several configuration parameters such as 

ECU loop time, which CAN board to use, and signal types and properties. Due to this 

flexibility, the CAN message identifiers and the order in which the data is packed into the 

messages is subject to change depending on how the ECU is configured. At initialization 

the target PC running the model with the RPAC block sends the CRO (Command 

Request Object) message and the slave ECU responds with the DTO (Data Transmit 
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Object) message communicating to the slave ECU how it should be configured. How the 

DTO message (which is sent by the slave ECU) is created and exactly what information it 

contains is proprietary. Since it is unknown how to recreate the DTO message, it is 

recorded using CANalyzer from Vector-Cantech, Inc. The Slave and Plant Emulator 

merely plays back the prerecorded DTO message at the first detection of the CRO 

message. This is a robust method so long as the RPAC block remains unchanged.  Figure 

2.19 shows the Slave and Plant Emulator Simulink model created from the send and 

receive subsystems from Figure 2.17 and Figure 2.18 and the plant model from Figure 

2.11.  

 

Figure 2.19. Slave and Plant Emulator Simulink Model. 

 

 

 

 

The simulated and emulated pressures shown in Figure 2.20 match identically 

with the exception of the random noise. Converting the continuous transfer function and 

the continuous integration block in the PID controller to a discrete transfer function and a 

discrete integration block respectively allow use of the discrete solver. The simulated 

results using the discrete solver exactly match the emulated results. These results indicate 



 

 

90 

that during the process of compiling the model into real-time executable code, the 

continuous blocks are converted to equivalent discrete blocks.  
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Figure 2.20. Emulated Pressure Compared to Simulated with the Discrete Fixed-

Step Solvers. 

 

 

 

 
One of the primary reasons for the two target PC emulation is to examine the 

execution time of the Master Emulator. In the Configuration Parameters dialog box there 

is an option of logging the task execution time. The task execution time is fairly constant 

with some variance. The variance is due to variations in the cache, memory access, 

interrupt latency, and multirate model execution (most blocks in Simulink can be 

configured to run at any multiple of the model’s step-time; models used in this paper had 

a single rate execution equal to the mode’s step-time). [28] However there is a slight 

jump in the task execution time after between 0.3 and 0.4 sec as indicated with the dotted 

line in Figure 2.21. This is most likely due to the DTO and CRO messages which are 

transmitted for 0.355 seconds at the beginning of execution before the RPAC block will 

allow messages to be sent from the Master Emulator. For all times after one second, the 
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target execution time has a mean of 3.01·10-4 sec, maximum of 3.29·10-4 sec, minimum of 

2.74·10-4 sec, and standard deviation of 1.11·10-5 sec. It is important that the target 

execution time be lower than the model step time, which is 5 milliseconds. This leaves 

the processor roughly 4.7 ms to perform background processes such as TCP/IP 

communication with the host, updating graphic windows, and calculating the task 

execution time. Choppy graphics windows or tuned parameters that are slow to update 

indicate the task execution time is approaching the step time. [28] 

 

    

Figure 2.21. Master Emulator Task Execution Time during Emulation. 

 

 

 

2.7.4. Control Implementation.  After emulation, controlling the real system  

requires no new Simulink models. The Master Emulator controller shown in Figure 2.16 

can be used with the real hydraulic system by merely unplugging the CAN line from the 

Slave and Plant Emulator target PC and plugging it into the slave ECU as shown in 

Figure 2.4. As can be seen from Figure 2.22, the controller tracks the reference closely; 

however, the overshoot is 181%, which is approximately three times higher than expected 
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from simulation. The 90% rise time decreased slightly from 0.11 sec in simulation to 0.10 

sec in the experiment.  The 10% settling time decreased significantly from 0.25 sec in 

simulation to 0.15 sec in the experiment.  The differences are most likely due to 

unmodeled higher order effects not captured in the first order plant model from Figure 

2.11. It was observed in Section 2.7.1 that the system seemed to have varying time 

constants depending on pressure magnitude. It was expected that the model would 

capture the dynamics of the system better under some circumstances than others. 
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Figure 2.22. Experimental Pressure Reference Tracking. 

 

 
Since the Master Emulator target PC was unchanged from emulation, it is 

expected that the task execution time will remain the same. Figure 2.23 confirms that the 

task execution times are indeed very close. For all times after one second, the target 

execution time has a mean of 2.98·10-4 sec, maximum of 3.26·10-4 sec, minimum of 
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2.72·10-4 sec, and standard deviation of 1.12·10-5 sec. The jump in execution time is again 

present at 0.355 sec. Because the execution time remains the same, this reiterates that the 

Master Emulator target PC does not decipher the difference between the Slave ECU 

connected to the hydraulic system and a target PC emulating the Slave ECU and 

hydraulic system. Assuming the performance of the controller is acceptable, the 

development of the control algorithm is finished and it could be assigned to a 

programmer to embed on the Master ECU.  

 

 

Figure 2.23. Master Task Execution Time during Control of Actual System. 

 

 

 

 

2.8. SUMMARY AND CONCLUSIONS.   

As control systems become more complex, more ECUs are being used to 

accommodate more special features, to reduce wiring, and to modularize systems.  The 

xPC Target environment provides a platform for creating real-time executable code from 

a simulation environment.  Target PCs running the xPC Target environment can be used 

to emulate a controller, a physical system, or even a combination of the two. This paper 
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demonstrated the use of the xPC Target environment to emulate the ECUs in a 

Master/Slave architecture communicating over CAN.  An emulation of the Master ECU 

was created on one target PC and an emulation of the Slave ECU and the hydraulic 

system with which it interfaced was created on a second target PC. Then the emulation of 

the Master ECU was implemented with the actual Slave ECU and hydraulic system.  

The steps for validating a Master/Slave control algorithm have been 

demonstrated. First the hydraulic system was modeled by recording open loop pressure 

data using a target PC in conjunction with the Caterpillar RPAC library to execute a 

master control algorithm to send current commands and receive pressure commands. A 

plant model was created from the data and a control algorithm was designed and then 

validated in Simulink. The control algorithm was integrated with the RPAC interface for 

the slave ECU to create the Master Emulator target PC. The Slave and Plant Emulator 

Simulink model was created from scratch by replicating the CAN messages sent by the 

slave ECU and employing the plant model to determine the pressure output. The 

simulated results matched the emulated results so long as Simulink’s fixed-step discrete 

solver was used. The Master Emulator target PC was connected to the slave ECU and the 

hydraulic system was successfully controlled. The task execution time of the Master 

Emulator target PC remained the same, indicating the Master Emulator target PC 

perceives the emulated system in the same way as the real system.  

While the simulated and emulated results were identical, they did not perfectly 

predict the performance of the controller when implemented on the actual hydraulic 

system.  The actual pressure output overshoot was much higher than in emulation.  

However, the hydraulic system’s dynamics seemed to depend largely on the pilot 
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pressure, most likely as a result of the decrease in oil compressibility with increased 

pressures.  Since hydraulic modeling was not the focus of this paper, a single time 

constant was used to capture the dynamics of the system with the expectation that the 

accuracy of the model’s prediction would vary depending on pressure.  Nonetheless, this 

demonstrates the ability of target PCs running the xPC Target environment to emulate 

ECUs and the physical systems they control.  
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