

Scholars' Mine

Masters Theses

Student Theses and Dissertations

Fall 2008

Sorting automated concept generator results based on manufacture and assembly concerns

Kerry Ryan Poppa

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

Part of the Manufacturing Commons Department:

Recommended Citation

Poppa, Kerry Ryan, "Sorting automated concept generator results based on manufacture and assembly concerns" (2008). *Masters Theses*. 4637. https://scholarsmine.mst.edu/masters_theses/4637

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

SORTING AUTOMATED CONCEPT GENERATOR RESULTS BASED ON MANUFACTURE AND ASSEMBLY CONCERNS

by

KERRY RYAN POPPA

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN MANUFACTURING ENGINEERING

2008

Approved by

Robert B. Stone, Advisor Ming C. Leu Shun Takai

ABSTRACT

Early in the design process, it is desirable to produce a large number of potential solutions. Completely exploring a problem's solution space is an unreasonable expectation for an unaided designer or design team. Computational tools have emerged to help designers more fully explore possible solutions. These automated concept generators use knowledge from existing designs and the desired functionality of the new product to suggest solutions. Existing automated concept generation methods produce many candidate solutions, but produce unmanageably large sets of solutions. Techniques are needed to organize the set of concepts into smaller groups, more easily parsed by the human designer. This work proceeds from the hypothesis that the utility of automated concept generators can be enhanced if their output is sorted based on design for manufacture and assembly heuristics. Data to sort concepts is collected and a sorting method is proposed. Finally a case study is presented to demonstrate the method.

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Rob Stone for his constant, and patient, advice and assistance throughout this process. I would also like to Dr. Shun Takai and Dr. Ming Leu for graciously agreeing to serve on my thesis committee. I would like to thank my family for their support throughout my education. Finally, Abigail, thank you for your love, support, and sacrifices made these past few years.

This material is based upon work supported by the National Science Foundation under grant CMMI-0742677. Any opinions, findings, and conclusions or recommendations presented in this paper are those of the author and do not necessarily reflect the views of the National Science Foundation.

TABLE OF CONTENTS

P	age
ABSTRACT	. iii
ACKNOWLEDGMENTS	. iv
LIST OF ILLUSTRATIONS	. vii
LIST OF TABLES	viii
SECTION	
1. INTRODUCTION	1
1.1. INTRODUCTION	1
1.2. MOTIVATION AND HYPOTHESIS	1
1.2.1. Motivation	1
1.2.2. Hypothesis	1
1.3. ORGANIZATION	2
2. BACKGROUND AND PRIOR WORK	3
2.1. A DESIGN PROCESS	3
2.2. FUNCTIONAL MODELING	4
2.3. DESIGN FOR MANUFACTURE AND ASSEMBLY	4
2.4. PREREQUISITE TOOLS	5
2.4.1. Functional Basis	5
2.4.2. Component Taxonomy	5
2.4.3. Repository	6
2.5. CONCEPT GENERATORS	7
3. METHOD	10
3.1. A FEW WORDS ABOUT DOMAIN AND MATERIALS	10
3.2. STATE OF THE REPOSITORY	10
3.3. OVERVIEW OF PROPOSED METHOD	13
3.4. ESTIMATING STANDARDNESS OF A CONCEPT	16
3.5. ESTIMATING RELATIVE COST OF THIN WALLED PARTS	17
3.6. AVOIDING COMPONENTS THAT REQUIRE MACHINING	17
3.7. CLUSTERING CONCEPTS	18

4. A CASE STUDY	19
4.1. PROBLEM	19
4.2. CONCEPT GENERATION	19
4.3. SORTING RESULTS	20
5. CONCLUSION	22
5.1. CONCLUSIONS	22
5.2. FUTURE WORK	22
APPENDICES	
A. COMPONENT TAXONOMY AND FUNCTIONAL BASIS	
B. COLLECTED DATA	31
C. CONCEPTS FOR CASE STUDY	41
BIBLIOGRAPHY	46
VITA	

LIST OF ILLUSTRATIONS

Page	
Page	

Figure 2.1.	Overview of Proposed Design Process	3
Figure 2.2.	Screenshot of Design Repository Web Interface	7
Figure 3.1.	Overview of Sorting Method	.14
Figure 3.2.	Sample Concept Attribute Vector	.18
Figure 4.1.	Toy Functional Model	.19
Figure 4.2.	Sample Matrix Based Concept Generator Output	.20

LIST OF TABLES

Page

Table 3.1.	Repository Artifacts by Manufacturing Process	11
Table 3.2.	Repository Artifacts by Material	12
Table 4.1.	Case Study Results Table	21

1. INTRODUCTION

1.1. INTRODUCTION

Early in the design process, it is desirable to produce a large number of potential solutions. However, fully exploring a problem's solution space is an unreasonable expectation for the designer or design team. The ability to generate solutions will be limited by the designer's knowledge, creativity, and available time. Recently computational tools have emerged to help designers more fully explore possible solutions. These automated concept generators use knowledge from existing designs and the desired functionality of the new product to suggest solutions.

Existing automated concept generation methods solve the problem of producing many design variants. However, for all but the simplest products, these methods produce an unmanageably large set of solutions for the designer to evaluate. Techniques are needed to organize the set of concepts into smaller groups, more easily parsed by the human designer.

1.2. MOTIVATION AND HYPOTHESIS

1.2.1.1 Motivation. The intensely competitive nature of the consumer products demands that costs are kept low and good design decisions are made early. The cost of engineering changes rises rapidly as the design process proceeds [1]. Automated concept generators provide valuable aid to the designer by producing many possible solutions. However their solutions sets are often too large to be effectively analyzed by the designer. This suggests the following hypothesis.

1.2.1.2 Hypothesis. The utility of automated concept generators can be enhanced if their output is sorted based, ability to use standard parts, cost of thin walled parts, avoidance parts requiring machining, and part count.

1.3. ORGANIZATION

The work proceeds with a presentation of some background information on the design process, functional modeling, and design for manufacture and assembly. Tools that will be used in the proposed method are discussed, and two prevailing methods of automatic concept generation are presented. A method is then proposed for sorting concept generator output. The method begins with a discussion of the product domain in question, presents the of the state of manufacturing information in the design repository, collects data for four concept ranking metrics, and proposes a ranking method. The work concludes with a brief case study of the method and suggests some future work

2. BACKGROUND AND PRIOR WORK

2.1. A DESIGN PROCESS

Engineering design is a systematic, problem oriented, search for optimal solutions. Though it relies heavily on the talent, creativity, and knowledge of the individual practitioner, it is a process that can be learned.[2] Significant effort has been devoted to studying and algorithmically describing this process, but there is still debate on its individual steps and boundaries. Despite these disagreements, design can be broadly divided into three phases: understanding the problem; developing potential solutions; and implementing a final concept.[3] The diagram below shows an overview of this process with some of the potential tasks for each phase of the process. This work will focus on the development of potential solutions; it presupposes a thorough understanding of the problem by the designer, and asserts there are already many sufficient tools to aid the engineer in the detailed design and embodiment of the final concept once it has been identified.

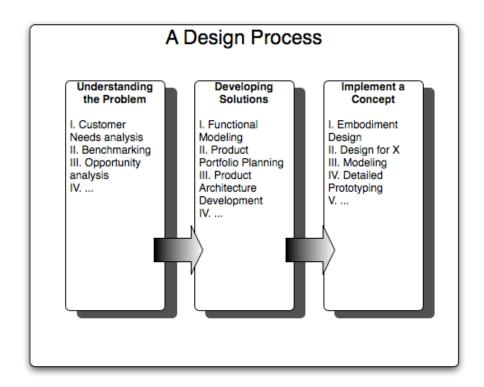


Figure 2.1. Overview of Proposed Design Process

2.2. FUNCTIONAL MODELING

A functional model, or function structure, is an abstraction that allows for an understanding and description of the design problem that is independent of specific possible solutions.[2] This work will use a device centric, operation on flows approach to modeling. In short, flows are introduced to the product and the sub functions of the product are operations on these flows. Functional models can also be purposive, environment centric models. In this case the operational environment is central to the model and operates on or with the device to specified results. Conversion between the two types of models is possible though it may take significant effort on the part of the designer.[4] Functional modeling begins with the premise that all products have an overall function, a specified relationship between systems inputs and outputs.[5] Products exist in the physical world so inputs will be flows of either matter or energy and the applicable laws of conservation will apply. For convenience a third flow, signal, is also considered. Practically, a signal must be a flow of matter or energy, but often within the context of a model the designer is more interested in the information carried by the flow than the flow itself. [3]

A product can be thought of as a series of sub functions selected and arranged to transform the available input flows into the desired output flows as specified by the overall function.[5] The selection of these sub functions is at the discretion of the designer and it is reasonable to assume that functional models of the same problem created by different designers will have some variation. Modelers may differ in their interpretation of the appropriate level of detail for the model, and in their individual assumptions about the problem. This is not undesirable, and is common trait of many types of abstract models.

2.3. DESIGN FOR MANUFACTURE AND ASSEMBLY

Design for Manufacture and Assembly (DFMA) is a catchall term for a set of heuristics and best practices, empirically derived, which if followed reduces assembly time and manufacturing cost. Adoption of these techniques has resulted in considerable cost savings for U.S. industry. The rules have been derived for a large variety of process and materials. Automated tools exist for DFMA and are increasingly be made available as part of CAD packages. The DFMA techniques cannot however be directly applied until the detailed phase of design when specifying components and configurations are known.[6] Much has been said and written about DFMA since it emerged in 1970's, but Boothroyd and Dewhurst's text remains the most influential in the field. The heuristics derived later in this work are all based on their prescriptions.

2.4. PREREQUISITE TOOLS

The methods for concept generation discussed, and the method proposed for ranking those concepts assume the designer has access to three tools: a standardized language for functional modeling, a common language to describe components, and a store of knowledge from previous designs.

