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Abstract 

Polygonum multiflorum, commonly known as Chinese Knotweed, is a tonic herb 

primarily used to enhance bodily functions. Recently, it has been shown to contain strong 

antioxidant, antibacterial and antiviral activity. The extract from the roots of Chinese 

Knotweed was used to assess its antibacterial properties against a broad spectrum of 

bacterial species, including 5 Gram-positive (B. cereus, B. megaterium, S. epidermidis, S. 

mutans and S. pyogenes) and 4 Gram-negative (E. aerogenes, E. coli, P. vulgaris and P. 

aeruginosa). Microtiter assays were carried out to evaluate the antibacterial activity of 

Chinese Knotweed at 0.5%, 1%, 1.5% and 2.5% concentrations in order to determine the 

Minimum Inhibitory Concentration (MIC). Potential synergistic effect of Chinese 

Knotweed and various antibiotics was assessed using the Kirby-Bauer disk method. 

Possible anti-biofilm formation was studied using a Congo-red assay, and biofilm 

quantification was acquired through crystal violet assay. Finally, Chinese Knotweed was 

evaluated on the effects of inhibiting sporulation and germination of B. megaterium. The 

results suggest Chinese Knotweed contains strong antibacterial effects against all the 

bacteria tested in this study and the MIC was 2.5% for all. Chinese Knotweed also 

showed significant synergism with most of the antibiotics tested. In addition, anti-biofilm 

assay indicated that 1% Chinese Knotweed was sufficient to inhibit biofilm formation on 

most the bacteria, while 2% Chinese Knotweed was effective for inhibiting sporulation 

and germination of B. megaterium spores. Thus, Chinese Knotweed may serve as a novel 

compound in the treatment and management of bacterial infections and biofilm 

formation.  
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Introduction 

The medicine world has changed dramatically ever since the discovery of 

Penicillin, the first named antibiotic by Alexander Fleming (Davies and Davies, 2010). 

Antibiotics marked a period of great advancement in therapeutic medicine, allowing 

people to live longer while successfully treating bacterial diseases (Aminov, 2010). 

Unfortunately, the overuse of antibiotics have caused bacterial resistant strains to arise, 

and the need for new therapeutics has greatly increased (Czekalski et al., 2015).  

Current medications have shown limited use against resistant strains of bacteria. 

Thus, novel approaches to find new antibacterial therapies need to be developed. The 

need to combat the global spread of resistant strains of bacteria has driven researchers to 

look for novel agents to solve this crisis.  

A possible solution to diminish the threat of resistant and multi-resistant organism 

may be through the use of natural products. Natural products are small molecules that are 

produced by a biological source (Cutler and Cutler, 2010). These compounds are of 

interest due to the wide therapeutic benefits they have. Once discovery of natural working 

products are made, new potential agents that may be able to effect the resistant species 

(Beghyn et al., 2008). 

A potential natural product comes from the root of an herbaceous perennial vine 

known as Polygonum multiflorum or Fallopia multiflora or commonly referred to as 

Chinese Knotweed (CK). Chinese Knotweed originates from the south and central parts 

of China, and has been used extensively in treating different medical conditions such as 
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diabetes, Alzheimer's and hepatotoxicity, as well as inhibiting the proliferation of cancer 

cells (Wu et al., 2012; Chen et al., 2011).  

Chinese Knotweed’s key to its uniqueness lies in the root of the plant, often 

referred to as the Thunb (Wu et al., 2012). As seen in Figure 1, the root (A), the extract 

(B) obtained after extracting the extract from the root of the plant. Chinese Knotweed’s 

root is composed of 8 major constituents (Figure 2), a combination of these may play a 

significant role in its possible antibacterial activity.  
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A 

 
 

B 

 
 

Figure 1. Photos of (A) root pieces and (B) extracts from P. multiflorum. 

 



4 
 

Chemical  Name Structure Chemical  Name Structure 

 

2,3,5,4'-

tetrahydroxystilbene-

2--D-glucoside  

 

Emodin-8--D-

glucoside 
 

 

6-OH-emodin 
 

 

Gallic acid 
 

 

 

Chrysophanol  

 

Polygonimitin B 
 

 

Emodin 
 

 

Rhein 
 

Figure 2. Chemical structures of the 8 major constituents of Polygonum multiflorum 

(Adapted from Han et al., 2012) 
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Chinese Knotweed extract is a mixture of 8 active constituents (Figure 2) that fall 

into four main chemical families: phenolic compounds, anthraquinones, alkaloid and 

stilbenes. Each of these molecules is what supports and provides the various unique 

properties of the plant. Recent literature reported that Chinese Knotweed extract has 

potential antimicrobial effects (Han et al., 2012).  

Microorganisms play a vital role as a defensive mechanism for many mammalian 

species. For example, bacteria colonize the epithelial layer of the body, to act as a 

protective barrier against foreign and/or pathogenic organism (Davis, 1996). However, 

some microorganisms are invasive and pathogenic towards the human host. For instance, 

many E. coli species live in the gut flora and are harmless, but under various conditions 

these bacteria become opportunistic and can cause harm to their host (Fish, 2002). As a 

preventive method, antimicrobial drugs have been designed to combat and control the 

pathogenic species.  

