
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Summer 2008

Parameter estimation of systems with deadzone and deadband Parameter estimation of systems with deadzone and deadband

and emulation using xPC Target and emulation using xPC Target

Jeffrey James Lentz

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Mechanical Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Lentz, Jeffrey James, "Parameter estimation of systems with deadzone and deadband and emulation
using xPC Target" (2008). Masters Theses. 4645.
https://scholarsmine.mst.edu/masters_theses/4645

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4645&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/4645?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4645&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

PARAMETER ESTIMATION OF SYSTEMS WITH DEADZONE AND DEADBAND

AND EMULATION USING xPC TARGET

by

JEFFREY JAMES LENTZ

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

2008

Approved by

Robert G. Landers, Advisor
K. Krishnamurthy

 Jagannathan Sarangapani

 2008

Jeffrey James Lentz

All Rights Reserved

iii

PUBLICATION THESIS OPTION

This thesis consists of the following two articles that have been submitted for

publication as follows:

Pages 1-64 are intended for submission in a journal regarding automated controls

such as Control Engineering Practice.

Pages 65-98 are intended for submission in a journal regarding emulation

hardware such as Electronic Measurement and Instruments.

iv

ABSTRACT

The first paper presents a new approach for online parameter estimation using

multiple recursive least squares estimations implemented simultaneously to determine

system model parameters, as well as a deadzone and/or deadband. The online adaptive

estimation scheme was verified in simulation using MATLAB Simulink and verified

experimentally for a DC motor driven cart, an electro-hydraulic pilot valve system, and a

free cart loosely coupled to a DC motor driven cart by a pin that fits loosely in a slot.

The results for the DC motor driven cart and electro-hydraulic pilot valve predicted the

output within 10% in almost every case and as low as 2-3%. The estimation of the

velocity of the free cart loosely coupled to the DC motor cart was within 3% for some

cases; however, it was highly sensitive to input voltage frequency.

The second paper demonstrates the use of the Mathworks xPC Target

environment for validation of a control system and emulation of a physical system using

real-time code auto-generated from a simulation environment. A Master/Slave control

system is developed for a hydraulic test stand. The Master and Slave Electronic Control

Units (ECUs) are emulated using two target PCs running the xPC Target kernel

communicating with each other over a Controller Area Network. The emulated and

simulated results matched perfectly. Then the emulated Master ECU is used to control

the hydraulic test stand by sending current commands and receiving pressure sensor data

from the Slave ECU. The task execution time of the emulated Master ECU was the

same regardless of whether it was controlling the emulated Slave ECU or the actual Slave

ECU. The accuracy of the emulation is shown to be only limited by the accuracy of the

hydraulic system plant model.

v

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Landers for his guidance and patience. I am

grateful to my committee members Dr. Krishnamurthy and Dr. Sarangapani for their

interest in my work. Many thanks are due to my family, friends, coworkers, and fellow

students. Also, this work would not have been possible without the generous donation of

money and equipment from Caterpillar, Inc.

vi

TABLE OF CONTENTS

PUBLICATION THESIS OPTION .. iii

ABSTRACT..iv

ACKNOWLEDGMENTS ...v

PAPER

1. PARAMETER ESTIMATION OF SYSTEMS WITH DEADZONE AND
DEADBAND..1

1.1. ABSTRACT ...1

1.2. KEYWORDS..2

1.3. INTRODUCTION ..2

1.3.1. Need For Online Parameter Estimation..2

1.3.2. Deadzone. ...3

1.3.3. Deadband. ...9

1.4. PROBLEM FORMULATION ...18

1.4.1. Nonlinearities Not Present. ...18

1.4.2. Deadzone Present At Input. ..20

1.4.3. Deadzone Present At Input And Deadband Present At Output.22

1.4.4. Other Cases. ..25

1.4.5. Filtering...25

1.5. SIMULATED RESULTS...26

1.5.1. Simulation Example – Without Noise. ...26

1.5.2. Simulation Example – With Gaussian Noise. ..29

1.6. EXPERIMENTAL RESULTS ...31

1.6.1. Modeling Motor-Driven Cart Velocity...31

1.6.2. Modeling Pilot Valve Pressure. ..41

vii

1.6.3. Modeling Velocity Of A Free Cart Loosely Coupled To A
Motorized Cart..48

1.7. SUMMARY AND CONCLUSIONS...56

1.8. NOMENCLATURE ...58

1.9. APPENDIX...60

1.9.1. Derivation Of The M-Point Moving Average Filter’s Variance.60

1.9.2. Derivation Of The Variance Of y& . ..62

1.10. BIBLIOGRAPHY...63

2. EMULATION USING xPC TARGET...65

2.1. ABSTRACT ...65

2.2. INTRODUCTION ..66

2.3. LITERATURE REVIEW ...67

2.4. CONTROL ARCHITECTURE..70

2.5. COMMUNICATION ...72

2.6. XPC TARGET ENVIRONMENT ...73

2.7. HYDRAULIC TEST BENCH EXAMPLE..76

2.7.1. System Model. ..78

2.7.2. Controller Design..83

2.7.3. Emulation..85

2.7.4. Control Implementation..91

2.8. SUMMARY AND CONCLUSIONS. ..93

2.9. BIBLIOGRAPHY...96

VITA..99

viii

LIST OF ILLUSTRATIONS

Figure 1.1. Block Diagram of a Deadzone Nonlinearity. ..4

Figure 1.2. Block Diagram of a Plant with Input Deadzone and a Sinusoidal
Input. ..6

Figure 1.3. Results for the System Defined By Equations (2) and (3) with v(k) =
700sin(kT). ...6

Figure 1.4. y(k) Versus v(k) for the Transfer Function in Equation (2) with and
without Deadzone Defined in Equation (3) and v(k) = 700sin(kT).7

Figure 1.5. Block Diagram of a Plant with an Output Deadzone and a Sinusoidal
Input. ..7

Figure 1.6. Simulated Results for System Defined by Equations (2) and (4) and
u(k) = 700sin(kT). ..8

Figure 1.7. y(k) Versus u(k) for the Transfer Function in Equation (2) with and
without Deadzone Defined in Equation (3) and Figure 1.5 and u(k) =
700sin(kT). ...8

Figure 1.8. Block Diagram of a Deadband Nonlinearity. ..9

Figure 1.9. Plant with Output Deadband and a Sinusoidal Input.................................11

Figure 1.10. Simulated Results from the System Defined by Equations (2) and (7)
and by Figure 1.9 with v(k) = 100sin(kT). ...11

Figure 1.11. y(k) and w(k) versus v(k) for the system defined by equations (2) and
(7) and by Figure 1.9 with v(k) = 100sin(kT). ...12

Figure 1.12. Block Diagram of Plant with Input Deadzone Preceded by
Sinusoidal Input and Output Deadband...13

Figure 1.13. Simulated Results for Plant Shown in Figure 1.12 and v(k) =
600sin(kT). ...13

Figure 1.14. Block Diagram of Plant with Input Deadzone Proceeded by Input
Deadband and Sinusoidal Input. ..14

ix

Figure 1.15. Simulated Results for Plant Shown in Figure 1.14 and v(k) =
600sin(kT). ...14

Figure 1.16. Block Diagram of Plant with Output Deadzone Followed By Output
Deadband and Preceded by Sinusoidal Input. ...14

Figure 1.17. Simulated Results for Plant Shown in Figure 1.16 and v(k) =
600sin(kT). ...15

Figure 1.18. Block Diagram of Plant with Output Deadband Followed by Output
Deadzone and Preceded by Sinusoidal Input. ...15

Figure 1.19. Simulated Results for Plant Shown in Figure 1.18 and v(k) =
600sin(kT). ...15

Figure 1.20. Block Diagram of Plant with Input Deadband Preceded by
Sinusoidal Input and Output Deadzone. ..16

Figure 1.21. Simulated Results for Plant Shown in Figure 1.20 and v(k) =
600sin(kT). ...16

Figure 1.22. Block Diagram of Plant with Input Deadzone Preceded by Input
Deadband and Sinusoidal Input. ..16

Figure 1.23. Simulated Results for Plant Shown in Figure 1.22 and v(k) =
600sin(kT). ...17

Figure 1.24. Simulated Estimation Results of Equation (34) ..28

Figure 1.25. Simulated Estimation Results of Equation (34) ..30

Figure 1.26. Estimation Error...31

Figure 1.27. DC-Motor Driven Cart. ...32

Figure 1.28. Velocity Versus Voltage for DC-Motor Driven Cart with v(t) =
6sin(4t). ..32

Figure 1.29. Results of Online Estimation of DC-Motor Driven Cart Dynamics
and Deadzone for a Sinusoidal Input...34

x

Figure 1.30. Results of Online Estimation of DC-Motor Driven Cart Dynamics
and Deadzone for a Square-Wave Input. ...36

Figure 1.31. Results of Online Estimation of DC-Motor Driven Cart Dynamics
and Deadzone for a Triangle-Wave Input. ..37

Figure 1.32. Results of Online Estimation of DC-Motor Driven Cart Dynamics
and Deadzone for a Randomized Input. ..38

Figure 1.33. Input Signal Waveforms to Motor Driven Cart. ..39

Figure 1.34. Normalized Root Mean Square Error between Simulated and
Experimental DC-Motor Drive Cart Velocities...39

Figure 1.35. Pilot-Operated Hydraulic System. ...42

Figure 1.36. Pilot Valve. ..42

Figure 1.37. Pilot Valve Pressure Difference Versus Current.44

Figure 1.38. Results of Online Estimation of Pilot Pressure Difference Dynamics
and Deadzone for a Sinusoidal Input...45

Figure 1.39. Normalized Root Mean Square Error between Simulated and
Experimental Pilot Pressures. ..47

Figure 1.40. Estimation is not Active Long Enough to Capture Dynamics for the
600 mA Amplitude, 10 rad/s Triangle Wave...47

Figure 1.41. Two Carts with Slotted Coupling. ...48

Figure 1.42. Velocity Versus Voltage for Free Cart With v(t) = 6sin(2t)......................49

Figure 1.43. Free Cart Velocity Model. ...50

Figure 1.44. Normalized Root Mean Square Error of the Simulated Output of the
Free Cart Velocity..52

Figure 1.45. Free Cart Parameters for v(t) = 6sin(2t)...54

Figure 1.46. Free Cart Parameters for v(t) = 6triangle(2t). ..55

xi

Figure 2.1. Mobile Mathworks xPC Targetbox® (270mm x 162mm x 82mm)..........75

Figure 2.2. Rack Mountable Speedgoat Target PC..75

Figure 2.3. Desktop Speedgoat Target PC. ..75

Figure 2.4. Electrical Portion of Electro-Hydraulic Test Bench..................................77

Figure 2.5. Hydraulic Portion of the Electro-Hydraulic Test Bench.78

Figure 2.6. Pilot Valve Schematic..78

Figure 2.7. Simulink Model Used for Collecting Open Loop Pilot Pressure Data......79

Figure 2.8. Pilot Valve Output Pressure and Input Current Versus Time.81

Figure 2.9. Steady-state Pilot Pressure Versus Input Current.81

Figure 2.10. Pressure Transient Response (Enlargement of Figure 2.9.)82

Figure 2.11. Pilot Valve Pressure Plant Model. ...82

Figure 2.12. PID Controller With Deadzone Inverse...84

Figure 2.13. Closed-Loop System Model. ...84

Figure 2.14. Simulated Results. ...85

Figure 2.15. Two Target PC Configuration Used for Emulation...................................86

Figure 2.16. Simulink Model Used for Implementing Controller.86

Figure 2.17. Slave and Plant Emulator's Recreation of the Messages Sent by the
Slave ECU to the Master ECU ..88

Figure 2.18. Slave and Plant Emulator's Recreation of the Messages Received by
the Slave ECU from the Master ECU...88

Figure 2.19. Slave and Plant Emulator Simulink Model...89

xii

Figure 2.20. Emulated Pressure Compared to Simulated with the Discrete Fixed-
Step Solvers. ..90

Figure 2.21. Master Emulator Task Execution Time during Emulation.91

Figure 2.22. Experimental Pressure Reference Tracking...92

Figure 2.23. Master Task Execution Time during Control of Actual System.93

PAPER

1. PARAMETER ESTIMATION OF SYSTEMS WITH DEADZONE AND

DEADBAND

J.J. Lentz, R.G. Landers, and K. Krishnamurthy

Department of Mechanical and Aerospace Engineering

Missouri University of Science and Technology

1870 Miner Circle

Rolla, Missouri 65409-0050

{Jeffrey.J.Lentz, landersr, kkrishna}@mst.edu

1.1. ABSTRACT

A new approach is presented for online parameter estimation using multiple

recursive least squares (RLS) estimations implemented simultaneously to determine

system model parameters, as well as a deadzone and/or deadband. Initial guesses of the

deadzone parameters that are larger than the actual parameters are required in some cases.

The system input and output signals dictate which of the RLS estimation schemes to

utilize at each sample period. Comparing each of the RLS estimations, the deadzone

and/or deadband are determined. The online adaptive estimation scheme was simulated

using MATLAB Simulink to verify convergence. It was also verified experimentally for

a DC motor driven cart, an electro-hydraulic pilot valve system, and a free cart loosely

coupled to a DC motor driven cart by a pin that fits loosely in a slot. The results for the

2

DC motor driven cart and electro-hydraulic pilot valve were very good, predicting the

output within 10% in almost every case, and as low as 2-3%. The estimation of the

velocity of the free cart loosely coupled to the DC motor cart was within 3% for some

cases; however, it was highly sensitive to input voltage frequency. In the case of a high

frequency, the two carts generated high impact forces not modeled by the simple model

used.

1.2. KEYWORDS

Deadzone, Deadband, Recursive Least Squares, Electro-Hydraulics, Parameter

Estimation

1.3. INTRODUCTION

1.3.1. Need For Online Parameter Estimation. Many mechanical systemshave

nonlinearities such as deadzone or deadband. Deadzone is typically present as a result of

static friction, spring pretension, or overlapping parts and create a region where the input

has no effect on the output [1, 2]. Deadband can result from static friction or from

improper mating of parts (e.g., gear backlash) and creates a region where the output

remains unchanged upon reversal of direction [1]. The parameters of these nonlinearities

are rarely known and, if left unaccounted for, can degrade controller performance.

Frequently in practice, a calibration routine will be conducted and deadband and

deadzone parameters are determined offline. Then in the control software, the inverses of

the deadzone and deadband are implemented using the predetermined static values [3].

While this is better than ignoring the nonlinearities entirely, any change in the

nonlinearity is not accounted for in the control software. Factors such as wear, corrosion,

3

lubrication, and temperature change over time and affect the deadzone and deadband

regions. Also, cost of the calibration test itself is often prohibitive. Using an algorithm

that can eliminate the calibration test and constantly update the nonlinear parameters is

advantageous in many applications.

This paper presents an online parameter estimation scheme that estimates system

model parameters as well as deadzone and/or deadband parameters. This is verified

experimentally for a DC motor driven cart, an electro-hydraulic pilot valve system, and a

free cart loosely coupled to a DC motor driven cart by a pin that fits loosely in a slot.

1.3.2. Deadzone. Deadzone will be defined for the purpose of this paper as a

range of inputs for which the output remains unchanged [1]. Outside that range there is a

linear relationship between the deadzone input v(k) and deadzone output u(k). The

deadzone is shown in Figure 1.1 and is defined by

()
() ()

()
() ()








>−
≤≤

<−
=

rr

rl

ll

ckvforckv

ckvcfor

ckvforckv

ku 0

(1)

where cr ≥ cl. Some papers [2,3] define additional terms to account for any differences in

the slope between positive and negative inputs. In this paper the deadzone is always

considered before or after a linear system. Separate transfer functions are used to define a

piecewise linear system: one for each side of the deadzone. Any terms added to equation

(1) to account for slope differences will be accounted for in the steady-state gains of these

transfer functions.

4

Figure 1.1. Block Diagram of a Deadzone Nonlinearity.

The deadzone may occur at the input or output of an otherwise linear system. For

the DC-motor driven cart that will be studied later in this paper, the Coulomb friction

results in a deadzone. For this case the system is best modeled as a linear transfer

function with a deadzone at the output. The pressure of an electro-hydraulic pilot valve,

which will also be studied later, contains a deadzone resulting from spring pretension and

an overlap in the spool’s land over the output port. For this case, the system is best

modeled as a linear transfer function with a deadzone at the input.

