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Abstract 

Eutrophication, a process that occurs due to excessive accumulation of nutrients such as 

nitrogen and phosphorous is primarily from anthropogenic nitrogen and natural 

occurrences.  This phenomenon causes cyanobacterial overgrowth which can potentially 

lead to toxic algal blooms that affect public drinking water sources and recreational 

usage. An immediate need to detect bloom forming cyanobacteria in freshwater bodies 

early hand is critical to implement prevention strategies. These microorganisms contain 

phycobiliproteins such as phycoerytrhin, and allophycocyanin as part of the 

phycobillisome that allow autofluorescence.  In this study, 36 freshwater bodies from 14 

New Jersey counties were collected and processed for flow cytometric analysis for 

forward- scatter, phcyoerthrin and allophycocyanin parameters. Pure cultures of 

Synechococcus sp. IU 625 (S. IU 625), Cylindrospermum spp. and Microcystis 

aeruginosa (M. aeruginosa) were utilized as references.  Polymerase chain reaction 

(PCR)-based assay was performed for the validation of the flow cytometric analysis. The 

results revealed 17 out of the 36 sites showed all three reference species and their related.  

6 waterbodies showed Cylindrospermum like species, 7 waterbodies showed Microcystis 

and Cylindrospermum like species, 4 waterbodies showed Microcystis and 

Cylindrospermum like species and 2 sites showed Microcystis like species. PCR results 

validated these results by showing positive results for phytoplankton, cyanobacteria and 

Synechococcus. Flow cytometry has high potential for the rapid detection of 

cyanobacteria in live form due to their autofluorescence properties from the 

phycobilisome. 
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Introduction 

Cyanobacteria, previously known as blue green algae, are one of the earliest dated 

oxygen releasing prokaryotes that originate ~ 3.5 billion years ago (Schopf, 2002).  

Cyanobacteria may have very different cellular arrangement such as unicellular 

Synechococcus spp., filamentous Cylindrospermum spp., and potential colonial 

Microcystis spp. Their sizes range from 0.5 to > 50 µm. These cyanobacteria contain a 

thicker peptidoglycan layer than gram negative bacteria and possess complex metabolic 

pathways that have allowed the evolutionary advantage of surviving various 

environmental conditions such as the ability of the electron flow from both 

photosynthesis and respiration to occur in the thylakoid membrane (Campbell et al., 

1998; Vermaas, 2001). These photosynthetic microorganisms are located in marine 

waters and freshwater environments such as lakes, ponds, rivers, brackish water and 

water reservoirs. Moreover, since cyanobacteria have some evolutionary metabolic 

advantages and the ability to tolerate various environmental conditions, they are able to 

survive as well as outcompete other biological species in eutrophied water bodies. 

Therefore, cyanobacteria can over-grow and form an algal bloom because of the 

accelerated accumulations of nutrients such as nitrogen and phosphorus. These sources 

are introduced into water due to anthropogenic nitrogen, manmade situations and natural 

occurrences such as fertilizers, humans waste, agricultural waste, urbanization, housing 

developments (especially lake houses); decaying plants, storms, flooding and water 

runoffs (Paerl et al., 2013). The bloom masses may cover the water surface, lowering the 

dissolved oxygen which leads to hypoxia in the water.  In addition, many cyanobacteria 
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possess the ability to release toxins. Both cases are considered as harmful algal blooms 

(HABs) since the ecosystems are affected. An example of an algal bloom from Clark 

Reservoir in Clark, NJ is shown in Figure 1.       

HAB that is toxic becomes a serious issue when the ecosystem is affected and 

when it becomes dangerous towards the public that utilize the water for drinking and 

recreational purposes. Some cyanobacteria produce secondary metabolites known as 

cyanotoxins that are toxic to other cells, organisms, fish, animals and humans. However, 

not all cyanobacteria are toxic and not every toxic species will always secrete 

cyanotoxins based on the cell’s condition and the environment. The toxicity can also vary 

from one bloom to another where specific species can secrete a certain toxin or even 

multiple species can release different cyanotoxins (Funari and Testai, 2008; USEPA 

2015a). Intracellular toxins for most cyanobacteria remain internal unless an 

environmental stress factor induces cell lysis (ILS, 2000; USEPA 2015a). One reason 

intracellular toxins remain balanced is because daughter cells are lost during cell division 

(Paerl et al., 2013).  These cyanotoxins can be exposed to humans and animals from skin 

contact and inhalation during recreational activities such as swimming or from ingesting 

contaminated drinking water from cyanotoxins. 80% of human exposure tends to be 

through ingestion of contaminated water (WHO, 1998; Merel et al., 2013). Cyanotoxins 

are broadly organized as hepatotoxins, neurotoxins and dermatoxins. Cyanotoxins have 

also been categorized based on United States Environmental Protection Agency’s 

(USEPA) contaminate candidate list that primarily affect the public drinking water. These 

include the toxins microcystin, cylindrospermopsin and the anatoxin-a- group. 
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Microcystins, primarily found in fresh and brackish water, contain about 80 variations in 

their amino acids. The toxic mechanism involves inhibiting eukaryotic protein 

phosphatases 1 and 2A (Jungblut et al., 2006). Exposure to this toxin causes liver 

inflammation and or liver hemorrhage (Jungblut et al., 2006; Van Apeldoorn et al., 2006). 

Common species include Microcystis, Anabaena, Planktothrix, Anabaenopsis and 

Aphanizomenon (USEPA, 2014).      

Anatoxin- a is a neurotoxin that contains 2 to 6 variances in the amino acids. The 

mechanism involves the binding of this toxin to neuronal pre-synaptic acetylcholine 

receptor where nicotine receptors are mimicked, thus, causing neurological effects such 

as paralysis and even death from respiratory arrest (Carmichael et al., 1992; WHO, 1999; 

Wonnacott and Gallagher, 2006; Farrer et al., 2015; USEPA, 2014; USEPA 2015b). Just 

like microcystin this toxin is water soluble, however unstable at pH > 10 and becomes 

nontoxic and unstable from long duration of sunlight exposure (Merel et al., 2013). 

Without sunlight the toxin from the bacteria can survive days to several months (Stevens 

and Krieger, 1990; US EPA 2015b). Common species for this group include Anabaena, 

Planktothrix, Aphanizomenon, Cylindrospermopsis, Cylindrospermum and Oscillatoria 

(Blaha et al., 2009; USEPA, 2014).       

 Cylindrospermopsin, a hepatotoxin with 3 variants or analogues found further 

below the water surface, can have the toxin released extracellularly up to 50%.  It’s found 

in brackish, marine waters, freshwater ponds, rivers, reservoirs and eutrophied lakes 

(Chiswell et al., 1999; USEPA, 2014; USEPA 2015c). The toxic mechanism involves 

inhibiting any forms of protein synthesis which can cause kidney and liver failure (Van 
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Apeldoorn et al., 2007).         

 Guidelines need to be established since no U.S Federal guidelines are currently 

available and cyanotoxins contaminate drinking water. The World Health Organization 

has established a recommendation for microcystin- LR of 1 µg/L in drinking water.  

According to USEPA, only 18 countries and 3 states in the U.S have established a toxin 

ingestion guideline for drinking water. For instance, 16 countries contain a guideline 

value of 1.0 µg/L, Australia and Canada contain values of 1.3 and 1.5 µg/L respectively 

(USEPA, 2015d). Only Minnesota, Ohio and Oregon in the United States have guidelines 

values of 0.04, 1 and 1 µg/L respectively (USEPA, 2015d). EPA states that Australia, 

New Zealand and Brazil have cylindrospermopsin guideline values of 1, 1, and 15 µg/L 

respectively (USEPA, 2015e) while Ohio and Oregon both contain cylindrospermopsin 

guideline values of 1 µg/L (US EPA, 2015e). Children are at greater risks than adults 

because of their body size to weight ratio. Moreover, EPA has stated guidelines for 

children less than six of 0.3 and 0.7 µg/L for microcystin and cylindrospermopsin 

respectively (USEPA, 2015f; Farrer et al., 2015).     