2.4.1.1 Functional Basis. A standardized approach to model development and description is necessary both to facilitate communication between designers and to accommodate computational techniques either to aid the designer or to store design knowledge. The Functional Basis [5, 7] was selected for this work. This basis, presented in Appendix A, is intended to adequately describe the full range of electromechanical products in a consistent, standardized, hierarchical language. Though the Functional Basis is used, the methodology explored is not dependant on it and should be compatible with any similar formalized language for the functional description of a product. Conversion between functional modeling languages is possible, though mappings may not be direct. [4]

2.4.1.2 Component Taxonomy. Components are the parts that compose individual concepts. Two concepts represent distinct solutions when they are comprised of different components, or a different arrangement of components. To avoid confusion among designers, and to facilitate the assistance of the computer in concept development, a common language to describe components is needed. The concept generation methods discussed later rely on a common taxonomy of components that is arranged based on component functionality [8]. The details of this taxonomy are also presented in Appendix A. This taxonomy

was chosen primarily for its compatibility with existing concept generators, as with the Functional Basis, the methodology presented simply requires a standardized language and is not dependent on a particular taxonomy or lexicon.

2.4.1.3 Repository. The concept generators and sorting methodology proposed later both rely on access to an existing store of design knowledge. Beginning in the late 1990's significant effort has been expended to develop design repositories that facilitate knowledge capture and reuse.[9, 10] A design repository is distinct from more traditional design databases in that it records not only what has been designed, but also enough information to reason why and how the how artifact was created.[10]

This work will utilize the design repository developed by the Design Engineering Lab at the Missouri University of Science and Technology (http://repository.designengineeringlab.org). This repository was the result of a collaborative effort between Missouri S&T and University of Texas at Austin, and later, Bucknell University, Virginia Polytechnic Institute and State University, and Pennsylvania State University. The repository is an artifact centric relational database populated with information from the disassembly and reverse engineering of existing products. The artifacts stored in the repository range from complete products to the smallest non disassemble components for a product. The repository stores a variety of information; data is input using a stand-alone entry application available from the repository webpage and is retrievable via either an online interface or via a direct query of the database. The data of most interest to this work are artifact function, component taxonomy name, dimensions, material, and manufacturing process.[9]

As with the other necessary components of this work, the method should be applicable as long as a design repository populated with similar information is available. In fact a suitable ontology could replace all three of these tools.[11] However, despite significant research interest such an ontology does not yet exist.



Figure 2.2. Screenshot of Design Repository Web Interface

2.5. CONCEPT GENERATORS

Until recently little effort has been devoted to providing computational assistance to the designer early in the design process even though the importance of generating many alternative solutions early in design is widely accepted.[12] However, a number of tools and techniques already exist to aide during embodiment design. Today major CAD packages either ship with or allow as third party add-ons, expert knowledge based systems to automate detailed design tasks. For a nearly a decade, the closest functioning software tools, to assist in early design were the design compilers of Ward and Seering.[13] The design complier took as inputs system schematics, specifications, and utility functions and supplied as outputs a list of detailed components.[14] This was effectively an automated catalogue design system. Unfortunately this approach still required detailed knowledge of the form of the final design. Tools were still needed for the fuzzy front end of design, what Hyman calls "the design swamp". [15]

To meet this need, two automated concept generators have been developed: one matrix based and the other based on a graph grammar approach. The two systems share a common set of inputs, but arrive at their results via different concept generation algorithms. A third approach by Tiwari et al is similar to the matrix-based approach, and bridges some of the gap between these efforts and earlier design compliers.[16] However this method requires far more detailed information about the final configuration, and is therefore excluded from this work.

The matrix method begins with a functional model of the design problem. The design repository is then queried to produce a Function Component Matrix (FCM). The FCM captures every component that has solved the function in the past, and is essentially a morphological chart where a non-zero entry indicates that the component is capable of fulfilling the function. If the functional model is represented as a vector of functions, a series of matrix manipulations can be employed to create a component-to-component matrix representing all possible solutions to the functional model. Another query to the repository can produce a Design Structure Matrix (DSM). The DSM is a component-to-component matrix where nonzero entries indicate that the two components have been connected before in an existing product. With the aid of the DSM, disregarding any solution that contains a component pair that has historically never been connected can eliminate some infeasible concepts. The approach results in a very large combinatorial problem, and produces a large set of possible solutions for modestly sized functional models. This approach outputs the solutions as chains of components.[8]

The graph grammar based approach also begins with a functional model. However in this approach the functional model is treated as a graph where each sub function is a node. Then grammars are applied to replace the functional elements of the graph with components. Grammars are derived by studying existing products and noting the components historically used to solve functions; the process is manual and subjective, though data mining could in the future automate the grammar creation process. Grammars are applied until all functions have been replaced with a component. Each concept is the result of a distinct recipe, the application of different grammar rules or a different order of application. The graph grammar method generally produces fewer concepts than the matrix-based approach, but still results in an unmanageably large set of solutions. [17]

The creators of the two concept generators acknowledge the large sets of solutions produced by these concept generators are a significant hurdle for the designer.[17, 18]

To alleviate some of the strain Bryant allows the user to select one concept at a time and indicates the historical popularity of components [8], but this approach may diminish some of the advantage of the automated concept generator as it indulges the novice designers desire to select only a few conceptual solutions. Solutions from graph-based approach have been sorted either using a penalty function based search to select an apparently optimal set of components [19], or using historical designer preferences for specific components[17]. The penalty function based approach draws obvious parallels with other catalogue design approaches, however it requires precise information that may not be present so early in the design. It may eliminate some feasible designs because no member of a class of components in its catalogue possesses the required attributes. The designer preference method suffers from the fact that designers' preferences are being sampled is making good choices. This may not always be a reasonable assumption. The remainder of this work presents an alternative sorting scheme that attempts to address some of these concerns.

3. METHOD

3.1. A FEW WORDS ABOUT DOMAIN AND MATERIALS

The following procedure and results are restricted to a domain that is loosely defined as consumer products. This is a set of products that, in general, are produced in relatively high volume, aimed at a retail market, not subject to particularly hostile environments, and are of such a scale that they can be operated or transported by a single person. Thus, a home appliance would be within this domain, a satellite would not. Obviously this is a somewhat arbitrary distinction with ill-defined boundaries. The automobile, for example, contains aspects that are within the domain and aspects that are not. This is, however, roughly the domain of products currently found in the Missouri University of Science and Technology's design repository. Since later results will be based on data in the repository, the scope of this work will be constrained to the consumer products domain

Materials and materials selection are intentionally ignored within this method. Within this domain material selection is driven by many factors other than functionally. Ignoring material for the time being allows the confounding factors including cost and aesthetics to also be ignored[20]. Given this limitation, the approach of a designer using this method would be first to select generalized components, then to follow the method of Ashby [20] to select an optimal material. Proponents of concurrent engineering will likely disapprove of such an approach, and are encouraged to refer to Messer et al for a method that attempts to integrate material information earlier in the design process [21].

3.2. STATE OF THE REPOSITORY

The design repository will be used heavily in the methodology presented later; it is worthwhile to begin with a examination of the current state of affairs within the repository. Currently the repository contains 5167 individual artifacts. According to the data they are produced using one of nine manufacturing processes, from one of nineteen materials. Table 3.1 shows a breakdown of artifacts by manufacturing process.

Process	# of Artifacts	% of Artifacts
Casting	228	4.41%
Extrusion	262	5.07%
Forging	13	0.25%
Forming	144	2.79%
Injection Molding	895	17.32%
Machining	268	5.19%
OEM	187	3.62%
Rolling	364	7.04%
Stamping	234	4.53%
Not Specified	2572	49.78%
Total # of		
Artifacts	5167	

Table 3.1. Repository Artifacts by Manufacturing Process

There are some areas of immediate concern. First, nearly half of artifacts have no manufacturing process associated with them. This may be partially explained by artifacts that are assemblies of other artifacts and thus are not clearly associated with a single process. However this is not solely the case and many non-decomposable artifacts are not properly tagged with a manufacturing process. This will limit the set of artifacts that can be used to draw inferences. Second, this set of processes is used to provide suggestions to the user inputting data in the entry application. It is clearly not an exhaustive list. Ashby identifies 20 shaping processes, four joining processes, and four finishing processes.[20] The user should be presented with more choices, and perhaps more guidance. On a more positive note, injection molding and stamping are two of the most prevalent process that would be expected for this product domain, and they are represented by a large number of artifacts.[20] However, machining, a process. This is

likely due to the fact that machining is an easily recognized process. It is more likely to be recognized and entered by the user even though it is more often used in this domain as a finishing process rather as a primary forming process. Table 3.2 shows the breakdown of materials associated with artifacts in the repository.

Material	# of Artifacts	% of Artifacts
ABS	40	0.77%
Aluminum	65	1.26%
Brass	6	0.12%
Cardboard	2	0.04%
Composite	368	7.12%
Concrete	0	0.00%
Copper	37	0.72%
Foam	20	0.39%
Glass	19	0.37%
Iron	17	0.33%
Metal	842	16.30%
Metal Alloy	2	0.04%
Nylon	77	1.49%
Paper	4	0.08%
Plastic	1108	21.44%
Rubber	143	2.77%
Steel	720	13.93%
Wood	2	0.04%
Not Specified	1695	32.80%
Total # of artifacts	5167	

 Table 3.2.
 Repository Artifacts by Material

Again many artifacts have no material specified for the reasons suggested above. Clearly this list is also not exhaustive, but an exhaustive list of materials is probably unreasonable. However the inconsistent level of specificity in the list is a cause for concern. When presented with a plastic artifact, the user might record it as plastic, ABS, or nylon depending on their level of confidence in identifying the material used. Users would benefit from more organization of the list of possible materials. A sensible suggestion for a top-level list would be to adopt Ashby's list of Metals, Ceramics, Composites, Natural Materials, and Polymers and Elastomers.[20] Appropriate sub categories could be added as necessary.

There is room for improvement in the data that is collected in the repository, and the method of collection. Extra support needs to be given to the user of the repository entry app in these areas. Many data enterers will have limited expertise in materials and process. Nonetheless, the data set is large, and errors are relatively few. The repository is still a reasonable source of data, and will become even better as it is populated with more data.