1.3.2.1. Deadzone Literature Review. Many articles have been written

 regarding the online estimation of deadzone and deadband parameters, or the on-line

estimation of plant dynamics. However, to the authors’ knowledge, no work has

incorporated the estimation of multiple non-linearities and plant dynamics

simultaneously.

Tao and Kokotovic [2] develop projection methods to determine a symmetric

deadzone on an input signal. They show improved controllability in simulation using a

deadzone inverse. Er-Wei Bai [3] proves convergence of Tao and Kokotovic’s work [2],

but assumes the deadzone output is measurable. Wang et al. [4] proposes a piecewise and

intuitive method for controlling a deadzone without a deadzone inverse. His method

cr

cl 1

1

v

u

5

assumes equal slopes on each side of the deadzone and prior knowledge of upper and

lower deadzone bounds. Ibrir [5] develops a method for an adaptive control algorithm for

a symmetric input deadzone without prior knowledge of deadzone bounds. Also, in [5] a

method is developed for an adaptive control algorithm for a non-symmetric input

deadzone that requires prior knowledge of deadzone bounds using Lyapunov and

Algebraic Riccati Equations. Lewis et al. [6] derives a Fuzzy Logic control scheme to

estimate a deadzone and validates it on a CNC machine tool assuming an input deadzone

and that linear plant dynamic terms are known. Jang [7,8] uses a similar technique to

estimate an input deadzone for a DC motor and for an XY positioning table. Xu et al.

[9,10,11] uses iterative learning control (ILC) to estimate time-varying and state-

dependent deadzone for controlling a piezoelectric motor. However, ILC can only be

used to control actuators performing repetitious motions.

1.3.2.2. Deadzone Example 1. The following is an example of a system with

deadzone as shown in Figure 1.2. The input is () ()kTkv sin700= . The plant is a linear

first order system with a deadzone at the input. The linear transfer function has a sample

period of T = 0.005 and is

96.0
1.0

)(
)(

−
=

zzU

zY

(2)

The deadzone has the following parameters: cl = -300 and cr = 200. Thus u(k) is

()

()

()
()

()







>
≤≤−

−<

−

+
=

200

200300

300

200

0

300

)(

kv

kv

kv

for

for

for

kv

kv

ku

(3)

6

Figure 1.2. Block Diagram of a Plant with Input Deadzone and a Sinusoidal Input.

Figure 1.3 shows the signals plotted with respect to time and Figure 1.4 shows the

input-output relationship. The input-output relationships are shown in comparison to a

simulation of the transfer function from equation (2) in the absence of the deadzone. The

elliptical shape in Figure 1.4 is the result of phase lag. The slower the time constant, the

further it deviates from the line y = Ku where K is the steady-state gain. The portion of

the line for the output without deadzone that lies inside the ellipse results from the zero

initial condition.

0 1 2 3 4 5 6 7
-1000

-500

0

500

1000

1500

Time [s]

v

u

y

c
r

c
l

Figure 1.3. Results for the System Defined By Equations (2) and (3) with v(k) =

700sin(kT).

7

-1000 -500 0 500 1000
-2000

-1500

-1000

-500

0

500

1000

1500

2000

v
y
,
K

u

y (with DZ)

y (without DZ)

Ku (with DZ)

Ku (without DZ)

c
r

c
l

Figure 1.4. y(k) Versus v(k) for the Transfer Function in Equation (2) with and

without Deadzone Defined in Equation (3) and v(k) = 700sin(kT).

1.3.2.3. Deadzone Example 2. The following is an example of a system with

deadzone as shown in Figure 1.5. The input is () ()kTkv sin300= . The plant is a first

order linear system with a deadzone at the output. The linear portion is defined by

equation (2). The deadzone is defined by: cl = -300 and cr = 200. Thus y(k) is

()
()

()

()
()

()







>
≤≤−

−<

−

+
=

200

200300

300

200

0

300

kw

kw

kw

for

for

for

kw

kw

ky

(4)

Figure 1.5. Block Diagram of a Plant with an Output Deadzone and a Sinusoidal

Input.

8

The results are shown in Figure 1.6 and Figure 1.7. The resulting plots for an

output deadzone have roughly the same shape as the plots for an input deadzone as

shown in Figure 1.3 and Figure 1.4. The difference is that the output decays

asymptotically to zero when the deadzone is at the input and the output goes to zero

without decay when the deadzone is at the output.

0 1 2 3 4 5 6 7
-800

-600

-400

-200

0

200

400

600

800

Time [s]

u

w

y

c
r

c
l

Figure 1.6. Simulated Results for System Defined by Equations (2) and (4) and u(k)

= 700sin(kT).

-400 -200 0 200 400
-800

-600

-400

-200

0

200

400

600

800

u

y
,w

y (with DZ)

w (without DZ)
c

r

c
l

Figure 1.7. y(k) Versus u(k) for the Transfer Function in Equation (2) with and

without Deadzone Defined in Equation (3) and Figure 1.5 and u(k) = 700sin(kT).

9

1.3.3. Deadband. The deadband is the range through which an input signal may

be varied, upon reversal of direction, without initiating an observable change in the

output signal [1]. The deadband is formulated in accordance with [1] and [12] as

()
()
()

() ()
() () ()

() ()







>
≤≤

<

−
−
+

=
kwkw

kwkwkw

kwkw

for

for

for

dkw

ky

dkw

ky

r

rl

l

)(

1

(5)

where

() ()1
l

w k y k d= − −

() () dkykwr +−= 1
(6)

Figure 1.8. Block Diagram of a Deadband Nonlinearity.

Like the deadzone, the deadband can be the result of friction [1]. Another source

of deadband is loosely mating mechanical parts often referred to as backlash [12]. A

deadband and deadzone can be present simultaneously. Like a deadzone, the deadband

can be present at the input or output of an otherwise linear system. The difference

between modeling the deadband at the plant input versus modeling it at the output is very

subtle. Modeling the plant with the deadband after the transfer function flattens the crests

and troughs of an otherwise sinusoidal output. Modeling the plant with the deadband

10

before the transfer function flattens the input to the transfer function to a constant value at

the crests and troughs. The plant output will asymptotically approach a steady-state value

for those periods of constant input.

1.3.3.1. Deadband Literature Review. Many notable works exist on the

detection of deadband. Tao and Kokotovic [12] simulated an adaptive controller to

control an unknown linear system with an unknown deadband at the output. Grundelius

and Angeli [13] presented an online determination of deadband and linear system

parameters using recursive least squares. The model assumed a deadband at the input to

a linear system. The estimated parameters were used in deadband inverse in a self tuning

regulator in simulation. The method presented in this paper expounds upon Grundelius

and Angeli’s method to consider systems that also include a deadzone and consider the

deadband at the linear system’s input as well. Gebler and Holtz [14] simulated the

compensation of a deadband determined offline. Woo and Lewis [15] developed a fuzzy

controller to compensate for an unknown deadband and demonstrated its utility on a CNC

machine tool. Ahmad and Khorrami [16] simulated the use of Lyapunov equations to

determine the backlash online and used an adaptive backlash inverse for improved

control. Tao [17] developed a fuzzy controller to reduce delay induced by an unknown

deadband and verified the controller experimentally with a motor system with output

backlash. Zabiri and Samyudia [18] simulated the use of a “Mixed Integer Quadratic

Programming” to determine deadband; however, the method had very slow computation

time. Lagerberg and Egardt [19] used Kalman filtering to determine the deadband

parameters online for the control of an automotive powertrain.

11

1.3.3.2. Deadband Example. The following is an example of a system with an

output deadband as shown in Figure 1.9. The linear transfer function is defined by

equation (2). The deadband is defined by d = 30. The input is)sin(100)(ttv = . Equations

(5) and (6) become









+−>
+−≤≤−−

−−<

−
−
+

=
30)1()(

30)1()(30)1(

30)1()(

30)(

)1(

30)(

)(

kykw

kykwky

kykw

for

for

for

kw

ky

kw

ky

(7)

The results are shown in Figure 1.10 and Figure 1.11.

Figure 1.9. Plant with Output Deadband and a Sinusoidal Input.

0 1 2 3 4 5 6 7
-300

-200

-100

0

100

200

300

Time [s]

v

w

y

d

d

Figure 1.10. Simulated Results from the System Defined by Equations (2) and (7)

and by Figure 1.9 with v(k) = 100sin(kT).

w y v

12

-100 -50 0 50 100
-300

-200

-100

0

100

200

300

v

w

y d

d

Figure 1.11. y(k) and w(k) versus v(k) for the system defined by equations (2) and (7)

and by Figure 1.9 with v(k) = 100sin(kT).

Figure 1.10 shows that the deadband “flattens” the peaks and valleys of the

output. One way to visualize the deadband is to think about the deadband input being

offset on both sides. These offsets can be thought of as one-way tracks. These offsets will

be -d and d. For y& > 0, the offset is d and for y& < 0, the offset is -d. When w& changes

sign the output remains the same until it intersects the other offset. The output cannot

change unless it is on one of the two offsets.

1.3.3.3. Deadzone and Deadband Examples. Consider the following six

examples with deadzone and deadband. The linear transfer function is defined by

equation (2). The input is)sin(600)(kTkv = . The deadband parameter is d = 100. The

deadzone parameters cr and cl are 200 and -300, respectively. Plants are defined as shown

in Figure 1.12, Figure 1.14, Figure 1.16, Figure 1.18, Figure 1.20, and Figure 1.22. The

time history plots as well as input-output plots are shown in Figure 1.13, Figure 1.15,

Figure 1.17, Figure 1.19, Figure 1.21, and Figure 1.23, respectively. When the

13

nonlinearity precedes the linear transfer function, the output will asymptotically approach

a steady-state value within the deadzone or deadband as the output dynamically responds

to the non-linearity. In the case that the linear transfer function precedes the nonlinearity,

the output will abruptly or non-asymptotically reach the steady-state value within the

deadzone or deadband because the system dynamically responded prior to the

introduction of the nonlinearity. Asymptotical and non-asymptotical approaches are

denoted “AA” and “NA,” respectively, on the input-output plots. Areas in which the

output y approaches a non-zero value due to the deadband are denoted as “~0” (where the

tilde is used as the logical not).

Figure 1.12. Block Diagram of Plant with Input Deadzone Preceded by Sinusoidal

Input and Output Deadband.

0 1 2 3 4 5 6 7

-500

0

500

1000

Time [s]

v

u

w

y

d

d

c
r

c
l

-600 -400 -200 0 200 400 600

-500

0

500

1000

v

y

AA to ~0

AA to ~0

NA

NA

Figure 1.13. Simulated Results for Plant Shown in Figure 1.12 and v(k) = 600sin(kT).

14

Figure 1.14. Block Diagram of Plant with Input Deadzone Proceeded by Input

Deadband and Sinusoidal Input.

0 1 2 3 4 5 6 7

-600

-400

-200

0

200

400

600

800

Time [s]

v

u

w

yKd

d

c
r

c
l

-600 -400 -200 0 200 400 600

-500

0

500

1000

v

y

AA to ~0

AA to ~0

AA

AA

Figure 1.15. Simulated Results for Plant Shown in Figure 1.14 and v(k) = 600sin(kT).

Figure 1.16. Block Diagram of Plant with Output Deadzone Followed By Output

Deadband and Preceded by Sinusoidal Input.

15

0 1 2 3 4 5 6 7

-1500

-1000

-500

0

500

1000

1500

Time [s]

v

u

w

y
d

d

c
r

c
l

-600 -400 -200 0 200 400 600
-1500

-1000

-500

0

500

1000

1500

v

y

NA to ~0

NA to ~0

NA

NA

Figure 1.17. Simulated Results for Plant Shown in Figure 1.16 and v(k) = 600sin(kT).

Figure 1.18. Block Diagram of Plant with Output Deadband Followed by Output

Deadzone and Preceded by Sinusoidal Input.

0 1 2 3 4 5 6 7

-1500

-1000

-500

0

500

1000

1500

Time [s]

v

u

w

y

d

d

c
r

c
l

-600 -400 -200 0 200 400 600

-1500

-1000

-500

0

500

1000

1500

v

y

NA to 0

NA to 0

NA

NA

Figure 1.19. Simulated Results for Plant Shown in Figure 1.18 and v(k) = 600sin(kT).

16

Figure 1.20. Block Diagram of Plant with Input Deadband Preceded by Sinusoidal

Input and Output Deadzone.

0 1 2 3 4 5 6 7
-1500

-1000

-500

0

500

1000

1500

Time [s]

v

u

w

y

d d

c
r

c
l

-600 -400 -200 0 200 400 600

-1000

-500

0

500

1000

v

y

NA to 0

NA to 0

AA

AA

Figure 1.21. Simulated Results for Plant Shown in Figure 1.20 and v(k) = 600sin(kT).

Figure 1.22. Block Diagram of Plant with Input Deadzone Preceded by Input

Deadband and Sinusoidal Input.

17

0 1 2 3 4 5 6 7

-600

-400

-200

0

200

400

600

800

Time [s]

v

u

w

y

d

c
r

c
l

-600 -400 -200 0 200 400 600

-400

-200

0

200

400

600

800

v

y

AA

AA to 0

AA to 0

AA

Figure 1.23. Simulated Results for Plant Shown in Figure 1.22 and v(k) = 600sin(kT).

The results from Figure 1.13, Figure 1.15, Figure 1.17, Figure 1.19, Figure 1.21,

and Figure 1.23 are very helpful for identifying which nonlinearities are present and

where they should be modeled relative to each other and the linear transfer function.

When the deadband came before the deadzone (Figure 1.19, Figure 1.21, and Figure

1.23) the plant output went to zero periodically (in this case, every π seconds). However,

when the deadband came after the deadzone (Figure 1.13, Figure 1.15, and Figure 1.17)

the output went to a non-zero value periodically (in this case, every π seconds). This is

also true for a deadband that is much larger than the deadzone. For every case the

deadzone was before the transfer function (Figure 1.13, Figure 1.15, and Figure 1.23) the

plant output asymptotically approached a constant. However, when the deadzone was

after the transfer function (Figure 1.17, Figure 1.19, and Figure 1.21) the plant output

went directly to a constant value. When the deadband came before the transfer function,

the plant output asymptotically approached a constant value at the crests and troughs.

However, when the deadband came after the transfer function, the plant output went

directly to a constant value. When the nonlinearity is modeled preceding the transfer

18

function, the output will show a dynamic response to that nonlinearity, hence the

asymptotical approach. When the transfer function is modeled preceding the

nonlinearity, the output will show an instantaneous non-asymptotical response to the

nonlinearity.

1.4. PROBLEM FORMULATION

Now the different types of nonlinearities have been defined in Section 1.1.1 and

1.1.1, the objective is to find the parameters of the linear transfer function, deadzone, and

deadband online without the use of the intermediate signals u(k) and w(k), which are not

measurable. This section begins by applying recursive least squares (RLS) to estimate the

parameters of a linear plant. Then a single nonlinearity is added and it is shown how to

switch between two RLS estimation models to estimate the linear and deadzone

parameters simultaneously. Without adding more terms to the RLS estimation routine, but

by switching between four RLS estimation models, the linear, deadzone, and deadband

parameters can be estimated simultaneously.

1.4.1. Nonlinearities Not Present. A first order linear transfer function with

gain K and time constant τ has the form

()
() 1τ +

=
s

K

sU

sY

(8)

In the discrete domain this becomes

() () () ()1 11 1
T

y k a y k b u k k= − − + − = φ η

(9)

where

19











−=−=

−−
τ

1
τ

1 1,
TT

eKbea

(10)

Using y(k) as the measurement, the regression vector is

() () ()1 1
T

k y k u k= − − −  φ

(11)

The system dynamics are described by the unknown parameters a1 and b1, which are

denoted by the vector ηηηη

[]1 1

T
a b=η

(12)

Åström et al. [20] derive a recursive least squares estimation for the estimated

parameters defined in terms of the previous iteration’s parameters and a correction factor

() () () () ()()ˆ ˆ ˆ1k k k y k y k= − + −η η q

(13)

The estimation ()kŷ is computed from the previous parameter estimates ()ˆ 1k −η and the

current states ()kφ

() () ()ˆˆ 1
T

y k k k= −φ η

(14)

The term q(k) is the gain of the estimation error which generates a correction

factor for the estimate ()ˆ 1k −η . To find a recursive form of P(k), Åström et al. [20]

employ the matrix inversion lemma to define P(k) solely in terms of P(k–1) and ()kφ

() () () ()1
1Tk k k k

λ
 = − − P I q φ P

(15)

20

where

() () () () () () 1
1 1T

k k k k k kλ
−

 = − + − q P φ I φ P φ

(16)

An initial value for the matrix P is required. Typically it is selected as a large

positive diagonal matrix. Åström et al. [20] suggest it can be selected arbitrarily. The

parameter λ is the exponential forgetting factor. A value of λ = 1 indicates no forgetting,

meaning all of the data is used in the estimation. A lower forgetting factor (typically 0.9 <

λ < 1) uses only more recent data to find the parameter estimates. The unknown

parameters are updated by equations (13), (14), (15), and (16).