Bacteria can be categorized into two major groups, Gram-positive and Gram-

negative, based on differences in their cell wall structures. Gram-negative bacteria 

species differentiate from others due to a very thin peptidoglycan layer and typically are 

surrounded by a third layer, capsular or slime layer (Bauman, 2014). Gram-negative 

species uniqueness is a result of their outer membrane, which acts as a barrier and 

produces endotoxin that can cause irritation and harm to those exposed. Besides physical 

protection against destruction, the outer membrane also protects against chemical agents, 

which makes Gram-negative bacteria a more difficult species to eliminate (Salton and 

Kim, 1996). A few common examples of Gram-negative bacteria include Enterobacter 



6 
 

aerogenes (E. aerogenes), Escherichia coli (E. coli), Proteus vulgaris (P. vulgaris) and 

Pseudomonas aeruginosa (P. aeruginosa). 

Enterobacter aerogenes, a Gram-negative bacillus species, is typically found in 

soil, water and intestines of animals and humans (Carroll et al., 2012). E. aerogenes is 

known for causing nosocomial, opportunistic infections, especially in 

immunocompromised hosts. This species poses a major threat to human health due to the 

gastrointestinal tract location and its opportunistic behavior (Sanders and Sanders, 1997).  

Escherichia coli is a Gram-negative bacillus species that is found in the intestine 

of warm-blooded organisms (Singleton, 1999). As part of the normal flora, most species 

do not cause harm but some strains may cause food poisoning due to food contamination. 

Food and water contamination is a key concern in poor and underdeveloped nations 

(Estrada-Garcia et al., 2013). 

Proteus vulgaris is a Gram-negative rod-shape organism, mainly found in the soil 

and human intestines. P. vulgaris are related to the Enterobacter species and are also 

linked to cause opportunistic infections (Gul et al., 2013).   

Pseudomonas aeruginosa is a Gram-negative facultative anaerobe bacterium that 

is the source of many acute and chronic infections. The bacteria can be isolated from 

environmental sources such as freshwater and soil. Pseudomonas species has a unique 

resistance to many microbicides, which makes these bacteria a problem in its removal 

from equipment and surfaces in hospitals (Lavoie et al., 2011). In addition, P. aeruginosa 

are often linked to high rates of food spoilage following harvest (Tornas, 2005). 
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In addition to Gram-negative bacteria, Gram-positive species also play a major 

role in healthcare field due to increasing occurrence of some antibiotic resistance species 

such as Methicillin resistant Staphylococcus aureus (MRSA). Gram-positive organisms 

are classified mainly based on the thick layer of peptidoglycan of their cell wall and lack 

of an outer membrane. A few common examples of Gram-positive bacteria included in 

this study are Bacillus cereus (B. cereus), Bacillus megaterium (B. megaterium), 

Staphylococcus epidermidis (S. epidermidis), Streptococcus mutans (S. mutans) and 

Streptococcus pyogenes (S. pyogenes).  

Bacillus cereus is a Gram-positive, rod shaped microorganism that has the ability 

to survive harsh conditions due to their ability to form spores (Estrada-Garcia et al., 

2013). They have a wide range of growth and adaptability to various environmental 

conditions, and have proven to cause a major problem with food contamination. Major 

concerns with this species include their adaptability in soil, which could lead to food 

spoilage, as well as meats and animal products contamination (FDA, 2012).  

Bacillus megaterium, a close related species of Bacillus cereus, is a Gram-

positive rod-shaped endospore former and an obligate aerobe. It is one of the largest 

known bacterial species (Bunk et al., 2010). This mesophillic bacterium has been a key 

player in industry due to its various benefits such as amylases (intact proteins, an 

exoenzyme) production, used for baking and drug production (Vary et al., 2007). B. 

megaterium is of interest due to its similarities to other bacteria from the same genus, 

such as B. anthracis (major causing agent of anthrax) which may be used as a biological 

weapon. 
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Staphylococcus epidermidis, Gram-positive cocci, is typically found as part of the 

normal flora of human skin. S. epidermidis is not usually pathogenic but those with 

compromised systems are at risk to develop infections (Levinson, 2010). S. epidermidis 

serves as a model for the genus Staphylococcus due to the similarities among the species. 

The concern for these bacteria is the increasing resistance to many antibiotics, which 

leads to the development of mutant strains such as MRSA or multi-drug resistant 

Staphylococcus aureus (MDRSA) (Otto, 2010). 

Streptococcus pyogenes is a Gram-positive chain-cocci often found as part of the 

normal flora of human on their skins and throat regions. Although it’s part of the normal 

flora, it has the potential to serve as an opportunist and cause both mild to severe 

infections in immunocompromised individuals (Gul et al., 2013). Due to their high 

presence in human population and the severity of infections that may occur, this bacteria 

is also of great concern.  

