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Abstract 

One aspect of this project set out to examine the effects of 

methamphetamine (METH) on the accumulation of cellular reactive oxygen 

species (ROS) and the expression of the mu-opioid receptor (MOR) in a 

dopaminergic cell line, SH-SY5Y, in order to delineate a possible role for ROS 

signaling in the coupling of dopaminergic and opioidergic pathways in neuronal 

cells. Prior evidence indicates neuronal cells treated with METH accumulate 

dopamine in the synaptic cleft which can lead to increased levels of ROS. 

Uncovering a role for ROS in increasing MOR expression in response to METH 

may provide a therapeutic target aimed at reducing the already established 

phenomenon of METH cross-sensitization to morphine, two drugs with high 

potential for abuse. 

A second aspect of this project investigated the mechanism by which 

lipopolysaccharide (LPS) exposure alters MOR expression in immune and 

neuronal cells. Previous research notes the exposure to LPS increases the 

production of ROS in murine macrophages. Also, activation of MOR effects 

functions associated with the immune response. Therefore, uncovering a role for 

ROS in increasing MOR expression in immune and neuronal cell types could 

provide additional insights in how to address problems associated with LPS-

induced inflammatory response and the subsequent acceleration of sepsis seen 

with morphine treatment. 



The data presented here show that METH's effect on MOR expression is 

dependent upon sub-lethal levels of intracellular ROS increased by METH 

treatment, which suggests a possible coupling of METH- and opiate-mediated 

intracellular signaling. In addition, work from the second portion of this project 

found that LPS stimulated the intracellular ROS accumulation and MOR 

expression in macrophage-like TPA-HL-60 cells. Conditioned medium from the 

LPS-stimulated TPA-HL-60 cells increased MOR expression in SH-SY5Y cells, a 

neuronal cell model, through actions mediated by TPA-HL-60 secreted TNF-a 

and GM-CSF. These data indicate that the endotoxin, LPS, modulates MOR 

expression in nervous and immune cells via ROS signaling, and demonstrates 

the crosstalk that exists within the neuroimmune axis. 
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I. 

Introduction 

i. Preface. 

Reactive oxygen species (ROS) are highly reactive molecules mainly 

produced during the transfer of electrons through the electron transport chain 

and secreted by activated macrophage and neutrophils (McCord and Fridovich, 

1978; Bast and Goris, 1989; Bayir, 2005). ROS partiCipate in a multitude of 

signal transduction pathways as secondary messengers, amplifying 

extracellular signals originating at the cell surface. As secondary messengers, 

ROS signaling initiates cell differentiation, proliferation, and migration (Sauer et 

aL, 2001; Van der Goes et aI., 2001). Experimental evidence indicates that 

ROS can activate transcription factors that regulate the expression of genes 

involved in the inflammatory response (Conner and Grisham, 1996; Fialkow et 

aL,2007). Also, the activation of mitogen-activated protein kinases (MAP 

kinases) and Janus kinase I signal transducers and activators of transcription 

(JAKISTATs) are known to be affected by ROS (Hancock et aL, 2001). Aside 

from their cell signaling actions, ROS play an important a role in host defense 

whereby acting as chemical agents that participate in the destruction of 

pathogens (McRipley and Sbarra, 1967). However, when cells are unable to 

maintain redox homeostasis, leading to an increase in intracellular ROS levels, 

oxidative stress can occur. The consequence of oxidative stress is often 
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associated with tissue injury and cellular damage (Conner and Grisham, 1996; 

Hancock et aI., 2001). 

The mu-opioid receptor (MOR) is a G protein-coupled receptor (GPCR) 

widely known to elicit euphoria and analgesia when activated by morphine 

(Trescot et aI., 2008a). The anti-nociception properties of morphine are of 

benefit to patients suffering from cancer, bums, and both acute and chronic 

pain; however, continuous intake of morphine can lead to tolerance and 

addiction (Trescot et aI., 2008b). 

Experimental evidence pOints to the cross-sensitization of drugs of I ,1 
abuse, such as cocaine, alcohol, and nicotine, to morphine (Lett, 1989; Vezina 

and Stewart, 1990; Cador et aI., 1995; McDaid et aI., 2005). The cross-

sensitization of drugs of abuse, resultant to the convergence of the 

catecholamine and opioid signaling pathways, implies that sensitization to a 

particular drug can be further enhanced with repeated intermittent exposure to a 

1 	 different drug of abuse; thus, essentially increasing the pleasurable effects of 

the drugs as well as increasing drug seeking behaviors (McDaid et aI., 2005; 1 
Nestler, 2005; Stefano et al., 2007). 

Activation of MOR also affects functions associated with the immune 

response (Bryant and Roudebush, 1990; Taub et aI., 1991; Bidlack, 2000; 

Coussons-Read and Giese, 2001). Chronic exposure to morphine and 

subsequent activation of MOR suppresses the inflammatory response (Chang 
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et aI., 1998; Bidlack, 2000). In these instances, a dysfunctional inflammatory 

response, consequential to activation of MaR, decreases the immune system's 

ability to mount an appropriate response to pathogenic microbial antigens, e.g. 

lipopolysaccharides (LPS) [Chang et aI., 2001; Bidlack, 2000; Roy et aI., 1998]. 

This dissertation project examines the direct and indirect effects of ROS 

on the modulation of MaR expression in neuronal and immune cell lines. 

Currently there are no reports in the scientific literature that indicate ROS 

signaling participates in modulating MaR expression; thus, uncovering a 

connection between ROS and MaR may provide additional insights into 

therapeutic interventions in opiate addiction and diseases linked to 

inflammation. 

ii. Survey of literature. 

The chemical nature of ROS, their source of production, and their effect 

on biological systems has been of interest to scientists for many years. Early 

reports recognized ROS for their role in mammalian host defense against 

pathogens; however, recent work has uncovered that ROS serve important 

functions as cell signaling molecules (Hancock et aI., 2001). As the name 

implies, ROS are molecules that contain oxygen and some are more reactive 

than molecular oxygen due to varying reduced states. ROS present in 

biological systems include radicals such as superoxide and hydroxyl and the 

non-radicals hydrogen peroxide (H20 2), peroxynitrite and hypochlorous acid 

3 




(Hancock et aI., 2001; Bayir, 2005; Fialkowet aL, 2007) [Fig. 1]. The radical 

RDS are highly reactive and are capable of reacting with other molecules or 

radicals in an attempt to achieve a more stable electron configuration (Wu and 

Cederbaum, 2003). Of the three radical RDS noted above, hydroxyl radicals are 

perhaps the most reactive of these species and are thought to be the most 

reactive chemicals found in biological systems. Hydroxyl radicals are unstable, 

due to the free unpaired electron, and rapidly combine with target molecules 

residing in close proximity, which can lead to peroxidation of lipids and proteins 

(Fialkowet al., 2007). Superoxides are unstable but not as reactive as hydroxyl 

radicals and often quickly combine to form H2D2. The non-radical, H2D2 is not 

as reactive as the radical RDS but has been shown to inactivate enzymes by 

the oxidation of thiol groups (Bayir, 2005; Fialkowet aL, 2007). Peroxynitrites 

are somewhat stable compared to the other non-radical RDS; however, at 

physiological pH peroxynitrites become protonated and rapidly breakdown to 

nitrates and hydroxyl radicals (Conner and Grisham, 1996). Hypochlorous acid, 

considered a highly reactive non-radical, is able to alter lipids and proteins and 

as a result modifies membrane architecture leading to cell lysis (Spickett et aL, 

2000). In addition, hypochlorous acid reacts indiscriminately with a wide variety 

of biomolecules including pyridine nucleotides and amino acids, which are 

essential building blocks of important cellular macromolecules (Conner and 

Grisham, 1996). 
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I 
i Figure 1. Chemistry of ROS. Superoxides are produced during electron 

transfer through the electron transport chain and NADPH oxidase. Hydroxyl 
radicals are produced via the Haber-Weiss reaction when in the presence of 

I transition metals such as Fe(lI) or Cu(I). Hydrogen peroxide molecules are 
f mainly produced during the dismutation of superoxides at low pH, or by the 

I enzymatic activity of superoxide dismutases. Neutrophil and macrophage 

I myeloperoxidases' catalyze the formation of hypochlorous acid, which in turn 
can react with superoxides to produce hydroxyl radicals. The formation of 

I 
peroxynitrites occurs when superoxides react with nitric oxide, which are 
produced from nitric oxide synthases (NOS) and xanthine oxidoreductase 
(XOR) (Hancock et aI., 2001; Bayir, 2005). 
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Several enzymatic processes generate ROS in mammalian cells. ! 
I 
1 Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, xanthine 
I
j 

oxidoreductase (XOR), and myeloperoxidase (MPO) are the best characterized 

I catalysts that contribute to ROS production (8ayir, 2005). LPS, tumor necrosis 

factor-a (TNF- a), interleukin-1 ~ (IL-1 ~), and interleukin-6 (IL-6) activate 

I NADPH oxidase in immune cells. These stimuli, along with NADPH supplied 

I electrons, allow for the reduction of oxygen by the multiple-subunit complex 
1 

NADPH oxidase (8ayir, 2005). Similarly, XOR generates superoxide and can 

be up-regulated by hypoxia, LPS, TNF- a, IL-1 ~,and IL-6. Neutrophils and 1 
J 

macrophages use MPO to catalyze the oxidation of chloride to hypochlorolJs I 
acid (HOCI) in the presence of H20 2 . In addition to the enzymes noted above, 

I 
t 

I 

mitochondria convert up to 2% of cellular oxygen to superoxide when the 


cytochrome oxidase complex prematurely releases oxygen subsequent to 


I 
 receiving electrons from the cytochrome bc1 complex (Konstantinov et aI., 


1987; Fialkow et aI., 2007).I'I 
ROS engage in gene regulation and participate as second messengers 

j in signal transduction pathways in a variety of cell types. Hancock et al. (2001) 

! highlight that ROS are ideal signaling molecules since their production can be 

1 
1 stimulated and their signal can be rapidly removed. ROS have been shown to 
t
! activate redox-sensitive transcription factors and coordinate distinct biological I 
.1 responses. For example, low oxidative stress can induce the expression of 

I genes coding for antioxidant enzymes by activating the transcription factor Nrf2. 
i 
I 
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I 
I
I 
I In addition. oxidative stress at an intermediate level can lead to the initiation of 
] 

I 
i an immune response through the activation of NF-x:B and AP-1 transcription 

factors. Finally, it has been shown that high levels of ROS can disrupt the flow 

of electrons through the electron transport chain and as a consequence lead to 

f the damage of mitochondria. which can ultimately result in up-regulation of 

I genes involved in programmed cell death (Gloire et aI., 2006). Several reports 

I 

have shown that signal transduction pathways involving the mitogen-activated 

protein kinases (MAP kinases) are activated by the non-radical ROS, H20 2 

(Hancock et aI., 2001). Fialkow et al. (1994) showed that treatment of 

neutrophils with H202 activated MAP kinase kinase (MEK), an upstream 

activator of MAP kinase, and inhibited the cysteine-containing protein tyrosine 

phosphatase, CD45. Because of the combination of ROS activation of MEK 

and inhibition of CD45, it was suggested that MAP kinases, exposed to oxidant, 

I 
I would have extended periods of activation (Fialkow et at, 2007). Guyton et al. 
j 

(1996) used primary smooth muscle cells, mouse embryonic fibroblasts (NIH 

1 3T3) , human cervical cancer cells (Hela), rat fibroblasts (Rat 1), and rat 

l pheochromocytoma (PC12) cell lines to show that H20 2 activated ERK2 via RAt 

Sarcoma protein (Ras). The consequence of ERK2 activation by H202 seems 

to be related to cell survival since dominant negative Ras PC12 mutant 

resulted in increased sensitivity to H20 2 (Guyton et al.. 1996). In addition to the 

l 
 MAP kinase pathway proteins, H20 2 also activates the JAKIST AT pathway. 