1.4.2. Deadzone Present At Input. Consider the system with a deadzone at

the input as shown in Figure 1.2 assuming u is unknown. Using the deadzone definition

in equation (1), and replacing u for a function of v in equation (9) yields the following

piecewise definition of the output

()
() ()()

()
() ()()

()
()

()







>
≤≤

<

−+−−
−−

−+−−
=

r

rl

l

rrr

lll

ckv

ckvc

ckv

for

for

for

ckvbkya

kya

ckvbkya

ky

,1,1

1

,1,1

1

1

1

(17)

The subscripts r and l indicate right and left-hand planes for the input v. This is

helpful in the event plant dynamics are different on either side of the deadzone. It also

eliminates the need to include slope terms in the deadzone definition as mentioned in

Section 1.1.1. Note neither an r nor an l was used for a1 within the deadzone. This will be

discussed shortly. Since equation (17) is a piecewise definition, it will be necessary to

implement two estimation routines: one for v < cl and one for v > cr. Attempting to

estimate b1, cr, and cl for cl < v < cr is not possible since the output is not influenced by

21

the input in that region. Because cl and cr are unknown, the switching criterion between

estimations is unknown. However, for most systems, a general range is known [4,5].

Using this approximation, switching criterion cl* and cr* can be selected such that they are

certain (or at least very likely) to meet the following conditions

 c c ,c c r*rl*l ><
(18)

Selecting the parameters too conservatively will only slow the convergence by

leaving out usable data. However, not guessing conservatively enough (i.e., one or both

conditions in equation (18) are not met) runs the risk that some of the points used in the

regression are in the deadzone. Using a constant switching condition cl* and cr* worked

well for all of the tests presented in this paper. However, since cl and cr are being

estimated by the routine, it may be possible to change the switching criterion from the

initial approximates cl* and cr* to the estimates of cl and cr once they have converged.

 The two regression vectors are

() () ()1 1 1
T

k y k v k= − − −  lφ for () *lckv <

(19)

() () ()1 1 1
T

k y k v k= − − −  rφ for () *rckv >

(20)

and the two parameter estimation vectors are

() 1, 1, 1,ˆ
l l l lk a b b c = − lη for () *lckv <

(21)

() 1, 1, 1,ˆ
r r r rk a b b c = − rη for () *rckv >

(22)

22

Substituting
l
φ and

r
φ for φ and ˆ

l
η and ˆ

r
η for ηηηη into the equations (11) and (12)

respectively and using equations to update the parameters (13), (14), (15), and (16)

completes the estimation law. One issue with using separate transfer functions for each

side of the deadzone is the question of what to use for the a1 term in the deadzone as

shown in equation (17). The ideal solution would be to estimate a1 for the decay within

the deadzone using RLS and ϕ(k) = y(k-1). However, the unknown deadzone parameters

cr and cl result in unknown switching conditions. To deal with that, approximates for cr*

and cl* must be selected such that cr* < cr, cl* > cl and cr* > cl*. If cr* is not close enough to

cr and the signal decays rapidly, then the RLS estimation will “miss” the most significant

part of the decay. Then y will appear to be a constant and a1 will go to -1. It is only

possible to use RLS to obtain a good estimate of a1 within the deadzone if the system has

a slow decay (i.e., large time constant) and approximations of cr* and cl* close to cr and cl

are known. If it is not possible to use RLS to estimate a1 within the deadzone, there are a

number of different ways to approximate it. One possibility is for all v(k) ≥ 0 use a1,r and

v(k) < 0 use a1,l. Another possibility is to use the previous a1. For example if v(k) > cr

then v drops to where cr > v(k) > cl, continue to use a1,r until v(k) < cl. This latter method

will be used throughout the rest of the paper and no estimation of any a1 terms is

performed within the deadzone.

1.4.3. Deadzone Present At Input And Deadband Present At Output. Now

consider the plant shown in Figure 1.12 with a deadzone at the input and a deadband at

the output. In equation (17), replacing y(k) with w(k) yields

23

()
() ()()

()
() ()()

()
()

()







>
≤≤

<

−+−−
−−

−+−−
=

r

rl

l

rrr

lll

ckv

ckvc

ckv

for

for

for

ckvbkwa

kwa

ckvbkwa

kw

,1,1

1

,1,1

1

1

1

(23)

From the deadband equations (5) and (6)

() ()
()

() () () ()
() () () ()1

1

−≥⇒≥
−≤⇒≤





+
−

=
kykykwkw

kykykwkw

for

for

dky

dky
kw

r

l

(24)

Substituting k-1 for k in equation (24) yields

() ()
()

() () () ()
() () () ()2111

2111

1

1
1

−≥−⇒−≥−
−≤−⇒−≤−





+−
−−

=−
kykykwkw

kykykwkw

for

for

dky

dky
kw

r

l

(25)

The equations are simplified by defining the derivative as the backwards difference

() () ()
T

kyky
ky

1−−=&

(26)

The conditions y(k) < y(k - 1), y(k) > y(k - 1), y(k - 1) < y(k - 2), and y(k - 1) > y(k - 2),

become ()ky& < 0, ()ky& > 0, ()1−ky& < 0, and ()1−ky& > 0 respectively. Combining

equation (23) and (24) yields the equation for a system defined by a first order transfer

function with input deadzone and output deadband

()

() () () () () ()
() () () () () ()
() () () () () ()
() () () () () ()












><−−+++−−
>>−−+−+−−
<<−−+++−−
<>−−+−+−−

=

−−−−

++++

−−−−

++++

rrrrrrr

rrrrrrr

lllllll

lllllll

ckvkykyforcbadkvbkya

ckvkykyforcbadkvbkya

ckvkykyforcbadkvbkya

ckvkykyforcbadkvbkya

ky

,01,11

,01,11

,01,11

,01,11

,1,1,1,1

,1,1,1,1

,1,1,1,1

,1,1,1,1

&&

&&

&&

&&

(27)

24

The four regression vectors become

() () () () ()
() () () () ()
() () () () ()
() () () () ()

*

*

*

*

1 1 1 , (1) (2)

1 1 1 , (1) (2)

1 1 1 , (1) (2)

1 1 1 , (1) (2)

T

l

T

l

T

r

T

r

k y k v k for v k c y k y k y k

k y k v k for v k c y k y k y k

k y k v k for v k c y k y k y k

k y k v k for v k c y k y k y k

= − − − < > − > −  

= − − − < < − < −  

= − − − > > − > −  

= − − − > < − < −  

l+

l-

r+

r-

φ

φ

φ

φ

(28)

The four parameter estimation vectors become

() () ()
() () ()
() () ()
() () ()

1, 1, *

1, 1, *

1, 1, *

1, 1, *

ˆ , (1) (2)

ˆ , (1) (2)

ˆ , (1) (2)

ˆ , (1) (2)

l l l l

l l l l

r r r r

r r r r

k a b e for v k c y k y k y k

k a b e for v k c y k y k y k

k a b e for v k c y k y k y k

k a b e for v k c y k y k y k

+ + +

− − −

+ + +

− − −

 = − < > − > − 

 = − < < − < − 

 = − > > − > − 

 = − > < − < − 

l+

l-

r+

r-

η

η

η

η

(29)

() () ()
() () ()
() () ()
() () ()

1, 1, *

1, 1, *

1, 1, *

1, 1, *

1 , (1) (2)

1 , (1) (2)

1 , (1) (2)

1 , (1) (2)

l l l l l l

l l l l l l

r r r r r r

r r r r r r

e d a b c for v k c y k y k y k

e d a b c for v k c y k y k y k

e d a b c for v k c y k y k y k

e d a b c for v k c y k y k y k

+ + +

− − −

+ + +

− − −

= − + − < > − > −

= + − < < − < −

= − + − > > − > −

= + − > < − < −

(30)

Note again, the coefficients for each estimation are kept separate. Positive and

negative values of v are denoted by r and l subscripts, respectively. The positive and

negative conditions of y& are denoted by + and – subscripts, respectively. Substituting

+lϕϕϕϕ , −lϕϕϕϕ , +rϕϕϕϕ , and −rϕϕϕϕ for ϕϕϕϕ and +lηηηη̂ , −lηηηη̂ , +rηηηη̂ and −rηηηη̂ for ηηηη̂ into the equations from

Section 1.1.1 completes the estimation law.

25

The deadzone and deadband parameters are determined from the following

equations

()
() 

















−+
−+−

=








−

+
−

−−

++

l

l

ll

ll

l

l

e

e

ba

ba

c

d

,1

,1

1

,1,1

,1,1

1

1

(31)

()
() 

















−+
−+−

=








−

+
−

−−

++

r

r

rr

rr

r

r

e

e

ba

ba

c

d

,1

,1

1

,1,1

,1,1

1

1

(32)

1.4.4. Other Cases. There are many other possibilities of the order in which the

nonlinearities present themselves as shown in Section 1.3.3.3. However the procedure for

setting up the estimation routine is the same:

1. Write out the generic linear transfer function in discrete form

2. Perform substitutions from deadzone and deadband equations in (1) and

(4), respectively, creating an equation for every possible condition

3. Create an RLS estimation law for each condition

4. Solve for the nonlinear terms

1.4.5. Filtering. One of the challenges of implementing the routine presented in

Sections 1.1.1 is that knowledge of the sign of y& is required. The output y is typically a

signal coming from an electronic sensor. Voltage signals are inherently noisy. The signal

y& computed by a first order finite backwards difference using equation (26) becomes

noisier as the sample time becomes smaller.

Because of the noise, the statement y& > 0 can switch back and forth from true to

false very rapidly. For this reason, it is helpful to define limits on either side of zero. For

26

all points between these two limits, 0y ≈& . All points above and below the limits will be

considered as y& > 0 and y& < 0, respectively.

If the noise has a Gaussian distribution, it is known that 99.7 % of the points will

lie within three standard deviations (+/-3σ) of the mean. Therefore +/- 3σ would be a

good place to start for limits. However it can be a problem if the +/- 3σ range spans

nearly the entire range of y& . It was necessary to filter y& and y in the example of the

hydraulic test bench presented below. Since filters add delay to the measurement signal, a

pure delay was added to the input v to maintain a meaningful relationship between the

input and output.

An M-point non-weighted moving average filter that uses the current term delays

the signal by ½ (M-1) samples or ½ (M-1)T seconds. The variance (σ2 denotes population

variance, SN
2 denotes sample variance) is reduced by a factor of 1/M (see the Appendix

for derivation). Note that after filtering the signal can no longer be considered as a

random number because there is positive covariance between consecutive data points.

The variance of y& when calculated from equation (26) is given by

() () 2var2var −= Tyy&

 (33)

Since the sample period T is usually a very small number, the variance of

y& becomes very large and y& will need to be filtered. See the Appendix for derivation.

1.5. SIMULATED RESULTS

1.5.1. Simulation Example - Without Noise. Consider the plant piecewise-

defined by two discrete transfer functions with a deadzone input nonlinearity and a

deadband output nonlinearity. The transfer functions are

27

0

0

94.0
15.0

96.0
1.0

)(
)(

<

≥













−

−
=

v

v

for

for

z

z

zU

zY

(34)

and have a sample period T = 0.005. Using the regression and parameter estimation

vectors given in equations (28) through (30) with recursive least squares, the plant

parameters will be estimated. The deadzone and deadband parameters are cr = 200, cl = -

300, dr = 30, and dl = 50. The positive and negative deadzone offset guesses were cr* =

350 and cl* = -350, respectively. The initial covariance matrix was chosen to be

diag[1000 1000 1000]. The initial states forφ were [0 0 0]. The initial estimates for each

set of parameters were chosen to be [1 1 1]. The forgetting factor λ was chosen to be

0.99.

The estimates converged to their proper values. As seen in Figure 1.24, the

estimates did not converge smoothly, but rather “stair-stepped” towards the actual value.

This is because each estimation routine is not continuously running, but rather triggered

when certain conditions are met. The spikes in the estimated output are present each time

one of the RLS estimation algorithms is used for the first time. The estimates for cr, cl, dr,

and dl converge slower than the a1’s and b1’s. This is because they depend on the

convergence of the a1, b1 and e1 term for both positive and negative y& before they will

compute properly. The 1 + a1 term is likely to be the cause of slow convergence. For

example

()
1,

1,1
r r r

r

r

e b c
d

a

− −

−

+
=

+

(35)

28

If every parameter needed to solve for dr has converged with the exception of a1,r-

which is off by one percent, the error is estimating dr is 20 percent. This is due to the fact

that a1,r- is a number close to -1 making the denominator very small.

0 5 10 15 20
-6000

-4000

-2000

0

2000

4000

Time [s]

y

y
est

0 5 10 15 20
-1

-0.98

-0.96

-0.94

-0.92

-0.9

Time [s]

a
1,r+

a
1,r-

a
1,l+

a
1,l-

0 5 10 15 20
0

0.05

0.1

0.15

0.2

Time [s]

b
1,r+

b
1,r-

b
1,l+

b
1,l-

0 5 10 15 20
-40

-30

-20

-10

0

10

20

30

40

Time [s]

e
1,r+

e
1,r-

e
1,l+

e
1,l-

0 5 10 15 20
150

200

250

300

350

400

450

500

Time [s]

c
r

-c
l

0 5 10 15 20
0

10

20

30

40

50

60

70

Time [s]

d
r

d
l

Figure 1.24. Simulated Estimation Results of Equation

(34), cr = 200, cl = -300, dr = 30, and dl = 50.

29

1.5.2. Simulation Example – With Gaussian Noise. Consider the previous

example from Section 1.1.1 with an added zero-mean Gaussian noise to the simulated

signal with variance 200. The raw output signal is filtered with a 20-point moving

average filter, differentiated, and filtered again with a 20-point moving average filter.

The filters have delayed the signal 19 steps (9.5 steps for each of the filters). Every

estimated y& greater than 600 is considered to be positive. Every estimated y& less than -

600 is considered to be negative. Figure 1.25 shows the actual and estimated outputs as

well as the parameter convergence.

The parameters converge slower due to the noise as shown in Figure 1.25. After

200 seconds at T = 0.005 sec, the estimated parameters b1 terms still had errors of up to

15%, the a1 terms had errors up to 1%, cr and cl had errors of approximately 1%, and dr

and dl had errors of up to 50%. As was shown in the previously in 1.1.1, the errors in the

a1, b1, and e1 can be magnified in the calculated estimations cr, cl, dr, and dl. Figure 1.26

showns the estimation error plotted with +/-3σ of the superimposed Gaussian noise

(2003±). If the parameters were estimated perfectly, there would theoretically be three

data points per every 1000 in which the error is outside of the +/-3σ band. The number of

data points observed in which the error was outside the +/-3σ band was 12 per 1000 for

50-200 seconds (16 per 1000 for 50-100 sec, 11 per 1000 for 100 to 150 sec, and 10 per

1000 for 150 to 200 sec.) This indicates that even after 200 seconds (40,000 data points)

there is a very small but observable error in the estimation. It is difficult to determine

whether or not the parameters will eventually converge to their proper values, but these

results indicate that the output can be estimated very closely even in the presence of

noise.

30

0 50 100 150 200
-3000

-2000

-1000

0

1000

2000

Time [s]

y

y
est

0 50 100 150 200
-1

-0.98

-0.96

-0.94

-0.92

-0.9

Time [s]

a
1,r+

a
1,r-

a
1,l+

a
1,l-

0 50 100 150 200
0.05

0.1

0.15

0.2

0.25

Time [s]

b
1,r+

b
1,r-

b
1,l+

b
1,l-

0 50 100 150 200
-60

-40

-20

0

20

40

60

Time [s]

e
1,r+

e
1,r-

e
1,l+

e
1,l-

0 50 100 150 200
150

200

250

300

350

400

450

500

Time [s]

c
r

-c
l

0 50 100 150 200
0

10

20

30

40

50

60

70

Time [s]

d
r

d
l

Figure 1.25. Simulated Estimation Results of Equation

(34), cr = 200, cl = -300, dr = 30, and dl = 50 with σ
2
 = 200.

