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ABSTRACT 

 

Quality Function Deployment (QFD) is one of the most popular design tools used 

in product development. One of the objectives of QFD is to map customer requirements 

to product requirements and calculate their relative worth.  A product requirement with a 

large relative worth indicates that it is an important product requirement in satisfying 

customer requirements. QFD applications use various rating scales in quantifying the 

degree of mapping from customer requirements to product requirements and various 

worth calculation methods to calculate the relative worth. The purpose of this paper is to 

study the sensitivity of relative worth when different rating scales or worth calculation 

methods are used. We identified two representative rating scales and two worth 

calculation methods in QFD matrices published in conference and journal papers 

(empirical QFD matrices), and used these rating scales and worth calculation methods to 

study sensitivity of relative worth.  Sensitivities of relative worth in empirical QFD 

matrices and in simulation-generated QFD matrices are compared for validations. 
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1. INTRODUCTION 

1.1. QUALITY FUNCTION DEPLOYMENT 

 

Quality Function Deployment (QFD)[1-4] is considered one of the most popular 

tools used in product development process. It relates customer requirements to system 

requirements. Using QFD matrices, engineers can specify which system requirements and 

components are more important in satisfying customer requirements. QFD is used as one 

of the core tools in concurrent engineering.  King[1] introduced 30 QFD matrices used 

for different purposes including value engineering, reliability engineering, and Failure 

Modes and Effects Analysis (FMEA).  Akao[2] presented more than 10 QFD matrices in 

four different categories: quality, technology, cost, and reliability deployment The 

benefits of QFD in system development include cost reduction[3], fewer design changes 

after the start of production[3], and improved communication among engineers[5].  QFD 

matrices consist of a variety of matrices used for mapping different inputs to outputs.   

 

1.1.1. Literature Reviews on QFD.  As Quality Function Deployment method is 

very popular among engineers, numerous amounts of studies are made based on it. The 

most discussed ones are made by Hazelrigg[6], Scott and Antonsson[7], and Olewnik and 

Lewis[8]. Hazelrigg claims that the group decision making process used in QFD is 

invalid, with the help of Arrows Impossibility Theorem. On the other hand, Scott and 

Antonsson discuss that Arrow’s Impossibility Theorem does not apply to design decision 

making, because it is multi-criteria decision making rather than group decision making. 

Olewnik and Lewis shows that one choice of quantitative scale over another has no effect 

on the final outcome in terms of rank and relative worth by doing simulation of rating 

scales in a single QFD matrix and using the average value of relative worth’s calculated 

for different conditions. In this study, 227 QFD matrices are used to find the effect of 

rating scales and worth calculations schemes on changes in relative worth. 
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1.1.2. The QFD Matrix.  Figure 1.1 illustrates one of the most popular QFD 

matrix, known as QFD I or “House of Quality” that maps customer requirements to 

system requirements, and QFD II matrices that maps system requirements to part 

requirements (QFD II-R) or to parts (QFD-S). 
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Figure 1.1. QFD I matrix 
  

A typical QFD matrix, also known as “House of Quality” or QFD I, that consists 

of eight components: 
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• Customer requirement 

• Importance of customer requirement 

• System requirements 

• Relationship matrix 

• Worth of system requirements 

• Target values of system requirements 

• Correlation matrix 

 

In a QFD I matrix, engineers identify a set of customer requirements (CRs) and its 

importance using marketing surveys. Then engineers establish product requirements 

(PRs) needed to satisfy customer requirements. The relationship matrix summarizes the 

degree of mapping from customer requirements to product requirements. Target values of 

product requirements are the specific value that a product needs to achieve for each 

product requirement. The correlation matrix illustrates how changing a target value of 

one product requirement influences target values of other product requirements. Finally, 

competitive assessment compares a product with competitors’ products by how well 

products satisfy each customer requirement. 

