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Abstract 

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of 

various diseases, and it encodes a Bcl-2 homolog, KS-Bcl-2. The Bcl-2 family is 

important in regulating cellular apoptosis. Pro-apoptotic Bcl-2 family members promote 

apoptosis through mitochondrial pore formation by Bak and Bax, or through BH3 only 

domain activators and sensitizers. Anti-apoptotic members, such as cellular Bcl-2 

prevent apoptosis through interactions with pro-apoptotic proteins, for instance inhibiting 

pore formation by binding to Bak and/or Bax. Even though, KS-Bcl-2 has been shown to 

have an anti-apoptotic function like its homolog, it does not bind to either Bak or Bax, 

and little is known about the mechanism behind KS-Bcl-2's function. A second 

mitochondrial apoptotic pore is the mPTP, which is made up of ANT and VDAC. Bcl-2 

and Bcl-xL have been shown to prevent apoptosis through interactions with these 

proteins. In order to further investigate the mechanism behind KS-Bcl-2's anti-apoptotic 

function the localization and binding to the mPTP needed to be determined. KS-Bcl-2 

was transfected into Vero cells and then localization was observed under normal and 

apoptotic conditions. Under normal conditions KS-Bcl-2 localized to the mitochondria, 

cytoplasm, and nucleus and during apoptosis primarily the mitochondria. Furthermore, to 

evaluate KS-Bcl-2's interaction with mPTP proteins a OST-pull down assay was 

performed using isolated GST-KS-Bcl-2 and mitochondrial proteins, and then evaluated 

for VDAC. It was observed that VDAC and KS-Bcl-2 do interact, and that this 
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interaction could potentially be the mechanism behind KS-Bcl-2's anti-apoptotic 

function. Further studies are needed to determine the functionality of this interaction 
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Introduction 

Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human 

herpesvirus 8 (HHV-8), is a gamma herpesvirus first detected in 1994 by Chang et al., in 

Kaposi's sarcoma tissue of an AIDS patient (Chang et al., 1994). KSHV is a large DNA 

virus encoding approximately ninety genes (Russo et al., 1996, Taylor et al., 2005) and 

shares sequence homology with two other gamma herpesviruses: Epstein-Barr virus 

(EBY) and herpes virus saimiri (HVS) (Ceaserman et al., 1995, Chang et al., 1994, Russo 

et al., 1996). KSHV has been identified to be a known infectious agent important for 

development of Kaposi's sarcoma (KS) as well as other lymphoproliferative disorders 

such as primary effusion lymphomas and multicentric Castleman's disease (Boshoff et 

al., 200 I, Ceaserman et al., 1995, 1996, Chang et al., 1994, Fernandez et al., 1999, Russo 

et al., 1996, Sarid et al., 1999, Sarid et al., 2002). 

Since its discovery in 1994, KSHV has been found in all forms of Kaposi's 

sarcoma: classical, endemic-African, iatrogenic, and epidemic-AIDS associated 

(Ambroziak et al., 1995, Boshoff et al., 1995, Huang et al., 1995). The oldest and least 

aggressive type, classical KS, predominately affects older men of Mediterranean and 

Eastern European decent. Classical KS can be characterized by cutaneous lesions, or 

raised red/purple blotches typically found on the skin of the lower extremities. The 

second type, endemic-African KS, is more aggressive than classic KS and involves the 

lymph nodes in addition to the skin of patients (Buonaguro et al., 2003). This type of KS 

originally predominately affected HIV-negative men, but as time went on the ratio of 

affected men to women has declined (W ahman et al., 1991 ). African KS can even be 



found in children (Ziegler et al., 1996). African Kaposi's sarcoma will attack the 

lymphatic system of all ages, and becomes fatal, mainly resulting in death, after a year of 

onset (Wahman et al., 1991, Iscovich et al., 2000). Iatrogenic KS occurs in individuals 

who have received solid-organ transplants, and similar to classical KS, occurs at a higher 

frequency in men of Mediterranean decent (Harwood et al., 1979, Buonaguro et al., 

2003). The last and most aggressive form of Kaposi's sarcoma, epidemic-AIDS 

associated KS, not only involves the skin and lymph nodes, but often disseminates to the 

lung, gastrointestinal tract, liver, and spleen. Unlike classical KS, which may take 

decades to present symptoms in a patient, epidemic KS can present in as little as two 

years (Cheng et al., 1996). 

In addition to Kaposi's sarcoma, KSHV can be found in other disorders, most 

commonly primary effusion lymphomas (PEL) and multicentric Castleman's disease 

(MCD). PELs are rare non-Hodgkin's lymphomas ofB-cell origin, in which tumor cells 

contain the DNA sequence ofKSHV. Generally, this disease has been found in 

homosexual and bisexual men with HIV infection, but in rare instances has been linked to 

HIV-negative individuals (Ceaserman et al., 1995). Distinguishing characteristics of 

PELs include: proliferation in body cavities, large-cell morphology bridging 

immunoblastic and anaplastic lymphomas (Ablashi et al., 2002), and B-cell genotype 

(Ablashi et al., 2002, Ceaserman et al., 1995). In addition to primary effusion 

lymphomas, KSHV sequences have been found in multicentric Castleman' s disease. 

MCD is an atypical lymphoproliferative disorder. Castlernan's disease is usually 

described as a polyclonal, non-neoplastic disorder, and is thought to be related to immune 
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deregulation. It presents in two distinct subtypes, the hyaline vascular type, which can be 

identified as surgically curable solitary mass, and the plasma cell type, which is 

associated with more generalized lymphadenopathy and immunological abnormalities. A 

characteristic ofMCD is its close association with Kaposi's sarcoma and non-Hodgkin's 

lymphoma. Sequences ofKSHV have been isolated from almost all cases ofHIV­ 

associated MCD. Moreover, KSHV was detected in MCD cases in HIV-negative patients 

(Soulier et al., 1995). These results suggest that KSHV is an infectious agent responsible 

for the development of not only KS, but also PEL and MCD. 

Latency vs. Lytic Gene Replication 

Many herpesvirus genes can be classified into four distinct categories based on 

time of expression and whether expression occurs prior to viral protein synthesis or DNA 

replication. These categories include latent, immediate-early (IE), early (E), and late (L) 

genes. The later three gene classifications make up the lytic cycle, while the first denotes 

the latent cycle or latency. Latency can be defined as a persistent viral infection where 

virus production ceases. Gamma herpesviruses characteristically establish latent 

infection in lymphoid cells causing the cells to become immortalized (Miller et al., 1997). 

Two latent viruses, EBV and HVS, immortalize lymphocytes, causing them to grow 

continuously in vitro (Miller et al., 1997, Schrim et al., 1984, Szomolangi et al., 1987). 

EBV usually immortalizes B cells, and HVS immortalizes T cells (Biesinger et al., 1992, 

Wright et al., 1976). Even though KSHV codes for ninety genes, viral gene expression 

decreases dramatically in cells following initial infection (Renne et al., 2001). This drop 
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in expressed genes suggests that most infected cells in a KS lesion as well as 

lymphoproliferative disorders are latently infected (Davis et al., 1997). 

Of the ninety genes KSHV encodes for, less than 10% of these genes are 

expressed during latency, which is quickly established after primary infection (Dupin et 

al., 1999). Latency genes include LANA, v-FLIP, v-Cyclin, and a group of short 

membrane-associated proteins named Kaposin A, B, and C (Dittmer et al., 1998, Sarid et 

al., 1998). In KSHV, similar to EBY, these genes are expressed latently in B cells as 

well as endothelial cells (Dittmer et al., 1998, Li et al., 2002, Muralidhar et al., 1998, 

Sadler et al., 1999). Eventually, the virus will switch from latency to lytic gene 

replication. The lytic cycle can be characterized by the production of linear viral 

genomes and the construction of viral progeny, ultimately resulting in cell lysis. 

It has yet to be determined what factors will induce lytic gene expression in 

KSHV in vivo. However, with the use of chemical inhibitors phosphonoacetic acid and 

cycloheximide, the life cycle of lytic infection has been characterized. This cycle can be 

broken down into three distinct expression groups; immediate-early (IE), early (E), and 

late (L). Immediate early genes are expressed soon after infection from about 2 to 4 

hours and do not require de nova viral protein synthesis (Lacoste et al., 2004). They are 

needed to evade cellular response to the viral infection and their proteins are transcription 

factors that induce of subsequent viral gene expression. Immediate early gene's mRNA 

will be resistant in vitro to the action of cycloheximide, which is an inhibitor of protein 

synthesis (Sun et al., 1998). Early genes will be detectable at about 8 to 13 hours after 

induction oflytic replication and these proteins will replicate viral nucleic acids (Sun et 
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al., 1998). These genes are defined as lytic cycle transcripts whose expression will be 

inhibited by cycloheximide, but not blocked by phosphonoacetic acid, an inhibitor of the 

viral DNA polymerase (Sun et al., 1998). Lastly, late genes will be expressed at 20 plus 

hours following induction and mainly code for proteins involved in structure as well as 

virus maturation. The transcription of these genes will be inhibited by phosphonoacetic 

acid. Once all three categories of genes have been expressed and viral proteins 

synthesized, they are assembled into complete viruses. The virus can now lyse the cell 

and the new viral progeny are free to infect other cells (Orenstein et al., 1997). 