31

0 50 100 150 200
-100

-50

0

50

100

Time [s]

y-y
est

+3σ
-3σ

Figure 1.26. Estimation Error

1.6. EXPERIMENTAL RESULTS

The online deadzone and deadband estimation scheme established in Section 1.4

and simulated in Section 1.5 was tested to demonstrate its applicability. Three case

studies are performed: (1) modeling the dynamics and the deadzone in a motor-driven

cart with voltage input and velocity output, (2) modeling the dynamics and deadzone of

an electro-hydraulic pilot valve with current input and pilot pressure output, and (3)

modeling the dynamics, the deadzone, and deadband in a cart that is loosely coupled to a

motor-driven cart.

1.6.1. Modeling Motor-Driven Cart Velocity. One example of a first order

system with a deadzone is a DC-motor driven cart with voltage input and velocity output,

as shown in Figure 1.27. There is a range of voltages around 0 V in which the cart does

not move due to Coulomb friction. This results in an input deadzone. Figure 1.28 shows

the input-output curve for 30 seconds (approximately 19 cycles) of the cart for a

sinusoidal input voltage of)4sin(6)(ttv = . The output goes directly to zero in the middle

32

of the plot. This indicates the plant dynamics should be modeled before the deadzone due

to Coulomb friction acting at the motor’s output. The curve has nearly the same shape as

the curve in Figure 1.7 indicating it should be possible to fit the cart’s dynamics to a first

order system with an output deadzone.

Figure 1.27. DC-Motor Driven Cart.

-6 -4 -2 0 2 4 6
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Voltage [V]

V
e

lo
c
it
y
 [
m

/s
]

Figure 1.28. Velocity Versus Voltage for DC-Motor Driven Cart with v(t) = 6sin(4t).

33

Since there does not appear to be any deadband in the velocity, the online

parameter estimation scheme shown in Section 1.1.1 can be used to derive equations for

el and er

() ()
() ()

1,

1,

1 0

1 0

l l l

r r r

e c a for y k

e c a for y k

= − + <

= − + >

(36)

Not only is modeling the deadzone after the linear transfer function more accurate

for this system, it has the added benefit of having known switching conditions. If the

deadzone is modeled before the transfer function, values larger than cr and -cl have to be

assumed as switching conditions. In this arrangement, the switching condition is based

solely on y(k), which is known and needs little filtering. The initial covariance matrix P

was chosen as diag[1000 1000 1000]. The forgetting factor λ was chosen as 0.99. The

initial estimation vector ηηηη was chosen as [1 1 1]. Since an incremental encoder is use, the

initial output is 0. The sample time was 0.001 seconds. Figure 1.29 shows the estimated

output is very close to the actual output. The estimated parameters converged to within a

few percent of their final values within approximately two seconds.

34

0 2 4
-0.5

0

0.5

Time [s]

V
e

lo
c
ity

 [
m

/s
]

0 10 20 30
-0.2

-0.1

0

0.1

Time [s]

D
e

a
d

z
o

n
e

 [
m

/s
]

0 10 20 30
0

0.02

0.04

0.06

Time [s]

T
im

e
 C

o
n

s
ta

n
t
[s

]

0 10 20 30
0

0.05

0.1

Time [s]

G
a

in
 [
m

/s
/V

]

0 2 4
0

0.02

0.04

Time [s]

A
b

s
.
E

rr
o

r
[m

/s
]

0 10 20 30
0

0.2

0.4

0.6

Time [s]

A
b

s
.
E

rr
o

r
[m

/s
]

vel

vel
sim

c
r

-c
l

τ
r

τ
l

K
r

K
l

Figure 1.29. Results of Online Estimation of DC-Motor Driven Cart Dynamics and

Deadzone for a Sinusoidal Input.

Several more tests were conducted to examine the algorithm at other frequencies,

amplitudes, and waveforms. Three tests were conducted for each permutation of 2, 4, 6,

and 8 rad/s frequencies and 2, 4, 6, and 8 V amplitude for sine, square, and triangle

35

waves, totaling 144 tests. The functions for the square wave and triangle wave were

defined as

() ()()
() ()()tAmplitudet

tAmplitudet

sinsin
2

Triangle

sinsignSquare

1−⋅=

⋅=

ππππ

(37)

Examples of those results are shown in Figure 1.30 through Figure 1.32. A

randomized input signal was created by generating a zero-mean Gaussian distributed

random number with variance 10000 every time step and filtering with a first-order low

pass filter with a time constant of 0.5 seconds. An example of input signals is shown in

Figure 1.33 for sine, square, and triangle waves with amplitude 8 and frequency 1 rad/s

and the randomized signal. Figure 1.34 shows the root mean square error of the simulated

and actual output calculated from time 7.5 to 30 seconds and normalized about the

maximum absolute value of the output.

36

0 2 4
-0.5

0

0.5

Time [s]

V
e

lo
c
ity

 [
m

/s
]

0 10 20 30
-0.2

-0.1

0

0.1

Time [s]

D
e

a
d

z
o

n
e

 [
m

/s
]

0 10 20 30
0

0.02

0.04

0.06

Time [s]

T
im

e
 C

o
n

s
ta

n
t
[s

]

0 10 20 30
0

0.05

0.1

Time [s]

G
a

in
 [
m

/s
/V

]

0 2 4
0

0.02

0.04

Time [s]

A
b

s
.
E

rr
o

r
[m

/s
]

0 10 20 30
0

0.2

0.4

0.6

Time [s]

A
b

s
.
E

rr
o

r
[m

/s
]

vel

vel
sim

c
r

-c
l

τ
r

τ
l

K
r

K
l

Figure 1.30. Results of Online Estimation of DC-Motor Driven Cart Dynamics and

Deadzone for a Square-Wave Input.

37

0 2 4
-0.5

0

0.5

Time [s]

V
e

lo
c
ity

 [
m

/s
]

vel

vel
sim

0 10 20 30
-0.2

-0.1

0

0.1

Time [s]

D
e

a
d

z
o

n
e

 [
m

/s
]

c
r

-c
l

0 10 20 30
0

0.02

0.04

0.06

Time [s]

T
im

e
 C

o
n

s
ta

n
t
[s

]

τ
r

τ
l

0 10 20 30
0

0.05

0.1

Time [s]

G
a

in
 [
m

/s
/V

]

K
r

K
l

0 2 4
0

0.02

0.04

Time [s]

A
b

s
.
E

rr
o

r
[m

/s
]

0 10 20 30
0

0.2

0.4

0.6

Time [s]

A
b

s
.
E

rr
o

r
[m

/s
]

Figure 1.31. Results of Online Estimation of DC-Motor Driven Cart Dynamics and

Deadzone for a Triangle-Wave Input.

38

0 2 4
-0.5

0

0.5

Time [s]

V
e

lo
c
ity

 [
m

/s
]

vel

vel
sim

0 10 20 30
-0.2

-0.1

0

0.1

Time [s]

D
e

a
d

z
o

n
e

 [
m

/s
]

c
r

-c
l

0 10 20 30
0

0.02

0.04

0.06

Time [s]

T
im

e
 C

o
n

s
ta

n
t
[s

]

τ
r

τ
l

0 10 20 30
0

0.05

0.1

Time [s]

G
a

in
 [
m

/s
/V

]

K
r

K
l

0 2 4
0

0.02

0.04

Time [s]

A
b

s
.
E

rr
o

r
[m

/s
]

0 10 20 30
0

0.2

0.4

0.6

Time [s]

A
b

s
.
E

rr
o

r
[m

/s
]

Figure 1.32. Results of Online Estimation of DC-Motor Driven Cart Dynamics and

Deadzone for a Randomized Input.

39

0 1 2 3 4 5 6 7
-10

-5

0

5

10

Time [s]

Triangle

Sine

Square

Randomized

Figure 1.33. Input Signal Waveforms to Motor Driven Cart.

2 4 6 8
0

0.05

0.1

0.15

0.2

Amplitude [V]

N
o

rm
a

liz
e

d
 R

M
S

 E
rr

o
r

S
in

e
 W

a
v
e

2 4 6 8
0

0.05

0.1

0.15

0.2

Amplitude [V]

N
o

rm
a

liz
e

d
 R

M
S

 E
rr

o
r

T
ri
a

n
g

le
 W

a
v
e

0

0.05

0.1

0.15

0.2

N
o

rm
a

liz
e

d
 R

M
S

 E
rr

o
r

R
a

n
d

o
m

 S
ig

n
a

l

2 4 6 8
0

0.05

0.1

0.15

0.2

Amplitude [V]

N
o

rm
a

liz
e

d
 R

M
S

 E
rr

o
r

S
q

u
a

re
 W

a
v
e

 2 rad/s

4 rad/s

6 rad/s

8 rad/s

2 rad/s

4 rad/s

6 rad/s

8 rad/s

2 rad/s

4 rad/s

6 rad/s

8 rad/s

Figure 1.34. Normalized Root Mean Square Error between Simulated and

Experimental DC-Motor Drive Cart Velocities.

40

It can be seen from Figure 1.34 that the error was less than 5% most of the time

for the sine and triangle waves and that errors were larger at smaller amplitudes. This is

largely due to the fact that for low amplitudes the signal to noise ratio is higher. As was

shown in simulation, a spike in the estimated output occurs the first time an estimator was

used. Once the estimator has received about 100 milliseconds of data, its values have

converged close enough that it will not generate any more spikes while it is used. The

randomized signal’s error was zero in a few locations as a result of the output remaining

in the deadzone for several seconds.

The convergence was the worst using a square wave voltage signal. This is due to

the input signal not being sufficiently exciting. For a square wave input, the estimation

algorithm only receives two values for the input signal: the voltages equal to the wave’s

amplitude and the negative of the amplitude. When the output stabilizes such that

() ()1−≈ kyky and since u(k) = u(k-1) more than 99% of the time, there becomes an

infinite number of parameter estimations that will minimize the estimation error. For

instance, under stable conditions when () ()1−= kyky and () ()1−= kuku , the estimates

a1 = -1, b1 = 0, e1 = 0 create an estimation with zero error. However so will a1 = 0, b1 = K,

e1 = 0 and a1 = 0, b1 = 0, e1 = y(k). In the plots of the parameter convergence of the square

wave, it is apparent that the estimations spiked every time the input changed. After the

input has changed, the output y reaches a steady state value momentarily as well as the

estimates until the next input change occurs. This lack of excitation caused the deadzone

parameter estimates cr and -cl to become negative in some cases, which was compensated

for by underestimating the gains. However, having a cl > cr does not make physical sense

when the deadzone is modeling Coulomb friction.

41

1.6.2. Modeling Pilot Valve Pressure. The control of hydraulic systems

typically requires manual or solenoid-type control valves. If the pressure is low enough,

the operator’s movement of a joystick or the actuation of a solenoid moves a spool to

directly regulate the working pressure. The working pressure acts on an implement such

as a cylinder or motor. However, for a high-pressure system, the forces required to move

the spool to regulate the working pressure are too high for an operator or solenoid to exert

(a solenoid can only exert about 50 to 100 N [21]). In this case the operator merely

controls an intermediate pressure called the pilot pressure and the forces generated move

the main spool to control working port pressure. It is desirable to have some deadzone in

the system to mitigate unintended motion should the joystick be accidentally bumped.

However, deadzone can also be detrimental to a controller’s performance if not

accounted for.

The pilot valve’s deadzone results from two main factors: spring pretension and

spool land overlap. When the valve is closed the fluid flows from the supply port through

the spool (this is shown to flow external to the spool in Figure 1.35 and Figure 1.36 for

clarity). It passes through a small port, and flows around a ball, and out the drain port.

When current flows through the solenoid coil, a pin extending from the armature presses

on the ball restricting flow to the drain. The pressure builds up on the end of the spool

opposite the spring. The pressure has to build high enough to overcome the pretension in

the spring before the spool can move. Once the spool begins to move, it still needs to

move a certain distance for fluid to flow from the supply to the control port. This is

because the land on the spool overlaps the supply port by some distance – on the order of

42

2-3 mm. For reference the full range of motion of the spool is around 7 mm. This spool

land overlap and spring pretension result in a significant deadzone.

Figure 1.35. Pilot-Operated Hydraulic System.

Figure 1.36. Pilot Valve.

43

The pilot valve is shown in Figure 1.36. Each pilot pressure hose can be

considered as a variable-sized control volume with two variable orifices: one that opens

the control volume to supply and one that opens it to drain. The volume of the pilot

pressure hose changes as the main spool moves as seen in Figure 1.35. It is apparent that

a detailed pilot pressure model could easily be 3rd order or higher if the dynamics of the

solenoid, ball valve, pilot spool, main spool, and oil compressibility are accounted for.

However, since an empirical model is used, the higher order dynamics will be ignored

and the RLS routine will attempt to capture the dynamics dictated by the most dominant

pole.

The RLS algorithm developed in the previous sections has been configured for a

single input/single output system. However, the pilot pressure in one of the pilot hoses is

dependant on the supply and drain pressures and the current supplied to each of the

solenoids. A change in the pressure in one pilot hose could move the main spool which

changes the oil volume and thereby the pressure in the other pilot hose. To consider this

as a single input/single output system a few assumptions are made. The supply pressure is

assumed constant. This is a fairly valid assumption since the accumulator attenuates

spikes in the supply pressure. The drain pressure is also assumed to be constant since it is

an unrestricted path to the tank.

The objective of pilot operation is to control the force exerted on the main valve’s

spool. Since the spool has equal areas on each end, the difference in the pilot pressures

is directly proportional to the force on the spool. Because of this, the difference in the

pilot pressures (labeled pilot a and pilot b in Figure 1.35 and Figure 1.36) will be

considered the output. Actuating both solenoids simultaneously is counterproductive

44

since pressure difference is the only thing of concern. All of the positive input

commands can be given to one solenoid and the negative input commands can be given

to the other. This reduces the model to a single input and single output.

Figure 1.37 shows the input-output curve of the pilot valve for a sinusoidal

command current (in mA) of)sin(1200)(ttv = for 60 seconds of data (approximately 10

cycles). The curve has nearly the same shape as the curve in Figure 1.4 indicating that it

should be possible to fit the pilot valve to a first order system with an input deadzone.

There does not appear to be any deadband. The deadzone appears to be within the range

between -500 and 500. The initial switching condition cl* was chosen as -500 and cr* was

chosen as 500. The initial covariance matrix P was chosen as diag[1000 1000 1000]. The

forgetting factor λ was chosen as 0.99. The initial estimation vector η was chosen as [1 1

1]. The initial output was 0.

-1500 -1000 -500 0 500 1000 1500
-3000

-2000

-1000

0

1000

2000

3000

Current [mA]

P
ilo

t
P

re
s
s
u

re
 D

iff
e

re
n

c
e

 [
k
P

a
]

Figure 1.37. Pilot Valve Pressure Difference Versus Current.

45

Imposing saturation on the estimates η keeps the estimated output within a much

more realistic range. Limits of 0 to -1 were imposed upon a1,r and a1,l. Limits of 0.0001

to 2 were imposed upon b1,r and b1,l. If the lower limit would have been chosen at

exactly zero, it could cause an error (i.e., division by zero) when calculating cr and cl.

Limits of 0 to 500 and -500 to 0 where imposed upon er and el. The resulting actual and

simulated outputs are shown in Figure 1.38.

0 2 4 6 8 10 12 14 16

-2000

-1000

0

1000

2000

Time [s]

P
ilo

t
P

re
s
s
u

re
 D

iff
e

re
n

c
e

 [
k
P

a
]

y
sim

y

0 20 40 60
0

0.05

0.1

Time [s]

T
im

e
 C

o
n

s
ta

n
t
[s

]

τ
r

τ
l

0 20 40 60
2

2.5

3

Time [s]

G
a

in
 [
k
P

a
/m

A
]

K
r

K
l

0 20 40 60
300

310

320

330

340

350

Time [s]

D
e

a
d

z
o

n
e

 [
m

A
]

c
r

-c
l

0 20 40 60
0

100

200

300

400

500

Time [s]

E
rr

o
r

[k
P

a
]

0 2 4 6 8 10 12 14 16
0

100

200

300

400

500

Time [s]

E
rr

o
r

[k
P

a
]

Figure 1.38. Results of Online Estimation of Pilot Pressure Difference Dynamics and

Deadzone for a Sinusoidal Input.