1.1.3. Degree of Mapping in QFD Matrix.   In a QFD relationship matrix, the 

degrees of mapping from customer requirements to product requirements are first 

assessed using symbols representing categorical scales, such as None-Small-Medium-

Large. Then the categorical scales are converted to rating scales to calculate the relative 

worth of customer requirements. Examples of rating scales are 1-2-3 [11, 13], 1-3-5 [12] 

for linear scale and 1-2-4[10] for exponential scale. Table 1.1 illustrates examples of 

conversion from a categorical scale to a rating scale. When a linear 1-3-5 scale is used, 

None is converted to 0 or blank, Small to 1, Medium to 3, and Large to 5. Similarly, 

when a linear 1-3-5 scale is used, None is converted to 0 or blank, Small to 1, Medium to 

3, and Large to 9.   
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Table 1.1. Degree of mapping 

Categorical scale Rating scale 

 Symbol Linear Exponential 

Large  5 9 

Medium  3 3 

Small  1 1 

None Blank 0 or blank 0 or blank 

 

1.1.4. Worth Calculation Methods.  Once categorical scales are converted to 

rating scales, the worth of product requirements is calculated from the importance of 

customer requirements and rating scales, and the calculated worth is normalized to obtain 

the relative worth.  Examples of worth calculation methods are the weighted sum (WS) 

method [11, 12] and the allocated sum (AS) method [13, 10].  Figure 1.2 illustrates the 

WS method and the AS method when linear 1-3-5 rating scale is used. In the WS method, 

the worth of product requirements is the weighted sum of ratings in each column of QFD 

relationship matrix where importance of customer requirements are the weights. For 

example, in Fig. 1.2 (a), the worth of product requirement PR1 in Fig. 2 is 51 in the WS 

method because 9x5+6x1=51. In the AS method, the importance of customer 

requirements is allocated to each product requirement in each row of the relationship 

matrix according to the ratio of the degree of mapping in the row, and then the allocated 

importance is added in each column to find the worth of each product requirement. In 

Fig. 1.2 (b), the importance of customer requirement CR1, 9, is allocated to PR1, and 

PR4 proportional to the degree of mapping 5:5.  The importance of CR1 allocated to PR1 

is 4.5 because 9x(5/(5+5))=4.5.  The worth of PR1 in Fig. 2 is 5.5 in the AS method 

because 4.5+1=5.5.    
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                    (a) WS method                                                        (b) AS method 

Figure 1.2. Example of QFD I for a Can Opener 
 

     Finally, the relative worth is calculated by normalizing the worth of product 

requirements as summarized in Table 1.2.   

 

Table 1.2. Relative worth comparison 

 PR1 PR2 PR3 PR4 

WS 0.24 0.19 0.25 0.33 

AS 0.20 0.18 0.29 0.34 

AS-WS -0.04 -0.01 0.04 0.01 

 

The relative worth of product requirements (relative worth hereafter) differs when 

different rating scales and worth calculation methods are used.  For example, the last row 

of Table 1.2 (AS-WS) illustrates the differences in relative worth (differences hereafter) 

when worth calculation method is changed from WS to AS methods while fixing the 

rating scale to the linear 1-3-5 scale.  In this paper, these differences are used to measure 

the sensitivity of relative worth due to changes in rating scales or worth calculation 

methods. 
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2. METHODOLOGY 

2.1. DESCRIPTIVE ANALYSIS 

The descriptive characteristics of QFD matrices studied are their sizes, rating 

scales, and worth calculation schemes used in relationship matrices.   A total of 239 QFD 

matrices published in journal and conference papers (empirical QFD matrices hereafter) 

are used. All QFD matrices are analyzed descriptively; however, only complete QFD 

matrices that list the importance of inputs and that have a complete relationship matrix 

using 3 point rating scale are studied for sensitivity analysis. 

The size is the dimensions (number of rows and columns) of the relationship 

matrices, i.e., the number of inputs and the number of outputs.  The rating scale is the 

type of rating scale used for quantifying the degrees of mapping in the relationship 

matrices.  The types of scales include linear and exponential rating scales.  Worth 

calculation schemes are classified into WS and AS as described in Section 1.1.4. 

 

2.2. SENSITIVITY ANALYSIS 

To study how relative worth differs when various rating scales or worth 

calculation methods are used, the empirical QFD matrices from conference and journal 

papers are collected.  Then identified the most popular linear and the most popular 

exponential rating scales used for converting categorical scales to rating scales, and the 

most popular worth calculation methods.  The relative frequency of each category in 

categorical scales (e.g., None, Small, Medium, and Large) is calculated from empirical 

QFD matrices in order to generate QFD matrices by simulation and to compare the 

sensitivity of relative worth in the empirical and simulation-generated QFD matrices.  

