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ABSTRACT

Robust mechanism synthesis ensures that the performance of a mechanism is not 

sensitive to uncertainties in the mechanism and its environment. The uncertainties include 

the dimension variations, installation errors, random input motion, and various external 

forces. Robust mechanism synthesis is used to minimize the impact of these uncertainties 

on the mechanism performance. Robust mechanism synthesis has been performed by 

either a probabilistic approach or a worst case approach.  The former approach describes 

uncertain parameters as random variables while the latter approach treats uncertain 

parameters as interval variables. 

In this work, methods are developed for robustness assessment and robust 

mechanism synthesis when both random and interval variables exists. The average mean 

value, average standard deviation and the difference between the maximum and 

minimum standard deviations are used to measure the robustness of the mechanism 

performance. The robustness is evaluated by double loop Monte Carlo simulation. In the 

synthesis process, the average of mean performance, the average standard deviation of 

the performance, and the difference between the maximum and minimum standard 

deviations of the performance are minimized simultaneously. The feasibility robustness 

of the mechanism is also maintained with a desired probability level in the worst case of 

the interval variables. The synthesis problems of a crank slider mechanism and a four bar 

mechanism are used to demonstrate the effectiveness of the proposed methods.
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NOMENCLATURE

Symbol Description

X              Vector of Random Variables

Y              Vector of Interval Variables

d                  Vector of Design Variables

Z Response Variable

Y              Midpoint of Y

Y              Width of Interval Y

Z              Standard Deviation of Z

Z                  Mean Value of Z

Z              Midpoint of Z

Z              Width of Interval Z

Z Average of Mean Values of Z

Z Average of Standard Deviations of Z

Z Standard Deviation Difference of Z

N              Number of Samples of Random Variables

iN Number of Intervals



1. INTRODUCTION

Robust design [1,2,3,4] is a powerful design method for achieving high quality 

and productivity. By assessing variations (uncertainties) that a product experiences 

during design, manufacture, and operation, robust design ensures that a product perform 

its intended function regardless of the variations [5]. Due to various uncertainties, the 

actual product performance will always deviate from the desired or designed values [6]. 

If the uncertainties are not properly handled during the design process, the product 

performance will exhibit large variations and therefore deteriorate the product quality and 

reliability [7]. 

The fundamental principle of robust design is to improve product quality or 

stabilize the product performance by minimizing the effects of variations without 

eliminating their causes [8,9,10,11]. Therefore, robust design can achieve high quality by 

just changing design variables at the design stage without using tight tolerances [12].

1.1. UNCERTAINTY

Uncertainty is the difference between the model prediction and actuality [13,14]. 

Uncertainty can be also viewed as the deviation of an observed or calculated value from 

the true value. Uncertainty could occur in many ways in a system. Uncertainty could 

occur in the parameters of a mathematical model of a system or could be in the sequence 

of possible events in a discrete event system. 

Uncertainty is generally distinguished as aleatory uncertainty and epistemic 

uncertainty [13,14].
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1.1.1. Aleatory Uncertainty. Aleatory uncertainty also termed as objective or 

stochastic uncertainty, describes the inherent variation associated with the physical 

system or the environment under consideration. Sources of aleatory uncertainty are from 

a complex physical phenomenon, which includes temperature variations, material 

properties, dimensions of a product caused by manufacturing imprecision, environmental 

conditions, etc. Since uncertainty is resulted from natural variability, it will be very 

expensive and time consuming to reduce the uncertainty or sources of uncertainty. It is 

impossible to nullify aleatory uncertainty.  Aleatory uncertainty is usually modeled by the 

probability theory [13,14].

1.1.2. Epistemic Uncertainty. Epistemic uncertainty is described mainly as lack 

of knowledge or information in any phase or operation of a design process. Epistemic 

uncertainty derives from some level of ignorance or incomplete information about a 

physical system or environment. This definition stresses on the key aspect that the 

fundamental cause of epistemic uncertainty is incomplete information or incomplete 

knowledge of some characteristic of a system or the environment. This indicates that 

epistemic uncertainty can be reduced by gaining knowledge or information of a system or 

environment.

Some of the sources of epistemic uncertainty are insufficient or no experimental 

data available and limited understanding of physical processes. Epistemic uncertainty can 

be modeled by probability or “non probability” theories.

For any particular physical system of interest which is mathematically modeled, 

uncertainty can be conveniently classified into parameter uncertainty and model structure 

uncertainty. Parameter uncertainty can be aleatory (due to inherent variation) or epistemic 
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(due to limited information) in the physical system or environment in assessing the 

parameter characteristics. For example, if the length of a shaft, one of the parameters in a 

system varies around its nominal value within its specified tolerance with a normal 

distribution, the parameter uncertainty with the length is aleatory. Stochastic parameters 

in a specified mathematical model can be aleatory in nature. Due to variant operational 

environment, the external force F as shown in Figure 1.1 is an uncertain variable. If there 

are sufficient data available, F can be described mathematically with a random 

distribution. In this case, the parameter uncertainty is aleatory. However, if the data 

available is insufficient, F may not be precisely modeled by a random distribution. Then 

F has epistemic parameter uncertainty.

Figure 1.1. A Cantilever Beam

Model structure uncertainty is epistemic in nature because it is the uncertainty in 

the model structure itself. Model structure uncertainty is a special type of epistemic 

uncertainty as it concerns actual structural changes, or selection of one model among a 

class of models. This type of uncertainty comes from lack of knowledge, simplification 

and assumptions in the model building process.  

F
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To conclude, uncertainty is the variation of model prediction from actuality. 

Uncertainty can be classified as parameter uncertainty which can be aleatory or epistemic 

in nature and model structure uncertainty as shown in Figure 1.2. Model structure 

uncertainty is totally epistemic in nature. To control model structure uncertainty, the 

designer must select a model which fulfills the design requirements even under variations 

in the system or environment. 

Figure 1.2. Classification of Uncertainty

1.2. UNCERTAINTY IN MECHANISMS

As in other design problems, there are many uncertainties in a mechanism 

synthesis problem [15,16,17,18,19,20]. For example, the dimension of a link in a 

mechanism is always random no matter how small its tolerance is. This kind of 

uncertainty is due to manufacturing imprecision. Installation errors also exist. The input 

Uncertainty

Aleatory 

Uncertainty

Epistemic 

Uncertainty

Aleatory Parameter 

Uncertainty

Epistemic Parameter 

Uncertainty

Model Structure 

Uncertainty
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motion, such as the angular velocity of a motor, is not deterministic. The external forces 

may be stochastic. All these uncertainties result in variations in the mechanism 

performance. To deal with the uncertainties, robust design has been introduced in 

mechanism synthesis [21,22]. 

There are two different methods for robust mechanism synthesis. They are 

probabilistic mechanism synthesis [9] and interval mechanism synthesis [23]. In the 

probabilistic robust mechanism synthesis, all the uncertain variables are treated as 

random variables. The robustness for the objective function is achieved by minimizing its 

standard deviation. Some constraints are maintained at desired probability levels. In the 

interval robust mechanism synthesis, uncertain variables are assumed within intervals. 

The reason of using intervals is due to limited information about the uncertain variables. 

Without adequate information, it is difficult to obtain the distribution. In other 

circumstances, uncertainties may not be due to randomness. Therefore, intervals are used 

to model uncertainties. The robustness is achieved by minimizing the range (width) of the 

objective function. Some of the constraints are maintained on their worse bounds. 

In many applications, both random variables and intervals may exist. For 

example, for a new mechanism design, the installation errors and operation condition 

may not be known in advance. Intervals are usually used for the associated parameters. 

Since it is well known that dimensions are normally distributed, uncertainties associated 

with dimensions are modeled by normal distributions. In this case, both random and 

interval variables are present. The treatment of the mixture of such a mixture in 

reliability-based design has been reported recently [24,25,26]. A reliability based design 

is proposed to deal with the uncertain variables characterized by the mixture of 
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probability distributions and interval variables. The reliability is computed at the worst 

case combination of interval variables. 

In this work, one investigates possible ways for robust mechanism synthesis when 

both random and interval variables are involved. The tasks include how to define 

robustness with random and interval variables, how to evaluate robustness, and how to 

achieve robustness for mechanism synthesis under an optimization framework.

  

1.3. OVERVIEW OF THESIS

The rest of the thesis is organized as follows:

In Section 2, some background information of random variables and interval 

variables is presented, which lays the foundation of the proposed work. 

In Section 3, robustness is assessed with only random variables and with only 

interval variables. A robustness assessment method is developed by the double loop 

Monte Carlo Simulation, when both random variables and interval variables are present. 

In Section 4, the robustness assessment is integrated with the nonlinear 

optimization to achieve the mechanism robustness. 

In Section 5, the validation of proposed methodology is done with two examples. 

The first example is the design of a slider crank mechanism and the second example is 

the design of a four bar mechanism.

In Section 6, concludes are made and future research directions are given.
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2. UNCERTAINTY MODELING

As mentioned earlier, uncertainty could occur in many ways in a system. There is 

a need for a precise method of quantifying uncertainty. By quantifying uncertainty 

precisely, robust design ensures that a product performs its intended function regardless 

of the uncertainties. In recent years, a number of approaches have been proposed in the 

literature to the better representation of uncertainty [14,27,28,29,30,31]. The uncertainties 

associated with the mechanisms can be modeled using probabilistic or interval methods. 

In probabilistic approach, uncertainty is treated as random variable following a specific 

probability distribution [23,24,32,33]. In interval approach, uncertainty is denoted by a 

simple range [23,34]. If the uncertainty in the parameter is aleatory in nature, probability 

approach can be used to model the uncertainty. If the parameter uncertainty is epistemic 

in nature, interval approach can be used to model the uncertainty. 

Current robust design methodologies treat the uncertainties as either aleatory or 

epistemic in nature [9,21,23]. But in reality the uncertainties can occur as both aleatory 

and epistemic in nature [24,32]. In other words, random and interval variables can be 

mixed [24,25]. If such a problem arises, one option is to consider all the variables as 

random by assigning probability distributions to interval variables. The other option is to 

consider all the variables as interval variables by converting random variables to 

intervals. Both the methods may lead to a misleading result as the uncertainties are not 

modeled accurately. In this work, uncertainty is treated as a mixture of random and 

interval variables. In this section, an introduction to random variables and interval 
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variables is given. Some formulations for random and interval variables are shown, which 

are used in later sections.

2.1. RANDOM VARIABLE

Formally, a random variable is defined as a function where a real value is 

assigned to every possible outcome for an experiment or an engineering system. The 

random variable can also be described as a variable whose values are numerical outcomes 

of a random phenomenon. A probability distribution is assigned to a random variable. 

The common examples of a random variable are length of a shaft, time taken for 

completing a project and the life of an electronic component. In this thesis, an uppercase 

letter denotes a random variable, a lower case letter denotes an observation of a random 

variable, and bold letter denotes a vector. Random variables are used to model aleatory 

uncertainty. As learned from the previous section, aleatory uncertainty is an uncertainty 

where sufficient data are available. 

2.1.1. Probability Density Function (PDF). Consider a random variable X , its 

probability distribution is the measure of probability of X  on its range. Because of the 

physical phenomenon or data patterns, different variables may follow different 

probability distributions. A probability density function (PDF) fully describes a 

continuous random variable by defining the probability of its occurrence. The PDF of a 

random variable X  is denoted using  Xf x . The PDF of X  over an interval  ,x x x , 

can be expressed as 

   XP x X x x f x x         (2.1)

PDF of X over a finite interval  ,a b can also be determined as
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   
b

a

P a X b f x dx        (2.2)

which is the area underneath the curve  f x  from x a to x b  as shown in Figure 2.1.

Figure 2.1. Probability Density Function

2.1.2. Cumulative Distribution Function (CDF). CDF of a random variable X

represents the probability that the random variable X  takes on a value less than or equal 

to a constant x . CDF is denoted by  F x  which is given by,

     
x

F x P X x f x dx


                    (2.3)

The CDF is the area underneath the PDF curve in the range of  , x  as is shown in the 

Figure 2.2. 
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Figure 2.2. Cumulative Distribution Function

2.1.3. Normal Distribution. Normal distribution has the shape of the classic bell 

curve as shown in Figure 2.3. Any random variable with a normal distribution has a mean 

x and standard deviation x . The standard deviation is smaller for data deviating less 

from the mean value and larger for more dispersed data set. 