46

Several more experiments were conducted to examine the algorithm at other

frequencies, amplitudes, and waveforms. Three tests were conducted for each

permutation of 1, 2, 5, and 10 rad/s frequencies and 600, 800, 1200, 2000 mA amplitudes

for sine, square, and triangle waves and twenty tests were conducted for a randomized

waveform, totaling 164 tests. The root mean square error of the estimated output

compared to the actual output was calculated and normalized about the maximum

absolute value of the actual output.

Figure 1.39 shows that the error was below 10 percent for most runs. The results

for the hydraulic test bench appear to be more frequency dependent than for the motor

driven cart. This is understandable since many higher order effects were ignored. The

largest error was observed for a triangle wave at low amplitude and high frequency. This

is due to the fact that current was barely large enough to induce any pressure change.

This is not as much of a problem with the sine wave or square wave because their signals

stay above the deadzone estimate (cr* and –cl* = 500) longer than for a triangle wave. For

the triangle wave with amplitude of 600 mA and frequency of 10 rad/s, the estimator

shuts off before the pressure begins to react to the current’s change in slope as shown in

Figure 1.40.

47

500 1000 1500 2000
0

0.1

0.2

0.3

Amplitude [mA]

N
o

rm
a

liz
e

d
 R

M
S

 E
rr

o
r

S
in

e
 W

a
v
e

1 rad/s

2 rad/s

5 rad/s

10 rad/s

500 1000 1500 2000
0

0.1

0.2

0.3

Amplitude [mA]

N
o

rm
a

liz
e

d
 R

M
S

 E
rr

o
r

S
q

u
a

re
 W

a
v
e

 1 rad/s

2 rad/s

5 rad/s

10 rad/s

500 1000 1500 2000
0

0.1

0.2

0.3

Amplitude [mA]

N
o

rm
a

liz
e

d
 R

M
S

 E
rr

o
r

T
ri
a

n
g

le
 W

a
v
e

1 rad/s

2 rad/s

5 rad/s

10 rad/s

0

0.1

0.2

0.3

N
o

rm
a

liz
e

d
 R

M
S

 E
rr

o
r

R
a

n
d

o
m

 S
ig

n
a

l

Figure 1.39. Normalized Root Mean Square Error between Simulated and

Experimental Pilot Pressures.

0 0.2 0.4 0.6 0.8 1
-800

-600

-400

-200

0

200

400

600

800

Time [s]

C
u

rr
e

n
t
[m

A
]
&

 P
re

s
s
u

re
 [
k
P

a
]

v

y

begin estimate

end estimate

Figure 1.40. Estimation is not Active Long Enough to Capture Dynamics for the 600

mA Amplitude, 10 rad/s Triangle Wave.

48

1.6.3. Modeling Velocity Of A Free Cart Loosely Coupled To A Motorized

Cart. The velocity of a motorized cart was successfully modeled in Section 1.1.1 as a

first order transfer function with a deadzone at the output. Now a motorized cart that is

coupled to a second free moving cart with a very loose coupling is considered as shown

in Figure 1.41. The velocity of the free cart is still modeled as a first order transfer

function with a deadzone at the output. However, the position of the cart has a deadband

due to the loose coupling. The deadband parameter d as defined in equation (5) is equal

to half the range of free motion, which is the slot length minus the pin diameter.

Figure 1.41. Two Carts with Slotted Coupling.

The model shown in Figure 1.43 is created with u the input voltage and y& the free

cart’s velocity. The intermediate states v, w& , and w are unobservable where v is the

theoretical velocity of the motorized cart in the absence of deadzone, w& is the velocity of

the motorized cart, and w is the position of the motorized cart. Certain assumptions

dictated by the deadband model from equation (4) are made. First, it is assumed the

motor driven cart’s velocity is not effected by the free cart. If the velocity of the motor

driven cart changes depending upon whether or not it is engaged with the free cart,

separate dynamics for each condition would have to be considered. Second, it is assumed

49

the pin sliding within the slotted coupling absorbs all of the contact impact between itself

and the ends of the slot. If the end of the slot hits the pin with significant force, the

connecting pin may oscillate back and forth within the length of the slot. Third, it is

assumed the free cart only moves when it is pushed or pulled by the motor driven cart.

Therefore, there has to be sufficient friction within the bearings to quickly stop the cart

when the pin loses contact with the coupling. Fourth, the motor driven cart velocity must

be immediately inherited by the free cart upon contact of the pin and the ends of the slot.

These four assumptions can be summed up with one comprehension assumption: the free

cart has no mass. Figure 1.42 shows ten cycles of the free cart velocity versus the input

voltage to the motor driven cart. With the input voltage used in Figure 1.42, the system

appears to fit the model in Figure 1.43. The cart is stationary throughout the deadzone

but almost instantaneously assumes the velocity of the motor driven cart.

-6 -4 -2 0 2 4 6
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Voltage [V]

V
e

lo
c
ity

 [
m

/s
]

Figure 1.42. Velocity Versus Voltage for Free Cart With v(t) = 6sin(2t).

50

Figure 1.43. Free Cart Velocity Model.

Using the methodology presented in Section 1.4, a switching RLS algorithm is

derived. First deriving the velocity of the motor driven cart w&

() () () ()
() () ()

()
() 0

0

111

111

,1,1,1

,1,1,1

>
<





+−−+−
+−−+−

=
kw

kw

for

for

ackubkwa

ackubkwa
kw

rrrr

llll

&

&

&

&
&

(38)

Using the backwards difference method from equation (26), the motor driven cart’s

position, w, is

() ()
() () () () () ()
() () () () () ()










−>+−−+






 −−−

−<+−−+






 −−−

=−−

111
21

111
21

1

,1,1,1

,1,1,1

kwkwforackub
T

kwkw
a

kwkwforackub
T

kwkw
a

T

kwkw

rrrr

llll

(39)

() () () () () () () ()
() () () () () () ()



−>+−−+−−−+
−<+−−+−−−+

=
111211

111211

,1,1,1,1

,1,1,1,1

kwkwforaTckTubkwakwa

kwkwforaTckTubkwakwa
kw

rrrrr

lllll

(40)

Using the deadband definition in equation (5) and taking the backwards difference from

equation (26) shows that the free cart velocity y& is

() () ()
()() ()() () () ()

() () ()
()() ()() () () ()












>=−−−−
≤≤=

<=+−−+

=−−=

kwkwforkw
T

dkwdkw

kwkwkwfor

kwkwforkw
T

dkwdkw

T

kyky
ky

r

rl

l

&

&

&

1
0

1

1

(41)

51

Therefore, the free cart’s velocity y& is equal to the motor driven cart’s velocity w& outside

of the deadband and the free cart is motionless within the deadband. Since the free cart’s

velocity is either equal to the motor driven cart’s velocity or zero, it is impossible to

estimate the deadband by examining the free cart’s velocity alone. Therefore the motor

driven cart’s velocity w& , which is not directly observable, is assumed to be equal to the

free cart’s velocity y& whenever the free cart is moving. Using the motor driven cart’s

velocity, the parameters a1,r, a1,l, b1,r, b1,l, cr, and cl are determined using the methodology

from Section 1.1.1 regarding the estimation of the velocity of a motor-driven cart. After

the estimation of w& converges, it is integrated to estimate w. The deadband, d, can be

determined from y and the estimate of w because y - w = d for)(ky& > 0 and y - w = -d for

)(ky& < 0 from equations (5) and (6), respectively. Integrating w& is problematic since the

initial condition is unknown and several inaccurate estimations of w& are generated before

the algorithm converges to an accurate value.

The motor driven and free cart masses are 7.35 and 0.42 kg, respectively: a ratio

of 17.5. Also, to avoid high impact forces between the pin and the slot, only low voltages

(3, 4, and 6 volts) and low frequencies (2, 4, 6, and 8 rad/s) were considered. Three tests

were conducted for each permutation of sine, square, and triangle waves, frequencies of

2, 4, 6, and 8 rad/s, and voltages of 3, 4, and 6 V, for a total of 108 tests.

The results were best for the sine and triangle waves at low frequencies with

errors as low as three percent. At higher frequencies the impact speeds between the slot

and pin are faster resulting in motion of the free cart even when the motor driven cart was

not pushing or pulling on it. The square wave results were far worse than those for the

triangle or sine waves. This is most likely the result of lack of excitation. The estimation

52

algorithm was only active when the free cart velocity was non-zero. However, due to the

“instantaneous” jump in velocity, accelerations over 1 m/s2 were excluded. In the case of

the square wave, the free cart velocity reaches is close to the steady-state value before the

estimation algorithm is activated. This acceleration condition can cause the exclusion of

some of the dynamic response data to be lost during the fast acceleration of the free cart

in response to a stepped input voltage. As mentioned in Section 1.1.1, the inputs to the

estimation algorithm are not persistently exciting enough to generate an accurate

estimation.

2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Amplitude [V]

N
o

rm
a

liz
e

d
 R

M
S

 E
rr

o
r

S
in

e
 W

a
v
e

2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Amplitude [V]

N
o

rm
a

liz
e

d
 R

M
S

 E
rr

o
r

S
q

u
a

re
 W

a
v
e

2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Amplitude [V]

N
o

rm
a

liz
e

d
 R

M
S

 E
rr

o
r

T
ri
a

n
g

le
 W

a
v
e

2 rad/s

4 rad/s

6 rad/s

8 rad/s

2 rad/s

4 rad/s

6 rad/s

8 rad/s

2 rad/s

4 rad/s

6 rad/s

8 rad/s

Figure 1.44. Normalized Root Mean Square Error of the Simulated Output of the

Free Cart Velocity.

53

It was observed that when the simulated motor driven cart velocity matched the

actual free cart velocity with small error, this error was achieved within approximately

five seconds. A time of 7.5 seconds was chosen as the time to begin the deadband

estimation by comparing the free cart position y to the estimated motor driven cart

position w. As observed in previous examples and in Figure 1.45 and Figure 1.46, the

estimation error is very large momentarily at approximately 0.3 seconds when the

estimation begins for positive velocities. The estimation error is also large momentarily

at approximately 2.0 seconds when the estimation begins for negative velocities. A spike

in the velocity is observed at approximately 7.5 seconds and again at 8 seconds as a result

of the deadband estimation beginning. After 8 seconds the simulation matches the actual

data to within approximately 0.02 m/s with the exception of spikes that occur when the

free cart assumes the velocity of the motor driven cart.

54

0 1 2 3 4 5
-0.5

0

0.5

Time [s]

V
e

lo
c
it
y
 [
m

/s
]

7 8 9 10 11 12
-0.5

0

0.5

Time [s]

V
e

lo
c
it
y
 [
m

/s
]

0 10 20 30
0

0.05

0.1

Time [s]

T
im

e
 C

o
n

s
ta

n
t
[s

]

0 10 20 30
0

0.02

0.04

0.06

0.08

Time [s]

G
a

in
 [
m

/s
/V

]

0 10 20 30
0

0.05

0.1

0.15

0.2

Time [s]

D
e

a
d

z
o

n
e

 [
m

/s
]

0 10 20 30
0

1

2

3

4

5
x 10

-3

Time [s]

D
e

a
d

b
a

n
d

 [
m

]

0 10 20 30
5.8

5.85

5.9

Time [s]

y
 -

 w
s

im
 [
m

]

0 10 20 30
0

0.1

0.2

0.3

0.4

Time [s]

E
rr

o
r

[m
/s

]

y
sim

y

y
sim

y

τ
r

τ
l

K
r

K
l

c
r

-c
l

Figure 1.45. Free Cart Parameters for v(t) = 6sin(2t).

55

0 1 2 3 4 5
-0.5

0

0.5

Time [s]

V
e

lo
c
it
y
 [
m

/s
]

7 8 9 10 11 12
-0.5

0

0.5

Time [s]

V
e

lo
c
it
y
 [
m

/s
]

0 10 20 30
0

0.05

0.1

Time [s]

T
im

e
 C

o
n

s
ta

n
t
[s

]

0 10 20 30
0

0.02

0.04

0.06

0.08

Time [s]

G
a

in
 [
m

/s
/V

]

0 10 20 30
0

0.05

0.1

0.15

0.2

Time [s]

D
e

a
d

z
o

n
e

 [
m

/s
]

0 10 20 30
0

1

2

3

4

5
x 10

-3

Time [s]

D
e

a
d

b
a

n
d

 [
m

]

0 10 20 30
9.2

9.25

9.3

Time [s]

y
 -

 w
s

im
 [
m

]

0 10 20 30
0

0.1

0.2

0.3

0.4

Time [s]

E
rr

o
r

[m
/s

]

y
sim

y

y
sim

y

τ
r

τ
l

K
r

K
l

c
r

-c
l

Figure 1.46. Free Cart Parameters for v(t) = 6triangle(2t).

56

1.7. SUMMARY AND CONCLUSIONS

Nonlinearities such as deadzones and deadbands are present in many mechanical

systems. While many of these nonlinear parameters are unknown, they can be

determined if the general nature of the system is known. Section 1.3 demonstrates the

response of a first order system with deadzone and deadband nonlinearities to help

identify which nonlinearities are present and how they should be modeled. Section 1.4

derives an RLS estimation law for a linear system, a linear system with an input

deadzone, and a linear system with an input deadzone and output deadband. Section 1.5

demonstrates that the parameters converge perfectly to their actual values in simulation.

Section 0 implemented the RLS estimation laws developed in Section 1.4 on a DC motor

driven cart, a hydraulic pilot pressure, and a free cart loosely coupled to a DC motor

driven cart.

The results for the DC motor driven cart were very good. The simulated velocity

had an error of less than 10% for 94% of the experiments. The results for the hydraulic

pilot pressure were similar with 91% of the experiments having less than 10% error

between the actual and simulated pressure. A few experiments of the pilot pressure did

not converge to accurate values because the estimation did not remain active long enough

to capture the system dynamics. The results for the free cart loosely coupled to DC

motor driven cart had estimation errors as low as three percent, but only for inputs with

low frequencies. At higher frequencies the deadband model fails to describe impact

forces between the two carts. For all three experimental scenarios the square waveform

performed the worst. For most experiments, the RLS algorithm was still able to create a

simulated output that was close to the experimental output when a square wave was

57

input; however, it frequently determined inaccurate parameter values. In many cases the

square wave caused the gain to be underestimated and compensated for it by allowing the

deadzone terms to be negative.

This method for determining nonlinearities and plant dynamics worked well

because generic equations for the system were known and only coefficients were needed.

Further work is needed to apply these techniques to higher order systems, to use

nonlinearities other than deadzone and deadband, and to incorporate the estimations in an

adaptive control algorithm.

