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ABSTRACT 

Immigrant monocytes and resident macrophages propagate the vertebrate innate immune 

response through cell migration and cytokine production. Monocytes responding to 

inflammatory challenge migrate into tissues, and as resident macrophages, release a 

major pro-inflammatory cytokine, tumor necrosis factor a (TNF-a). Macrophge cytokine 

synthesis is known to be under both negative and positive regulatory control. Recent 

studies have shown that somatostatin (SRIF) regulates monocyte and peritoneal 

macrophages. However, the effects of SRIF on RAW 264.7 cells, a transformed 

monocyte/macrophage cell line, have not been investigated. In the present study, SRIF 

effect on cytokine release in LPS stimulated RAW 264. 7 cells was examined. 

Somatostatin regulated monocyte response to LPS stimulation as reflected by decrease in 

TNF-a release. In particular, LPS showed temporal TNF-a release peaking at 2h. SRIF, 

at physiological concentrations (10-7 M to 10-10 M) showed dose independent reduction 

on TNF-a release. We found SRIF 10-10 M concentration inhibited TNF-a release to the 

maximum at 2 h. Finally, we show SRIF 10- 10 Mover a time course inhibited maximum 

TNF-a release at 2 h in LPS stimulated RAW 264.7 cells. Taken together, our results 

show that SRIF modulates TNF-a release in LPS stimulated RAW 264.7 cells. 
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INTRODUCTION 

Inflammation is a highly regulated process initiated as a response of the immune 

system to infection. While the regulated response, acute inflammation, protects the host 

tissue from damage and injury, an unregulated response, chronic inflammation, is 

implicated in a spectrum of major diseases (Fujiwara and Kobayashi, 2005). Chronic 

inflammation is associated with the presence of immigrant monocytes becoming 

activated resident macrophages in inflamed tissues (Shacter, 1993; Kasahara and 

Matsushima, 2001) .  Cytokines such as interferon y, TNF-a and granulocyte-macrophage 

colony stimulating factor activate the resident macrophages, which in turn respond by 

producing inducible nitric oxide synthase, TNF-a, IL-6 and IL-1 P thus playing a key role 

in the propagation of the inflammation response (Denis, 199 1 ;  Fujiwara and Kobayashi, 

2005). 

Activated macrophages also participate in the resolution of inflammation through 

increased endocytotic activity, although this cellular activation is dependent upon other 

stimuli, such as IL-4 and IL-13 (Martinez et al., 2008). Apoptosis, as well as the 

formation and release of anti-inflammatory cytokines, antioxidants and suppressors of 

inflammation are also critical components of anti-inflammatory mechanism (Fujiwara 

and Kobayashi, 2005). Indeed, the balance between pro-inflammatory and 

anti-inflammatory macrophage responses are poorly understood, although Toll-like 

receptors (TLRs) are clearly involved in initiating the innate immune responses. 
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Macrophages also respond to endogenous circulating peptides that were originally 

characterized as neuroendocrine mediators. Notable among these peptide hormones is 

somatostatin. Somatostatin (somatotropin releasing-inhibitory factor, SRIF) has been 

identified locally at sites of inflammation (Pinter et al, 2006). Indeed, SRIF and SRIF 

peptide analogs have shown to exert anti-inflammatory effects in vivo (Karalis et al, 

1994). Recent studies have also identified SRIF receptors on monocytes and 

macrophages from human and mouse (Armani et al., 2007; Perez et al., 2003). SRIF 

regulates monocyte pro-inflammatory responses, yet the exact mechanism by which this 

reduction in inflammatory activities occurs remains unknown. 

SRIF is a cyclic peptide hormone widely distributed in the central and peripheral 

nervous systems as well as in the pancreas and gastrointestinal system (Reichlin, 1983).  

A 1 1 6  amino acid preprosomatostatin formed from a single-gene product is cleaved into 

the biologically active peptides SRIF-14 and SRIF-28. SRIF-28 contains 14 additional 

residues at the amino acid terminus. Both SRIF-14 and SRIF-28 are found in mammals 

and produced in a cell-specific manner, with SRIF-14 found predominately in the CNS 

and immune system and SRIF-28 localized in the gut (Reichlin, 1983). In addition, a 

SRIF-like peptide, cortistatin, is also widely produced and appears to act primarily 

through SRIF membrane receptors (de Lecea, 2006). 
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SRIF has a wide range of biological actions; all mediated through a highly 

conserved family of receptors which couple to heterotrimeric guanine nucleotide 

regulatory proteins (GPCRs). As members of the GPCR super family, SRIF receptors 

possess seven transmembrane receptor domains. Molecular pharmacology studies have 

shown that SRIF receptors bind SRIF, cortistatin and SRIF derived analogs with high 

affinity (Reisine and Bell, 1995). SRIF mediates its biological effects via five receptor 

subtypes (sstl-5) which are encoded by five genes located on different chromosomes. 