Treatments are in dire need to help avoid harmful algal blooms. In 2014 Toledo, 

Ohio banned their drinking water and asked civilians not to drink or boil water because 

the microcystin toxin doesn’t disintegrate from boiling (Rao et al., 2002; USEPA 2015d). 

In addition, it is vital to remove intracellular as well as possible extracellular toxins to 

fully eradicate these cyanotoxins. Algaecides such as copper sulfates have been used 

because it affects electron transport in photosystem II and stops some fundamental 

enzyme activities of many cyanobacteria (WHO, 1999; Le Jeune et al., 2006). However, 
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it still leads to cell lysis, thus causing secretion of toxins. In addition, this issue also 

occurs for chlorination treatment (Daly et al., 2007; Weirich et al., 2014). Microfiltration 

and ultrafiltration have been effective towards the prevention of intracellular toxins with 

up to 98% removal of Microcystis aeruginosa, but still ineffective towards the removal of 

extracellular toxins (Chow et al., 1997; USEPA, 2014). Cyanophages, a host specific 

bacteriophage have the ability to infect species specific cyanobacteria, is a possible 

biological prevention approach for cyanobaterial blooms. Knowledge of cyanophage can 

be used as a means to reduce bloom forming cyanobacteria and increase water quality 

and health of the ecosystem (Lee et al., 2006).       

Finding solutions and awareness of harmful algal blooms is an immediate need as 

rapid detections can avoid or halt further issues and reduce the need for chemical 

treatments which will cause cell lysis and toxin secretion. New Jersey along with other 

states are actively coming up with efficient monitoring methods.  New Jersey Department 

of Environmental Protection (NJDEP) in 2005 created an ambient lake monitoring 

network plan to determine and assess water quality and ecological health of lentic water 

resource to meet the Clean Water Act and the Total Maximum Daily Load requirements. 

NJDEP is making an effort into improving water quality to ensure it does not affect the 

public. NJDEP has a network station of 200 water bodies that are monitored periodically 

and approximately 40 waterbodies are sampled every year.    

In summer 2015, collaboration with NJDEP was established. A total of 36 

freshwater bodies in 14 New Jersey Counties were processed from their water collection.  

Cyanobacteria contain phycobillisomes that are attached to the thylakoid membrane and 
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utilized as a light harvesting and energy transfer complex toward photosystem II reaction 

centers (MacColl et al., 1998; Teldford et al., 2001). Phycobillisomes are composed of 

highly organized phycobiliproteins such as phycoerythrin (PE), phycocyanin (PC), and 

allophycocyanin (APC) where the energy flow will follow in the order of these auto 

fluorescent pigments respectively (MacColl et al., 1998). Furthermore, many flow 

cytometers allow detection of PE and APC fluorescence and cyanobacteria have the 

ability to autofluorescence as they contain the natural pigments chlorophyll a, 

phycoerythrin and allophycocyanin (Telford et al. 2001; Dennis et al., 2011). Therefore, 

these natural pigments in photosynthetic microorganisms including cyanobacteria can be 

rapidly detected for real time monitoring without additional staining. Cyanobacterial 

profiling can be determined by comparing the flow cytometric results from water samples 

to pure cultures.  Synechococcus sp. IU 625, a unicellular cyanobacterium, was used as a 

general algal bloom indicator and Microcystis aeruginosa as well as Cylindrospermum 

spp. were used as toxic algal bloom indicators (WHO, 1999; USEPA 2015a). Thus, this 

method can potentially help detect early harmful algal blooms on freshwater bodies that 

are provided for public drinking water and recreational activities.  

Flow cytometry can be implemented as a tool for analyzing routine environmental 

water samples for the prevention of algal blooms (Dennis et al., 2011). Its sensitivity 

allows accurate measurements and detection because it’s sufficient to even analyze 

submicron particles (Dubelaar et al., 2000; Read et al., 2014). Therefore, a high 

throughput of environmental water samples can run through the flow cytometer to 

quickly reveal a profile of species. In addition, this instrument can even be used to detect 
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low level toxic species to help find and identify an early harmful algal bloom (Cellamare 

et al., 2010). Polymerase Chain Reaction (PCR) can also be utilized as a supplement to 

flow cytometry to validate and verify the specific cyanobacterial presence in the water. 

Thus, flow cytometry can be used to rapidly determine a profile of cyanobacteria from 

water samples and PCR can help confirm and validate these results.   
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Figure 1: A cyanobacterial bloom with a dense green mat appearance is evident at Clark 

Reservoir, Clark Township, Middlesex County, NJ during summer-fall 2015.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Image citation notice: All images included in this thesis are generated by the author 

unless otherwise cited.   
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Materials and Methods 

Water Sample Collection and Processing 

 Water samples from 36 water bodies in New Jersey were collected by NJDEP in 

250 ml Nalgene bottles during summer 2015. The GPS coordinates as well as water 

temperature (°C), pH and dissolved oxygen (mg/L) were measured and recorded on site. 

The water samples were refrigerated until filtration.  

 

Cyanobacteria Culture Maintenance 

5 ml of American Type Culture Collection (ATCC) Axenic Synechococcus sp. IU 

625 (S. IU 625) strain was maintained in 95 ml sterilized Mauro’s Modified Medium (3M 

with a pH of 7.9) in a 250 ml Erlenmeyer flask (Chu et al., 2012). The cells were grown 

in a Gyromax 747T incubator shaker (Amerex Instruments, Lafeyette, CA) that contained 

continuous fluorescent lighting, a temperature of 26°C and a rotation of 100 rpm. 

Microcystis and Cylindrospermum were obtained from Carolina Biological (Carolina 

Biological Supply Company, Burlington, NC) in a stock culture with Alga-Gro® 

Freshwater medium. 3 ml was inoculated from this stock into a 50 ml Erlenmeyer flask 

along with 5 ml of 3M and these cultures were each grown separately on an Innova 2000 

shaker (New Brunswick Scientific, Enfield, CT, USA).  A Pharmacia Ultraspec III 

Spectrophotometer (Pharmacia LKB, Sweden) was utilized to monitor the growth at an 

OD750nm until the middle of log phase was reached. Then, 5 ml of these separate cultures 

were inoculated into a 250 ml Erlenmeyer flask along with 95 ml of 3M and these 

cultures were now grown under the Gyromax 747 T incubator shaker. A mixed 
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cyanobacteria culture containing S. IU 625, Microcystis, Cylindrospermum, 

Synechococcus elongatus PCC 7942 and  Synechocystis PCC 6803 were also maintained 

in a 250 ml Erlenmeyer flask that contained 5 ml of culture and 95 ml of 1X BG-11 

medium (Sigma Aldrich, St. Louis, MO).  

 

Filtration 

A Thermo Scientific™ Nalgene™ (Thermo Scientific, Rochester, NY) vacuum 

filtration unit was assembled and polycarbonate membrane filters (Sterlitech Corporation, 

Kent, WA) were placed onto the filter holder using sterile forceps. The water samples 

that were stored in a Nalgene bottle were mixed thoroughly and poured through the 30 

μm membrane of the filtration unit. The filter was then placed on sterile aluminum foil 

using sterile forceps and once dried the aluminum foil was folded and put into the 4°C 

refrigerator. The filtrate was mixed thoroughly and poured into a 50 ml conical tube. 

Most of the remaining filtrate was then poured onto another filtration unit that contained 

a 5 μm membrane and this whole process was repeated for 0.4μm and 0.1μm membranes.  

 

Chelex DNA Extraction  

A Chelex DNA extraction was performed utilizing a modified protocol from (Chu 

and Rienzo, 2013). For the DNA extractions of the water samples, 1.5 ml of the sample 

was added into a 1.7 ml microcentrifuge tube and then centrifuged at 10,000 rpm for 3 

minutes using a Denville 260D microcentrifuge (Denville Scientific, South Plainfield, 

NJ, USA) and 200 μl of Chelex InstaGene Matrix (Bio-Rad Laboratories, Hercules, CA) 
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was added. The samples were then vortexed for 10 seconds and placed into a Polyscience 

Temperature Water Bath (Polysciences, Niles, IL) for two hours at 56°C. Thereafter, the 

tubes were placed into an ISOTEMP125D Heat Block (Fisher Scientific, Pittsburg, PA) 

that was set to 100°C and incubated for about 8 minutes. These samples were then 

centrifuged at 14,000 rpm for 12 minutes. The supernatant (DNA) was then transferred 

into a different 1.7 ml microcentrifuge tube. The DNA samples were then measured for 

the concentration yield and purity (A260/280 nm) using a NanoDrop ND-1000 

Spectrophotometer (Thermo Fisher Scientific, Wilmington, DE). The same process also 

occurred for genomic DNA extractions for the standards except 500 μl of the standard 

cultures were added directly into a microcentrifuge tube and were then immediately 

centrifuged. In addition, during the heat block step the incubation occurred for 12 

minutes instead of 8 minutes. 