3.3. OVERVIEW OF PROPOSED METHOD

Both concept generators give a list of components as their output. A sensible approach to sorting the concepts must be based at the component level. The general approach to sorting concepts will begin with selecting certain desirable or undesirable characteristics, determining the propensity for a particular component to have that characteristic, and then sorting concepts into groups based on the properties of their constituent components. The following diagram summarizes the proposed method.

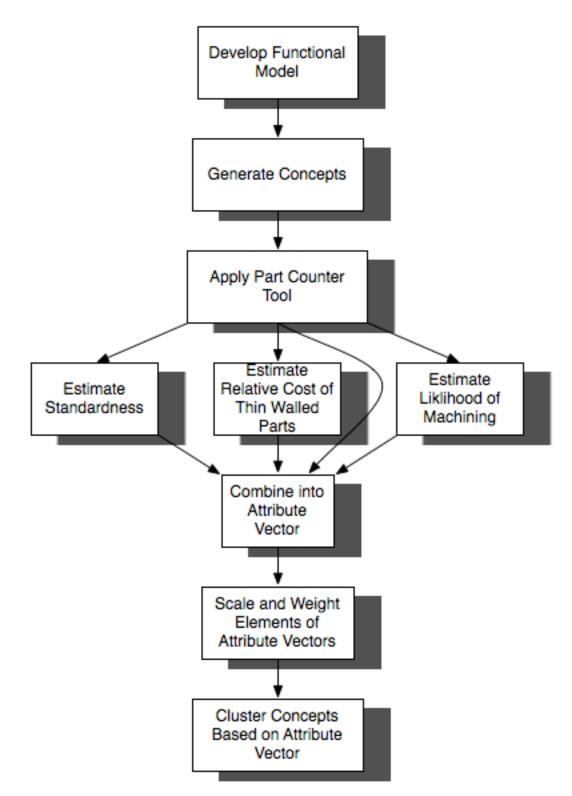


Figure 3.1. Overview of Sorting Method

Following the approach of Boothroyd and Dewhurst four characteristics are identified based on DFMA suggestions. First, it is desirable to use standard parts whenever possible. Standard parts are common, standardized components that can be sourced from a variety of suppliers. OEM, or original equipment manufacturer, is a common substitute for the term standard parts in some industries. The basic assumption is that market forces will drive the price of these standard parts below the cost of the manufacturer to make a custom part. The caution is that slavish devotion to standard parts can stifle innovation and drive up costs.[6] This is reasonable, but the purpose of our ranking will be to suggest concepts that could be made with mostly standard parts, not to insist that the designer do so.

Second, it is desirable to use thin walled parts produced using stamping or injection molding. These processes are common and relatively low cost for the high volume parts produced for consumer products. These processes are likely to be selected, so concepts that include components which can be produced at a low cost with these methods are preferred.[6]

Third, machining is a wasteful and costly process that should be avoided if possible. Concepts built from components that are unlikely to require machining are preferred.

Finally, a proxy for assembly cost is needed. The form of the individual solutions and the way they are joined together embodies much of the assembly cost. Prashar has developed a part counting tool that interfaces with the design repository and the matrix based concept generators to produce an estimate of the number of parts necessary to complete the concept. The counter is based on the average number of instances of a component found when that component is used to solve a specified function. [22] The count produced by Prashar's tool will be the fourth metric used to sort components.

Once the characteristics of each concept have been found, they will be combined into an attribute vector that suggests the manufacturability of the concepts. Concepts will be sorted into groups based on their similarity to one another. The intent is to find a group of relatively lower cost concepts for further exploration, and a set of relatively more expensive concepts that the designer might disregard. The sorting method used in this work is K-means clustering. K-means is a classical hard clustering technique that sorts data into a specified number of clusters by reducing the mean square distance between each element in the cluster and the cluster center. [23]

3.4. ESTIMATING STANDARDNESS OF A CONCEPT

To estimate the degree to which a concept can be built using standard parts, it is first necessary to associate some measure so standardness with each term in the component taxonomy. All artifacts tagged with a component taxonomy name were extracted from the repository. Using artifact photos and other data the artifact was tagged as either standard or not standard. For the purpose of this exercise an artifact was a standard part if it could reasonably be assumed to be procured on the open market from a parts supplier. The binary nature of the data implied a Bernoulli distribution for each artifact, from which could be estimated a mean, variance, and confidence intervals for the mean. The findings mimic what would be expected. Electric motors, which are almost universally standard parts, have a high average, while housings, which tend to be custom parts to accommodate product architecture as well as branding and aesthetic concerns, have a very low average value. Some components have particularly low sample sizes, but this problem should resolve itself as the database grows.

Once the expected standardness for each component is known, a measure of standardness for the concept as a whole can be generated. There are two approaches to estimate component standardness. The first would be to multiply together the standardness of each component in the concept to produce an estimate of the likelihood that the entire concept could be made from standard parts. This would be preferred because in reality all components should have some non-zero standardness, and the aggregate of these would be a reasonable representation of our ability to build the concept from standard parts. Unfortunately given the small sample sizes of some components in the repository many of the current estimates of mean standardness are zero. This would strongly penalize a strong concept due to one non-standard component. To mitigate this effect, for now, standardness of the concept is estimated by simply averaging the standardness of the components.

3.5. ESTIMATING RELATIVE COST OF THIN WALLED PARTS

It is desirable, within this product domain, to use thin walled parts produced using stamping or injection molding. These processes are common and relatively low cost for high production volumes. These processes are likely to be selected, so concepts that include components with lower relative costs for these processes are preferred. To estimate the relative cost of these processes for each component taxonomy term, the database is queried to find all artifacts produced using one of these processes. Any artifact without a component basis name was excluded from the list. Then any artifact without a picture and other data needed to produce an estimate was discarded. As a result of this paring down of the data set, all stamped parts were excluded. For now, a discussion of costs for stamping will be omitted and the estimate will be based solely on injection molding.

For each artifact a cost estimate is then calculated. Boothroyd and Dewhurst suggest a method for cost estimates that relate the cost of the part to the cost of a standard unit washer. The cost becomes a product of several factors based on the parts features, parts, and materials. Excluding factors related primarily to material or fit and finish, leaves basic and subsidiary part complexity to base an relative cost upon. Using the group technology heuristics these factors are calculated for each artifact, and multiplied together for a total relative cost. These costs are then averaged for each component within the taxonmy. This data is presented in Appendix B. A thin walled part cost factor for each component is calculated by averaging the relative costs of its thin walled parts.

3.6. AVOIDING COMPONENTS THAT REQUIRE MACHINING

Machining is a costly and undesirable process for components within the specified product domain. The likelihood that a particular component taxonomy term will have to be machined can be estimated by querying the database for all artifacts of a particular component basis type that are machined and dividing by the total instances of that component basis type that have any manufacturing process associated with them. Dividing only by instances that have a specified manufacturing process prevents incompletely recorded artifacts from heavily swaying the results. This data is also

presented in Appendix B. The results conform to basic expectations about this domain; the likelihood that a part will be machined is low for all component taxonomy terms.

3.7. CLUSTERING CONCEPTS

The four calculated product attributes are assembled into a vector representing the relative manufacturability of the concept. The designer wishes to minimize three attributes: thin walled part cost, likelihood of machining, and part count. The number of standard parts, on the other hand, should be maximized. For convenience the standard part likelihood is transformed into a not standard part likelihood by subtracting it from one. Now all dimensions should be minimized. A sample calculation of an attribute vector for a concept including a electric wire, an electric switch, and a battery is shown in figure 3.2. To avoid undue weighting of a particular attribute all are normalized on a scale from 0 to 1. The normalized product vectors are clustered using a k-means algorithm. The appropriate number of clusters is at the discretion of the designer, and may take some iteration to determine. The appropriate number of clusters will result in mean distances from the cluster centers to members of the cluster that are less than the distance between cluster whose center has the smallest Euclidian distance from the origin contains the concepts that should be explored further.

Sample Concept				Attribute Vector
Components	battery	electric switch	electric wire	
Standardness	0.6750	0.3874	0.8839	0.6488
Machining Liklihood	0.0000	0.0078	0.0051	0.0043
Thin Wall Relative Cost	na	2.0772	na	2.0772
Part Count				7.3559

Figure 3.2. Sample Concept Attribute Vector

4. A CASE STUDY

4.1. PROBLEM

To demonstrate the DFMA based concept variant sorting method, concepts for a child's toy will be developed. It is desired that the toy translate across a surface using stored electrical energy. It might be a toy car, or something more novel. A functional model for the toy generated using FunctionCAD, a functional modeling program, is shown below in Figure 4.1.

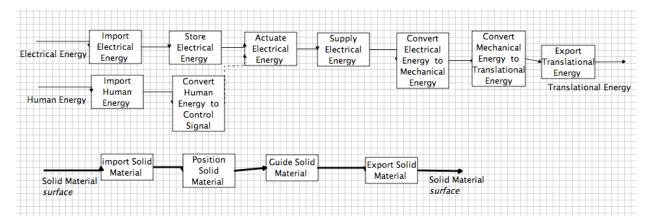


Figure 4.1. Toy Functional Model

4.2. CONCEPT GENERATION

The functional model is input into the matrix based concept generator along with a FCM and DSM Matrix from the design repository. A sample of the results is shown below in Figure 4.2. Many concepts are produced, but in the interest of producing an understandable set, twenty-five are selected at random for further review. No effort is made to eliminate infeasible concepts and some may reflect errors present in the repository. The concepts produced are stored in Appendix C.