The PDF of a normal distribution is expressed as 

 
2

1 1
exp ,

22
x

X
xx

x
f x x


 

        
   

    (2.4)

The CDF of a normal distribution is expressed as

 
2

1 1
exp ,

22

x
x

xx

x
F x dx x


  

        
   

     (2.5)

Examples of normal distribution include dimensions of a product, measurement 

errors, intensity of light and financial indicators such as stock values (or) commodity 

prices.    
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Figure 2.3. PDF of Normal Distribution

2.2. INTERVAL VARIABLE

In real life engineering systems, situations may arise where only limited 

information of a variable can be obtained. The only information known is the range in 

which the design variable lies. In such cases, treating them as random variables by 

assuming a distribution may lead to misleading results. So, they are treated as interval 

variables. Some of the situations where the design variables can be treated as interval 

variables are given below. 

i. Suppose a new system is designed. Complete information on some of the 

quantities in the system may not be known. The only information known is the 

possible ranges of the quantity [35].
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ii. The time of failure of a component. If a component fails in between two 

inspections, then it can be said that the time of failure of the component is in 

between those two inspections. The range of time is known, which can be treated 

as an interval variable. 

iii. Measurement from a device can be with in an interval [24]. When the 

measurement from a device is between two adjacent landmarks, the only 

information available is that the reading is in a range. 

iv. Intervals are used in many engineering formulations. For example, the coefficient 

of friction of a material can be with in a range. No information is available on 

how it is distributed within the range [24].

v. With the advancement of computers, most of the engineering analysis such as 

finite element analysis and kinematic analysis is done using computers. The error 

induced in the result will be with in a range [24]. 

Let a design variable Y be an interval variable as shown in Figure 2.4. Let LY  and 

UY  be the lower bound and upper bounds of Y . Then Y can be defined as [36]

   , |L U L UY Y Y y Y y Y  � =  =     (2.6)

where ,L UY Y �  and L UY Y .

Now, some simple arithmetic operations that can be done on Y are presented. The 

midpoint of intervalY is given by,

 1

2 L UY Y Y      (2.7)

The width of interval Y  is given by,

U LY Y Y       (2.8)
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The radius of interval  r Y  is given by,

   1

2 U Lr Y Y Y      (2.9)

Figure 2.4. Interval Variable Y

In this work, uncertainty is to be modeled when both random and interval 

variables exist at the same time. The complexity of the problem increases with the 

mixture of random and interval variables. In the next section, the proposed method of 

robustness assessment in such situations is shown. Then, the robust mechanism synthesis 

with mixture of random and interval variables is introduced.   

Y

LY UY
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3. ROBUSTNESS ASSESSMENT

Every mechanism is subjected to uncertainties [21]. Uncertainties can be in the 

form of dimensional tolerances in the links, clearances in the joints and so on. The output 

of the mechanism is affected due to the uncertainties. Probabilistic, fuzzy or interval 

methods are generally used to model the uncertainties in an engineering system [34]. The 

probabilistic method describes the uncertain parameter as a random variable following a 

specific probability distribution [23,24,29,33,37]. If the information about the probability 

distribution is not available, interval approach or fuzzy theory can be used [38]. In 

interval approach, the uncertainty of the parameter is denoted by a simple range 

[23,24,34]. In fuzzy theory, the desirability of using different values within the range is 

described by using a membership function to the range [23]. The interval approach can be 

conveniently used when there is no sufficient information available about the probability 

distribution of the uncertain variable. Current literature [14,24,25] states that, in many 

engineering applications such as mechanisms the uncertain variables can be in the form 

random variables and interval variables at the same time. 

If the variation in the output caused by uncertainties is ignored, nonrobust designs 

can result [39]. Taguchi introduced the concept of robust design [9,12,32,40]. Robust 

design tries to achieve a minimum variation in the output by controlling the parameters 

causing the variation [40]. The main objective of robust design is to “optimize the mean 

performance” and “minimize the performance variation due to uncertainties” [21,41]. The 

former can be achieved by finding the relation between the mean performance and the 

design variables. Here the challenge lies in precisely quantifying the performance 
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variation due to the uncertainties, which is known as robustness assessment. Robustness 

assessment can be easily done if all the design variables are treated as random variables 

or interval variables. But in practical applications both random variables and interval 

variables exist at the same time. 

In this section, the existing methods for measuring and evaluating robustness with 

only random variables and with only interval variables are reviewed. The idea is extended

to the situation where both random and interval variables are involved. 

3.1. ROBUSTNESS ASSESSMENT WITH ONLY RANDOM VARIABLES

Mathematically, robustness is measured by the mean and variance (or standard 

deviation) of the performance [9,29,32,37]. Let a random variable Z  be a response 

variable that represents a performance in mechanism synthesis as shown in Figure 3.1 

and be in the form of 

( )XZ g ,                                                                                                                     (3.1)

where  1 2, , ,
XnX X XX   is the vector consisting of Xn  random variables. 

In this work, all the random variables in  1 2, , ,
XnX X XX   are assumed to be 

independent. The methods discussed in this paper are also applicable to correlated 

random variables. The elements of X can be design variables (e.g. dimensions of a 

mechanism) that can be controllable by a designer or noise factors that are uncontrollable 

(e.g. external forces).



16

Figure 3.1. Robustness Assessment with only Random Variables

Theoretically, the variance 2
Z  of Z  is calculated by

  222σ ( ) ( )Xx x xZ Z ZE Z g f d 



          ,                                                            (3.2)

where Z  is the mean of Z , which is computed by

[ ] ( ) ( )Z E Z g f d



   Xx x x .                                                                                        (3.3)

In the above equations, fX  is the joint probability density function (PDF) of the 

random variables X . Due to high dimensionality, analytical solutions to both of the above 

equations are difficult to obtain. Many approximation methods [37] and Monte Carlo 

simulation (MCS) [37] have been proposed. MCS is the simplest method and results 

accurate estimations. In this work we use MCS.

X Z

Mechanism

Response

 XZ g

X Z
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3.2. MONTE CARLO SIMULATION

MCS is useful to observe the dynamic behavior of a system with variation in the 

set of inputs. MCS is a powerful analysis tool that generates random numbers based on 

the probability density function (PDF) of the random variables X  and simulates the 

behavior of a response variable Z  when the data is insufficient to make decisions. 

The outline of MCS is depicted in Figure 3.2. MCS contains three steps:

1. Sampling on random input variables according to their distributions.

2. Evaluating response variable Z  at each sample. 

3. Analyzing the response variable Z . 

The response variable Z can be evaluated from equation 3.1. The estimate of mean and 

variance of Z is calculated from the samples of Z obtained from MCS. The equations 

are: 

 22

1

1
σ ( ) μ

1

N

Z i Z
i

g
N 

 
  x ,                                                                                           (3.4)

where the mean μ z  is estimated by

1

1
μ ( )

N

Z i
i

g
N 

  x                                                                                 (3.5)

xi  are the samples of random vector X , which are drawn from the distributions of X . N

is the number of samples (simulations).

MCS is an iterative method that has an inherent error involved. The accuracy of 

MCS depends on the number of simulations N. A large number of simulations must be 

performed to achieve an accurate estimate. With the increase in the number of 

simulations, MCS demands a lot of computational power.
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Figure 3.2. Monte Carlo Simulation

The robustness of a system is assessed by the standard deviation Z  obtained 

from MCS. For a robust system, a low standard deviation Z  value with a mean value 

Z equal to the desired value is to be achieved. Design optimization techniques are used 

to achieve this, which are mentioned in Section 4. Consider two designs design A and 

design B as shown in Figure 3.3. Consider the two designs subjected to similar 

conditions. Both the designs met the primary requirement of mean value Z , which is 

equal to the desired value. From Figure 3.3, it is evident that standard deviations Z  of 

both the designs are different. 
AZ (standard deviation of Design A) is less than 
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BZ (standard deviation of Design B), which suggests that Design A is more robust 

compared to design B. 

Figure 3.3. Robustness Comparison Between Design A and Design B

 3.3. ROBUSTNESS ASSESSMENT WITH ONLY INTERVAL VARIABLES

Mathematically, robustness is measured by the width of the interval of the 

performance [23,34,36]. Let a variable Z  be a response variable that represents a 

performance of a system as shown in Figure 3.4 and be in the form of 

( )Z g Y ,                                                                                                                      (3.6)

Where,  1 2, , ,
YnY Y YY   is the vector consisting of Yn interval variables. In this work, 

all the interval variables in  1 2, , ,
YnY Y YY   are assumed to be independent. The 

Design A

Design B

AZ

Z (Mean response variable)

BZ
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elements of Y can be design variables that can be controllable by a designer or noise 

factors that are uncontrollable. From the concepts discussed in Section 2, the midpoint 

 Z   and width of the interval  Z  of Z  is calculated by

 1
,

2 U LZ Z Z      (3.7)

,U LZ Z Z                                                    (3.8)                

where UZ  and LZ  represents the upper bound and lower bound of Z . 

Figure 3.4. Robustness Assessment with only Interval Variables

The robustness of the system is assessed by the width of the interval Z . Z  is to 

be as low as possible while Z  equal to the desired value. Consider two designs as shown 

in Figure 3.5 subjected to similar conditions. The mid points for both the designs are 

equal to Z , and satisfy the primary requirement. Now, comparing the width of the 

interval for the two designs, AZ  is greater than BZ . That is, if the input variable Y is 

subjected to an uncertainty of Y . By using Design A the uncertainty in the output 

Y Z
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 YZ g

Y
Z

LY UY
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response would be AZ , and by using Design B the uncertainty in the output response 

would be BZ . As BZ  is less than AZ , Design B is said to be more robust than Design 

A. 

Figure 3.5. Robustness Assessment Between Design A and Design B

3.4. ROBUSTNESS ASSESSMENT WITH BOTH RANDOM AND INTERVAL
VARIABLES

In current robustness assessment, uncertainties are usually treated as random 

variables or as interval variables [32]. However, in many practical engineering 

applications both random variables and interval variables exist at the same time. When 

the distributions of the design variables are precisely known, the design variables can be 

treated as random variables. If the evaluation of the probabilistic characters of a design 

variable is prohibitively expensive or may not be precisely known, the design variables 

Z
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BZ
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can be treated as interval variables.  In thesis work, a methodology of evaluating the 

robustness when both random and interval variables exist at the same time is proposed. 

When both random variables  1 2, , ,
XnX X XX   and interval variables 

 1 2, , ,
YnY Y YY   exist, the model becomes

( , )Z g X Y .                                                                                                                 (3.9)

With the existence of intervals, the mean and standard deviation of Z  will also be 

intervals. Figure 3.6 explains more about the existence of both random and interval 

variables in the design model.

Figure 3.6. Mixture of Random and Interval Variables

X

X

Y

Y

Mechanism Response

 ,X YZ g

PDF

Z
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The dashed lines represent the intervals of Z due to intervals inY . Because of the 

randomness in X , at each interval of Z  randomness is also seen. Consider a response 

variable Z  which is dependant on the random variable  1 2,X X X  and interval 

variable  1 2,Y Y Y . Z can be given by the equation 3.9. Consider all the four 

combinations of the interval bounds for both the interval variables. At each combination, 

Z  has four distributions as shown in Figure 3.7.

Figure 3.7. Example of Mixture of Random and Interval Variables

An interval of mean values and standard deviations for Z  is obtained. The 

probability distributions indicate the uncertainty obtained due to the effect of random 
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variable on Z . The intervals of distributions indicate the effect of interval variables on Z . 

From the interval of mean values of Z , the average mean value of Z can be calculated. 

The average of the mean values of Z is given by,

 max min1
,

2z z z                  (3.10)

where max
z  and min

z  are the maximum and minimum means, respectively. z  should be 

equal to the desired or expected value. Now the robustness of this type of model needs to 

be calculated. The interval of standard deviations of Z  is used to assess the robustness. 

The standard deviations of Z  and their bounds is to be considered. Imagine that there is 

no effect of random variable on Z , then Z  will be in the form of intervals. So, the 

randomness in Z  is due to the random variable X . To quantify the effect of randomness 

on Z , the average standard deviation of Z is used. The average of the standard deviation 

is given by,

 max min1
,

2z z z                  (3.11)

where max
z  and min

z  are the maximum and the minimum standard deviations, 

respectively. 