Streptococcus mutans, another species in Streptococci group, is a Gram-positive 

facultative chain-cocci that is commonly found in the oral cavity.  As one of the leading 

causes for dental plaque/decay, S. mutans is of major concern due to its predominant 

presence in the mouth flora (Kolenbrander, 2000). 

Biofilm, bacterial communities attach to a surface, has become a significant 

problem in the medical field. Biofilm formation is the result of the production of bacterial 

exopolysaccharide, eDNA and protein that produces a slimy film, aggregate together and 

form a protective layer over the bacteria following the successful adhesion of the 
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microorganism to a surface (Merritt et al., 2007). Typically biofilm can be formed by 

individual species or can be a culmination of various species.  

Biofilm formation begins after the successful attachment of bacterial cells. 

Without the initial attachment, the production of polysaccharides and the initial formation 

of the biofilm is impeded (Sauer et al., 2002). Bacterial motility can also affect initial 

biofilm formation due to the lack of aggregation and clumping that are needed in early 

development. It is nearly impossible to remove the biofilm once it is properly established 

and has fully matured. The only effectively way to remove biofilm is by physically 

scrapping it off the site of attachment (Hayrapetyan et al., 2015).  

Furthermore, foreign materials placed into the human body such as catheters and 

endotracheal tubing during surgical procedures, often serve as the favorite sites of 

attachment for bacteria to form biofilm. Though many of these equipment are necessary, 

biofilm formation may worsen the patient’s overall health state. (Cairns et al., 2011). 

 An antibiotic is any substance produced by a microorganism, i.e. bacteria or 

fungi, secreted outside its cell to harm or kill another microorganism. Penicillin is an 

antibiotic that was first discovered in 1928 through keen observation of a fungus, 

Penicillium chrysogenum. Alexander Fleming noticed that a chemical substance was 

produced by the species that could inhibit bacterial growth within a given area, and this 

was the start of the antibiotic era, chemotherapy warfare (Garrod, 1960). Before the use 

of antibiotics, some treatments relied on the usage of transitional metals. Unfortunately, 

due to their toxic nature, people were left with metal poisoning even they were cured 

from the bacterial infection Some of these transitional metals such as arsenic and mercury 
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were effective but limited on survival rate as well as effective rate in treating the patient 

before the patient died from poisoning. Thus, the antibiotics were thought to be the 

“magic bullet” when they were discovered, allowing the pathogens to be eliminated 

without harming the host (Gul et al., 2013).  

 Individual antibiotics vary widely in their effectiveness on various types of 

bacteria. The effectiveness differs depending on the ability of the antibiotic to reach the 

site of infection, and the ability of the bacteria to resist or inactivate the antibiotic. Some 

antibiotics can kill the bacteria (bactericidal), whereas others simply prevent the bacteria 

from multiplying (bacteriostatic). Antibiotics may be administered orally, topically, or 

intravenously (Finberg et al., 2004; Carroll et al., 2012). 

In addition, some bacteria are able to adapt and/or transform themselves into a 

non-reproductive structure known as spores when faced with stressful or harsh 

conditions. Endospore formation, also known as sporulation, is the mechanism used by 

bacteria in the genus Bacillus and Clostridium in order to withstand unfavorable 

conditions. The spore contains a thick layer named spore coat which protects the bacteria 

until conditions resume to normal, allowing them to germinate to vegetative cells again 

(Cano and Bonucki, 1995). 

In this study, Chinese Knotweed was used to evaluate its antibacterial effects 

against nine selected bacteria. Its potential synergism with antibiotics, the inhibitory 

effects on biofilm formation, sporulation and germination were also investigated.  
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Materials and Methods 

Preparation of bacterial cultures 

For this study, four Gram-negative species, Enterobacter aerogenes, Escherichia coli, 

Proteus vulgaris and Pseudomonas aeruginosa and five Gram-positive species, Bacillus 

cereus, Bacillus megaterium, Staphylococcus epidermis, Streptococcus mutans and 

Streptococcus pyogenes, were obtained from Biological Supply Company (Carolina, 

Burlington, NC) used to observe the effects of Chinese Knotweed. All bacterial cultures 

were maintained in Luria/Lennox Broth (LB) (Difco™, Sparks, MD).   

 

Preparation of compound solution 

The Chinese Knotweed powder was obtained from Dr. Chih-Yu Lo at the Department of 

Food Science, National Chiayi University in Chiayi, Taiwan. The 10% stock solution was 

made in Dimethyl Sulfoxide (DMSO) (Mallinckrodt Chemical, Phillipsburg, NJ). The 

solutions was then filtered with 0.45 μm Supor® membranes (Acrodisc®, Ann Arbor, 

MI). The compound was kept at 4⁰C. 