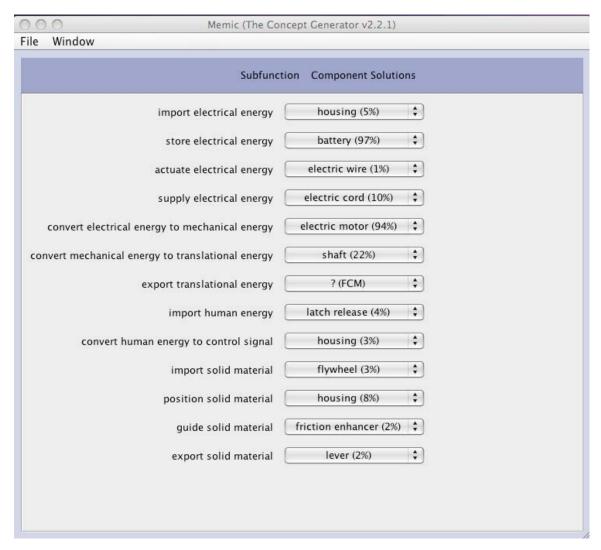


Figure 4.2.Sample Matrix Based Concept Generator Output

4.3. SORTING RESULTS

Applying the algorithm discussed in the previous section the attribute vectors are calculated for each component. With only twenty-five concepts, it is possible with effort to identify preferred concepts. If the set were larger the computer's assistance would be needed. The vectors are supplied to the k-means algorithm, which is used to suggest four clusters. The following table shows the attribute vector and cluster membership of each concept.

Concept	Std Pts	Machining	Thin Wall	Pt. Count	Cluster
Concept01	0.82401548	0.976809557	0.808852859	0.641287954	4
Concept02	0.801169616	0.959732375	0.525030656	0.572511626	3
Concept03	0.658704858	0.990963266	0.862110802	0.740528305	4
Concept04	0.933676401	0.993497508	0.638541241	0.774303361	1
Concept05	0.825347734	1	0.603684528	0.558270407	3
Concept06	0.73091307	0.976166423	0.623011702	1	2
Concept07	0.743033417	0.945185473	0.640033478	0.699554584	3
Concept08	0.891164296	0.950362769	0.608336415	0.753712008	1
Concept09	0.64489291	0.979355792	0.806314109	0.761376483	4
Concept10	0.808605488	0.992122689	0.835698205	0.817807567	4
Concept11	0.969088516	0.986224373	0.625825596	0.61665286	1
Concept12	0.779456923	0.97598038	0.852106974	0.736124505	4
Concept13	0.597567537	0.949219688	1	0.811711741	4
Concept14	0.912340803	0.968996871	0.629237467	0.709661419	1
Concept15	0.679201086	0.946179679	0.738865802	0.727838109	4
Concept16	0.973932667	0.985837172	0.825267684	0.878025567	1
Concept17	1	0.982853289	0.785781575	0.756408675	1
Concept18	0.720974795	0.997201947	0.816444696	0.580578965	4
Concept19	0.844268925	0.995282914	0.704968501	0.619203489	3
Concept20	0.712299567	0.951171355	0.679263094	0.39922751	3
Concept21	0.760215756	0.963718778	0.681848963	0.592617026	3
Concept22	0.665106602	0.995483614	0.899384939	0.637626933	4
Concept23	0.565272557	0.966778156	0.861542697	0.700561743	4
Concept24	0.785649712	0.964526991	0.6029795	0.579355268	3
Concept25	0.650181146	0.983515056	0.849090222	0.839406079	4

 Table 4.1.Case Study Results Table

An examination shows that cluster three's center is closest to the origin. Its members have relatively low combinations of costly attributes. Concepts 2, 5, 7, 19, 20, 21, and 24 likely merit further study based on DFMA concerns.

A further examination of these concepts suggests that they fall into two general categories. Given the very general approach used to model the problem some interpretation is required. Concepts 2, 5, 7, and 21 imply a walking toy, like a toy robot. Concepts 19, 20, and 24 suggest something more like a toy car. Based on these results the designer would have a few concepts suggesting two different solution types to work with.

5. CONCLUSION

5.1. CONCLUSIONS

The results of the case study provide preliminary evidence to support the hypothesis that manufacturing attributes can be used to effectively sort the output of automated concept generators. Generalizations about the likelihood that a component will be a standard part, machined, or relatively more or less costly to injection mold have been suggested based on data in the repository.

This data can be used to estimate the compatibility of concepts produced by automated concept generators and design for manufacture and assembly guidelines. Using these estimates, groups of concepts that appear to be highly compliant with DFMA guidelines can be selected for further study, and groups of concepts that are highly incompatible can be discarded. This allows the designer to reduce the very large set of concepts produced by automated concept generators down to a more manageable set while also eliminating concepts that would likely be rejected later due to high manufacture and assembly cost.

The collection of data necessary to establish these estimates highlighted limitations in the current design repositories method of storing and representing manufacturing information. A more complete and more logically arranged set of terms for material and manufacturing process should be implemented to assist novice data collectors and to reduce errors.

The discussed limitations in the repository data lead to the inevitable conclusion that some of these relationships found are unreliable. This does not diminish the potential of the proposed sorting method, it simply suggests the need for more data in the repository, and a closer review of the data already collected. The method deserves further exploration, and experimentation with actual designers and design problems.

5.2. FUTURE WORK

Significant additional testing of the proposed method is needed with a variety of different users and problems. This testing would permit a more thorough vetting and validation of the method. Beyond this particular method, the general approach can and

should be extended to other Design for X concerns beyond manufacturing. Finally, the difficulties posed by automated concept generators are not solely problems of the size of the results, but also with their representation. There is significant work still to be done to address the best methods to present concepts to the designer. The impact of presenting the data in graphics or text format needs to be assessed, as does the appropriate size set of solutions to return. Finally, a comparison between the matrix and graph based approach to generating concepts should be undertaken.

APPENDIX A.

COMPONENT TAXONOMY AND FUNCTIONAL BASIS

COMPONENT TAXONOMY AND HIERARCHY

Primary	Secondary	Tertiary	
		divider	
		abrasive	
		blade	
		vibrator	
		centrifuge	
			permeable
			membrane
			rake
	separator	material filter	screen
		brush	
		diverger	
		nozzle	
brancher	distributor	electric distributor	
channeler		housing	
	importer-exporter	electric cord	
		carousel	
		conveyer	
			electric wire
		electric conductor	electric plate
		electric socket	
		electric plug	
		projectile	
		belt	
		clutch	
		extension	
		rotational coupler	
		shaft	
		heat exchanger	
			thermal wire
		thermal conductor	thermal plate
	transferor	em transmitter	
	guiders	hinge	
		tube	
		diode	
		bearing	

		link	
		sled	
		clamp	
		-	glue
			key
			nut-bolt
			retaining clip
			rivet
			screw
	coupler	fastener	solder
connector	mixer	agitator	
magnitude controller		door	
		electric switch	
	actuator	latch release	
		valve	
		potentiometer	
		thermostat	
	regulator	transistor	
		mold	
		punch	
		stuffing	
		choke	
		electric resistor	
			gear
			pulley
		mechanical transformer	sprocket
		inclined plane	
		lever	
		needle	
		lens	
		capacitor	
		inductor	
	changer	signal filter	
	stopper	cap	
		cover	
		seal	
		acoustic insulator	
		electric insulator	
		fuse	

		cushion
		friction enhancer
		stop
		thermal insulator
		catalytic converter
	output gas material	evaporator
	output liquid material	condenser
	output acoustic energy	speaker
	output electrical energy	generator
	output electromagnetic energy	light source
		hydraulic pump
	output hydraulic energy	screw propeller
	output magnetic energy	electromagnet
		ic motor
		electric motor
		hydraulic piston
		armature
		cam
		crank
		wheel
		airfoil
	output mechanical energy	pneumatic piston
		fan
	output pneumatic energy	pneumatic pump
		burner
	output thermal energy	heating element
converter	output control signal	knob
		reservoir
		container
		bladder
	material supplier	pressure vessel
		battery
		magnet
		flywheel
provisioner	energy supplier	spring
signaler	sensor	level gauge
		voltmeter
		ammeter
		pressure gauge

		displacement gauge	
		speed gauge	
		em sensor	
			analog display
			digital display
			flag
		visual indicator	indicator light
			bell
			buzzer
	indicator	auditory indicator	recording
	processor	circuit board	
		insert	
	stabilizer	support	
	securer	bracket	
		washer	
supporter	positioner	handle	

Class (Primary)	Secondary	Tertiary	Correspondents			
Branch	Separate		Isolate, sever, disjoin			
		Divide	Detach, isolate, release, sort, split, disconnect, subtract			
		Extract	Refine, filter, purify, percolate, strain, clear			
		Remove	Cut, drill, lathe, polish, sand			
	Distribute		Diffuse, dispel, disperse, dissipate, diverge, scatter			
Channel	Import		Form entrance, allow, input, capture			
	Export		Dispose, eject, emit, empty, remove, destroy, eliminate			
	Transfer		Carry, deliver			
		Transport	Advance, lift, move			
		Transmit	Conduct, convey			
	Guide		Direct, shift, steer, straighten, switch			
		Translate	Move, relocate			
		Rotate	Spin, turn			
		Allow DOF	Constrain, unfasten, unlock			
Connect	Couple		Associate, connect			
		Join	Assemble, fasten			
		Link	Attach			
	Mix		Add, blend, coalesce, combine, pack			
Control	Actuate		Enable, initiate, start, turn-on			
Magnitude	Regulate		Control, equalize, limit, maintain			
C		Increase	Allow, open			
		Decrease	Close, delay, interrupt			
	Change		Adjust, modulate, <i>clear</i> , demodulate, invert, normalize, rectify, reset,			
	C		scale, vary, modify			
		Increment	Amplify, enhance, magnify, multiply			
		Decrement	Attenuate, dampen, reduce			
		Shape	Compact, compress, crush, pierce, deform, form			
		Condition	Prepare, adapt, treat			
	Stop		End, halt, pause, interrupt, restrain			
		Prevent	Disable, turn-off			
		Inhibit	Shield, insulate, protect, resist			
Convert	Convert		Condense, create, decode, differentiate, digitize, encode, evaporate,			
0000000	Convert		generate, integrate, liquefy, <i>process</i> , solidify, transform			
Provision	Store		Accumulate			
1 I O VISION	Store	Contain	<i>Capture</i> , enclose			
		Collect	Absorb, consume, fill, reserve			
	Supply	Concer	Provide, replenish, retrieve			
Signal	Supply		Feel, determine			

FUNCTIONAL BASIS FUNCTION TERMS

		Detect	Discern, perceive, recognize				
		Measure	Identify, <i>locate</i>				
	Indicate		Announce, show, denote, record, register				
		Track	Mark, time				
		Display	Emit, expose, select				
	Process		Compare, calculate, check				
Support	Stabilize		Steady				
	Secure		Constrain, hold, place, fix				
	Position		Align, <i>locate</i> , orient				
	I	Overall in	creasing degree of specification \rightarrow				

APPENDIX B. COLLECTED DATA

COMPONENT TAXONOMY TERM STANDARDNESS DATA

The following table summarized the results of standard parts analysis on data within the design repository. The table tabulates the results of tagging each component as either standard or non-standard, thus the data conforms to a Bernoulli distribution. The name is the component taxonomy name, and count is the number artifacts tagged as that component. The mean is the expected standardness of the part. Variance indicates the spread of the data, and the two confidence intervals are 90% confidence intervals for the mean.