SRIF receptor genes sstl, 3, 4 and 5 are intronless. Sst2 is alternatively spliced to 

generate sst2A and sst2B (Lahlou and Guillermet, 2004 ). SRIF binding triggers a variety 

of G-protein dependent pathways resulting in physiological responses which are both 

tissue and receptor specific (Lahlou and Guillermet, 2004). In general, SRIF receptor 

activation results in a reduction of cellular secretion and proliferation via reductions in 

intracellular cyclic nucleotide metabolism, protein phosphorylation and ion 

concentrations (Blake et al, 2004). Species differences exist in SRIF expression patterns 

with significant receptor subtype expression patterns apparent in endocrine and exocrine 

tissues (Strowski and Blake, 2008). 

Since macrophages act as the predominant source of proinflammtory cytokines in 

local and systemic inflammation, the control of these responses is important in 

organismal homeostasis. Pro-inflammatory cytokines such as TNF-a, IL-1 � and IL-6 can 

in tum induce a defensive inflammatory response (Chowers et al., 2000; Agelaki et al., 

2002). TNF-a is a primary inflammatory mediator which initiates the production and 

release of other cytokine mediators. However TNF-a overproduction leads to variety of 

3 



human diseases such as arthritis and cancer (Locksley et al., 2001) .  SRJF has been 

reported to exhibit immunomodulatory and anti-inflammatory properties, such as the 

ablity to suppress the production of interferon-gamma in human monocytes 

(Niedermuhlbichler and Weidermann, 1992), TNF-a release in LPS-treated human 

macrophages (Bermudez et al., 1990), and proliferation of T- lymphocytes (Payan et al., 

1984 ). Therefore, understanding the mechanism of SRJF action is of considerable 

importance. SRJF and its analogs have been used as therapeutic agents in human immune 

mediated inflammatory disease such as rheumatoid arthritis (Badway et al., 2004). 

In order to better understand SRIF control of monocyte/macrophage functions, we 

have chosen to study SRIF actions on a transformed, clonal mouse monocytic cell line. 

RAW 246.7 cells are murine monocytes that have been extensively used as a renewable 

surrogate for mouse primary monocytes. RAW 264.7 cells been used to study cellular 

signaling interactions, calcium mobilization, 3 ' ,5 '  cyclic adenosine monophosphate 

( cAMP) synthesis and cytokine production. Using a broad range of endogenous ligands, 

ongoing research on the RAW 264.7 cell seeks to decipher the monocyte/macrophage's 

complex intracellular signaling pathways (Natarajan et al., 2006). To date, the molecular 

target of SRIF action, the receptor subtype(s) involved and the intracellular signaling 

pathways employed have yet to be elucidated in RAW 264.7 cells. RAW 264.7 cells 

respond to SRJF stimulation (Bellocq et al., 1999) and, recently ,the SRJF receptor 

subtype present in these cells was identified (Sung, 2007). In the current study, we 

examine the effect of SRJF-14 on cytokine release in RAW 264.7 cells.  Using the potent 

cytokine secretagogue, bacterial lipopolysaccharide (LPS) to stimulate RAW 2 6 4 . 7  cells, 
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we then examine the effect of SRIF on the LPS-induced release of TNF-a. Our results 

show that SRIF, acting through an endogenous sst2b receptor, diminishes TNF-a release 

from RAW 264. 7 cells. This study provides the first direct evidence for SRIF regulation 

of cytokine release in RAW 264.7 cells. 
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MATERIALS AND METHODS 

Materials: 

Cell culture plasticware, including pipettes, multiwell dishes and Petri dishes were 

obtained from MidSci (St Louis, MI). Cell culture growth medium, salt solutions, fetal 

calf serum and antibiotics were purchased from Invitrogen (Carlsbad, CA). Enzyme 

linked immunoassay kits and reagents were obtained from BioLegend (San Diego, CA). 