Apoptosis 

The proliferation of various diseases, including those previously discussed, results 

from the regulation, and in most cases the loss of apoptosis. The term apoptosis is often 

used synonymously with programmed cell death to describe a mechanism of cell 

destruction essential for embryonic development and maintenance of homeostasis in 

multi-cellular organisms (Danial et al., 2004). Two classical apoptotic signaling 

pathways exist, extrinsic and intrinsic, which are both depicted in Figure 1 .  The 

extrinsic, or receptor mediated pathway, is activated through binding ofligands to cell 

surface death receptors. Upon ligand binding, adaptor proteins and pro-caspases, like 

caspase 8 or 10, are recruited to the receptor complex (Danial et al., 2004). The caspases 

become activated in the complex and further amplify the apoptotic signaling cascade 

through activation of downstream effectors , such as caspase 3 (Danial et al., 2004, 

Kinnally et al., 2007, Pearce et al., 2009, Scorrano et al., 2003). Caspase 3 is an 

executioner of apoptosis and its activation will lead to morphological changes associated 
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Figure 1: Apoptosis pathway. Apoptotic cell death can be initiated through two main 
pathways: extrinsic and intrinsic. The extrinsic pathway is activated by FAS or TRAIL 
binding to their receptors and stimulating receptor aggregation. This stimulates 
recruitment of F ADD and caspase 8 cleavage and its subsequent activation. Activation of 
caspase 8 leads to caspase 3 cleavage, which initiates multiple pro-apoptotic processes, 
including DNA cleavage. The Bcl-2 family of proteins regulates the intrinsic pathway by 
controlling mitochondrial permeability. Anti-apoptotic proteins Bcl-2 and Bcl-xL reside 
on the mitochondria and inhibit cytochrome c release, while Bak, also on the 
mitochondria, promotes apoptosis. The pro-apoptotic Bcl-2 proteins Bad, Bid, Bax and 
Bim translocate to mitochondria following a death signal, where they promote the release 
of cytochrome c. Cytosolic Bid is cleaved by activated caspase 8 to form its active 
fragment, tBid, which can then translocate to the mitochondria. Bax and Bim translocate 
to mitochondria in response to death stimuli, including survival factor withdrawal. Bax 
will form a pore with Bak resulting in the release of cytochrome c. This pore can be 
inhibited by Bcl-2 and Bcl-xL. Bim, when sequestered to the mitochondria, can inhibit 
Bcl-2. Another channel involved in mitochondria permeability is the mPTP comprised of 
ANT and VDAC. ANT is found on the inner mitochondrial membrane and VDAC on the 
outer. For this pore to form and release cytochrome c VDAC and ANT must come 
together. Bcl-xL can inhibit VDAC from opening and Bcl-2 inhibits ANT. However, Bax 
can also bind to VDAC promoting the release of pro-apoptotic factors. Upon release from 
mitochondria, cytochrome c binds to Apaf-1 and forms an active complex with pro­ 
caspase 9, the apoptosome, which will stimulate apoptosis through caspase 3 cleavage. 
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with apoptosis, including DNA degradation, chromatin condensation, and membrane 

blebbing (Danial et al., 2004). The activation of these downstream effectors ultimately 

results in cell death. Also, in addition to the activation of downstream effectors of the 

extrinsic pathway, caspase 8 will activate the pro-apoptotic Bid and allow for activation 

of the mitochondrial pathway (Danial et al., 2004). 

The intrinsic, or mitochondrial pathway, is a complex pathway with the 

mitochondria at the center. Key players in mitochondrial apoptosis are members of the 

Bcl-2 protein family. Cellular Bcl-2 was first identified at the t (14; 18) chromosomal 

breakpoint of follicular B cell lymphomas (Cleary et al., 1986, Tsujimoto et al., 1987). It 

is a powerful cell death-suppressor (Reed et al., 1994) and represents a pro to-oncogene 

that extends cell survival by inhibiting apoptosis as opposed to promoting cell 

proliferation (Korsmeyer et al., 1992). Bcl-2 family proteins function to either repress or 

promote apoptosis. To characterize a protein as a member of the Bcl-2 family it must 

contain at least, but not limited to, one of the four Bcl-2 Homology (BH) domains: BHI, 

BH2, BH3, and/or BH4 (Danial et al., 2004). Bcl-2 family members can be divided into 

three groups depending on the conservation of these BH domains and also their function. 

The first group consists of anti-apoptotic Bcl-2 proteins, which contain domains BHI - 

BH4 (Cheng et al., 1996). Members from this group include c-Bcl-2, Bcl-xL, Mel-I, 

Bcl-w (Danial et al., 2004), and KS-Bcl-2 (Cheng et al., 1996). Pro-apoptotic proteins 

make up the next two groups, multi-domain and BH3 only proteins. The multi-domain, 

pro-apoptotic proteins contain domains BHl - BH3, and include Bak and Bax (Danial et 
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al., 2004). Members of the last group, BH3 only proteins contain only one domain, the 

BH3 domain, and include Bid, Bim, Bad, Bmf, Noxa, Puma, and Bik (Akgul et al., 2000, 

Flanagan et al., 2008, Pearce et al., 2009, Scorrano et al., 2003 Uren et al., 2007,). 

The BH3 only group of proteins can be further subdivided into two separate 

groups, either sensitizers or activators depending on whether they can induce apoptosis 

on their own (Letai et al., 2002). Bid, Bad, Bmf, Noxa, Puma, and Bik are considered 

sensitizer proteins as they cannot induce apoptosis alone, but they still exhibit a pro-death 

function by occupying the inhibitory pocket of anti-apoptotic BCL-2 family members, 

thus displacing BH3 activators (Letai et al., 2002). Sensitizers therefore cause apoptosis 

by inhibiting the function of anti-apoptotic cellular proteins like Bcl-2 or Mel-I 

(Flanagan et al., 2008, Pearce et al., 2009, Scorrano et al., 2003 Uren et al., 2007,). Bid, 

once modified to truncated Bid (tBid) and also Bim, another BH3 only protein, make up 

the activator proteins (Flanagan et al., 2008, Letai et al., 2002). These proteins will 

induce Bax and Bak oligomerization resulting in mitochondrial outer membrane 

permeabilization, release of cytochrome c and commitment to programmed cell death 

(Flanagan et al., 2008). 

Within the intrinsic pathway lie several sub-pathways that can all play an 

individual or mutual role in apoptosis. One important pathway involves the multi­ 

domain pro-apoptotic Bcl-2 proteins, Bax and Bak (Antignai et al., 2006, Kinnally et al., 

2007, Uren et al., 2007, Scorrano et al., 2003). The activation of this pathway remains 

unclear, but can occur via withdrawal of growth factors, stress, cell damage and even 

activation of caspase 8 via the extrinsic pathway. These factors will activate upstream 
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signaling molecules, such as the sensitizer protein Bad, seen in Figure I as a green oval, 

the conversion of Bid to tBid, or even cause the translocation of Bax or Bim to the 

mitochondria. Once translocated to the mitochondria Bax, a red oval in Figure 1, will 

activate and heterodimerize with Bak. Once activated, Bax and Bak form a pore in the 

mitochondria leading to the release of pro-apoptotic factors from the mitochondria, like 

cytochrome c, which will lead to the activation of capase 9 and SMAC/Diablo (Kinnally 

et al., 2007, Scorrano et al., 2003, Uren et al., 2007). Another sub-pathway involved in 

intrinsic apoptosis is the opening of the mitochondrial permeability transition pore 

complex (mPTPC). 

Molecular composition of the mPTPC has not been fully established, but the main 

components consist of an inner membrane protein, adenine nucleotide translocator, ANT 

(two blue ovals in Figure 1), and an outer membrane protein, voltage-dependent anion 

channel, VDAC (two green squares in Figure 1) (Desagher et al., 200, Crompton 1999, 

Halestrap 2003, Zoratti et al., 1995). Other proteins have been proposed as regulatory 

components of the permeability-transition pore based primarily on their association with 

either the ANT or the VDAC. These proteins include the intermembrane-space protein 

creatine kinase, cytosolic hexokinase, and matrix cyclophilin D (Crompton et al., 1999, 

Brdiczka et al., 1998). ANT and VDAC need to associate in order to form this 

permeability pore. Without this association there will be no pore and homeostasis will be 

maintained in the mitochondria. Opening of the PTPC can be triggered by several 

physiological effectors such as an increase in cellular Ca+, reactive oxygen species, 

changes in pH, and Bax (Moriishi et al., 1999). PTPC opening causes a sudden increase 
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in the permeability of the inner mitochondrial membrane resulting in the immediate 

dissipation of the proton-dependent mitochondrial membrane potential and chemical 

equilibration between the cytoplasm and mitochondrial matrix (Crompton et al., 1999). 