 

Microtiter plate antimicrobial inhibition assay 

A microtiter plate assay was used to observe any antibacterial effects of the natural 

compounds. The overnight bacterial cultures and the 96-well clear microtiter plate 

(Corning, Corning, NY) were used in this assay.  Each well contains 5 μL of bacteria and 

various concentration of Chinese Knotweed (final concentration of 0.5%, 1%, 1.5% and 

2.5% respectively) with a total volume of 200 μL in each well. The growth of the bacteria 



12 
 

in the presence and absence of the natural products were then monitored by taking the 

optical density at 600 nm (OD600nm) hourly up to 12 hours and then 24 hours with 

SpectraMax M5 (Molecular Devices, Sunnyvale, CA). Over the 24-hour monitoring 

period, the microtiter plate was maintained at 37⁰C with constant shaking at 250 rpm.  

 

Kirby-Bauer assay 

Mueller-Hinton II agar plates were used for the Kirby-Bauer assay to evaluate the 

effectiveness of selected antibiotics with or without compound. A total of 50 μL of 2.5% 

Chinese Knotweed was added for the antibiotic discs for the treatment. The plates were 

incubated inverted in a 37⁰C incubator for 8 hours. The zone of inhibition (ZOI) were 

then recorded in millimeter after incubation. 
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Table 1: A summary of all antibiotics used in this study with their mode of action. 

 

Mode of Action Antibiotic 

  

Cell Wall Synthesis Inhibition Ampicillin 

 Bacitracin 

  

  

Protein Synthesis Inhibition Erythromycin 

 Kanamycin 

 Neomycin 

 Streptomycin 

 Tetracycline 

  

  

Nucleic Acid Synthesis Inhibition Nalidixic acid 

 Nitrofurantoin 

 Novobiocin 

  

  

Folate Synthesis Inhibition Triple Sulfa 
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Biofilm screening: Congo-red Assay 

Congo-red assay was carried out to screen the biofilm formation for all bacteria. Tryptic 

Soy Agar (TSA) (Difco™, Sparks, MD) with 2% sucrose (Amresco, Solon, OH)  and 

10X Congo-red (Amresco, Solon, OH) were added to each well of a 24-well plate. A total 

volume of 20 μL of bacteria or bacteria with compound was added to the appropriate well 

and the plate was incubated for 24 hours at 37⁰C. 

 

Biofilm Quantification: Crystal Violet Assay 

Tryptic Soy Broth (TSB) with 2% sucrose was used in crystal violet assay to quantify the 

biofilm formation. Selected bacteria with or without various concentration of Chinese 

Knotweed (0.5%, 1% respectively) were added into each well and the plate was 

incubated at 37⁰C overnight. After the incubation, planktonic cells were removed and the 

wells were washed twice with Phosphate buffered saline (PBS) gently (without disturbing 

the mature biofilm) to remove any non-attached particulates. Following the wash, add 

250 μL of 100% methanol to each well and wait 15 minutes. Aspirate the methanol and 

allow the wells to air dry for another 15 minutes. Once air dried, 0.1% of crystal violet 

solution was added and the cells are stained for 10 minutes. Aspirate the excess crystal 

violet and wash the wells with diH2O until control wells appear clear. Then 95% ethanol 

(EtOH) was added to the wells and incubated for 30 minutes, shaken under low rpm and 

then the absorbance (OD600nm) was recorded.  
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Scanning Electron Microscope (SEM) 

 Sample fixation 

Samples were grown overnight, washed twice with PBS and then the fixative was added. 

The fixative contains a 2.5% glutaraldehyde (GTA) working stock and 0.1 M cacodylate 

buffer. The samples were then stored overnight at 4⁰C.  

 Sample dehydration 

Samples were washed with 0.1 M cacodylate buffer 3 times. Buffer was aspirated after 

the 3
rd

 wash. 2 mL of 1% Osmium tetroxide (OsO₄) solution was then added to each 

sample and then the samples were kept at 4⁰C for 45 min.  Removed the OsO₄, added 

0.1M cacodylate buffer to the samples for 10 minutes. Repeat this step three times and 

the samples were ready to be dehydrated and prepped for imaging. Dehydration is a result 

of a series of EtOH washes (30%, then 50%, 70%, 80%, 90% and then 100%).  There 

were 8-10 minutes gaps between each wash.   

 Critical point drying and coating 

Followed by the dehydration is the critical point drying process for 40 minutes. This 

instrument uses carbon dioxide in order to completely remove any moisture in the sample 

and to preserve the samples. The samples are then ready to be coated in gold for 10-15 

minutes. Once the samples are coated, they are ready for SEM imaging.  

 

 

 

 



16 
 

Sporulation inhibition assay 

Sporulation inhibition assay was carried out to evaluate the effects of 1% Chinese 

Knotweed on a spore-forming bacteria, B. megaterium. The bacteria was starved with 

diH2O or Chinese Knotweed for 72 hours. Schaeffer–Fulton stain procedure was then 

used to observe the endospore.   

 

Germination inhibition assay 

Bacillus megaterium was starved in diH2O for 72 hours to induce the spore formation. 

The cultures were then split into two tubes: LB only and LB with 2% Chinese Knotweed. 