Lipopolysaccharide (LPS; serotype 055:B5, cat #L2880) was obtained from Sigma 

Aldrich (St. Louis, MO). All reagents were cell culture or analytical grade, unless 

otherwise noted. 

Cell Culture: 

RAW 246.7 cells were obtained from the American Type Culture Collection 

(Rockville, MD) and were cultured in Dulbecco's Modified Eagle Medium (DMEM) 

supplemented with 10% fetal calf serum (FCS), 1 0  mM  1-glutamine, 100 U/ml penicillin, 

100 U/ml streptomycin , at 5% C02 and 3 7 ° C. The cell cultures were passaged at 75% 

confluence. 

CelJ treatment: 

Cells were plated in 24-well plates at a concentration of 3 x 105 /ml (1 ml/well 

final volume per well) and cultured for 48 hours at 5% C02 and 37 ° C incubator. One 

plate was prepared for each time point of the treatment protocol. After 48 hours, the 

6 



media was aspirated and the cells were washed with 300 µ1/well of PBS (plus calcium 

and magnesium) after which 1 ml of OptiMEM media was added to each well in order 

starve the cells. After an additional 24 hours the cells were stimulated with 10 µg/ml E. 

Coli-derived LPS. In order to study the effect of somatostatin (SRIF) on TNF-alpha 

production, SRIF was serially diluted in the OptiMEM culture medium to achieve 

concentrations of 10·7 M to 10· 1 0M with and without LPS. The supernatant from each 

well was collected individually in al .5 ml Eppendorf tube. The supernatants were 

collected from each plate at 1 hr, 1 .5  hr, 2 hr, 4 hr and 8 hr time points to measure 

released TNF-a. OptiMEM medium alone used to treat the cells served as the negative 

control (No treatment =NT). 

24-well plate layout for treatment of RAW 246.7 cells: 

NT LPS Sm 10 ·
1  Sm 10·" LPS+Sm 10-'  LPS+ Sm 10-" 

NT LPS Sm 10 ·
1  Sm 10·" LPS+Sm 10· 1  LPS+Sm 10·" 

NT LPS Sm 10-11 Sm 1o·lU LPS+ Sm 10·15 LPS+Sm 1 o" 

NT LPS Sm 10·11 Sm 10-iu LPS+Sm 10·11 LPS+Sm 1o · I U  

NT: No treatment 

LPS: LPS (lOµg/ml) 

SRIF: 10·7 
to 10· 10  M concentration 

TNF-a ELISA assay: 

TNF-a secretion was measured in the supernatant collected from the LPS­ 

stimulated RAW 346. 7 cells using ELISA Max mouse TNF-alpha kit. The ELISA assay 
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was carried out according to the manufacturer's instructions. In brief, 96 well plate(s) 

were coated with the capture antibody (anti 1NF-a) before performing the assay. The 

assay procedure was divided into two parts 1) Reagent preparation, 2) Assay execution. 

1 .  Reagent preparation: 

a. lx Assay Diluent: For one 96 well plate assay, a total volume of 50 ml of 

lx assay diluent was prepared from the concentrated stock of 5x Assay 

diluent provided in the kit by adding 10  ml of the 5x assay diluent to 40 ml 

of deionized (DI) water. 

b. lx Coating Buffer: In order to coat the provided 96 well plate with the 

capture antibody, 15  ml of lx  coating buffer was prepared from 5x coating 

buffer by adding 3 ml of 5x coating buffer to 12  ml deionized water (DI) 

water 

c. Capture antibody solution: 12 µl of capture antibody was added to 1 1 .94  

ml of 1 x coating buffer 

d. Diluted Av-Horse Radish Peroxidase (Av-HRP) solution: 12 µl of 

Avidin-HRP was added to 11 .99 ml lx assay diluent. 

e. Diluted Detection antibody solution: 60 µl of detection antibody was 

added to 1 1 . 94  µl of lx assay diluent. 

f. Freshly prepared 3,3',5,5'-tetramethylbenzidine (TMB) substrate: 6 ml 

of each of substrate A and substrate B (provided in the kit) was mixed 

together in a 15  ml conical tube wrapped with aluminum foil. 
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g. Wash buffer: 0.05% Tween 20 (Fisher Scientific, cat# BP337-500) in 

DPBS (calcium and magnesium) (Gibco, cat# 14040). 

h. Stop solution: 50 ml of 2N H2 S04 was prepared by adding 47.3 ml of DI 

water to 2. 704 ml of stock solution of 36. 98 N H2 S04 (Pharmaco-aaper, 

cat # 290000ACS). 