 

PCR (Polymerase Chain Reactions) 

PCR was conducted for the amplification of the environmental DNA samples. 

The specific primers utilized for this purpose were found through literature for the 

presence of specific cyanobacteria or for specific toxins induced by cyanobacteria. The 

lists of primers used for this study are located in Table 1. Each PCR reaction tube 

contains 6 μl sterile deionized water, 2.5 μl dimethyl sulfoxide (DMSO), 1 μl of forward 

primer, 1 μl of reverse primer, 2 μl of DNA (~10 ng) and 12.5 μl of 2X GoTaq® Hot 

Start Green Master Mix (Promega), a total of 25 μl reaction. A Veriti 96 well 

Thermocycler (Applied Biosystems, Carlsbad, CA, USA) was utilized with the primary 
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denaturation of 95°C for 2 minutes followed by a secondary denaturation of 95°C for 45 

seconds. Thereafter, the PCR continued with annealing between 50 to 60°C based on 

primer set for 45 seconds, first extension at 72°C for 45 to 50 seconds and a final 

extension step at 72°C for 5 minutes. An additional step of 4°C occurred to ensure the 

amplified PCR product did not degrade.  

 

Gel Electrophoresis  

Gel Electrophoresis was conducted for the visualization of the amplified DNA 

samples. A 1% agarose gel was created with SYBR® Safe (Invitrogen) DNA 

intercalating agent. This gel was then placed into a Denville MIDI (Denville Scientific 

Inc.) gel electrophoresis apparatus that was submerged with 1X TAE buffer (Fermentas 

ThermoFisher Scientific) with a voltage setting of 100 to 105V. The gel was visualized 

under a 2UV Transilluminator Gel Docit System (UVP, Upland, CA).  

 

Flow Cytometry 

 Flow cytometry was conducted by using a MACSQuant® Analyzer (Miltenyi 

Biotec, Inc., SanDiego, CA).  The three standard control cultures Microcystis, S. IU 625 

and Cylindrospermum spp. with OD750nm of 0.591, 0.521 and 0.640 respectively were run 

through the flow cytometer at fixed voltage settings with various dilutions. The water 

samples for each site and the serial filtrates of < 30 µm, < 5 µm and < 0.4 µm were run 

through the flow cytometer with the same voltage settings as the standard controls. The 

analysis was conducted using the software FlowJo vX.0.7 (Tree Star, Inc., Ashland, OR).  
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Table 1. A list of primer sets utilized to perform PCR that were found in literature studies. The table displays the primer name, 

the nucleotide sequence (5’-3’), annealing temperature (°C), amplicon size (nt), gene, species and the reference source.  

  

 

  

Primer Sequence (5’-3’) 
Tm 

(°C) 

Amplicon 

(nt) 
Gene Species Reference 

PSf GGGATTAGATACCCCWGTAGTCCT 

50 735 16s rRNA 
General phyto-

specific 

Stiller & 

McClanahan, 

2005 Ur ACGGYTACCTTGTTACGACTT 

CYA106_16sf CGGACGGGTGAGTAACGCGTGA 

50 665 16s rRNA 
General 

Cyanobacteria 

Nubel et al., 

1997 
CYA781_16sr GACTACWGGGGTATCTAATCCCWTT 

16s_19f AAGCCTGACGGAGCAACGCC 

50 393 ssu rDNA 

General 

cyanobacteria 

Synechococcus 

Sanchez-

Baracaldo et al., 

2008 16s_409r GGTATCTAATCCCTTTCGCTCC 

MICf ATGTGCCGCGAGGTGAAACCTAAT 

55 200 16s rRNA Microcystis 
Hotto et al., 

2007 
MICr TTACAAYCCAARRRCCTTCCTCCC 

MSf ATCCAGCAGTTGAGCAAGC 

50 1369 mcyA Various 
Tillet et al., 

2001 
MSr TGCAGAAAACTCCGCAGTTG 

CPC1f GGCKGCYTGYYTRCGYGACATGGA 

50 389 

Phycocyanin 

gene  

-subunit  

General for 

Cyanobacteria 
Kim et al., 2006 

CPC1r AARCGNCTTGVGWATCDGC 
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Results 

Water collection sites 

Water samples from the 36 waterbodies, 14 counties were collected by NJDEP 

throughout summer and fall in 2015. Water properties were measured and recorded for all 

sites. Table 2 lists the information about 36 water collection sites including the site name, 

county, municipal, latitude, longitude, water temperature (°C), pH, and dissolved oxygen 

(mg/L). Among all water sample collected and tested, the water temperature ranged from 

16.97 (NJLM 0213) to 30.9°C (Alloway Lake). The pH ranged from 4.09 (Mt. Misery 

Lake) to 9.75 (Cooper Lake) with majority sites were between 6 and 9. The dissolved 

oxygen ranged from 1.66 (NJLM 0213) to 19.1 mg/L (Cooper Lake). 
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Table 2.  Information on the 36 water bodies displaying the site name, county, municipal, latitude, longitude, water 

temperature (°C), pH, and dissolved oxygen (mg/L). 
 

Site Name County Municipal Latitude Longitude 
Water Temp 

(°C) 
pH 

Dissolved O2 

(mg/L) 

Atlantic City 

Reservoir 
Atlantic 

Egg Harbor 

Township 
39.4395711 -74.55689 20.73 7.16 9.95 

NJLM-1286 Bergen 
Franklin Lakes 

Borough 
41.0281391 -74.19290831 28.49 9.18 14.64 

Deverson Lake 

Burlington 

Pemberton 

Township 
39.90935 -74.57618 26.84 5.03 5.97 

Lake Pachoango 
Evesham 

Township 
39.807790 -74.880049 29.35 6.79 11.96 

Lake Pemberton Pemberton 

Township 

 

39.95848 -74.66996 28.72 6.38 10.21 

Mt. Misery Lake 39.9257820 -74.5260940 18.41 4.09 6.35 

Mirror Lake 39.97477 -74.56182 21.65 5.89 7.13 

NJLM-0315 
Shamong 

Township 
39.77161957 -74.71541127 22.35 6.24 7.05 

NJLM-0754 
Medford 

Township 
39.816796 -74.860840 22.95 6.92 9.81 

Hands Mill Pond 
Cumberland 

Maurice River 

Township 
39.2432870 -74.9015740 28.08 4.44 7.65 

Union Lake Millville City 39.41864 -75.06378 27.29 7.48 9.2 

Cooper Lake 

Gloucester 

Logan Township 39.801655 -75.332575 24.88 9.75 19.17 

Iona Lake 

Franklin 

Township 

39.598586 -75.084098 24.89 6.33 5.07 

Franklinville 

Lake 
39.621302 -75.077138 26.78 5.53 3.09 

McCarthys 

Lakes 
39.573972 -74.925978 26.45 6.27 8.21 

NJLM-0489 Logan Township 39.7495 -75.3807 30.09 9.38 10.77 

Amwell Lake Hunterdon 
West Amwell 

Township 
40.405095 -74.91248 28.25 8.7 9.97 
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Site Name County Municipal Latitude Longitude 
Water Temp 

(°C) 
pH 

Dissolved O2 

(mg/L) 