Both tubes were then incubated at 37 ⁰C for 14 hours.  Viable count were then used to 

determine the viable cells. 

 

All images/ figures presented in this paper was taken by Andy S. Demianicz in order to  

evaluate the antibacterial potential of Chinese Knotweed. 
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Results 

Antibacterial Assay 

Figures 3 – 11 illustrated the growth curves of nine selected bacteria with or 

without Chinese Knotweed. Additional data and analyses containing proprietary 

information were not included in this thesis.  Figure 3A showed the growth curve of 

Enterobacter aerogenes with various concentration of Chinese Knotweed. The 

concentrations of CK treated on E. aerogenes compare to no treatment was lower and 

demonstrated the CK antibacterial effect. Figure 3B is the bar graph indicating the 

percentage inhibition for 8
th

, 10
th

 and 12
th

 hours. Observations of E. aerogenes when 

treated with various concentration (0.5 – 2.5%) of CK resulted in complete inhibition, 

<97% inhibition at 2.5% CK, while at the other concentrations there was some inhibition 

such as at 1% resulted in 70% inhibited growth. Based on the results and the information 

provided by these two figures (Figure 3A and 3B), these figures provide information on 

the MIC and the half maximal inhibitory concentration or Inhibitory Concentration 50% 

(IC50).  The results indicated that the MIC for E. aerogenes is 2.5% and the IC50 is 

between 0.5 and 1% Chinese Knotweed. 

Figures 4A and 4B showed the effect of Chinese Knotweed on Escherichia coli 

(E. coli). The MIC for E. coli is 2.5% while the IC50 could be a little more than 1%.  

Figures 5 and 6 indicated that the Chinese Knotweed may have better inhibition on both 

P. vulgaris and P. aeruginosa. While MIC for both bacteria stays at 2.5%, the IC50 could 

be just slightly above 0.5%  
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Figure 3. A) Growth curve of Enterobacter aerogenes treated with Chinese Knotweed. B) 

Percent inhibition of Enterobacter aerogenes treated with Chinese knotweed. 
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Figure 4. A) Growth curve of Escherichia coli treated with Chinese Knotweed. B) 

Growth curve of Escherichia coli treated with Chinese Knotweed.  
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Figure 5. A) Growth curve of Proteus vulgaris treated with Chinese Knotweed. B) 

Growth curve of Proteus vulgaris treated with Chinese Knotweed.  
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Figure 6. A) Growth curve of Pseudomonas aeruginosa treated with Chinese Knotweed. 

B) Growth curve of Pseudomonas aeruginosa treated with Chinese Knotweed.  
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Followed by the four selected Gram negative species, same assay has been carried 

out for five Gram positive species. Figure 7 showed that 1, 1.5 and 2.5% CK all have 

great inhibition on Bacillus cereus with the IC50 falls between 0.5 – 1%. Figures 8, 9 and 

10 indicated the MIC for B. megaterium, S. epidermidis, and S. mutans is 2.5% CK. 

However, Chinese Knotweed showed the strongest inhibition against S. pyogenes. 

Figures 11A and 11B suggested that 1.5% CK could be sufficient to inhibit S. pyogenes 

growth completely.  

To summarize, the MIC for all bacterial species is 2.5% Chinese Knotweed 

(except for S. pyogenes: MIC 1.5%) which showed efficacy of >98%; the IC50 varies 

among species but in most cases ranges from 1% to 0.25% (Table 2).   
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Figure 7. A) Growth curve of Bacillus cereus treated with Chinese Knotweed. B) Growth 

curve of Bacillus cereus treated with Chinese Knotweed.  
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Figure 8. A) Growth curve of Bacillus megaterium treated with Chinese Knotweed. B) 

Growth curve of Bacillus megaterium treated with Chinese Knotweed. 
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Figure 9. A) Growth curve of Staphylococcus epidermidis treated with Chinese 

Knotweed. B) Growth curve of Staphylococcus epidermidis treated with Chinese 

Knotweed.  
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Figure 10. A) Growth curve of Streptococcus mutans treated with Chinese Knotweed. B) 

Growth curve of Streptococcus mutans treated with Chinese Knotweed. 
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Figure 11. A) Growth curve of Streptococcus pyogenes treated with Chinese Knotweed.  

B) Growth curve of Streptococcus pyogenes treated with Chinese Knotweed. 