Now imagine that there is no effect on Z  due to the interval variable. Then Z will 

be in the form of a probability distribution. So, the interval of randomness is due to the 

effect of interval variableY . To quantify the effect of interval variable on Z , z  is used, 

which is the difference between the maximum standard deviation max
z  and the minimum 

standard deviation min
z . It is similar to the width of an interval, a lower value of z  is 
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desired to achieve a robust design. The standard deviation difference z  is computed 

by,

max min
z z z                  (3.12)

To understand more about how randomness is assessed when both random 

variable and interval variables are considered at the same time, consider four designs 

which are subjected to similar conditions. Figure 3.8 represents the maximum and 

minimum probability distributions from the interval of distributions.

Figure 3.8. Robustness Assessment with a Mixture of Random and Interval Variables 

Design1 Design2

Design3 Design4

Z

ZZ

Z
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The average of the mean values of Z  Z  is equal for all the four designs. Total 

uncertainty on the response variable can be divided as the uncertainty due to randomness 

 Z  and the uncertainty due to interval variable  Z . The design in which Z  and 

Z  is less is considered as a more robust design. First, Z  for the four designs is 

compared and then, Z  is compared. From the distribution curves, comparing Z  for 

the four designs, 
1 2 3 4Z Z Z Z      . The effect of randomness on the response 

variable for Design1 is low compared with other designs.  Design1 is a more robust 

design when only randomness is considered as the factor which affects the uncertainty of 

the response variable. But, the affect of interval variable on the uncertainty of the 

response variable is to be considered. From the distribution curves, comparing Z  for 

the four designs, 
1 3 2 4Z Z Z Z      . From the two comparisons, Design1 is the 

robust design and Design4 is the non robust design of all the four designs. Design2 is 

robust than Design3 when uncertainty in the response variable is caused only due to 

randomness.  Design3 is robust than Design 2 when uncertainty in the response variable 

is caused only due to the interval variable. In such cases decision is left to the designer 

whether to consider Design2 or Design3. 

Therefore, the key of mechanism robustness assessment is to calculate the average 

standard deviation z  and the standard deviation difference z . It is seen from the 

equations 3.11 and 3.12 that the maximum and minimum standard deviations must be 

obtained. Therefore, optimization combined with MCS must be employed for accurate 

calculations. The method will be very computationally expensive. In this work, a double 

loop MCS method is used to calculate z  and z . Figure 3.9 shows the flow chart of a 
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double loop MCS method.  This method consists of an outer loop which evaluates the 

effect of interval variable on the uncertainty of response variable and an inner loop which 

evaluates the effect of random variable on the uncertainty of response variable. In the 

outer loop, all the interval variables are divided into a number of small intervals  iN . 

The combinations of intervals  1 1 1 2 1 11 2 1 2 1 2... , ... ,....., ...
Y Y N N Yi i Ni

n n nY Y Y Y Y Y Y Y Y  are evaluated 

depending on iN . There will be a total of Y in N  combination of intervals. For each of 

the combinations an inner loop is performed. In the inner loop the samples of random 

variables X  are generated according to their distributions. After evaluating Z  for each 

sample, Z  and Z  are calculated. After completing the simulations the output contains 

Y in N  number of Z  and Z . If average of all the means is taken, Z  is obtained. Z

should be equal to the desired or expected value. The maximum  max
Z  and 

minimum  min
Z  of Z  values can also be identified from the obtained Z  values. After 

identifying max
Z  and min

Z , Z  and Z  can be calculated from the equations 3.11 and 

3.12. From Z  and Z , robustness of a system can be assessed. A minimum value for 

Z  and Z  is desired for a robust design. 

In the next section, discussions are made on how to achieve robustness for the 

mechanism synthesis under an optimization framework. First, the deterministic 

mechanism synthesis is reviewed. The existing methodologies, probabilistic method and 

interval approach for the robust mechanism synthesis are examined. Then the proposed 

method of robust mechanism synthesis is introduced. In the following section, the 

proposed method is validated using two examples. 
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Figure 3.9. Double Loop Monte Carlo Simulation
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4. ROBUST MECHANISM SYNTHESIS

Kinematics is defined by Ampère as “the study of the motion of mechanisms and 

methods of creating them” [42]. In this definition kinematics is divided into two parts. 

The first part deals with kinematic analysis and the second part deals with the kinematic 

synthesis. In kinematic analysis, the mechanism performance is determined with an 

assumption that all principal dimensions of a mechanism are known, the interconnections 

of the links are defined and the motion of the driver link is prescribed. Kinematic 

synthesis is the process of systematic design of a mechanism to achieve a specific task. 

The task that a mechanism should achieve can be one of the following.

i. Motion Generation: A rigid link of the given mechanism has to be guided in a 

prescribed motion sequence and the guidance may or may not be correlated with 

the input motion. 

ii. Path Generation: In a path generation problem, a point on a coupler link (link 

which is not connected to the frame) has to be guided along a definite path. The 

generation of the path may or may not be correlated with the input motion. 

iii. Function Generation: The motion parameters (displacement, velocity, 

acceleration, etc) of the input and output links are to be correlated so as to satisfy 

a desired function relationship.

Kinematic synthesis can be classified into two groups, Type synthesis and 

Dimensional synthesis. Type synthesis deals with finding the best suitable mechanism 

(cam mechanism, linkages, gear trains, etc), number of links the mechanism should have, 
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number of degrees of freedom required and so on, to achieve the required performance. 

In type synthesis the uncertainty could occur due to lack of knowledge or ignorance. The 

uncertainty in type synthesis can be reduced by gaining knowledge in the system.

Dimensional synthesis deals with determining the significant dimensions of the 

mechanism to achieve a specific task. There are two methods in practice for the 

dimensional synthesis of mechanisms, graphical method and analytical method. In 

graphical method, the mechanism is constructed geometrically. Tough this method 

provides a fairly quick and straightforward method of design, it has some limitations of 

accuracy (due to drawing error) [42]. To achieve accurate results the geometric 

construction may need to be repeated many times which is a tedious and laborious 

process. Analytical method mathematically models the mechanism. Approximation 

techniques are used to solve the model. This method has an advantage of accuracy and 

repeatability. In this work, focus is on analytical method of mechanism synthesis.  

Mathematical techniques such as algebraic method, matrix method and complex 

numbers are used to mathematically model the linkages for planar mechanism synthesis. 

After obtaining a mathematical model, optimization techniques are used to achieve an 

optimal solution to the problem. In the traditional optimization method, the error between 

the desired performance and the actual performance of a mechanism is to be minimized 

[43]. The optimization also includes a number of design constraints. In this section, the 

mechanism synthesis without considering any uncertainties is reviewed and then 

uncertainties are considered in the design stage. When considering uncertainties in the 

mechanism synthesis, the existing methods are shown and then the proposed method for 

robust mechanism synthesis is introduced. 
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4.1. DETERMINISTIC MECHANISM SYNTHESIS 

As mentioned previously mechanism design is a systematic design of a 

mechanism to achieve a specific task. The task may be motion generation, path 

generation and function generation. Optimization techniques are used to achieve this task. 

To perform optimization techniques, first the main objective of the design and the design 

variables is to be identified. Then, the constraints of the design need to be identified. The 

objective may be minimization of the difference between the desired path and the actual 

path of a mechanism. The design parameters may be the dimensions of the links and the 

constraints may be the existence of crank and transmission angle. 

Suppose the objective  f d  of a mechanism with design parameters 

 1 2,, .....,d nd d d  is to be minimized. Let the mechanism is subjected to the design 

constraints    0 1,2,...,d  i gg i n   and    0 1, 2,...,d  j jh j n  . When uncertainties 

are not considered, the optimal design model of the synthesis problem is given by [5,9]

 min  d
 d

Z f     (4.1)

    s.t.    0, 1, 2,....,d          i ig i n 

  0, 1,2,....,d          j jh j n 

          , 1,2,....,d d d     l u
k k k k n  

where d  is the vector of deterministic design variables. Figure 4.1 shows the flow chart 

of the optimization model. The design constraints and the objective function are checked 

for the initial start point. If the constraints are not satisfied and the objective is not 
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minimal, the design variables are changed. The process is iterated until an optimal 

solution for the design problem is achieved.

Figure 4.1. Flowchart of Deterministic Optimization
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To understand more consider a mathematical example. Suppose a company 

manufactures a product. $6000 is allocated for purchasing labor and material. Unit cost of 

labor and material is $20 and $10, respectively. The company will produce 1 2d d  units of 

products, where 1d  and 2d  are number of units of labor and material respectively. 

To formulate this problem mathematically into an optimization model, first the 

objective which is dependent on the design variables need to be identified and then the 

constraints of the problem. The number of units of labor and material are to be 

determined, so  1 2,d d d  are the design variables. Our objective is to produce 

maximum number of units, which is given by 1 2d d . 1 2d d  can be maximized or 1 2d d  can 

be minimized. The constraint is not to exceed the expenditure in labor and material above 

$6000. The constraint can be mathematically modeled as   1 220 10 6000dg d d   . The 

optimization model is given by

1 2min
  d

 d d      (4.2)

   s.t.   1 220 10 6000 0g d d   d

110 500;d 

           210 250d 

In this work, MATLab is used for solving the optimization model. An 

optimization tool “fmincon” which is available in MATLab is used. The starting point for 

the optimization is taken as 1 50d   and 2 50d  . The solution steps obtained from 

MATLab are given in Table 4.1.
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Table 4.1. Solution Steps from MATLab

Iteration 1d 2d 1 2d d

1 1 1 1

2 2 3 6

3 3 500 1,500

4 50 500 25,000

5 150 300 45,000

The optimal solution for this problem is 150 units of labor and 300 units of 

material. In this optimization methodology, uncertainties in the design parameters are not 

considered. The nominal values of the design parameters are taken into account. But in 

engineering applications, some uncertainties are present in the design parameters [18]. 

4.2 ROBUST MECHANISM SYNTHESIS 

As mentioned, due to the uncertainties in the design variables the mechanism 

performance deviates from the designed value. The uncertainty in the design variables 

needs to be considered at the design stage to achieve a robust mechanism [18].  The 

variation in the mechanism performance due to uncertainty can be quantified by the 

methods which are shown in the previous chapter. First the design variables are treated as 

random variables. Then, the proposed method of treating uncertainty as both random and 

interval to assess robustness is introduced. 
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4.2.1. Robust Mechanism Synthesis with only Random Variables. When the 

uncertainty in the design variables is treated as random variables, the robustness can be 

quantified by the measure of standard deviation. For a robust mechanism a minimum 

standard deviation value is to be achieved. The objective of a robust mechanism synthesis 

would be not only to minimize the error between the desired performance and actual 

performance but also the variation of output performance due to the uncertainties in the 

design variables [9]. Mathematically, our design objective for a robust mechanism can be 

represented as   1 2Z Zf w w  X . Z  represents the mean performance error of 

mechanism and Z  represents the standard deviation of mechanism performance. To 

calculate z , MCS is used in the optimization loop, as shown in Figure 4.2. 1w  and 2w

are the weighting factors. The constraint function changes to  0 1,2,..,
i ig g ik i n    . 

ig  is the mean value and 
ig is the standard deviation of the constraint  Xig . 

ig and 

ig  can be calculated using MCS.  k is a constant, If   Xig  is assumed to be normally 

distributed, ( )k  is the probability of confidence of the constraint satisfaction, where 

is the cumulative distribution function of a standard normal variable. Therefore, if 3k  , 

the constraint will be satisfied at the probability of (3) 0.99865  . The optimization 

model for the mechanism synthesis can be represented as [5,9,29,41]

           1 2min Z Zw w 
Xμ                 (4.3)

            s.t. 0, 1, 2,....,    
i ig g ik i n   

  0, 1,2,....,j jh j n X          

, 1, 2,....,X X X    l u
k k k k n  
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where X  is a vector of random variables. Figure 4.2 shows the flowchart of the 

optimization model when uncertainties are considered as random variables. The 

constraint function and convergence of objective function for an initial design is checked. 

If the functions are not satisfied, the design is changed. This process is iterated until an 

optimal solution is obtained. 