The sensitivity of relative worth is defined in this paper by the proportion of 

differences that results in larger than or equal to +0.1 or smaller than or equal to -0.1.  

Figure 2.1 graphically illustrates this proportion using cumulative frequency of 

differences.  In Fig. 2.1, “a” and “b” are the proportion of differences that results in 

differences smaller than or equal to -0.1 and larger than or equal to +0.1 respectively.   
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Figure 2.1. Cumulative distribution of differences. 
 

As Fig. 2.2 shows, a and b are smaller if the curve is steeper and the differences 

are concentrated near zero.  Thus a steeper curve indicates that a QFD matrix is less 

sensitive to changes in rating scales or worth calculation methods.   
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Figure 2.2. Comparison of cumulative distributions. 

 

2.3. CONDITIONS ANALYZED 

The  four conditions in Table 2.1 shows the change in rating scale from the linear 

1-3-5 (L) to the exponential 1-3-9 (E) while fixing the worth calculation method (WS or 

AS), and changing the WS method (W) to the AS method (A) while fixing the rating 

scale (L or E).  

 

Table 2.1. Conditions 

Condition Rating scale Worth calculation 

EW–LW Change L to E Fix W 

EA–LA Change L to E Fix A 

LA–LW Fix L Change W to A  

EA–EW Fix E Change W to A 
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2.4. SIMULATION ANALYSIS 

In the simulation analysis, 10,000 QFD matrices for each QFD matrix size and 

calculated the relative worth of product requirements. The importance of customer 

requirements is randomly generated based on a 10-point rating scale, and the entries of 

QFD relationship matrices are randomly generated using a categorical None-Small-

Medium-Large scale. The matrices which have no entry entirely for a row or a column 

are excluded from the analysis. The categorical scales are converted to the linear 1-3-5 or 

the exponential 1-3-9 rating scales to calculate the worth and the normalized worth of 

product requirements.  

In order to study the effects of the size, the numbers of rows, and the number of 

columns to the sensitivity of relative worth, 10,000 QFD matrices using simulation for 

each of the sizes in Table 2.2 are generated.  

 

Table 2.2. Sizes of simulation-generated QFD matrices 

Conditions Sizes 

Change both row and column 2x2, 3x3, up to 10x10 

Change row  2x10, 4x10, up to 10x10 

Change column  10x2, 10x4, up to 10x10 

 

2.5. EMPIRICAL ANALYSIS 

In the empirical analysis, a total of 227 QFD matrices which use three-point rating 

scale are used. The relative worth of requirements are calculated and compared for the 

conditions explained in section 2.3. The result of simulation analysis shows that, 

changing the number of columns have more significant influence than changing the 

number of rows. Therefore, the QFD matrices are segmented according to the number of 

columns. 
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3. ANALYSIS RESULTS 

3.1. DESCRIPTIVE ANALYSIS RESULTS 

3.1.1. Size of QFD Matrices.  A total of 239 QFD matrices from published 

conference and journal papers, which are complete in the sense that they have all the 

information necessary to calculate worth of product requirements, i.e., lists of customer 

requirements and product requirements, importance of customer requirements, and all the 

entries in the relationship matrix are used in this study. The sizes of these 239 complete 

QFD matrices are summarized in Fig. 3.1 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
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3 2 2 17 1 1 23
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9 1 3 1 1 1 2 1 1 11
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12 2 1 1 1 1 1 2 2 1 1 1 14
13 1 1 2 1 1 6
14 1 1 1 1 4
15 1 1 1 1 1 5
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To
ta

l n
um

be
r

N
um

be
r o

f r
ow

s

Number of columns

 

 

Figure 3.1. Dimension of QFD Matrices. 
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The minimum number of rows is three and the minimum number of columns is 

three (3 by 3 matrix).  The maximum number of rows is 45 (45 by 14 matrix), and the 

maximum number of columns is 59 (13 by 59 and 34 by 59 matrix).  

 

3.1.2. Rating Scales.  Figure 3.2 compares the relative frequency of linear and 

exponential rating scales used in the empirical QFD matrices. Exponential scales are used 

in 87% of the empirical QFD matrices, and linear scales are used in the remaining 

matrices.   
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Figure 3.2. Comparison of Rating Scales. 
 