2. Procedure: 

The coating buffer, assay diluent, TMB substrates and Av-HRP solution were 

warmed to room temperature before starting the assay. The coating antibody and the 

detection antibody solution were kept at 4°C until used. The capture antibody solution 

(100 µl) was added to the wells of the 96 well plate. The plate was sealed and incubated 

at 37° C for 2 hours. The plate was washed four times with wash buffer (200 ul/well) 

and blotted dry on a paper towel. Thereafter, 200 µl of lx assay diluent was added per 

well of the plate. The plate was sealed and incubated at room temperature for an hour 

with shaking. About 15  minutes before the completion of the incubation, standard 

dilutions were prepared. The TNF alpha standard provided in the kit was a stock of 50 µl 

of 5 ng protein, which was aliquoted into five 1 . 5  ml Eppendorf tubes upon receipt of the 

kit. A fresh standard was generated with each assay. In order to prepare the dilutions 

from one aliquot, a dilution of 500 pg/ml (1000 µl) was prepared by adding 5 µl from the 

stock aliquot to a 1 . 5  Eppendorf tube with 995 µl of deionized (DI) water. Two hundred 

and fifty µl of this dilution (500 pg/ml) was added to 250 µl of DI water to prepare the 

next dilution (250 pg/ml). Similarly, TNF-alpha concentrates of 125 pg/ml, 62.5 pg/ml, 

3 1 .3  pg/ml, 15 .6 pg/ml and 7.8 pg/ml were generated. Assay diluent (lx) served as the 
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blank/zero standards. The standards and the samples were run in duplicate and the plate 

was sealed and incubated at the room temperature for 2 hours with shaking. Ten minutes 

before the completion of the incubation, biotinylated detection antibody diluted solution 

was prepared. After the incubation the plate was washed four times with wash buffer and 

100 µl of the diluted detection antibody solution was added to each well. The plate was 

sealed and incubated at the room temperature for an hour with shaking. Ten minutes 

before the completion of the incubation, diluted solution of Av-HRP was prepared. The 

plate was sealed and incubated at room temperature for 30 minutes with shaking. 

Thereafter, the plate was washed with washing buffer five times and kept inverted on the 

paper towel. Meanwhile a fresh solution of TMB substrate was prepared. 100 µl of this 

freshly prepared TMB substrate solution was added to each well of the plate and the plate 

was incubated in dark for 15  minutes (by keeping the plate in the cabinet). The reaction 

was stopped after 1 5  minutes by adding 2N H2S04 to each well. The plate was read at 

450 run absorbance with a SpectraMax Absorbance plate reader. Data were recorded as 

OD readings and retained for determining TNF-a concentrations based upon the standard 

curve generated for each experiment. 

Statistical analysis: 

Data analysis was performed using GraphPad Prism 4 (GraphPad Software, San 

Diego CA). One way ANOVA was performed and values at p<0.05 was considered to be 

significantly different. 
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RESULTS 

LPS stimulated Raw 246. 7 cells release maximum TNF-a at 2 h: 

RAW 264.7 cells respond to LPS challenge with a range of pro-inflammatory 

signaling events, including the up-regulation of inducible nitric oxide and pro­ 

inflammatory cytokine synthesis and release (Chao et al., 1995). Given the importance 

of TNF-a in promoting inflammation and its pivotal role in sustaining inflammation, we 

first assessed the time course of TNF-a release from LPS stimulated RAW 246.7 cells. 