Name	Count	Mean	Variance	90%CI_1	90%CI_2
brancher	67	0.2687	0.1995	0.1776	0.3597
magnitude controller	763	0.2647	0.2107	0.2374	0.2921
signaler	82	0.2561	0.1929	0.1754	0.3368
supporter	378	0.2143	0.1688	0.1794	0.2491
separator	55	0.2909	0.2101	0.1875	0.3943
distributor	12	0.1667	0.1515	0	0.3685
guiders	388	0.2474	0.4813	0.1894	0.3055
actuator	164	0.3171	0.2915	0.2473	0.3868
regulator	20	0.25	0.1974	0.0782	0.4218
changer	273	0.348	0.2277	0.3003	0.3957
stopper	305	0.1639	0.1375	0.1289	0.199
output pneumatic energy	24	0.25	0.1957	0.0953	0.4047
material filter	19	0.2105	0.1754	0.0439	0.3772
clamp	25	0.2	0.1667	0.0603	0.3397
door	4	0.25	0.25	0	0.8383
latch release	46	0.1739	0.1469	0.079	0.2688
cushion	13	0.1538	0.141	0	0.3395
pneumatic piston	3	0.3333	0.3333	0	1.3067
fan	23	0.2174	0.1779	0.0664	0.3684
magnet	3	0.3333	0.3333	0	1.3067
flywheel	6	0.3333	0.2667	0	0.7581
washer	14	0.2857	0.2198	0.0638	0.5076
key	5	0.2	0.2	0	0.6264
transferor	540	0.687	0.4158	0.6413	0.7328
output mechanical energy	113	0.6903	0.2157	0.6178	0.7627
energy supplier	191	0.6963	0.2126	0.6412	0.7515
indicator	24	0.625	0.2446	0.452	0.798
positioner	77	0.5714	0.2481	0.4769	0.666
belt	18	0.7222	0.2124	0.5332	0.9112
electric resistor	6	0.6667	0.2667	0.2419	1.0915
seal	40	0.7	0.2154	0.5764	0.8236
hydraulic pump	3	0.6667	0.3333	0	1.64
battery	40	0.675	0.225	0.5486	0.8014
spring	141	0.7234	0.2015	0.6608	0.786

visual indicator	21	0.7143	0.2143	0.5401	0.8885
retaining clip	3	0.6667	0.3333	0	1.64
channeler	1371	0.3581	0.3279	0.3327	0.3836
converter	242	0.4628	0.2496	0.4098	0.5158
provisioner	253	0.5534	0.2481	0.5017	0.6051
mixer	4	0.5	0.3333	0	1.1794
output liquid material	2	0.5	0.5	0	3.6569
sensor	12	0.4167	0.2652	0.1497	0.6836
blade	30	0.4	0.2483	0.2454	0.5546
electric socket	8	0.5	0.2857	0.142	0.858
heat exchanger	6	0.5	0.3	0.0494	0.9506
hinge	26	0.3846	0.2462	0.2184	0.5508
tube	55	0.4	0.2444	0.2884	0.5116
electric switch	111	0.3874	0.3486	0.2944	0.4803
mechanical transformer	182	0.4341	0.247	0.3732	0.495
needle	4	0.5	0.3333	0	1.1794
capacitor	2	0.5	0.5	0	3.6569
stop	34	0.3529	0.2353	0.2122	0.4937
condenser	2	0.5	0.5	0	3.6569
wheel	19	0.4211	0.2573	0.2193	0.6229
displacement gauge	2	0.5	0.5	0	3.6569
em sensor	2	0.5	0.5	0	3.6569
insert	10	0.4	0.2667	0.1007	0.6993
gear	170	0.4118	0.2436	0.3492	0.4744
sprocket	4	0.5	0.3333	0	1.1794
importer-exporter	403	0.0794	0.0733	0.0572	0.1016
output hydraulic energy	50	0.1	0.0918	0.0281	0.1719
output hydraulie energy	19	0.0526	0.0526	0.0201	0.1439
output control signal	13	0.0769	0.0769	0	0.214
material supplier	62	0.1129	0.1018	0.0452	0.1806
processor	44	0.0227	0.0227	0.0432	0.0609
stabilizer	246	0.0227	0.0227	0.0982	0.000)
securer	55	0.0727	0.0687	0.0136	0.1319
divider	5	0.0727	0.0087	0.0130	0.1319
abrasive	1	0	0	0	0
nozzle	11	0.0909	0.0909	0	0.2557
housing	371	0.0909	0.0054	0	0.2337
carousel	3	0	0	0	0
extension	3	0	0	0	0
rotational coupler	2	0	0	0	0
shaft	109	0.1009	0.0916	0.0528	0.149
thermal conductor	1	0	0	0	0
link	76	0.0658	0.0623	0.0181	0.1135
sled	22	0	0	0	0
agitator	2	0	0	0	0
valve	10	0	0	0	0
transistor	3	0	0	0	0
stuffing	1	0	0	0	0
lever	69	0.087	0.0806	0.03	0.1439

lens	6	0	0	0	0
cap	38	0.1316	0.1174	0.0378	0.2253
cover	158	0	0	0	0
friction enhancer	16	0.125	0.1167	0	0.2747
thermal insulator	4	0	0	0	0
hydraulic piston	7	0.1429	0.1429	0	0.4205
cam	8	0.125	0.125	0	0.3618
crank	1	0	0	1	1
airfoil	5	0	0	0	0
heating element	17	0.0588	0.0588	0	0.1615
knob	13	0.0769	0.0769	0	0.214
reservoir	28	0.0714	0.0688	0	0.1558
container	32	0.125	0.1129	0.0243	0.2257
pressure vessel	1	0	0	0	0
pressure gauge	1	0	0	0	0
auditory indicator	1	0	0	0	0
circuit board	44	0.0227	0.0227	0	0.0609
support	235	0.1234	0.1086	0.0879	0.1589
bracket	47	0.0426	0.0416	0	0.0925
handle	47	0.0638	0.0611	0.0033	0.1243
rake	2	0	0	0	0
screen	2	0	0	0	0
electric plate	3	0	0	0	0
analog display	1	0	0	0	0
buzzer	1	0	0	0	0
connector	622	0.9148	0.0781	0.8963	0.9332
coupler	618	0.9175	0.0758	0.8992	0.9357
output acoustic energy	8	1	0	1	1
output electrical energy	2	1	0	1	1
output electromagnetic energy	10	0.9	0.1	0.7167	1.0833
electric cord	32	0.9375	0.0605	0.8638	1.0112
electric conductor	386	0.8756	0.3897	0.8233	0.928
clutch	2	1	0	1	1
diode	2	1	0	1	1
bearing	10	1.6	1.6	0.8668	2.3332
fastener	584	0.9538	0.0442	0.9394	0.9681
thermostat	4	1	0	1	1
inductor	2	1	0	1	1
signal filter	1	1	0	1	1
acoustic insulator	1	1	0	1	1
speaker	7	1	0	1	1
generator	1	1	0	1	1
light source	10	0.9	0.1	0.7167	1.0833
ic motor	2	1	0	1	1
electric motor	67	0.9552	0.0434	0.9128	0.9977
pneumatic pump	1	1	0	1	1
electric wire	379	0.8839	0.3886	0.8311	0.9367
nut-bolt	54	0.8333	0.1415	0.7476	0.919
rivet	8	1	0	1	1

screw	489	0.9816	0.0181	0.9716	0.9916
solder	16	0.875	0.1167	0.7253	1.0247
pulley	7	1	0	1	1
digital display	1	1	0	1	1
indicator light	16	0.875	0.1167	0.7253	1.0247

RELATIVE COST OF THIN-WALL COMPONENT TAXONOMY TERMS

Average product of basic and subsidiary injection molding costs per component taxonomy term.