The increase in inner membrane permeability causes osmotic swelling of the matrix and 

can ultimately lead to disruption of the outer membrane and release of apoptotic factors. 

The opening of these pores, together or alone, will result in the release of pro-apoptotic 

factors to amplify cell death. 

Both of these pathways can be modulated by members of the Bcl-2 family. Anti­ 

apoptotic proteins Bcl-2 and Bcl-xL are found on the mitochondrial membrane and will 

block both the Bax/Bak pore and mPTP, shown in Figure 1 via the red inhibitory lines 

(Antignani et al., 2006, Brenner 2000, Jacotot et al., 2001, Shimizu et al., 2000, 

Tsujimoto et al., 2000). In addition to blocking the apoptotic function of the Bax/Bak 

pore, c-Bcl-2 has been shown to block the translocation of Bax to the mitochondria ergo 

preventing the formation of this pore and inhibiting apoptosis (Antignani et al., 2006). 

Also, several pro-apoptotic family members will inhibit these anti-apoptotic proteins. 

Bad, once activated, will block the anti-apoptotic effect of Bcl-xL (Downward 1999) and 

Bim, once tranlocated to the mitochondria, will block c-Bcl-2 (Letai et al 2002). 

Viral Mechanisms to evade apoptosis 

Over the past several decades numerous viral proteins have been reported to 

modulate, either positively or negatively, the host cell apoptotic response to viral 

infection. Modulation of apoptosis helps virally infected cells evade programmed cell 

death and ultimately propagate viral progeny. Many viral infections that effect apoptosis 
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act upon the intrinsic, mitochondrial pathway. Viral proteins can regulate mitochondrial 

membrane permeability by directly acting on the mitochondrial membrane, indirectly by 

regulating Bcl-2 family proteins, or possessing a function that will mimic cellular Bcl-2's 

functions. Some of these viruses include, but are not limited to, vesicular stomatitis virus, 

simian varicella virus, Epstein-Barr virus, human virus saimiri, and KSHV. 

Vesicular stomatitis virus (VSV) is a well studied negative-strand RNA virus, and 

is an exceptionally potent inducer of apoptosis in a wide variety of cell types (Komaya et 

al., 1995). VSV is capable of inducing apoptosis by activation of multiple apoptotic 

pathways. Several studies have shown that VSV induces apoptosis early via the 

mitochondrial pathway (Gadaleta et al., 2005, 2002, Kopecky et al., 2003). This 

activation does not require viral protein synthesis (Gadaleta et al., 2005, 2002), but rather 

inhibition of host gene expression and modulation ofBcl-2 proteins by the VSV matrix 

protein M, which will lead to the induction of apoptosis (Gadaleta et al., 2005, Kopecky 

et al., 2003). In addition to the intrinsic pathway, M protein mutants deficient in the 

ability to inhibit host gene expression are effective inducers of the extrinsic apoptotic 

pathway (Gaddy et al., 2007). 

Simian varicella virus (SVV) causes varicella in primates, and mimics the 

infection ofvaricella zoster virus in humans (Gray et al., 2004). SVV has been shown to 

be a potent activator of the intrinsic mitochondrial pathway. It causes the release of 

cytochrome c, a hallmark of the mitochondrial apoptotic pathway and also results in the 

activation of caspase 9 (Pugazhenthi et al., 2009), which will result in cell death. 

Additionally, SVV will cause decreased expression of host Bcl-2 mRNA, and in turn 
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decreased expression of the Bcl-2 protein (Pugazhenthi et al., 2009), demonstrating loss 

of inhibition of the mitochondrial apoptotic pathway, which will lead to apoptosis. 

Epstein-Barr virus (EBV) is another gamma herpesvirus, which shares sequence 

homology to KSHV. EB V's induction of apoptosis via the mitochondrial pathway can be 

either positively or negatively regulated by various viral proteins: BALFI and BHRFI. 

BHRFI is a Bcl-2 homologue, and prevents apoptosis early in infection and after 

exposure to apoptotic inducing events (Altmann et al., 2005, Foghsgaard et al., 1997, 

Henderson et al., 1994, Tarodi et al., 1993). In addition, BHRFI can bind to Bim, a pro­ 

apoptotic Bcl-2 protein, to prevent apoptosis (Desbien et al., 2009). While BHRFI 

clearly resembles cellular Bcl-2 in its anti-apoptotic function, BALFI on the other hand, 

indirectly activates mitochondria membrane permeability by acting as an antagonist to 

BHRFI (Bellows et al., 2002). Besides BALFI and BHRFI, EBV encodes for three 

latent membrane proteins, LMP- I, 2A, and 28 (Camilleri et al., 2000). An important 

effect ofLMP-1 is the activation of the NF,cB pathway, which will up-regulate the 

expression of several anti-apoptotic genes. Also, the MAP kinase and 

phosphatidylinositol-3-kinase (PI3k)/protein kinase B (Akt) pathways are activated by 

LMP-1, which will have important pro-survival effects on the cells (Izumi et al., 1997). 

LMP-2A can mimic a cell surface receptor and prevent EBY from inducing apoptosis 

(Mancao et al., 1997). Like LMP-1, LMP-2A can activate the PI3k/ Akt pathway 

(Scholle et al., 2000). The effects of LMP-28 on apoptosis remain unknown. 

Herpesvirus saimiri (HVS), another gamma herpesvirus, will induce fatal 

lymphomas when experimentally infected in primates (Nava et al., 1997). Alignment of 
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the HVS ORF 16 amino acid sequence with several other Bcl-2 family members revealed 

sequence homology and a high conservation of the Bcl-2 homology domains I and 2 

(Nava et al., 1997). ORF 16 ofHVS does in fact bind to both Bak and Bax, pro­ 

apoptotic Bcl-2 members, to inhibit virus-induced apoptosis (Nava et al., 1997). While 

the BHl and BH2 domains of0RF16 exhibit high conservation the BH3 domain does 

not, suggesting that this domain may not be essential for the anti-apoptotic functions of 

ORF16. 

KSHV contains several cellular homologues including a homologue of cellular 

Bcl-2. KSHV Bcl-2 belongs to the anti-apoptotic Bcl-2 family, and is expressed early in 

the lytic replication cycle (Flanagan et al., 2008, Sarid et al., 1997). It shares functional 

homology to Mel- I, another anti-apoptotic protein (Flanagan et al., 2008) and sequence 

homology to several cellular, anti-apoptotic Bcl-2 family members (Cheng et al., 1996, 

Flanagan et al., 2008). Like its cellular counter-parts, KS-Bcl-2 does in fact inhibit 

apoptosis; however it is not known how KS-Bcl-2 does so (Cheng et al., 1996, Flanagan 

et al., 2008). 

KS-Bcl-2 contains all four BH domains; however, only BHI and BH2 domains 

are highly conserved (Cheng et al., 1996). BHI and BH2 sequence motifs are important 

for cellular Bcl-2 to bind to the BH3 domain of other proteins and the death repressor 

effects of the anti-apoptotic proteins (Cheng et al., 1996, Huang et al., 2002). Bcl-2 

homology domain 1 contains a signature "NWGR" sequence that is believed to be 

essential for the anti-apoptotic function of c-Bcl-2 and also for c-Bcl-2 to heterodimerize 

with other Bcl-2 protein family members, especially BH3 only members. KS-Bcl-2 does 
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contain this sequence thus explaining its anti-apoptotic function (Huang et al., 2002). 

Both BH3 and BH4 domains ofKS-Bcl-2 lack homology to the cellular BH3 and BH4 

domains. Caspase cleavage of cellular Bcl-2 at Asp-34 separates the BH4 region 

producing a truncated protein, which explains c-Bcl-2 anti-apoptotic verses pro-apoptotic 

functions. KS-Bcl-2 does not contain this caspase cleavage site, and escapes this extra 

level of regulation (Huang et al., 2002). This varying level of conservation in these 

domains may account for KS-Bcl-2 functional similarity to Mel-I as opposed to cellular 

Bcl-2 (Flanagan et al., 2008). 

Since, KS-Bcl-2 has shown conservation in the BHI domain it was believed to 

interact with both pro-apoptotic groups of the Bcl-2 family via their BH3 domains. 

However, unlike its cellular counterpart, it does not interact with either Bak or Bax 

(Cheng et al., 1996), but it does interact with the BH3 domain from sensitizer proteins 

Bim, Bid, Noxa, Bik, Puma and Bmf (Flanagan et al., 2008). It is these interactions, 

especially with Noxa, that has shown KS-Bcl-2's functional homology to Mel-I, since 

Mel-I also interacts with these BH3 proteins (Flanagan et al., 2008). Also, KS-Bcl-2 has 

been shown to inhibit cytochrome c release from isolated mitochondria via its 

interactions with Bid as well as Bim (Flanagan et al., 2008). This data suggests that KS­ 

Bcl-2 does not inhibit apoptosis through direct interaction with the pro-apoptotic 

executioners, Bak and Bax, but rather via a secondary pathway. 