Roosevelt County 

Park Lake 
Middlesex Edison Township 40.5529 -74.3394 29.2 8.73 13.42 

NJLM-1034 Monmouth 
Upper Freehold 

Township 
40.166283 -74.496989 20.32 6.95 9.87 

Cifrese Lake 

(NJLM-1045) Morris 

Randolph 

Township 
40.818504 -74.608268 28.17 9.2 10.18 

Lake Morski Oko Jefferson Township 41.027069 -74.542093 22.64 7 6.57 

Prospertown Lake Ocean Jackson Township 40.133337 -74.4412 27.43 6.64 7.44 

Green Turtle Lake Passaic 
West Milford 

Township 
41.148516 -74.329033 28.89 8.92 8.92 

Alloway Lake 

Salem 

Alloway Township 39.572417 -75.351820 30.9 8.03 9.59 

Parvin Lake 
Pittsgrove 

Township 

39.5098 -75.13545 27.8 6.86 8.17 

Rainbow Lake 39.49055 -75.11241 28.1 6.83 7.11 

Great Gorge Lake 

Sussex 

Vernon Township 41.161202 -74.523444 26.57 9.24 8.89 

Hunts Pond Fredon Township 41.004037 -74.846306 26.67 8.25 8.95 

Laidlaw Pond Sparta Township 41.005938 -74.626666 27.01 8.43 8.1 

Mashipacong 

Pond 

Montague 

Township 
41.269306 -74.726483 26.56 6.2 7.04 

NJLM-0213 Hampton Township 41.1419850 -74.8365110 16.97 6.03 1.66 

NJLM-0378 
Montague 

Township 
41.28154931 -74.80019941 25.8 6.21 2.65 

Silver Lake 
Hardyston 

Township 
41.12171900 -74.5532404 26.7 6.39 3.32 

Upper East 

Highland Lake 
Vernon Township 41.16415 -74.4553 26.87 8.51 7.92 

Watchu Pond Byram Township 40.930143 -74.769397 25.17 6.83 3.69 

Deer Park Pond Warren 
Allamuchy 

Township 
40.9062 -74.7947770 28.2 7.15 6.81 
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Figure 2: A map of 36 water collection sites in New Jersey. Each of the 14 counties is color-coded along with 

corresponding site number.  
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Flow cytometry 

Flow cytometric analysis of Microcystis aeruginosa, Synechococcus sp. IU 625 and 

Cylindrospermum spp. 

 The three reference species were measured and analyzed through flow cytometry. 

The results revealed that Microcystis aeruginosa when measured and analyzed with 

Phycoerythrin and Allophycocyanin is detectable at an accurate range from an OD750nm  

of 0.001 and 4,196 cells/ml up to an OD750nm  of 0.591 and 2.0 x 106 cells/ml (Figure 3). 

Synechococcus sp. IU 625, when measured and analyzed with Phycoerythrin and 

Allophycocyanin is detectable at an accurate range from an OD750nm of 0.008 and cell 

count of 2,787 cells/ml up to an OD750nm of 0.521 and 187,800 cells/ml (Figure 4). 

Cylindrospermum spp., when measured and analyzed with Phycoerythrin and 

Allophycocyanin is detectable at an accurate range from an OD750nm of 0.001 and cell 

count of 1,479 cells/ml up to an OD750nm of 0.640 and 7.21 x 105 cells/ml (Figure 5).    
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Figure 3. Overlay histogram of Phycoerythrin (left) and Allophycocyanin (right) for Microcystis aeruginosa. The range is 

detectable from an OD750nm of 0.001 and 4,196 cells/ml up to an OD750nm of 0.591 and 2.0 x 106 cells/ml..  
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Figure 4. Overlay histogram of Phycoerythrin (left) and Allophycocyanin (right) for Synechococcus sp. IU 625. The range is 

detectable from an OD750nm  of  0.008 and cell count of 2,787 cells/ml up to an OD750nm of  0.521 and 187,800 cells/ml.  
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Figure 5. Overlay histogram of Phycoerythrin (left) and Allophycocyanin (right) for Cylindrospermum spp. The range is 

detectable from an OD750nm of  0.001 and cell count of 1,469 cells/ml up to an OD750nm of  0.640 and 7.21 x 105 cells/ml 
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Flow cytometric analysis of water samples collected from Atlantic County 

 Atlantic City Reservoir water sample from Atlantic County was collected and 

analyzed. This water site indicated the presence of phycoerythrin-rich species while there 

is little to no allo-phycocyanin species detected (Figure 6). 

Three pure cyanobacterial strains, Cylindrospermum spp., Microcystis aeruginosa 

and Synechococcus sp. IU 625 were included in the forward scatter-phycoerythrin profile 

analysis. The result showed the phytoplanktons in Atlantic City Reservoir could contain 

mostly Microcystis aeruginosa and Cylindrospermum spp. related species (Figure 7).  
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Figure 6. Histogram of phycoerythrin and allophycocyanin among 3 water samples from 

Atlantic City Reservoir.  Results showed Atlantic City Reservoir contain phycoerythrin-

rich species but no significant allophycocyanin was detected.  

 

 

Figure 7. Forward scatter-phycoerythrin profile analysis of Atlantic City Reservoir in 

Atlantic County and 3 reference species: Cylindrospermum (Red) Microcystis aeruginosa 

(Orange) as well as Synechococcus sp. IU 625 (Light blue). Atlantic City Reservoir 

showed mostly Microcystis aeruginosa and Cylindrospermum spp. related species. 
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Flow cytometric analysis of water samples collected from Bergen County 

 NJLM 1286 (Shadow Lake) water sample from Bergen County was collected and 

analyzed. This water site indicated the presence of phycoerythrin-rich species, while little 

to no allophycocyanin species detected (Figure 8). 

Three pure cyanobacterial strains, Cylindrospermum spp., Microcystis aeruginosa 

and Synechococcus sp. IU 625 were included in the forward scatter-phycoerythrin profile 

analysis. The result showed the phytoplanktons in NJLM 1286 (Shadow Lake) could 

contain mostly Microcystis and Synechococcus sp. IU 625 related species (Figure 9).  
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Figure 8. Histogram of phycoerythrin and allophycocyanin for NJLM 1286 (Shadow 

Lake) water sample in Bergen County. The results suggested this site contains 

phycoerythrin-rich species and little to no allophycocyanin.   

 

 
Figure 9. Forward scatter-phycoerythrin profile analysis of NJLM 1286 (Shadow Lake) 

and Cylindrospermum spp. (Red), Microcystis aeruginosa (Orange) as well as 

Synechococcus sp. IU 625 (Light blue). NJLM 1286 (Shadow Lake) showed mostly 

Microcystis and Synechococcus sp. IU 625 related species.  
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Flow cytometric analysis of water samples collected from Burlington County 

A total of seven water bodies from Burlington County were collected and 

analyzed. All sites indicated the presence of phycoerythrin-rich species, while there is 

little to no allophycocyanin species detected (Figures 10 and 11). 

Three pure cyanobacterial strains, Cylindrospermum spp., Microcystis aeruginosa 

and Synechococcus sp. IU 625 were included in the forward scatter-phycoerythrin profile 

analysis. The result showed the phytoplanktons in Deverson Lake, Lake Pachoango and 

Lake Pemberton could contain all three groups and their related species (Figure 12). 

Meanwhile, Mt. Misery mostly has Microcystis aeruginosa related species (Figure 13). 

Mirror Lake, NJLM 0315, and NJLM 0754 showed mostly Microcystis aeruginosa and 

Synechococcus sp. IU 625 related species. (Figure 14).  
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Figure 10. Histogram of phycoerythrin among 16 water samples from 7 freshwater bodies 

in Burlington County. The results suggested all sites contain phycoerythrin-rich species.  
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Figure 11. Histogram of allophycocyanin among 16 water samples from 7 freshwater 

bodies in Burlington County. No significant allophycocyanin was detected in Burlington 

County water samples. 
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Figure 12. Forward scatter-phycoerythrin profile analysis of sites #3-5 in Burlington 

County and Cylindrospermum (Red) Microcsytis (Orange) as well as Synechococcus sp. 