 

-0.2 

0 

0.2 

0.4 

0.6 

0.8 

1 

0 2 4 6 8 10 12 

O
D

 6
0

0
n

m
 

Hours 

The effects of Chinese Knotweed on 
Streptococcus pyogenes 

Control 2.50% 1.50% 1% 0.50% 

95.7 99.1 

67.3 

24.8 

96.4 98.9 

76.1 

13.0 

97.2 97.9 

77.1 

4.5 

0.0 

20.0 

40.0 

60.0 

80.0 

100.0 

120.0 

2.50% 1.50% 1% 0.50% 

%
 In

h
ib

it
io

n
 

Treatment 

Growth inhibition of Chinese Knotweed on 
Streptococcus pyogenes 

8th hour 10th hour 12th hour 

A 

B 

 



28 
 

Table 2. MIC and IC50 of all 9 bacterial species. While MIC is 2.5% Chinese Knotweed 

for eight bacteria (1.5% for S. pyogenes), the IC50 is listed as follows, 

 

Bacterial species IC50 

Bacillus cereus 0.5-1% 

Bacillus megaterium 1-1.5% 

Staphylococcus epidermidis 1-1.5% 

Streptococcus mutans 0.5-1% 

Streptococcus pyogenes 0.5-1% 

Enterobacter aerogenes 0.5-1% 

Escherichia coli 1-1.5% 

Proteus vulgaris 0.5-1% 

Pseudomonas aeruginosa 0.5-1% 
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Antibacterial synergism of Chinese Knotweed with various antibiotics 

Kirby-Bauer assays were carried out to evaluate the synergistic antibacterial 

activity of various antibiotics with Chinese Knotweed. A total of 11 antibiotics with 

different mode of action were included in this study (Table 1). Both Ampicillin and 

Bacitracin target bacterial cell wall synthesis inhibition. Figure 12 showed that 2.5% 

Chinese Knotweed was able to increase the zone of inhibition (ZOI) for 47% and 83% on 

P. vulgaris and P. aeruginosa when combined with Ampicillin. No significant ZOI 

increase was observed when combining Chinese Knotweed with Bacitracin (Figure 13).   

Another common mechanism of antibiotics involves in protein synthesis 

inhibition. Five antibiotics, Erythromycin, Kanamycin, Neomycin, Streptomycin and 

Tetracycline, included in this study belong to this category. Figure 14 indicated 

Erythromycin had 60% ZOI increase against E. aerogenes when combined with CK and 

Kanamycin showed 44.2% synergism against the same bacteria (Figure 15).  However, 

Kanamycin displayed better synergistic antibacterial effect than Erythromycin with CK 

overall. Neomycin also showed 60% ZOI increase when combined with CK against E. 

aerogenes (Figure 16). Figures 17 and 18 represent the ZOI results of Streptomycin and 

Tetracycline with or without CK. Both of them exhibited 60% ZOI increase when 

combined with the compound against Proteus vulgaris. 

Next three antibiotics tested, Nalidixic acid, Nitrofurantoin and Novobiocin, 

possess the nucleic acid synthesis inhibition as their antibacterial mechanisms. Results of 

Nalidixic acid showed almost no synergism with Chinese Knotweed except for S. 

pyogenes (Figure 19). Similarly, Nitrofurantoin also showed limited to no synergistic 
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antibacterial activity when combined with CK except for B. cereus and E. coli (Figure 

20). Novobiocin, showed 50% ZOI increase against E. coli and 36.7% against P. 

aeruginosa (Figure 21). 

Triple sulfa, composed of three components; sulfathiazole, sulfacetamide and 

sulfabenzamide, was the last antibiotic tested in this study. This antibiotics inhibits 

bacterial folate production in cells. Its antibacterial activity significantly increased when 

combined CK against B. cereus (172%) and S. pyogenes (155%) (Figure 22). 

Table 3, is a representation of all antibiotics used and bacteria used for the study 

and indicate the percent increase or decrease in the zone of inhibition. This is important 

to evaluate the statistical significance of the combination of the antibiotic and Chinese 

Knotweed extract. Although in many cases there are a slight increase in ZOI, but the 

increase is not significant or depicts a true synergism between the two chemical agents. 

Also many of the antibiotic in combination with Chinese Knotweed displayed an 

antagonistic combination which indicates that some combinations of chemicals do not go 

together. Although all results are not positive, the Kirby-Bauer test those show potential 

in determining true synergism between that of chemical agents and natural products.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        
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Figure 12. The antibacterial effect of Ampicillin with or without 2.5% Chinese 

Knotweed.  

 

 

Figure 13. The antibacterial effect of Bacitracin with or without 2.5% Chinese Knotweed.  
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Figure 14. The antibacterial effect of Erythromycin with or without 2.5% Chinese 

Knotweed.  

 

 

Figure 15. The antibacterial effect of Kanamycin with or without 2.5% Chinese 

Knotweed.  
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Figure 16. The antibacterial effect of Neomycin with or without 2.5% Chinese Knotweed. 

 

 

Figure 17. The antibacterial effect of Streptomycin with or without 2.5% Chinese 

Knotweed. 
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Figure 18. The antibacterial effect of Tetracycline with or without 2.5% Chinese 

Knotweed.  

 

 

Figure 19. The antibacterial effect of Nalidixic acid with or without 2.5% Chinese 

Knotweed. 
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Figure 20. The antibacterial effect of 2.5% Chinese Knotweed with or without 

Nitrofurantoin. 