Simon et al. (1998) showed, using carcinoma cells (A-431) and Rat-1 cells, that 

I 
i 
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H20 2 activates STATs and involves JAK2 and TYK2 kinases. The authors 

further suggest that downstream affects of H20 2 include activation of STATs, 

which participate in the regulation of cell growth, ROS clearance, and 

apoptosis (Simon et aI., 1998). 

ROS play important roles in cellular communication, yet early research 

on ROS primarily focused on their microbiocidal properties and their role in 

human host defense (McRipley and Sbarra, 1967). For example, in vitro 

studies using XOR and acetaldehyde as a substrate along with chelated iron 

(Fe2+ -EDT A) indicated that this biochemical reaction produced lethal levels of 

ROS capable of killing pathogenic Escherichia coli, Staphylococcus aureus, 

Listeria monocytogenes and Salmonella fyphimurium (Yamada et al., 1987). In 

these studies, inclusion of Fe2+ -EDT A increased the lethality of XOR 

metabolism by increasing the rate of production and accumulation of hydroxyl 

radicals similar to in vivo levels; therefore, the authors summarized that XOR

Fe2+-EDTA was a relevant model of in vivo ROS production (Yamada et al., 

1987). Work by Lindgren et al. (2004) also showed ROS are important 

metabolites involved in host defense against the facultative intracellular 

bacterium, Francisella tularensis. In their studies, mice that were p4T 1 - (p47 is 

a subunit of NADPH oxidase) were more susceptible to F. tularensis infection 

with higher numbers of bacteria present in the spleen and liver compared to 

wild-type mice (Lindgren et aI., 2004). Furthermore, splenocytes harvested 
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1 

from wild-type mice, during periods of increased morbidity, produced 

significantly higher levels of ROS than the p4T /- mice (Lindgren et aI., 2004). 

Although ROS serve important functions in cell communication, 

participate in the activation of signal transduction pathways and transcription 

factors; as well as, assisting in the clearance of pathogens via their 

microbiocidal properties, ROS present at high levels can lead to cellular 

damage. Such situations arise when factors increase ROS production or 

decrease the cellular antioxidant function thereby offsetting redox 

homoeostasis[the balance between ROS production and removal] (8ayir, 

2005). 80th intracellular and extracellular ROS levels are maintained at non

lethal levels by superoxide dismutases, catalases, and an intracellular thiol

1 
reducing buffer consisting of glutathione and thioredoxion (Nakamura et aI., 

1 
1997; Gamaley and Klyubin, 1999). 1 

When cells are unable to maintain redox homeostasis, the intracellular 
1 

ROS levels can persist and eventually damage proteins, DNA, and lipid f 
membranes and initiate apoptosis (Conner and Grisham, 1996). Proteins, in 

the form of enzymes, carry out crucial functions in cell metabolism. The 

oxidation of enzymes at cysteine, methionine, and histidine residues, by 

hydroxyl radicals, can modify protein conformation and negatively affect 

function. Lipids serve a structurally supportive role isolating intracellular 

organelles and cytosolic reactions from the extracellular environment. 

Hydroxyl attack of phospholipids can result in the peroxidation of many 

I 
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I 

polyunsaturated fatty acid molecules creating a disruption of the plasma 

1 
1, membrane fYVu and Cederbaum, 2003). ROS are a major source of DNA 

damage, causing strand breaks and mutations resulting from nucleotide 

I deletions. Changes in DNA sequences that outpace DNA repair mechanisms 

l potentially have permanent consequences with detrimental effects for the cell 

I (Wu and Cederbaum, 2003). 

In humans, MORs are distributed throughout the central and peripheral 

I nervous system, on spinal cord projections, as well as in the brainstem, 

! midbrain and cortex (Stein et aL, 2003). Opioid receptors have also been 

identified on the peripheral processes of sensory neurons with 

l 
1 

pharmacologically similar effects to MORs found in the brain (Stein et aI., 2003). 

Molecular evidence also points to the presence of MORs on various immune 
) 

cells. MOR mRNA has been identified from human T- and B- cells, monocytes, i 
"I 

I macrophages, and granulocytes suggesting a role for the opioid pathway in the 

immune response (Chuang et aL, 1995). 

I The sequence analysis of the cloned MOR places it in the GPCR 

receptor family. MORs consist of seven transmembrane domains, an 

extracellular N-terminus with intracellular C-terminus and three intracellular and 

i extracellular loops (Law et aL, 1999). Aside from morphine, MOR agonists 
I 

i include enkephalins, beta-endorphins, dynorphin A, and endomorphin-1 and 2 

j 
(Trescot et aL, 2008a; Trigo et aL, 2010). Interestingly, morphine, is widely 

I 
J 

excepted to be an exogenous MOR agonist, has recently been shown to be 
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synthesized by the human neuroblastoma cell line, SH-SY5Y (Boettcher et aI., 

2005). The activation of MOR leads to inhibition of cAMP and N- and P/Q-type 

Ca2+ channels; as well as, the stimulation of K+ channels (Law et aI., 2000; 

Trigo et aL, 2010). The consequence of which, leads to physiological effects 

such as euphoria, reduced blood pressure, decreased respiration, and 

decreased neuron excitability (Trigo et aL, 2010). 

Methamphetamine (METH), a psychostimulant drug with a high potential 

for abuse, has been shown to cause damage to dopaminergic terminals in 

variolJs regions of the brain (Yamamoto and Zhu, 1998; Kita et aL, 2003; Mark 

et al., 2004). The mechanism of METH-induced neurotoxicity has long been 

thought to involve increased levels of dopamine, itself a mild neurotoxin, and 

dopamine-derived reactive oxygen species [ROS] (Filloux and Townsend, 1993; 

Riddle et al., 2006; Thomas et aL, 2009). METH competes with dopamine for 

active sites on the dopamine transporter (OAT). The binding of METH to OAT 

allows for the diffusion of METH into the neuronal axon and reversal of OAT, 

essentially preventing dopamine re-uptake (Yamamoto et aL, 2010). The 

absence of dopamine re-uptake allows for dopamine to accumulate within the 

synaptic cleft, in these instances dopamine in the presence of oxygen begins to 

undergo enzymatic and auto-oxidation thereby increasing the levels of ROS 

(Yamamoto and Bankson, 2005). As noted earlier, the generation of ROS is a 

consequence of cellular metabolism; however, an imbalance in ROS 

11 




homoeostasis caused by METH shifts the cytoplasm to a more oxidative state 

which can lead to the onset of oxidative stress (Yamamoto and Bankson, 2005). 

Oxidative stress, in turn, has been shown to lead to cellular apoptosis and 

tissue necrosis. For example, METH-treated dopaminergic neuronal SH

SY5Y cells undergo mitochondrial membrane depolarization, increased ROS 

production, and apoptosis (Wu et al., 2007a). 

The oxidation of dopamine, however, is not the only source of METH-

induced ROS production, nor is it an effect exclusive to neurons. In vitro 

studies have shown that the METH-induced production of ROS also occurs in 

astrocytes, a cell type not involved in dopamine anabolism (Abramov et aI., 

2005; Nikolova et aL, 2005). Similar to the findings in METH-treated SH-SY5Y 

cells, evidence indicates that METH impairs mitochondrial function and 

increases ROS levels in murine astrocytes (Lau et aL, 2000). It seems 

reasonable to speculate that ROS produced by astrocyes may impact cellular 

functions of neurons in close proximity. 

Evidence from Raut et aL (2006) suggested that MOR function is 

decreased by oxidative stress (Riddle et aI., 2006). However, Raut et al. (2007) 

indicated the possibility that a multi-factoral component was responsible for the 

decreased function of the MOR, not oxidative stress alone (Raut et aI., 2007). 

Although high levels of oxidative stress decrease MOR function, there is 

evidence that suggests intermediate levels of ROS may in fact increase MOR 

12 




expression and function. Intermediate levels of ROS initiate the inflammatory 

response and increase the activation of NFKB (Gloire et aI., 2006). 

Transcriptional activation of NFKB by hydrogen peroxide, itself a ROS, has 

been reported in SH-SY5Y cells (Larouche et aL, 2008). Also, NFKB binding 

sites have been identified in the MOR promoter region (Kraus et aL, 2003). 

Furthermore, amphetamine, a metabolite of METH, increases the localization of 

MOR mRNA in the rat striatum (Vecchiola et aL, 1999). Collectively, these 

studies lead to the speculation that ROS may in fact lead to increased MOR 

expression through the activation of the transcription factor NFKB. Therefore 

METH treatment could possibly lead to an increase in MOR expression as a 

result of ROS accumulation and be associated with activation of transcription 

factors with binding site located on the MOR promoter region. This 

phenomenon may extend to other molecules, other than METH, that lead to 

increases in ROS accumulation and activation of transcription factors such as 

NFKB. One such molecule could be LPS. 

LPS, an outer-membrane component of gram-negative bacteria, is a well 

characterized endotoxin that activates the immune system, and, in particular, 

induces inflammation (Parrillo et aI., 1990; Dunn, 1991; Raetz and Whitfield, 

2002; Lopez-Bojorquez et aI., 2004; Rumpa S, 2010). In some cases, 

endotoxemia progresses to severe sepsis, resulting in multiple organ 

dysfunction, septic shock, and death (Lopez-Bojorquez et aI., 2004; Qu et al., 
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2009). Morbidity associated with severe sepsis is high. Annually, there are one 

million deaths from sepsis worldwide, and approximately 25-30% of the cases 

are due to gram-negative bacterial infection (Rumpa S, 2010). 