Component	Count	Average
actuator	7	2.1962
belt	1	1.2500
bracket	5	3.2295
Brancher	1	2.0500
cap	10	2.4312
carousel	1	4.4280
changer	26	2.4038
Channeler	52	4.9910
clamp	2	2.0000
Connector	3	1.8000
Converter	7	2.9925
coupler	3	1.8000
Distributor	1	2.0500
electric switch	5	2.0772
fastener	1	1.6000
gear	15	2.2459
guiders	5	2.0710
handle	8	4.3973
housing	39	5.8385
importer-exporter	39	5.8385
indicator	2	2.3560
knob	5	3.3145
latch release	2	2.4938
lens	3	1.2600
lever	8	3.1290
link	3	1.8683
Magnitude Controller	61	2.2361
mechanical transformer	15	2.2459
Nozzle	1	2.0500
nut-bolt	1	1.6000
output control signal	5	3.3145
output mechanical energy	2	2.1875
positioner	9	4.1364
regulator	1	3.9875
seal	12	1.5506
securer	5	3.2295
shaft	6	2.6331
Signaler	2	2.3560
stabilizer	12	2.2374
stop	4	2.2060
stopper	27	2.0201
support	12	2.2374

Supporter	26	3.0855
thermal insulator	1	2.8000
transferor	8	2.6846
tube	2	2.3750
valve	1	3.9875
visual indicator	2	2.3560
washer	1	2.0500
wheel	2	2.1875

LIKLYHOOD THAT COMPONENT WILL REQUIRE MACHINING

Basis Name Machined Total **Chance Machined** abrasive acoustic insulator actuator agitator airfoil analog display auditory indicator battery 0.111111111 bearing belt blade 0.117647059 bracket brancher buzzer 0.111111111 cam cap capacitor carousel changer channeler circuit board 0.12195122 clamp clutch condenser connector 0.081081081 container converter coupler 0.022346369 cover crank cushion digital display diode displacement gauge distributor 0.5 divider door electric conductor electric cord electric motor electric plate electric resistor 0.076923077 electric socket electric switch 0.0078125 electric wire 0.005089059

Average likelihood that a component basis element is machined

em sensor	0	2	0
energy supplier	0	2	0
extension	0	3	0
fan	0	24	0
fastener	1	29	0.034482759
flywheel	0	7	0
friction enhancer	0	18	0
gear	30	176	0.170454545
generator	0	1	0
guiders	21	206	0.101941748
handle	1	50	0.02
heat exchanger	1	12	0.083333333
heating element	0	26	0
hinge	7	32	0.21875
housing	7	403	0.017369727
hydraulic piston	2	11	0.181818182
hydraulic pump	3	10	0.3
ic motor	0	2	0
importer-exporter	0	0	0
indicator	0	4	0
indicator light	0	20	0
inductor	0	6	0
insert	2	16	0.125
key	1	24	0.041666667
knob	0	22	0
latch release	1	48	0.020833333
lens	0	9	0
lever	0	73	0
light source	0	12	0
link	20	83	0.240963855
magnet	0	4	0
magnitude controller	0	2	0
material filter	0	21	0
material supplier	0	0	0
mechanical transformer	0	4	0
mixer	0	2	0
needle	1	5	0.2
nozzle	0	13	0
nut-bolt	17	61	0.278688525
output acoustic energy	0	1	0
output control signal	0	0	0
output electrical energy	0	1	0
output electromagnetic energy	0	0	0
output hydraulic energy	0	0	0
output liquid material	0	0	0
output mechanical energy	0	1	0
output mechanical energy	0	0	0
output thermal energy	0	2	0
pneumatic piston	0	3	0
produitatio pistori	0	Э	0

pneumatic pump	0	1	0
positioner	6	63	0.095238095
pressure gauge	0	1	0
pressure vessel	0	3	0
processor	0	0	0
provisioner	0	0	0
pulley	1	9	0.111111111
rake	0	2	0
regulator	0	6	0
reservoir	1	40	0.025
retaining clip	0	12	0
rivet	0	9	0
rotational coupler	0	18	0
screen	0	3	0
screw	44	524	0.083969466
seal	0	66	0
securer	0	8	0
sensor	0	32	0
separator	0	0	0
shaft	29	117	0.247863248
signal filter	0	1	0
signaler	0	3	0
sled	3	23	0.130434783
solder	0	26	0
speaker	0	8	0
spring	1	150	0.006666667
sprocket	1	8	0.125
stabilizer	0	2	0
stop	3	34	0.088235294
stopper	0	2	0
stuffing	0	1	0
support	19	248	0.076612903
supporter	0	8	0
thermal conductor	1	1	1
thermal insulator	0	6	0
thermostat	0	4	0
transferor	0	2	0
transistor	0	15	0
tube	6	81	0.074074074
valve	1	14	0.071428571
visual indicator	0	7	0
washer	6	42	0.142857143
wheel	3	32	0.09375
		52	0.07515

APPENDIX C. CONCEPTS FOR CASE STUDY

	-				.1			- 1 t			1				-	
G	elect	elect ric		elect	elect ric			electri c								
Conce pt1	ric	swite	batte	ric	mot			swite	housin	reserv	housin					
pti	cord	h	ry	wire	or	link	wheel	h	g	oir	g	blade				Total
	0.93	0.38	0.67	0.88	0.95	0.065	0.421	0.387	0.005	0.071	0.005	0.400				0.43
std pts machi	75 0.00	74 0.00	50 0.00	39 0.00	52 0.00	0.241	0.093	4 0.007	4 0.017	4 0.025	4 0.017	0.117				30 0.04
ning	0.00	78	0.00	51	0.00	0.241	8	8	4	0.025	4	6				44
thin						1.868	2.187	2.077	5.838		5.838					3.56
wall						3	5	2	4		5					20
																25.4
count														'		692
	elect	elect		elect												
0	ric	ric	elect	ric		· ·										
Conce pt 2	switc h	resist or	ric wire	moto r	link	circuit board	cap	coupl er	shaft	gear	lever					Total
pt 2	0.38	0.66	0.88	0.95	0.06	0.022	0.131	0.917	0.100	0.411	0.087					0.42
std pts	74	67	39	52	58	7	6	5	9	8	0					10
machi	0.00	0.00	0.00	0.00	0.24	0.000	0.000	0.000	0.247	0.170	0.000					0.06
ning	78	00	51	00	10	0	0	0	9	5	0			'		11
thin wall	2.07 72				1.86 83		2.431 2	1.800 0	2.633 1	2.245 9	3.129 0					2.31 21
wan	12				05		2	0	1		0					22.7
count																377
				.1										'		
		elect	elect	elect ric												
Conce	batte	ric	ric	moto		handl	housi		magne		housin					
pt 3	ry	wire	cord	r	link	e	ng	lever	t	lever	g	tube	cover			Total
	0.67	0.88	0.93	0.95	0.06	0.063	0.005	0.087	0.333	0.087	0.005	0.400	0.00			0.34
std pts	50 0.00	39 0.00	75 0.00	52 0.00	58 0.24	8	4 0.017	0	3 0.000	0	4 0.017	0.074	00	<u> </u>		61 0.03
machi ning	0.00	51	0.00	0.00	10	0.020	4	0.000	0.000	0.000	4	0.074	23			0.03
thin	00	51	00	00	1.86	4.397	5.838	3.129	0	3.129	5.838	2.375	20			3.79
wall					83	3	5	0		0	5	0				65
																29.4
count														<u> </u>		106
			elect		elect											
	elect	elect	ric	elect	ric		hydra				electri					
Conce	ric	ric	resist	ric	mot	halt	ulic	housi	lavan	housin	c	alad	anal			Tatal
pt 4	cord 0.93	wire 0.88	or 0.66	wire 0.88	or 0.95	belt 0.722	piston 0.142	ng 0.005	lever 0.087	g 0.005	switch 0.387	sled 0.000	seal 0.70			Total 0.49
std pts	75	39	67	39	52	2	9	4	0.037	4	4	0.000	0.70			0.49
machi	0.00	0.00	0.00	0.00	0.00	0.000	0.181	0.017	0.000	0.017	0.007	0.130	0.00			0.02
ning	00	51	00	51	00	0	8	4	0	4	8	4	00			81
thin						1.250		5.838	3.129	5.838	2.077	0.000	1.55			2.81
wall						0		5	0	5	2	0	06	<u> </u>		20 30.7
count																520
			elect	.1	elect				1							
Conce	hous	batte	ric switc	elect ric	ric mot			suppo	electri c							
pt 5	ing	ry	h	cord	or	belt	clamp	rt	switch	lever	spring	cover				Total
	0.00	0.67	0.38	0.93	0.95	0.722	0.200	0.123	0.387	0.087	0.723	0.000				0.43
std pts	54	50	74	75	52	2	0	4	4	0	4	0		<u> </u>	ļ	37
machi	0.01	0.00	0.00	0.00	0.00	0.000	0.122	0.076	0.007	0.000	0.006	0.022				0.02
ning thin	74 5.83	00	78 2.07	00	00	0 1.250	0 2.000	6 2.237	8 2.077	0 3.129	7	3		<u>├</u> ────		17 2.65
			72			0	2.000	4	2.077	0						85
wall	85															22.1
								1								721
wall count																1
			elect		elect			electri			rotatio				late	
		elect	elect ric	elect	elect ric			electri c			rotatio nal				latc h	
count	elect ric	ric	ric resist	ric	ric mot			c switc	housin	assem	nal couple			assem	h rele	
count	elect ric cord	ric wire	ric resist or	ric wire	ric mot or	link	sled	c switc h	g	bly	nal couple r	shaft	seal	bly	h rele ase	Total
count Conce pt 6	elect ric cord 0.93	ric wire 0.88	ric resist or 0.66	ric wire 0.88	ric mot or 0.95	0.065	0.000	c switc h 0.387	g 0.005	bly 0.000	nal couple r 0.000	0.100	0.70	bly 0.000	h rele ase 0.17	0.38
count Conce pt 6 std pts	elect ric cord 0.93 75	ric wire 0.88 39	ric resist or 0.66 67	ric wire 0.88 39	ric mot or 0.95 52	0.065 8	0.000	c switc h 0.387 4	g 0.005 4	bly 0.000 0	nal couple r 0.000 0	0.100 9	0.70 00	bly 0.000 0	h rele ase 0.17 39	0.38 40
count Conce pt 6	elect ric cord 0.93	ric wire 0.88	ric resist or 0.66	ric wire 0.88	ric mot or 0.95	0.065	0.000	c switc h 0.387	g 0.005	bly 0.000	nal couple r 0.000	0.100	0.70	bly 0.000	h rele ase 0.17	0.38
count Conce pt 6 std pts machi	85 elect ric cord 0.93 75 0.00	ric wire 0.88 39 0.00	ric resist or 0.66 67 0.00	ric wire 0.88 39 0.00	ric mot or 0.95 52 0.00	0.065 8 0.241	0.000 0 0.130	c switc h 0.387 4 0.007	g 0.005 4 0.017	bly 0.000 0 0.000	nal couple r 0.000 0 0.000	0.100 9 0.247	0.70 00 0.00	bly 0.000 0 0.000	h rele ase 0.17 39 0.02	0.38 40 0.00

The following table presents the concepts analyzed and data produced for the case study.