 

 

Figure 21. The survey of microorganism against Novobiocin with and without 2.5% 

Chinese Knotweed. 
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Figure 22. The survey of microorganism against Triple Sulfa with and without 2.5% 

Chinese Knotweed.  
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Figure 23. A summary of all the antibiotics illustrating the percent increase or decrease of the zone of inhibition for each 

bacteria.  
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Table 3. Summary of best synergistic antibacterial activity of different antibiotics with 

2.5% CK. 

Antibiotic Synergism with Antibiotic % increase 

Ampicillin (AM10) 
Escherichia coli/Proteus 

vulgaris 

66.7% 

Bacitracin (B10) Enterobacter aerogenes 
116.7% 

Erythromycin (E15) Bacillus megaterium 
16.7% 

Kanamycin (K30) Bacillus cereus 
18.5% 

Nalidixic acid (N/A30) Streptococcus pyogenes 
19.3% 

Neomycin (N30) Streptococcus epidermidis 
16.7% 

Nitrofurantoin (F/M300) Bacillus cereus 
14.3% 

Novobiocin (NB30) Enterobacter aerogenes 
66.7% 

Streptomycin (S10) Proteus vulgaris 
38.09% 

Tetracycline (TE30) Proteus vulgaris 
33.3% 

Triple Sulfa (SSS300) Bacillus cereus 
173% 
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Biofilm 

Congo-red is a rapid detection used to detect the exopolysaccharide production of 

the biofilm. The assay is based on a visual analysis of the agar to determine whether or 

not biofilm is made (Kaiser et al., 2013). If the polysaccharide is produced, it will react 

with the Congo-red and this will result in the media turning black (Freeman et al., 1989). 

The agar was also fortified with 2% Sucrose which favors the growth of Biofilm 

formation. Congo-red assays were carried out to screen the bacteria for potential biofilm 

formation. Results showed all four Gram negative bacteria, E. aerogenes, E. coli, P. 

vulgaris and P. aeruginosa, were able to form biofilm (Figure 24A) while only three out 

of five Gram positive bacteria, S. epidermidis, S. pyogenes and S. mutans formed biofilm 

on Congo-red plate (Figure 24B). 

Figures 25A and 25B illustrated the results of anti-biofilm formation of CK on 

Gram negative and Gram positive bacteria, respectively. Though initial results indicated 

that 1% CK didn’t inhibit biofilm formation for Gram positive bacteria, it showed strong 

anti-biofilm activity for E. coli, P. vulgaris and P. aeruginosa.  

 

 

 

 

 

 

 

 



40 
 

 

 

Figure 24. Congo-red assay for A) four Gram negative bacteria. B) five Gram positive 

bacteria. 
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Figure 25. Anti-biofilm evaluation of 1% CK on A) three Gram negative species. B) three 

Gram positive species. 
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Crystal Violet 

Result obtained from the Congo-red assay suggested that 1% Chinese Knotweed 

is effective to inhibit the biofilm formation especially for Gram negative bacteria. Crystal 

violet assay was then carried out to quantify biofilm reduction. Crystal violet is a stain 

that is popular to use in Gram-staining bacteria in order to differentiate Gram-positive 

from Gram-negative bacteria. Due to its simplicity as a simple stain it can be used to bind 

to the outer layer of bacteria in order to detect/ quantify the amount of biofilm formed 

(Peeters et al., 2008).  Figure 26A showed the raw results of crystal violet for all 9 

species while Figure 26B indicated the percentage reduction of biofilm formation. 1% 

CK was able to significantly reduce the biofilm formation for six out of nine bacteria, 

especially for B. megaterium (98.01%) and S. mutans (96.16%). 

Figure 27 showed an example of crystal violet assay with 1.25% and 2.5% CK to 

illustrate that biofilm was inhibited almost completely for both concentration of CK. 1% 

CK was considered the MIC in regards to biofilm formation for S. mutans while 0.5% 

CK also demonstrated ~95% inhibition (Figure 28A). Microscopic observation shown in 

figure 28B showed significant reduction of bacteria population with 1% CK. 
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Figure 26. A) Result of crystal violet assay of Gram positive and Gram negative 

organisms with or without 1% Chinese Knotweed. B) Percent of biofilm reduction with 

1% Chinese Knotweed treatment. 
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Figure 27. A sample crystal violet assay of Streptococcus mutans with or without Chinese 

Knotweed. 
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Figure 28. A) A summary of the percent reduction of biofilm inhibition based on the 

crystal violet assay to determine the MIC for biofilm formation with S. mutans. B) 

Microscopic observation of S. mutans under compound light microscope at 400x. i) 

Control; ii) 1% treatment; iii) 0.5% treatment; iv) 0.25% treatment. 