IU 625 (Light blue). (A) Deverson Lake, (B) Lake Pachoango and (C) Lake Pemberton 

showed all three related species.  
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Figure 13. Forward scatter-phycoerythrin profile analysis of Mt. Misery Lake (site #6) in 

Burlington County and Cylindrospermum (Red) Microcsytis (Orange) as well as 

Synechococcus sp. IU 625 (Light blue). Mt. Misery Lake showed mostly Microcystis 

aeruginosa related species.  
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Figure 14. Forward scatter-phycoerythrin profile analysis of sites #7-9 in Burlington 

County and Cylindrospermum (Red) Microcsytis (Orange) as well as Synechococcus sp. 

IU 625 (Light blue). (A) Mirror Lake, (B) NJLM 0315, and (C) NJLM 0754 showed 

mostly Microcystis aeruginosa and Synechococcus sp. IU 625 related species.  
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Flow cytometric analysis of water samples collected from Cumberland County 

A total of two water bodies from Cumberland County were collected and 

analyzed. All sites indicated the presence of phycoerythin-rich species, while 

allophycocyanin species were only detected in McCarthys Lakes (Figure 15).  

Three pure cyanobacterial strains, Cylindrospermum spp., Microcystis aeruginosa 

and Synechococcus sp. IU 625 were included in the forward scatter-phycoerythrin profile 

analysis. The result showed the phytoplanktons in Hands Mill and Union Lake could 

contain all three groups and their related species (Figure 16).  

 

 

 

 

 

 



33 
 

                     

Figure 15. Histogram of phycoerythrin among 4 water samples from 2 freshwater bodies 

in Cumberland County. The results suggested all sites contain phycoerythrin-rich species 

and no significant allophycocyanin was detected.  

 

  
Figure 16. Forward scatter-phycoerythrin profile analysis with sites #10-11 and 

Cylindrospermum (Red) Microcsytis (Orange) as well as Synechococcus sp. IU 625 

(Light blue). (A) Hands Mill Pond and (B) Union Lake showed all three related species. 
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Flow cytometric analysis of water samples collected from Gloucester County 

A total of five water bodies (sites #12-16) from Gloucester County were collected 

and analyzed. All sites indicated the presence of phycoerythin-rich species (Figure 17), 

while allophycocyanin species were only detected in McCarthys Lakes (Figure 18).  

Three pure cyanobacterial strains, Cylindrospermum spp., Microcystis aeruginosa 

and Synechococcus sp. IU 625 were included in the forward scatter-phycoerythrin profile 

analysis. The result showed the phytoplanktons in Cooper Lake could contain all three 

groups and their related species (Figure 19). Meanwhile, Franklinville Lake potentially 

has mainly Microcystis aeruginosa related species and NJLM 0489 revealed primarily 

Cylindrospermum spp. related species (Figure 20). Iona Lake, showed mostly Microcystis 

aeruginosa and Synechococcus sp. IU 625 related species and McCarthys Lake showed 

mostly Microcystis aeruginosa and Cylindrospermum spp. related species (Figure 21). 
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Figure 17. Histogram of phycoerythrin among 8 water samples from 5 freshwater bodies 

in Gloucester County. The results suggested all sites contain phycoerythrin-rich species.  
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Figure 18. Histogram of allophycocyanin among 8 water samples from 5 freshwater 

bodies in Burlington County. Allophycocyanin was detected in McCarthys Lake water 

sample. 
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Figure 19. Forward scatter-phycoerythrin profile analysis of Cooper Lake (site #12) and 

Cylindrospermum (Red) Microcsytis (Orange) as well as Synechococcus sp. IU 625 

(Light blue). Results showed that Cooper Lake contained all three related species.  

     

Figure 20. Forward scatter-phycoerythrin profile analysis of sites 14, 16 and 

Cylindrospermum (Red) Microcsytis (Orange) as well as Synechococcus sp. IU 625 

(Light blue). (A) Franklinville Lake contained mostly Microcystis aeruginosa related 

species and (B) NJLM 0489 contained primarily Cylindrospermum spp. related species. 
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Figure 21. Forward scatter-phycoerythrin profile analysis of sites #13, 15, and 

Cylindrospermum (Red) Microcsytis (Orange) as well as Synechococcus sp. IU 625 

(Light blue). (A) Iona Lake showed primarily Microcystis aeruginosa and Synechococcus 

sp. IU 625 related species. (B) McCarthys Lake contained mostly Microcystis aeruginosa 

and Cylindrospermum spp. related species.  
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Flow cytometric analysis of water samples collected from Hunterdon County 

Amwell Lake from Hunterdon Country was collected and analyzed. This water 

site indicated the presence of phycoerythin-rich species, while there is little to no allo-

phycocyanin species detected (Figure 22). 

Three pure cyanobacterial strains, Cylindrospermum spp., Microcystis aeruginosa 

and Synechococcus sp. IU 625 were included in the forward scatter-phycoerythrin profile 

analysis. The result showed the phytoplanktons in Amwell Lake could contain mainly 

Microcystis aeruginosa and Cylindrospermum spp. related species (Figure 23).  
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Figure 22. Histogram of phycoerythrin and allophycocyanin for Amwell Lake water 

sample in Hunterdon County. The results suggested this site contains phycoerythrin-rich 

species and little to no significant allophycocyanin. 

 
 

 
Figure 23. Forward scatter-phycoerythrin profile analysis of Amwell Lake (site #17) and 

Cylindrospermum (Red) Microcsytis (Orange) as well as Synechococcus sp. IU 625 

(Light blue). Amwell Lake showed mostly Microcystis aeruginosa and Cylindrospermum 

spp. related species. 
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Flow cytometric analysis of water samples collected from Middlesex County 

 Roosevelt County Park Lake water sample from Middlesex County was collected 

and analyzed. This water site indicated the presence of phycoerythrin-rich species and 

some allophycocyanin species detected (Figure 24). 

Three pure cyanobacterial strains, Cylindrospermum spp., Microcystis aeruginosa 

and Synechococcus sp. IU 625 were included in the forward scatter-phycoerythrin profile 

analysis. The result showed the phytoplanktons in Roosevelt Lake could contain mostly 

Cylindrospermum spp. related species (Figure 25).  
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Figure 24. Histogram of phycoerythrin and allophycocyanin for Roosevelt Lake water 

sample in Middlesex County. The results suggested this site contains phycoerythrin-rich 

species and some significant allophycocyanin.  

 

 
Figure 25. Forward scatter-phycoerythrin profile analysis of Roosevelt County Park Lake 

(site # 18) and Cylindrospermum (Red) Microcystis aeruginosa (Orange) as well as 

Synechococcus sp. IU 625 (Light blue). Roosevelt County Park Lake showed mainly 

Cylindrospermum spp. related species. 
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Flow cytometric analysis of water samples collected from Monmouth County 

 NJLM 1034 water sample from Monmouth County was collected and analyzed. 

This water site indicated the presence of phycoerythrin-rich species while there is little to 

no allophycocyanin species detected (Figure 26). 

Three pure cyanobacterial strains, Cylindrospermum spp., Microcystis aeruginosa 

and Synechococcus sp. IU 625 were included in the forward scatter-phycoerythrin profile 

analysis. The result showed the phytoplanktons in NJLM 1034 water body could contain 

mainly Cylindrospermum spp. related species and an undetermined group (Figure 27).  
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Figure 26. Histogram of phycoerythrin and allophycocyanin for 2 water samples from 

NJLM 1034 water boy in Monmouth County. The results suggested this site contains 

phycoerythrin-rich species and little to no allophycocyanin  

 
 

 
Figure 27. Forward scatter-phycoerythrin profile analysis of NJLM 1034 (site #19) and 

Cylindrospermum (Red) Microcystis aeruginosa (Orange) as well as Synechococcus sp. 

IU 625 (Light blue). NJLM 1034 water body showed mainly Cylindrospermum spp. 

related species as well as an undetermined group.  
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Flow cytometric analysis of water samples collected from Morris County 

 NJLM 1045 (Cifrese Lake) and Lake Morski Oko water sample from Morris 

County were collected and analyzed. This water site indicated the presence of 

phycoerythrin-rich species and some allo-phycocyanin species detected for Lake Morski 

Oko (Figure 28). 