Figures 3.3 and 3.4 summarize the breakdown of linear and exponential rating 

scales used in empirical QFD matrices. Among linear rating scales, 1-3-5 is the most 

popular scale that appears in 56% of the empirical QFD matrices that use linear rating 

scales. Among exponential rating scales, 1-3-9 is the most popular scale that appears in 

99% of the empirical QFD matrices that use exponential rating scales.  Three-point rating 

scales are the most popular scales used both in linear and exponential rating scales. 
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Figure 3.3. Types of Linear Scales. 
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Figure 3.4. Types of Exponential Scales. 
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Therefore, the further analysis is based on how the relative worth changes when 

switching from linear 1-3-5 scale to exponential 1-3-9 scale. Five matrices which utilize 

5-point, 10-point, and negative rating scales are excluded from the analysis. 

 

3.1.3. Proportion of categorical scale. Because three-point scales are the most 

popular scales to convert categorical scales to rating scales, the relative frequencies of 

categories (None, Small, Medium, and Large) in the empirical QFD matrices are 

calculated.  These relative frequencies are used when generating QFD matrices by 

simulation.  Figure 3.5 summarizes the relative frequencies of these categorical scales. 
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Figure 3.5. Relative frequency of categories. 
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3.1.4. Calculation Schemes.  Figure 3.6 summarizes worth calculation methods 

observed in the empirical QFD data.  93% of the QFD matrices use the WS method, and 

the remaining QFD matrices use the AS method.  No other worth calculation method is 

used. 
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Figure 3.6. Worth Calculation Schemes. 
 

3.1.5. Summary of descriptive analysis.  In the descriptive analysis, we 

observed that 1-3-5 scale is the most popular linear rating scale and 1-3-9 is the most 

popular exponential rating scale.  Only WS and AS are the worth calculation methods 

used in empirical QFD matrices.  Based on these observations, in the sensitivity analysis, 

we focused on how the relative worth differs when switching from linear 1-3-5 scale to 

exponential 1-3-9 scale, and from the WS method to the AS method. 

 

3.2. SIMULATION RESULTS 

In this section, all the simulation analysis results are compared. Proportion of 

change in relative worth with changing the dimension is studied. Namely, changing rows 
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and columns simultaneously (square matrix), fixing row or column and changing the 

other dimension and vice versa. 

 

3.2.1. Proportion of change in square matrix.  Figure 3.7 compares the 

proportion of differences larger than or equal to 0.1 (the proportion corresponding to b in 

Fig. 2.1) and Fig. 3.8 compares the proportion of differences less than or equal to -0.1 

(the proportion corresponding to a in Fig. 2.1) for various sizes of QFD matrices (2x2, 

3x3, up to 10x10).  
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Figure 3.7. Proportion of differences larger than or equal to +0.1. 
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Figure 3.8. Proportion of differences smaller than or equal to -0.1 

 
 

Figure 3.7 and 3.8 illustrates that the proportion of observing large differences 

(≥0.1 or ≤0.1) approach zero as the size of the matrix increases. This shows that, large-

sized QFD matrices are less sensitive than small-sized QFD matrices. Also, for each size 

of QFD matrix, changing the rating scales while keeping the worth calculation method 

fixed (EW-LW and EA-LA) is less sensitive compared to changing the worth calculation 

methods while keeping the rating scale fixed (LW-LA and EW-EA). Furthermore, we can 

see that, by changing rating scales (from linear to exponential rating scale) while keeping 

the worth calculation method fixed to AS method (EA–LA) is the least sensitive 

condition and changing the worth calculation method (WS to AS) while keeping the 

rating scale fixed to the exponential scale (EA–EW) is the most sensitive condition.  The 

cumulative frequencies of the differences are illustrated in Fig. A1 of Appendix A. 
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To find which of the number of rows or the number of columns most influenced 

differences, we change either the number of rows or columns while keeping the number 

of the other fixed at 10. 