A 

B 

I ii 

iv ii

i 



46 
 

Scanning Electron Microscope 

Streptococcus mutans typically resides in the mouth and thus when biofilm form 

they effect the teeth and result in dental plaques. Figure 29 showed the SEM images of S. 

mutans incubated with or without 1% CK. Figure 29A illustrated S. mutans control cells 

after 6 hours incubation and Figures 29A’ showed the cells incubated with 1% CK for the 

same amount of time. Only a few isolated cells were present in figure 28A’ showing the 

effectiveness of 1% CK even it’s only for 6 hours. Figures 29B and 29B’ highlighted the 

substantial biofilm reduction for the treated cells after a 24-hour incubation period. When 

zooming in on Figure 28B’, the cell surface looked impaired. All these results indicated 

that Chinese Knotweed may be a strong anti-biofilm agent. 
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Figure 29. SEM images of S. mutans with or without Chinese Knotweed.  A) S. mutans control with 6-hour incubation, 

5,000x.  A') S. mutans with 1% CK after 6-hour incubation (5,000x).  B) S. mutans control after 24 hours incubation 

(2,000x).  B') S. mutans with 1% CK after 24 hours (2,000x). 
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Sporulation and germination inhibition 

Sporulation is a specialized structure that is predominantly found in the Bacillus 

and Clostridium species. In this study, Bacillus megaterium was used to evaluate the 

sporulation and germination process. It can be seen in figure 30, there were many 

endospore in the control sample while almost no visible endospore observed in the 1% 

Chinese Knotweed sample.  

Germination inhibition with Chinese Knotweed was also examined. Figure 31A 

showed a B. megaterium control plate with a total cell population of 2.6 x 10
9
 cells/mL 

while the total count from figure 31B was 9.6 x 10
7
 cells/mL when the spores were 

incubated with 2% Chinese Knotweed. The results suggested that Chinese Knotweed 

hinder both sporulation and germination process in B. megaterium.  
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B. megaterium control B. megaterium with 1% CK 
 

          

Figure 30. Schaeffer–Fulton stain (Spore stain) of B. megaterium with or without 1% 

Chinese Knotweed. Though many endospores were observed for the control, almost no 

spores were observed in the treated populations. 

 

 

          

Figure 31. Viable plate count for Bacillus megaterium. A) Control with 10
-8

 dilution and 

B) 2% Chinese Knotweed treated B. megaterium with 10
-6

 dilution. The results indicated 

that the colony forming units (CFU) for the control plate was 2.6 x 10
9
 cells/mL while the 

CFU for the treatment plate was 9.6 x 10
7
 cell/mL, a ~ 100 fold reduction. 
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Conclusion and Discussion 

In this study, evaluated the antibacterial effects of Chinese Knotweed and to 

observe the effectiveness of this compound against a wide array of unique bacteria as 

well as against special evasive structure bacteria possess. The results from the 

antimicrobial assay showed that at 2.5% (MIC) Chinese Knotweed effectively inhibited 

bacterial growth (Figure 3 - 11). Even with 1.5% Chinese Knotweed, most bacterial 

growth were inhibited for more than 50%.  The antibacterial activity was significantly 

reduced when the compound concentration dropped down to 0.5%. For instance, 34% 

growth inhibition was shown for Pseudomonas aeruginosa under 0.5% Chinese 

Knotweed while no inhibition was observed for Bacillus cereus. It can also be speculated, 

that IC50 for most of the selected bacteria is in the range of 0.5-1 % of Chinese 

Knotweed.  

As for the antibacterial synergism of Chinese Knotweed with a wide range of 

antibiotics, some promising results on E. aerogenes and P. vulgaris can potentially lead 

to alternative antibacterial agent development.  It’s exciting to learn that sulfa drugs 

showed exceptional inhibition on B. cereus and S. pyogenes when combined with 

Chinese Knotweed. Sulfa drugs have been one of the dominate classes of antibiotics 

throughout the years, but more and more antibiotic resistant bacteria have been identified. 

Novel antibiotics may be developed by using natural products.  

One major clinical challenge is battling biofilm.  Congo-red screening indicated 

seven out of nine bacteria tested can form biofilm. With 1% CK, biofilm formation was 

dramatically reduced for Gram negative bacteria. Though initial screening didn’t show 
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inhibition on biofilm formation, crystal violet assay results were able to provide us the 

quantitative data on the percent reduction of biofilm for both Gram positive and Gram 

negative bacteria. S. mutans, one major causing agent for dental plaque, was significantly 

inhibited by Chinese Knotweed with 1.25%. SEM images also provided strong evidences 

of ~99% biofilm reduction. In addition to the encouraging results mentioned above, 

preliminary result obtained from sporulation and germination inhibition assays could 

potentially benefit the food industry as Chinese Knotweed may be able to serve as natural 

preservatives to extend the shelf life of food products.  

Based on all the assays, tests and data collected, we can speculate the mode of 

action to target the outer membrane of bacteria. Based on the data from the SEM and 

antibiotic testing it shows that the bacteria outer membrane are damaged and this causes 

the bacteria to become more susceptible and unable to respond and react properly.  

More bacteria should be included in the future studies in order to obtain a 

complete profile of antibacterial activity on most common pathogens. Different 

combination of various concentrations of antibiotics and Chinese Knotweed should be 

determined for the optimal antibacterial activity.  Including samples from different time 

points would help understand the potential antibacterial mechanism of Chinese 

Knotweed. 
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