Given that KS-Bel- 2 has been found localized to the mitochondria in addition to 

the cytoplasm and nucleoi (Kalt et al., 2010) and also has been shown to block 

cytochrome c release, it is believed that KS-Bcl-2 acts through the intrinsic apoptotic 

1 4  



pathway to repress apoptosis. Within the mitochondrial pathway two separate pores exist 

(the mPTPC and Bax/Bak pore) to activate apoptosis in an independent fashion. 

Activation of either pore results in the permeability of the outer mitochondrial membrane 

and subsequent release of pro-apoptotic factors. Both pores are tightly regulated by 

cellular Bcl-2 family proteins. The Bax/Bak pore is comprised ofBcl-2 family proteins, 

and can be inhibited by several anti-apoptotic Bcl-2 protein members via their 

localization to the mitochondria and direct interaction with Bax/Bak resulting in 

inhibition of apoptosis (Antignani et al., 2006). However, KS-Bcl-2 does not bind to 

either Bax or Bak, so KS-Bcl-2 is not believed to act through this pore (Cheng et al., 

1996). The second pore, mPTPC is also regulated by several cellular Bcl-2 proteins via 

direct interaction. Cellular Bcl-2 has been shown to bind directly to ANT (Brenner 2000, 

Jacotot et al., 2001) and Bcl-xL to VDAC (Shimizu et al., 2000, Tsujimoto et al., 2000); 

each of these interactions prevent pore opening resulting in suppression of apoptosis. 

Bax has been shown to bind to ANT thereby enhancing mitochondrial membrane 

permeability and promoting apoptosis (Brenner et al., 2000, Belzacq et al., 2003). How 

KS-Bcl-2 regulates the mitochondrial apoptotic pathway remains unclear; however these 

previous findings can shed light on the localization and mechanism that KS-Bcl-2 utilizes 

to inhibit apoptosis. Based on the similarity the KS-Bcl-2 has to c-Bcl-2 and Bcl-xL and 

also its inability to inhibit apoptosis through direct interaction with pro-apoptotic 

executioners Bax and Bak, it is believed that KS-Bcl-2 localizes to primarily to the 

mitochondria during apoptosis ultimately preventing the formation of the mPTPC 

through interaction with either VDAC or ANT thus suppressing apoptosis. 
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Materials and Methods 

Cell Lines and Reagents 

Two different cell lines were used for these studies, Vero cells and BJAB cells. 

Vero cells are an African green monkey kidney cell (Shishihido et al., 1967), and BJAB a 

human B cell lymphoma (Menezes et al., 1975). Both cell lines were grown at 37°C with 

5% C02• The Vero cells were grown in DMEM + 10% fetal bovine serum (FBS) and 1% 

penicillin-streptomycin (p/s). Passage of Vero cells involved a rinse with phosphate 

buffered saline (PBS) and then cells were trypsinized for several minutes in the incubator. 

Following trypsinization, DMEM media was added to deactivate the trypsin and cells 

were split in accordance to cell numbers needed for the experiment. BJAB is a non­ 

adherent cell line and is grown in RPMI 1640 with I 0% FBS and I% p/s. Since BJAB is 

a non-adherent cell line, trypsinization is not needed and the cells can be split by simple 

pipetting. To split cells, a cell count is performed to determine the cellular concentration 

using trypan blue stain, which will only stain living cells. Once the concentration of cells 

is determined enough cells are used for the experiment at hand, and a one to ten (v/v) 

dilution of cells to RPMI media is performed to maintain the cells for future experiments. 

Antibodies 

A mouse anti-HA antibody (Cell Signaling) was used for detection of the HA 

tagged protein, KSHV-Bcl-2 in western blot analysis. A rabbit anti-VDAC antibody 

(Cell Signaling) was used for the detection of the VDAC protein during western blot 

analysis. A rabbit anti-HA Tag, C29F4 (Cell Signaling) was used for detection of HA 

tagged proteins, KSHV-Bcl-2, in fluorescence imaging. A horse horseradish peroxidase 
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(HRP)-conjugated anti-mouse (Cell Signaling) antibody was used for detection of mouse 

antibodies used in western blots. A goat HRP-conjugated anti-rabbit (Cell Signaling) 

antibody was used for detection of rabbit antibodies used in western blots. An anti-rabbit 

conjugated to Alexa Fluor 488 (Invitrogen) was used for detection of rabbit antibodies 

using fluorescence imaging. 

Plasmids 

Two different plasmids were used in these experiments; phCMV2 from Genlantis 

and pGEX-5X-3 from GE Healthcare. Cloning of the KSHV-Bcl-2 gene into hCMV2 

and pGEX vectors was carried out by Tiffany Chang and Maddalena Allegretta, 

respectively. 

Transformation 

Escherichia coli (E. coli) BL2 l competent cells were thawed on ice and 50 µL 

was aliquoted to fresh microcentrifuge tubes. To the new tube, I µL of plasmid DNA 

was added. The tubes were then placed on ice for 30 minutes, heat shocked at 42°C for 

90 seconds and then incubated on ice for an additional two minutes. To the cells, 450 µL 

of Luria broth (LB) was added and incubated at 37°C for one hour. The cells were then 

plated on an ampicillin or kanamycin LB-agar plates, depending on the plasmid, and 

allowed to incubate overnight at 37°C. 

Glutathione S-Transferase Expression and Purification 

Escherichia coli (E.coli) strain BL21 cells were transformed with pGEX-KS-Bcl- 

2 to express the GST-KS-Bcl-2 fusion protein and pGEX vector to express only GST. 

Colonies were picked and grown overnight in five mL LB and 50 ug/mL ampicillin at 
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37°C. After overnight growth two mL of each culture were aliquoted into 95 mL LB 

containing 50 ug/mL ampicillin and 0.5% glucose and cells were incubated at 37°C with 

shaking for several hours. In order to determine cell growth, optical densities (OD) of the 

cell cultures were taken at 600 nm every hour. Once the cell concentration reached an 

OD of roughly 0.5, the cells have reached the exponential growth phase and were induced 

with 0.5 mM IPTG and allowed to incubate for two hours at 37°C 

After incubation, 100 mL of each culture were centrifuged for ten minutes at 

10,000 rpm and 4°C and the supernatant was discarded. The pellet was resuspended in 

ten mL of lysis buffer (20 mM HEPES, 250 mM NaCl, 1 mM EDT A, and 0.1 % NP-40) 

and transferred to a 15 mL conical tube for lysis. The cells were freeze-thawed by 

incubating on dry ice and ethanol for five minutes followed by five minutes at 37°C. The 

cells were then sonicated twice for fifteen seconds followed by ten seconds rest on wet 

ice in between and then freeze-thawed again three times with vortexing between each 

cycle. The lysate was centrifuged for ten minutes at 10,000 rpm and 4°C and the 

supernatant was transferred to a fresh 15 mL conical tube. Next, 250 µL of glutathione 

sepharose beads (Sigma) at a 30% (w/v) slurry were added to the supernatant and rotated 

for four hours at 4°C. The solution was centrifuged for five minutes at 2,000 rpm and the 

supernatant removed. The beads were washed three times for five minutes at 4°C in 20 

mM HEPES, 250 mM NaCl, I mM EDTA, and 0.1 % NP-40 and then once in 20 mM 

HEPES, 100 mM NaCl, 1 mM EDTA, and 0.1% NP-40. In between each wash the pellet 

was centrifuged for five minutes at 2,000 rpm, and the supernatant was discarded each 

1 8  



time. After the final wash, 250 µL of 20 mM HEPES, I 00 mM NaCl, I mM EDT A, and 

0.1 % NP-40 was added to all samples. 

Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

To determine ifGST-KS-Bcl-2 was expressed, 30 µL of purified protein product 

on glutathione beads were centrifuged at 12,000 rpm for five minutes and supernatant 

removed. The samples were prepared for loading into the SDS-PAGE by adding 15 µL of 

2x loading dye to the samples, boiled for five minutes and then centrifuged at 12,000 rpm 

for five minutes. The samples were resolved using a 10% (w/v) SDS-PAGE gel and then 

stained with Brilliant Blue stain for one hour then rinsed with a 30% methanol solution 

until all protein bands were visible. The full range rainbow molecular weight marker 

( GE Healthcare) was used for comparison of protein size. 

Western Blot 

Protein concentrations were determined using 1 x Bradford Dye reagent. Based on 

the protein concentrations, samples were prepared using 50 µg of the protein mixed with 

an equal volume of2x loading dye, boiled for five minutes, then quickly centrifuged. 