Figure 4.2. Flowchart of Optimization Model when Uncertainties are Considered as 
Random Variables
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To understand more about the difference between the deterministic mechanism 

synthesis and robust mechanism synthesis with random variables, consider a simple 

mechanism synthesis problem. Suppose a two position synthesis is to be done on a four 

bar mechanism. Multiple solutions results for the synthesis problem. In such cases the 

deterministic mechanism synthesis results in a design which satisfies the design objective 

and the constraints. Let the design obtained from the deterministic mechanism synthesis 

be “Design A”. Robust mechanism synthesis can be done for the same synthesis problem 

considering the uncertainties in the length of the links as random variables. Robust 

mechanism synthesis not only ensures that the design satisfies the design objective and 

constraints but also results in a design which has a minimum variation of the mechanism 

performance due to the uncertainties in the design variables. Figure 4.3 illustrates more 

about the results obtained from both the methods.

Figure 4.3. Comparison of Deterministic Mechanism Synthesis and Robust Mechanism 
Synthesis with Random Variables
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4.2.2. Robust Mechanism Synthesis with only Interval Variables. When the 

uncertainties in the design variables are treated as interval variables, interval approach is 

used for robust mechanism synthesis. The robustness can be quantified by the width of 

the interval of the mechanism performance  Z .  The objective of the robust mechanism 

synthesis would be to minimize the error between the desired performance and the actual 

performance of the mechanism and at the same time, minimizing the affect of uncertainty 

on the mechanism performance. Mathematically, the design objective for a robust 

mechanism synthesis can be represented as   1 2Yf w Z w Z  . Z represents the 

performance error of mechanism. 1w  and 2w  are the weighting factors. The constraint is 

modified as    max 0 1, 2,....,Y  i ig i n  .  The optimization model for the robust 

mechanism synthesis with interval variables can be represented as 

1 2min w Z w Z
  Y

    (4.4)

s.t.    max 0, 1, 2,....,Y    i ig i n 

          0, 1, 2,....,Y       j jh j n 

        , 1, 2,....,Y Y Y   l u
k k k k n  

Y  is a vector of interval variables. The flowchart for the optimization model is similar to 

the one shown in Figure 4.1. To understand more, a mechanism synthesis problem is 

explained, which is solved using deterministic mechanism synthesis and robust 

mechanism synthesis using interval variables. Let the uncertainties in the mechanism be 

interval in nature such as the installation error. Figure 4.4 shows the result obtained from 
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the deterministic mechanism synthesis and robust mechanism synthesis with interval 

variables. The deterministic mechanism tries to achieve an optimal solution satisfying the 

design objective and design constraints. The robust mechanism synthesis tries to achieve 

an optimal solution having minimum Z  and satisfying the design objective and design 

constraints. 

Figure 4.4. Comparison of Deterministic Mechanism Synthesis and Robust Mechanism
Synthesis with Interval Variables

4.2.3. Robust Mechanism Synthesis with Random and Interval Variables. In 

the real world engineering systems, the uncertainties will be in the form of a mixture of 

random variables and interval variables. In such situations to quantify robustness the 
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proposed method is to use a combined method of probabilistic approach and interval 

approach. From the previous section, the robustness can be quantified by Z  and Z . 

Z  represents the average of the standard deviations and Z  represents the difference of 

the standard deviations. Mathematically our design objective for a robust design can be 

represented as   1 2 3,X Y Z Z Zf w w w     . Z  represents the average of mean 

values of the performance error of the mechanism. Double loop MCS is proposed for 

evaluating  Z  and Z . 1 2,w w  and 3w  are the weighting factors. The flowchart of the 

design optimization for the robust mechanism synthesis with random and interval 

variables is shown in Figure 4.4. The constraint functions need to be changed to maintain 

robustness of the design feasibility in the worst case of design variables. So, the 

constraint function is modified as  max max 0 1, 2,....,
i ig g ik i n    . max

ig  and max

ig are the 

maximum of the mean value  and the maximum of standard deviation of the constraint 

function  ,X Yig , respectively. k  is a constant, where  k is the probability of 

confidence of the constraint satisfaction. The optimization model for the robust 

mechanism synthesis with random and interval variables can be modeled as

1 2 3
,

min Z Z Zw w w   
X

μ Y
    (4.5)

s.t.  max max 0, 1, 2,....,
i ig g ik i n      

        , 0, 1,2,....,j X jh j n μ Y        
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The optimization technique is shown in Figure 4.5. There are two major iterative 

loops. The first loop is to check the satisfaction of the constraint functions. The second 

loop is to convergence of the design optimization. Double loop MCS is used in both the 

loops for evaluating the required terms. Optimization is started with an initial design and 

checked for the constraint functions. If the constraint functions are not satisfied, the 

design will be changed. When a design is obtained satisfying the design constraints, 

design objective is checked for convergence. The process is iterated until a design is 

obtained satisfying the design constraints and converges at the objective function.

Consider a mechanism synthesis problem such as four bar mechanism. Suppose a 

two position synthesis is to be done. By using a deterministic mechanism synthesis the 

optimal result obtained will satisfy the design objective and design constraints. But due to 

the uncertainties in the design variables the mechanism performance deviated from the 

expected value. Robust mechanism synthesis can be performed either with random 

variables or with interval variables. But in reality, the uncertainties are a mixture of 

random variables and interval variables. For example, the uncertainties in the dimensions 

due to the manufacturing tolerances can be modeled as a random variable where as the 

uncertainties in installation errors where there is no information about the probabilistic 

characteristics can be modeled as an interval variable. In such cases, robust mechanism 

synthesis with random variables and interval variables results in a more accurate solution. 

Figure 4.6 shows a comparison of results obtained from the deterministic mechanism 

synthesis and robust mechanism synthesis. It is evident that the robust mechanism 

synthesis results in a more robust design compared to the deterministic mechanism 

synthesis. 
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Figure 4.5. Optimization Model for Robust Mechanism Synthesis with Random and 
Interval Variables
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Figure 4.6. Comparison of Deterministic Mechanism Synthesis and Robust Mechanism 
Synthesis with Random and Interval Variables

In the next section, two examples are presented to validate our proposed method. 

The first example is a crank slider mechanism and the second example is a four bar 

mechanism. Crank slider mechanism and four bar mechanism are the typical mechanisms 

found in most machinery. If the proposed method works for these two mechanisms, it 

works for almost all the mechanisms. 
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5. EXAMPLES

In this section, the proposed method is validated and demonstrated with two 

example problems. The first example is a slider crank mechanism design problem, and 

the second example is a four bar mechanism design problem. 

5.1. EXAMPLE 1 – A SLIDER CRANK MECHANISM DESIGN PROBLEM

A slider crank mechanism as in Figure 5.1 is a fundamental mechanism found in 

many engineering applications from automotive engines to door-closing mechanisms. 

The main objective of this example is to design a slider crank mechanism such that for a 

crank angle    of 10˚ and 60˚, the slider distance  s  should be 3.5˝ and 2.5˝ 

respectively. Length of crank  a , length of connecting rod  b and offset distance  e

are design variables. Links a  and b  are random variables which are given in Table 5.1.

Figure 5.1 Slider Crank Mechanism

s

e

a

b



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Table 5.1. Random Variables

Variable
Mean

( )

Standard 

Deviation ( )
Distribution

1X a
a 1% of a Normal

2X b
b 1% of b Normal

Because different installation positions of the slider are needed, the offset distance 

e  is specified within a tolerance given in Table 5.2.

Table 5.2. Interval Variable

Variable
LY UY

1Y e e - 5% of e e  + 5% e

* e  is the midpoint of interval e

The distribution of e  is not available. Therefore e  is treated as an interval 

variable. The task is to determine the length of the links a  andb , and offset distance e
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satisfying the objective of the mechanism. First the mechanism synthesis is done 

deterministically without considering any uncertainties, and then a robust mechanism 

synthesis is done considering the uncertainties in the design variables. Both the designs 

are compared.  

5.1.1. Deterministic Mechanism Synthesis. Deterministic mechanism synthesis 

is the common method used for mechanism synthesis. In this method, the nominal values 

of the design variables are considered without considering any uncertainties.

The slider distance  s  can be calculated by the following equation. 

  2 2cos ( sin )df s a b e a                      (5.1)

The design constraints of this mechanism include the existence of the crank 

constraint and transmission of energy constraint, which are given by

1( ) ( ) 0dg e b a                    (5.2)

2 ( ) ( ) sin 45 0dg e a b                     (5.3)

The deterministic mechanism synthesis can be modeled as

min ( )f
d

d
   =   = 2 2

10 60                                                    (5.4)

  s.t. 1( ) ( ) 0dg e b a    ,                              

        2 ( ) ( ) sin 45 0dg e a b     ,

    0.1 ≤ a ≤ 20, 0.1 ≤ b ≤ 20 and 0.1 ≤ e ≤ 20

  22
10 cos10 sin10 3.5a b e a                                   (5.5)
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  22
60 cos60 sin 60 2.5a b e a                       (5.6)

The objective as given in the equation 5.4 is to minimize the error between the 

calculated value and desired value. The desired value of slider distance at 10˚ of crank 

angle is 3.5”. Equation 5.5 shows the calculation of _10 , which calculates the error 

between the calculated value and the desired value at 10˚ of crank angle. Similarly, 

equation 5.6 shows the error between the calculated value and the desired value at 60˚ of 

crank angle. The objective is to find a design having the minimum error at both the 

positions and satisfying the constraint functions. The square root of sum of the squares of 

the two errors is used as the objective of this design problem. MATLab is used to 

perform this operation. The optimal solution obtained from MATLab for the 

deterministic mechanism synthesis is listed in Table 5.3.

Table 5.3. Deterministic Optimal Solution
Number 

of 

Iterations

Error

(in)

a

(in)

b

(in)

e

(in)

s  at 10˚

(in)

s  at 60˚

(in)

18 7.239e-12 1.133 2.5306 0.65148 3.5 2.5

* s – Slider Distance

  value obtained from the deterministic optimal solution is 7.239e-12 which is 

negligible. The design obtained from the deterministic mechanism synthesis results in the 
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slider distance at 10˚ and 60˚ as 3.5˝ and 2.5˝ respectively and satisfies the design 

constraints existence of crank and transmission angle. The transmission angle is 45.16˚.

5.1.2. Robust Mechanism Synthesis. Robust mechanism synthesis considers the 

uncertainties in the design variables at the design stage itself. The proposed robust design 

optimization methodology is applied to the mechanism synthesis problem. Then the 

robustness of the two designs is compared. 

In the proposed design optimization model tolerances in the links and the 

installation error are considered as uncertainties. In the deterministic design optimization 

minimizing   is the objective. Multiple solutions can be obtained for the deterministic 

optimization model which has the similar value for   and satisfies the design constraints. 

Robust mechanism synthesis ensures that the design is satisfactory and also subjected to 

minimum variations due to the uncertainties. In robust mechanism synthesis the objective 

is to minimize Z  and Z . In this design problem, Z  and Z  needs to be minimized 

at crank angles of 10˚ and 60˚. The two inequality constraints, existence of crank and 

transmission of energy are maintained at the worst case of interval variables. Two 

equality constraints are added to the design constraints. The first equality constraint is 

maintaining the slider distance as 3.5˝ at 10˚ of crank angle and the other equality 

constraint is to maintain the slider distance as 2.5˝ at 60˚ of crank angle.  

A double loop MCS is used in the robust design optimization model and Z  and 

Z  values are calculated. In the double loop MCS, 20 intervals  iN  for the interval 

variable and 2000 samples  N  for the random variables are taken. As there is only one 

interval variable e , 20 Z  values can be obtained from which Z  and Z  are calculated. 
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The objective is to minimize the effect of random variables and interval variables on the 

output slider distance at both the positions of the crank. 

The robust mechanism synthesis can be modeled as 

     min ( )f Xd,μ ,Y =
2 2

* *
1 2

1 1
i i i i

Z Z Z Z
i i

w w
   

   
 

  , 1 10 , 602              (5.7)

s.t.   max max 0,
i ig gk   i=1,2              

        1( , , ) ( )Xg d Y e b a    ,

           2 ( , , ) ( ) sin 45Xg d Y e a b     ,

              22
1 , , cos10 sin10 3.5Xh d Y a b e a      

              22
2 , , cos60 sin 60 2.5Xh d Y a b e a      

           0.1≤ a ≤ 20, 0.1 ≤ b ≤ 20 and 0.1 ≤ e ≤ 20

where *
Z

  and *
Z

  are the best achievable optimal solution of Z
  and Z

 , 

respectively. Weighting factor method is used to formulate the multiple objective 

function. 1w  and 2w  are the weighting factors used for the purpose of illustration. 1w  and 

2w  are taken as 0.5.