The host-mediated response to endotoxemia involves the secretion of 

inflammatory cytokines and mediators as well as the activation of the 

coagulation and complement cascades (Dunn, 1991; Lopez-Bojorquez et aI., 

2004; Andreasen et aI., 2008). The increased levels of circulating inflammatory 

cytokines resulting from LPS endotoxemia exacerbate systemic inflammation. 

Previous studies showed that the levels of the pro-inflammatory cytokines, TNF-

a, IL-1~, and IL-6, are elevated in both the serum and brain of rats treated 

systemically with LPS (Ocasio et aI., 2004; Chen et aI., 2005). Other studies 

have reported an increase in the secretion of IL-1 ~ and TNF-a from 

macrophages following LPS treatment (Evans et aI., 1991; Hsu and Wen, 

2002). LPS induced levels of pro-inflammatory cytokines activate the HPA and 

lead to the secretion of corticotrophin-releasing hormone (CRH) and eventual 

production of cortisol which in tum promotes the inhibition of pro-inflammatory 

cytokines. Previous findings also indicated that LPS couples the immune and 

nervous systems via actions mediated by pro-inflammatory cytokines on the 

hypothalamic-pituitary-adrenal (HPA) axis (Chang et aI., 1998), and that such 

cross-talk is necessary in order to maintain homeostasis in response to 

I infection (Chang et al, 1998). Inflammatory cytokines can modulate the 

I 
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expression of the mu-opioid receptor (MOR) in both neuronal and immune cells. 

In 1988, Vidal et al. reported that co-treatment with IL-1 a and IL-1 ~ increases 

MOR expression in microvascular endothelial cells (Vidal et aL, 1998). IL-6 

increases MOR expression and MOR binding in SH-SY5Y neuroblastoma cells 

(Borner et aL, 2004), and TNF-a increases MOR expression in human T 

lymphocytes, Raji B cells, U937 monocytes, primary human polymorphonuclear 

leukocytes, and mature dendritic cells (Kraus et al., 2003). 

The activation of the opioidergic pathway via the MOR leads to 

suppression of the immune response (Gaveriaux-Ruff et aL, 1998; Wang et aL, 

2002). Chronic administration of morphine, a MOR agonist, desensitizes the 

pro-inflammatory cytokine-mediated effects on the HPA axis and deregulates 

the immune response in rats (Chang et aL, 1995; Chang et aL, 1996; Chang et 

aI., 2001; Chen et aL, 2005). In addition, deregulation of immune responses by 

exogenous opioids leads to many of the complications associated with LPSI 
i 

induced endotoxic shock (Chang et aL, 1998; Chang et aI., 2001; Chen et aL,1 
9 

2005). 

As noted previously, ROS are highly reactive molecules produced during 

cellular respiration (Hancock et aL, 2001). However, disease and stress can 

alter a cell's ability to effectively regulate ROS levels (Wu and Cederbaum, 

2003). Interestingly, evidence from experimental and clinical studies correlate 

development of sepsis with ROS production, the depletion of antioxidants such 
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as vitamin C, E and A, and glutathione, and the accumulation of markers of 

oxidative stress, e.g. lipid peroxidation (Bayir, 2005). In addition, the exposure 

to LPS increases the production of ROS in murine macrophages (Hsu and 

Wen, 2002; Kim et aI., 2004), and the accumulation of ROS is a promoting 

factor in the development of sepsis in rats (Bayir, 2005). Thus, ROS appears to 

playa key role in the LPS-induced inflammatory response and the subsequent 

incidence of sepsis. 

iii. Project summary 

One aspect of this project involved an in vitro study to examine the 

effects of METH on the accumulation of cellular ROS and the expression of the 

MOR in a dopaminergic cell line, SH-SY5Y, in order to delineate a possible role 

for ROS signaling in the coupling of dopaminergic and opioidergic pathways in 

neuronal cells. 

A second aspect of this project involved an in vitro study to investigate 

the mechanism by which LPS exposure alters MOR expression in immune and 

neuronal cells. Specifically, the effects of LPS-induced ROS accumulation on 

MOR expression was examined in TPA-differentiated HL-60 (TPA-HL-60) 

macrophage-like cells (Rovera et aI., 1979; Kowalski and Denhardt, 1989). 

Also, conditioned medium (CM) was assayed from LPS-treated TPA-HL-60 

cells for TNF-a, GM-CSF, IL-1~, IL-8, IL-10, IL-12p70, IL-2, IL-6, and INFyto 
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determine if LPS-induced ROS had a modulating effect on the cytokine 

secretion profile. MOR expression was examined in SH-SY5Y neuroblastoma 

cells (Ciccarone et aI., 1989) cultured in CM from the LPS-treated TPA-HL-60 

cells. 
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Materials and Methods 

i. Cell culture. 

The human SH-SY5Y neuroblastoma cell line, a gift from R. Ross, 

(Fordham University, New York), was grown in MEM+F12 medium 

supplemented with 10% fetal bovine serum (FBS), 100 U penicillin, and 100 

J.lg/mL streptomycin (Gibco, Invitrogen Corp. Grand Island, NY). Human HL-60 

promyelocytic leukemic cells (ATCC, Manassas, VA) were grown in RPMI 1640 

medium supplemented with 20% FBS, 100 U penicillin, and 100 J.lg/mL 

streptomycin. Experimental 12- or 96-well plates (BD Biosciences, VWR, West 

Chester, PA) were seeded with SH-SY5Y cells at 1x105 celis/mL in 1 mUwell in 

the 12-well plate and 0.1 mUwell in the 96-well plate, respectively, and cultured 

for 24 h prior to treatment. Experimental 12-well plates were seeded with HL

60 cells at 5x105 cells/mL in 1 mUwel1. 

In this project, HL-60 cells were differentiated with 12-0

tetradecanoylphorbol-13-acetate (TPA) into macrophage-like cells (TPA-HL-60) 

over a period of 48 h (Sigma-Aldrich, St. Louis, MO). The differentiation of 

TPA-HL-60 cells into macrophage like cells can be identified by the change 

from a suspension culture (HL-60) to an adherent culture [TPA-HL-60] (Rovera 

et aI., 1979). Therefore, prior to the initiation any TPA-HL-60 experiential 
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treatment the shift from suspension culture to an adherent culture was 

monitored by phase contrast microscopy. Previous studies have shown greater 

than 95% of HL-60 cells differentiate to macrophage-like cells after a 48 h 

treatment with 16 nM TPA (Rovera et aI., 1979; Kowalski and Denhardt, 1989). 

Stock solutions of TPA were dissolved in 100% ethanol to a concentration of 16 

JlM and diluted 1000-fold in medium. SH-SY5Y, HL-60, and TPA-HL-60 cells 

were maintained in a 5% CO2 humidified incubator at 3]0 C. 

ii. METH cell culture treatment. 

METH (Sigma-Aldrich, St. Louis, MO) and hydrogen peroxide [H20 2] 

(Sigma-Aldrich, St. Louis, MO) stock solutions were prepared in 0.9 % saline, 

filter sterilized (0.2 Jlm filters, Pall Life Sciences, Ann Arbor, MI), and the cells 

were treated with medium containing METH at a final concentration of 0 to 6.8 

mM or H20 2 at a final concentration of 0 to 400 JlM. 

For ROS scavenging experiments, cells were pre-treated with medium 

containing 100 JlM vitamin E (Sigma-Aldrich, St. Louis, MO) for 3 h (Wu et aI., 

2007), and then treated with medium containing METH. Medium containing 

saline at a volume equivalent to the treatment served as the control in all of the 

related experiments. 
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iii. LPS cell culture treatment. 

Stock solutions of lipopolysaccharide from E coli strain OSS:BS (LPS, 

Sigma-Aldrich, St. Louis, MO) were prepared in 0.9% saline to a concentration 

of 10 mg/mL and filter sterilized (0.2 Jlm filters). TPA-HL-60 cells were treated 

with medium containing LPS at a final concentration of 0.12S to O.SOO mg/mL 

For ROS scavenging experiments, TPA-HL-60 cells were pre-treated 
j 

f with medium containing 100 JlM vitamin E for 3 h and then treated with medium 

I containing LPS. Where appropriate, saline at a volume equivalent to the 

treatment served as the control in all of the related experiments. Unless noted 

otherwise, in CM experiments, TPA-HL-60 supernatants were pooled, filter 

I 
sterilized (0.2 Jlm filters), and immediately overlaid onto SH-SYSY cells. SH

SYSY cells used in CM experiments were grown for a period of 72 h prior to 

TPA-HL-60-CM treatment. 
j 

iv. Measurement of cell viability. 

The alamarBlue assay detects metabolically active cells with an 

oxidation-reduction indicator, and has been previously used for assessing 

viability of neuronal and non-neuronal cells (White et aL, 1996; Magliaro and 

Saldanha, 2009). Cell viability experiments were performed in 96-well plates. 

After treatment, 10 JlI of alamarBlue (Invitrogen Corp., Grand Island, NY) was 
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added to each well. The cells were then incubated at 37°C, 5% CO2 for 2 h. 

Fluorescence was measured using a SpectraMax Gemini EM (Molecular 

Devices, Sunnyvale, CAl with excitation at 530 nm and emission fluorescence 

detected at 590 nm. The percent control was calculated as: 590 nm test 

reagent/590 nm saline control multiplied by 100. 

V. Measurement of intracellular ROS. 

Dihydrorhodamine 123 (DHR 123) is an indicator of hydrogen peroxide, 

hypochlorous acid, and peroxynitrite anion (Crow, 1997; McBride et aI., 1999; Lit 
J 	 et aI., 2001). Non-fluorescent DHR123 passively diffuses across cell 

membranes where it becomes oxidized to form fluorescent rhodamie123 in the 

presence of H20 2 and intracellular peroxidases. Rhodamine 123 is retained in 

the intracellular space and effectively measures the intracellular levels of ROS 

(Henderson and Chappell, 1993). Stock solutions of DHR123 were 

reconstituted in DMSO (Sigma-Aldrich, St. Louis, MO) to a concentration of 10 

mM. Intracellular ROS levels in SH-SY5Y and TPA-HL-60 cells cultivated in 12

well plates were determined by confocal laser scanning microscopy (CLSM). 

After treatment, the medium was replaced with fresh medium containing 20 11M 

DHR123 (Sigma-Aldrich, St. Louis, MO), an indicator of ROS, and incubated for 

30 min (Henderson and Chappell, 1993). The medium was then replaced with 

fresh medium alone, and the presence of ROS was detected with a FluoView 
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FV1000 CLSM (Olympus, Center Valley, PA) at 200X magnification. Laser 

transmissivity was set to 20 %; the cells were excited at 488 nm, and 

fluorescence emission was detected at 520 nm. Changes in intracellular ROS 

levels were calculated as the percent mean fluorescence of 5 randomly 

selected cell clusters from 3 views, from 3 wells per treatment as follows: 

cell cluster ROI (:E avg. CHS1 1•2,..5*area1,2 ... 5/:E area) - background ROI (:E avg. 