The samples were resolved using a 10% (w/v) SDS-PAGE gel using the full range 

rainbow molecular weight marker (GE Healthcare) for comparison. The gel was 

transferred onto polyvinyldifluoride (PVDF) membrane (Immobilon-P from Millipore) in 

IX transfer buffer (200 mM glycine and 25 mM Tris Base pH 8.3), 20% methanol, and 

0.1 % SDS, either over night at 80 mA or for two hours at 30 V depending on the protein 

of interest. Next, the membrane was blocked (block varied for each primary antibody, 

see below) for an hour followed by primary antibody application. The membrane was 
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then rinsed with TBST four times at ten minute intervals and the appropriate secondary 

antibody was applied for one hour at room temperature. 

For the mouse anti-HA antibody (Cell Signaling) the membrane was blocked in 

1:2 (v/v) NAP (GBiosciences)/TBST (25 mM Tris pH 8.0, 125 mM NaCl, 0.1% 

TWEEN-20) for one hour at room temperature, and then the primary antibody applied at 

I :  1,000 (v/v) in a I :4 (v/v) NAP/TBST for two to four hours also at room temperature. 

The membrane was then rinsed with TBST. Lastly, the secondary antibody, horse 

horseradish peroxidase (HRP)-cortjugated anti-mouse (Cell Signaling) was used for 

detection. For the rabbit anti-VDAC antibody (Cell Signaling), a 5% (w/v) bovine serum 

albumin (BSA) in TBST block was used for one hour at room temperature, and then the 

primary antibody was applied at I :  1,000 (v/v) in 5% (w/v) BSA in TBST overnight at 

4°C. A secondary antibody, goat HRP-cortjugated anti-rabbit HRP (Cell Signaling) was 

used for detection. Following application of the secondary antibody the membrane was 

rinsed four times at ten minute intervals with TBST before detection with ECL kit (GE 

Healthcare) following manufacturer's instructions. The membrane was scanned using the 

phosphoimager Storm 860 (Molecular Dynamics) where an image was created using 

ImageQuant software. 

Mitochondria Isolation 

The mitochondrial isolation protocol was adapted from Abeam, "Mitochondrial 

Purification Protocol Isolation of Mitochondria from cells." BJAB cells, 5xl07 cells, 

were collected by centrifugation at approximately 3 70 g for ten minutes. The supernatant 

was removed and discarded and the cells re-suspended in ten packed cell volumes of 
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NKM buffer (I mM Tris HC!, pH 7.4, 0.13 M NaCl, 5 mM KC!, and 7.5 mM MgC[z). 

The cells were centrifuged again at 3 70 g for ten minutes, and the supernatant was 

removed and discarded; this wash step was repeated twice. Cells were then resuspended 

in six packed cell volumes of homogenization buffer (10 mM Tris-HCI, pl+ 6.7, 10 mM 

KC!, 0.15 mM MgCb, I mM PMSF, and I mM OTT). The cells were transferred into a 

dounce homogenizer and incubated for ten minutes on ice. Using a tight pestle (pestle A), 

the cells were homogenized with about 30 strokes of the pestle. The homogenate was 

transferred into a fresh microcentrifuge tube containing one packed cell volume of 2 M 

sucrose solution in water and mixed gently. Unbroken cells, nuclei, and large debris were 

pelleted at 1,200 g for five minutes and the supernatant was transferred to another tube. 

This treatment was repeated twice, transferring the supernatant to a new tube each time 

and discarding the pellet. The mitochondria were pelleted by centrifugation at 7 ,000 g for 

ten minutes. To the pellet, one volume oflysis buffer (50mM Tris-HC! pH 7.4, 120 mM 

NaCl, 5 mM EOTA, 0.5% NP-40, 50 mMNaF, 0.2 mMNa3V04, I mM OTT, and I mM 

PMSF) was added; the solution was vortexed and incubated on ice for ten minutes with 

vortexing every two minutes. Lysate was centrifuged for ten minutes at 12,000 rpm and 

the supernatant was saved. 

BJAB whole cell lysate was prepared using lxl01 BJAB cells. Cells were 

collected by centrifugation at 3 70 g for ten minutes. The supernatant was removed and 

discarded and the cells resuspended in 500 µL of lysis buffer (50mM Tris-HC! pH 7.4, 

120 mMNaCl, 5 mM EOTA, 0.5%NP-40, 50mMNaF, 0.2 mMNa3V04, I mMOTT, 

and I mM PMSF), vortexed and incubated on ice for ten minutes with vortexing every 
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two minutes. The lysate was centrifuged for ten minutes at 12,000 rpm and the 

supernatant was saved. 

GST-Pull Down Assay 

Protein concentrations of mitochondrial extract and BJAB whole cell lysate were 

determined by measuring optical density at 595 nm using the Bradford dye assay. Based 

on the protein concentrations, 600 ug of protein was combined with either 100 µL of 

GST-KS-Bcl-2 beads or 20 µL GST beads plus 80 µL of glutathione beads. Each sample 

was normalized to 500 µL using20 mM HEPES, 100 NaCl, I mM EDTA, and lo/oNP-40 

and were incubated with rotation at 4 °C overnight. After overnight incubation, the 

samples were centrifuged for five minutes at 10,000 rpm. The supernatant was saved to a 

fresh microcentrifuge tube and the beads were washed four times for five minutes in one 

mL of 20 mM HEPES, 100 NaCl, 1 mM EDTA, and 1 % NP-40. After the last wash, the 

beads were resuspended in 30 µL of SOS loading buffer and stored at -80°C or prepared 

for western blot. 

Transfection of Vero Cells 

In preparation for the transfection, Vero cells were split a day before and 1 x I 06 

cells plated in a 100 mm2 plate. The transfection reagent GeneJuice (Novagen) was used 

according to manufacturer's instructions. For each transfection, 600 µL of serum free 

media was added to tubes and a ratio of one to three µg of DNA to 1 µL of Gene Juice 

was used. First the media and Gene Juice were combined in a microcentrifuge tube, 

vortexed and allowed to incubate for five minutes. Following the incubation period the 

DNA was added and incubated for an additional 15 minutes. The entire mixture was then 
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added to the plate in a drop-wise fashion and placed in the incubator for 48 hours. After 

48 hours had elapsed, the media in each well was aspirated off and protein lysis buffer 

(100 mM Tris-HCI pH 8.0, 100 mM EDTA, and 0.5% Triton X-100) was added. The 

cells were pipetted into separate microcentrifuge tubes and placed on ice for ten minutes 

with vortexing every two minutes. Following incubation on ice, cell lysate was 

centrifuged for 10 minutes at 12,000 rpm and supernatant transferred and stored at -80oC. 

Hypertonic Shock 

Vero cells, approximately 5x106, were plated on 100 mm' plates in DMEM with 

10% FBS and p/s and grown overnight at 37°C and 5% C02. A time and concentration 

course experiment was carried to determine optimal levels of apoptosis in Vero cells. 

After the 24 hours, media was removed and experimental media added in groups of three, 

control (no NaCl), 200 mM NaCl media or 250 mM NaCl media was added. Cells were 

allowed to incubate for 8, 12, 16, 20, and 24 hours at 37°C and 5% C02. After the 

incubation periods each plate was harvested according to protocol adapted from Lee et al. 

2009 and from Hedrick Lab at UCSD Cancer Center. To harvest the cells, media along 

with any dead cells were removed to a labeled 15 mL conical tube, centrifuged for five 

minutes at 1,000 rpm, and the supernatant was discarded. To the plate, one mL oflysis 

buffer (100 mM Tris-HCI pH 8.0, 100 mM EDTA, and 0.5% Triton X-100), was added. 

The cells were then scrapped and lysis buffer plus cells were added to the respective 15 

mL conical tube and incubated on ice for 20 minutes. After 20 minutes, the samples were 

transferred to microcentrifuge tubes and centrifuged at 12,000 rpm for 15 minutes at 4°C. 

The supernatant was transferred to a fresh microcentrifuge tube and a one to one phenol 
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chloroform extraction was performed, vortexing for one minute followed by 

centrifugation at 12,000 rpm for five minutes. The top layer, which contains the DNA, 

was saved to a new microcentrifuge tube. Next, a one to two (v/v) ethanol precipitation 

was carried out, adding two volumes of ethanol for every one volume of DNA, for 30 

minutes on dry ice, centrifuged 15 minutes at 12,000 rpm at 4°C, and the supernatant 

discarded. The DNA pellet was air dried, 30 µL of RNase A water was added, and DNA 

was resuspended by incubating for 30 minutes at 37°C. Gel electrophoresis was carried 

out on a 2% agarose gel to view DNA fragmentation and subsequent levels of apoptosis. 