The robust mechanism synthesis solution which is obtained from MATLab is 

listed in Table 5.4.
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Table 5.4. Robust Mechanism Synthesis Solution

Number of 

Iterations

a

(in)

b

(in)

e

(in)

s  at 10˚

(in)

s  at 60˚

(in)

4 1.3239 2.2209 0.1 3.5 2.5

The design variables which are obtained from the robust design optimization 

model are different from those obtained from deterministic optimization. The main 

objective of the mechanism which is to maintain the slider distance as 3.5 in and 2.5 in at 

crank angles of 10˚ and 60˚ respectively is fulfilled in both the designs. As can be seen 

next, the new design variables produce a more robust design.

5.1.3. Robustness Assessment. Robustness assessment is performed on the two 

designs. It is shown that the proposed robust mechanism synthesis method results in a 

robust design. For quantifying the robustness of deterministic mechanism synthesis 

model mean values of a  and b  are taken as 1.133˝ and 2.5306˝, respectively, and 

midpoint of interval variable e  is taken as 0.65148˝. For quantifying the robustness of 

robust mechanism synthesis model, the mean values of  a  and b  are taken as 1.3239˝ 

and 2.2209˝, respectively, and midpoint of interval variable e  is taken as 0.1˝. The 

number of intervals  iN  for the interval variable is taken as 20. The Number of samples 

 N  is taken as 2000.  In this design problem, the robustness should be assessed at two 

positions of the crank angle. The solution obtained from the double loop MCS are shown 

in Table 5.5. 
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Table 5.5 Robustness Assessment of Deterministic Mechanism Synthesis and Robust 
Mechanism Synthesis

Deterministic Mechanism

Synthesis

Robust Mechanism 

Synthesis

a 1.1330˝ 1.3239˝

b 2.5306˝ 2.2209˝

e 0.6515˝ 0.1˝

10s  3.5˝ 3.5˝

60s  2.5˝ 2.5˝

10Z


0.02941˝ 0.02795˝

10Z


2.231e-4 in 4.089e-5 in

60Z 
0.03387˝ 0.0306˝

60Z


9.6732 e-4 in 3.631e-4 in

Both the designs fulfilled the primary objective. The slider distance at 10˚ and 60˚ 

is 3.5˝ and 2.5˝, respectively. The robustness for both the designs is assessed by looking 

at the values of 
10Z

, 

10Z

, 

60Z 
 and 

60Z

. 

10Z

, 

10Z

, 

60Z 
 and 

60Z

obtained 

from the robust mechanism synthesis are less than those from the deterministic 

mechanism synthesis design. This explains that the variation in the response variable due 

to the uncertainty in the inputs is less for robust mechanism synthesis design. Using a 

robust mechanism synthesis technique a robust design for the given synthesis problem is 

achieved. 
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To understand more, the output obtained from MATLab is graphically 

represented. The graphs obtained from both the methods are compared. The family of 

distribution curves at 10˚ of crank angle is shown in Figure 5.2 and Figure 5.3. As 

learned from the previous chapters, a minimum value for Z  and Z  for a robust design 

is to be achieved. A narrow distribution curves will have a low Z  value. Z  will be 

low if the width of the band is narrow. The design obtained from the robust mechanism 

synthesis has narrow distribution curves and also a narrow width of the band compared to 

the design obtained from deterministic mechanism synthesis. Similarly, Figure 5.4 and 

Figure 5.5 show the family of distribution curves at 60˚ of crank angle. From the 

distribution curves, it is evident that the design obtained from robust mechanism 

synthesis is more robust compared to the design obtained from the deterministic 

mechanism synthesis. 

From the results obtained, it is evident that the robust mechanism synthesis results 

in a more robust design compared to the deterministic mechanism synthesis. The 

proposed method of considering a mixture of random variables and interval variables 

results in a more accurate representation of the uncertainties in the design variables. 



53

3.35 3.4 3.45 3.5 3.55 3.6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Slider Distance (in) at 10 degrees

pd
f

Figure 5.2. Family of Distributions at the Crank Angle of 10˚ for the Design Achieved 
from Deterministic Mechanism Synthesis 
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Figure 5.4. Family of Distributions at the Crank Angle of 60˚ for the Design Achieved 
from Deterministic Mechanism Synthesis
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5.2. EXAMPLE 2 – A FOUR BAR MECHANISM DESIGN PROBLEM

A four bar mechanism as shown in Figure 5.6 is to be designed such that when the 

angle  2  of the input link is 10˚ and 45˚, the position of P(X, Y) should be (3.8, 3) and 

(3, 5), respectively. 

Figure 5.6. Four Bar Mechanism

Length of ground link OC  1r , length of link OA  2r , length of link AB  3r , 

length of link BC  4r , length of link AP  pr  and angle BAP    are design variables. 

The links 2r , 3r , 4r  and pr  are random variables which are given in Table 5.6.

Table 5.6. Random Variables

Variable
Mean

( )

Standard 

Deviation ( )
Distribution

1X 2r 2r
  mm 0.05 mm Normal

Y

X

P(X,Y)

O

A

B

C

2r

3r

4r

pr

2

3

4

 

1r
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Table 5.6. Random Variables (Cont.)

2X 3r 3r
  mm 0.10 mm Normal

3X 4r 4r
  mm 0.05 mm Normal

4X pr
pr  mm 0.05 mm Normal

As there is no information available on the type of distribution of the variables 1r

and  , they are considered as interval variables which is given in Table 5.7.

Table 5.7. Interval Variables
Variable LY UY

Y1 1r       1 0.5r   mm      1 0.5r   mm

Y2   1    1  

5.2.1. Deterministic Mechanism Synthesis. Deterministic mechanism synthesis 

results in obtaining the values of the design variables satisfying the design objective. In 

deterministic mechanism synthesis uncertainties in the design variables are not 

considered. The governing equations for finding the position of  ,P X Y  are given 

below:

 
 

2 2 3

2 2 3

cos cos ,

sin sin

X p

Y p

P r r

P r r

  

  

  

  
                (5.9) 

2 2 3 3 4 4 1

2 2 3 3 4 4

cos cos cos 0,

sin sin sin 0

r r r r

r r r

  
  

   

  
              (5.10)



57

The constraints of this mechanism design include the existence of the crank and 

transmission angle constraint, which are given by,

2 3 1 4 0r r r r                              (5.11)    

max
90 50 0                               (5.12)

 

 

22 2
3 4 1 21

1
3 4

22 2
3 4 1 21

2
3 4

cos ,
2

cos
2

r r r r

r r

r r r r

r r









   
  

  
   

  
  

              (5.13)

where 1  and 2  are maximum and minimum transmission angle, respectively. 

The objective is to find the design variables 1 2 3 4, , , , pr r r r r  and   such that, the 

error between the actual position and desired position of  ,P X Y  at 10° and 45° of 

crank angle is minimum. The design should also satisfy the design constraints which are 

given in equation 5.11 and equation 5.12. 

The deterministic mechanism synthesis is modeled as

min ( )f
d

d
  

 =   =        2 2 2 2

10 10 45 453.8 3 3 5Px Py Px Py            (5.14)

s.t. 1 1 2 3 4( ) 0g d r r r r     ,                                      

            2 max
( ) 90 50 0g d     ,

      11 50r  ; 21 50r  ; 31 50r  ; 

      41 50r  ; 1 50pr  ; 10 70 
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The first inequality constraint is Grashof’s law for a crank rocker mechanism. The 

second inequality constraint is a transmission angle constraint of the mechanism. The 

optimal solution from the deterministic mechanism synthesis is listed in Table 5.8.

Table 5.8. Deterministic Optimal Solution
Variable Solution Variable Solution

1r 19.5 mm 4r 9.5831 mm

2r 3.7887 mm pr 2.3431 mm

3r 19.8555 mm  62.3385˚

(X1, Y1) (3.8, 3) mm (X2, Y2) (3, 5) mm

5.2.2. Robust Mechanism Synthesis. In the proposed robust mechanism 

synthesis model, the tolerances in the links and the installation error are considered as the 

uncertainties in the design variables. Due to the uncertainties the mechanism 

performance, in this problem it is the position of  ,P X Y , deviates from the designed 

value. Robust mechanism synthesis ensures that the mechanism performance has a 

minimum effect due to the uncertainties in the design variables. The objective will be not 

only to maintain the position of  ,P X Y  to the desired value but also to optimize the 

average standard deviation and difference between the maximum and minimum standard 

deviations of the output variable. The robust mechanism synthesis can be modeled as 
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         min ( )f Xd,μ ,Y =   

2 2

1 2 3
1 1

2 2

4 5 1 2
1 1

,        10 , 45

i ii i

i ii i

X X Y Y
i i

X X Y Y
i i

w w w

w w

   

   

    

     

 

 

 

 

  

    

 

 
  

                     

s.t. max max 0,
i ig gk   i=1,2                 (5.9)

1 1 2 3 4( , , ) 0Xg d Y r r r r     

2 max
( ) 90 50 0g d           

11 50r  ; 
2

1 50r  ; 
3

1 50r  ; 

4
1 50r  ; 1 50

pr  ; 10 70 

where        2 2 2 2

10 10 45 453.8 3 3 5Px Py Px Py            ,

3,k 

1 2 3 4 5 0.2w w w w w    

The constraint is modified to maintain the robustness of the design feasibility at 

the worst case of the design variables. In the double loop MCS, 5 intervals are taken for 

each of the interval variables and 1000 samples are taken for the random variables. The 

robustness is to be achieved at the two positions of the coupler and at each position the 

robustness is considered at X and Y coordinates. 

The optimal solution obtained from the robust mechanism synthesis is listed in 

Table 5.9.
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Table 5.9. Optimal Solution Obtained from Robust Mechanism Synthesis

Variable Solution Variable Solution

1r 35.6425 mm 4r 32.9116 mm

2r 3.7886 mm pr 2.3431 mm

3r 20.6294 mm  15.4131˚

(X1, Y1) (3.8, 3) mm (X2, Y2) (3, 5) mm

5.2.3. Robustness Assessment. The uncertainty in the design variables are in the 

form of a mixture of random variables and interval variables. In such cases, a double loop 

MCS can be used for assessing the robustness of the system. The mean values of random 

variables and the midpoint of the interval variables are taken as the nominal values of the 

design variables obtained from the mechanism synthesis. The robustness is assessed for 

the designs obtained from the deterministic mechanism synthesis and robust mechanism 

synthesis and the results are compared. The performance function for the double loop 

MCS is taken as the performance error which is given by,

         2 2 2 2

10 10 45 45, 3.8 3 3 5g X Y Px Py Px Py               (5.10)

Five intervals for each of the interval variables and 1000 samples for the random 

variables are taken. The comparison of the robustness of the designs obtained from the 
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deterministic mechanism synthesis and robust mechanism synthesis is listed in Table 

5.10.

Table 5.10. Comparison of Designs Obtained from Deterministic Mechanism Synthesis 
and Robust Mechanism Synthesis

Variable
Deterministic Optimal 

Solution

Robust Design Optimal 

Solution

1r 19.5 mm 35.6425 mm

2r 3.7887 mm 3.7886 mm

3r 19.8555 mm 20.6294 mm

4r 9.5831 mm 32.9116 mm

pr 2.3431 mm 2.3431 mm

 62.3385˚ 15.4131˚

(X1, Y1) (3.8, 3) mm (3.8, 3) mm

(X2, Y2) (3, 5) mm (3, 5) mm

 1 1,  X Y  (49.92 e-3, 50.2 e-3) mm (42.84 e-3, 50.2 e-3) mm

 1 1,  X Y  (14.697 e-4, 11.6 e-5) mm (1.75 e-4, 7.73 e-5) mm

 2 2,  X Y  (40.0 e-3, 59.2 e-3) mm (34.05 e-3, 59.6 e-3) mm

 2 2,  X Y  (13.8 e-4, 44.2 e-5) mm (6.48 e-4, 37.75 e-5) mm
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The results clearly show that the design obtained from the robust mechanism 

synthesis is more robust compared to the deterministic mechanism synthesis. Both the 

mechanisms (Crank Slider Mechanism and Four Bar Mechanism) resulted in best 

solutions using a robust mechanism synthesis approach. It is evident that the proposed 

method of robust mechanism synthesis results a robust mechanism. 
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6. CONCLUSIONS

Mechanism synthesis is a systematic design of a mechanism to achieve a specific 

task. Generally deterministic values of the design variables are considered when 

designing a mechanism. But in reality, uncertainty exists in design variables and other 

parameters. Uncertainty is classified as aleatory uncertainty and epistemic uncertainty. 