Three pure cyanobacterial strains, Cylindrospermum sp., Microcystis aeruginosa 

and Synechococcus sp. IU 625 were included in the forward scatter-phycoerythrin profile 

analysis. The result showed the phytoplanktons in NJLM 1045 (Cifrese Lake) could contain 

Microcystis aeruginosa as well as Synechococcus spp. related species (Figure 29A). Meanwhile, 

Lake Morski Oko showed all three and their related species (Figure 29B).  
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Figure 28. Histogram of phycoerythrin and allophycocyanin for 3 water samples from 

NJLM 1045 (Cifrese Lake) and Lake Morski Oko in Morris County. The results 

suggested these site contains phycoerythrin-rich species and some significant 

allophycocyanin for Lake Morski Oko. 

  
Figure 29. Forward scatter-phycoerythrin profile analysis of sites #20-21 and 

Cylindrospermum (Red) Microcystis aeruginosa (Orange) as well as Synechococcus sp. 

IU 625 (Light blue). (A) NJLM 1045 showed mostly Microcystis aeruginosa and 

Synechococcus spp. related species and (B) Lake Morski Oko shows all three and its 

related species as well as an additional undetermined group. 
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Flow cytometric analysis of water samples collected from Ocean County 

 Prospertown Lake water sample from Ocean County was collected and analyzed. 

This water site indicated the presence of phycoerythrin-rich species while there is little to 

no allophycocyanin species detected (Figure 30). 

Three pure cyanobacterial strains, Cylindrospermum spp., Microcystis aeruginosa 

and Synechococcus sp. IU 625 were included in the forward scatter-phycoerythrin profile 

analysis. The result showed the phytoplanktons in Prospertown Lake could mainly 

contain Cylindrospermum related species (Figure 31).  
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Figure 30. Histogram of phycoerythrin and allophycocyanin for 2 water samples from 

Prospertown Lake in Ocean County. The results suggested this site contains 

phycoerythrin-rich species and little to no allophycocyanin. 

 

 
Figure 31. Forward scatter-phycoerythrin profile analysis with Prospertown Lake (site 

#22) and Cylindrospermum (Red) Microcystis aeruginosa (Orange) as well as 

Synechococcus sp. IU 625 (Light blue). Prospertown Lake showed mostly 

Cylindrospermum spp. related species. 
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Flow cytometric analysis of water samples collected from Passaic County 

 Green Turtle Lake water sample from Passaic County was collected and 

analyzed. This water site indicated the presence of phycoerythrin-rich species and allo-

phycocyanin- rich species (Figure 32). 

Three pure cyanobacterial strains, Cylindrospermum spp., Microcystis aeruginosa 

and Synechococcus sp. IU 625 were included in the forward scatter-phycoerythrin profile 

analysis. The result showed the phytoplanktons in Green Turtle Lake could contain 

mostly Cylindrospermum spp. related species (Figure 33).  
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Figure 32. Histogram of phycoerythrin and allophycocyanin for 2 water samples from 

Green Turtle Lake in Passaic County. The results suggested this site contained 

phycoerythrin and allophycocyanin-rich species.  

 

 
Figure 33. Forward scatter-phycoerythrin profile analysis of Green Turtle Lake (site #23) 

and Cylindrospermum (Red) Microcystis aeruginosa (Orange) as well as Synechococcus 

sp. IU 625 (Light blue). Green Turtle Lake showed mainly Cylindrospermum spp. related 

species and an additional undetermined group. 
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Flow cytometric analysis of water samples collected from Salem County 

A total of three water bodies from Salem County were collected and analyzed. All 

sites indicated the presence of phycoerythin-rich species, while allophycocyanin species 

were only detected in Rainbow Lake (Figures 34-35).  

Three pure cyanobacterial strains, Cylindrospermum spp., Microcystis aeruginosa 

and Synechococcus sp. IU 625 were included in the forward scatter-phycoerythrin profile 

analysis. The result showed the phytoplanktons in these three water bodies could contain 

all three groups and their related species (Figure 36).  
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Figure 34. Histogram of phycoerythrin among 6 water samples from 3 freshwater bodies 

in Salem County. The results suggested all sites contained phycoerythrin-rich species. 
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Figure 35. Histogram of allophycocyanin among 6 water samples from 3 freshwater 

bodies in Burlington County. The results suggested Allophycocyanin was detected in 

Rainbow Lake.  
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Figure 36. Forward scatter-phycoerythrin profile analysis of sites #24-26 and 

Cylindrospermum (Red) Microcsytis aeruginosa (Orange) as well as Synechococcus sp. 

IU 625 (Light blue). (A) Alloway Lake, (B) Parvin Lake and (C) Rainbow Lake show all 

three reference species and their related species.  
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Flow cytometric analysis of water samples collected from Sussex County 

A total of nine water bodies from Sussex County were collected and analyzed. All 

sites indicated the presence of phycoerythin-rich species, while there is little to no allo-

phycocyanin species detected (Figure 37 and 38). 

Three pure cyanobacterial strains, Cylindrospermum spp., Microcystis aeruginosa 

and Synechococcus sp. IU 625 were included in the forward scatter-phycoerythrin profile 

analysis. The result showed the phytoplanktons in Great Gorge Lake, NJLM 0213, NJLM 

0378 (Figure 39-1) as well as Silver Lake, Upper East Highland and Watchu Pond (Fig. 

Figure 39-2) could contain all three groups and their related species. Meanwhile, Hunts 

Pond mostly contained Cylindrospermum spp. related species (Figure 40A). Laidlaw 

Pond showed mainly Microcystis aeruginosa and Synechococcus sp. IU 625 related 

species (Figure 40B), whereas Mashipacong Pond showed mostly Microcystis aeruginosa 

and Cylindrospermum spp. related species (Figure 40C). 
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Figure 37. Histogram of phycoerythrin among 13 water samples from 9 freshwater bodies 

in Sussex County. The results suggested all sites contain phycoerythrin-rich species  
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Figure 38. Histogram of allophycocyanin among 14 water samples from 9 freshwater 

bodies in Burlington County. No significant allophycocyanin was detected in Sussex 

County water samples.  
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Figure 39-1. Forward scatter-phycoerythrin profile analysis of sites #27, 31, 32 and 

Cylindrospermum (Red) Microcystis aeruginosa (Orange) as well as Synechococcus sp. 

IU 625 (Light blue). (A) Great Gorge Lake, (B) NJLM 0213, and (C) NJLM 0378 

showed all three references and their related species.  

A 
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Figure 39-2. Forward scatter-phycoerythrin profile analysis of sites #33-35 and 

Cylindrospermum (Red) Microcystis aeruginosa (Orange) as well as Synechococcus sp. 

IU 625 (Light blue). (D) Silver Lake, (E) Upper East Highland, and (F) Watchu Pond 

showed all three references and their related species.  
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Figure 40. Forward scatter-phycoerythrin profile analysis of sites #28-30 and 

Cylindrospermum (Red) Microcystis aeruginosa (Orange) as well as Synechococcus sp. 

IU 625 (Light blue). (A) Hunts Pond contained mostly Cylindrospermum spp. related 

species. (B) Laidlaw Pond showed mostly Microcsytis aeruginosa and Synechococcus sp. 

IU 625 related species. (C) Mashipacong Pond contained mostly Microcystis aeruginosa 

and Cylindrospermum spp. related species.  
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Flow cytometric analysis of water samples collected from Warren County 

 Deer Park Pond water sample from Warren County was collected and analyzed. 

This water site indicated the presence of phycoerythrin-rich species, while little to no 

allo-phycocyanin species detected (Figure 41). 

Three pure cyanobacterial strains, Cylindrospermum spp., Microcystis aeruginosa 

and Synechococcus sp. IU 625 were included in the forward scatter-phycoerythrin profile 

analysis. The result showed the phytoplanktons in Deer Park Pond could contain mostly 

Microcystis aeruginosa and Synechococcus sp. IU 625 related species (Figure 42).  
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Figure 41. Histogram of phycoerythrin and allophycocyanin of 2 water samples from 

Deer Park Pond in Warren County. The results suggested this site contains 

phycoerythrin-rich species and little to no allophycocyanin.  