The levels of TNF-alpha in response to stimulation of RAW 264. 7 cells with LPS ( 10  

µg/ml) were examined over 8-h time period. As shown in figure 1,  LPS treatment 

induced a rapid and marked increase in TNF-a from the basal level of 3 1 5  pg/ml at 1 . 5  h  

to a maximal stimulation of 2678 pg/ml at 2h with no further increase in release up to and 

including 8h. Statistically significant increase in TNF-a were observed with LPS 

treatment incubations of 2h, 4h, 6h and 8h (p< 0.005) (Figure 1 ). In contrast, parallel 

control cells showed a modest increase in basal TNF-a release in the absence of LPS 

(Figure 1). 
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LPS effect on RAW 264. 7 cell TNF- a release 
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Figurel. LPS stimulated RA W  264. 7 cells release maximum TNF- a at 2 h. 0.3 x 106 

RAW 264.7 cells (ATCC, Rockville, MD) were seeded in 24 well plate(s) in Dulbecco's 
Modified Eagle Medium (DMEM) supplemented with 10% fetal calf serum (FCS), 10 
mM L-glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin at 37° C, 5% C02 ,  

95% air for 48 h and then treated with OptiMEM media for 24h. The cells were treated 
with 10  µg/ml LPS at lh, l .5h, 2h, 4h and 8h and TNF- a was measured in the culture 
supernatants at each time point using ELISA. Control cells were treated with OptiMEM 
medium without LPS. Data shown are the replicate mean+/- SEM from 3 separate 24 
well plates, with each well assayed in duplicate. 
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SRIF-14 reduces the release of TNF-a in LPS stimulated RAW 246. 7 cells: 

SRIF is known for its immunomodulatory effects in activated primary monocytes 

(Chao et al., 1995; Peluso et al. 1996)). Thus, it was of interest to evaluate first, if SRIF 

could modulate TNF-alpha response of LPS stimulated RAW 264.7 cells and second, if 

the regulation is SRIF dose dependent as per previous work (Chao et al, 1995; Peluso et 

al, 1996;). To confirm whether the TNF-alpha release was responsive to SRIF and its 

graded dose, studies were conducted in which RAW 264.7 cells were stimulated with 

LPS ( 10  µg/ml) in the presence and absence of SRIF concentrations ranging between 10- 

10 Mand 10-7 M. Maximum TNF-a response time point, 2h, (Figure 1) was selected for 

this study. As expected, the release of TNF-a from LPS activated monocytes was 

decreased by cell treatment with SRIF and the effect was observed to be dose 

independent (Figure 2). Cells treated with 10-10 
M (p<0.01) and 10-8 M (p<0.05) of SRIF 

showed significantly less TNF-a release compared to LPS treated cells. Further, SRIF 1 o­ 

io M concentration had more regulatory effect compared to SRIF 10-8 
M effect on TNF-a 

release. However, TNF-a release in cells treated with 10-7 Mand 10-9 M of SRIF was not 

significantly different from LPS treated cells. Cells treated with LPS alone released 

significantly (p<0.05) greater amounts of TNF-a than did the untreated control cells 

(2299+ _ 679 pg/ml vs 53 .92+ _12.86 pg/ml) and SRIF treated control cells. Control cells 

used to asses the effect of SRIF showed that SRIF, at all the four concentrations, had no 

effect on TNF-a release (Figure 2 :  SRIF-7, SRIF-8, SRIF-9 and SRIF-10). Taken 
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together, SRIF at 10-10 M concentration showed potent TNF-a regulatory effect in LPS 

activated RAW 264.7 cells (Figure 2). 

SRIF+ LPS 

SRIF -/+ LPS effect on TNF-a release at 2 h r  

3000 
2700 
2400 

a, 

� _ 2100 
� .... , 1800 
a, - 
a.. E 1500 
! � 1200 
Z 900 
I- 

600 
300 

O..m;;:a..1a..,u...._ ...... �r:.a,.,lii,,pii..ci;------"""" ...... ,\-&-l ..... ...&-I,� 

Figure 2: SRJF-14 reduces the release ofTNF- a in LPS stimulated RAW 264. 6 cells at 
2h. 24 well plate(s) were seeded with RAW 264.7 cells similar to the protocol outlined in 
Figure 1 .  The cells were treated with 10 µg/ml LPS alone, 10 µg/ml LPS in the presence 
and absence of SRIF-14 at physiological concentrations of 10·7 M, 1 o·8M, 10-9 Mand 1 O' 
10 Mand released TNF-a was measured in the cell culture supernatants at 2h. (*P< 0.05, 
# P<0.01 denote statistically significant differences compared to LPS-only treated cells). 
Control cells were treated with OptiMEM medium in the absence of LPS. The results 
shown are the mean +/- SEM for 3 individual plates; with 4 replicate wells assayed (in 
duplicate) from each plate. 
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10-
10 

M SRIF 14 reduces TNF-a to maximum at 2 h 

The results presented in Figure 1 and Figure 2 show different kinetic pattern of 

TNF-a release and dose-independent SRIF inhibition of TNF-a release in LPS stimulated 

monocytes compared to previous studies (Peluso et al., 1996; Chao et al, 1995). 