Aleatory uncertainty is the inherent variation associated with the physical system or the 

environment. Epistemic uncertainty is due to lack of knowledge or insufficient data. Due 

to the two types of uncertainty the mechanism performance deviates from the designed 

values. To minimize the variation in the mechanism performance, either the uncertainties 

in the design variables and parameters can be reduced, or the effect of uncertainty on the 

mechanism performance can be controlled by changing the nominal design. The former 

method is very expensive and some times cannot be achieved.

Robust design uses the later method and ensures that the product perform its 

intended function regardless of variations. To perform robust design, first robustness of a 

system needs to be quantified. Currently, there are two approaches, probabilistic 

approach and interval approach, for quantifying robustness of a system. Probabilistic 

approach treats uncertain variables as random variables and quantifies robustness by the 

standard deviation of the performance. Many approximation methods are available for 

evaluating standard deviation. MCS is used because it is simple and results in accurate 

estimations. Interval approach treats uncertain variables as intervals. Robustness is 

quantified by the width of the interval of the performance. 
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In reality, the uncertainty in the engineering systems may exhibit both random 

and interval nature. In such situations, to apply robust design methodologies, first the 

robustness of the system needs to be assessed. The output of the performance will be in 

the form of family of distributions. Before quantifying the robustness, first we examine 

why the output behaves as a family of distribution curves. The distribution curves are due 

to the effect of randomness in the random variables and the intervals are due to the effect 

of interval nature of the interval variables. ,Z Z   and Z  are used to quantify the 

robustness of the system. ,Z Z   and Z  represents the average of the mean values, 

average of standard deviations and difference between the maximum and minimum 

standard deviations respectively. In this work, a double loop MCS is used for evaluating 

,Z Z   and Z . In the outer loop, the interval combinations are generated according to 

the number of intervals. In the inner loop, the samples of random variables are generated 

according to their distributions. For each sample the output performance is calculated. So, 

a set of samples for the output performance is obtained. The mean and standard deviation 

of a distribution curve can be calculated at each interval combination. From the obtained 

set of mean and standard deviation values ,Z Z   and Z  can be evaluated. 

After knowing how to quantify robustness, robust design is performed. First, the 

existing design optimization techniques are studied and then the proposed method is 

applied to the robust design. There are three main parts in a design optimization, the 

design variables, the objective function and the constraint function. For any engineering 

problem, first the design variables should be identified. Then the objective function and 

the design constraints, which are dependent on the design variables should be 

mathematically modeled. 
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In a mechanism synthesis problem, our objective is to achieve a specific task such 

as motion generation, path generation and function generation of a mechanism. The 

design variables would be the dimensions of links, offset distance and so on. The design 

constraints would be existence of the mechanism and transmission angle of the 

mechanism. Traditional mechanism synthesis considers the nominal values of the design 

variables without considering any uncertainty. 

In reality there will be various uncertainties in the mechanism such as 

manufacturing tolerances in the links, clearances in the joints in the links and installation 

errors. In the robust mechanism synthesis, the uncertainties in the design variables are 

considered and the objective will be not only to achieve the specific task of a mechanism 

but also to minimize the variations in the mechanism due to the uncertainties. Formerly, 

the uncertainties are treated as either random variables or interval variables. But in reality 

both the random variables and interval variables exist for the same design problem. If the 

uncertainties are treated as random variables, probability distributions are assumed to the 

variables where there is no information available. In such cases, probabilistic approach is 

used in the robust mechanism synthesis. The objective will be minimization of error 

between the desired performance and the actual performance of the mechanism plus the 

standard deviation of the output performance. When uncertainties are treated as interval 

variables, interval approach is used in the robust mechanism synthesis. The objective will 

be minimization of error between the desired performance and the actual performance of 

the mechanism plus the width of the interval of the output performance. When a mixture 

of random and interval variables exist both the probabilistic and the interval approaches 

may lead to misleading results. In this work, the design variables which have information 
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about the probability distribution are considered as random variables and the design 

variables with no information except the range are considered as interval variables. Both 

the probabilistic approach and the interval approach are combined to perform robust 

mechanism synthesis. The robustness of such a system can be quantified by ,Z Z   and 

Z . The objective will be minimizing ,Z Z   and Z . The robustness of the design 

feasibility is maintained in the worst case of design variables. This methodology results 

in better representation of the uncertainty and a robust design for a design problem. 

Double loop MCS is used for quantifying the robustness of the performance 

function when the uncertainty in the design variables is a mixture of random variables 

and interval variables. When the number of simulations increases double loop MCS 

demands more computational time. As a future work of the proposed methodology, any 

method which results ,Z Z   and Z  with the same accuracy as double loop MCS and 

takes less computational time can be used. DOE [44] concepts can be used to identify the 

design variables which prominently affect the output performance. Then the uncertainty 

to those variables can be considered instead of considering uncertainty for every design 

variable. 
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APPENDIX A.

MATLAB PROGRAM FOR EXAMPLE 1
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Deterministic Mechanism Synthesis

%Deterministic Mechanism Synthesis of Crank Slider Mechanism

%MAIN PROGRAM

clc; warning off; close all; clear all;

format long;

d0=[4,8,1];  % starting point for a, b and e

lb=[0.1,0.1,0.1];  %lower bounds for design variables a, b and e

ub=[20,20,20]; %upper bounds for design variables a, b and e

option = optimset('display','iter'); %set options to show the optimization history

d=fmincon('det_obj_fun',d0,[],[],[],[],lb,ub,'det_constr_fun',option); % call the optimizer

% analysis at the optimal point

X1=d(1);  %a

X2=d(2);  %b

X3=d(3);  %e

S_10=( (X1*cos(10*pi/180)) + ((X2^2) - (X3+X1*sin(10*pi/180))^2)^0.5  );

S_60=( (X1*cos(60*pi/180)) + ((X2^2) - (X3+X1*sin(60*pi/180))^2)^0.5  );

Error1 = ( ( (X1*cos(60*pi/180)) + ((X2^2) - (X3+X1*sin(60*pi/180))^2)^0.5  ) - 2.5 ); 

Error2 =  ( ( (X1*cos(10*pi/180)) + ((X2^2) -(X3+X1*sin(10*pi/180))^2)^0.5  ) - 3.5 );

Error= Error1^2 + Error2^2;

transmission_angle = acos((X3+X1)/X2)*180/pi;

disp(['s_10 = ', num2str(S_10)]);

disp(['s_60 = ', num2str(S_60)]);

disp(['transmission_angle = ', num2str(transmission_angle)]);

obj = (Error)^.5

c = det_constr_fun(d); %calculate the constraint functions

disp(['the optimal point = ', num2str(d)]);

disp(['the objective funtion = ', num2str(obj)]);

disp(['the constraint functions = ', num2str(c)]);

disp(X1);disp(X2);disp(X3);

%CONSTRAINT FUNCTION

function [c,ceq] = det_constr_fun(d) %constraint function

X1 = d(1);  %a

X2 = d(2);  %b

X3 = d(3);  %e

c(1) = X3 - (X2 - X1);  %Existence of Crank Constraint
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c(2) = -(sin(45*pi/180)*X2) + (X3+X1);  %Transmission Angle Constraint

Error1 = ( ( (X1*cos(60*pi/180)) + ((X2^2) - (X3+X1*sin(60*pi/180))^2)^0.5  ) - 2.5 ); 

Error2 =  ( ( (X1*cos(10*pi/180)) + ((X2^2) -(X3+X1*sin(10*pi/180))^2)^0.5  ) - 3.5 );

ceq(1) = Error1; 

ceq(2) = Error2;

------------------------------------------------------------------------------------------------------------

%OBJECTIVE FUNCTION

function obj = det_obj_fun(d) %objective function

X1=d(1);  %a

X2=d(2);  %b

X3=d(3);  %e

Error1 = ( ( (X1*cos(60*pi/180)) + ((X2^2) - (X3+X1*sin(60*pi/180))^2)^0.5  ) - 2.5 ); 

Error2 =  ( ( (X1*cos(10*pi/180)) + ((X2^2) -(X3+X1*sin(10*pi/180))^2)^0.5  ) - 3.5 );

Error= Error1^2 + Error2^2;

obj = (Error)^.5; %Objective Square Root of Sum of Squares of the Error

------------------------------------------------------------------------------------------------------------
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Robust Mechanism Synthesis

%Robust Mechanism Synthesis of Crank Slider Mechanism

%MAIN PROGRAM

clc; close all; clear all; warning off;

format long;

d0=[4,8,1];  % starting point of a, b and e

lb=[0.1,0.1,0.1];  %lower bounds for design variables 

ub=[20,20,20]; %upper bounds for design variables

option = optimset('display','iter'); %set options to show the optimization history

d=fmincon('std_obj_fun',d0,[],[],[],[],lb,ub,'std_constr_fun',option); % call the optimizer

% analysis at the optimal point

X1=d(1); %length of crank

X2=d(2); %length of connecting rod

X3=d(3); %offset distance

N=2000;  %Number of Samples of Random Variables

Nu=20;    %Number of Intervals

MuX1=X1;  stdX1 = MuX1/100; 

MuX2=X2;  stdX2 = MuX2/100; 

MuX3=X3;  aX3=MuX3-(MuX3/20); bX3=MuX3+(MuX3/20); 

max_std_10_norm = 0.029516808208; max_std_60_norm = 0.03386878670962;

sdiff_10_norm = 2.231075060847541e-004; sdiff_60_norm = 9.673179655116104e-004;

S_10 =(MuX1*cos(10*pi/180)) + ((MuX2^2) - (MuX3+MuX1*sin(10*pi/180))^2)^0.5 

S_60 =(MuX1*cos(60*pi/180)) + ((MuX2^2) - (MuX3+MuX1*sin(60*pi/180))^2)^0.5

% Step 1 - Sampling on random variables

randn('state',0)    % Initialize the normal random variable generator

X1_sample =normrnd(MuX1,stdX1,N,1); %sample of X1 

X2_sample =normrnd(MuX2,stdX2,N,1); %sample of X2 

X3_sample = aX3:(bX3-aX3)/(Nu-1):bX3; %Intervals of X3

% Step 2 - Experimentation

for i=1:Nu

    for j=1:N

            actual_S_10(i,j) = (X1_sample(j,1)*cos(10*pi/180)) + ((X2_sample(j,1)^2)…

…- (X3_sample(1,i)+ X1_sample(j,1)*sin(10*pi/180))^2)^0.5;
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            actual_S_60(i,j) = (X1_sample(j,1)*cos(60*pi/180)) + ((X2_sample(j,1)^2)…

…- (X3_sample(1,i)+ X1_sample(j,1)*sin(60*pi/180))^2)^0.5;

            A_10 (i,j) =10; A_60 (i,j) =60;

    end

end

for i=1:Nu

    std_actual_S_10 (1,i) = std(actual_S_10(i,:));

    std_actual_S_60 (1,i) = std(actual_S_60(i,:));

end    

max_std_10 = max(std_actual_S_10) 

max_std_60 = max(std_actual_S_60)

sdiff_10 = max_std_10 - min(std_actual_S_10)

sdiff_60 = max_std_60 - min(std_actual_S_60)

obj = (max_std_10/max_std_10_norm) + (max_std_60/max_std_60_norm)…

…+ (sdiff_10/sdiff_10_norm) + (sdiff_60/sdiff_60_norm);

c = std_constr_fun(d); %calculate the constraint functions

ceq = std_constr_fun(d);

disp(['the optimal point = ', num2str(d)]);

disp(['the objective funtion = ', num2str(obj)]);

disp(['the constraint functions = ', num2str(c)]);

disp(['the equality constraint functions = ', num2str(ceq)]);

n_point = 15;

for j=1:Nu

    step_10 = (max(actual_S_10(j,:))-min(actual_S_10(j,:))) / n_point;

    step_60 = (max(actual_S_60(j,:))-min(actual_S_60(j,:))) / n_point;

    for i = 1:n_point

        S_point_10(j,i) = min(actual_S_10(j,:)) + (i-1)*step_10;