CHS1 1,2...5*area1.2 ... 5/:E area), where ROI refers to the region of interest and 

avg. CHS 1 refers to the average fluorescence of the pixilated ROI. All fluoresce 

levels were calculated by the FluoView FV1 000 software. 

For ROS measurements performed using TPA-HL-60 cells, the changes 

in intracellular ROS levels were calculated as the percent mean fluorescence of 

10 randomly selected cell clusters from 3 views from 3 wells per treatment. 

vi. Extraction and isolation of total RNA. 

Total RNA was extracted and isolated using TRlzol or TRlreagent in 

accordance with the manufacturer's protocol (Ambion, Invitrogen Corp., Grand 

Island, NY). Spent culture media was aspirated by vacuum and 0.5 mL of 

TRlzollTRlreagent was added to each well. Cells were incubated for 5 min at 

15 to 30°C. Cell lysate from two wells per treatment were combined in order to 

increase the total mass of RNA collected. Phase separation was performed 

\ 22 

I 
j 

1 



with the addition of 0.2 mL of chloroform (Sigma-Aldrich, St. Louis, MO) per 1.0 

mL TRlzolfrRlreagent. Samples were shaken by hand for 15 sec and 

incubated at 15 to 30°C for 3 min. Samples were then centrifuged (Eppendorf 

5400, Westbury, NY) at 12,000 x g for 15 min in a 4 °C cold box. The upper 

layer aqueous phase containing the total RNA was then transferred to a fresh 

1.5 mL microcentrifuge tube. Total RNA was precipitated from the aqueous 

phase with 0.5 mL 2-propanol (Sigma-Aldrich, St. Louis, MO) per 1.0 mL 

TRlzolfrRlreagent. Samples were gently vortexed for 5 sec, kept at 15 to 30°C 

for 10 min and centrifuged at 12,000 x g for 10 min in a 4 °C refrigerator. After 

centrifugation, 2-propanol was discarded and the total RNA pellet was washed 

with 1.0 mL of 75% ethanol (Sigma-Aldrich, St. Louis, MO) solution prepared 

with di-ethyl-propyl carbonate (DEPC) in water (Ambion, Austin, TX). After 75% 

ethanol addition, samples were gently vortexed for 5 sec and centrifuged at 

7,400 x g for 5 min. After centrifugation, the 75% ethanol solution was 

discarded the total RNA pellets were allowed to air dry for 20 min at at 15 to 30 

°C. The total RNA pellets were then dissolved in 20 III of DEPC water and 

measured at 260 and 280 nm using the ND-1000 (NanoDrop Technologies, 

Wilmington, DE). 
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vii. Synthesis of eDNA. 

cDNA was prepared from 1 to 5 Ilg of SH-SY5Y and TPA-HL-60, 

respectively, total RNA in 20 III containing 1 X first strand buffer, 10 mM 

dithiothreitol (OTT), 0.25 mM 2'-deoxynucleoside 5' triphosphate (dNTPs), 

0.015 llg/mL random primers, and 15 U/1l1 moloney murine leukemia virus (M

MLV) (Invitrogen Corp., Grand Island, NY). All reactions were prepared on wet 

ice. Negative control reactions, absent of the reverse transcriptase M-MLV, 

were prepared in parallel and supplemented M-MLV with DEPC water. 

Reverse transcription reactions were incubated in a GeneAmp 2400 

Thermocycler (Eppendorf, Westbury, NY) for 1 hat 37°C followed by 10 min at 

67°C. Reactions were stored at -80°C. 

viii. Measurement ofgene expression. 

Real-time PCR was performed using 1 III of cDNA as the template in 20 

,.d containing 1X Universal PCR Master Mix, 0.4 11M probe, and 0.4 11M of both 

sense and antisense primers in a 7900 HT Fast Real Time PCR System 

(Applied Biosystems Inc., Foster City, CA) using the following cycling 

parameters: 2 min at 50°C, 10 min at 95 °c, 40 cycles for 15 sat 95°C, and 1 

min at 60 °C. MOR cDNA was amplified using a TaqMan probe: 5' /56

FAM/CTT-GCG-CCT-CAA-GAG-TGT-CCG-CA/3BHQ_1/-3'; sense primer 5
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T AC-CGT -GTG-CT A-TGG-ACT -GAT -3; and antisense primer 5-ATG-A TG

ACG-TAA-ATG-TGA-ATG-3. Glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) cDNA was used as an internal control and ampli'fied using the 

TaqMan probe: 5'-56FAM/CCC-CAC-TGC-CAA-CGT -GTC-AGT -G/3SHQ-3'; 

sense primer 5'-GGA-AGC-TCA-CTG-GCA-TGG-C-3'; and antisense primer 5'

TAG-ACG-GCA-GGT-CAG-GTC-CA-3'. Probes and primers used in this study 

were synthesized by Intergrated DNA Technologies (Coralville, IA). 

I 
1 

ix. peR Data Analysis. 

The changes in MOR expression between treatment groups compared to 

control groups were determined by real-time PCR. Real-time PCR cycle 

threshold values (Ct), from triplicate real-time PCRs per treatment, were 

obtained from the ASI 7900 HT Fast Real Time PCR System. First, ~Ct values 

were calculated as follows: Average ~Ct MOR value - average ~Ct GAPDH 

value. Next, MCt values were determined using the equation: Average ~Ct 

treatment- ~Ct control. Fold, changes in MOR expression, normalized to control, 

were than calculated using the 2-MCt equation (Livak and Schmittgen, 2001). In 

I all experiments, GAPDH was used as an internal control to normalize any 

differences in total RNA additions in the reverse transcription reactions. I 
i 
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x. Measurement of cytokines. 

Cytokines secreted by TPA-HL-60 cells were measured using a 96-well 

human pro-inflammatory cytokine tissue culture kit with slight modification to the 

manufacturer's procedure (Meso Scale Discovery, Gaithersberg, MD). After 

treatment, supernatants were centrifuged at 12,000 x g for 1 min in order to 

remove cellular debris. Culture filtrates were then stored at -800 C until the 

assays were performed. Assay wells were initially blocked with 1 % (w/v) milk 

for 1 h at room temperature (RT) on a plate shaker at a speed setting of 5 (Lab

line Instruments, Inc. Melrose Park, IL). Measurement of 

electrochemiluminescent signal intensity was determined on the SECTOR 2400 

instrument (Meso Scale Discovery, Gaithersberg, MD). Calibrator solutions 

were diluted in RPM I 1640 medium supplemented with 20% FBS, 100 U 

penicillin, and 100 Ilg/mL streptomycin, which were the medium conditions used 

in the cultivation of TPA-HL-60 cells, in a concentration range of 10,000 to 2.4 

pglmL. Background signal (medium alone) was subtracted and a linear 

regression model was used to fit the data. 

xi. Filtration of TPA-HL-60 eM. 

TPA-HL-60 cells were incubated with and without LPS (0.5 mg/mL) for 

24 h. After LPS treatment, the conditioned medium (CM) was centrifuged over 
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a YM-3 kDa centrifugal column filter according to the manufacture's protocol 

(Millipore, Billerica, MA), for 90 min at 2800 rpm using a Sorvall 6000D 

(Newton,CT) centrifuge. At the end of centrifugation, the column filtrate was 

collected and the retentate was re-suspended in RPMI 1640 medium 

supplemented with 20% FBS, 100 U penicillin, and 100 J.lg/mL streptomycin to 

the original volume filtered. The CM was then overlaid onto sub-confluent SH

SY5Y cells for 24 h. The use of YM-3 kDa centrifugal device in the separation 

of molecules with based on molecular weight, according to the 

recommendations established by the manufacture (Miilipore, Billerica, MA), 

recovers 90 to 100% of molecules with molecular weights greater than 5 kDa in 

the rete nate. 

xii. Neutralization of TNF-a and GM-CSF. 

TPA-HL-60 cells were grown with and without LPS (0.5 mg/mL) for 24 h. 

After LPS treatment, TPA-HL-60 supernatants were pooled, filter sterilized, and 

treated with either anti-TNF-a (10 J.lg/mL), anti-GM-CSF (2 J.lg/mL). or both anti-

TNF-a and anti-GM-CSF for 1 hat 370 C (Gomes et aI., 2005). After 

neutralization, the CM was overlaid onto actively growing SH-SY5Y cells for 24 

h. 
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xiii. Statistical analysis. 

Data in this study are represented as the mean ± SO. The number of 

replicates per treatment group used in each experiment is noted in the figure 

legends. Differences among treatment groups were analyzed by a one-way 

ANOVA, followed by a Tukey's post hoc test or a two-way ANOVA, followed by 

a Bonferroni's Multiple Comparison Test. Unless noted otherwise, all 

experiments were performed at least three times. 
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Results 

i. Effects of METH and H20 2 on SH-SY5Y cell viability. 

Numerous studies have indicated a correlation between increased ROS 

levels and decreased cell viability (Trachootham et aI., 2008). Therefore, in 

order to maximize the possibility of correlating changes in ROS accumulation 

with changes in MOR expression in viable populations of cells, subsequent 

experiments were performed with sub-lethal concentrations of METH and H20 2, 

i.e., less than a 50% reduction in cell viability. The 'lethal dosages of METH and 

H20 2 were determined using the alamarBlue assay. SH-SY5Y cells were 

treated with various concentrations of METH (0.85 to 6.8 mM) or H20 2 (25 to 

400 ~M) for 24 hand 48 h (Figure 2A, B). After 24 h of treatment, there was a 

significant decrease in cell viability with the highest METH dosage tested. After 

48 h of treatment, viability was reduced to 75% with 0.85 mM METH and to 

60% with 1.7 mM METH. SH-SY5Y treated for 24 h with concentrations of 100 

~M H20 2 and above had significantly reduced cell viability from 55% to 20%. 
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Figure 2. METH and H20 2 cellular toxicity. (A) SH-SY5Y cells were treated 
with saline (control). 0.85. 1.7.3.4, or 6.8 mM METH for 24 or 48 h. (B) SH
SY5Y cells were treated with saline (control). 25, 50. 100, 200. or 400 ~lM H20 2 

for 24 or 48 h. The alamarBlue assay was used to detennine cell viability 
(indicated as % control). Values are the means ± SD of four replicates per 
treatment. Bonferroni's Multiple Comparison Test was used to determine 
significant differences. *p < 0.05, **p < 0.01.**p < 0.01 and ***p < 0.001 
compared to controls at the same time point. 
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i ii. Effect of METH on intracellular accumulation of ROS. 