 

 
Figure 42. Forward scatter-phycoerythrin profile analysis of Deer Park Pond (site #36) 

and Cylindrospermum (Red) Microcystis aeruginosa (Orange) as well as Synechococcus 

sp. IU 625 (Light blue). Deer Park Pond shows mostly Microcystis aeruginosa and 

Synechococcus sp. IU 625 related species. 
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Figure 43.  Flow cytometric summary on map for the profile analysis of Atlantic City Reservoir from Atlantic County. M 

represents Microcystis aeruginosa like species, S represents Synechococcus sp. IU 625 related species, and C represents 

Cylindrospermum spp. like species.  
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Figure 44.  Flow cytometric summary on map for the profile analysis of NJLM 1286 (Shadow Lake) from Bergen County. M 

represents Microcystis aeruginosa like species, S represents Synechococcus sp. IU 625 related species, and C represents 

Cylindrospermum spp. like species.  
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Figure 45. Flow cytometric summary on map for the profile analysis of the sites from Burlington County. M represents 

Microcystis aeruginosa like species, S represents Synechococcus sp. IU 625 related species, and C represents 

Cylindrospermum spp. like species.      
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Figure 46. Flow cytometric summary on map for the profile analysis of the sites from Cumberland County.  M represents 

Microcystis aeruginosa like species, S represents Synechococcus sp. IU 625 related species, and C represents 

Cylindrospermum spp. like species.  



67 
 

 

 

Figure 47. Flow cytometric summary on map for the profile analysis of the sites from Gloucester County.  M represents 

Microcystis aeruginosa like species, S represents Synechococcus sp. IU 625 related species, and C represents 

Cylindrospermum spp. like species. 
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Figure 48. Flow Cytometric summary on map for the profile analysis of Amwell Lake from Hunterdon County.  M represents 

Microcystis aeruginosa like species, S represents Synechococcus sp. IU 625 related species, and C represents 

Cylindrospermum spp. like species. 
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Figure 49. Flow Cytometric summary on map for the profile analysis of Roosevelt County Park Lake from Middlesex County.  

M represents Microcystis aeruginosa like species, S represents Synechococcus sp. IU 625 related species, and C represents 

Cylindrospermum spp. like species. 
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Figure 50. Flow cytometric summary on map for the profile analysis of NJLM 1034 from Monmouth County.  M represents 

Microcystis aeruginosa like species, S represents Synechococcus sp. IU 625 related species, and C represents 

Cylindrospermum spp. like species. 
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Figure 51. Flow cytometric summary on map for the profile analysis of sites from Morris County.  M represents Microcystis 

aeruginosa like species, S represents Synechococcus sp. IU 625 related species, and C represents Cylindrospermum spp. like 

species. 
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Figure 52. Flow cytometric summary on map for the profile analysis of Prospertown Lake from Ocean County.  M represents 

Microcystis aeruginosa like species, S represents Synechococcus sp. IU 625 related species, and C represents 

Cylindrospermum spp. like species. 

 

 



73 
 

 

 

Figure 53. Flow cytometric summary on map for the profile analysis of Green Turtle Lake from Passaic County.  M represents 

Microcystis aeruginosa like species, S represents Synechococcus sp. IU 625 related species, and C represents 

Cylindrospermum spp. like species. 
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Figure 54. Flow cytometric summary on map for the profile analysis of sites from Salem County. M represents Microcystis 

aeruginosa like species, S represents Synechococcus sp. IU 625 related species, and C represents Cylindrospermum spp. like 

species. 
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Figure 55. Flow cytometric summary on map for the profile analysis of sites from Sussex County. M represents Microcystis 

aeruginosa like species, S represents Synechococcus sp. IU 625 related species, and C represents Cylindrospermum spp. like 

species. 
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Figure 56. Flow cytometric summary on map for the profile analysis of Deer Park Pond from Warren County.  M represents 

Microcystis aeruginosa like species, S represents Synechococcus sp. IU 625 related species, and C represents 

Cylindrospermum spp. like species.  

  



77 
 

DNA Extraction  

 Chelex DNA extraction was conducted for all 36 collected water samples. The 

concentration and purity were determined using a NanoDrop (Table 3). These samples 

were then utilized to perform PCR reactions.  

 

Polymerase Chain Reactions (PCR) 

 PCR-based assays were carried out with a total of 6 general and specific primer 

sets (Table 1). 1% Agarose gel electrophoresis were run for all PCR products. The results 

indicated that phyto-specific microorganisms and Synechococcus related species were 

detected for all water sites (Figures 57 and 59). General cyanobacteria were detected for 

most sites except for 3, #3 Deverson Lake, #10 Hands Mill Pond and #14 Franklinville 

Lake (Figure 58). No microcystin was detected from any site.  The  was performed for 

the amplification of DNA from the 36 water body samples to determine and identify the 

presence of general phytoplankton/photosynthetic bacteria, general cyanobacteria and 

general Synechococcus spp.  
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Table 3. DNA yield and purity for 36 collected water samples.  

 

 

 

 

 

 

 

 

 

 

 

Site Name County ng/µl A260/280 

Atlantic City Reservoir Atlantic 3.49 1.8 

NJLM 1286 Bergen 4.53 1.57 

Deverson Lake 

Burlington 

22.61 1.91 

Lake Pachoango 3.62 1.71 

Lake Pemberton 5.71 1.63 

Mt. Misery Lake 18.8 1.46 

Mirror Lake 21.86 1.52 

NJLM 0315 6.27 1.61 

NJLM 0754 3.59 1.45 

Hands Mill Pond 
Cumberland 

16.67 1.57 

Union Lake 5.32 1.53 

Cooper Lake 

Gloucester 

4.08 1.88 

Iona Lake 14.87 1.51 

Franklinville Lake 46.95 1.51 

McCarthys Lake 9.24 1.66 

NJLM 0489 3.77 1.75 

Amwell Lake Hunterdon 3.64 1.66 

Roosevelt County Park Lake Middlesex 5.41 1.54 

NJLM 1034 Monmouth 2.25 1.59 

NJLM 1045 (Cifrese Lake) 
Morris 

2.94 1.79 

Lake Morski Oko 2.52 2 

Prospertown Lake Ocean 3.79 2.44 

Green Turtle Lake Passaic 2.23 1.86 

Alloway Lake 

Salem 

6.7 1.75 

Parvin Lake 5 1.87 

Rainbow Lake 4.74 1.68 

Great Gorge Lake 

Sussex 

7.74 1.70 

Hunts Pond 4.64 1.56 

Laidlaw Pond 4.8 1.8 

Mashipacong Pond 6.61 1.65 

NJLM 0213 7.42 1.82 

NJLM 0378 3.56 2.19 

Silver Lake 5.12 1.79 

Upper East Highland 3.07 1.81 

Watchu Pond 4.48 1.54 

Deer Park Pond Warren 4.13 2.18 
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Figure 57. 1% agarose gel for phyto-specific species detection with primer set PSf and Ur. All sites showed positive detection. 
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Figure 58.  1% agarose gel for general cyanobacteria detection with primer set CYA106_16sf and CYA781_16sr. All sites 

showed positive detection except for 3 sites (#3 Deverson Lake, #10 Hands Mill Pond and #14 Franklinville Lake). 

.    
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Figure 59. 1% agarose gel for Synechococcus spp. detection with primer set 16s_19f and 16s_409r. All sites showed positive 

detection for Synechococcus spp. 
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Table 4. Summary of the PCR and flow cytometry results for the 36 water sites. ND 

stands for non-detectable. 

 

   

Microorganisms 

 

Site Name 

Phytoplankton Cyanobacteria Synechococcus spp. 