Optimal apoptosis was seen at 20 hours. To determine if KS-bcl-2 inhibited apoptosis 

induced by hypertonic shock, Ix I 06 Vero cells were plated on I 00 mm2 plates in DMEM 

media and grown overnight at 37°C and 5% C02. The cells were then transfected using 

GeneJuice, according to manufacturer's instructions, with phCMV2-KS-Bcl-2 or 

phCMV2 and allowed to incubate for 48 hours. The media was removed and 

experimental media was added in groups of two, control (no NaCl) and 250 mM NaCl 

media. The cells were allowed to incubate for 20 hours at 3 7°C and 5% C02. After the 

incubation period, each plate was harvested, DNA extracted as above and 

electrophoresed in a 2% agarose gel. 

Fluorescence Laser Scanning Confocal Microscopy 

Acid washed cover slips were placed in a 6 well plate, 2x!05 Vero cells were 

plated on the cover slips directly in the well, DMEM with I 0% FBS and p/s media was 

added and cells were grown overnight at 3 7°C and 5% C02. Cells were transfected using 

GeneJuice with phCMV2-KS-Bcl-2 or just phCMV2 and allowed to incubate for 48 
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hours. MitoTracker Red CMXRos (Invitrogen) was used to visualize mitochondria, 

according to manufacturer's instructions. A stock solution of I mM MitoTracker Red 

was prepared using sterile DMSO, which was further diluted to a working concentration 

of250 nm using pre-warmed DMEM/10% FBS/p/s media. Media was removed from 

each well; the working solution was added directly to each well, and allowed to incubate 

for 30 minutes at room temperature in the dark. A 3.7% paraformaldehyde solution in 

PBS was prepared. All subsequent steps were carried out in the dark. After the 30 

minute incubation with Mitotracker Red, cells were rinsed with PBS and then fixed using 

the paraformaldehyde solution for 30 minutes at room temperature. Cells were again 

rinsed and then permeabilized with PBS/ 0.1%Triton-X-100 for 15 minutes at room 

temperature. The permeabilization solution was removed and I% BSA in PBS block 

solution was added for 30 minutes at 37°C. After the block, primary antibody, rabbit 

anti-HA, was applied at a I :  1,000 (v/v) dilution in PBS/ 0.1 % Triton-XI I% BSA for one 

hour at room temperature. The cells were then washed three times with PBS for five 

minutes. After the last wash, the secondary antibody, anti-rabbit conjugated to Alexa 

Fluor 488 (Invitrogen) was used for detection using fluorescence and was applied at a one 

to 1,000 dilution in PBS/0.1 % Triton-XII% BSA for one hour. The cells were then 

washed three times with PBS for five minutes. Next, the cells were counterstained for 

five minutes with 0.1 ug/mL 4' ,6-diamidino-2-phenylindole, dilactate (DAPI) (Invitrogen) 

to visualize the nucleus. Cells were again washed in PBS. The cover slips were removed 

from the six well plate, mounted on a slide cell side down, and the edges of the cover slip 

were sealed. Localization of Bcl-2, mitochondria, and nucleus were visualized using an 
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Olympus Fluoview FVIOO Confocal Microscope (Olympus, USA). MitoTracker 

RedCMXRos was excited using the green HeNe 588 laser since excitation peaks at 579 

nm, Alex Fluor 488 was excited using the Argon lasar since excitation peaks at 495, and 

DAPI's excitation will peak at 358. Digital images were obtained with Olympus 

Flouview FVIO-ASW Version 2.0 software (Olympus, USA). 
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Results 

Hypertonic Shock of Vero cells Induces Apoptosis 

Apoptosis, or programmed cell death, can be induced via two different pathways, 

either the extrinsic or the intrinsic pathway (Figure I). The intrinsic pathway will have 

the mitochondria as its central player, and involves the release of various apoptotic 

factors from the mitochondrial space. There are several different mechanisms that have 

been shown to induce apoptosis via the mitochondrial pathway in various cells lines. 

Hypertonic shock can lead to apoptosis and has been shown to activate caspase 3 

cleavage as well as mitochondrial fragmentation, which will cause the release of 

cytochrome c (Copp et al., 2005), both indications of activation of the intrinsic apoptosis 

pathway. 

In order to determine if and when hypertonic shock induced apoptosis in the Vero 

cell line, a time and concentration course experiment was carried out. Vero cells were 

plated and allowed to grow overnight, cells were harvested and DNA extracted and 

measured for subsequent apoptosis levels. The measure for apoptosis used was DNA 

fragmentation, a hallmark of apoptosis. During apoptosis, endonucleases become 

activated and will degrade DNA at the intemucleosomal linker region creating DNA 

fragments of approximately 180 base pairs (Kizaki et al., 1988). As seen in Figure 2, 

levels of DNA fragmentation, apoptosis, increased as time as well as salt concentration 

increased. The control (lanes 2, 5, 8, 1 1 ,  and 14), which contains standard media, 

exhibited no apoptosis, as seen by the lack of laddering. The lanes containing 200 mM 

NaCl media (lanes 3, 6, 9, 12, and 15) showed a direct increase in apoptosis as time of 

27 



treatment increased, but still very little DNA laddering was observed. As with the 200 

mM NaCl media group, the lanes containing 250 mM NaCl media (lanes 4, 7, 10, 13, and 

16) exhibited a direct increase in apoptosis as time increased, and laddering can be seen 

at this concentration. At 20 hours of treatment with 250 mM NaCl media (Figure 2 lane 

13) optimal DNA laddering can be observed indicating that at this time point significant 

apoptosis has occurred. 
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Figure 2: Hypertonic Shock: Vero cells were plated and allowed to grow overnight at 
37°C in 5% C02. Media was then removed and experimental media added: control media 
(lanes 2, 5, 8, 1 1 ,  and 14), 200 mM NaCl media (lanes 3, 6, 9, 12, and 15), or 250 mM 
NaCl media (lanes 4, 7, 10, 13, and 16). Cells were allowed to incubate for various time 
points, as indicated. DNA was extracted then separated on a 2% agarose gel and 
visualized by ethidium bromide staining. Lane 1 is the !kb DNA ladder (Promega) 
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KSHV Bcl-2 Prevents Apoptosis Induced via Hypertonic Shock 

To verify the anti-apoptotic function ofKSHV Bcl-2, we examined the effect 

KSHV Bcl-2 had on apoptosis induced via hypertonic shock in Vero cells. Again, Vero 

cells were plated and allowed to grow overnight, then phCMV2-KS-Bcl-2 or just the 

phCMV2 vector were transfected into the cells. The cells were allowed to incubate for 

48 hours and then experimental media added, this time only control containing no NaCl 

or 250 mM NaCl. Cells were allowed to incubate for 20 hours, since this in when 

optimal apoptosis was observed. The cells were then harvested, lysed, and DNA 

extracted. Again, levels of apoptosis were seen via DNA fragmentation. As seen in 

Figure 3, lane 5, which contained phCMV2-KS-Bcl-2 and treated with 250 mM NaCl, 

apoptosis was still observed, but to a lesser extent compared to the cells transfected with 

only the vector and treated with 250 mM NaCl (Figure 3, lane 3). 
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Figure 3: KS-Bc12 Protects Cells from Hypertonic Shock: Vero cells were plated and 
allowed to grow overnight at 37°C in 5% C02• Cells were then transfected with only 
phCMV2 (lanes 2 and 3), or phCMV2-KS-Bcl-2 (lanes 4 and 5). The standard media 
was removed and experimental media was added: control media (lanes 2 and 4) or 250 
mM NaCl media (lanes 3 and 5). Cells were allowed to incubate for 20 hours. DNA was 
extracted then separated on a 2% agarose gel and visualized by ethidium bromide 
staining. Lane 1 is the lkb DNA ladder (Promega) 
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KS-Bcl-2 Localization 

In order to determine if the localization ofKS-Bcl-2 changes under apoptotic 

conditions indirect immunofluorescence, in conjunction with lasar scanning confocal 

microscopy, was used. Vero cells were plated directly onto coverslips, and then 

transfected with either phCMV2-KS-Bcl-2 (Figures 4A and SA) or just the empty vector, 

phCMV2 (Figures 48 and SB). These cells were allowed to grow in normal media 

conditions (Figure 4) or in 250 mM NaCl media for 20 hours (Figure 5) and then viewed 

using the Olympus Fluoview FVlOO Confocal Microscope. 

Immunofluorescence was carried out using several stains to visualize location of 

various cellular components, nuclear DNA staining was visualized with DAPI, 

mitochondria were stained with MitoTracker RedCMXRos, and KS-Bcl-2 was visualized 

with Alex Fluor 488. Staining under normal conditions when cells were transfected 

with phCMV2-KS-Bcl-2 further confirmed that KS-Bcl-2 does in fact localize to the 

mitochondria as well as to the cytoplasm and the nucleus (Figure 4A, panel 4). 