J METH-induced neurotoxicity is thought to involve increased levels of 

! dopamine, itself a mild neurotoxin, and dopamine-derived reactive oxygen 
i 

species [ROS] (Filloux and Townsend, 1993; Riddle et aI., 2006; Thomas et aI., 

2009). In this study, CLSM was used to examine intracellular accumulation of 

ROS in SH-SY5Y cells in order to further maximize the possibility of correlating 

changes in ROS accumulation with changes in MOR expression. The 

concentrations of METH used here were found to decrease SH-SY5Y cell 

viability. The ROS indicator, DHR123, can passively diffuse into cells where it 

undergoes oxidation in the presence of H20 2 and peroxidases to form 

fluorescent rhodamine 123. Once DHR123 enters the cell and becomes 

oxidized it cannot diffuse across the plasma membrane; essentially remaining 

trapped within the cell (Henderson and Chappell, 1993). 

SH-SY5Y cells were treated with saline, 0.85 mM METH, or 1.7 mM 

METH for 48 h. ROS accumulation increased in the METH-treated cells in a 

dose- and time-dependent manner (Figure 3D, E). After 48 h, 0.85 mM METH 

increased ROS accumulation by 50% compared to the saline control, and 1.7 

mM METH increased ROS levels to 150% above control level. In addition, 

distinct morphological changes in the form of cell body contraction were 

observed when the SH-SY5Y cells were treated with 1.7 mM METH compared 

to the control (Figure 3A, C). 
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Figure 3. METH-induced intracellular accumulation of ROS. (A-C) 
Representative confocal images depicting ROS levels in cell cluster ROI and 
subtracted background ROI. Cell cluster ROI, circled in white, are numbered in 
red from 1 to 10 and background ROI, circled in blue, are numbered in red 11 to 
20. SH-SY5Y cells were treated with (A, 0) saline (control), (8, 0) 0.85 mM 
METH, or (C, 0) 1.7 mM METH for 48 h. (E) SH-SY5Y cells were treated with 
saline (control) or 0.85 mM METH for 6, 24, and 48 h. Relative levels of ROS 
(indicated as % mean fluorescence), were determined using OHR123 and 
confocal microscopy. Values are the means ± SO of three microscopic fields 
from three replicates per treatment. Tukey's post hoc test was used to 
determine statistically significant differences. *p < 0.05, **p < 0.01, and ***p <I 

I 0.001 compared to controls. AMp < 0.001,1.7 mM METH compared to 0.85 mM 
f METH.

I, 32 

I 



I 
, 


iii. Effects of METH on SH-SY5Y MOR expression. 

Initial experiments were performed to assess changes in the MOR 

expression under control conditions during the time points examined in this 

study. SH-SY5Y cells were treated with saline for 0,6,24 and 48 h. No 

'I significant changes in MOR expression were observed. The lack of any 

t 
I significant difference between the time points examined indicates that SH-SY5Y 

MOR expression remained stable from 0 to 48 h, under control (saline) 

1 conditions, post the 24 h recovery period after initial seeding. Therefore, 

subsequent time course experiments compared experimental treatments to the 

indicated control (Figure 4). 

In order to identify a potential role for METH-induced ROS accumulation 

in MOR expression, measurement of MOR expression in the SH-SY5Y cells 

treated with METH, at concentrations corresponding with previously observed 

conditions where METH induced elevated intracellular levels of ROS, was 

performed. Real time peR indicated MOR expression increased approximately 

50% after treatment with either 0.85 mM or 1.7 mM METH (Figure SA). Time-

course experiments showed that the highest level of MOR expression was 

reached after 48 h with 0.85 mM METH (Figure 58). 
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Figure 4. SH-SV5V MOR expression time course. Total RNA from SH-SY5Y 
cells were harvested at 0,6,24, and 48 h. Real-time peR was used to 
measure MOR and GAPDH amplification. Relative changes in MOR 
expression were determined using the zMCt equation with GAPDH serving as 
the internal standard. The °h time point severed as the control. Tukey's post 
hoc test was used to determine statistically significant differences between time 
points. No statistically significant differences were detected between the time 
points analyzed. 
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Figure 5. METH-induced MOR expression. (A) SH-SY5Y cells were treated 
with saline (control), 0.85, or 1.7 mM METH for 48 h. (8) SH-SY5Y cells were 
treated with saline (control) or 0.85 mM METH for 6,24, and 48 h. Real-time 
peR was used to measure MOR and GAPOH amplification. Relative changes 
in MOR expression were determined using the 2"MCt equation with GAPOH 
serving as the internal standard. Values are the means ± SO of six replicates 
per treatment. Tukey's post hoc test was used to determine statistically 
significant differences. *p < 0.05 and **p < 0.01 compared to controls. 
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iv. Effects of H20 2 on SH-SY5Y MOR expression. J 

j 
I 
~ 

In this study, changes in ROS levels were assessed using DHR123, 1 
I which indirectly measures the ROS H20 2 through the emitted fluorescence of 

i rhodamine 123. Since increased levels of H20 2 were detected in response to 

I METH treatment, MOR expression was measured, using real time peR, in SH

I 
i 

SY5Y cells containing sub-lethal levels of H20 2 to see if there was a similar 

increase in MOR expression as observed with METH. All three concentrations 
t 
1 of H20 2 tested significantly increased MOR expression by 50-60% above the 
t 

control; however, none of the concentrations tested produced a dose-

dependent effect on MOR expression (Figure 6A). This suggests that the 

concentrations of H20 2 saturated the cellular transcriptional response with 

regard to MOR expression. Time-course experiments showed that the highest 

level of MOR expression was reached 24 h after treatment with 20 liM H20 2 

(Figure 68). 
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Figure 6. H20 2-induced MOR expression. (A) SH-SY5Y cells were treated 
with saline (control), or 10, 20, or 40 JlM H20 2 for 24 h. (8) SH-SY5Y cells were 
treated with saline (control) or 20 JlM H202 for 3,6, or 24 h. Real time-peR was 
used to measure MOR and GAPDH amplification. Relative changes in MOR 
expression (fold difference) were determined using the 2-MCt equation with 
GAPDH serving as the internal standard. Values are the means ± SD of six 
replicates per treatment. Tukey's post hoc test was used to determine 
statistically significant differences between time pOints. *p < 0.05 compared to 
controls. 
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v. 	 Effect of vitamin E on METH-induced ROS accumulation in SH-SY5Y 

and SH-SY5Y MOR expression. 

The observed H20 2-induced increase in MOR expression supported our 

hypothesis that METH-induced ROS serves as a mechanism for increased 

expression of the MOR. To test this hypothesis further, SH-SY5Y cells were 

pre-treated with the antioxidant, vitamin E, for 3 h and then treated with 0.85 

mM METH. Vitamin E is a commonly know anti-oxidant and has been shown in 

previous studies using SH-SY5Y to block the accumulation of ROS (Wu et aI., 

2007). Using 100 J.lM vitamin E, METH-induced ROS levels were decreased to 

those similar to the control. Vitamin E (10 J.lM) was able to partially attenuate 

the METH-induced increase in ROS accumulation to 35% below the METH 

treatment group (Figure 7). 

In MOR expression experiments, 100 J.lM vitamin E was able to attenuate 

the METH-induced increase in MOR expression to 25% above the control 

value. This level was not significantly higher than the control, but was 

significantly lower than with METH treatment. 10 J.lM vitamin E was able to 

partially attenuate the METH-induced increase in MOR expression to 33% 

above the control value (Figure 8). 
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Figure 7. Vitamin E effect on METH-induced ROS accumulation. (A-D) 
Representative confocal images depicting ROS levels in cell cluster ROI and 
subtracted background ROt SH-SY5Y cells were treated with saline (control), 
0.85 rnM METH alone, 100 J.1M vitamin E + 0.85 mM M ETH, or 10 J.1M vitamin E 
+ 0.85 mM METH for 48 h. Relative levels of ROS, (indicated as % mean 
fluorescence), were determined using DHR123 and confocal microscopy. 
Values are the means ± SD of three microscopic fields from three replicates per 
treatment. Tukey's post hoc test was used to determine statistically si~ificant 
differences between time points. **p < 0.01 compared to the control. p<0.01, 
METH alone compared to 100 J.1M vitamin E + METH. 
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Figure 8. Vitamin E effects on SH-SY5Y MOR expression. SH-SY5Y cells 
were treated with saline (control), 0.85 mM METH, 100 11M vitamin E + 0.85 mM 
METH, or 10 11M vitamin E + 0.85 mM METH for 48 h. Real time-PeR was 
used to measure MOR and GAPOH amplification. Relative changes in MOR 
expression were determined using the 2-MCt equation with GAPOH serving as 
the normalizing standard. Values are the means ± SO of three microscopic 
fields from six replicates per treatment. Tukey's post hoc test was used to 
determine statistically significant differences between time points. ***p < 0.001 
compared to the control. /\p < 0.05 METH alone compared to 100 JlM vitamin E 
+ METH. 
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I vi. Effect of LPS on TPA-HL-60 ROS accumulation. 

I 
 Exposure to LPS increases the production of ROS in murine 

macrophages (Hsu and Wen, 2002; Kim et aI., 2004). Therefore, in this study 

HL-60 cells, differentiated for 48 h with 16 nM TPA (TPA-HL-60 cells) were 

treated with 0.125, 0.250, or 0.500 mg/mL LPS for 24 h. Confirmation of 

differentiation was determined by the phenotypic shift from suspension culture 

to an adherent culture as observed using phase contrast microscopy. After 

LPS treatment, the cells were treated with 20 flM of the ROS indicator, 

DHR123, for 30 min. CLSM was used to examine changes in intracellular 

accumulation of ROS in the TPA-HL-60 cells resulting from the LPS treatment. 

Saline solution (0.9% w/v). added at an equivalent volume, served as a vehicle 

control. Figure 9A shows representative confocal images of TPA-HL-60 cells 

treated with LPS, then DHR123, in order to assess intracellular ROS 

accumulation. TPA-HL-60 cells treated with 0.250 and 0.500 mg/mL LPS 

significantly increased intracellular ROS when compared to the vehicle control 

(Figure 98). 
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Figure 9. Effect of LPS on TPA-HL-60 reactive oxygen species (ROS) 
accumulation. TPA-HL-60 cells were treated with 0.9% saline (vehicle 
control). 0.125 mg/mL LPS, 0.250 mg/mL LPS, or 0.500 mg/mL LPS for 24 h. 
(A) Representative confocal images demonstrating ROS levels in cell cluster 
region of interest (ROI) and subtracted background ROI. (8) Relative levels of 
ROS (indicated as % mean fluorescence) were determined using DHR123 and 
confocal microscopy. Values are the means ± SD of three microscopic fields 
from three replicates per treatment in three different experiments. Significant 
differences between treatment groups were determined using a Tukey's post 
hoc test. *p < 0.05 compared to vehicle control. 
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I 	 vii. Effect of Vitamin E (VE) on LPS-induced ROS accumulation in TPA-HL

60 cells. 