Flow 

cytometry 
PCR 

Flow 

cytometry 
PCR 

Flow 

cytometry 
PCR 

Atlantic City Reservoir X X X X X X 

NJLM-1286 (Shadow Lake) X X X X X X 

Deverson Lake X X X ND X X 

Lake Pachoango X X X X X X 

Lake Pemberton X X X X X X 

Mt. Misery Lake X X X X X X 

Mirror Lake X X X X X X 

NJLM-0315 X X X X X X 

NJLM-0754 X X X X X X 

Hands Mill Pond X X X ND X X 

Union Lake X X X X X X 

Cooper Lake X X X X X X 

Iona Lake X X X X X X 

Franklinville Lake X X X ND X X 

McCarthys Lakes X X X X X X 

NJLM-0489 X X X X X X 

Amwell Lake X X X X X X 

Roosevelt County Park Lake X X X X X X 

NJLM-1034 X X X X X X 

Cifrese Lake (NJLM-1045) X X X X X X 

Lake Morski Oko X X X X X X 

Prospertown Lake X X X X X X 

Green Turtle Lake X X X X X X 

Alloway Lake X X X X X X 

Parvin Lake X X X X X X 

Rainbow Lake X X X X X X 

Great Gorge Lake X X X X X X 

Hunts Pond X X X X X X 

Laidlaw Pond X X X X X X 

Mashipacong Pond X X X X X X 

NJLM-0213 X X X X X X 

NJLM-0378 X X X X X X 

Silver Lake X X X X X X 

Upper East Highland Lake X X X X X X 

Watchu Pond X X X X X X 

Deer Park Pond X X X X X X 
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For flow cytometry the three reference species Microcystis aeruginosa, 

Synechococcus sp. IU 625 and Cylindrospermum spp. were measured, detected, and 

analyzed. Based on the result, Microcystis aeruginosa is detectable when measured and 

analyzed with Phycoerythrin and Allophycocyanin from an OD750nm of 0.001 and 4,196 

cells/ml up to an OD750nm of 0.591 with 2.0 x 106 cells/ml (Figure 3). Synechococcus sp. 

IU 625 is detectable at an accurate range from an OD750nm of 0.008 and cell count of 

2,787 cells/ml up to an OD750nm of 0.521 and 187,800 cells/ml (Figure 4). 

Cylindrospermum spp. is detectable at an accurate range from an OD750nm of 0.008 and 

cell count of 1,469 cells/ml up to an OD750nm of 0.640 and 7.21 x 105 cells/ml (Figure 5). 

Thus, these three reference species were utilized as standards to help identify these 

species or ones related in the water samples.            

 The initial flow cytometric histogram analysis with the sites compared to 

standards showed all 36 sites contained pytoplanktons and cyanobacteria with 

phycoerythrin. McCarthys Lake from Glocuester County, Roosevelt County Park Lake 

from Middlesex County, Lake Morski Oko from Morris County, Green Turtle Lake from 

Passaic County and Rainbow Lake from Salem County also contained species with 

allophycocyanin as seen in Figures 15, 24, 28, 32 and 35, respectively.    

 A further analysis involving the phycoerythrin/ forward scatter with the water 

sites compared to the standards allowed the identification of the undetermined water 

samples to the three references. 17 out of the 36 sites showed all three and their related 

species as seen in Figures 12A-C, 16A-B, 19, 29B, 36A-C, 39A-F and 42. This is also 

summarized in Figures 45-47, 51, 55-56. Seven sites showed mostly Microcystis 
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aeruginosa and S. IU 625 like species as seen in Figures 8, 13A-C, 21A, 29A and 40B. 

Six sites showed Cylindrospermum spp. like species as seen in Figures 20B, 25, 27, 31, 

33, 40A; Green Turtle also showed an undetermined group that may possibly be micro 

algae due to its large size and phycoerythrin fluorescence (Figure 33). Atlantic City 

Reservoir (Figure 7), McCarthys Lake (Figure 21), Amwell Lake (Figure 23), and 

Mashipacong Pond (Figure 40C) showed Microcystis and Cylindrospermum spp. like 

species as seen in Mt. Misery Lake and Franklinville Lake (Figure 20A), showed mostly 

Microcystis aeruginosa like species.  
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Discussion 

 In the present study water samples from 36 water bodies throughout 14 New 

Jersey counties were studied and analyzed.  The water chemistry of the water temperature 

(ºC), pH, and dissolved oxygen were measured by NJDEP as seen in Table 2. Out of all 

sites NJLM 0213 contained the lowest water temperature and dissolved oxygen, 16.97 ºC 

and 1.66 mg/L, respectively. The highest water temperature was 30.9 ºC from Alloway 

Lake.  The highest pH and dissolved oxygen was found in Cooper Lake with 9.75 and 

19.1 mg/L respectively. The lowest pH was 4.09 from Mt. Misery Lake. The optimal pH 

for cyanobacteria and their blooms is between 6 and 9 (USEPA, 2015a). Most sites fall 

within this range as seen again in Table 2, thus indicating most of these sites contain the 

pH ranges for cyanobacteria to grow and possibly accumulate. The dissolved oxygen is a 

water property that is crucial where concentrations less than 4 mg/L can be considered 

hypoxic to the water ecosystem (Paerl et al., 2001). Interestingly, though 4 sites from 

Sussex County, NJLM 0213, NJLM 0378, Silver Lake and Watchu Pond, contained very 

little dissolved oxygen of 1.66, 2.65, 3.32 and 3.69 mg/L respectively (Table 2). These 

sites all contain all three and related species from flow cytometric results as seen in 

Figures (39 1-2)     

Furthermore, based on conducting flow cytometric measurements of the 36 water 

sites it is possible to obtain results in about 4 to 5 minutes per sample. Thus, this suggests 

that flow cytometry can rapidly process and accurately detect a large volume of 

environmental water samples. In addition, a profile of cyanobacteria species can be 

detected in their live form because of autofluorescence. Moreover, this is highly efficient 
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because early preventive measurements can be implemented if detection is found early, 

thus time and money can be saved in the long run if this method becomes a routine for 

sampling. PCR-based assays were conducted as a complementary method to help validate 

the flow cytometric analysis results.  PCR was performed on the mixed population of 

DNA from water samples can help determine the presence or absence using general and 

specific primers for detection. It is evident that all 36 sites contained phytoplankton 

species when Psf/Ur primer set was utilized as seen in (Figures 57-59) and summarized in 

(Table 4). Phyto-specific species, cyanobacteria and Synechococcus spp. were 

successfully detected in all 36 collected water sites with both flow cytometry and PCR-

based assay, except for 3 sites.  PCR was carried out on slightly more specific primer set 

CYA106_16sf/ CYA781_16sr for the detection of general cyanobacteria and 33 out of 36 

sites showed positive bands as seen in (Figure 58) and summarized in Table 4. However, 

when PCR was conducted for an even more specific primer set 16s_19f/ 16S_409R to 

detect Synechococcus all 36 sites showed positive bands indicated the genus 

Synechococcus is present. Since these bands showed up most likely the three bands that 

didn’t show up for the general cyanobacteria could be from the fact that the DNA is from 

a water site that contains a mixed population so there could be variances. Interestingly, 

the bands for Msf/ Msr, MICf/MICr and CPC1f/CPC1r were not at detectable levels 

because many of the sites did contain low DNA concentrations. The primer set Msf/Msr 

for mcyA gene did not contain detectable levels of microcystin which can actually 

indicate that this is beneficial to the environment and the public health. Moreover, when 

PCR was utilized on the primer set CPC1f/CPC1r there was no detectable levels of 
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general cyanobacteria that contained beta subunit of phycocyanin and this correlated 

fairly well with the flow cytometric analysis as only 5 out of 36 sites revealed 

phytoplankton and cyanobacteria with allophycocyanin. As mentioned above most of the 

cyanobacteria or phytoplankton species were mainly phycoerythrin rich.  

Future studies can involve the utilization of flow cytometry, PCR and even fluid 

imaging detection technology from FlowCAM. Flow cytometry can be implemented for 

rapid routine water sampling, thus sampling larger volume and quantities of fresh water 

bodies can be achieved. In addition, portable flow cytometry are widely available and can 

be implemented to detect cyanobacterial species on boat on the various water bodies to 

allow even more accurate measurements as this will be on site. Moreover, this can allow 

detection at the same moment of time as sampling to help conduct analysis and various 

depths of water sample can be collected and analyzed. Furthermore, FlowCAM and its 

imaging technology can allow detection of larger size species to avoid the possibility of 

clogging a flow cytometer and circumvent filamentous species that can mistakenly be 

considered as multiple cells. In other words, flow cytometry can be utilized to detect 

cyanobacteria from fairly large to as low as submicron particles and FlowCAM can 

detect large cells (Dubelaar et al., 2000; Read et al., 2014).   
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