        S_point_60(j,i) = min(actual_S_60(j,:)) + (i-1)*step_60;        

    end

end

for j=1:Nu

    m_10(j,:) = hist (actual_S_10(j,:),S_point_10(j,:));

    pdf_10(j,:) = m_10(j,:)/N;
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    m_60(j,:) = hist (actual_S_60(j,:),S_point_60(j,:));

    pdf_60(j,:) = m_60(j,:)/N;

end

figure;

for j=1:Nu

    plot(S_point_10(j,:),pdf_10(j,:));

    xlabel('Slider Distance (in) at 10 degrees'); ylabel('pdf');

    hold on;

end    

figure;

for j=1:Nu

    plot(S_point_60(j,:),pdf_60(j,:));

    xlabel('Slider Distance (in) at 60 degrees'); ylabel('pdf');

    hold on;

end   

------------------------------------------------------------------------------------------------------------

%CONSTRAINT FUNCTION

function [c,ceq] = std_constr_fun(d) %constraint function

X1 = d(1);  %a

X2 = d(2);  %b

X3 = d(3);  %e

N=2000;     %Number of Samples of Random Variables

Nu=20;        %Number of Intervals

MuX1=X1;  stdX1 = MuX1/100; 

MuX2=X2;  stdX2 = MuX2/100; 

MuX3=X3;  aX3=MuX3-(MuX3/20); bX3=MuX3+(MuX3/20); 

% Step 1 - Sampling on random variables

randn('state',0)    % Initialize the normal random variable generator

X1_sample =normrnd(MuX1,stdX1,N,1); %sample of X1 

X2_sample =normrnd(MuX2,stdX2,N,1); %sample of X2 

X3_sample = aX3:(bX3-aX3)/(Nu-1):bX3; %Intervals of X3
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% Step 2 - Experimentation

g1_mean = MuX3 - (MuX2 - MuX1); 

g2_mean = -(sin(45*pi/180)*MuX2) + (MuX3+MuX1); 

for i=1:Nu

    for j=1:N

            actual_g1(i,j) = X3_sample(1,i) - (X2_sample(j,1) - X1_sample(j,1));

            actual_g2(i,j) = -(sin(45*pi/180)*X2_sample(j,1)) + (X3_sample(1,i) + X1_sample(j,1));

    end

end

for i=1:Nu

    std_actual_g1(1,i) = std(actual_g1(i,:));

    std_actual_g2(1,i) = std(actual_g2(i,:));

end    

max_std_g1 = max(std_actual_g1); 

max_std_g2 = max(std_actual_g2);

max_mean_g1 = max(mean(actual_g1));

max_mean_g2 = max(mean(actual_g2));

k=3;

c(1) = max_mean_g1 + k*max_std_g1; %Existance of Crank Constraint

c(2) = max_mean_g2 + k*max_std_g2;  %Transmission Angle Constraint

ceq(1) = ((X1*cos(10*pi/180)) + ((X2^2) - (X3+X1*sin(10*pi/180))^2)^0.5)-3.5; 

ceq(2) = ((X1*cos(60*pi/180)) + ((X2^2) - (X3+X1*sin(60*pi/180))^2)^0.5)-2.5;  

------------------------------------------------------------------------------------------------------------

%OBJECTIVE FUNCTION

function obj = std_obj_fun(d)  %objective function

X1=d(1); %length of crank

X2=d(2); %length of connecting rod

X3=d(3); %offset distance

N=2000; Nu=20;

MuX1=X1;  stdX1 = MuX1/100; 

MuX2=X2;  stdX2 = MuX2/100; 

MuX3=X3;  aX3=MuX3-(MuX3/20); bX3=MuX3+(MuX3/20); 

max_std_10_norm = 0.029516808208; max_std_60_norm = 0.03386878670962;

sdiff_10_norm = 2.231075060847541e-004; sdiff_60_norm = 9.673179655116104e-004;



74

% Step 1 - Sampling on random variables

randn('state',0)    % Initialize the normal random variable generator

X1_sample =normrnd(MuX1,stdX1,N,1); %sample of X1 

X2_sample =normrnd(MuX2,stdX2,N,1); %sample of X2 

X3_sample = aX3:(bX3-aX3)/(Nu-1):bX3;

% Step 2 - Experimentation

for i=1:Nu

    for j=1:N

            actual_S_10(i,j) = (X1_sample(j,1)*cos(10*pi/180)) + ((X2_sample(j,1)^2)…

…- (X3_sample(1,i)+ X1_sample(j,1)*sin(10*pi/180))^2)^0.5;

            actual_S_60(i,j) = (X1_sample(j,1)*cos(60*pi/180)) + ((X2_sample(j,1)^2)…

…- (X3_sample(1,i)+ X1_sample(j,1)*sin(60*pi/180))^2)^0.5;

    end

end

for i=1:Nu

    std_actual_S_10 (1,i) = std(actual_S_10(i,:));

    std_actual_S_60 (1,i) = std(actual_S_60(i,:));

end    

max_std_10 = max(std_actual_S_10); 

max_std_60 = max(std_actual_S_60);

sdiff_10 = max_std_10 - min(std_actual_S_10);

sdiff_60 = max_std_60 - min(std_actual_S_60);

obj = (max_std_10/max_std_10_norm) + (max_std_60/max_std_60_norm)…

… + (sdiff_10/sdiff_10_norm) + (sdiff_60/sdiff_60_norm);
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Robustness Assessment

clc; close all; clear all; format long;

N= input('Enter Number of Samples  ');

Nu=input('Enter Number of intervals for interval variable  =  ');

MuX1=1.133;  stdX1 = 0.0113; %length of crank

MuX2=2.5306;  stdX2 = 0.025; %length of connecting rod

MuX3=0.6515;  aX3=MuX3-0.0163; bX3=MuX3+0.0163; %offset distance  

% Step 1 - Sampling on random variables

randn('state',0)    % Initialize the normal random variable generator

X1 = normrnd(MuX1,stdX1,N,1); %sample of X1 

X2 = normrnd(MuX2,stdX2,N,1); %sample of X2 

X3 = aX3:(bX3-aX3)/(Nu-1):bX3; %Intervals of X3

% Step 2 - Experimentation

S_desired_10 =(MuX1*cos(10*pi/180)) + ((MuX2^2)…

…-(MuX3+MuX1*sin(10*pi/180))^2)^0.5 

S_desired_60 =(MuX1*cos(60*pi/180)) + ((MuX2^2)…

…- (MuX3+MuX1*sin(60*pi/180))^2)^0.5 

for i=1:Nu

    for j=1:N

            actual_S_10(i,j) = (X1(j,1)*cos(10*pi/180)) + ((X2(j,1)^2) - (X3(1,i)…

…+ X1(j,1)*sin(10*pi/180))^2)^0.5;

            actual_S_60(i,j) = (X1(j,1)*cos(60*pi/180)) + ((X2(j,1)^2) - (X3(1,i)…

…+ X1(j,1)*sin(60*pi/180))^2)^0.5;

    end

end

for i=1:Nu

    std_actual_S_10 (1,i) = std(actual_S_10(i,:));

    std_actual_S_60 (1,i) = std(actual_S_60(i,:));

end    

std_actual_S_10

std_actual_S_60
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max_std_10 = max(std_actual_S_10) 

max_std_60 = max(std_actual_S_60)

sdiff_10 = max_std_10 - min(std_actual_S_10)

sdiff_60 = max_std_60 - min(std_actual_S_60)

% Plotting the pdf curves 

n_point = 15;

for j=1:Nu

    step_10 = (max(actual_S_10(j,:))-min(actual_S_10(j,:))) / n_point;

    step_60 = (max(actual_S_60(j,:))-min(actual_S_60(j,:))) / n_point;

    for i = 1:n_point

        S_point_10(j,i) = min(actual_S_10(j,:)) + (i-1)*step_10;

        S_point_60(j,i) = min(actual_S_60(j,:)) + (i-1)*step_60;        

    end

end

for j=1:Nu

    m_10(j,:) = hist (actual_S_10(j,:),S_point_10(j,:));

    pdf_10(j,:) = m_10(j,:)/N;

    m_60(j,:) = hist (actual_S_60(j,:),S_point_60(j,:));

    pdf_60(j,:) = m_60(j,:)/N;

end

figure;

for j=1:Nu

    plot(S_point_10(j,:),pdf_10(j,:));

    xlabel('Slider Distance (in) at 10 degrees'); ylabel('pdf');

    hold on;

end    

figure;

for j=1:Nu

    plot(S_point_60(j,:),pdf_60(j,:));

    xlabel('Slider Distance (in) at 60 degrees'); ylabel('pdf');

    hold on;

end   
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APPENDIX B.

MATLAB PROGRAM FOR EXAMPLE 2
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%MAIN PROGRAM

clc; warning off; format long; clear all;

%Deterministic Mechanism synthesis

disp('Deterministic synthesis');

option=1;

d0=[8 1 3 8 3 10];  % starting point of r1,r2,r3,r4,rp,beta 

lb=[1 1 1 1 1 10];  %lower bounds for design variables 

ub=[20 20 20 20 20 70]; %upper bounds for design variables

method=1;

N=1000;Nu=10;

option = optimset('display','iter'); %set options to show the optimization history

normalization=[];

der_d=fmincon('obj_prog',d0,[],[],[],[],lb,ub,'constr_prog',option,...

    N,Nu,normalization,method); % call the optimizer

%Displaiy results

disp('Design Variables =');

disp(num2str(der_d));

method=2;

[nom_Px,nom_Py,mean_Px,mean_Py,min_std_Px,max_std_Px,mean_std_Px,...

        min_std_Py,max_std_Py,mean_std_Py,diff_std_Px,diff_std_Py]...

    =analysis_obj(der_d,N,Nu,method);

[nom_g1,nom_g2,max_mean_g1,max_mean_g2,max_std_g1,max_std_g2]=...

    analysis_constr(der_d,N,Nu,method);

disp('Nominal positions [x1,y1], [x2,y2]=');

disp(['[',num2str(nom_Px(1)),',',num2str(nom_Py(1)),']',...

' [',num2str(nom_Px(2)),',',num2str(nom_Py(2)),']']);

disp('Maximum std of positions [x1,y1], [x2,y2]=');

disp(['[',num2str(max_std_Px(1)),',',num2str(max_std_Py(1)),']',...

' [',num2str(max_std_Px(2)),',',num2str(max_std_Py(2)),']']);

disp('Minimum std of positions [x1,y1], [x2,y2]=');

disp(['[',num2str(min_std_Px(1)),',',num2str(min_std_Py(1)),']',...

' [',num2str(min_std_Px(2)),',',num2str(min_std_Py(2)),']']);

disp('Mean std of positions [x1,y1], [x2,y2]=');

disp(['[',num2str(mean_std_Px(1)),',',num2str(mean_std_Py(1)),']',...

' [',num2str(mean_std_Px(2)),',',num2str(mean_std_Py(2)),']']);

disp('Diff std of positions [x1,y1], [x2,y2]=');
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disp(['[',num2str(diff_std_Px(1)),',',num2str(diff_std_Py(1)),']',...

' [',num2str(diff_std_Px(2)),',',num2str(diff_std_Py(2)),']']);

disp(['Nominal g1=',num2str(nom_g1)]);

disp(['Max mean g1=',num2str(max_mean_g1)]);

disp(['Max std g1=',num2str(max_std_g1)]);

disp(['Nominal g2=',num2str(nom_g2)]);

disp(['Max mean g2=',num2str(max_mean_g2)]);

disp(['Max std g2=',num2str(max_std_g2)]);

normalization=[nom_Px,nom_Py,...

        mean_std_Px(:,:,1),mean_std_Px(:,:,2),...

        mean_std_Py(:,:,1),mean_std_Py(:,:,2),...

        diff_std_Px(:,:,1),diff_std_Px(:,:,2),...

        diff_std_Py(:,:,1),diff_std_Py(:,:,2)];

%Robust design

robust_d=fmincon('obj_prog',der_d,[],[],[],[],lb,ub,'constr_prog',option,...