 

 

3.2.2. Proportion of Change with Row. The number of columns is fixed at 10 

and the number of rows is varied from 2, 3, and up to 10. The proportions of differences 

of requirements larger than or equal to +0.1 and smaller than or equal to -0.1 are shown 

in Figs. 3.9 and 3.10 respectively. 
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Figure 3.9. Proportion of differences larger than or equal to +0.1 
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Figure 3.10. Proportion of differences smaller than or equal to -0.1 

 

In the case of changing the number of rows while fixing the number of columns at 

10, the proportion of observing large differences is very small (<0.02). Thus we can 

conclude that changing the number of rows does not have a significant effect on the 

differences. The cumulative frequencies of the differences are illustrated in Fig. A2 of 

Appendix A.  

 

3.2.3. Proportion of Change with Column. For this section the number of rows 

is fixed at 10 and the number of columns is varied from 2, 3, and up to 10. The 

proportions of differences of requirements larger than or equal to +0.1 and smaller than 

or equal to -0.1 are shown in Figs. 3.11 and 3.12 respectively. 
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Figure 3.11. Proportion of differences larger than or equal to +0.1 
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Figure 3.12. Proportion of differences smaller than or equal to -0.1 

 

From Figs. 3.11 and 3.12, the change in the number of columns has a significant 

effect on the differences as opposed to the change in the number of rows in Figs. 3.8 and 

3.9. This effect is particularly significant when the number of columns is relatively small 

(≤6).  

Similar to Figs. 3.7 and 3.8 in which the size of square matrices are varied, QFD 

matrices become less sensitive as the number of column increases. Similarly, the least 

sensitive condition (EA–LA) and the most sensitive condition (EA–EW) are the same as 

those in Figs. 3.7 and 3.8. The cumulative frequencies of the differences are illustrated in 

Fig. A3 of Appendix A. 

 

3.3. EMPIRICAL RESULTS 
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3.3.1. Histogram of Data. In the empirical analysis, 227 empirical QFD matrices 

that use three-point rating scales are selected for sensitivity analysis. From the study of 

simulation-generated QFD matrices shows that the number of column is influential on the 

differences, the QFD matrices are segmented by the number of column to have sufficient 

number of QFD matrices in each condition and then performed the sensitivity analysis on 

each segment of QFD matrices.  Figure 3.13 summarizes the number of QFD matrices 

segmented by the number of columns: 2-6, 7-10, 11-14, 15-18, and larger than or equal to 

19.  
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Figure 3.13. Histogram of the QFD matrices segmented by the number of column 
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3.3.2. Proportion of Changes in Relative Worth.  Proportions of observing 

extreme differences larger than or equal to +0.1 and smaller than or equal to -0.1 are 

shown in Figs. 3.14 and 3.15 respectively. 
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Figure 3.14. Proportion of differences larger than or equal to +0.1 
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Figure 3.15. Proportion of differences smaller than or equal to -0.1 
 

From Fig’s 3.14 and 3.15, it can be seen that, changing the rating scale from 

linear to exponential while fixing the worth calculation method to the AS method (LA–

EA) is the least sensitive condition.  On the other hand, changing AS to the WS method 

by fixing the exponential scale (EW–EA) is the most sensitive condition. Also, the 

sensitivity decreases as the number of columns increases. This is consistent with the 

results of the simulation-generated QFD matrices. 

 

3.4. COMPARISON OF SIMULATION AND EMPIRICAL RESULTS. 

 

This section compared the results of the sensitivity analysis using simulation-

generated and empirical QFD matrices. Because QFD matrices are segmented by the 

number of columns, the differences of the empirical QFD matrices with those of the least 

sensitive (the maximum number of column) and the most sensitive simulation-generated 

QFD matrices are compared. For example, to compare the sensitivity analysis of 
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empirical QFD matrices with the number of columns between 2 and 6, comparison of 

empirical results with simulation results for 2x2 and 6x6 is done.  Because the sensitivity 

decreases as the size of QFD matrix decreases (e.g., Figs. 3.7 and 3.8), simulation results 

of 2x2 is tabulated as upper bound and 6x6 as lower bound.    Figures 3.16 and 3.17 

compares the proportion of differences larger than or equal to +0.1 and smaller than or 

equal to -0.1 for the least sensitive condition (EA-LA), and Figs. 3.18 and 3.19 shows the 

same comparison for the most sensitive condition (EA-EW).  The comparison of 

cumulative frequencies of empirical results and simulation results is compared for the 