58

1.8. NOMENCLATURE

a1 = coefficient of y(k-1)

a1,l = coefficient of y(k-1) for v < 0

a1,r = coefficient of y(k-1) for v > 0

+la ,1 = coefficient of y(k-1) for v < 0, y& > 0

−la ,1 = coefficient of y(k-1) for v < 0, y& < 0

+ra ,1 = coefficient of y(k-1) for v > 0, y& > 0

−ra ,1 = coefficient of y(k-1) for v < 0, y& < 0

b1 = coefficient of u(k-1)

b1,l = coefficient of u(k-1) for v < 0

b1,r = coefficient of u(k-1) for v > 0

b1,l+ = coefficient of u(k-1) for v < 0, y& > 0

b1,l- = coefficient of u(k-1) for v < 0, y& < 0

b1,r+ = coefficient of u(k-1) for v > 0, y& > 0

b1,r- = coefficient of u(k-1) for v > 0, y& < 0

cl = negative deadzone offset, cl < cr

cl* = negative deadzone offset guess, necessary condition: cl* < cl

cr = positive deadzone offset, cr > cl

cr* = positive deadzone offset guess, necessary condition: cr* > cr

d = deadband offset

e = lumped parameter of constant nonlinear terms

I = identity matrix, subscript indicates dimensions

59

K = steady-state gain

k = iteration

t = time

T = sample time

U, u = input into linear portion of plant, output of deadzone

V, v = desired control input

W, w = input into deadband, output of linear portion of plant

Y, y = plant output

z = Z-transform operator

η= unknown parameter vector

η̂= unknown parameter estimate vector

λ = forgetting factor

τ = time constant

φ = recursive least squares regression vector

60

1.9. APPENDIX

1.9.1. Derivation Of The M-Point Moving Average Filter’s Variance. An M-

point moving average filters the data by averaging the current point with the M-1

preceding terms. If it is filtering Gaussian noise, each point is independent of the point

before and after it.1 Therefore, it is the same as averaging any M-number of Gaussian

distributed sets and it does not matter that it is the same set shifted multiple times. The

sample variance SN
2 is given by

() ()∑
=

−=
N

i

i XX
N

X
1

21
var

(42)

where X is the sample set with mean X having N terms given by

[]NXXXX ...21=
(43)

The covariance between X and a set Y is given by

() ()()∑
=

−−=
N

i

ii YYXX
N

YX
1

1
,cov

(44)

The covariance is a measure of how well two or more sets of random variables are

correlated. For two uncorrelated sets, such as two sets of Gaussian noise, the covariance

is zero. Given that each point in X is filtered data from an M-point moving average has

been implemented on x, the terms in X become

1 Not all noisy signals can be assumed to be a Gaussian distributed random number.

61

1, 1, 1 1, 1
1

2, 2, 1 2, 1
2

, , 1 , 1

k k k M

k k k M

N k N k N k M

N

x x x
X

M

x x x
X

M

x x x
X

M

− − −

− − −

− − −

+ + +
=

+ + +
=

+ + +
=

K

K

M

K

(45)

Substituting equation (45) into equation (42)

() ∑
=

−−−







 +++
=

N

i

Mkikiki

M

xxx

N
X

1

2

1,1,,1
var

K

(46)

Since this is used to determine the sign of derivative, the mean X is dropped

because the derivative is the differentiation of a noisy yet static signal. Expanding

Equation (46) yields

()

()

()

()

2

, , , 1 , , 12 2 2
1 1 1

2

, 1 , , 1 , 1 , 12 2 2
1 1 1

2

, 1 , , 1 , 1 , 12 2 2
1 1 1

1 1 1

1 1 1
var

1 1 1

N N N

i k i k i k i k i k M

i i i

N N N

i k i k i k i k i k M

i i i

N N N

i k M i k i k M i k i k M

i i i

x x x x x
M N M N M N

x x x x x
X M N M N M N

x x x x x
M N M N M N

− − −
= = =

− − − − −
= = =

− − − − − − −
= = =

+ + +

+ + + +
=

+ + +

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

K

K

M

K

(47)

Each term with a square is in the form of the variance shown in Equation (42)

with a coefficient of 1/M2. Since the variance before the M-point moving average was

taken is known, all of these terms are known. Furthermore, the variance is constant for

the whole sample meaning that all of the terms with squares are equal. Each term without

a square is in the form of the covariance. Since each point is independent of the points

62

before and after it, the covariance is zero. There are M number of diagonal terms.

Therefore Equation (47) reduces to

() ()x
M

X var
1

var =

(48)

1.9.2. Derivation Of The Variance Of y& . The numerical derivative y& is

computed from equation (26). The terms of the sample vector X& defined in equation (43)

become

T

xx
X

T

xx
X

T

xx
X

NN

N

1

12
2

01
1

−−
=

−
=

−
=

&

M

&

&

(49)

Substituting into Equation (42) and dropping X because it is zero yields

() ∑
=

− 






 −
=

N

i

ii

T

xx

N
X

1

2

11
var

(50)

Expanding it becomes

() ∑∑∑
=

−
=

−
=

−+=
N

i

ii

N

i

i

N

i

i xx
NT

x
NT

x
NT

X
1

12
1

2
12

1

2

2

111
var

(51)

Once again for Gaussian noise there is no correlation between xi and xi-1 so the third term

is zero. Since the variance of xi and xi-1 are the same Equation (51) becomes

() ()x
T

X var
2

var
2

=

(52)

63

1.10. BIBLIOGRAPHY

[1] Choudhury, M.A.A.S.; Thornhill, N.F.; Shah, S.L. “Modelling Valve Stiction.”

Control Engineering Practice. Vol. 13. 2005. pp.641-58.

[2] Gang Tao; Kokotovic, P.V., "Adaptive control of plants with unknown dead-

zones," Automatic Control, IEEE Transactions on , vol.39, no.1, pp.59-68, Jan
1994.

[3] Bai, E-W.; Tao, G. ed.; Lewis. F. ed. “Adaptive Dead Zone Inverses for Possibly

Nonlinear Control Systems.” Adaptive Control of Nonsmooth Dynamic Systems.
Springer. 2001. pp.31-47.

[4] Xing-Song Wang; Chun-Yi Su; Hong, H., "Robust adaptive control of a class of

nonlinear systems with unknown dead-zone," Decision and Control, 2001.

Proceedings of the 40th IEEE Conference on , vol.2, no., pp.1627-1632 vol.2,
2001.

[5] Ibrir, S.; Wen Fang Xie; Chun-Yi Su, "Adaptive tracking of a class of uncertain

nonlinear systems subject to unknown dead-zone input nonlinearities: the
symmetric and the non-symmetric cases," American Control Conference, 2006 ,
vol., no., pp. 6 pp.-, 14-16 June 2006.

[6] Lewis, F.L.; Woo Kam Tim; Li-Zin Wang; Li, Z.X., "Deadzone compensation in

motion control systems using adaptive fuzzy logic control," Control Systems

Technology, IEEE Transactions on , vol.7, no.6, pp.731-742, Nov 1999.

[7] Jun Oh Jang, "A deadzone compensator of a DC motor system using fuzzy logic

control," Systems, Man and Cybernetics, Part C: Applications and Reviews, IEEE

Transactions on , vol.31, no.1, pp.42-48, Feb 2001.

[8] Jun Oh Jang, "Deadzone compensation of an XY-positioning table using fuzzy

logic," Industrial Electronics, IEEE Transactions on , vol.52, no.6, pp. 1696-
1701, Dec. 2005.

[9] Jian-Xin Xu; Jing Xu; Tong Heng Lee, "Iterative learning control for a linear

piezoelectric motor with a nonlinear input deadzone," Control Applications, 2004.

Proceedings of the 2004 IEEE International Conference on , vol.2, no., pp. 1001-
1006 Vol.2, 2-4 Sept. 2004.

[10] Jian-Xin Xu; Jing Xu; Tong Heng Lee, "Iterative learning control for systems

with input deadzone," Decision and Control, 2004. CDC. 43rd IEEE Conference

on , vol.2, no., pp. 1307-1312 Vol.2, 14-17 Dec. 2004.

[11] Jian-Xin Xu; Jing Xu; Tong Heng Lee, "Iterative learning control for systems

with input deadzone," Automatic Control, IEEE Transactions on , vol.50, no.9,
pp. 1455-1459, Sept. 2005.

64

[12] Tao, G.; Kokotovic, P.V., "Adaptive control of system with unknown output

backlash," Automatic Control, IEEE Transactions on , vol.40, no.2, pp.326-330,
Feb 1995

[13] Grundelius, M.; Angeli, D., "Adaptive control of systems with backlash acting on

the input," Decision and Control, 1996., Proceedings of the 35th IEEE , vol.4,
no., pp.4689-4694 vol.4, 11-13 Dec 1996.

[14] Gebler, D.; Holtz, J., "Identification and compensation of gear backlash without

output position sensor in high-precision servo systems," Industrial Electronics

Society, 1998.

[15] Woo, K.T.; Li-Xin Wang; Lewis, F.L.; Li, Z.X., "A fuzzy system compensator for

backlash," Robotics and Automation, 1998. Proceedings. 1998 IEEE

International Conference on , vol.1, no., pp.181-186 vol.1, 16-20 May 1998.

[16] Ahmad, N.J.; Khorrami, F., "Adaptive control of systems with backlash hysteresis

at the input ," American Control Conference, 1999. Proceedings of the 1999 ,
vol.5, no., pp.3018-3022 vol.5, 1999.

[17] Tao, C.W., "Fuzzy control for linear plants with uncertain output backlashes ,"

Systems, Man, and Cybernetics, Part B, IEEE Transactions on , vol.32, no.3,
pp.373-380, Jun 2002.

[18] Zabiri, H.; Samyudia, Y., "A self detection and compensation of actuator backlash

in the framework of constrained MPC design," Control Conference, 2004. 5th

Asian , vol.2, no., pp. 1186-1194 Vol.2, 20-23 July 2004.

[19] Lagerberg, A.; Egardt, B., "Backlash Estimation With Application to Automotive

Powertrains," Control Systems Technology, IEEE Transactions on , vol.15, no.3,
pp.483-493, May 2007.

[21] Parr, A., 1998, Hydraulics and Pneumatics: A Technician’s And Engineer’s

Guide, Butterworth-Heinemann, Oxford.

65

2. EMULATION USING xPC TARGET.

J.J. Lentz, R.G. Landers, and K. Krishnamurthy

Department of Mechanical and Aerospace Engineering

Missouri University of Science and Technology

1870 Miner Circle

Rolla, Missouri 65409-0050

{Jeffrey.J.Lentz, landersr, kkrishna}@mst.edu

2.1. ABSTRACT

The Mathworks xPC Target environment allows for rapid prototyping of a

controller without the burden of low level coding. This allows for validation of the

control system logic early in the design process. It also provides proof that the algorithm

can be executed in real-time. With xPC Target, algorithms are developed in a simulation

environment and automatically converted into real-time executable code. This paper

demonstrates the development of a Master/Slave control system for a hydraulic test stand

using xPC Target. The Master and Slave Electronic Control Units (ECUs) are emulated

using two target PCs running the xPC Target kernel communicating with each other over

a Controller Area Network (CAN). The emulated and simulated results matched

perfectly. Then the emulated Master ECU is used to control the hydraulic test stand by

sending current commands and receiving pressure sensor data from the Slave ECU. The

task execution time of the emulated Master ECU was the same regardless of whether it

was controlling the emulated Slave ECU or the actual Slave ECU. The accuracy of the

66

emulation was shown to be only limited by the accuracy of the hydraulic system plant

model.

2.2. INTRODUCTION

In systems engineering it is good practice to validate system components

individually before integrating them. For example, when designing a hydraulic

excavator, the engine, hydraulic system, and structure should be individually validated

before creating a prototype. Control software design and development is similar in that

respect. It is desirable to validate a control system’s logic and execution time in simulated

and emulated environments before going through the time-consuming process of creating

embedded code on an Electronic Control Unit (ECU). As vehicle control systems are

becoming increasingly complex in order to accommodate more special features, to reduce

wiring, and to modularize systems, a need arises for individually validating all levels of

the control system’s hierarchy.

The xPC Target environment developed by The Mathworks, Inc. allows control

system engineers to perform Hardware-in-the-Loop (HIL) testing using an emulated

version of the ECU. With the xPC Target environment, a Simulink model can be used to

auto-generate real-time executable code which resides on a target PC. In the example

shown in this paper, target PCs are used to emulate ECUs. Since the most popular

communication protocol is the Controller Area Network (CAN), each target PC is

equipped with a CAN board to communicate with any other device with CAN capability.

In this case, a target PC will communicate with an ECU or another target PC over CAN.

An example is given to demonstrate the steps for designing, validating, and

implementing a controller for a hydraulic test stand. For demonstration purposes, it is

67

required that the control algorithm reside on a Master ECU which is used to control a

Slave ECU. The Master ECU commands the Slave ECU to drive current through the

hydraulic solenoid valves and receives pressure sensor information back from the Slave

ECU. In the example a system model is created of the hydraulic test bench and a

controller is created and simulated in Simulink. The controller model is compiled onto

one target PC to emulate the Master ECU called the Master Emulator. The plant model is

compiled onto another target PC called the Slave and Plant Emulator to emulate the

Slave ECU and hydraulic system to evaluate the performance of the controller. The target

PC emulating the Master ECU will be used to control the actual Slave ECU and hydraulic

test stand. The simulated and emulated results matched perfectly. The task execution

time of the emulated Master ECU was the same regardless of whether it was controlling

the emulated Slave ECU or the actual Slave ECU. The accuracy of the two target PC

emulation was shown to be only limited by the accuracy of the hydraulic system plant

model, which was embedded within the emulated Slave ECU target PC.

2.3. LITERATURE REVIEW

The emulation of control hardware has been used extensively in industry and

academia as a way to prove out design concepts. Several papers have been written on the

use of the xPC Target environment to this end. Teng [1] compared xPC Target version

1.0 to two third party systems for automatic real-time code generation from the

Matlab/Simulink: Real-Time Toolbox (not to be confused with Real-Time Workshop)

and WinCon. He implemented all three systems with PID, LQR, and fuzzy logic

controllers on various adaptations of the inverted pendulum problem and concluded that

while this initial version of xPC Target is somewhat difficult to use, it offers sampling

68

times of less than a millisecond, which the other systems failed to accommodate. Luce

and Rahnamai [2] used the xPC Target environment to implement a PID controller for a

Multi-Fan Hovering System for use on a vertical take off and landing vehicle. Shiakolas

and Piyabongkarn [3] developed a magnetic levitation controller for undergraduate level

controls laboratories. Nilsson [4] compared the Matlab/Simulink and xPC Target

environment to their analogous counterparts from National Instruments,

MatrixX/SystemBuild and Autocode. He demonstrated the use of both tools via a

hydraulic test stand, compared the results of both controllers, and concluded that both

perform about the same, however, MatrixX has an easy interface. Leonessa et al. [5]

used the xPC Target environment on an autonomous surface vessel to follow an

unmanned underwater vehicle for the purpose of transmitting GPS locations and

controlling the underwater vehicle. Gani and Khan [6] implemented active vibration

control of a beam with piezoelectric patches using the xPC Target environment.

Shangying et al. [7] used Labview as a GUI to tune parameters on a target PC running the

xPC Target kernel. The controller was for a 6 degree-of-freedom hydraulic robot. Low

et al. [8] used the xPC Target environment to perform telemanipulation of a robotic hand.

Wei et al. [9] performed a haptic learning experiment to investigate how to help stroke

victims regain motor skills. Kelper [10] examined in real-time the switching impedance

in power electronics using the xPC Target environment. Hassan-Zadeh et al. [11] used

the xPC Target environment to perform teleoperation of a mobile robot using haptic

feedback control. Mazon et al. [12] used the xPC Target environment to evaluate the

behavior of an artificial neural network. Driscoll [13] used the xPC Target environment

to evaluate the effectiveness of emulating a hydraulic cylinder using an electric motor

69

driving a hydraulic motor. Ferreira [14] used the xPC Target environment to experiment

with a robot-arm controlled by real-time image processing. Zhu [15] used the xPC

Target environment to monitor networks of MEMS sensors. Rahnamai et al. [16] used

the xPC Target environment to develop an automatic guitar tuner. Cao [17] used the xPC

Target environment to control fuel injection on a liquefied petroleum gas engine.

Anderson and Stone [18] used the xPC Target environment to control a vertical launching

unmanned aerial vehicle. Luqiao et al. [19] used the xPC Target environment to control

a binocular vision robot used for explosive ordnance disposal (i.e., it is used for removing

land mines, bombs, or for counter-terrorism).

The previous works were all similar in that they used xPC Target to either test a

controller or to collect data. The target PC interfaced with the hardware using either

analog to digital (A/D) conversion, digital to analog (D/A) conversion, and/or counter-

timers (C/T). They are also similar in that they used a single target PC. However, in two

collaborative works by Quinones-Reyes [20] and Ramirez-Gonzalez [21], three target

PCs were employed to control a magnetic levitation system. The three target PCs,

communicating over CAN, were needed to perform an “earliest deadline first” algorithm.

Variable CAN message transmission rates were used to prioritize messages with an

algorithm deciding if the messages were important enough to send. McGowan [22] also

used the xPC Target environment in conjunction with CAN communication to control a

standby diesel generator. He controlled an engine by sending commands from the target

PC to the engine ECU and receiving sensor data. Being a Caterpillar generator set, he

used the same Caterpillar RPAC (Rapid Prototyping for Automated Controls) toolbox

that is used in this paper.

70

All of the aforementioned papers demonstrate the utility of using the xPC Target

environment to evaluate the effectiveness of a controller. However, [23] demonstrated

the feasibility of using the xPC Target system as an emulated system to test real

controller hardware. He created a virtual diesel engine contained on a single target PC.

The engine governor interfaced with the target PC through digital channels rather than

CAN.

This paper is similar to [20] and [21] in that multiple target PCs communicating

over CAN will be used; however, one of the target PCs will be an emulated system rather

than a controller. This work differs from [23] in that it interfaces with the emulated

system via CAN and in that it uses multiple target PCs. This work differs from [22] in

that not only are Caterpillar RPAC toolboxes used for a controller, they are reverse

engineered to create an emulation of the ECU and the plant being controlled on a second

target PC.