Following staining the mitochondria of live cells will appear red, since MitoTracker only 

stains living cells, and cells containing KS-Bcl-2 will appear green. Once these images 

were merged, each color overlapped each other, a yellow color indicating co-localization 

of KS-Bcl-2 to the mitochondria (Figure 4A, panel 4). As a control, only phCMV2 was 

transfected into Vero cells and immunofluorescence staining was carried out under 

normal conditions (Figure 48). As expected no green staining was observed indicating 

KS-Bcl-2 was not present and there was no back-ground staining (Figure 48, panel 3). 

To observe if the localization ofKS-Bcl-2 changes under apoptotic conditions, 
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apoptosis via hypertonic shock was induced prior to inuuunofluorescence staining. 

Again, the cells were transfected with either phCMV2-KS-Bcl-2 or phCMV2, but 

allowed to grow under apoptotic conditions prior to staining. The cells that were 

transfected with only the vector phCMV2 (Figure SB) did in fact undergo apoptosis as 

seen by the mitochondrial fragmentation, a hallmark of apoptosis indicated by the 

fragments of red staining (Figure SB panels 3 and 4). As expected, there was no 

background staining observed with the anti-HA antibody (Figure SB panel 2 and 4). 

When the cells were transfected with phCMV2-KS-Bcl-2 no mitochondrial fragmentation 

was observed (Figure SB panel 3). KS-Bcl-2 localized mainly to the mitochondria as 

indicated by the predominant yellow color in Figure SB panel 4. Some cytoplasmic and 

nuclear localization was observed, but to a much less degree, suggesting that during 

apoptosis KS-Bcl-2 will be primarily localized to the mitochondria. These results taken 

together imply that the anti-apoptotic function of KS-Bcl-2 acts on the intrinsic, 

mitochondrial pathway. 
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A B 
Figure 4: Cellular Localization of KS-Bcl-2: Vero cells were transfected with either 
phCMV2-KS-Bcl-2 (A) or phCMV2 (B). Mitochondria were stained with MitoTracker 
Red CMXRos (panel 2) and KSHV Bcl-2 was stained with an anti-HA antibody and an 
anti-mouse-Alex Fluor 488 antibody (panel 3). Nuclear DNA was stained with DAPI 
(panel I). Images were merged in panel 4. Magnification: 400X; I OX eyepiece, 40X 
objective 

34 



A B c 

Figure 5: Cellular Localization of KS-Bcl-2 under Apoptotic Conditions: Vero cells 
were transfected with either phCMV2-KS-Bcl-2 (A) or phCMV2 (B). Apoptosis was 
induced for 20 hours via hypertonic shock. Mitochondria were stained with MitoTracker 
Red CMXRos (panel 2) and KS-Bcl-2 was stained with an anti-HA antibody and an anti­ 
mouse-Alex Fluor 488 antibody (panel 3). Nuclear DNA was stained with DAPI (panel 
I). Images were merged in panel 4. Magnification: 400X; 1 OX eyepiece, 40X objective 
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KS-Bcl-2 interacts with VDAC 

Since KS-Bcl-2 inhibits apoptosis induced via the mitochondrial pathway, but 

does not bind to either Bak or Bax (Cheng et al., 1996) other possible binding partners 

need to be found. To investigate possible binding partners ofKS-Bcl-2 with proteins in 

the mPTPC, a GST-pull down assay was performed using GST bound KS-Bcl-2 with 

isolated mitochondrial proteins as well as whole cell lysate. pGEX-KS-Bcl-2 and pGEX 

was transformed into E. coli strain BL21 and purified using glutathione-Sepharose beads. 

The resulting GST fusion proteins were separated on a 10% SDS-PAGE gel, as illustrated 

in Figure 6. The GST protein, expressed from the pGEX-5x-3 plasmid, was shown to be 

approximately 26 kDa (Figure 6 lane 2) and the GST-KS-Bcl-2 fusion protein was found 

to be approximately 45 kDa (Figure 6 lane 3). A GST band can be seen in the GST-KS­ 

Bcl-2 lane (lane 2), likely the result of empty vectors being expressed in E. coli. 

However, expression of both proteins was confirmed. 

Mitochondrial proteins and a total protein extract were isolated from BJAB cells. 

Isolation of mitochondrial proteins, and specifically components of the mPTPC, was 

confirmed via western blot analysis for VDAC (Figure 7, lanes 4 and 7). A GST pull 

down assay was performed using protein extracts combined with GST-KS-Bcl-2 as well 

as just GST. The mixture was incubated over night at 4°C with rotation. The beads, with 

any bound proteins, were washed and then separated on an SDS-PAGE gel and evaluated 

for the presence ofVDAC by western blot analysis (Figure 7). A distinct VDAC band, 

located at approximately 34 kDa, was visualized in the GST-KS-Bcl-2 lanes (lanes 3 and 
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6), thus indicating that KS-Bcl-2 does in fact partner with VDAC. In the GST only lanes 

(Figure 7, lanes 2 and 5), no band should be seen since no protein that will specifically 

interact with VDAC is present. No band was observed in lane 2 where GST was 

combined with mitochondrial extract; however, when combined with BJAB whole cell 

lysate a band was seen. This band could be a result of using too much protein extract, as 

700 µg ofBJAB extract was used as compared to only 250 µg with the mitochondrial 

extract, and VDAC may be non-specifically interacting with GST. Even though this 

band is present, it is of a lesser intensity then that in the GST-KS-Bcl-2 lane, indicating a 

stronger, more specific interaction with KS-Bcl-2. 
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Figure 6. Expression and Purification ofKS-Bcl-2. pGEX and pGEX-KS-Bcl-2 were 
transformed into E. coli strain BL21 and expression was induced with IPTG. GST (lane 
2) and GST-KS-Bcl-2 (lane 3) were purified using glutathione Sepharose beads. The 
proteins and a rainbow molecular weight marker (lane 1) were run on a 10 % SDS-PAGE 
gel and stained with Brilliant blue. 
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Figure 7 KS-Bcl-2 Interacts with VDAC: GST-KS-Bcl-2 and GST were individually 
immobilized on glutathione Sepharose beads and combined with either 250 ug 
mitochondrial protein extract (lanes 2 and 3) or 700 ug BJAB whole cell lysate (lanes 5 
and 6). Proteins interacting with GST-KS-Bcl-2 were analyzed by western blotting for 
VDAC. Lane 4: mitochondrial protein extract, and lane 7: BJAB whole cell lysate, were 
electrophoresed as a control for western blotting and for comparison. 
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Discussion 

Since its discovery in 1994, Kaposi's sarcoma-associated herpesvirus (KSHV) has 

been proven to be the causative agent important for the development of Kaposi's sarcoma 

(KS) as well as primary effusion lymphomas and multicentric Castleman's disease 

(Boshoff et al., 2001, Ceaserman et al., 1995, 1996, Chang et al., 1994, Fernandez et al., 

1999, Russo et al., 1996, Sarid et al., 1999, Sarid et al., 2002). Many cancers, including 

KS, along with other diseases proliferate in humans through the regulation of the cell 

cycle and apoptosis or programmed cell death. Apoptosis serves as a defense mechanism 

against the infection of disease causing agents such as KSHV. Viral proteins have been 

reported to modulate, either positively or negatively, the host cell apoptotic response to 

the infection. Modulation of apoptosis will help virally infected cells evade programmed 

cell death and ultimately produce viral progeny, and in the case of KSHV, cause disease 

proliferation. If the mechanism in which the virus evades host cell death can be 

determined then possible targets for new therapeutic agents will also be able to be 

established, and ultimately help stop the spread of virally infected cells, or even cure the 

diseases these viruses cause. 

Apoptosis is an evolutionarily conserved cell death mechanism that plays a 

crucial role in multiple biological events (Danial et al., 2004). There are two apoptotic 

pathways, the external and internal, that can be activated by various stimuli and converge 

toward a common death pathway. The external pathway is activated by the binding of a 

ligand to the death receptor and subsequent caspase activation, whereas the internal 
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pathway has the mitochondria at its center releasing apoptotic factors from mitochondrial 

pores ultimately resulting in caspase activation (Figure I) (Danial et al., 2004). A major 

class of proteins that regulates apoptosis is the Bcl-2 family, and many viruses will code 

for anti-apoptotic genes such as a Bcl-2 homolog that will promote the production of viral 

progeny and in some cases predispose cells to additional genetic changes in oncogenes 

that will enhance tumor growth (Strasser et al., 1990). Within they herpesvirus family, 

EBY, HVS, and KSHV, all which are closely associated with tumors, encode a Bcl-2 

homologue (Hardwick et al., 2003) 

As previously mentioned, the Bcl-2 family can be divided into three classes based 

on the Bcl-2 homology domains present and whether it is pro or anti-apoptotic. The first 

group ofBcl-2 proteins, is anti-apoptotic and consists of cellular Bcl-2, Bcl-xl., Mel-I, as 

well as KS-Bcl-2, the second group is made up of pro-apoptotic proteins Bak and Bax 

(Oltvai et al. 1993, Wei et al. 2001). One mechanism by which the Bcl-2 family 

positively regulates apoptosis is through the formation of a mitochondrial pore by the 

heterodimerization of Bax and Bak to cause release of pro-apoptotic factors. To 

counteract this release of apoptotic factors anti-apoptotic Bcl-2 family members will bind 

directly to Bax and Bak thus preventing pore formation and therefore prevent apoptosis. 