To further investigate if RDS accumulation in TPA-HL-60 cells was 

directly related to LPS treatment, we then determined whether pre-treatment 

with the anti-oxidant, Vitamin E (VE), could block the LPS-induced 

accumulation of RDS in the TPA-HL-60 cells. Figure 10A shows representative 

confocal images of TPA-HL-60 cells treated with 0.500 mg/mL LPS alone 

(LPS), 100 JlM VE alone for 3 h (VE), or pre-treated with 100 JlM VE for 3 h 

prior to treatment with 0.500 mg/mL LPS (VE+LPS). As expected, LPS 

treatment alone significantly increased RDS by approximately 60% when 

compared to the vehicle control (0.9% saline + 0.1 % ethanol) [Figure 108]. 

There was no significant difference in RDS in the cells treated with VE alone 

compared to control. RDS accumulation was inhibited in the cells treated with 

VE+LPS compared to LPS alone by approximately 40% (Figure 108). 
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Figure 10. Effect of Vitamin E (VE) on LPS-induced ROS accumulation in 
TPA-HL-60 cells. TPA-HL-60 cells treated with 0.9% saline (vehicle control), 
0.500 mg/mL LPS alone (LPS), pre-treated with 1 00 ~M VE alone for 3 h (VE), 
or pre-treated with 1 00 ~M VE plus 0.500 mg/mL LPS (VE+LPS) for 24 h. (A) 
Representative confocal images demonstrating ROS levels in the cell cluster 
region of interest (ROI) and subtracted background ROI. (8) Relative levels of 
ROS (indicated as % mean fluorescence) were determined using DHR123 and 
confocal microscopy. Significant differences between treatment groups were 
determined using a Tukey's post hoc test. **p < 0.01 compared to vehicle 
control, I\p < 0.05 compared to LPS alone. 
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i viii. Effect of LPS on TPA-HL-60 MOR expression I 

l 
1 

In order to examine whether LPS induced ROS accumulation modulated 

TPA-HL-60 MOR expression, TPA-HL-60 cells were treated with 0.500 mg/mL 
I 

LPS alone (LPS) for 24 h, or pretreated with 100 j.1M VE for 3 h prior to LPS 

treatment (VE+LPS). Relative real-time peR showed that LPS at that 

concentration increased MOR expression by approximately 50% compared to 

control (Figure 11). VE alone did not have a significant effect on MOR 

expression; however, VE pre-treatment (VE+LPS) attenuated LPS-induced 

MOR expression compared to LPS alone (Figure 11). 
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Figure 11. Effect of LPS on TPA-H L-60 MOR expression. TPA-HL-60 cells 
were treated with 0.9% saline (vehicle control), 0.500 mg/mL LPS alone (LPS), 
100 IlM vitamin E alone (VE), or 100 IlM+ 0.500 mg/mL LPS (VE+LPS) for 24 h. 
Relative changes in MOR expression (fold difference) were determined using 
the 2-MCt equation with GAPDH serving as the intemal standard. Values are 
the means ± SD of six replicates per treatment from two different experiments. 
Significant differences between treatment groups were determined using a 
Tukey's post hoc test. **p < 0.01 compared to vehicle control, M p < 0.01 LPS 
compared to VE+LPS. 
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i ix. Effect of TPA-HL-60 conditioned medium (eM) on SH-SY5Y MOR 

1 
~ expression. 

j We next used relative real-time peR to examine if LPS-induced ROS 

t accumulation in the TPA-HL-60 cells would have an effect on MOR expression 

in SH-SY5Y. The eM from the TPA-HL-60 cells treated with LPS alone, VE 

alone, or VE+LPS was overlaid onto actively growing SH-SY5Y cells for 24 h. 

To note, the eM from LPS-treated TPA-HL-60 cells could contain ROS, 

produced by the TPA-HL-60, as well as, pro-inflammatory cytokines. eM from 

the LPS-treated (eM, LPS) TPA-HL-60 cells significantly increased MOR 

expression in the SH-SY5Y cells by approximately 50% when compared to the 

vehicle control (Figure 12), whereas VE treatment alone (eM, VEl had no 

significant effect on MOR expression compared to control. MOR expression in 

SH-SY5Y cells incubated with eM from the VE+LPS treatment group (eM, 

VE+LPS) was not Significantly different from the eM, LPS group (Figure 12). 
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Figure 12. Effect of TPA-HL-60 conditioned medium (eM) on SH-SY5Y 
MOR expression. Conditioned medium (CM) from TPA-HL-60 cells treated 
with 0.9% saline + 0.1 % ethanol (CM, vehicle control), 0.500 mg/mL LPS alone 
(CM, LPS), 100 Il-M vitamin E alone (CM, VE), or 100 Il-M+0.500 mg/mL LPS 
(CM, VE+LPS) was overlaid onto SH-SY5Y cells for 24 h. Relative changes in 
MOR expression (fold difference) were determined using the 2-MCt equation, 
with GAPDH serving as the internal standard. Values are the means ± SD of 
six replicates per treatment from three separate experiments. Significant 
differences between treatment groups were determined using a TlJkey's post 
hoc test. *p < 0.05 compared to CM, vehicle control. 
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The direct effect of LPS on SH-SY5Y was examined to confirm if in fact 

that the eM from LPS treated TPA-HL-60 cells was responsible for the increase 

in SH-SY5Y MOR expression. The eM from the TPA-HL-60 cells treated with 

LPS or vehicle control and medium spiked with LPS was overlaid onto actively 

growing SH-SY5Y cells for 24 h. eM from the LPS-treated (eM, LPS) TPA-HL

60 cells significantly increased MOR expression in the SH-SY5Y cells by 

approximately 60% when compared to the vehicle control. The medium spiked 

with LPS (M, LPS) had no significant effect on MOR expression compared to 

vehicle control (Figure 13). These results suggest that TPA-HL-60 cells, a 

macrophage like cell, treated with LPS, an endotoxin, is in fact effecting the 

expression of MOR in SH-SY5Y, a neuronal cell model, independent of LPS 

itself acting directly on SH-SY5Y. 
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Figure 13. Effect of LPS on SH-SY5Y MOR expression. Conditioned 
medium (CM) from TPA-HL-60 cells treated with 0.9% saline + 0.1 % ethanol 
(CM, vehicle control), 0.500 mg/mL LPS alone (CM, LPS), or medium spiked 
with 0.500 mg/mL LPS (M, LPS) was overlaid onto SH-SY5Y cells for 24 h. 
The M, LPS treatment was kept at same conditions as the CM, vehicle control 
and CM, LPS treatments to account for any possible degradation of LPS during 
the incubation period. Relative changes in MOR expression (fold difference) 
were determined using the 2-MCt equation, with GAPOH serving as the internal 
standard. Values are the means ± SO of six replicates per treatment from three 
separate experiments. Significant differences between treatment groups were 
determined using a Tukey's post hoc test. ***p < 0.001 compared to CM, 
vehicle control. 
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x. Effect of LPS retentate and filtrate eM on SH-SY5Y MOR expression. 

We next used a centrifugal filtration process to determine if the increased 

MOR expression in the SH-SY5Y cells incubated with CM from LPS-treated 

TPA-HL-60 cells was a cytokine mediated event. Cytokines that are known to 

modulate MOR expression are larger than 3 kDa; therefore, centrifugal filtration 

serves as an effective method for collection of CM void of cytokine mediators 

(Curts et aI., 1997). The use of YM-3 kDa centrifugal device in the separation 

of molecules with based on molecular weight, according to the 

recommendations established by the manufacture (Miilipore, Billerica, MA), 

recovers 90 to 100% of molecules with molecular weights greater than 5 kDa in 

the retenate. TPA-HL-60 cells were treated with 0.500 mglmL LPS for 24 h. 

CM from both the vehicle control (0.9% saline) and LPS-treated cultures were 

separated into retentate (molecules> 3 kDa) and filtrate (molecules < 3 kDa) 

fractions. These fractions were then overlaid onto actively growing SH-SY5Y 

cells for 24 h. There was a significant 40% increase in SH-SY5Y MOR 

expression in the CM, LPS retentate compared to the CM, vehicle control 

retentate. However, the CM, LPS filtrate did not significantly affect SH-SY5Y 

MOR expression when compared to the CM, vehicle control filtrate CM (Figure 

14). These results suggest that molecules less than 3 kDa, e.g. ROS, where 

not causing an increase in SH-SY5Y MOR expression, but suggesting the 

molecules responsible, e.g. cytokine, were greater than 3 kDa. 
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Figure 14. Effect of LPS retentate and filtrate eM on SH-SY5Y MOR 
expression. Conditioned medium (CM) from TPA-HL-60 cells treated with 
0.9% saline + 0.1 % ethanol (CM, vehicle control) or 0.500 mglmL LPS alone 
(CM, LPS) was separated into retentate and filtrate fractions by centrifugal force 
ultrafiltration and overlaid onto SH-SY5Y cells. Relative changes in MOR 
expression (fold difference) were determined IJsing the 2-MCt equation, with 
GAPDH serving as the internal standard. Values are the means ± SD of six 
replicates per treatment from three separate experiments. Signi'ficant 
differences between CM, vehicle control retentate, and CM, LPS retentate, or 
CM, vehicle control filtrate and CM, LPS filtrate were determined by a two-way 
ANOVA followed by Bonferroni's Multiple Comparison Test. *p < 0.05 CM, 
LPS-retenate compared to CM, vehicle control- retenate. 
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j 
xi. Effects of LPS on TPA-HL-60 cytokine secretion. 

j 
Levels of cytokines present in the CM from the TPA-HL-60 cells were 

I determined using a sandwich immunoassay in conjunction with an 

I electrochemiluminescent compound. TPA-HL-60 cells treated for 24 h with 

0.500 mglmL LPS exhibited increased IL-1~, IL-2, IL-6, IL-10, IL-12p70, IFN-y, 

TNF-a, and GM-CSF secretion, but decreased IL-8 secretion (Table I). Pre

treatment of TPA-HL-60 cells with VE for 3 h significantly attenuated the 

secretion of both TNF-a and GM-CSF by approximately 30% (Figures 15A, 8). 