2.4. CONTROL ARCHITECTURE

Many systems, such as vehicle control systems, are becoming increasingly

complex as it is not feasible for one Electronic Control Unit (ECU) to service all of the

controls needs. Networks of ECUs are ubiquitous. For example, today’s automobiles can

have over 60 ECUs [24]. Each ECU performs some or all of the following functions:

reading sensor data, powering sensors and actuators, transmitting sensor measurements,

transmitting actuator commands, executing control algorithms, and reporting faults.

Many ECUs are needed to make each subsystem modular. On an automobile the engine,

powertrain, steering, braking, and HVAC systems may all have their own ECU or

network of ECUs. Airplanes have additional systems which may have their own ECU

71

such as the elevators, rudders, flaps, ailerons, landing gear, etc. Earth moving equipment

has additional systems such as hydraulic pumps, motors, cylinders, grippers, hammers,

and compactors that may have dedicated ECUs.

An increase in automation is also driving up the number of ECUs on control

systems. For example, in the automobile industry automatic features such as traction

control systems, headlights that adjust automatically when the vehicle turns, collision

prevention systems, and parking guidance systems are becoming increasingly prevalent.

The earth-moving equipment market also has emerging technologies such as Laser and

GPS grade control systems and automatic compaction technologies. These features

require additional computation, sensors, and/or actuators. For marketing reasons,

manufacturers tend to sell special features as optional modular packages, which can result

in separate ECUs.

Another motivation behind having multiple ECUs is for wiring harness

optimization and serviceability. It is easier for a service technician to pull and replace

wires on an ECU with a 20-pin connector than on an ECU with a 100-pin connector. If

every wire on a machine had to be connected to the same ECU, the resulting bundle of

wires might end up being several inches in diameter making it difficult to bend and route.

Making several smaller wiring harnesses is typically more manageable than one large

harness. The length of wire required can be optimized in situations where the sensors and

actuators are spread out from each other. Having an ECU for each cluster of sensors and

actuators can be more economical and reliable than having just one ECU connected to

every sensor and actuator.

72

2.5. COMMUNICATION

One challenge of having a large number of ECUs is networking them to share

information with each other. For example, an engine on a hydraulic earth-moving

machine must know the load on the hydraulic pump to operate at the optimal speed. A

hydraulic variable displacement piston pump must know how much flow is requested by

the implements to optimize the swash angle. The most prevalent communication protocol

is Controller Area Network (CAN) developed by Robert Bosch GmbH. It has been the

most widely used communication protocol since the early 1990s, when it was first used

by Mercedes-Benz [25]. There are a few other protocols that appear very promising for

the future such as Flexray and LIN; however, CAN is still the most prevalent.

The CAN protocol is a rugged two-wire communication. It is robust to

electromagnetic interference by sending a high signal and a low signal on a pair of wires,

and then subtracting the signals. Typically, the wires are twisted to ensure the

interference picked up by one wire is picked up equally by the other. The interference is

cancelled when the signals are subtracted. There is 60 ohms of resistance between the

high and low signals achieved by placing a 120 ohm terminating resistor across the high

and low wires at the two nodes that are farthest apart. CAN broadcasts messages with

“identifiers” that identify the data contained within the message. In the standard format,

identifiers have 11 bits. Messages are broadcast without an intended destination. Each

node on the network filters all messages that are not needed and thereby “listens” for the

messages it needs. In the standard CAN format, called the Base Frame Format, each

message contains up to eight bytes of data. A 4-bit field called the Data Length Code

indicates how many of those bytes are used. The data field bits can be designated in any

73

way desired. Dividing the eight bytes into four 16-bit signals or into eight 8-bit signals is

common. The bits used for a given signal need not be consecutive. Assigning signals to

their respective bits in the message is called “Bit-Packing.” Similarly, extracting signals

from a CAN message is called “Bit-Unpacking.” The data is always sent as unsigned

integers so it is necessary to scale the signals before sending and after receiving to use the

full range [26].

One example illustrating the use of CAN is the feature of headlights that adjust to

turn corners. CAN is used to transmit data between the headlight ECU, the transmission

ECU, and the steering system ECU. The headlight ECU needs the vehicle speed from the

transmission ECU and it needs the angle of the tires from the Steering ECU to calculate

where to point the headlights. Therefore, the headlight ECU only accepts messages

known to contain the vehicle speed or tire angle and ignores all other messages regarding

impertinent data such as transmission gear, transmission oil temperature, etc. The

messages containing vehicle speed and tire angle are most likely shared with other

signals. The headlight ECU has to unpack the messages to extract the pertinent data. If

the tire angle measurement is transmitted as a 10-bit 0 to 100% PWM, then it is apparent

that the bits 0 to 210-1 (or 0 to 1023) correspond to the 0 to 100% duty cycle. To convert

the bits to duty cycle a gain of 100/1024 is used to scale the signal. The software also

must convert the signals into engineering units before they are used by the control

algorithm.

2.6. XPC TARGET ENVIRONMENT

The xPC Target Environment was developed by The Mathworks, Inc. as a rapid-

prototyping tool to allow Simulink and Stateflow models to be executed in real-time and

74

to interface with hardware. Two computers are required for the xPC Target Environment:

one, called the target, to execute the generated real-time code in the xPC Target kernel

and one, called the host, to upload the real-time code to the target and to tune parameters.

The target and host communicate via TCP/IP or RS-232. The Real-Time Workshop and

Stateflow Coder toolboxes generate real-time executable code. Input/Output devices such

as CAN, digital to analog, analog to digital, counter-timer, or encoder boards are installed

on the target PC. The xPC Target toolbox contains a library of blocks for supported I/O

devices, which are inserted in the Simulink model to interface with the I/O devices. The

devices must use a PCI, CompactPCI, PC/104, or ISA bus.

The target PC can be made from an ordinary PC by installing PCI I/O boards,

creating an xPC boot disk, and booting the PC into the xPC Target environment. There

are also several commercially available target PCs tailored to the application in which

they are used. The Mathworks, Inc. developed the mobile xPC Targetbox® shown in

Figure 2.1. Speedgoat GmbH purchased The Mathworks, Inc.’s xPC Targetbox® product

line in February 2007. They also manufacture rack-mounted and desktop target PCs as

shown in Figure 2.2 and Figure 2.3, respectively.

75

Figure 2.1. Mobile Mathworks xPC Targetbox® (270mm x 162mm x 82mm).

Figure 2.2. Rack Mountable Speedgoat Target PC.

Figure 2.3. Desktop Speedgoat Target PC.

76

2.7. HYDRAULIC TEST BENCH EXAMPLE

The following example demonstrates how the xPC Target environment can be

used in conjunction with an electro-hydraulic test bench. In 2005 Caterpillar, Inc. donated

eight electro-hydraulic test benches to the University of Missouri – Rolla (now called

Missouri University of Science and Technology or Missouri S&T). Each bench (Figure

2.4 and Figure 2.5) consists of an electric motor-driven pump to supply pressure, an

electro-hydraulic pilot valve (Figure 2.6), a main valve, an ECU, an xPC Targetbox, and

a PC running Matlab with Simulink, Real-Time Workshop, Rapid Prototyping for

Automated Controls (RPAC), and xPC Target toolboxes. The RPAC toolbox is a

Caterpillar proprietary Matlab toolbox that provides input and output library blocks to

interface with a Caterpillar ECU.

To administer hydraulic controls experiments, the electrical portion of the test

bench is configured as shown in Figure 2.4. The host PC compiles the model into real-

time executable code and uploads it to the target PC via TCP/IP. The target PC

communicates with the ECU via a CAN link. The software flashed on the ECU

configures it to behave as a “dumb” I/O box. The target PC sends CAN messages to the

ECU to command the current drivers and the ECU sends CAN messages back to the

target PC containing sensor data. This software architecture is typically referred to as a

Master/Slave arrangement because the ECU (the slave) is merely being used for its

ability to read the sensors and drive currents, while the target PC (the master) is doing all

of the high-level decision-making. In industry a Master/Slave configuration like this may

be utilized during the development of two types of systems. The algorithm residing on

the target PC will eventually be rewritten in a low level language and 1) embedded onto

77

the ECU, making the ECU autonomous or 2) embedded onto a master ECU while the

current ECU remains a slave. The latter of the two will be utilized in the following

example in which a controller is developed to regulate the pilot valve’s outlet pressure.

This section of the paper goes through the following steps to create and validate a

controller:

1. Model system

2. Design controller and simulate in Simulink

3. Emulate controller and plant using two target PCs

4. Control real system with target PC

Figure 2.4. Electrical Portion of Electro-Hydraulic Test Bench.

78

Figure 2.5. Hydraulic Portion of the Electro-Hydraulic Test Bench.

Figure 2.6. Pilot Valve Schematic.

2.7.1. System Model. An empirical model of the hydraulic system is developed

from test data with current as the input and pilot pressure as the output. A simple model is

constructed in Simulink using the RPAC block as shown in Figure 2.7. The sample time

79

is set to five milliseconds. The pilot pressure reading is converted from percent duty

cycle to kPa by subtracting 5.98% duty cycle and multiplying the result by 48.82 kPa/%

duty cycle. The RPAC block is configured by the user to select the required inputs and

outputs. Within a Simulink s-function, the RPAC block assigns a CAN identifier for each

input and output. The RPAC block also sends CAN messages to the ECU at the

beginning of execution to tell it which assignments were made. The user does not need to

understand CAN to use the RPAC block to communicate with the ECU during this

modeling step. A stepped current command signal is sent to one of the pilot valve’s

solenoids as open loop pressure data is collected. The supply pressure is maintained

constant by modulating a variable restrictor valve that connects the supply lines to the

return lines.

Figure 2.7. Simulink Model Used for Collecting Open Loop Pilot Pressure Data.

 Figure 2.8 shows current and pressure time history plots. It can be seen that low

levels of current produced no pressure change. This is because the current in the solenoid

has to induce a force large enough to alleviate the spring pretension on the pilot spool and

80

has to move the spool a few millimeters before the supply pressure is exposed to the pilot

valve’s outlet. This is modeled as a deadzone. Figure 2.6 shows that when both sides of

the pilot valve are not actuated 100%, there is flow passing through the valve from supply

to drain. Since the pilot hoses are connected to the drain at zero current, the pressure in

the pilot hoses is nonzero. Averaging the steady-state pressure at zero current yields a

pressure 90.1 kPa. Subtracting off this bias zeros the data. Fitting a line to the steady state

values of pressure (after zeroing) versus current is a convenient means of determining the

steady-state gain and the deadzone as shown in Figure 2.9. The x-intercept is the

deadzone, which is 288 mA, and the slope is the steady-state gain, which is 2.15 kPa/mA.

The small offsets between rising and falling steady-state pressures, as seen in Figure 2.9,

indicates there is little hysteresis and the same model can be used for increasing and

decreasing pressures. The rise time appears to become smaller with increased pressure as

can be seen in Figure 2.8 and Figure 2.10. This is most likely the result of fluid bulk

modulus increasing with increasing pressure, making the oil more incompressible. Since

the scope of this paper is emulation of ECUs, not hydraulic system modeling, a single

time constant of 0.07 sec is used to characterize the system dynamic response. The time

constant was adjusted manually until a good match of the actual data was achieved in

simulation. The time constant was selected to be faster than the response at low pressures

but slower than the response at high pressures as a compromise. There is also noise in the

signal that will be modeled as Gaussian distributed. Selecting a few seconds of steady-

state pressure data is sufficient to estimate the standard deviation, which was determined

to be 7.28 kPa. The plant model is created in Simulink as shown in Figure 2.11.

81

Figure 2.8. Pilot Valve Output Pressure and Input Current Versus Time.

Figure 2.9. Steady-state Pilot Pressure Versus Input Current.

82

59 60 61 62

300

400

500

600

P
re

s
s
u

re
 [
k
P

a
]

209 210 211 212

300

400

500

600

119 120 121 122

1600

1700

1800

1900

Time [s]

P
re

s
s
u

re
 [
k
P

a
]

149 150 151 152

1600

1700

1800

1900

Time [s]

Figure 2.10. Pressure Transient Response (Enlargement of Figure 2.9.)

Figure 2.11. Pilot Valve Pressure Plant Model.

83

2.7.2. Controller Design. Using the model, a PID controller can be tuned to

track a square wave, triangle wave, sine wave, and randomized reference. When this

controller is implemented on the hydraulic test stand, the supply pressure will be

controlled in closed-loop. The closed-loop supply pressure controller is given 20 seconds

to stabilize the supply pressure before the pilot pressure controller is initiated. The

control signal is offset by a value slightly smaller than the deadzone, known as a

deadzone inverse [27], as shown in the controller model in Figure 2.12. The deadzone

inverse is chosen about three percent lower than the actual deadzone to prevent

unintended actuation should there be a small error in the deadzone estimate. A saturation

block is added to insure the current command stays between 0 and 2 A, which are the

limits of the ECUs current drivers. The response of the closed loop system as shown in

Figure 2.13 is simulated as shown in Figure 2.14. It can be seen that the controller tracks

the reference aggressively responding to a step response with a 90% rise time of 0.11 sec,

10% settling time of 0.25 sec, and an overshoot of 59%. The error at steady-state appears

to show the same variance as the modeled noise. This indicates the controller would have

zero steady-state error in the absence of noise.

The solver Simulink uses has a large impact on the simulated results. By default

Simulink uses ode3 Bogacki-Shampine to simulate a fixed-step model. However, when

real-time code is generated for the xPC Target environment, it behaves as if it is using the

Fixed-Step Discrete solver. The contrast between the solvers is the most significant when

examining overshoot. The overshoot using the Discrete solver was 59% but the

overshoot using the ode3 Bogacki-Shampine solver was 32%. To use the Discrete solver,

84

the PID block’s library link is disabled and the continuous integrator and derivative

blocks are replaced with discrete time integrator and derivative blocks.

Figure 2.12. PID Controller With Deadzone Inverse.

Figure 2.13. Closed-Loop System Model.

85

0 50 100
0

500

1000

1500

P
re

s
s
u

re
 [
k
P

a
]

0 50 100
0

500

1000

1500

2000

C
u

rr
e

n
t
[m

A
]

0 50 100
-1000

-500

0

500

1000

Time [s]

E
rr

o
r

[k
P

a
]

0 50 100
-100

-50

0

50

100

Time [s]
E

rr
o

r
[k

P
a

]

Reference

Simulated Output

Error

+3 σ
-3 σ

Figure 2.14. Simulated Results.

2.7.3. Emulation. The model predicts the hydraulic system’s response but

does not indicate anything regarding to the electrical hardware required to implement this

controller such as the processor time the controller requires or the load on the CAN bus.

One way to further delve into evaluating the electrical hardware requirements is to

perform an emulation of the controller and plant models using two target PCs as shown in

Figure 2.15. A cable is used to connect the two target PCs with D-sub DB-9 connectors

with 120 ohm resistors at each end between CAN high and CAN low. The first target PC

emulates the Master ECU and will be referred to as the Master Emulator. The Master

Emulator receives pressure readings via CAN, calculates a current output using the

controller from Figure 2.12, and sends the current command to the Slave and Plant

86

Emulator via CAN. The Simulink model in Figure 2.7 used to collect open loop data is

modified to include the controller shown in Figure 2.12, creating a closed-loop feedback

controller of the pilot pressure shown in Figure 2.16. The model is compiled, generating

real-time executable code, which is uploaded to the Master Emulator.

Figure 2.15. Two Target PC Configuration Used for Emulation.

Figure 2.16. Simulink Model Used for Implementing Controller.

87

The second target PC is used to emulate the slave ECU and the pilot valve

pressure dynamics. Since the slave ECU receives current commands and outputs pressure

sensor readings, this target PC also contains the plant model and thus will be referred to

as the Slave and Plant Emulator. Creating the Slave and Plant Emulator is more

complicated than creating the Master Emulator model. With the Master Emulator model,

the RPAC block contains and automatically sets up the CAN send and receive blocks.

With the Slave and Plant Emulator model each CAN message has to be configured

manually. The Slave and Plant Emulator needs to mimic all of the signals the slave ECU

would send and receive. Since the Slave and Plant Emulator target PC and the Master

Emulator target PC are the only two nodes on the CAN, every message that is sent by one

is received by the other. Therefore the send and receive messages for the Master

Emulator are interchanged to create the send and receive messages for the Slave and

Plant Emulator as shown in Figure 2.17 and Figure 2.18 of their respective subsystems.