Considering that this might be typical response of RAW 246.7 cells to LPS and SRIF, we 

next wanted to study the time course of SRIF 10- 1 0  Mon LPS activated RAW 246. 7 cells. 

The Raw 264.7 cells were treated with LPS with or without 10- 1 0  M SRIF-14 at lh, 1 .5 h, 

2h and 4h. Maximum inhibition of TNF-a release was observed at 2h (by 17 .53% or 

403.03 pg/ml) compared to other time points [by 1 1 . 3 1  %  or 8.62 pg/ml at lh, 3.7 % or 

17  pg/ml at 1 . 5  h, and 6.64 % or 88 .51  pg/ml at 4 h ]  (Figure 3). Statistically significant 

decrease in TNF-a release was observed at LPS incubations of 1 .5  h, 2h and 4h time 

points (p< 0.05). Again, LPS alone treated cells showed maximum TNF-a release at 2 h 

followed by decline at 4h. There was minimal response of SRIF alone treated cells and 

control cells to TNF-a release at all the time points (Figure 3). Taken together, the 

results from these experiments demonstrate an SRIF inhibition of TNF-a release from 

RAW 264.7 cells, adding a new direction for studying the mechanism of pro­ 

inflammatory cytokine secretion. 
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Time course of SRIF (10- 10  M) effect on TNF-a release 
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Figure 3.SRIF-14 reduces TNF- a release in RA W  264. 7 cells to maximum at 10·
10 

M 

concentration at 2h. 24 well plate(s) were seeded with RAW 264.7 cells similar to the 
protocol outlined in Figure 1 .  The cells were treated with 10 µg/ml LPS alone, 10 µtml 
LPS in the presence and absence of SRIF-14 .at physiological concentrations of 10· 1  M 
and released TNF-a was measured in the cell culture supematants at the indicated times. 
Control cells were treated with OptiMEM medium in the absence of LPS. A maximum 
release ofLPS-induced TNF-a release was observed at 2 h. SRIF-14 showed maximum 
reduction in TNF-a release at 10·10 M concentration out of four physiological 
concentrations (10-7 M, 10-8M, 10·9 Mand 10· 10  M). The results shown are the mean+/­ 
+/- SEM for 3 separate 24 well plates; with 4 replicate wells from each plate assayed in 
duplicate.(* ) indicate statistically significant difference between TNF- a released in LPS 
treated cells and LPS± SRIF treated cells (p<0.05). 
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Figure 4: A proposed schematic model of TNF-a inhibition by SRIF in RAW 264.7 
cells: LPS binds to toll like receptors (TLR 4) to increase intracellular calcium level, 
activating NF-KB signal pathway resulting in increase in TNF-a release (pathway 
indicated by black arrows). SRIF, immunoregulatory in function, might alter LPS 
pathway via decreasing cellular calcium level by regulating membrane/intracellular 
calcium ion channels. Consequently, decreasing TNF-a release from RAW 264.7 cells 
(pathway indicated by red arrows). (Reference: model is adopted from Zhou et al.,_2006 

and Weckbecker et al., 2003). 
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DISCUSSION 

SRIF agonists control a host of cellular responses, including cell proliferation and 

secretion. In addition, SRIF peptides and peptidomimetic possess anti-inflammatory 

activity which may originate from either one or both of the anti-proliferative and anti­ 

secretory effects (Karalis et al., 1994; Badway et al., 2004; Blake et al., 2007). In innate 

immune responses, resident macrophages are a primary source of pro-inflammatory 

cytokines, which govern the intricate intercellular communication responsible for the 

inflammatory response (Fujiwara and Kobayashi , 2005). However, macrophages are also 

involved in resolving cellular inflammation, typically through their phagocytic activities, 

but also through their response to circulating anti-inflammatory signals which arise from 

both neural and immune sources. SRIF is one such immunomodulatory signaling 

molecule. SRIF' s immunomodulatory effects have been studied in vitro using different 

cell lines such as human blood monocytes (Peluso et al., 1996), mouse macrophages 