																39.7
count																157
			elect			electri										
Conce	batte	hous	ric moto	elect ric		c switc										
pt 7	ry 0.67	ing 0.00	r 0.95	wire 0.88	shaft 0.10	h 0.387	lever 0.087	spring 0.723	shaft 0.100	link 0.065	sled 0.000	seal 0.700				Total 0.39
std pts	50	54	52	39	09	4	0	4	9	8	0	0				04
machi ning	0.00 00	0.01 74	0.00 00	0.00 51	0.24 79	0.007 8	0.000 0	0.006 7	0.247 9	0.241 0	0.130 4	0.000 0				0.07
thin wall		5.83 85			2.63 31	2.077 2	3.129 0		2.633	1.868 3		1.550 6				2.81 85
		0.5			51	2	0		1	5		0				27.7
count																833
	elect	elect	elect ric	heati	elect	electri										
Conce	ric	ric	resist	ng elem	ric	с		,	housin	guider	flywh	,	nut-			
pt 8	cord 0.93	wire 0.88	or 0.66	ent 0.05	cord 0.93	motor 0.955	link 0.065	lever 0.087	g 0.005	s 0.247	eel 0.333	clamp 0.200	bolt 0.83	blade 0.400	gear 0.41	Total 0.46
std pts machi	75 0.00	39 0.00	67 0.00	88 0.00	75 0.00	2 0.000	8 0.241	0.000	4 0.017	4 0.101	3	0.122	33 0.27	0.117	18 0.17	82 0.00
ning	00	51	00	00	00	0	0	0	4	9	0	0	87	6	05	00
thin wall							1.868 3	3.129 0	5.838 5	2.071 0		2.000 0	1.60 00		2.24 59	2.67 90
count																29.9 342
	elect ric		elect	elect	elect ric					materi						
Conce pt 9	switc h	batte ry	ric wire	ric cord	mot or	shaft	clamp	housi ng	reserv oir	al filter	guider s	handl e	housi ng	cover		Total
std pts	0.38 74	0.67 50	0.88 39	0.93 75	0.95 52	0.100	0.200	0.005	0.071 4	0.210 5	0.247 4	0.063 8	0.00 54	0.000 0		0.33 88
machi	0.00	0.00	0.00	0.00	0.00	0.247	0.122	0.017	0.025	0.000	0.101	0.020	0.01	0.022		0.04
ning thin	78 2.07	00	51	00	00	9 2.633	2.000	4 5.838	0	0	9 2.071	0 4.397	74 5.83	3		19 3.55
wall	72					1	0	5			0	3	85			08 30.2
count																386
									6 • • •							
			elect	elect ric					frictio n				mate			
Conce pt 10	hous ing	batte ry	ric wire	moto r	belt	gear	housi ng	tube	enhan cer	spring	housin g	tube	rial filter			Total
std pts	0.00 54	0.67 50	0.88 39	0.95 52	0.72 22	0.411 8	0.005	0.400	0.125	0.723 4	0.005	0.400	0.21 05			0.42 49
machi	0.01	0.00	0.00	0.00	0.00	0.170	0.017	0.074	0.000	0.006 7	0.017	0.074	0.00			0.02
ning thin	74 5.83	00	51	00	00	5 2.245	4 5.838	1 2.375	0	/	4 5.838	2.375	00			3.68
wall	85				00	9	5	0			5	0				02 32.4
count																798
			elect		elect											
Conce	hous	batte	ric switc	elect ric	ric mot		latch releas		positi	couple						
pt 11	ing	ry	h	cord	or	belt	e	gear	oner	r	cover	stop				Total
std pts	0.00 54	0.67 50	0.38 74	0.93 75	0.95 52	0.722 2	0.173 9	0.411 8	0.571 4	0.917 5	0.000 0	0.352 9				0.50 92
machi ning	0.01 74	0.00 00	0.00 78	0.00 00	0.00 00	0.000 0	0.020 8	0.170 5	0.095 2	0.000 0	0.022	0.088				0.03 52
thin	5.83		2.07			1.250	2.493	2.245 9	4.136	1.800 0	-	2.206				2.75
wall	85		72			0	8	9	4	0		0				60 24.4
count																908
					elect			electri				frictio				
Conce	elect ric	batte	hous	elect ric	ric mot			c switc	housin	contai		n enhan				
pt 12	wire 0.88	ry 0.67	ing 0.00	cord 0.93	or 0.95	shaft 0.100	sled 0.000	h 0.387	g 0.005	ner 0.125	spring 0.723	cer 0.125	tube 0.40			Total 0.40
std pts	39	50	54	75	52	9	0	4	4	0	4	0	00			95
machi ning	0.00 51	0.00 00	0.01 74	0.00 00	0.00 00	0.247 9	0.130 4	0.007 8	0.017 4	0.081 1	0.006 7	0.000 0	0.07 41			0.04 52
thin wall			5.83 85			2.633 1		2.077 2	5.838 5				2.37 50			3.75 25
	1							_	2							29.2
count	1															357
Conce	hous	batte	elect	elect		hydra	housi	contai		housin		housi				
pt 13	ing	ry	ric	ric	shaft	ulic	ng	ner	spring	g	stop	ng	shaft			Total

<u> </u>			wire	moto		piston									
	0.00	0.67	0.88	r 0.95	0.10	0.142	0.005	0.125	0.723	0.005	0.352	0.005	0.10		0.31
std pts machi	54 0.01	50 0.00	39 0.00	52 0.00	09	9 0.181	4 0.017	0.081	4 0.006	4 0.017	9 0.088	4 0.017	09		40
ning	74	0.00	51	0.00	79	8	4	1	0.000	4	2	4	79		14
thin wall	5.83 85				2.63 31		5.838 5			5.838 5	2.206 0	5.838 5	2.63 31		4.40 37
	05						5			5	Ŭ	5			32.2
count															377
		elect		elect			electri								
Conce	elect ric	ric resist	elect ric	ric moto		housi	c switc	guide	flywh						
pt 14	wire	or	wire	r	link	ng	h	rs	eel	clamp	spring	blade			Total
std pts	0.88 39	0.66 67	0.88 39	0.95 52	0.06 58	0.005 4	0.387	0.247 4	0.333	0.200	0.723 4	0.400 0			0.47 94
machi	0.00	0.00	0.00	0.00	0.24	0.017	0.007	0.101	0.000	0.122	0.006	0.117			0.05
ning thin	51	00	51	00	10 1.86	4 5.838	8 2.077	9 2.071	0	0 2.000	7	6			20
wall					83	5	2	0		0					10 28.1
count															28.1 847
	elect ric			elect ric	elect			electri c							
Conce	switc	batte	hous	moto	ric			switc		suppo	positi		handl		
pt 15	h 0.38	ry 0.67	ing 0.00	r 0.95	wire 0.88	shaft 0.100	cover 0.000	h 0.387	shaft 0.100	rt 0.123	oner 0.571	hinge 0.384	e 0.06		Total 0.35
std pts	74	50	54	52	39	9	0	4	9	4	4	6	38		69
machi ning	0.00 78	0.00 00	0.01 74	0.00 00	0.00 51	0.247 9	0.022	0.007 8	0.247 9	0.076 6	0.095 2	0.218 8	0.02 00		0.07 44
thin wall	2.07 72		5.83 85			2.633		2.077 2	2.633 1	2.237 4	4.136 4		4.39 73		3.25 38
wan	12		65			1		2	1	4	4		15		28.9
count															066
			.1		.1										
	elect	elect	elect ric	elect	elect ric										
Conce pt 16	ric cord	ric wire	resist or	ric wire	mot or	shaft	handl e	housi ng	tube	housin	couple r	wheel	coupl er	housi	Total
	0.93	0.88	0.66	0.88	0.95	0.100	0.063	0.005	0.400	0.005	0.917	0.421	0.91	ng 0.005	0.51
std pts machi	75 0.00	39 0.00	67 0.00	39 0.00	52 0.00	9 0.247	8 0.020	4 0.017	0.074	4 0.017	5 0.000	0.093	75 0.00	4 0.017	0.03
ning	00	51	00	51	00	9	0	4	1	4	0	8	00	4	56
thin wall						2.633 1	4.397 3	5.838 5	2.375 0	5.838 5	1.800 0	2.187 5	1.80 00	5.838 5	3.63 43
count															34.8 714
count															/14
		elect			elect										
Conce	elect ric	ric resist	elect ric	elect ric	ric mot		housi		housin		contai				
pt 17	wire 0.88	or 0.66	wire 0.88	cord 0.93	or 0.95	link 0.065	ng 0.005	stop 0.352	g 0.005	spring 0.723	ner 0.125	seal 0.700			Total 0.52
std pts	39	67	39	75	52	8	4	9	4	4	0	0			54
machi ning	0.00	0.00 00	0.00	0.00	0.00 00	0.241	0.017	0.088	0.017	0.006	0.081	0.000			0.03 85
thin	51	00	51	00	00	1.868	5.838	2.206	5.838	,		1.550			3.46
wall						3	5	0	5			6			04 30.0
count															413
			elect	elect ric			latch								
Conce pt 18	batte ry	hous ing	ric cord	moto r	belt	lever	releas e	housi ng	tube	clamp	housin g				Total
	0.67	0.00	0.93	0.95	0.72	0.087	0.173	0.005	0.400	0.200	0.005				0.37
std pts machi	50 0.00	54 0.01	75 0.00	52 0.00	22 0.00	0.000	9 0.020	4 0.017	0.074	0.122	4 0.017			\vdash	88 0.02
ning	0.00	74	0.00	0.00	00	0	8	4	1	0	4				45
thin wall		5.83 85			1.25 00	3.129 0	2.493 8	5.838 5	2.375 0	2.000 0	5.838 5				3.59 54
															23.0 581
count															581
		elect		elect			electri							+	
Conce	batte	ric switc	elect ric	ric moto			c switc	housi	contai		housin	hydra ulic			
pt 19	ry	h	cord	r	belt	cover	h	ng	ner	spring	g	piston	seal		Total
std pts	0.67 50	0.38 74	0.93 75	0.95 52	0.72 22	0.000	0.387 4	0.005 4	0.125 0	0.723 4	0.005 4	0.142 9	0.70 00		0.44 36
machi	0.00	0.00	0.00	0.00	0.00	0.022	0.007	0.017	0.081	0.006	0.017	0.181	0.00	1	0.02
ning	00	78	00	00	00	3	8	4	1	7	4	8	00		63