segment 2-6 in Fig. B1 and for the segment 7-10 in Fig. B2 in Appendix B. 
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Figure 3.16. Proportional Changes Larger Than or Equal to +0.1 for EA-LA. 
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Figure 3.17. Proportional Changes Less Than or Equal to -0.1 for EA-LA. 
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Figure 3.18. Proportional Changes Larger Than or Equal to +0.1 for EA–EW. 
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Figure 3.19. Proportional Changes Less Than or Equal to -0.1 for EA–EW. 
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From Figs. 3.16, 3.17, 3.18, and 3.19, it  can be seen that the empirical results lie 

within the lower and the upper bounds or below the lower bound of the simulation-

generated QFD matrices for both, the least sensitive (EA-LA) and the most sensitive 

condition (EA–EW).  
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4. CONCLUSIONS AND FUTURE WORK 

In this paper, we studied the sensitivity of the relative worth of product 

requirements in 227 empirical QFD matrices with respect to changes in rating scales (1-

3-5 linear and 1-3-9 exponential scales) and worth calculation methods (weighted sum 

and allocated sum methods).   The results of the sensitivity analysis in the empirical QFD 

matrices are compared with the results of sensitivity analysis in the simulation-generated 

QFD matrices for validations. 

In both empirical and simulation results, it can be seen that, changing from 

exponential to linear scale while fixing the worth calculation method to AS method (EA–

LA) is the least sensitive condition and changing WS to AS method by fixing the 

exponential scale (EA–EW) is the most sensitive condition. The QFD matrices become 

less sensitive to changes in rating scales and worth calculation methods as the number of 

columns increases. The relative worth becomes less insensitive to changes when the 

number of columns is larger than or equal to 7 in empirical QFD matrices. 

Future work includes calculating the minimum and the maximum bounds of the 

relative worth analytically, and studying the rationale using rating scale (e.g., linear 1-3-5 

or exponential 1-3-9) and worth calculation methods (WS and AS). 
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APPENDIX A. 

CUMULATIVE FREQUENCY OF DIFFERENCES 
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A.1 Changing the size of QFD matrix 

 

Figure B1 shows cumulative frequencies of differences in four conditions when 

changing the size of QFD matrix.  In each condition, the relative worth becomes less 

sensitive to the increase in the size of the matrix, i.e., the cumulative frequency becomes 

steeper with the increase in the size of QFD matrices. 
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Figure. A1.  Effects of the size of QFD matrices 

 

A.2 Changing the number of rows of QFD matrix 

 

Figure A2 shows cumulative frequencies of differences when changing the 

number of rows.  Figure A2 indicates that cumulative frequency does not change with the 

number of rows. 
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Figure. A2.  Effects of the number of rows in QFD matrices 

 

A.3 Changing the number of columns of QFD matrix 

 

Figure A3 shows cumulative frequencies of differences when changing the 

number of columns.  Figure A3 indicates that cumulative frequency changes significantly 

with the number of columns. 
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Figure. A3. Effects of the number of columns in QFD matrices 
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APPENDIX B. 

COMPARISON OF EMPIRICAL AND SIMULATION MATRICES 
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B.1 Comparison of differences in empirical and simulation-generated QFD matrices 

 

Figure B1 compares for each condition, three cumulative frequencies of 

differences: the empirical QFD matrices segmented by the number of columns between 2 

and 6, and 2x2 and 6x6 simulation-generated QFD matrices.   In general, the cumulative 

frequency of the empirical QFD matrices lies between those of simulation-generated 

QFD matrices, or very close to that of the larger-sized (i.e., 6x6) simulation-generated 

QFD matrices.    
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Figure. B1. Comparison of empirical QFD matrices with 2-6 columns and 2x2 and 6x6 

simulation-generated QFD matrices 

 

Figure B2 compares for each condition, three cumulative frequencies of 

differences: the empirical QFD matrices segmented by the number of columns between 7 

and 10, and 7x7 and 10x10 simulation-generated QFD matrices.   In general, the 

cumulative frequency of the empirical QFD matrices lies between those of simulation-

generated QFD matrices, or very close to that of the larger-sized (i.e., 10x10) simulation-

generated QFD matrices.    
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Figure. B2. Comparison of empirical QFD matrices with 7-10 columns and 7x7 and 

10x10 simulation-generated QFD matrices 
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