A reason for the CM, VE+LPS treatment group TNF-a, and GM-CSF levels not 

at levels to the controls would suggest other factors aside from RDS modulate 

their secretion. Although a role in the modulation of MDR expression by IL-8 

and IL-12p70 remains unclear, in this experiment CM from the VE alone 

treatment significantly increased IL-8 and IL-12p70 levels when compared to 

the vehicle control (Table III). 
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i 
~ Table I. Changes inTPA-HL-60 cytokine levels in response to LPS1 

I treatment. 

eM, vehicle 
t 
1 cytokine control eM, LPS eM, VE eM, VE+LPS! 
j 

IL-1~ 240.90(±29.82) 602.76(±47.79)*** 238.86(±21.27)ns 547.41 (±43.48)*** 

IL-2 3.74(±0.28) 7.27(±0.32)*** 4.498(±0.16)ns 7.64(±1.45)*** 

IL-6 345.22(±26.98) 4917.04(±272.38)*** 448.1 (±42.29)ns 4753.54(±81.33)*** 

IL-8 328.31 (±3.54) 102.49(±5.79)*** 387.17(±19.84)*** 108.96(±1.57)*** 

IL-10 49.60(±1.90) 424.27(±28.56)*** 46.22(±3.02)ns 399.96(±14.76)*** 

IL-12p70 0.90(±0.07) 2.49(±0.11)*** 1.18(±0.11)* 2.45(±0.25)*** 

IFNy 1.93(±0.27) 5.20(±0.43)** 2.46(±0.62)ns 4.93(±0.39)*** 

TNF-a 9.98(±1.55) 729.57{±78.58)*** 13.35(±1.38)ns 508.94(±26.85)*** 

GM-CSF 4.53(±0.67) 142.36(±12.72)*** 4.75(±0.22)ns 116.06(±3.52)*** 

Table I Legend: Conditioned medium (CM) from TPA-HL-60 cells treated with 0.9% 
saline+0.1 % ethanol (CM, vehicle control), or 0.500 mg/mL LPS (CM, LPS), or 100 11M 
vitamin E (CM, VEl, or 100 I1M+ 0.500 mg/mL LPS (CM, VE+LPS) for 24 h was 
assayed for IL-1j3, IL-2, IL-6, IL-8, IL-10, IL-12p70, INFy, TNF-a, and GM-CSF levels. 
The concentrations of cytokines measured are expressed in units of pg/mL. Values 
are the means ± SD of five replicates per treatment from 4 independent experiments. 
Significant differences between treatment groups were determined using Tukey's post 
hoc test. *p < 0.05, **p < 0.01, ***p < 0.001 compared to CM, vehicle control, ns, not 
significant when comparing CM, VE to CM vehicle control. 
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Figure 15. Effects of LPS and VE pre-treatment on TPA-HL-60 cytokine 
secretion. (A-B) Conditioned medium (CM) from TPA-HL-60 cells treated with 
0.9% saline + 0.1 % ethanol (CM, vehicle control), 0.500 mglmL LPS alone (CM, 
LPS), 100 JlM vitamin E alone (CM, VE), or 100 JlM+ 0.500 mglmL LPS (CM, 
VE+LPS) for 24 h was assayed for TNF-a and GM-CSF levels using a 
multiplex, electrochemiluminescent sandwich immunoassay. Values are the 
means ± SD of five replicates per treatment from four independent experiments. 
Significant differences between treatment groups were determined using a 
Tukey's post hoc test. ***p < 0.001 compared to CM, vehicle control, I\I\A p < 
0.001 CM, LPS compared to CM, VE+LPS. 
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xii. 	 Effect of neutralization of TNF-a and GM-CSFpresent in TPA-HL-60 CM 

on SH-SY5Y MOR expression. 

TNF-a and GM-CSF are cytokines known to effect MOR expression and 

therefore neutralization of the cytokines present in TPA-HL-60 CM would 

presummably have an effect on SH-SY5Y MOR expression. The sandwich 

immunoassays indicated that both TNF-a and GM-CSF levels were modulated 

by the antioxidant, VE. This result was expected since LPS is known to 

modulate cytokine production and at the concentrations of LPS here, VE was 

effective in blocking ROS accumulation in TPA-HL-60 cells. We next 

determined the effects of neutralization of the TNF-a and GM-CSF present in 

TPA-HL-60 CM on MOR expression in SH-SY5Y cells. In these experiments, 

anti-TNF-a, anti-GM-CSF, or both were added to the CM from the TPA-HL-60 

cells, with and without LPS treatment, for 1 h at 37° C prior to being overlaid 

onto actively growing SH-SY5Y cells. 

SH-SY5Y MOR expression was significantly increased by approximately 

50% following neutralization of GM-CSF present in the CM from both the 

vehicle control (vehicle control+anti-GM-CSF) and LPS treatment (LPS+anti-

GM-CSF) groups compared to the vehicle control alone CM (Figure 16A). GM

CSF down-regulates MOR expression through actions mediated on IL-4 (Kraus 
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et al. 2003) and although at relatively low concentrations in the vehicle control 

CM, was effective in leading to the observed increase in MOR expression. 

However, neutralization of TNF-a had no effect on SH-SY5Y MOR expression 

in the vehicle control+anti-TNF-a group, and partially attenuated SH-SY5Y 

MOR expression in the LPS+anti-TNF-a group (Figure 16B). Simultaneous 

neutralization of the GM-CSF and TNF-a present in the TPA-HL-60 CM 

significantly increased SH-SY5Y MOR expression by 60% and 50% in the 

vehicle control-anti-GM-CSF+anti-TNF-a and LPS-anti-GM-CSF+anti-TNF-a 

groups, respectively, when compared to the vehicle control (Figure 16C). 
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Figure 16. Neutralization of TNF-a and GM-CSF present in TPA-HL-60 CM. 
TPA-HL-60 cells were treated with 0.9% saline (vehicle control) or 0.500 mg/mL 
LPS (LPS) for 24 h. Neutralizing antibodies to (A, C) GM-CSF (2 ~g/mL), 
and/or (8, C) TNF-a (1 0 ~g/mL) were added first to TPA-HL-60 CM from vehicle 
control and LPS treatment groups for 1 h at 37° C, and then overlaid onto SH
SY5Y cells for 24 h. Relative changes in SH-SY5Y MOR expression (fold 
difference) were determined using the 2-MCt equation, with GAPOH serving as 
the internal standard. Values are the means ± SO of six replicates per 
treatment from two independent experiments. Sign ificant differences between 
treatment groups were determined IJsing a Tukey's post hoc test. *p < 0.05, **p 
< 0.01 compared to vehicle control. All neutralization experiments were 
performed 2 times. 
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I 
 Discussion 

In the first part of this project, treatment of SH-SY5Y cells, a 

dopaminergic neuronal cell model, with METH, a psychostimulant, increased 

the intracellular accumulation of ROS. The concentrations of METH and H202 

used here are similar to those reported in other in vitro studies where the 

investigators examined a correlation between cell viability and changes in 

dopmaine receptor and heme oxygenase-1 expression (Larouche et aI., 2008; 

Huang et aI., 2009). METH treatment also produced a significant increase in 

the expression of the MOR that coincided with the increased level of 

intracellular ROS. In addition, vitamin E, an antioxidant, reduced the 

accumulation of ROS and attenuated METH-induced MOR expression. These 

findings indicate a role for ROS Signaling in METH regulation of MOR 

expression in SH-SY5Y cells. 

METH time-course experiments demonstrated that the increase in ROS 

preceded the increase in MOR expression, suggesting a potential role for ROS 

in modulating MOR expression. Additional evidence that ROS can affect MOR 

expression was observed when SH-SY5Y cells were treated with H20 2 (Figure 

6A). However, the data indicated that the effect of ROS on MOR expression 

was not concentration-dependent (Figure 68). However, while METH-induced 
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ROS accumulation was dose-dependent (Figure 3D), METH-increased MOR 

expression was found not to be dose-dependent (Figure 5A). Also, 0.85 mM 

METH induced a sigl1i'ficant increase in ROS at 6 h post treatment, but 

increased MOR expression was not observed until 48 h. This suggested that a 

critical level of ROS is needed to influence the expression of the MOR. This 

was clearly apparent since shifting the redox status of the cytoplasm to a more 

oxidized state, by way of increased ROS accumulation, failed to increase MOR 

expression. Furthermore, the lack of a dose-dependent effect on H20 2-induced 

MOR expression supports our hypothesis that a critical intracellular 

concentration of ROS is necessary to produce a change in MOR expression. 

Taken together, these data indicate that the modulation of MOR expression by 

METH involves some degree of ROS signaling and may involve other factors 

known to modulate MOR expression e.g. cytokines (Kraus, 2009). 
j
•l 
i More importantly, these results highlight the existence of the possible j 
I coupling of the dopaminergic and opioidergic pathways in neuronal cells by 
i 
t, ROS potentially signaling via transcription factors known to regulate MOR 

expression, e.g. NFKB. Preliminary evidence from this study indicated the up-

regulation of SH-SY5Y MOR expression subsequent to METH treatment at 

I concentrations that increased intracellular ROS accumulation in SH-SY5Y lead 

I 
to an increase in the p50/p65 mRNA levels (data not shown). Convergence of 

t 
! 

the two pathways has been documented with several addictive substances 
i 
I 
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including nicotine, alcohol, and cocaine (Zhu et aI., 2006). The dopaminergic 

pathway encompasses the motivational reward circuitry in the brain and utilizes 

dopamine as a key signaling molecule in the pathway's activation; whereas, the 

I 
j activation of the opioidergic pathway is often associated with euphoria and 

pleasure. These two pathways have previously been linked, and studies have 

shown that MOR antagonists limit dopamine's activation of the dopaminergic 

pathway (Wu et aI., 2007b). 

Studies have shown that cross-sensitization of METH to morphine in rats 

correlates with alterations in MOR binding (Lett, 1989; Chiu et al., 2005; Chiu et 

aI., 2006). In this study, the effects of METH on MOR expression (a key 

component of the opioidergic pathway) in a dopaminergic neuronal cell line 

suggests that the drug seeking motivational behaviors of METH users could 

potentially be enhanced by exposure to opioid drugs and that alteration of 

intracellular ROS levels may be one of the molecular mechanisms underlying 

the coupling between the dopaminergic and opioidergic pathways. This seems 

reasonable to suggest since SH-SY5Y cells treated with METH exhibited 

increased levels of MOR expression correlating to increased ROS 

accumulation. This METH increased MOR expression could by attenuated with 

the pre-treatment of vitamin E and concomitant blocking of ROS accumulation. 

i Vitamin E is an antioxidant capable of chelating free radicals. To further 

examine if METH-induced increase in MOR expression is related exclusively to 
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ROS signaling, I pre-treated SH-SY5Y cells with vitamin E and found that 

vitamin E was able to reduce ROS levels and attenuate MOR expression to 

control levels. The findings that vitamin E and ROS accumulation are directly 

related are supported by the studies of Wu et.al. (2007), which demonstrated 

that vitamin E is capable of attenuating METH-induced neurotoxicity and 

increased ROS levels. Taken together, the evidence clearly points to a 

correlation between METH-induced ROS accumulation and MOR expression in 

neuronal dopaminergic cells. 