thin		2.07			1.25		2.072	5.838			5.838		1.55		3.10
wall		72			00		2	5			5		06		45 24.5
count															921
		elect ric	elect	elect ric			latch								
Conce pt 20	batte ry	switc h	ric cord	moto r	shaft	gear	releas e	carou sel	shaft	carous el					Total
	0.67	0.38	0.93	0.95	0.10	0.411	0.173	0.000	0.100	0.000					0.37
std pts machi	50 0.00	74 0.00	75 0.00	52 0.00	09	8 0.170	9 0.020	0.000	9 0.247	0.000					43 0.06
ning	00	78	00	00	79	5	8	0	9	0					95
thin wall		2.07 72			2.63 31	2.245 9	2.493 8	4.428 0	2.633 1	4.428 0					2.99 13
count															15.8 556
count															
	elect				elect										
Conce	ric switc	batte	hous	elect ric	ric mot			latch releas		positi	suppo				
pt 21	h	ry	ing	cord	or	link	lever	е	gear	oner	rt				Total
std pts	0.38 74	0.67 50	0.00 54	0.93 75	0.95 52	0.065 8	0.087 0	0.173 9	0.411 8	0.571 4	0.123				0.39 94
machi	0.00	0.00	0.01	0.00	0.00	0.241	0.000	0.020	0.170	0.095	0.076				0.05
ning thin	78 2.07	00	74 5.83	00	00	0 1.868	0 3.129	8 2.493	5 2.245	4.136	6 2.237				72 3.00
wall	22		85			3	0	8	9	4	4				27 23.5
count															362
			elect	elect ric											
Conce	hous	batte	ric	moto		circuit	housi			,	magne				
pt 22	ing 0.00	ry 0.67	wire 0.88	r 0.95	link 0.06	board 0.022	ng 0.005	lever 0.087	spring 0.723	lever 0.087	t 0.333				Total 0.34
std pts	54 0.01	50 0.00	39 0.00	52 0.00	58 0.24	7 0.000	4 0.017	0.000	4 0.006	0	3 0.000				95 0.02
machi ning	74	0.00	51	0.00	10	0.000	4	0	0.006	0.000 0	0.000				61
thin wall	5.83 85				1.86 83		5.838 5	3.129 0		3.129 0					3.96 07
															25.3
count															238
			elect		elect										
C	1	h	ric	elect	ric		hydra	h		h	latch	h 11			
Conce pt 23	hous ing	batte ry	switc h	ric wire	mot or	link	ulic piston	housi ng	clamp	housin g	releas e	handl e			Total
std pts	0.00 54	0.67 50	0.38 74	0.88 39	0.95 52	0.065 8	0.142 9	0.005 4	0.200	0.005 4	0.173	0.063 8			0.29 70
machi	0.01	0.00	0.00	0.00	0.00	0.241	0.181	0.017	0.122	0.017	0.020	0.020			0.05
ning thin	74 5.83	00	78 2.07	51	00	0 1.868	8	4 5.838	0 2.000	4 5.838	8 2.493	0 4.397			42 3.79
wall	85		72			3		5	0	5	8	3			40 27.8
count															27.8
		elect	alaat	elect		electri									
Conce	batte	ric switc	elect ric	ric moto		c switc	guider	flywh		housin					
pt 24	ry 0.67	h 0.38	wire 0.88	r 0.95	link 0.06	h 0.387	s 0.247	eel 0.333	clamp 0.200	g 0.005	blade 0.400				Total 0.41
std pts	50	74	39	52	58	4	4	3	0	4	0				28
machi ning	0.00 00	0.00 78	0.00 51	0.00 00	0.24 10	0.007 8	0.101 9	0.000 0	0.122	0.017 4	0.117 6				 0.05 64
thin wall		2.07 72	Γ	Γ	1.86 83	2.077 2	2.071 0		2.000 0	5.838 5		Γ			2.65 54
		12			65	2	0		0	3					23.0
count															095
					a ^{1.} ·									for the second	
			elect	elect	elect ric		latch							frictio n	
Conce pt 25	hous ing	batte ry	ric wire	ric cord	mot or	shaft	releas e	housi ng	guider s	flywh eel	guider s	housi ng	lever	enhan cer	Total
	0.00	0.67	0.88	0.93	0.95	0.100	0.173	0.005	0.247	0.333	0.247	0.005	0.08	0.125	0.34
std pts machi	54 0.01	50 0.00	39 0.00	75 0.00	52 0.00	9 0.247	9 0.020	4 0.017	4 0.101	3 0.000	4 0.101	4 0.017	70 0.00	0.000	16 0.03
ning thin	74 5.83	00	51	00	00	9 2.633	8 2.493	4 5.838	9 2.071	0	9 2.071	4 5.838	00 3.12	0	 78 3.73
wall	5.83 85					2.033	2.493	5.838	2.071		2.071	5.838	5.12 90		92
	1	1	1		1	1		1	1		1	1			33.3

BIBLIOGRAPHY

- 1. Liou, F.W., *Rapid Prototyping and Engineering Applications a Toolbox for Prototype Development*. 2008, Boca Raton: CRC Press.
- 2. Pahl, G. and W. Beitz, *Engineering Design*. 1984, London: The Design Council.
- 3. Otto, K.N. and K.L. Wood, *Product Design Techniques in Reverse Engineering and New Product Development*. 2001, Upper Saddle River, NJ: Prentice Hall.
- 4. Vermaas, P.E., On Engineering Meanings and Representations of Technical Functions, in ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. 2008, ASME: Brooklyn, New York.
- 5. Stone, R. and K. Wood, *Development of a Functional Basis for Design*. Journal of Mechanical Design, 2000. **122**(4): p. 359-370.
- 6. Boothroyd, G., P. Dewhurst, and W. Knight, *Product Design for Manufacture and Assembly*. Second ed. 2002: Taylor and Francis.
- Hirtz, J.M., et al., A Functional Basis for Engineering Design: Reconciling and Evolving Previous Efforts. Research in Engineering Design, 2002. 13(2): p. 65-82.
- 8. Bryant, C.R., *A Computational Theory for the Generation of Solutions During Early Conceptual Design*, in *Mechanical Engineering*. 2007, University of Missouri-Rolla: Rolla, MO.
- 9. Bohm, M.R., et al., Introduction of a Data Schema: The Inner Workings of a Design Repository, in ASME 2006 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. 2006, ASME: Philadelphia, PA.
- 10. Szykman, S., et al., *The NIST Design Repository*, in *Advances in Soft Computing -Engineering Design and Manufacturing*. 1998, Springer-Verlag: London.
- Gruber, T.R., *The Role of Common Ontology in Achieveing Sharable, Reusable Knowledge Bases*, in *Principles of Knowledge Representation and Reasoning: Second International Conference*, J.A. Allen, R. Fikes, and E. Sandewall, Editors. 1991, Morgan Kaufmann: San Mateo CA.
- 12. Cross, N., *Engineering Design Methods Strategies for Product Design*. Third ed. 2000, Chichester, West Sussex, UK: Wiley.

- 13. Ward, A.C., A Theory of Quantitative Inference for Artifact Sets, Applied to a Mechanical Design Compiler, in Department of Mechanical Engineering. 1989, Massachusetts Institute of Technology.
- 14. Ward, A.C. and W.P. Seering, *The Performance of a Mechanical Design "Compiler"*. 1989, Artificial Intelligence Laboratory Massachusetts Institute of Technology: Cambridge, MA.
- 15. Hyman, B., *Fundamentals of Engineering Design*. 1998, Upper Saddle River, NJ: Prenice-Hall.
- 16. Tiwari, S., J. Summers, and G. Fadel, A Genetic Algorithm Based Procedure for Extracting Optimal Solutions from a Morphological Chart, in ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. 2007, ASME: Las Vegas, Nevada.
- 17. Kurtoglu, T., et al., *Capturing Empirically Derived Design Knowledge for Creating Conceptual Design Configurations*, in ASME 2005 International Design Engineering and Technical Conference And Computers and Information in Engineering Conferences. 2005, ASME: Long Beach, CA.
- Bryant, C.R., et al., A Validation Study of an Automated Concept Generator Design Tool, in ASME 2006 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. 2006, ASME: Philadelphia, PA.
- 19. Tamhankar, M. and M.I. Campbell, An Intelligent and Efficient Tree Search Algorithm for Computer-Aided Component Selection, in ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. 2007, ASME: Las Vegas, NV.
- 20. Ashby, M.F., *Materials Selection in Mechanical Design*. Third ed. 2005, Oxford: Elsevier.
- 21. Messer, M., et al., A Function-Based Approach for Integrated Design of Material and Product Concepts, in International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. 2007, ASME: Las Vegas, Nevada.
- 22. Prashar, T., *Untitled Paper on Part Counting Software*. 2008, Missouri University of Science and Technology: Rolla, Mo.
- 23. Backer, E., *Computer-Assisted Reasoning in Cluster Analysis*. 1995, New York: Prentice Hall.

VITA

Kerry Ryan Poppa was born August 6, 1982. The son of Eugene and Gail Poppa, Kerry is a 2001 graduate of Maryville High School. Kerry received a BS in Interdisciplinary Engineering from the University of Missouri-Rolla in 2007, and a Master of Science in Manufacturing Engineering in 2008.