(Chao et al., 1995) and epithelial cells (Chowers et al., 2000). SRIF actions are thought 

to be multifactorial, possibly involving control of cytokine synthesis, processing and 

release. Limitations in the availability of primary immune cells, as well as technical 

difficulties in isolating resident tissue macrophages, have led us to examine SRIF effects 

in a murine transformed monocyte/macrophage cell line. The RAW 264.7 cell provides a 

valuable model cell line for studying macrophage functions and intracellular signaling 
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pathways (Natarajan et al., 2006). In a previous study we demonstrated that the sst2b 

receptor was expressed in the RAW 264.7 cells (Sung, 2007). The aim of the present 

study was to study the effect of SRIF on TNF-a release in LPS stimulated RAW 264.7 

cell. LPS is a major component of the outer membrane of Gram-negative bacteria and 

acts as an endotoxin and a potent activator of the immune cells (Morrison and Ryan, 

1979) inducing secretion of inflammatory mediators such as IL-1, TNF-a from the 

macrophages (Adams and Hamilton, 1984). TNF-a acts as primary mediator of 

inflammatory response initiating the release of other mediators (Urban et al., 1986; Le 

and Vilcek, 1987). We have found that LPS treated RAW 246.7 cells showed temporal 

TNF-a release peaking at 2h. Further, SRIF-14 showed marked inhibitory effect on TNF­ 

a release in LPS-activated RAW 264. 7 cells. This effect as seen was neuropeptide 

concentration independent with 10-8 Mand 10- 1 0  M concentrations showing significant 

reduction on TNF-a release but 10-7 Mand 10-9 M concentrations while reduced, were 

not significantly reduced TNF-a release. In specific, SRIF-14 10-10 M concentration 

inhibited TNF-a release to the maximum compared to other concentrations in RAW 

264.7 cells. Our results are consistent with the previous work where RAW 264.7 cells 

responded in a similar manner to neuropeptide, corticotrophin-releasing factor, graded 

doses (Tsatsanis et al, 2007). We also studied the time course of SRIF 10- 10  Mon LPS 

stimulated RAW 264.7 cells and found that SRIF-14 10- 10 M concentration showed 

maximum reduction in TNF-a release at 2 hr. 

Although in general, SRIF is known to suppress monocyte and macrophage 

functions, there exists a contradictory data on modulation of cytokine release by SRIF 
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from human and mouse monocytes. While Komorowski and Stepien have reported that 

SRIF stimulates IL-6 and IL-1 a secretion from LPS stimulated human monocytes 

(Komorowski and Stepien, 1995), Peluso et al have shown that SRIF decreases cytokine 

secretion in LPS stimulated human monocytes (Peluso et al., 1996). Further, SRIF and its 

analogs have shown to diminish the levels of inflammatory mediators such as TNF-a in 

vivo (Karalis et al., 1994) and in rat peritoneal macrophages (Chao et al.,1995). Our 

results are in consistent with the studies showing SRIF regulation of cytokine release in 

monocytes/macrophages or in vivo. 

Taken together, in this study we have shown the marked effect of SRIF (10- 1 0  M) 

upon LPS activated RAW 264.7 cells, which is neuropeptide concentration-independent. 

We speculate that SRIF might mediate its regulatory effect via regulation of calcium 

channels present in the cells (Weckbecker et al., 2003). Increase in TNF-a in LPS 

stimulated macrophage cell line has been related to transient increase in calcium 

(Watanabe et al., 1996) and decrease in TNF-a in vivo has been related to blocking of 

calcium ion channel (low calcium levels) (Hotchkiss et al.,1995). Recently, Zhou et al 

have showed LPS activating PKC-dependent pathway resulting in increased intracellular 

calcium and TNF-a production in LPS-stimulated rat peritoneal macrophages (Zhou et 

al., 2006). In parallel, it is likely that SRIF regulates LPS activated pathways via 

regulating calcium channels in RAW 264.7 cells, with a final consequence of inhibition 

ofTNF-a release (Figure 4). 

This study gives way to future work to study effect of SRIF-14 on 

release/secretion of other proinflammatory and anti-inflammatory cytokines in this cell 

20 



line; mechanism of cytokine regulation; and SRJF intracellular signaling pathway cross 

talk with LPS signaling pathway. This cell line has been used as a model cell line to 

delineate intricate intracellular signaling pathways and SRIF signaling pathway is one of 

the pathways to be unraveled. Our present work might work as an initiating point for such 

exhaustive study. 
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