In these experiments, it was observed that an increase in accumulation 

of ROS coincides with increased MOR expression and decreased cell viability 

in SH-SY5Y cells. However, it is not clear as to the extent that ROS contributes 

to neurotoxicty or whether changes occurring within the cells during the onset of 

toxicity contribute to the observed increase in MOR expression. It is known that 

METH-induced neurotoxicity is associated with other variables independent of 

ROS (Yamamoto et aI., 2010). However, these data show that concentrations 

of H20 2 that did not have an effect on cell viability, e.g., 10 and 20 IlM, 

significantly increased MOR expression. The H20 2 experiments shown here 

further underscore a role for ROS signaling in modulation of SH-SY5Y MOR 

expression. 

Additional studies will need to be performed to assess the effects of ROS 

accumulation on the functionality of the METH-induced MOR in SH-SY5Y cells. 
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Raut et aL (2006) have shown that oxidative stress induced by 3-nitroproprionic 

acid (3-NPA) decreases MOR function in SK-N-SH cells, the parent population 

of the SH-SY5Y cell line. Impairment of MOR function seems to be a 

consequence of a reduction in membrane MOR protein levels following 3-NPA

induced oxidative stress (Raut et al., 2007). However, as the authors of those 

reports pOint out, decreased MOR function could well be a consequence of 

inhibited mitochondrial succinate dehydrogenase activity (Raut et aI., 2007). 

Whereas highly oxidative cellular environments impact MOR function, increased 

MOR expression has been shown to coincide with increased binding of MOR 

agonist and function in SH-SY5Y cells (Borner et al., 2004; Borner et aL, 2007). 

Therefore, it seems reasonable to speculate that the increased expression of 

MOR seen with sub-lethal levels of METH and H20 2 in this study would be 

indicative of increased MOR function. 

The data presented here show that METH treatment of a dopaminergic 

cell model can affect components of the opioidergic pathway. Delineating how 

METH modulates MOR expression and function could also provide new clues 

as to how METH abuse impacts both innate and adaptive immune system 

function (Yu et aI., 2002; In et aL, 2005). Research has shown MOR activation 

suppresses immune function through down regulation of macrophage pro-

inflammatory cytokine secretion (Bidlack, 2000). It seems reasonable to 

speculate that, since METH increases constitutive expression of the MOR, the 
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detrimental consequences of METH abuse might involve opioidergic signaling if 

the increase in MOR expression results in a greater number of MOR receptors 

being activated by either endogenous or exogenous opiates (Roy et aI., 1998). 

In addition, oxidative stress-related events are often associated with pro-

inflammatory cytokine activity. Tumor necrosis factor-alpha (TNF-a) has been 

shown to increase MOR expression (Kraus et aI., 2003) and could be a 

signaling pathway involved in METH-induced ROS accumulation and MOR 

expression. The transcription factor, NFlCB, has been shown to be activated by 

TNF-a and ROS, and could potentially playa role in regulating METH-induced 

MOR expression (Li et aI., 2001). Supporting this idea is the fact that NFlCB 

binding sites have been located in the MOR promoter region (Min et aI., 1994; 

Kraus, 2009). 

In the second part of this project, LPS stimulated the intracellular 

accumulation of ROS and the expression of the MOR in TPA-HL-60 cells 

(Figures 10 and 11), a macrophage cell model, and eM from those cultures 

significantly increased MOR expression in SH-SY5Y cells, a neuronal cell 

model (Figure 12). However, eM TPA-HL-60 cells pre-treated vitamin E prior to 

LPS treatment did not increase MOR expression in SH-SY5Y (Figure 12). 

These findings suggest that an indirect ROS signaling mechanism could be 

responsible, at least in part, for the modulation of MOR expression in SH-SY5Y 

cells overlaid with eM 'from LPS-stimulated TPA-HL-60 cells. 

( 
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Cytokines have been shown to regulate MOR expression (Chang et aI., 

1998; Wei and Loh, 2002; Kraus et aI., 2003; Borner et aI., 2004; Kraus, 2009). 

Our lab previously demonstrated that co-treatment of microvascular endothelial 

cells with IL-1 a and IL-1 ~ increases MOR expression (Vidal et al., 1998), and 

that IL-1 is the cytokine responsible for LPS-induced up-regulation of MOR 

expression in the rat mesentery (Chang et aI., 2001). In this study, the data 

indicated that cytokines present in the CM from LPS-treated TPA-HL-60 cells 

are involved in the control of MOR expression in the SH-SY5Y cells. This 

suggests that ROS, produced by LPS-stimulated TPA-HL-60 cells, indirectly 

influences the up-regUlation of SH-SY5Y MOR expression. But more 

importantly points to a molecule, ROS, that can couple components of the 

I 

neuro (SH-SY5Y)- immune (TPA-HL-60) axis. 


l 


To test the hypothesis that ROS plays a role in the LPS-stimulated 


cytokine secretion in TPA-HL-60 cells, I examined the levels of pro


inflammatory cytokines secreted by TPA-HL -60 cells in response to LPS· 


induced ROS accumulation. Of the cytokines measured, both TNF-a and GM


CSF levels were found to be significantly decreased when ROS accumulation 


was blocked by the antioxidant, VE. 


TNF-a appears to have a positive effect on SH-SY5Y MOR expression 

(Figure 16B). TNF-a stimulates transcription of the MOR gene through 

activation of NFKB (Borner et aI., 2002), and TNF-a increases MOR expression 
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in human T lymphocytes, Raji B cells, U937 monocytes, primary human 

polymorphonuclear leukocytes, and mature dendritic cells (Kraus et aI., 2003). 

These data and data presented in this project, suggest that ROS can increase 

SH-SY5Y MOR expression by inducing the secretion of TNF-a by TPA-HL-60 in 

response to LPS treatment, again highlighting the coupling of the neuroimmune 

axis by signaling molecules such as ROS. 

GM-CSF down-regulates MOR expression in dendritic cells, which may 

involve inhibitory actions by IL-4 (Kraus et aI., 2003). There was an observed 

increase in MOR expression in response to the neutralization of GM-CSF in 

vehicle control+anti-GM-CSF and LPS+anti-GM-CSF treatment groups when 

compared to the vehicle control. These data suggest that only low levels of 

GM-CSF, present in the CM, are necessary to modulate MOR expression since 

the concentration of GM-CSF in the vehicle control was significantly less than 

that of the LPS treatment group (Table III). 

I Results from these studies indicated that neutralization of TNF-a in the 

I LPS treatment group partially attenuated MOR expression. This partial 

1 

attenuation of MOR expression may be due to the effects of pro-inflammatory 

cytokines other than TNF-a in the up-regulation of the MOR. Interestingly, 

I when both TNF-a and GM-CSF were neutralized simultaneously (LPS+anti GM

1 CSF+anti TNF-a), MOR expression was not significantly decreased compared 
~ 

to the LPS treatment group. This indicates that GM-CSF's inhibitory effects on 
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MOR expression only becomes apparent when cytokines capable of increasing 

MOR expression are neutralized, e.g., TNF-a. This underscores the possibility 

that cytokines capable of increasing MOR expression can compensate for one 

another since the simultaneous neutralization of both GM-CSF and TNF-a 

(LPS+anti GM-CSF+anti TNF-a) did not significantly reduce MOR expression 

when compared to the LPS treatment group. 

Our lab has previously hypothesized that, since morphine potentiates 

LPS cytotoxicity, activation of the opioid pathway by morphine in a clinical 

setting could cause an adverse physiological response, i.e., acceleration of 

sepsis to septic shock (Chang et aI., 2001; Ocasio et aI., 2004). The damaging 

consequences of endotoxic shock resulting from exposure to LPS, and the 

subsequent signaling actions mediated by ROS may, in fact, be exacerbated as 

a result of the immunosuppressive effects associated with MOR activation in 

neuronal and non-neuronal cells (Gaveriaux-Ruff et al., 1998; Wang et aI., 

2002). 

These findings suggest that the LPS-induced ROS signaling that occurs 

in immune cells may indirectly regulate the opioidergic pathway by modulating 

MOR expression in neurons. Data presented here also indicate that ROS, 

produced in LPS challenged TPA-HL-60 cells, is involved in modulating the 

secretion of TNF-a and GM-CSF, two cytokines that have previously been 

shown to modulate MOR expression. This mechanism, i.e., LPS-induced ROS 
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production coupled to cytokine secretion in immune cells, can impact molecular 

events in neurons, and highlights one possible way bacterial infection promotes 

molecular communication within the neuroimmune axis. 

In summary, the data presented in this project show that METH 

increases the expression of the MOR in SH-SY5Y cells through a ROS 

signaling mechanism. There was a temporal sequence of events that 

demonstrated that a significant accumulation of ROS precedes increased MOR 

expression. Taken together, these findings suggest that the dopaminergic and 

opioidergic signaling pathways can converge at the level of ROS signaling in 

neuronal cells. Additional findings suggest that the LPS-induced ROS signaling 

that occurs in immune cells may indirectly regulate the opioidergic pathway by 

modulating MOR expression in neurons. 

Future experiments should examine if METH-induced ROS in an animal 

model increases the response to morphine. If an increased response to 

morphine is observed it would be interesting to see if removal of ROS could 

reduce the response. If so, a result of this kind would seem to suggest that 

cross-sensitization of METH to morphine could be minimized by managing 

redox homeostasis; therefore, highlighting the possibility that antioxidant 

treatment or targeting sources of ROS may have a therapeutic potential is 

reducing cross-sensitization of these two drugs of abuse. However, in order to 

determine the importance of METH-induced ROS on an increased response to 

I 

1 

1 
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I 
I morphine, experiments should include treatment with ROS alone, absent of 

METH. In addition, addressing METH-induced ROS levels may provide relief 

for METH addicted individuals by modulating the motivational behaviors linked 

to activation opioidergic pathway through MOR. 

I Also, it would be interesting to see if an LPS treated animal's accelerated 

progression from sepsis to septic shock, resulting from morphine exposure, 

could be attenuated with ROS clearance. If possible, this would seem to 

suggest that attenuating ROS production in immune cells or clearance of ROS 

could prevent the immunosuppressive effects associated with MOR activation in 

the eNS. 

Finally, additional experiments should examine the specific ROS 

involved in the modulation o'f MOR. Moreover, the data from these studies 

indicate ROS, a molecule that participates in a multitude of signaling pathways, 

leads to an increase in MOR expression, a receptor that has an important 

function in pain and immune responses, as well as addiction. And until now, a 

role for ROS in the regulation of the opioidergic pathway via MOR has not been 

identified. Insight into the precise ROS could point to a specific biosynthetic 

route, responsible for a particular ROS production, which could be exploited for 

therapeutic gain for the diseases noted above. 
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