To send out the pilot pressure message, the pressure is received from the plant model in

units of kPa, converted to percent duty cycle, converted to an unsigned 16-bit integer by

multiplying by a gain of (216-1)/100 and packed into the message using the bit-packing

block as shown in Figure 2.17. The message containing the current command is received,

unpacked by the bit-unpacking block, and converted from bits to milliamps. The two

signals that were terminated Figure 2.18 are unneeded because one of them was being

used for controlling the supply pressure (labeled “Restrictor Valve” in Figure 2.16),

which is not a part of the pilot pressure model, and the other was unused (labeled “Pilot

B” in Figure 2.16). Likewise the pressure signal used for supply pressure feedback in

Figure 2.17 is not modeled so a zero is sent in its place.

88

Figure 2.17. Slave and Plant Emulator's Recreation of the Messages Sent by the

Slave ECU to the Master ECU

Figure 2.18. Slave and Plant Emulator's Recreation of the Messages Received by the

Slave ECU from the Master ECU

 The RPAC block, being a development tool, allows the user to specify the number

of inputs and outputs to the ECU as well as several configuration parameters such as

ECU loop time, which CAN board to use, and signal types and properties. Due to this

flexibility, the CAN message identifiers and the order in which the data is packed into the

messages is subject to change depending on how the ECU is configured. At initialization

the target PC running the model with the RPAC block sends the CRO (Command

Request Object) message and the slave ECU responds with the DTO (Data Transmit

89

Object) message communicating to the slave ECU how it should be configured. How the

DTO message (which is sent by the slave ECU) is created and exactly what information it

contains is proprietary. Since it is unknown how to recreate the DTO message, it is

recorded using CANalyzer from Vector-Cantech, Inc. The Slave and Plant Emulator

merely plays back the prerecorded DTO message at the first detection of the CRO

message. This is a robust method so long as the RPAC block remains unchanged. Figure

2.19 shows the Slave and Plant Emulator Simulink model created from the send and

receive subsystems from Figure 2.17 and Figure 2.18 and the plant model from Figure

2.11.

Figure 2.19. Slave and Plant Emulator Simulink Model.

The simulated and emulated pressures shown in Figure 2.20 match identically

with the exception of the random noise. Converting the continuous transfer function and

the continuous integration block in the PID controller to a discrete transfer function and a

discrete integration block respectively allow use of the discrete solver. The simulated

results using the discrete solver exactly match the emulated results. These results indicate

90

that during the process of compiling the model into real-time executable code, the

continuous blocks are converted to equivalent discrete blocks.

55.8 56 56.2 56.4 56.6 56.8
0

200

400

600

800

1000

1200

Time [s]

P
re

s
s
u

re
 [
k
P

a
]

Reference

Simulated (discrete)

Emulated

Figure 2.20. Emulated Pressure Compared to Simulated with the Discrete Fixed-

Step Solvers.

One of the primary reasons for the two target PC emulation is to examine the

execution time of the Master Emulator. In the Configuration Parameters dialog box there

is an option of logging the task execution time. The task execution time is fairly constant

with some variance. The variance is due to variations in the cache, memory access,

interrupt latency, and multirate model execution (most blocks in Simulink can be

configured to run at any multiple of the model’s step-time; models used in this paper had

a single rate execution equal to the mode’s step-time). [28] However there is a slight

jump in the task execution time after between 0.3 and 0.4 sec as indicated with the dotted

line in Figure 2.21. This is most likely due to the DTO and CRO messages which are

transmitted for 0.355 seconds at the beginning of execution before the RPAC block will

allow messages to be sent from the Master Emulator. For all times after one second, the

91

target execution time has a mean of 3.01·10-4 sec, maximum of 3.29·10-4 sec, minimum of

2.74·10-4 sec, and standard deviation of 1.11·10-5 sec. It is important that the target

execution time be lower than the model step time, which is 5 milliseconds. This leaves

the processor roughly 4.7 ms to perform background processes such as TCP/IP

communication with the host, updating graphic windows, and calculating the task

execution time. Choppy graphics windows or tuned parameters that are slow to update

indicate the task execution time is approaching the step time. [28]

Figure 2.21. Master Emulator Task Execution Time during Emulation.

2.7.4. Control Implementation. After emulation, controlling the real system

requires no new Simulink models. The Master Emulator controller shown in Figure 2.16

can be used with the real hydraulic system by merely unplugging the CAN line from the

Slave and Plant Emulator target PC and plugging it into the slave ECU as shown in

Figure 2.4. As can be seen from Figure 2.22, the controller tracks the reference closely;

however, the overshoot is 181%, which is approximately three times higher than expected

92

from simulation. The 90% rise time decreased slightly from 0.11 sec in simulation to 0.10

sec in the experiment. The 10% settling time decreased significantly from 0.25 sec in

simulation to 0.15 sec in the experiment. The differences are most likely due to

unmodeled higher order effects not captured in the first order plant model from Figure

2.11. It was observed in Section 2.7.1 that the system seemed to have varying time

constants depending on pressure magnitude. It was expected that the model would

capture the dynamics of the system better under some circumstances than others.

0 50 100
-500

0

500

1000

1500

2000

2500

P
re

s
s
u

re
 [
k
P

a
]

0 50 100
0

500

1000

1500

2000

C
u

rr
e

n
t
[m

A
]

0 50 100
-1500

-1000

-500

0

500

1000

Time [s]

E
rr

o
r

[k
P

a
]

0 50 100
-100

-50

0

50

100

Time [s]

E
rr

o
r

[k
P

a
]

Reference

Actual Output

Error

+3σ
-3σ

Figure 2.22. Experimental Pressure Reference Tracking.

Since the Master Emulator target PC was unchanged from emulation, it is

expected that the task execution time will remain the same. Figure 2.23 confirms that the

task execution times are indeed very close. For all times after one second, the target

execution time has a mean of 2.98·10-4 sec, maximum of 3.26·10-4 sec, minimum of

93

2.72·10-4 sec, and standard deviation of 1.12·10-5 sec. The jump in execution time is again

present at 0.355 sec. Because the execution time remains the same, this reiterates that the

Master Emulator target PC does not decipher the difference between the Slave ECU

connected to the hydraulic system and a target PC emulating the Slave ECU and

hydraulic system. Assuming the performance of the controller is acceptable, the

development of the control algorithm is finished and it could be assigned to a

programmer to embed on the Master ECU.

Figure 2.23. Master Task Execution Time during Control of Actual System.

2.8. SUMMARY AND CONCLUSIONS.

As control systems become more complex, more ECUs are being used to

accommodate more special features, to reduce wiring, and to modularize systems. The

xPC Target environment provides a platform for creating real-time executable code from

a simulation environment. Target PCs running the xPC Target environment can be used

to emulate a controller, a physical system, or even a combination of the two. This paper

94

demonstrated the use of the xPC Target environment to emulate the ECUs in a

Master/Slave architecture communicating over CAN. An emulation of the Master ECU

was created on one target PC and an emulation of the Slave ECU and the hydraulic

system with which it interfaced was created on a second target PC. Then the emulation of

the Master ECU was implemented with the actual Slave ECU and hydraulic system.

The steps for validating a Master/Slave control algorithm have been

demonstrated. First the hydraulic system was modeled by recording open loop pressure

data using a target PC in conjunction with the Caterpillar RPAC library to execute a

master control algorithm to send current commands and receive pressure commands. A

plant model was created from the data and a control algorithm was designed and then

validated in Simulink. The control algorithm was integrated with the RPAC interface for

the slave ECU to create the Master Emulator target PC. The Slave and Plant Emulator

Simulink model was created from scratch by replicating the CAN messages sent by the

slave ECU and employing the plant model to determine the pressure output. The

simulated results matched the emulated results so long as Simulink’s fixed-step discrete

solver was used. The Master Emulator target PC was connected to the slave ECU and the

hydraulic system was successfully controlled. The task execution time of the Master

Emulator target PC remained the same, indicating the Master Emulator target PC

perceives the emulated system in the same way as the real system.

While the simulated and emulated results were identical, they did not perfectly

predict the performance of the controller when implemented on the actual hydraulic

system. The actual pressure output overshoot was much higher than in emulation.

However, the hydraulic system’s dynamics seemed to depend largely on the pilot

95

pressure, most likely as a result of the decrease in oil compressibility with increased

pressures. Since hydraulic modeling was not the focus of this paper, a single time

constant was used to capture the dynamics of the system with the expectation that the

accuracy of the model’s prediction would vary depending on pressure. Nonetheless, this

demonstrates the ability of target PCs running the xPC Target environment to emulate

ECUs and the physical systems they control.

96

2.9. BIBLIOGRAPHY

[1] Teng, F.C., "Real-time control using Matlab Simulink," Systems, Man, and

Cybernetics, 2000 IEEE International Conference on , vol.4, no., pp.2697-2702
vol.4, 2000.

[2] Luce, B.; Rahnamai, K., "Controller design for a multi-fan hovering system,"

Electrical Insulation Conference and Electrical Manufacturing & Coil Winding

Conference, 2001. Proceedings , vol., no., pp.311-317, 2001.

[3] Shiakolas, P.S.; Piyabongkarn, D., "On the development of a real-time digital

control system using xPC-Target and a magnetic levitation device," Decision and

Control, 2001. Proceedings of the 40th IEEE Conference on , vol.2, no., pp.1348-
1353 vol.2, 2001.

[4] Nilsson, H.; “Rapid Prototyping with Matlab/Simulink –A Case Study”;
 Masters Thesis, Department of Automatic Control, Lund Institute of Technology,

Sweden, 2002.

[5] Leonessa, A.; Mandello, J.; Morel, Y.; Vidal, M., "Design of a small, multi-

purpose, autonomous surface vessel," OCEANS 2003. Proceedings , vol.1, no.,
pp.544-550 Vol.1, 2003.

[6] Gani, A.; Salami, M.J.E.; Khan, R., "Active vibration control of a beam with

piezoelectric patches: real-time implementation with xPC Target," Control

Applications, 2003. CCA 2003. Proceedings of 2003 IEEE Conference on , vol.1,
no., pp. 538-544 vol.1, 23-25 June 2003.

[7] Zhang Shangying; Han Junwei; Zhao Hui, "RCP and RT control of 6-DOF

parallel robot," Robot Motion and Control, 2004. RoMoCo'04. Proceedings of the

Fourth International Workshop on , vol., no., pp. 133-137, 17-20 June 2004.

[8] Low, K.H.; Heng Wang; Wang, M.Y., "On the development of a real time control

system by using xPC Target: solution to robotic system control," Automation

Science and Engineering, 2005. IEEE International Conference on , vol., no., pp.
345-350, 1-2 Aug. 2005.

[9] Yejun Wei; Bajaj, P.; Scheidt, R.; Patton, J., "Visual error augmentation for

enhancing motor learning and rehabilitative relearning," Rehabilitation Robotics,

2005. ICORR 2005. 9th International Conference on , vol., no., pp. 505-510, 28
June-1 July 2005.

97

[10] Bruno De Kelper; Blanchette, H.F.; Dessaint, L.-A., "Switching time model

updating for the real-time Simulation of power-electronic circuits and motor
drives," Energy Conversion, IEEE Transaction on , vol.20, no.1, pp. 181-186,
March 2005.

[11] Hassan-Zadeh, I.; Janabi-Sharifi, F.; Yang, A.X., "Internet-based teleoperation of

a mobile robot using shared impedance control scheme: a pilot study," Control

Applications, 2005. CCA 2005. Proceedings of 2005 IEEE Conference on , vol.,
no., pp.346-351, 28-31 Aug. 2005.

[12] Mazon, A. J.; Zamora, I.; Valverde, V.; Eguia, P., "Rapid prototyping of artificial

neural networks," Power Tech, 2005 IEEE Russia , vol., no., pp.1-5, 27-30 June
2005.

[13] Driscoll, S.; “The Design and Qualification of a Hydraulic Hardware-in-the-Loop

Simulator”; Masters Thesis, School of Mechanical Engineering, Georgia Institute
of Technology, 2005.

[14] Ferreira, P.A.F.; Pinto, J.R.C., "Visual Based Predictive Control for a Six Degrees

of Freedom Robot," Emerging Technologies and Factory Automation, 2006.

ETFA '06. IEEE Conference on , vol., no., pp.846-853, 20-22 Sept. 2006.

[15] Zhu, Guchuan, "A Software Component for Network Based Data Acquisition and

Control Applications," Computer Architecture for Machine Perception and

Sensing, 2006. CAMP 2006. International Workshop on , vol., no., pp.34-37, 18-
20 Aug. 2006.

[16] Rahnamai, K.; Cox, B.; Gorman, K., "Fuzzy Automatic Guitar Tuner," North

American Fuzzy Information Processing Society, 2007. NAFIPS '07. Annual

Meeting of the , vol., no., pp.195-199, 24-27 June 2007.

[17] Yunpeng Cao; Wanqing Teng; Huijie Zhang, "Dynamic Modeling and Hardware-

in-the-Loop Simulation Testing for LPG Engine," Mechatronics and Automation,

2007. ICMA 2007. International Conference on , vol., no., pp.2093-2098, 5-8
Aug. 2007.

[18] Anderson, P.; Stone, H., "Predictive Guidance and Control for a Tail-Sitting

Unmanned Aerial Vehicle," Information, Decision and Control, 2007. IDC '07 ,
vol., no., pp.148-153, 12-14 Feb. 2007.

[19] Fan Luqiao,; Yao Xifan,; Qi Hengnian,; Jiang Liangzhong,; Wang Wei,, "An

automatic control system for eod robot based on binocular vision position,"
Robotics and Biomimetics, 2007. ROBIO 2007. IEEE International Conference on
, vol., no., pp.914-919, 15-18 Dec. 2007.

98

[20] P. Quinones-Reyes; H. Benitez-Perez; F. Cardenas-Flores; F. Garcia-Nocetti,

“Reconfigurable Fuzzy Takagi Sugeno Networked Control using EDF Scheduling
in xPC Target,” Electronics, Robotics and Automotive Mechanics Conference,

2006 , vol.1, no., pp.105-110, Sept. 2006.

[21] Ramirez-Gonzalez, T.; Quinones-Reyes, P.; Benitez-Perez, H.; Laureano-Cruces,

A.; Garcia-Nocetti, F., "Reconfigurable Fuzzy Takagi Sugeno Networked Control
using Cooperative Agents and Local Fault Diagnosis," Intelligent Signal

Processing, 2007. WISP 2007. IEEE International Symposium on , vol., no., pp.1-
5, 3-5 Oct. 2007.

[22] McGowan, D.J., Morrow, D.J., and Fox, B., 2006, “Integrated Governor Control

for a Diesel-Generating Set,” IEEE Transaction on Energy Conversion, Vol. 21,
No. 2, pp. 476-483.

[23] Shao Limin; An Shijie; Chang Hanbao; Gao Hongbin, "Study on Real-Time Test-

Bench of Speed Governor Using Matlab/xPC Target," Electronic Measurement

and Instruments, 2007. ICEMI '07. 8th International Conference on , vol., no.,
pp.3-27-3-31, Aug. 16 2007-July 18 2007.

[24] Rajnak, A. and Kumar, A., 2007, “Computer-aided Architecture Design and

Optimized Implementation of Distributed Automotive EE Systems,” 44th

ACM/IEEE Design Automation Conference, Dates, Location, pp. 556-561.

[25] Navet, N., Song, Y., Simonot-Lion, F., and Wilwert, C., 2005, “Trends in

Automotive Communication Systems,” Proceedings of the IEEE , Vol. 93, No. 6,
pp. 1204-1223.

[26] http://www.semiconductors.bosch.de/pdf/can2spec.pdf. Bosch CAN

Specification. June 2008.

[27] Gang, T. and Kokotovic, P.V., 1994, ”Adaptive Control of Plants with Unknown

Dead-Zones,” IEEE Transactions on Automatic Control, Vol. 39, No. 1, pp.59-68.

[28] http://www.themathworks.com. The Mathworks, Inc. June 2008.

99

VITA

 Jeffrey James Lentz was born on February 6, 1981, son of Rodney and Nancy

Lentz. He graduated from Rolla High School in 1999 and completed a Bachelor of

Science in Mechanical Engineering from University of Missouri, Columbia in December

of 2003. He completed his Master of Science in Mechanical Engineering at Missouri

University of Science and Technology over the summer of 2008. Jeff has worked at

Caterpillar, Inc. since August 2006 in the CAT Electronics and Connected Worksite

Division as an Implement Subsystem Engineer.

	Parameter estimation of systems with deadzone and deadband and emulation using xPC Target
	Recommended Citation

	Microsoft Word - Lentz_Thesis4.doc