    N,Nu,normalization,method); % call the optimizer

%Displaiy results

disp('Design Variables =');

disp(num2str(robust_d));

method=2;

[nom_Px,nom_Py,mean_Px,mean_Py,min_std_Px,max_std_Px,mean_std_Px,...

        min_std_Py,max_std_Py,mean_std_Py,diff_std_Px,diff_std_Py]...

    =analysis_obj(robust_d,N,Nu,method);

[nom_g1,nom_g2,max_mean_g1,max_mean_g2,max_std_g1,max_std_g2]=...

    analysis_constr(robust_d,N,Nu,method);

disp('Nominal positions [x1,y1], [x2,y2]=');

disp(['[',num2str(nom_Px(1)),',',num2str(nom_Py(1)),']',...

' [',num2str(nom_Px(2)),',',num2str(nom_Py(2)),']']);

disp('Maximum std of positions [x1,y1], [x2,y2]=');

disp(['[',num2str(max_std_Px(1)),',',num2str(max_std_Py(1)),']',...

' [',num2str(max_std_Px(2)),',',num2str(max_std_Py(2)),']']);

disp('Minimum std of positions [x1,y1], [x2,y2]=');

disp(['[',num2str(min_std_Px(1)),',',num2str(min_std_Py(1)),']',...

' [',num2str(min_std_Px(2)),',',num2str(min_std_Py(2)),']']);

disp('Mean std of positions [x1,y1], [x2,y2]=');

disp(['[',num2str(mean_std_Px(1)),',',num2str(mean_std_Py(1)),']',...
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' [',num2str(mean_std_Px(2)),',',num2str(mean_std_Py(2)),']']);

disp('Diff std of positions [x1,y1], [x2,y2]=');

disp(['[',num2str(diff_std_Px(1)),',',num2str(diff_std_Py(1)),']',...

' [',num2str(diff_std_Px(2)),',',num2str(diff_std_Py(2)),']']);

disp(['Nominal g1=',num2str(nom_g1)]);

disp(['Max mean g1=',num2str(max_mean_g1)]);

disp(['Max std g1=',num2str(max_std_g1)]);

disp(['Nominal g2=',num2str(nom_g2)]);

disp(['Max mean g2=',num2str(max_mean_g2)]);

disp(['Max std g2=',num2str(max_std_g2)]);

------------------------------------------------------------------------------------------------------------

%OBJECTIVE FUNCTION

function [obj,mean_Px,mean_Py,s_Px,s_Py]=obj_prog(d,N,Nu,normalization,method)

%objective function

Px1_req=3.8;    Px2_reg=3;

Py1_reg=3;      Py2_reg=5;

[nom_Px,nom_Py,mean_Px,mean_Py,min_std_Px,max_std_Px,mean_std_Px,...

        min_std_Py,max_std_Py,mean_std_Py,diff_std_Px,diff_std_Py]...

        =analysis_obj(d,N,Nu,method);

error=(nom_Px(1)-Px1_req)^2+(nom_Py(1)-Py1_reg)^2+...

    (nom_Px(2)-Px2_reg)^2+(nom_Py(2)-Py2_reg)^2;

obj=error^0.5;

if method==2

    nom_Px1=normalization(1);

    nom_Px2=normalization(2);

    nom_Py1=normalization(3);

    nom_Py2=normalization(4);

    mean_std_Px1=normalization(5);

    mean_std_Px2=normalization(6);

    mean_std_Py1=normalization(7);
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    mean_std_Py2=normalization(8);

    diff_std_Px1=normalization(9);

    diff_std_Px2=normalization(10);

    diff_std_Py1=normalization(11);

    diff_std_Py2=normalization(12);

    obj=mean_std_Px(1)/mean_std_Px1+mean_std_Px(2)/mean_std_Px2...

       +mean_std_Py(1)/mean_std_Py1+mean_std_Py(2)/mean_std_Py2... 

       +diff_std_Px(1)/diff_std_Px1+diff_std_Px(2)/diff_std_Px2...

      +diff_std_Py(1)/diff_std_Py1+diff_std_Py(2)/diff_std_Py2;

end

-----------------------------------------------------------------------------------------------------------

      

%CONSTRAINT FUNCTION

function [c,ceq] = constr_prog(d,N,Nu,normalization,method)

%constraint function

[nom_g1,nom_g2,max_mean_g1,max_mean_g2,max_std_g1,max_std_g2]...

    =analysis_constr(d,N,Nu,method);

c(1)=nom_g1;

c(2)=nom_g2-50;

ceq=[];

Px1_req=3.8;    Px2_req=3;

Py1_req=3;      Py2_req=5;

if method==2

    [nom_Px,nom_Py,mean_Px,mean_Py,min_std_Px,max_std_Px,mean_std_Px,...

        min_std_Py,max_std_Py,mean_std_Py,diff_std_Px,diff_std_Py]...

        =analysis_obj(d,N,Nu,method);

    k=3;

    c(1)=max_mean_g1+k*max_std_g1;

    c(2)=max_mean_g2+k*max_std_g2-50;

    ceq(1)=nom_Px(1)-Px1_req;

    ceq(2)=nom_Px(2)-Px2_req;

    ceq(3)=nom_Py(1)-Py1_req;

    ceq(4)=nom_Py(2)-Py2_req;

end

------------------------------------------------------------------------------------------------------------

function F = obj_sub(x,c)
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F= [ c(2)*cos(c(6)*pi/180) + c(3)*cos(x(1)*pi/180) - c(4)*cos(x(2)*pi/180) - c(1);

     c(2)*sin(c(6)*pi/180) + c(3)*sin(x(1)*pi/180) - c(4)*sin(x(2)*pi/180) ];

------------------------------------------------------------------------------------------------------------

%Mechanism analysis for constraints

function [nom_g1,nom_g2,max_mean_g1,max_mean_g2,max_std_g1,max_std_g2] 

=analysis_constr(d,N,Nu,method)

r1=d(1); r2=d(2); r3=d(3); r4=d(4);

%option=1: deterministic %option=2: robust

nom_g1=0;nom_g2=0;max_mean_g1=0;max_mean_g2=0;max_std_g1=0;max_std_g2=0;

r1=d(1); r2=d(2); r3=d(3); r4=d(4); rp=d(5); beta=d(6);

the2=[10 45]; 

the0=[20 80]; % initial values for theta

nom_g1=r2+r1-r3-r4;

mu1=acos((r3^2 + r4^2 - (r1+r2)^2)/(2*r3*r4))*180/pi;

mu2=acos((r3^2 + r4^2 - (r1-r2)^2)/(2*r3*r4))*180/pi;

nom_g2=max(abs(90-mu1),abs(90-mu2));

diff_std_Px=0;

diff_std_Py=0;

if method==2

%Define uncertainties

    m_r1 = r1; l_r1 = m_r1-0.5; u_r1 = m_r1 + 0.5;

    m_r2 = r2; s_r2 = 0.05;

    m_r3 = r3; s_r3 = 0.1;

    m_r4 = r4; s_r4 = 0.05;

    m_rp = rp; s_rp = 0.05;

%Sampling

    randn('state',0)    % Initialize the normal random variable generator

    r1_sample = l_r1:(u_r1-l_r1)/(Nu-1):u_r1;

    r2_sample = normrnd(m_r2,s_r2,N,1);

    r3_sample = normrnd(m_r3,s_r3,N,1);

    r4_sample = normrnd(m_r4,s_r4,N,1);
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    rp_sample = normrnd(m_rp,s_rp,N,1);

    for k=1:Nu

        for i=1:N

            g1(k,i) = r1_sample(k) + r2_sample(i) - r3_sample(i) - r4_sample(i);

            mu1=acos((r3_sample(i)^2+r4_sample(i)^2-(r1_sample(k)+r2_sample(i))^2)...

                /(2*r3_sample(i)*r4_sample(i)))*180/pi;

            mu2=acos((r3_sample(i)^2+r4_sample(i)^2-(r1_sample(k)-r2_sample(i))^2)...

                /(2*r3_sample(i)*r4_sample(i)))*180/pi;

            g2(k,i)=max(abs(90-mu1),abs(90-mu2));

        end

    end

    max_mean_g1=max(mean(g1)); max_mean_g2=max(mean(g2));

    max_std_g1= max(std(g1)); max_std_g2=max(std(g2));

end

------------------------------------------------------------------------------------------------------------

%Mechanism analysis for the objective

function [nom_Px,nom_Py,mean_Px,mean_Py,min_std_Px,max_std_Px,mean_std_Px,...

        min_std_Py,max_std_Py,mean_std_Py,diff_std_Px,diff_std_Py]...

        =analysis_obj(d,N,Nu,method)

%method=1: deterministic %method=2: robust

nom_Px=0; nom_Py=0; mean_Px=0; mean_Py=0; min_std_Px=0; max_std_Px=0; mean_std_Px=0; 

min_std_Py=0; max_std_Py=0; mean_std_Py=0;

r1=d(1); r2=d(2); r3=d(3); r4=d(4); rp=d(5); beta=d(6);

the2=[10 45]; 

the0=[20 80]; % initial values for theta

option=optimset('Display','off');

for i=1:2

    c = [r1 r2 r3 r4 rp the2(i) beta];

    the0 =[30 100];

    x=fsolve(@obj_sub,the0,option,c);

    a3(i) = x(1); a4(i) = x(2);

    Px(i) = r2*cos(the2(i)*pi/180) + rp*cos((beta+a3(i))*pi/180);

    Py(i) = r2*sin(the2(i)*pi/180) + rp*sin((beta+a3(i))*pi/180);

end
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nom_Px=Px; nom_Py=Py;

diff_std_Px=0;

diff_std_Py=0;

if method==2

%Define uncertainties

m_r1 = r1; l_r1 = m_r1-0.5; u_r1 = m_r1 + 0.5;

m_r2 = r2; s_r2 = 0.05;

m_r3 = r3; s_r3 = 0.1;

m_r4 = r4; s_r4 = 0.05;

m_rp = rp; s_rp = 0.05;

m_b = beta; l_b = m_b - 1 ; u_b = m_b + 1;

%Sampling

randn('state',0)    % Initialize the normal random variable generator

r1_sample = l_r1:(u_r1-l_r1)/(Nu-1):u_r1;

r2_sample = normrnd(m_r2,s_r2,N,1);

r3_sample = normrnd(m_r3,s_r3,N,1);

r4_sample = normrnd(m_r4,s_r4,N,1);

rp_sample = normrnd(m_rp,s_rp,N,1);

b_sample = l_b:(u_b-l_b)/(Nu-1):u_b;

for kr1=1:Nu % Intervals of r1

    for kb=1:Nu % Intervals of b

        for i=1:N   %N samples

            for j=1:2  %2 positions

                c = [r1_sample(kr1) r2_sample(i) r3_sample(i) r4_sample(i) rp_sample(i) the2(j)];

                x = fsolve(@obj_sub,the0,option,c);

                Px_mcs(kr1,kb,i,j) = r2_sample(i)*cos(the2(j)*pi/180)...

                    + rp_sample(i)*cos((b_sample(kb)+x(1))*pi/180);

                Py_mcs(kr1,kb,i,j) = r2_sample(i)*sin(the2(j)*pi/180)...

                    + rp_sample(i)*sin((b_sample(kb)+x(1))*pi/180);

                the0 = x;

            end

        end

    end

end

for kr1=1:Nu
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    for kb=1:Nu

        temp_Px(:,:)=Px_mcs(kr1,kb,:,:);

        temp_Py(:,:)=Py_mcs(kr1,kb,:,:);

        for j=1:2

            m_Px(kr1,kb,j) = mean (temp_Px(:,j));

            m_Py(kr1,kb,j) = mean (temp_Py(:,j));

            s_Px(kr1,kb,j) = std (temp_Px(:,j));

            s_Py(kr1,kb,j) = std (temp_Py(:,j));

        end

    end

end

mean_Px = mean(mean(m_Px)); mean_Py = mean(mean(m_Py)); 

max_std_Px = max(max(s_Px)); min_std_Px = min(min(s_Px));

std_diff_Px = max_std_Px - min_std_Px;

mean_std_Px = mean(mean(s_Px));

max_std_Py = max(max(s_Py)); min_std_Py = min(min(s_Py));

std_diff_Py = max_std_Py - min_std_Py;

mean_std_Py = mean(mean(s_Py));

diff_std_Px=max_std_Px-min_std_Px;

diff_std_Py=max_std_Py-min_std_Py;

end
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