Even though, KS-Bcl-2 contains highly conserved BHI and BH2 domains it does not 

interact with either Bax or Bak (Cheng et al. 1996). A second mechanism of positive 

regulation of apoptosis is through the sensitizer Bcl-2 proteins inhibiting anti-apoptotic 

cellular proteins like Bcl-2 or Mel-I or activating Bak or Bax (Flanagan et al. 2008, 

Pearce et al. 2009, Uren et al. 2007, Scorrano et al. 2003). However, since KS-Bcl-2 
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does not bind to Bax or Bak this most likely is not the main mechanism through which 

KS-Bcl-2 functions. 

So, ifKS-Bcl-2 does not act through the Bax-Bak pathway what apoptotic 

pathway does it act through? A second pore exists on the mitochondrial membrane, the 

mitochondrial permeability transition pore complex, or mPTPC. The major components 

of the mPTPC are ANT on the inner membrane, VDAC on the outer membrane, and 

cyclophorin Din the intermembranous space (Desagher et al., 200, Crompton 1999, 

Halestrap 2003, Zoratti et al., 1995). Similar to the Bax/Bak pore, once formed mPTPC 

will cause the release of pro-apoptotic factors from the mitochondria. Several Bcl-2 

members have also been shown to regulate this pore; cellular Bcl-2 binds directly to ANT 

(Brenner 2000, Jacotot et al. 2001) and Bcl-xL directly to VDAC (Shimizu et al. 2000, 

Tsujimoto et al. 2000). Each of these interactions prevent pore opening and thus suppress 

apoptosis. Bax, on the other hand, has been shown to bind to ANT, enhancing 

mitochondrial membrane permeability and promoting apoptosis (Brenner et al. 2000, 

Belzacq et al. 2003). 

While it has been known now for over a decade that KSHV expresses a Bcl-2 

homologue the mechanism by which it functions remains obscure. KS-Bcl-2 was 

previously shown to function as an anti-apoptotic protein and that it does not interact with 

Bax or Bak (Cheng et al., 1996). However, it does bind to BH3 only proteins Bim, Bid, 

Bik, and Noxa (Flanagan et al. 2008). Despite numerous studies observing anti-apoptotic 

function ofKS-Bcl-2, little information is available regarding its potential apoptotic role 

with the mPTPC. This study looked to further investigate the potential change in the 
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cellular localization ofKS-Bcl-2 under apoptotic conditions, as well as whether or not 

KS-Bcl-2 will interact with VDAC. 

In order to determine if KS-Bcl-2 cellular localization changed under apoptotic 

conditions immunofluorescent staining for mitochondria and KS-Bcl-2 was carried out 

under both normal and apoptotic conditions in Vero cells either transfected with 

phCMV2-KS-Bcl-2 or an empty vector. Apoptosis was induced via hypertonic shock, 

Figures 2 and 3. In Figure 3, it can be seen that KS-Bcl-2 does in fact inhibit apoptosis, 

even though some level of apoptosis is still observed. One potential reason for apoptosis 

could be due to the fact that not only does the shock induce via the intrinsic, but also the 

extrinsic pathway in which Bcl-2 would not be able to prevent (Copp et al., 2005, Michea 

et al., 2000) hence still seeing apoptosis, but to a lesser extent. 

The results of the staining under normal conditions (Figure 4) showed that KS­ 

Bcl-2 can be found not only in the mitochondria, but also in the cytoplasm and nucleus. 

These results were consistent with that previously demonstrated by Kalt et al. in 2010. 

Under apoptotic conditions the localization ofKS-Bcl-2 did in fact change. As compared 

to normal conditions KS-Bcl-2 primarily localized to the mitochondria (Figure 5). Even 

though some nuclear as well as cytoplasmic localization can still be observed the 

majority of KS-Bcl-2 localized to the mitochondria as compared to normal growth 

conditions. This localization pattern gives us significant evidence that in the prevention 

of apoptosis KS-Bcl-2 localizes to the mitochondria and acts through the internal 

apoptotic pathway, and potentially the mPTPC. 
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This study also investigated the potential interaction with members of the 

mPTPC, specifically VDAC. KS-Bcl-2 was expressed from an inducible promoter in 

bacterial cells and then immobilized on glutathione beads (Figure 6). GST alone was also 

positively expressed in bacterial cells and immobilized on beads. In addition to positive 

protein expression, mitochondrial proteins were isolated from BJAB cells. Following 

immobilization and protein isolation, a GST-pull down assay was performed using KS­ 

Bcl-2 and isolated mitochondrial proteins as well as whole B cell lysate. A GST-pull 

down assay follows the bait and prey concept; the immobilized, weighted proteins, or 

bait, will pull down any proteins from the extract, or prey, with which it interacts. The 

protein interaction can then be detected by western blot analysis for the protein of 

interest. The immobilized KS-Bcl-2 protein serves as the "bait" and isolated 

mitochondrial proteins as well as whole cell lysate serves as the "prey". Once allowed to 

interact overnight, a western blot for VDAC was performed to test for binding. As 

clearly seen in Figure 7, KS-Bcl-2 does in fact interact with VDAC. Even though the 

functionality of this interaction has not been determined, this initial step in showing 

interaction between KS-Bcl-2 and VDAC is the beginning of establishing that KS-Bcl-2 

functions to prevent apoptosis through the mPTPC. 

Additionally, in Figure 7, a band can be seen in the GST only lane when 

incubated with whole cell lysate. Several reasons exist for the presence of this band, 

most likely being due to the amount of protein used. More whole cell lysate was 

incubated with the immobilized proteins as compared to mitochondrial protein extract. A 

band in the GST lanes is only visible with the whole cell lysate, not with the 
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mitochondrial extract. Also important to note is the intensity of this band compared to 

that in the KS-Bcl-2 lane. The GST only band is much lighter than that of the band in the 

KS-Bcl-2 lane, indicating a stronger, more specific interaction taking place between KS­ 

Bcl-2 and VDAC. Therefore, this GSTNDAC band can be designated as a non-specific 

interaction most likely resulting from an overload of protein extract. A possible solution 

would be to optimize the amount of mitochondrial protein and whole cell lysate used; 

potentiaily less whole cell lysate and more mitochondrial protein could be used to 

observe specific interaction with KS-Bcl-2 and to minimize the non-specific interaction 

with GST. 

Much evidence suggests that many Bcl-2 family members fulfill their apoptotic 

role through the mitochondrial pathway (Cheng et al., 1996, Flanagan et al., 2008). KS­ 

Bcl-2 has previously been shown to inhibit several mitochondrial events that lead to 

apoptosis, such as the prevention of cytochrome c release (Flanagan et al., 2008); 

however, its mechanism behind this still needs to be elucidated. This study's results, the 

localization change ofKS-Bcl-2 under apoptotic conditions as well as KS-Bcl-2's ability 

to bind to VDAC, when taken together show for the first time that KS-Bcl-2 may 

function to inhibit apoptosis through the mPTPC. 

To further investigate if this interaction between KS-Bcl-2 and VDAC is a 

functional one several studies still need to be carried out. One functional assay that can 

be carried out is to reconstitute only VDAC on liposomes and determine ifKS-Bcl-2 

inhibits apoptosis in this manner. lfKS-Bcl-2 does in fact inhibit apoptosis then this 

relationship can be deemed functional since VDAC would be the only apoptotic pore on 
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the liposomes. Also, generation of KS-Bcl-2 mutants, each lacking a different BH 

domain will offer insight to which domain is needed for KS-Bcl-2's anti-apoptotic 

function. As demonstrated by Shimizu et al. in 2000, the BH4 domain of both Bcl-2 and 

Bcl-xL is essential for their anti-apoptotic function. Furthermore, Shimizu extended their 

findings and demonstrated that BH4 is the functional domain for Bcl-xL inhibition of 

VDAC (Shimizu et al., 2000). This finding proves interesting because even though the 

amino acid sequence between KS-Bcl-2 and Bcl-xL is limited, structural similarity is 

conserved, specifically in the BH4 domain (Cuconati et al,. 2002) 

The biological importance ofKS-Bcl-2 is still not known. It may be required for 

inhibition of apoptosis during initial infection, or for the development and maintenance of 

infection, or even in the development of cancers. In addition to KS samples, KS-Bcl-2 

has been detected in clinical samples of primary effusion lymphomas linking it to a 

potential role in cancer development (Sarid et al., 1997). There is still much needed work 

to be done to elucidate KS-Bcl-2's role in tumor development, but these findings may 

provide the basis for identifying the mechanism by which KS-Bcl-2 helps evade cell 

death, as well to help identify therapeutic agents to combat these diseases. 
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